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ABSTRACT

Recently, sparse identification of nonlinear dynamics (SINDy) has delivered promising results

in identifying interpretable models using data for various process systems. However, SINDy can-

not completely comprehend the dynamics of an evolving complex process without relying on im-

practically large data sets. Another important challenge is that at any instance of plant-model

mismatch or process upset, re-training the model using SINDy is computationally expensive and

cannot guarantee to catch up with rapidly changing dynamics. As a solution to this, a systematic

procedure capable of identifying and predicting the nonlinear dynamics on the fly promises to pro-

vide a useful representation of the process model. Motivated by this, we propose an adaptive model

identification framework that relies on the methods of sparse regression and feature selection. The

proposed method is a three-step procedure: (1) identifying potential functions from a candidate

library using SINDy, (2) updating coefficients of the identified model using ordinary least-squares

regression, (3) selecting the most important features using stepwise regression. Initially, a baseline

model is identified off-line using SINDy, and as a new data becomes available, the subsequent

on-line steps are triggered based on a pre-specified tolerance to further update the model. Such an

adaptive identification scheme facilitates in perceiving the model structure using a less amount of

data than its off-line counterpart, SINDy.

Based on the previously proposed method, we further propose online adaptive sparse identifi-

cation of systems (OASIS) framework to extend the capabilities of SINDy for accurate, automatic,

and adaptive approximation of process models. The OASIS method combines SINDy algorithm

and deep learning for system identification during online control of a process. First, we use SINDy

to obtain multiple models from historical process data for varying input settings. Next, using these

identified models and their training data, we build a deep neural network that approximates the

functional relationship between SINDy coefficients and the state-input pairs in the training data.

Once trained, the deep neural network is incorporated in a model predictive control framework for

closed-loop operation. We demonstrate both the methods on a continuous stirred tank reactor.

ii



DEDICATION

To my parents, grandparents and sisters, Sravya and Cherry.

iii



ACKNOWLEDGMENTS

I would like to take this opportunity to express my deepest gratitude and respect to my advisor

Dr. Joseph Sang Il-Kwon for his endless support and encouragement throughout. His careful

supervision has motivated me to be engaged in my research. I cannot thank him enough for his

ideas, patience, availability, discussions, and thoughtful comments. His dedication and continuous

guidance for all his students is remarkable, and I will cherish all that I have learned from him.

I would also like to appreciate and thank my committee members, Dr. Costas Kravaris and Dr.

Eduardo Gildin for all their assistance and timely help.

My greatest appreciation to Mr. Abhinav Narasingam and Mr. Mohammed Saad Faizan Bangi

for all their guidance and help. Both of them are great mentors and I sincerely thank them for

teaching me the fundamentals of my research. This work would have not been possible without

their ideas, guidance, and constructive feedback. I also thank my research colleagues and friends

Dr. Prashanth Siddhamshetty, Mr. Dongheon Lee, Mr. Hyun-Kyu Choi, Ms. Pallavi Kumari, Mr.

Kaiyu Cao, Mr. Silabrata Pahari and Mr. Parth Shah for all their help and support both within and

outside the research group. It is a memorable experience for me to work with such an inspiring

research group.

A very special thanks to all my friends at Texas A&M, especially Nikhita, Debopamaa, Parth,

Niranjan and Keerthi. Thank you for always being there for me and sharing this journey. I am also

thankful to my beloved friends Vinaya, Aparna, Harika and Deva for all their care and encourage-

ment.

Last but not the least, I owe my heartfelt gratitude to my parents, grandparents, sisters and

cousins for all their love and care. All that I am today is because of them. I am forever indebted to

my family.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Dr. Joseph Sang-Il Kwon [prin-

cipal advisor] of the Department of Chemical Engineering and Texas A&M Energy Institute, Dr.

Costas Kravaris of the Department of Chemical Engineering, and Dr. Eduardo Gildin of the De-

partment of Petroleum Engineering.

All the work conducted for the thesis was completed by the student independently with support

from group members.

Funding Sources

The authors gratefully acknowledge financial support from the National Science Foundation

(CBET-1804407), the Department of Energy (DE-EE0007888-10-8), the Texas A&M Energy In-

stitute, and the Artie McFerrin Department of Chemical Engineering.

v



NOMENCLATURE

SINDy Sparse Identification of Nonlinear Dynamics

N4SID Nonlinear algorithms for subspace state-space identification

MOESP Multi-variable output-error-state-space

STLS Sequentially Thresholded Least Squares

CSTR Continuous Stirred Tank Reactor

MPC Model Predictive Control

DNN Deep Neural Network

ReLU Rectified Linear Unit

ROM Reduced Order Model

ODE Ordinary Differential Equation

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background on SINDy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. DATA-DRIVEN ADAPTIVE IDENTIFICATION OF NONLINEAR SYSTEMS . . . . . . . . . . 6

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Adaptive identification of nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Application to CSTR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Adaptive model identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Validation of the adaptive method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Comparison with SINDy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. ONLINE ADAPTIVE SPARSE IDENTIFICATION OF SYSTEMS (OASIS) . . . . . . . . . . . . . . 27

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 OASIS methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Model identification using SINDy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Training the DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Testing the DNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.4 Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



4. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



LIST OF FIGURES

FIGURE Page

2.1 Flow chart of the proposed methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Relative error vs thresholding parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Results obtained in Step 1 using the training data for (a) concentration, and (b)
temperature profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 (a) Comparing the future behavior of individual models obtained using the pro-
posed method for concentration and temperature profiles, and (b) relative errors of
the models identified using the proposed method with respect to time. . . . . . . . . . . . . . . . . 22

2.5 Open-loop validation of concentration and temperature profiles described by the
adaptive model for three different input settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 (a) Open-loop validation of the adaptive and SINDy models identified using the
same number of samples for concentration and temperature profile, and (b) com-
parison of the relative errors for the adaptive and SINDy models identified using
the same amount of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 (a) Open-loop validation of the adaptive model and SINDy model identified using
a large amount of data for concentration and temperature profiles, and (b) compar-
ison of the relative errors for the adaptive model and SINDy model identified using
a large amount of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Deep neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 OASIS methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Performance of a model identified by SINDy with respect to the (a) same training
input used in its identification, and (b) testing input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Structure of the DNN.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 (a) Prediction of concentration and temperature dynamics using the DNNs with
respect to the training data, and (b) the relative error of the DNNs’ predictions with
respect to the training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



3.6 (a) Validation of the performance of the models obtained from DNNs (a) when the
rate of heat input violates the upper bound of the constraints, i.e., 1.5 × 105 KJ/h
(due to the high value of heat input, the temperature may exceed training values for
the initial conditions considered), and (b) when the rate of heat input violates the
lower bound of the constraints, i.e., −1.5× 105 KJ/h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Evaluating the performance of the models obtained from DNNs when the rate of
heat input is in the range of [-1.5× 105, 1.5× 105] KJ/h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Model predictive control using the proposed OASIS algorithm. . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Closed-loop simulation results under the proposed OASIS-based MPC. . . . . . . . . . . . . . . 42

3.10 The manipulated heat input profile under the proposed MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

x



LIST OF TABLES

TABLE Page

2.1 Parameter values for simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 True coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Sparse coefficients estimated in Step 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Regression coefficients estimated in (a) Step 2, and (b) Step 3. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Average relative error computed for 100 different datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Training data range for DNN inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xi



1. INTRODUCTION

Over the past decades, growing production technologies have contributed to a rise in complex

processes across a major sector of industries. When dealing with such processes, first principles

based modeling may be intractable and cannot be relied upon to discover the underlying governing

equations, particularly when a strict constraint is imposed on the computational requirement [1].

This has guided several promising developments in the field of data-based system identification.

The focus of system identification is to determine the structure of the model based on the input-

output relations and provide an accurate future prediction [2]. In order to meet these goals, several

data-driven methods have been established over the years based on equation-free modeling [3],

artificial neural networks [4, 5, 6], empirical dynamic modeling [7], nonlinear Laplacian spectral

analysis [8], automated inference from dynamics [9], and surrogate modeling [10] to name a few.

Another important class of data-driven methods that have been in use for quite sometime, particu-

larly in the areas of process control, is subspace identification. This includes methods like numer-

ical algorithms for subspace state-space identification (N4SID) [11], multivariable output-error-

state-space (MOESP) [12], and canonical variate analysis [13] which are competent in identifying

simple state-space models for multivariable dynamical systems based on measured input-output

data [14]. Owing to an easy accessibility to a vast amount of data and advancements in machine

learning algorithms in recent times, these data-driven approaches are becoming more feasible and

prominent.

Despite the proven success of the aforementioned “black-box” approaches in many applica-

tions, there has been an increasing shift in integrating data-driven methods with physics laws, es-

pecially in the case of dynamical systems. This is driven by a limitation of black-box models to ex-

trapolate the dynamics to the entire state-space, beyond where they were sampled and constructed.

Besides, it is necessary sometimes to develop a complete understanding of the physical mecha-

*Reprinted with permission from “Machine learning-based adaptive model identification of systems: Application
to a chemical process” by Bhadriraju, B., Narasingam, A., and Kwon, J. S. 2019. Chemical Engineering Research &
Design, 152, 372-383, Copyright 2019 by Elsevier.
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nisms that govern the dynamical system of interest. Within this context, genetic programming-

based symbolic regression has contributed in determining governing dynamics from data, along

with giving an actual sense of the process [15, 16]. But in the case of large scale systems, symbolic

regression can be prohibitively expensive and is prone to over-fitting. Some of the researchers

have addressed these issues by developing system identification methods using sparse regression

and compressive sensing. These techniques are based on the fact that only a few nonlinear terms

are sufficient in determining the governing dynamics of a complex process. One such method

that has recently received much attention is sparse identification of nonlinear dynamics (SINDy)

algorithm developed by [17]. It has been extensively used for data-driven discovery of underlying

dynamics by constraining the model structure based on a priori knowledge such as symmetries and

conservation laws. The significance of SINDy has been widely researched in various fields. Some

of the applications include rapid model recovery from abrupt system changes [18], simultaneous

identification of both micro-scale and macro-scale dynamics [19], sparse learning of reaction kinet-

ics [20], model-predictive control [21], developing reduced order models (ROM) for high-fidelity

systems [22, 23], understanding rational function nonlinearities [24] and parameterized dynamics

[25], discovering partial differential equations [26, 27], ranking the models based on Akaike Infor-

mation Criterion (AIC) [28], Koopman operator based control [29, 30], and developing Galerkin

regression models for fluid-flow [31]. Due to the ease of implementation and the ability to incor-

porate any known process knowledge, SINDy could be effectively applied for a large number of

nonlinear dynamical systems. Additionally, several theoretical developments have also been es-

tablished to show that the SINDy algorithm rapidly converges to a local minimizer under specific

conditions [32].

1.1 Background on SINDy

This report presents a brief overview of the SINDy method and for more information, the readers

can refer the original work by [17]. The SINDy algorithm is developed based on an assumption

that out of all possible functions considered, only few of them govern the system dynamics. In

accordance with that, a sparse regression problem is solved by balancing sparsity with accuracy.

2



This eliminates the intractable brute-force approach of searching for the right model among all the

possible models in the given function-space. Let the governing process dynamics of the system

under study be represented as
d

dt
x(t) = f(x(t),u(t)) (1.1)

where the vector x(t) denotes the states of the system at time t, u(t) is the vector containing the

inputs applied to the system at time t, and f(x,u) represents the governing equations describing

the process dynamics. In some cases when the underlying dynamics are unknown and cannot be

determined using physics laws, the function f has to be identified from measurement data. For

finding the function f , time-series data of state variables and applied inputs are collected. The time

series data can be obtained either from physical sensor measurements or from numerical simulation

of Eq. (1.1). The collected m snapshots of n state variables and their corresponding inputs u(t) are

arranged into matrices X and U as shown below.

X =



x1(t1) x2(t1) · · · xn(t1)

x1(t2) x2(t2) · · · xn(t2)

...
... . . . ...

x1(tm) x2(tm) · · · xn(tm)


U =



u1(t1) u2(t1) · · · un(t1)

u1(t2) u2(t2) · · · un(t2)

...
... . . . ...

u1(tm) u2(tm) · · · un(tm)


(1.2)

Next, the derivatives of state variables are either measured or numerically computed. When the

time-series derivatives cannot be measured directly, they must be determined carefully for efficient

working of SINDy. In general, this can be done by finite difference method. But in the presence

of noise, it is suggested to use rigorous methods such as total variation regularized differentiation

[33] or Knowles and Wallace variational method [34]. Using these computed derivatives, a matrix

is constructed at different time points as follows:

3



Ẋ =



ẋ1(t1) ẋ2(t1) · · · ẋn(t1)

ẋ1(t2) ẋ2(t2) · · · ẋn(t2)

...
... . . . ...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)


(1.3)

After obtaining the derivatives of state variables, the collected time-series data of X and U are

utilized to build a candidate function library containing all possible potential functions as

Θ(X,U) =

[
1 X X2 · · · U · · · exp(X) sin(X) cos(X) · · ·

]
(1.4)

The choice of selecting the potential functions can be based on the knowledge of physics and

prior information about the process. For example, as a majority of process models usually contain

polynomial terms, it is useful to include them in the function library. In addition, it is recommended

to populate the library with as many functions as possible like constant terms, trigonometric, and

any other nonlinear functions so that the true process dynamics are well represented by the library

with a higher probability. After evaluating time-derivatives of states and building the candidate

function library, a regression problem is formulated as

Ẋ = Θ(X,U)Σ (1.5)

where the vector Ẋ denotes the time-series derivatives of state variables, Θ(X,U) is the library

of possible potential functions representing the system dynamics, and Σ is the vector containing

the function coefficients. However, solving the above problem directly using ordinary regression

does not provide a parsimonious model. In order to promote sparsity in Σ, Eq. (1.5) should be

expressed in the form of a convex l1-regularized regression as

Σ = argmin
Σ′
‖Ẋ−Θ(X,U)Σ′‖2 + λ‖Σ′‖1 (1.6)

4



The above problem is solved using sequential thresholded least-squares (STLS) [17], which is sim-

ilar to ordinary least-squares regression with an additional step of hard thresholding. The variable

coefficients having values less than the thresholding parameter are rendered zeros and the regres-

sion problem is iteratively solved until convergence of parameter coefficients is attained. Please

note that the parameter λ is crucial in eliminating the unwanted functions and its value can be

evaluated using several hyperparameter tuning strategies such as grid-search [35], random search

[36, 37] and Bayesian Optimization [38].
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2. DATA-DRIVEN ADAPTIVE IDENTIFICATION OF NONLINEAR SYSTEMS

2.1 Motivation

Though SINDy proved to be successful in inferring the dynamics of various systems of interest,

it holds the limitation of uncovering all of the underlying subtle dynamics for a complex process

when only a small amount of data is available. Especially for the processes exhibiting complex

nonlinear characteristics, the type regularly encountered in chemical sector, numerous samples

may be required for obtaining an accurate model in the absence of enhanced sampling strategies.

However, collecting such a large amount of measured data may be expensive and also, handling

such massive data is computationally demanding. With this in mind, in this work, an adaptive

identification method is proposed for identifying complex process dynamics with limited use of

data. For nonlinear processes whose dynamics are time-varying and poorly understood, adaptive

identification is a favorable approach. Most importantly, in the case of systems with parameter

uncertainties and evolving dynamics, there is a need for adaptive modeling as a new data becomes

available [39, 40, 41]. This is particularly useful because re-training the model may not be fast

enough to cope with the real-time demands. Moreover, offline trained models can be significantly

improved when they are simply updated using a new data. Therefore, for real-time applications,

adaptive model identification helps in handling any plant-model mismatch that may occur during

process operation. Recently, several methods contributing to the data-driven online model identi-

fication have been developed; in [42], the authors proposed an error-triggered online identification

approach and in [43], a combination of event-triggered and error-triggered online identification

mechanism based on recurrent neural network is discussed. Although these approaches are shown

to be useful for model predictive control of real-time processes, they do not provide an interpretable

model.

Apart from using a small amount of data, it is important to identify a model which is free of

*Reprinted with permission from “Machine learning-based adaptive model identification of systems: Application
to a chemical process” by Bhadriraju, B., Narasingam, A., and Kwon, J. S. 2019. Chemical Engineering Research &
Design, 152, 372-383, Copyright 2019 by Elsevier.
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redundant and irrelevant variables [44]. Specifically, the features that do not contribute to the op-

timal model performance are considered irrelevant and the ones that are weakly relevant but can

be replaced by other distinctive features are redundant. The presence of such features reduces

prediction speed and accuracy. To tackle this issue, one can use feature selection techniques to

eliminate the unwanted variables which do not significantly contribute to the process dynamics.

These methods usually result in improved model prediction accuracy and reduced computational

burden. Within the class of feature selection methods, numerous techniques are available and can

be broadly grouped as filter, wrapper and embedded methods [45, 46]. Filter methods rank the

features based on their correlation with the output without using any machine learning algorithm.

Though these methods are computationally less expensive and evaluate the importance of each

variable individually, they may fail in providing the best subset of variables as they do not actu-

ally train the model. On the other hand, wrapper and embedded methods select the best subset of

features based on predictor performance. While wrapper methods use the combination of search

strategies and modeling algorithm, embedded methods like LASSO [47] and RIDGE [48] have fea-

ture selection integrated within their algorithm. In this work, a wrapper-based stepwise regression

is used as a part of the proposed framework [49, 50, 51].

Taking the above mentioned considerations into account, this work proposes an adaptive sparse

identification method that identifies the emerging process dynamics of a complex system through

a sequence of steps. First, a sparse model based on SINDy is identified offline using the initial

data. In the next step, when the previous model fails to predict accurately, the coefficients of

the identified functions are updated using ordinary least-squares regression. Finally, the identified

model is updated by retaining only the essential features via stepwise feature selection. The main

advantage of this sequential approach is that it requires a less amount of data for identifying a

complex nonlinear dynamical system compared to SINDy.

The outline of this chapter is summarized as follows: In Section 2.2, a detailed description of

the proposed methodology is presented, and in Section 2.3, application of the proposed method

in identifying a highly nonlinear continuous stirred tank reactor (CSTR) model is described. In

7



Section 2.4, numerical simulations carried out to identify the CSTR dynamics using the proposed

method are discussed. In the following subsections, the performance of the model identified by the

proposed algorithm is analyzed, validated and then compared with the model identified by SINDy

offline.

2.2 Adaptive identification of nonlinear systems

In this section, the proposed adaptive data-based model identification method is detailed. The

method is executed according to the following three steps:

1. Sparse model identification: With the initial data available, a parsimonious model is obtained

offline from a large set of candidate functions using SINDy.

2. Re-estimation of regression coefficients: As a new data becomes available, the coefficients of

the identified functions are updated by performing ordinary least-squares regression.

3. Feature selection: Using stepwise regression, the best subset of functions is selected that

represents the structure of the actual dynamics.

A flowchart representing each step of the proposed method is illustrated in Fig. 2.1. Instead of

the conventional way of using SINDy for overall process model identification, the idea is to apply

SINDy for identifying potential functions from a large library matrix. Note that, the first model is

identified offline with a data available initially and is further improved online as a new data is avail-

able. At a point where the SINDy model fails, a new data is regressed onto the identified function

library to update the values of the function coefficients. Furthermore, stepwise feature selection is

implemented to develop a more accurate and computationally efficient model by selecting only the

essential functions. As a preliminary step, it is recommended to pre-process the data for efficient

regression analysis using standard techniques such as normalizing or filtering depending on the

nature of the data. In the following subsections, each step of the adaptive identification method is

discussed in detail.

Step 1: Sparse model identification

This is the first step in the proposed framework. In this step, a parsimonious model is obtained

from some initial data (that may be collected at different operating conditions) using SINDy offline.
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For example, this initial data can be obtained from process history. Identifying the correct functions

along with their exact coefficients requires a large number of samples. Since Eq. (1.6) is solved

only using limited data samples available initially, it is unlikely to realize an accurate model in this

step. Therefore, the identified model will only be used to approximate the system until it diverges

from the actual process dynamic behavior. To quantify the accuracy of the identified model, the

relative error based on Frobenius norm can be used, which is calculated as

E(t) =
‖x(t)− x̂(t)‖fro
‖x(t)‖fro

(2.1)

where ‖.‖fro denotes the Frobenius norm, x(t) is the actual process value, and x̂(t) is the model

predicted value. When the error evaluated between model prediction and process measurement

exceeds a pre-specified tolerance ε, i.e., E(t) > ε, Step 2 becomes functional.

Step 2: Re-estimation of regression coefficients

The objective of this step is to update the coefficients of previously determined functions. As

a new data becomes available, this is done using ordinary least-squares regression. Specifically, a

new library matrix is constructed considering only the functions identified in Step 1, and the new

data is regressed onto this function library without any thresholding. As there is no thresholding,

the regression process is computationally more attractive. Again, when the model obtained in this

step performs poorly, Step 3 of the method is initiated.

Step 3: Feature selection

This step is aimed to further enhance the prediction accuracy by selecting only the essential

features from the previously identified functions. For this purpose, a statistics-based approach of

feature selection helps in selecting the best subset of variables without altering their representation,

thus achieving a balance between model simplicity and goodness of fit. The model obtained in Step

2 is tested using stepwise forward and backward regression, by formulating a null hypothesis as

γj = 0 (2.2)

9



Start

Initial data

Apply SINDy for identifying  
baseline model

E(t) > ε 
Proceed with the  model 

identified using SINDy

Update function coefficients 
using ordinary least-squares 

regression

E(t) > ε 

End

Proceed with the  model 
updated using least-squares

Select dominant features from 
previous  model using stepwise 

regression
New data

New data

Offline

No

No

Yes

Yes

 

Figure 2.1: Flow chart of the proposed methodology.

where γj represents the estimated coefficient of a feature, zj , considered for selection. In this work,

the terms present in the model obtained from Step 2 represent the feature candidates available in
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this step. Features are added or removed from the model based on a statistical criterion like p-value

(the probability of a null hypothesis to be true), obtained from F-test. The order of adding features

to the model is decided by measuring the correlation between the dependent variable, y, and the

independent feature, z, as follows:

rzy =

∑m
i=1(zi − z̄)(yi − ȳ)

(
∑m

i=1(zi − z̄)2)
1
2 (
∑m

i=1(yi − ȳ)2)
1
2

(2.3)

For m time-series samples considered, z̄ and ȳ are the mean values of the considered feature

and the dependent variable, respectively. The most promising feature with the highest correlation

coefficient is first added to the model and its statistical significance is examined using F-test. If this

feature is significant, then the next features are added one at a time based on their partial correlation

coefficient [52, 53]. At every step, the significance of all the previously selected features and the

new feature to be added is evaluated. At any time during the evaluation, a previously added feature

can be removed if it becomes insignificant in contributing to the desired prediction accuracy. If

the p-value for a feature is less than the pre-specified significance level (i.e., α-value), then the

null hypothesis is rejected indicating that the feature is valuable and is added to the model. The

selection procedure stops when further addition or removal of features cannot improve goodness

of fit. With this heuristic approach, only the most informative features are retained in the model,

thus reducing the run time and complexity associated with more parameters. Please note that, for

the cases with very few samples and more predictor variables, this particular selection technique

may not deliver expected results always [54]. Fortunately, for most of the dynamic processes, the

number of samples available is more than that of the predictor variables considered, including the

application demonstrated in this work.

Remark 1. For the cases where a large amount of data is available, often times it is possible to

fully identify the original process model using Step 1 (SINDy) alone with a suitable value of λ

(please refer the case studies presented in [17]).

Remark 2. Please note that measurement noise is not considered in this case study. However, in
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many practical applications, the measurement data is often contaminated by noise that may affect

the performance of the proposed method. This can be addressed by denoising the data using the

available nonlinear noise reduction techniques such as filtering and smoothing [55, 56, 57, 58].

Furthermore, the differentiation of data in Step 1 has to be carried out using robust methods [33,

34] that can compensate for noise. Additionally, it is important to implement a feature selection

method which is robust to noisy data; for example, one can use a hybrid feature selection method

combining both filter and wrapper methods [59]. In this work, stepwise regression was used as it

was shown to perform well in the presence of measurement noise [60].

2.3 Application to CSTR

This section demonstrates the application of the proposed method for a perfectly mixed, non-

isothermal CSTR. An exothermic, irreversible reaction A→B with the second order kinetics is

considered whose reaction rate is given by

r = K C2
A (2.4)

where K is the temperature dependent rate constant, and CA is the time-varying concentration of

reactant A. The reaction rate constant is determined by Arrhenius law as

K = K0exp

(
−E
RT (t)

)
(2.5)

where K0 is the pre-exponential factor, E is the activation energy of the reaction, R is the uni-

versal gas constant, and T is the time-varying reactor temperature in Kelvin. The temperature is

maintained by adjusting the amount of heat transferred through the reactor jacket. The following

equations obtained from mass and energy balance of the reactor are the mathematical representa-

tion of concentration and temperature dynamics in a CSTR. These equations are used to generate
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simulation data for identifying the governing dynamics of the process.

dCA(t)

dt
=
F

Vr
(C0 − CA(t)) −K0exp

(
−E
RT (t)

)
CA(t)2 (2.6)

dT (t)

dt
=
F

Vr
(T0 − T (t)) − ∆H

ρcp
K0exp

(
−E
RT (t)

)
CA(t)2 +

Q(t)

ρcpVr
(2.7)

In the above equations, F is the feed flow rate to the reactor, Vr is the reactor volume, ∆H is the

heat of reaction, Q is the manipulated rate of heat input, and ρ and cp are the density and specific

heat capacity of the fluid in the reactor, respectively. The temperature-dependent rate constant and

the coupled dynamics between temperature and concentration contribute to the complex nonlinear

dynamics, making the process of system identification challenging. The objective of this case

study is to develop an adaptive model that captures the evolving dynamics of concentration and

temperature with a higher prediction accuracy. In the following section, the performance of models

identified using the adaptive method and its offline counterpart, SINDy, is evaluated.

2.4 Simulation results

This section presents the results obtained from the numerical experiments carried out for model

identification of the CSTR dynamics. The characteristics of the models developed using the pro-

posed method and the original SINDy method are compared on the basis of prediction accuracy

and the total number of data samples required. In this work, all the simulations were performed

using MATLAB R2018b programming platform.

The input-output data required for training the models is generated by solving open-loop simu-

lations of the mathematical models, Eq. (2.6) and Eq. (2.7), using the ode45 solver. The process is

subjected to a random heat input profile with signals varying between −6× 104 KJ/h to 10× 104

KJ/h. A simulation time step of 1 × 10−6 h is considered within the solver, and the data is col-

lected with a sampling time step of 1 × 10−4 h. Assuming full state measurements are available,

the process outputs are C and T . The parameter values considered for numerical simulation are

shown in Table 2.1. It is expected that the function coefficients of the identified model must be
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Table 2.1: Parameter values for simulation.

Parameter Units Value

Flowrate, F m3/h 5

Arrhenius pre-exponential factor, K0 1/h 8.46× 106

Reactor volume, Vr m3 1

Gas constant, R KJ/Kmol·K 8.314

Inlet temperatue, T0 K 300

Initial concentration, C0 Kmol/m3 4

Activation energy, E KJ/Kmol 5× 104

Enthalpy change, ∆H KJ/Kmol −1.15× 104

Fluid density, ρ Kg/m3 1000

Specific heat, cp KJ/Kg·K 0.231

approximately in the same range as the true values shown in Table 2.2. In the following subsec-

tions, the adaptive sparse identification and SINDy based models are identified, validated and then

compared.

2.4.1 Adaptive model identification

As mentioned earlier, the proposed algorithm is a three-step method having different goals in

each step as:

Step 1) Identify an initial set of potential functions.

Step 2) Update the identified function coefficients.

Step 3) Select the best combination of essential functions.

In Step 1, the original SINDy algorithm is applied to identify the governing functions of the

concentration and temperature dynamics. To this end, a candidate library matrix is built with

22 functions as represented in Eq. (2.8). The advantage of SINDy, which is to incorporate a priori

knowledge such as the temperature dependence of the rate constant via Arrhenius law, is utilized by

including a temperature-dependent exponential term in the function library. The library developed
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Table 2.2: True coefficients.

Functions dCA

dt
dT
dt

1 20 1500

C -5 0

T 0 -5

exp
(−E
RT

)
C2 −8.46× 106 4.21× 108

Q 0 4.33× 10−3

in this step is anm×22 matrix, wherem indicates the size of the time series data. In the subsequent

steps, as the model gets updated, the column size of the library may vary. The simulated outputs

of concentration, temperature, and the manipulated heat input are represented as x1, x2 and u,

respectively.

Θ(x,u) =

[
1 xi

n exp
(
−E
Rx2

)
x1

2 u u2 xiu sin(xi) cos(xi)

]
(2.8)

In the above equation, the subscript i = 1, 2 corresponds to the concentration and temperature

variables, respectively, and n = 1, · · · , 6 indicates the degree of the polynomial. This step is

performed offline using the available historical data of m = 5 × 103 samples. This historical

data is obtained by simulating the process starting at initial conditions C = 1.9 kmol/m3 and

T = 400 K for a total duration of t = 0.5 h. Please note that, in this specific application, the

concentration and temperature values are different by two orders of magnitude. This disparity in

the scales can prompt poor sparsity, especially in the scenario of dealing with many functions. This

issue is handled by normalizing the concentration data. Specifically, the concentration values are

multiplied with the ratio of the mean values of temperature and concentration. Also, the magnitude

of the exponential term in the candidate library is relatively higher than that of the other functions

present, and this leads to a scaling issue. To solve this problem, each library element is divided

by the mean of the corresponding library column. After pre-processing the data, the samples are
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differentiated by finite difference method and are used to solve the sparse regression problem as

presented in Eq. (1.6). For this purpose, the STLS method is used with 100 iterations to ensure

optimum convergence of coefficients. The value of the thresholding parameter, λ, affects the degree

of sparsity observed [61]. Different models are obtained for different values of λ and increasing

λ results in a more sparse model. But as the degree of sparsity increases, many functions are

disregarded and because of this, the error computed between the predicted value and the measured

value increases. Therefore, the λ value is selected by balancing sparsity and accuracy. In this case,

the relative error given by Eq. (2.1) is considered as a measure for quantifying model accuracy. As

shown in Fig. 2.2, the Pareto front analysis gives the optimum value of thresholding parameter as

0.22. For this value of λ, the model identified in this step performs well with respect to training

data as presented in Fig. 2.3.
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Figure 2.2: Relative error vs thresholding parameter.
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Figure 2.3: Results obtained in Step 1 using the training data for (a) concentration, and (b) temper-
ature profiles.

In reference to the model structure, Step 1 identifies only 10 out of 22 functions as the potential

candidates and the results are shown in Table 2.3. From the table it can be observed that by solving

Eq. (1.6), all the original functions present in Eq. (2.6) and Eq. (2.7) are correctly identified along
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with some additional functions which are not part of the original system. However, the values of

the identified function coefficients are not close to the actual model and thus, the model needs to

be updated in the subsequent steps.

Once the model is obtained offline through Step 1, it is used as a baseline model to predict the

dynamics of a process starting at initial conditions C = 3.31 kmol/m3 and T = 320.75 K. An

error tolerance value of ε = 5 × 10−3 is considered for both temperature and concentration and

any model having an error exceeding this value is deemed poor. The divergence point where the

obtained model prediction deviates from the actual measurement serves as an indication to start

Step 2. In Fig. 2.4(a), the model obtained from Step 1 predicts well from t = 0 h to t = 0.18 h, and

after that it begins to deviate and can no longer be used for predicting the future states. The relative

error computed between the predicted output and the measured data is illustrated in Fig. 2.4(b). It

can be observed that the relative error exceeds the tolerance at t = 0.18 h and at this point, Step 2

of the proposed framework is initiated.

In Step 2, ordinary least-squares regression is performed for updating the coefficients of the

previously identified functions. The amount of data utilized in this step is 5× 103 samples, which

are collected from the process between t = 0 to t = 0.18 h. The library matrix is re-constructed using

only the 10 functions identified in Step 1 and their coefficients values are determined by solving

Eq. (1.5), without any thresholding. The results obtained from Step 2 are presented in Table 2.4(a).

From the table, it can be seen that the coefficients for concentration are nearly identical to the

original model and T 4 term is observed to play no role in the reactor dynamics as seen from

its zero coefficient value. Therefore, only the remaining 9 functions are taken into account for

improving the model further. From Fig. 2.4(a) it can be observed that at t = 0.34 h the temperature

profile deviates from the actual model, i.e., the error exceeds the pre-specified tolerance, ε, and

this triggers Step 3. Additionally, the overall performance of the model updated through Step 2

is better than the model identified in Step 1, as can be seen from the plots depicted in Fig. 2.4(b).

Note that, as the concentration prediction fits well with the actual behavior (Table 2.4(a)), Step 3

is performed to update the temperature model only.
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Table 2.3: Sparse coefficients estimated in Step 1.

Functions dCA

dt
dT
dt

1 -85.937 −2.95× 107

C -0.30311 −9.99× 104

T 1.781 4.95× 105

C2 -4.510 1.12× 105

T 2 -0.012 -3458.71

C3 2.294 −6.55× 104

T 3 0 12.854

exp
(−E
RT

)
C2 −8.46× 106 8.98× 108

Q 0 4.14× 10−3

C4 0 0

T 4 0 -0.0268

C5 0 0

T 5 0 0

C6 0 0

T 6 0 0

CQ 0 0

TQ 0 0

Q2 0 0

sin(C) 0 0

cos(C) 0 0

sin(T ) 0 0

cos(T ) 0 0
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Table 2.4: Regression coefficients estimated in (a) Step 2, and (b) Step 3.

(a) Model obtained in Step 2.

Functions dCA

dt
dT
dt

1 19.896 −1.05× 105

C -4.982 7.81× 103

T 7.10× 10−4 1.02× 103

C2 −5.31× 10−3 -2345.24

T 2 0 -3.881

C3 5.34× 10−4 237.284

T 3 0 6.05× 10−3

exp
(−E
RT

)
C2 −8.46× 106 −6.41× 108

Q 0 4.3× 10−3

T 4 0 0
(b) Model obtained in Step 3.

Functions dCA

dt
dT
dt

1 19.896 1311.4

C -4.982 16.993

T 7.10× 10−4 -4.587

C2 −5.31× 10−3 0

T 2 0 0

C3 5.34× 10−4 0

T 3 0 0

exp
(−E
RT

)
C2 −8.46× 106 4.06× 108

Q 0 4.3× 10−3
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In Step 3, only the functions that contribute most significantly towards improved prediction

accuracy are selected using feature selection. To do this, a feature matrix is constructed using the

available 5×103 time samples till t = 0.34 h. In this case, the products of the 9 identified functions

and their updated coefficients from Step 2 represent the features to be considered for selection.

Within the feature selection algorithm, the standard significance level of α = 0.05 is specified as

the criterion to reject the null hypothesis, i.e., a feature is added to the model if its p-value is

less than 0.05. Among the 9 features considered, only 5 of them are selected in this step as the

dominating ones (Table 2.4(b)), resulting in a more concise and efficient model. It can be observed

from Table 2.4(b) that the identified model is very close to the true model both in terms of the

governing functions as well as their coefficients. As shown in Fig. 2.4(a), both the temperature

and concentration profiles obtained from Step 3 are nearly identical to the actual process, and the

relative error of the updated model is within the tolerance limits (Fig. 2.4(b)). Thus, in terms of

predictive performance, the model identified in Step 3 is superior to the previously obtained models

as it contains essential features only.

In real-time applications, a major challenge of model adaptation is to rapidly update the model

to capture all of the changing dynamics. Therefore, analyzing the computational time of each step

is important. For the case study presented in this work, the model is updated from a point where

it diverges from the actual behavior of the system. The computational times taken for updating

the models in Step 2 and Step 3 of the proposed method are 0.137 s and 1.862 s, respectively.

From the results it can be interpreted that in these steps the model structure is improved almost

instantaneously since only a limited amount of data is used in both the steps. Note that, during this

time of model update, the model identified in the previous steps continues to be in use until a new

model is identified.

Remark 3. The number of samples used for training the model is one of the most important fac-

tors for any data-driven model identification methods. In this work, multiple numerical simulations

were performed considering varying number of data samples in order to train the model. How-

ever, not all of the results obtained are reported in this work. Only the results of the best model
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identified and the corresponding data size is discussed in the manuscript. The proposed algorithm

is observed to perform well for any dataset having the size larger than this optimum value.

Remark 4. Please note that the presence of noise may lead to frequent model updates if not

handled appropriately. Once the data is cleaned using the previously mentioned techniques, the

effects of measurement noise can be mitigated preventing frequent model updates.

0 0.5 1 1.5 2
Time (h)

3.3

3.4

3.5

3.6

3.7

3.8

3.9

C
on

ce
nt

ra
tio

n 
(k

m
ol

/m
3)

x
true

x
step 1

x
step 2

x
step 3

Step 2
begins

Step 3 begins

0 0.5 1 1.5 2
Time (h)

280

300

320

340

360

T
em

pe
ra

tu
re

 (
K

)
Step 2 begins 

Step 3 begins 

x
true

x
step 1

x
step 2

x
step 3

(a)

0 0.5 1 1.5 2
Time (h)

0

0.05

0.1

0.15

R
el

at
iv

e 
er

ro
r,

 E
(t

)

xstep 1 xstep 2 xstep 3 tolerance

(b)

Figure 2.4: (a) Comparing the future behavior of individual models obtained using the proposed
method for concentration and temperature profiles, and (b) relative errors of the models identified
using the proposed method with respect to time.
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2.4.2 Validation of the adaptive method

To evaluate the quality of the final model derived using the proposed method, it is validated

against various sets of input profiles at different operating conditions.

0 0.5 1 1.5 2
Time (h)

0.5

1

1.5

2

C
on

ce
nt

ra
tio

n 
(k

m
ol

/m
3)

x
true

x
adaptive

0 0.5 1 1.5 2
Time (h)

400

450

500

550

T
em

pe
ra

tu
re

 (
K

)

x
true

x
adaptive

(a) Random input.
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(b) Step input.
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(c) Sinusoidal input.

Figure 2.5: Open-loop validation of concentration and temperature profiles described by the adap-
tive model for three different input settings.
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The validation datasets are generated using three kinds of heat input profiles; a random input with

signals varying between −1.2 × 105 KJ/h and 2 × 105 KJ/h, an input with a step of 5 × 103

KJ/h, and a sinusoidal input with an amplitude and frequency of 6KJ/h and 2 h−1. The sampling

and simulation time steps are the same as that of the training data, and the validation results are

presented in Fig. 2.5. The results observed from the figure show that in all the three cases, the

adaptive model predicts the process dynamics accurately.

2.4.3 Comparison with SINDy

In this subsection, the proposed method is compared with SINDy in terms of future state pre-

diction. In order to do this, the input-output dataset used in obtaining the adaptive model is consid-

ered. For the comparison to be consistent, the number of samples used to perform SINDy is taken

to be the same as the total number of samples used for the proposed method (i.e., all three steps

combined). The resulting sparse regression problem is solved using STLS with a thresholding

parameter of 0.22, and 100 iterations are employed for proper convergence. Once the models are

discovered by the proposed method and SINDy, their prediction performance is compared using

validation data generated with a random input profile. From the results presented in Fig. 2.6(a),

it can be observed that the model identified by SINDy fails to interpret the actual dynamics while

the adaptive model (final model obtained after implementing Step 3) accurately represents both the

concentration and temperature dynamics. Furthermore, the final model identified by the proposed

method has a very low relative error at each time point (Fig. 2.6(b)). For the same number of sam-

ples, the proposed adaptive method could approximately predict the real model (Table 2.4), while

an additional amount of data may be required for SINDy to fully identify the system. To general-

ize the validation results across different input settings, both the models are compared using 100

different random input profiles. The relative errors based on Frobenius norm are calculated for

each of the input profiles and their average values are shown in Table 2.5, highlighting the superior

performance of the proposed method.
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Table 2.5: Average relative error computed for 100 different datasets.

Model Relative error

Adaptive 3.60× 10−3

SINDy 2.51× 10−1
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Figure 2.6: (a) Open-loop validation of the adaptive and SINDy models identified using the same
number of samples for concentration and temperature profile, and (b) comparison of the relative
errors for the adaptive and SINDy models identified using the same amount of data.

Additionally, the performance of both the methods is tested for the case when the SINDy model

is trained using a large amount of training data. Specifically, 6 times the total number of samples

used in identifying the adaptive model is used in training the SINDy model. In Fig. 2.7(a), the
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response of the final model previously identified by the proposed method is compared with the

model identified by SINDy with respect to the concentration and temperature variables. Also,

the relative errors estimated at each time point for both the models are compared in Fig. 2.7(b).

Although the performance of the model identified by SINDy using a high number of samples is

improved when compared to the previous case (using a less number of samples), the accuracy of

the adaptive model still outperformed SINDy. Overall, the results ascertain the usefulness of the

proposed approach in obtaining a reasonable model using a less amount of data.
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Figure 2.7: (a) Open-loop validation of the adaptive model and SINDy model identified using a
large amount of data for concentration and temperature profiles, and (b) comparison of the relative
errors for the adaptive model and SINDy model identified using a large amount of data.
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3. ONLINE ADAPTIVE SPARSE IDENTIFICATION OF SYSTEMS (OASIS)

3.1 Motivation

Despite the simplicity of SINDy algorithm, it may require a large amount of data to discover

the governing equations representing complex process dynamics. Therefore, it is challenging to

use SINDy for model-based control, especially in the presence of any parameter uncertainties or

changing process dynamics, because recovering the model by solving a sparse regression problem

online is computationally expensive. To address this, we previously proposed an adaptive model

identification framework that utilizes a small amount of data to identify and recover the model in

real-time [62]. Though the method provides a direction to apply SINDy for adaptive modeling, it

is useful to have a robust framework that guarantees to adapt well with the changing process dy-

namics. In line with this methodology, we now propose an algorithm that leverages the advantages

of SINDy for online adaptive modeling using a deep neural network (DNN).

In the last two decades, DNNs have been widely used for various chemical engineering ap-

plications such as process control [63, 64, 65, 66, 67], fault diagnosis [68], system identification

[69, 70, 71], sensor data analysis [72], and process design and simulation [73]. This success can

be attributed to their ability to learn and approximate any underlying complex nonlinearities using

a simple architecture. Moreover, advancements in parallel computing technology, and the ease of

implementation supports the use of DNNs. Specifically, a lot of studies have been done to apply

DNNs to model predictive control (MPC) as it is widely used in the industry because of its capabil-

ities in dealing with output constraints and multi-variable processes [74]. In MPC, control action

is prompted by solving an online optimization problem that requires a nonlinear model with high

prediction accuracy and good generalization properties. To meet this demand, several researchers

have incorporated DNNs within an MPC framework in different ways [75, 42, 43]. Generally,

there are two ways to integrate a NN into an adaptive control structure [76]. One is a direct adap-

tive scheme which does not require a model; instead a DNN acts as a controller whose parameters,
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the weights and biases, are updated online according to the control objective. However, this ap-

proach is challenging and time consuming when there are too many network parameters to handle

[77]. The other method is an indirect adaptive scheme which uses a DNN to model the process,

based on which the control action is determined [78]. In this case, both model update and control

take place simultaneously within the MPC scheme. In this paper, we are particularly interested in

applying DNNs for modeling and indirect adaptive control of nonlinear dynamical systems.

In this work, we propose an adaptive modeling and control procedure based on the SINDy

algortihm and deep learning. The key novelty is to combine the usefulness of SINDy in discovering

nonlinear dynamics with DNNs to adaptively model and control the process dynamics in real-time.

The proposed method is implemented in two steps: system identification and controller design.

For the system identification, we utilize several sets of process historical data that are available

for various input settings and identify their corresponding models using SINDy. Next, we train a

DNN using the previously collected historical datasets and their respective models such that the

DNN approximates the relationship between process data and SINDy models. We use this trained

DNN to design a controller wherein the DNN predicts the model to estimate the future behavior

of the process. In this way, the proposed approach supports the application of SINDy for real-time

prediction and control. For application purposes, we used the proposed online adaptive sparse

identification of system (OASIS) framework to identify and control the nonlinear dynamics of a

CSTR system.

The remainder of this chapter is structured as follows: in Section 3.2 a brief introduction of

the SINDy algorithm is provided, followed by a short description of the DNN. Next, the proposed

OASIS framework is presented in Section 3.3. In the following subsections, the results obtained

from numerical simulations performed in identifying models via SINDy, developing DNNs, and

designing a model-based controller for a CSTR are discussed.

3.2 Deep neural networks

A DNN consists of an input layer, an output layer, and a series of hidden layers that learn the

input-output relationship in a dataset. Each layer contains multiple individual units called nodes
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or neurons. The connection between two nodes in two consecutive layers is characterized by a

parameter called weight, w. In a feed-forward DNN, as represented in Fig. 3.1, the input to a

layer is the weighted sum of the outputs of the nodes in the previous layer. Another important

parameter is bias, b, which is added to the weighted sum of the inputs to control the output of a

node. Inside each node, its input is processed through an activation function, σ, in order to learn

the underlying nonlinearities. Some of the popular activation functions are Hyperbolic tangent,

Sigmoid, Rectified Linear Unit (ReLU), and Leaky ReLU. Suppose there is a particular layer p

having Wp and Bp as its weight vector and bias vector, respectively. If the output vector from the

previous layer is Op−1, then the output of the layer p, Yp, is given as

Zp = WpOp−1 + Bp (3.1a)

Yp = σ(Zp) (3.1b)

Input
layer

Output 
layer

Hidden layers

Figure 3.1: Deep neural network.
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The accuracy of the network is evaluated based on the difference between the output predicted

by the DNN and the actual output, called loss function, H. Hence, the objective during the DNN

training step is to minimize this loss function. This is achieved by updating the weights and bias

iteratively through an optimization algorithm. Each cycle of computing H, and updating w and b is

called an epoch. There are many methods such as Gradient descent [79, 80], Newton method [81],

Conjugate gradient [82], Quasi-Newton method [83], Levenberg-Marquardt algorithm [84, 85, 86],

and Bayesian regularization [87, 88] that are popularly used as learning algorithms. Because of

these advancements in learning algorithms, in recent years DNN-based models have performed

better than the existing state-of-the-art models [89, 90].

3.3 OASIS methodology

The proposed OASIS framework combines the SINDy algorithm with deep learning to identify

f(x,u). The schematic of the OASIS method is presented in Fig. 3.2. The blue colored section in

the figure represents offline training using SINDy and DNN, and the black one represents online

implementation of the DNN for controller design. The system learning step is performed offline

wherein we use n sets of historical time-series process data available either from experimental

measurements or numerical simulations of high-fidelity equations. In this step, we identify several

models offline, i.e., SINDy coefficients, using these multiple training datasets obtained at various

operating conditions of the system and applied inputs. Please note that we use a limited number of

samples for every case, and therefore, each of the models obtained by SINDy is not expected to be

applicable beyond the training data (i.e., a typical extrapolation issue with any data-based models).

On the contrary, considering multiple input trajectories improves the availability of models for a

broad range of operating conditions. For an ith dataset with i = 1, . . . , d, let Xi represent the

state variables, Ui be the applied inputs, and Σi be the model coefficients identified by SINDy.

The SINDy algorithm is applied to these d datasets individually in order to identify function co-

efficients, Σi, using which the corresponding model, ΘiΣi, is obtained. We use these d pairs of

(Xi,Ui) and Σi data to train the DNN that learns the relationship between them. For effective

learning, it is recommended to consider a sufficient number of data samples.
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Figure 3.2: OASIS methodology.

Once the network is well-trained, it is used in a model-based controller to predict the future

behavior of the process. The model predicted by the DNN is used within the controller to predict

the states and calculate the control actions. As the process begins, a baseline SINDy model is

determined by the DNN using the initial process conditions. This initial model is used for predic-

tion until the next sampling time at which the current state, x(t), and the control input, u(t), are

then fed to the DNN to update the model. The resulting model is further used in the next control

step. In such a manner, the sequence of control action is obtained through the nonlinear models

predicted by the DNN. Hence, the DNN serves as a tool to successfully use SINDy for adaptive

modeling and control applications. The advantages of the proposed method are twofold: First, the

nonlinear models predicted by the DNN continue to preserve the physical meaning of the process,

since the DNN is developed using SINDy. Second, it is easy to update the models using the DNN

online without loss of performance. The summary of the OASIS framework is briefly presented in
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Algorithm 1.

Algorithm 1 OASIS methodology
1: Collect n sets of time-series data, X and U.
2: Compute the derivatives of X and build a Ẋ matrix.
3: Construct a candidate library, Θ, containing a variety of functions including any prior knowl-

edge.
4: Solve the sparse regression problem, Σ = argmin

Σ′
‖Ẋ−Θ(X,U)Σ′‖2 + λ‖Σ′‖1.

5: Perform the above steps for all the datasets to obtain multiple models for multiple inputs.
6: Train a DNN to learn the relationship between Σi and (Xi,Ui).
7: Design a model-based controller using the trained DNN that identifies and updates the models

for process control.

Remark 5. Please note that the optimization problem mentioned in Eq. (1.6) can be solved using

sparsity promoting methods such as STLS, LASSO [47], and RIDGE [48]. The sufficient conditions

related to the convergence of the SINDy algorithm are discussed in [32] The authors prove that

the SINDy algorithm converges to an optimum solution in a finite number of steps. Additionally, in

[91], the authors provided a condition to guarantee convergence when the data used in identifying

governing equations are collected from multiple sources. Also, the convergence of sparse relaxed

regularization problems is detailed in [92] Following such theoretical developments guarantees to

achieve convergence of the sparse solution using SINDy. Hence, in our proposed method, SINDy

can readily converge to a local minimizer for every dataset.

3.4 Simulation results

In this section, we present the numerical experiments related to system identification and con-

trol of CSTR dynamics using OASIS. We first demonstrate the OASIS architecture in training the

DNN using SINDy, and subsequently use the trained DNN to design a controller. All the simu-

lations are performed using MATLAB R2018b programming platform. The data required to train

the models using SINDy and to develop the DNN is numerically generated by solving Eqs. (2.6) -

32



(2.7) using the ode45 solver. We used 1 × 10−2 h and 1 × 10−4 h as the measurement sampling

and numerical integration time steps, respectively.

3.4.1 Model identification using SINDy

This is the first step in the proposed framework where we identify SINDy models for concen-

tration and temperature dynamics using STLS algorithm offline. To generate training data, we

introduced 100 random heat input profiles in the range of −3.54× 105 KJ/h to 1.96× 105 KJ/h

to the process for a total duration of 1 h. In this manner, 100 time-series datasets with varying

trajectories are obtained. Also, using multiple trajectories ensures variation within the training

datasets and is helpful in generalizing the DNN. After preparing for the data, we built a candidate

library matrix using the following 9 functions:

Θ(x,u) =

[
1 x1 x2 x21 x22 x31 x32 exp

(
−E
Rx2

)
x1

2 u

]
(3.2)

where x1, x2, and u represent concentration, temperature, and rate of heat input, respectively.

Based on the prior knowledge of the system, i.e., the reaction rate constant exponentially varying

with temperature, we included an exponential function in the library. The size of the library ma-

trix developed is m × 9 with m as 10000 in this case. In such a manner, 100 library matrices are

developed for all of the datasets. For the case study presented, the order of magnitude of the expo-

nential function in the library is relatively higher than the other terms present. This dissimilarity in

scales affects the regression calculations. Hence, we normalized all the library elements to a same

scale by dividing each element with the mean of the corresponding column in the library. In the

next step, we calculated the derivatives using central difference method. This sequence of collect-

ing and pre-processing data, building candidate library, and computing derivatives is repeated for

all the 100 datasets. For each of the datasets, we solved the sparse regression problem presented

in Eq. (1.6) iteratively using STLS algorithm until the coefficient values converge. Thereby, we

identified 100 parsimonious models for all the 100 datasets. As discussed in Section 2, λ plays

an important role in balancing sparsity with accuracy. The chance of not identifying the required
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functions increases with λ, and this affects the prediction accuracy of the model. For this reason,

we used 100 different values of λ between 0.01 to 10 to train the models using STLS. Amongst

all the models obtained, we selected the one having the lowest value of the l2-norm-based error, e,

given as follows:

e =
m∑
i=1

‖x(ti)− x̂(ti)‖2 (3.3)

In the above equation, x(t) denotes the actual states of the system as seen in the data, and x̂(t)

represents the model predicted value. Please note that each of the models is identified using 10000

data samples only. Hence, they may not approximate well for a different dataset which is not used

in its training. To qualitatively prove this point, we selected a model from these 100 models and

compared its prediction performance when an input other than its training input is applied to it.

The results are presented in Fig. 3.3, and it can be observed that the model performs well in

replicating the dynamics of its training dataset used in its identification, but could not approximate

the dynamics of the test dataset to a satisfactory degree. Therefore, the 100 models, derived using

SINDy are not completely identical to each other and this variation is advantageous in training the

DNN.

3.4.2 Training the DNNs

In this step, the objective is to build a DNN that can predict the SINDy coefficients online,

precisely describing the changing process dynamics. For the purpose of DNN training, we utilized

the 100 models identified using SINDy and their corresponding training states and inputs. These

datasets are normalized before using them for DNN training. Instead of building a single DNN

that predicts all the SINDy coefficients, we developed two feed-forward DNNs, i.e., one each for

the concentration and temperature variables. This is because having individual structures for each

of the states enables the DNN to learn more effectively. Please note that we used the structure with

5 layers including 1 input layer with 3 nodes, 1 output layer with 9 nodes, and 3 hidden layers with

2, 10, and 10 nodes, respectively. From each of the 100 datasets, we selected 100 data points, and

thus, a total of 10000 samples were utilized in training the DNNs.
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Figure 3.3: Performance of a model identified by SINDy with respect to the (a) same training input
used in its identification, and (b) testing input.

These samples containing the time-series data of CA, T , and u are the training inputs to the

DNNs. The training outputs are the coefficient values of the 9 functions representing the SINDy

models. Hence, the size of input and output training data for both the DNNs is 3 × 10000 and

9 × 10000, respectively. For every input, i.e., CA, T , and u, the DNN predicts the SINDy co-

efficients as illustrated in Fig. 3.4. Once the structure of the DNNs is defined, we trained both

the DNNs individually using MATLAB’s Deep Learning toolbox. To begin the DNN learning,

the parameters w and b are randomly initialized, and an initial output is predicted. Based on the

output, loss function is computed and accordingly the parameters w and b are further updated

using Bayesian regularization algorithm. Generally, the training process aims at minimizing the
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Figure 3.4: Structure of the DNN.

sum of squared errors as the loss function. But the Bayesian regularization algorithm includes an

additional regularization term containing the sum of square of weights in the loss function, H, as

H =
k∑

i=1

α(xi − x̂i)
2 + βwi

2 (3.4)

where α and β are the parameters that decide the relative importance of terms in the loss function,

xi and x̂i are the true and predicted values, respectively. This step of penalizing weights improves

the DNNs’ ability to generalize well for new inputs. Moreover, having small weights will allow the

response of the network to be smooth [93] and prevents the network from over-fitting. Bayesian
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regularization follows the same update rule as Levenberg-Marquardt algorithm given as

wi+1 = wi − (JT
i Ji + µI)−1JiEi (3.5a)

bi+1 = bi − (JT
i Ji + µI)−1JiEi (3.5b)

where J is the Jacobian matrix containing the gradients of loss function with respect to network

parameters; specifically, µ is the combination coefficient, and I is the identity matrix. The main

difference of this algorithm from the Levenberg-Marquardt algorithm is that the former aims at

minimizing a linear combination of the sum of squared errors and the sum of squared weights,

while the latter minimizes only the sum of squared errors. To activate the network layers, we used

sigmoid function for hidden layers and linear function for the output layer. One important point to

note is that we trained the DNNs by feeding the data in a series of 5 batches with 2000 samples

(i.e., 2000 epochs per batch). This is because training in large batches or using all the data at once

does not improve the performance of the model and can cause over-fitting [94, 95]. On the other

hand, training in small batches combines the information from both old and new data, and has an

advantage of faster convergence [96]. Such a method of sequential training improves the learning

process, and this can be seen in Fig. 3.5 which shows the performance of the DNNs for the training

data. The prediction accuracy is evaluated by calculating relative error, RE(t), based on l2-norm as

RE(t) =
‖x(t)− x̂(t)‖2
‖x(t)‖2

(3.6)

It can be observed that both the DNNs for CA and T perform well in reproducing the dynamics

for training data. Note that these results only indicate the learning curve of the DNNs and do not

prove the generalizing abilities of the networks. We evaluate the generalization properties of the

DNNs using test data as explained in the following section.
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Figure 3.5: (a) Prediction of concentration and temperature dynamics using the DNNs with respect
to the training data, and (b) the relative error of the DNNs’ predictions with respect to the training
data.

3.4.3 Testing the DNNs

To check the performance of DNNs, we tested the networks using data generated at different

operating conditions. The test data are obtained by solving Eqs. (2.6)-(2.7) using a step change in

heat input, with the simulation and sampling times identical to the training data.

The main objective of network training is to achieve local generalization. In this work, tech-

niques such as regularization-based learning algorithm and small-batch training helped with the

generalization in terms of interpolation. The ranges of CA, T , and u in the training data are pre-

sented in Table 3.1. Based on this range, we evaluated the performance of DNNs, and the results
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Figure 3.6: (a) Validation of the performance of the models obtained from DNNs (a) when the rate
of heat input violates the upper bound of the constraints, i.e., 1.5× 105 KJ/h (due to the high value
of heat input, the temperature may exceed training values for the initial conditions considered),
and (b) when the rate of heat input violates the lower bound of the constraints, i.e., −1.5 × 105

KJ/h.

are presented in Figs. 3.6-3.7. From Fig. 3.6 it can be seen that there are fluctuations in the pre-

dicted output. This happens because high rates of heat input can cause the reactor temperature

to go beyond the training data span, i.e., 589 K. Furthermore, prediction inaccuracies are ob-

served in the case of lower values of heat input. Hence, to ensure the states remain within the

training range and improve the prediction accuracy, we selected the constraints for heat input as

u ∈ [−1.5 × 105, 1.5 × 105]. Consequently, these constraints will be used in designing a model-

based controller, which is discussed in the next section. The test results of the DNNs with respect

to the input constraints are presented in Fig. 3.7. It can be observed that in both the test cases, the

DNNs perform well with respect to their interpolation within the span of the training samples. This

proves the generalization abilities of the DNNs in predicting the nonlinear dynamics when inputs

other than the training inputs are given to the system. In the following section, we present the use
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Figure 3.7: Evaluating the performance of the models obtained from DNNs when the rate of heat
input is in the range of [-1.5× 105, 1.5× 105] KJ/h.

of these trained DNNs in controlling the reactor dynamics. Please note that at every sampling time,

the feedback from the process is utilized by the DNNs to update the models for all the prediction

results presented in this work (Fig. 3.8).

3.4.4 Model predictive control

In this section, we demonstrate the application of the OASIS framework in designing a model

predictive controller for the CSTR system described earlier. In the first step of OASIS, we trained

DNN architectures using SINDy offline. In the second step, the obtained DNNs are used online

to predict the SINDy coefficients, using which the controller takes action to move the process

towards the desired set-point value. The schematic of DNN-based predictive control is illustrated

in Fig. 3.8.

In this case study, the control objective is to operate the reactor at its unstable steady-state

condition, Ts = 401.87 K and CAs = 1.95 Kmol/m3. To meet this objective, we formulated the
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Table 3.1: Training data range for DNN inputs.

Variable Units Range

Temperature, T K [142, 589]

Concentration, CA Kmol/m3 [0.26, 4]

Rate of heat input, u KJ/Kmol [−3.54× 105, 1.96× 105]

Deep 
neural 

network
Optimizer

Process

SINDy 
model
  

x

    

u

 

Figure 3.8: Model predictive control using the proposed OASIS algorithm.

MPC problem as follows:

min
u(k),...,u(k+N−1)

N∑
j=1

(x̂(k + j)− xs)
TQc(x̂(k + j)− xs) (3.7a)

s.t Σ(k) = DNN(x(k), u(k − 1)) (3.7b)

x̂(k + j) = Θ(x̂(k + j − 1), u(k + j − 1))Σ(k), ∀j = 1, . . . , N (3.7c)

umin ≤ u(k + j − 1) ≤ umax, ∀j = 1, . . . , N (3.7d)

where x̂ and x are the vectors containing the states available from the DNN models and process,
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Figure 3.9: Closed-loop simulation results under the proposed OASIS-based MPC.

respectively, xs are the desired set-point values for CA and T , Qc is a positive definite weighting

matrix that weighs the importance of the states variables, k is the current time step, and u is the

rate of heat input which is manipulated to control the state variables. We considered the above

problem as a receding horizon MPC with horizon length as N at any step k. Also, the control

horizon is the same as the prediction horizon. In the above mentioned formulation, the objective

of the optimization problem is to minimize the squared deviation of process variables from their

desired set-point values. The optimization problem is solved utilizing the models predicted by the

pre-trained DNNs for CA and T states. We selected the constraints for MPC based on the span of

the training data. Specifically, the input should vary between the minimum and maximum values,

i.e., umin and umax. The optimization problem in Eq. (3.7) is solved in a closed-loop manner with

the sampling time of 1 × 10−2 h for a total duration of 1 h. The MPC is initialized with initial
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conditions for CA and T as 2.5 Kmol/m3 and 385 K, respectively. At every sampling time, the

measurement values are collected by solving Eqs. (2.6)-(2.7) using the parameters mentioned in

Table 2.1. These measurements and control inputs are fed to the DNNs to obtain an updated SINDy

model (as in Eq. (3.7b)) which is used in the MPC (as in Eq. (3.7c)) to compute the control inputs

until the next sampling time. Specifically, at every step k, the MPC is evaluated for a prediction

horizon of length N = 10, computing an input profile as [u(k), . . . , u(k + N − 1)]. The first

input, u(k), is then applied as the control action to the CSTR process, and the SINDy model is

re-estimated at the next sampling time. This procedure is followed throughout the duration of the

process for every sampling time.
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Figure 3.10: The manipulated heat input profile under the proposed MPC.

From the closed-loop simulation results in Fig. 3.9, it can be observed that the designed con-

troller could drive both the states to their target set-points. This is due to the fact that the DNNs
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performed reasonably well in updating the models with respect to feedback from the process. The

corresponding heat input profile that is manipulated to achieve steady-state operation is presented

in Fig. 3.10. These results proved the capabilities of the OASIS framework in predicting nonlinear

systems for a defined window of operating conditions.

Remark 6. Please note that in practical applications, the measurements are usually corrupted by

noise, and therefore, it is important to have a model that counters the effect of noise. Fortunately,

the proposed method has the potential to perform well even in the presence of noise when compared

to the methods that solely rely on neural networks. This is because in the OASIS framework, we use

the SINDy algorithm to obtain sparse models and it was proven that models identified by sparse

regression methods such as SINDy and its variants are robust to noise [97, 98, 21]. Moreover, as

the DNN is trained using SINDy, when we integrate the proposed method with an MPC framework,

it is possible for the DNN to successfully identify models that are capable in dealing with noisy

data.
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4. SUMMARY AND CONCLUSIONS

This thesis proposes two different methods for adaptive model identification of nonlinear sys-

tems. The first method proposed in Chapter 2 seeks to identify and improve the model following

the three steps. First, a set of potential candidate functions is identified using sequentially thresh-

olded sparse regression. In the following step, the coefficients of these identified functions are

updated using least-squares regression, and lastly, stepwise regression is implemented for select-

ing the best combination of the most important features. The choice of candidate library functions,

the thresholding parameter value considered, the feature selection criterion for stepwise regression,

and the number of samples used at every step significantly affect the performance of this adaptive

approach. The effectiveness of the proposed methodology was demonstrated on a CSTR system

with second-order kinetics. For a less amount of data, the adaptive model successfully identified

the coupled dynamics between concentration and temperature variables. In all the cases tested,

the prediction accuracy of the model identified by the proposed algorithm was much higher than

that of its off-line counterpart, SINDy. Furthermore, the final model was observed to perform well

when it is validated with different operating conditions, making it a viable representation of the

actual dynamics. To conclude, the adaptive method presented proves to be useful in predicting

complex process dynamics from a less amount of data.

Improving upon the previous method, in Chapter 3, we proposed an online model identification

framework based on SINDy and deep learning for nonlinear process systems. The novel aspect of

this proposed method is to utilize the potential of SINDy in identifying an interpretable model

for adaptive modeling and control applications through a DNN. Following this approach, we first

used SINDy to identify multiple models from historical/simulation process data. Then, we trained

DNNs using the SINDy models and their corresponding process data. Subsequently, we imple-

mented the resulting network in a MPC framework for identifying and updating the models in

real-time in order to obtain optimal control performance. We demonstrated the applicability of this

method to a non-isothermal chemical reactor. One of the key challenges is to train the DNN that
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generalizes well and predicts accurately. To achieve this, we trained two individual DNNs for con-

centration and temperature models using Bayesian-regularization learning algorithm. Additionally,

the DNN training was carried out in a small-batch fashion to prevent over-fitting. Further, the test

results indicated that the trained DNNs perform well with a high prediction accuracy, and thus,

are suitable for designing a model predictive controller. The closed-loop results showed that the

proposed OASIS framework can be effectively used in adaptive modeling and control of nonlinear

processes.
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