MACHINE LEARNING-BASED ADAPTIVE IDENTIFICATION OF NONLINEAR
SYSTEMS: APPLICATION TO CHEMICAL PROCESSES

A Thesis
by
BHAVANA BHADRIRAJU VENKATA NAGA SAI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Joseph Sang-I1 Kwon

Committee Members, Costas Kravaris
Eduardo Gildin

Head of Department,  Arul Jayaraman

May 2020

Major Subject: Chemical Engineering

Copyright 2020 Bhavana Bhadriraju Venkata Naga Sai



ABSTRACT

Recently, sparse identification of nonlinear dynamics (SINDy) has delivered promising results
in identifying interpretable models using data for various process systems. However, SINDy can-
not completely comprehend the dynamics of an evolving complex process without relying on im-
practically large data sets. Another important challenge is that at any instance of plant-model
mismatch or process upset, re-training the model using SINDy is computationally expensive and
cannot guarantee to catch up with rapidly changing dynamics. As a solution to this, a systematic
procedure capable of identifying and predicting the nonlinear dynamics on the fly promises to pro-
vide a useful representation of the process model. Motivated by this, we propose an adaptive model
identification framework that relies on the methods of sparse regression and feature selection. The
proposed method is a three-step procedure: (1) identifying potential functions from a candidate
library using SINDy, (2) updating coefficients of the identified model using ordinary least-squares
regression, (3) selecting the most important features using stepwise regression. Initially, a baseline
model is identified off-line using SINDy, and as a new data becomes available, the subsequent
on-line steps are triggered based on a pre-specified tolerance to further update the model. Such an
adaptive identification scheme facilitates in perceiving the model structure using a less amount of
data than its off-line counterpart, SINDy.

Based on the previously proposed method, we further propose online adaptive sparse identifi-
cation of systems (OASIS) framework to extend the capabilities of SINDy for accurate, automatic,
and adaptive approximation of process models. The OASIS method combines SINDy algorithm
and deep learning for system identification during online control of a process. First, we use SINDy
to obtain multiple models from historical process data for varying input settings. Next, using these
identified models and their training data, we build a deep neural network that approximates the
functional relationship between SINDy coefficients and the state-input pairs in the training data.
Once trained, the deep neural network is incorporated in a model predictive control framework for

closed-loop operation. We demonstrate both the methods on a continuous stirred tank reactor.
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1. INTRODUCTION

Over the past decades, growing production technologies have contributed to a rise in complex
processes across a major sector of industries. When dealing with such processes, first principles
based modeling may be intractable and cannot be relied upon to discover the underlying governing
equations, particularly when a strict constraint is imposed on the computational requirement [1].
This has guided several promising developments in the field of data-based system identification.
The focus of system identification is to determine the structure of the model based on the input-
output relations and provide an accurate future prediction [2]. In order to meet these goals, several
data-driven methods have been established over the years based on equation-free modeling [3],
artificial neural networks [4, 5, 6], empirical dynamic modeling [7], nonlinear Laplacian spectral
analysis [8], automated inference from dynamics [9], and surrogate modeling [10] to name a few.
Another important class of data-driven methods that have been in use for quite sometime, particu-
larly in the areas of process control, is subspace identification. This includes methods like numer-
ical algorithms for subspace state-space identification (N4SID) [11], multivariable output-error-
state-space (MOESP) [12], and canonical variate analysis [13] which are competent in identifying
simple state-space models for multivariable dynamical systems based on measured input-output
data [14]. Owing to an easy accessibility to a vast amount of data and advancements in machine
learning algorithms in recent times, these data-driven approaches are becoming more feasible and
prominent.

Despite the proven success of the aforementioned “black-box” approaches in many applica-
tions, there has been an increasing shift in integrating data-driven methods with physics laws, es-
pecially in the case of dynamical systems. This is driven by a limitation of black-box models to ex-
trapolate the dynamics to the entire state-space, beyond where they were sampled and constructed.

Besides, it is necessary sometimes to develop a complete understanding of the physical mecha-

*Reprinted with permission from “Machine learning-based adaptive model identification of systems: Application
to a chemical process” by Bhadriraju, B., Narasingam, A., and Kwon, J. S. 2019. Chemical Engineering Research &
Design, 152, 372-383, Copyright 2019 by Elsevier.



nisms that govern the dynamical system of interest. Within this context, genetic programming-
based symbolic regression has contributed in determining governing dynamics from data, along
with giving an actual sense of the process [15, 16]. But in the case of large scale systems, symbolic
regression can be prohibitively expensive and is prone to over-fitting. Some of the researchers
have addressed these issues by developing system identification methods using sparse regression
and compressive sensing. These techniques are based on the fact that only a few nonlinear terms
are sufficient in determining the governing dynamics of a complex process. One such method
that has recently received much attention is sparse identification of nonlinear dynamics (SINDy)
algorithm developed by [17]. It has been extensively used for data-driven discovery of underlying
dynamics by constraining the model structure based on a priori knowledge such as symmetries and
conservation laws. The significance of SINDy has been widely researched in various fields. Some
of the applications include rapid model recovery from abrupt system changes [18], simultaneous
identification of both micro-scale and macro-scale dynamics [19], sparse learning of reaction kinet-
ics [20], model-predictive control [21], developing reduced order models (ROM) for high-fidelity
systems [22, 23], understanding rational function nonlinearities [24] and parameterized dynamics
[25], discovering partial differential equations [26, 27], ranking the models based on Akaike Infor-
mation Criterion (AIC) [28], Koopman operator based control [29, 30], and developing Galerkin
regression models for fluid-flow [31]. Due to the ease of implementation and the ability to incor-
porate any known process knowledge, SINDy could be effectively applied for a large number of
nonlinear dynamical systems. Additionally, several theoretical developments have also been es-
tablished to show that the SINDy algorithm rapidly converges to a local minimizer under specific

conditions [32].
1.1 Background on SINDy

This report presents a brief overview of the SINDy method and for more information, the readers
can refer the original work by [17]. The SINDy algorithm is developed based on an assumption
that out of all possible functions considered, only few of them govern the system dynamics. In

accordance with that, a sparse regression problem is solved by balancing sparsity with accuracy.



This eliminates the intractable brute-force approach of searching for the right model among all the
possible models in the given function-space. Let the governing process dynamics of the system

under study be represented as

d
- X(t) = £(x(1), u(t) (L.1)

where the vector x(¢) denotes the states of the system at time ¢, u(t) is the vector containing the
inputs applied to the system at time ¢, and f(x, u) represents the governing equations describing
the process dynamics. In some cases when the underlying dynamics are unknown and cannot be
determined using physics laws, the function f has to be identified from measurement data. For
finding the function f, time-series data of state variables and applied inputs are collected. The time
series data can be obtained either from physical sensor measurements or from numerical simulation
of Eq. (1.1). The collected m snapshots of n state variables and their corresponding inputs u(t) are

arranged into matrices X and U as shown below.

l’l(tl) Q?Q(tl) tee xn(t1> Ul(t1> u2(t1) s un(tl)
21(tm) wa(tm) -+ xp(tm) Uy (tm) ua(tm) -+ un(tm)

Next, the derivatives of state variables are either measured or numerically computed. When the
time-series derivatives cannot be measured directly, they must be determined carefully for efficient
working of SINDy. In general, this can be done by finite difference method. But in the presence
of noise, it is suggested to use rigorous methods such as total variation regularized differentiation
[33] or Knowles and Wallace variational method [34]. Using these computed derivatives, a matrix

is constructed at different time points as follows:



@1(t)  da(t) - @a(t)
_ :i:l(.tz) x'a(.b) - %@ (1.3)

After obtaining the derivatives of state variables, the collected time-series data of X and U are

utilized to build a candidate function library containing all possible potential functions as
OX,U)=]1 X X2 ... U - exp(X) sin(X) cos(X) --- (1.4)

The choice of selecting the potential functions can be based on the knowledge of physics and
prior information about the process. For example, as a majority of process models usually contain
polynomial terms, it is useful to include them in the function library. In addition, it is recommended
to populate the library with as many functions as possible like constant terms, trigonometric, and
any other nonlinear functions so that the true process dynamics are well represented by the library
with a higher probability. After evaluating time-derivatives of states and building the candidate

function library, a regression problem is formulated as

X=0(X,U)x (1.5)

where the vector X denotes the time-series derivatives of state variables, O(X, U) is the library
of possible potential functions representing the system dynamics, and 3 is the vector containing
the function coefficients. However, solving the above problem directly using ordinary regression
does not provide a parsimonious model. In order to promote sparsity in 3, Eq. (1.5) should be

expressed in the form of a convex [;-regularized regression as

¥ = argmin||X — O(X, U)X/ || 4+ A|X'|1 (1.6)
2/



The above problem is solved using sequential thresholded least-squares (STLS) [17], which is sim-
ilar to ordinary least-squares regression with an additional step of hard thresholding. The variable
coefficients having values less than the thresholding parameter are rendered zeros and the regres-
sion problem is iteratively solved until convergence of parameter coefficients is attained. Please
note that the parameter A is crucial in eliminating the unwanted functions and its value can be
evaluated using several hyperparameter tuning strategies such as grid-search [35], random search

[36, 37] and Bayesian Optimization [38].



2. DATA-DRIVEN ADAPTIVE IDENTIFICATION OF NONLINEAR SYSTEMS

2.1 Motivation

Though SINDy proved to be successtul in inferring the dynamics of various systems of interest,
it holds the limitation of uncovering all of the underlying subtle dynamics for a complex process
when only a small amount of data is available. Especially for the processes exhibiting complex
nonlinear characteristics, the type regularly encountered in chemical sector, numerous samples
may be required for obtaining an accurate model in the absence of enhanced sampling strategies.
However, collecting such a large amount of measured data may be expensive and also, handling
such massive data is computationally demanding. With this in mind, in this work, an adaptive
identification method is proposed for identifying complex process dynamics with limited use of
data. For nonlinear processes whose dynamics are time-varying and poorly understood, adaptive
identification is a favorable approach. Most importantly, in the case of systems with parameter
uncertainties and evolving dynamics, there is a need for adaptive modeling as a new data becomes
available [39, 40, 41]. This is particularly useful because re-training the model may not be fast
enough to cope with the real-time demands. Moreover, offline trained models can be significantly
improved when they are simply updated using a new data. Therefore, for real-time applications,
adaptive model identification helps in handling any plant-model mismatch that may occur during
process operation. Recently, several methods contributing to the data-driven online model identi-
fication have been developed; in [42], the authors proposed an error-triggered online identification
approach and in [43], a combination of event-triggered and error-triggered online identification
mechanism based on recurrent neural network is discussed. Although these approaches are shown
to be useful for model predictive control of real-time processes, they do not provide an interpretable
model.

Apart from using a small amount of data, it is important to identify a model which is free of

*Reprinted with permission from “Machine learning-based adaptive model identification of systems: Application
to a chemical process” by Bhadriraju, B., Narasingam, A., and Kwon, J. S. 2019. Chemical Engineering Research &
Design, 152, 372-383, Copyright 2019 by Elsevier.



redundant and irrelevant variables [44]. Specifically, the features that do not contribute to the op-
timal model performance are considered irrelevant and the ones that are weakly relevant but can
be replaced by other distinctive features are redundant. The presence of such features reduces
prediction speed and accuracy. To tackle this issue, one can use feature selection techniques to
eliminate the unwanted variables which do not significantly contribute to the process dynamics.
These methods usually result in improved model prediction accuracy and reduced computational
burden. Within the class of feature selection methods, numerous techniques are available and can
be broadly grouped as filter, wrapper and embedded methods [45, 46]. Filter methods rank the
features based on their correlation with the output without using any machine learning algorithm.
Though these methods are computationally less expensive and evaluate the importance of each
variable individually, they may fail in providing the best subset of variables as they do not actu-
ally train the model. On the other hand, wrapper and embedded methods select the best subset of
features based on predictor performance. While wrapper methods use the combination of search
strategies and modeling algorithm, embedded methods like LASSO [47] and RIDGE [48] have fea-
ture selection integrated within their algorithm. In this work, a wrapper-based stepwise regression
is used as a part of the proposed framework [49, 50, 51].

Taking the above mentioned considerations into account, this work proposes an adaptive sparse
identification method that identifies the emerging process dynamics of a complex system through
a sequence of steps. First, a sparse model based on SINDy is identified offline using the initial
data. In the next step, when the previous model fails to predict accurately, the coefficients of
the identified functions are updated using ordinary least-squares regression. Finally, the identified
model is updated by retaining only the essential features via stepwise feature selection. The main
advantage of this sequential approach is that it requires a less amount of data for identifying a
complex nonlinear dynamical system compared to SINDy.

The outline of this chapter is summarized as follows: In Section 2.2, a detailed description of
the proposed methodology is presented, and in Section 2.3, application of the proposed method

in identifying a highly nonlinear continuous stirred tank reactor (CSTR) model is described. In



Section 2.4, numerical simulations carried out to identify the CSTR dynamics using the proposed
method are discussed. In the following subsections, the performance of the model identified by the
proposed algorithm is analyzed, validated and then compared with the model identified by SINDy

offline.
2.2 Adaptive identification of nonlinear systems

In this section, the proposed adaptive data-based model identification method is detailed. The
method is executed according to the following three steps:

1. Sparse model identification: With the initial data available, a parsimonious model is obtained
offline from a large set of candidate functions using SINDy.

2. Re-estimation of regression coefficients: As a new data becomes available, the coefficients of
the identified functions are updated by performing ordinary least-squares regression.

3. Feature selection: Using stepwise regression, the best subset of functions is selected that
represents the structure of the actual dynamics.

A flowchart representing each step of the proposed method is illustrated in Fig. 2.1. Instead of
the conventional way of using SINDy for overall process model identification, the idea is to apply
SINDy for identifying potential functions from a large library matrix. Note that, the first model is
identified offline with a data available initially and is further improved online as a new data is avail-
able. At a point where the SINDy model fails, a new data is regressed onto the identified function
library to update the values of the function coefficients. Furthermore, stepwise feature selection is
implemented to develop a more accurate and computationally efficient model by selecting only the
essential functions. As a preliminary step, it is recommended to pre-process the data for efficient
regression analysis using standard techniques such as normalizing or filtering depending on the
nature of the data. In the following subsections, each step of the adaptive identification method is
discussed in detail.

Step 1: Sparse model identification
This is the first step in the proposed framework. In this step, a parsimonious model is obtained

from some initial data (that may be collected at different operating conditions) using SINDy offline.



For example, this initial data can be obtained from process history. Identifying the correct functions
along with their exact coefficients requires a large number of samples. Since Eq. (1.6) is solved
only using limited data samples available initially, it is unlikely to realize an accurate model in this
step. Therefore, the identified model will only be used to approximate the system until it diverges
from the actual process dynamic behavior. To quantify the accuracy of the identified model, the

relative error based on Frobenius norm can be used, which is calculated as

) — 20l
B0 =120, @D

where ||.|| t-, denotes the Frobenius norm, x(t) is the actual process value, and Z(t) is the model
predicted value. When the error evaluated between model prediction and process measurement
exceeds a pre-specified tolerance e, i.e., E(t) > ¢, Step 2 becomes functional.
Step 2: Re-estimation of regression coefficients

The objective of this step is to update the coefficients of previously determined functions. As
a new data becomes available, this is done using ordinary least-squares regression. Specifically, a
new library matrix is constructed considering only the functions identified in Step 1, and the new
data is regressed onto this function library without any thresholding. As there is no thresholding,
the regression process is computationally more attractive. Again, when the model obtained in this
step performs poorly, Step 3 of the method is initiated.
Step 3: Feature selection

This step is aimed to further enhance the prediction accuracy by selecting only the essential
features from the previously identified functions. For this purpose, a statistics-based approach of
feature selection helps in selecting the best subset of variables without altering their representation,
thus achieving a balance between model simplicity and goodness of fit. The model obtained in Step

2 is tested using stepwise forward and backward regression, by formulating a null hypothesis as

=0 2.2)
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Figure 2.1: Flow chart of the proposed methodology.

where 7; represents the estimated coefficient of a feature, z;, considered for selection. In this work,

the terms present in the model obtained from Step 2 represent the feature candidates available in
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this step. Features are added or removed from the model based on a statistical criterion like p-value
(the probability of a null hypothesis to be true), obtained from F-test. The order of adding features
to the model is decided by measuring the correlation between the dependent variable, y, and the

independent feature, z, as follows:

Pay = 221(21 — Z2)(yi — 9) (2.3)

(Z?;(Zi - 2)2>%<221(% — 37)2)%

For m time-series samples considered, z and y are the mean values of the considered feature
and the dependent variable, respectively. The most promising feature with the highest correlation
coefficient is first added to the model and its statistical significance is examined using F-test. If this
feature is significant, then the next features are added one at a time based on their partial correlation
coefficient [52, 53]. At every step, the significance of all the previously selected features and the
new feature to be added is evaluated. At any time during the evaluation, a previously added feature
can be removed if it becomes insignificant in contributing to the desired prediction accuracy. If
the p-value for a feature is less than the pre-specified significance level (i.e., a-value), then the
null hypothesis is rejected indicating that the feature is valuable and is added to the model. The
selection procedure stops when further addition or removal of features cannot improve goodness
of fit. With this heuristic approach, only the most informative features are retained in the model,
thus reducing the run time and complexity associated with more parameters. Please note that, for
the cases with very few samples and more predictor variables, this particular selection technique
may not deliver expected results always [54]. Fortunately, for most of the dynamic processes, the
number of samples available is more than that of the predictor variables considered, including the

application demonstrated in this work.

Remark 1. For the cases where a large amount of data is available, often times it is possible to
fully identify the original process model using Step 1 (SINDy) alone with a suitable value of A

(please refer the case studies presented in [17]).

Remark 2. Please note that measurement noise is not considered in this case study. However, in

11



many practical applications, the measurement data is often contaminated by noise that may affect
the performance of the proposed method. This can be addressed by denoising the data using the
available nonlinear noise reduction techniques such as filtering and smoothing [55, 56, 57, 58].
Furthermore, the differentiation of data in Step 1 has to be carried out using robust methods [33,
34] that can compensate for noise. Additionally, it is important to implement a feature selection
method which is robust to noisy data; for example, one can use a hybrid feature selection method
combining both filter and wrapper methods [59]. In this work, stepwise regression was used as it

was shown to perform well in the presence of measurement noise [60].

2.3 Application to CSTR

This section demonstrates the application of the proposed method for a perfectly mixed, non-
isothermal CSTR. An exothermic, irreversible reaction A—B with the second order kinetics is

considered whose reaction rate is given by
r=KC} (2.4)

where K is the temperature dependent rate constant, and C4 is the time-varying concentration of

reactant A. The reaction rate constant is determined by Arrhenius law as

K = Koexp <_—E> (2.5)

where K is the pre-exponential factor, F is the activation energy of the reaction, R is the uni-
versal gas constant, and 7" is the time-varying reactor temperature in Kelvin. The temperature is
maintained by adjusting the amount of heat transferred through the reactor jacket. The following
equations obtained from mass and energy balance of the reactor are the mathematical representa-

tion of concentration and temperature dynamics in a CSTR. These equations are used to generate

12



simulation data for identifying the governing dynamics of the process.

Tall) G- Calt) ~ Kaeo (7 ) Cate)’ 26)
dT(t) F AH —E Q)
— = VT(TO —T(t) — p—cpKoexp (W) Ca(t)* + oo,V (2.7)

In the above equations, F' is the feed flow rate to the reactor, V, is the reactor volume, AH is the
heat of reaction, () is the manipulated rate of heat input, and p and ¢, are the density and specific
heat capacity of the fluid in the reactor, respectively. The temperature-dependent rate constant and
the coupled dynamics between temperature and concentration contribute to the complex nonlinear
dynamics, making the process of system identification challenging. The objective of this case
study is to develop an adaptive model that captures the evolving dynamics of concentration and
temperature with a higher prediction accuracy. In the following section, the performance of models

identified using the adaptive method and its offline counterpart, SINDy, is evaluated.
2.4 Simulation results

This section presents the results obtained from the numerical experiments carried out for model
identification of the CSTR dynamics. The characteristics of the models developed using the pro-
posed method and the original SINDy method are compared on the basis of prediction accuracy
and the total number of data samples required. In this work, all the simulations were performed
using MATLAB R2018b programming platform.

The input-output data required for training the models is generated by solving open-loop simu-
lations of the mathematical models, Eq. (2.6) and Eq. (2.7), using the ode 45 solver. The process is
subjected to a random heat input profile with signals varying between —6 x 10* K.J/h to 10 x 10*
K J/h. A simulation time step of 1 X 1079 h is considered within the solver, and the data is col-
lected with a sampling time step of 1 x 10~* h. Assuming full state measurements are available,
the process outputs are C' and I". The parameter values considered for numerical simulation are

shown in Table 2.1. It is expected that the function coefficients of the identified model must be
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Table 2.1: Parameter values for simulation.

Parameter Units Value
Flowrate, F’ m3/h 5
Arrhenius pre-exponential factor, K 1/h 8.46 x 10°
Reactor volume, V, m3 1
Gas constant, R KJ/Kmol-K 8.314
Inlet temperatue, 7y K 300
Initial concentration, Cy Kmol/m? 4
Activation energy, F/ KJ/Kmol 5 x 10%
Enthalpy change, AH KJ/Kmol  —1.15x 10*
Fluid density, p Kg/m? 1000
Specific heat, ¢, KJ/Kg-K 0.231

approximately in the same range as the true values shown in Table 2.2. In the following subsec-
tions, the adaptive sparse identification and SINDy based models are identified, validated and then

compared.
2.4.1 Adaptive model identification

As mentioned earlier, the proposed algorithm is a three-step method having different goals in

each step as:

Step 1) Identify an initial set of potential functions.

Step 2) Update the identified function coefficients.

Step 3) Select the best combination of essential functions.

In Step 1, the original SINDy algorithm is applied to identify the governing functions of the
concentration and temperature dynamics. To this end, a candidate library matrix is built with
22 functions as represented in Eq. (2.8). The advantage of SINDy, which is to incorporate a priori
knowledge such as the temperature dependence of the rate constant via Arrhenius law, is utilized by

including a temperature-dependent exponential term in the function library. The library developed
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Table 2.2: True coefficients.

Functions & ar
1 20 1500
C -5 0
T 0 -5
cxp (F2) C? —8.46 x 105  4.21 x 108
Q 0 4.33 x 1073

in this step is an m x 22 matrix, where m indicates the size of the time series data. In the subsequent
steps, as the model gets updated, the column size of the library may vary. The simulated outputs
of concentration, temperature, and the manipulated heat input are represented as xy, xo and u,
respectively.
O(x,u) = [1 ;" exp (%) 71?2 u u? zu sin(z;) cos(z;) (2.8)
In the above equation, the subscript ¢ = 1,2 corresponds to the concentration and temperature
variables, respectively, and n = 1,--- ,6 indicates the degree of the polynomial. This step is
performed offline using the available historical data of m = 5 x 10® samples. This historical
data is obtained by simulating the process starting at initial conditions C' = 1.9 kmol/m? and
T =400 K for a total duration of ¢ = 0.5 h. Please note that, in this specific application, the
concentration and temperature values are different by two orders of magnitude. This disparity in
the scales can prompt poor sparsity, especially in the scenario of dealing with many functions. This
issue is handled by normalizing the concentration data. Specifically, the concentration values are
multiplied with the ratio of the mean values of temperature and concentration. Also, the magnitude
of the exponential term in the candidate library is relatively higher than that of the other functions
present, and this leads to a scaling issue. To solve this problem, each library element is divided

by the mean of the corresponding library column. After pre-processing the data, the samples are
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differentiated by finite difference method and are used to solve the sparse regression problem as
presented in Eq. (1.6). For this purpose, the STLS method is used with 100 iterations to ensure
optimum convergence of coefficients. The value of the thresholding parameter, ), affects the degree
of sparsity observed [61]. Different models are obtained for different values of A and increasing
A results in a more sparse model. But as the degree of sparsity increases, many functions are
disregarded and because of this, the error computed between the predicted value and the measured
value increases. Therefore, the A value is selected by balancing sparsity and accuracy. In this case,
the relative error given by Eq. (2.1) is considered as a measure for quantifying model accuracy. As
shown in Fig. 2.2, the Pareto front analysis gives the optimum value of thresholding parameter as
0.22. For this value of A, the model identified in this step performs well with respect to training

data as presented in Fig. 2.3.
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Figure 2.2: Relative error vs thresholding parameter.
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Figure 2.3: Results obtained in Step 1 using the training data for (a) concentration, and (b) temper-
ature profiles.

In reference to the model structure, Step 1 identifies only 10 out of 22 functions as the potential
candidates and the results are shown in Table 2.3. From the table it can be observed that by solving

Eq. (1.6), all the original functions present in Eq. (2.6) and Eq. (2.7) are correctly identified along
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with some additional functions which are not part of the original system. However, the values of
the identified function coefficients are not close to the actual model and thus, the model needs to
be updated in the subsequent steps.

Once the model is obtained offline through Step 1, it is used as a baseline model to predict the
dynamics of a process starting at initial conditions C' = 3.31 kmol/m? and T = 320.75 K. An
error tolerance value of ¢ = 5 x 1072 is considered for both temperature and concentration and
any model having an error exceeding this value is deemed poor. The divergence point where the
obtained model prediction deviates from the actual measurement serves as an indication to start
Step 2. In Fig. 2.4(a), the model obtained from Step 1 predicts well from ¢ =0 h tot =0.18 h, and
after that it begins to deviate and can no longer be used for predicting the future states. The relative
error computed between the predicted output and the measured data is illustrated in Fig. 2.4(b). It
can be observed that the relative error exceeds the tolerance at ¢t = 0.18 / and at this point, Step 2
of the proposed framework is initiated.

In Step 2, ordinary least-squares regression is performed for updating the coefficients of the
previously identified functions. The amount of data utilized in this step is 5 x 10® samples, which
are collected from the process between ¢t =0 to ¢ = 0.18 h. The library matrix is re-constructed using
only the 10 functions identified in Step 1 and their coefficients values are determined by solving
Eq. (1.5), without any thresholding. The results obtained from Step 2 are presented in Table 2.4(a).
From the table, it can be seen that the coefficients for concentration are nearly identical to the
original model and 7% term is observed to play no role in the reactor dynamics as seen from
its zero coefficient value. Therefore, only the remaining 9 functions are taken into account for
improving the model further. From Fig. 2.4(a) it can be observed that at ¢ = 0.34 h the temperature
profile deviates from the actual model, i.e., the error exceeds the pre-specified tolerance, ¢, and
this triggers Step 3. Additionally, the overall performance of the model updated through Step 2
is better than the model identified in Step 1, as can be seen from the plots depicted in Fig. 2.4(b).
Note that, as the concentration prediction fits well with the actual behavior (Table 2.4(a)), Step 3

is performed to update the temperature model only.
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Table 2.3: Sparse coefficients estimated in Step 1.

Functions dCa ar

dt dt
1 -85.937  —2.95 x 107
C 030311 —9.99 x 10*
T 1.781 4.95 x 10°
C? -4.510 1.12 x 10°
1?2 -0.012 -3458.71
o 2.294 —6.55 x 10*
T3 0 12.854
exp (77) C* —8.46 x 10°  8.98 x 10°
Q 0 4.14 x 1073
o 0 0
T 0 -0.0268
o 0 0
T° 0 0
o 0 0
Tt 0 0
cQ 0 0
TQ 0 0
Q? 0 0
sin(C) 0 0
cos(C) 0 0
sin(T) 0 0
cos(T) 0 0
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Table 2.4: Regression coefficients estimated in (a) Step 2, and (b) Step 3.

(a) Model obtained in Step 2.

Functions da ar
1 19.896 —1.05 x 10°
C -4.982 7.81 x 103
T 7.10 x 1074 1.02 x 103
C? —5.31 x 1073 -2345.24
T? 0 -3.881
C3 5.34 x 1074 237.284
T3 0 6.05 x 1073
exp (F2) C?  —8.46 x 10°  —6.41 x 108
Q 0 4.3 %1073
T! 0 0
(b) Model obtained in Step 3.
Functions da &
1 19.896 13114
C -4.982 16.993
T 7.10 x 1074 -4.587
C? —5.31 x 1073 0
T? 0 0
c? 5.34 x 1074 0
T3 0 0
exp (7£) C*  —8.46 x 105  4.06 x 10
Q 0 4.3 %1073
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In Step 3, only the functions that contribute most significantly towards improved prediction
accuracy are selected using feature selection. To do this, a feature matrix is constructed using the
available 5 x 10? time samples till £ = 0.34 h. In this case, the products of the 9 identified functions
and their updated coefficients from Step 2 represent the features to be considered for selection.
Within the feature selection algorithm, the standard significance level of a = 0.05 is specified as
the criterion to reject the null hypothesis, i.e., a feature is added to the model if its p-value is
less than 0.05. Among the 9 features considered, only 5 of them are selected in this step as the
dominating ones (Table 2.4(b)), resulting in a more concise and efficient model. It can be observed
from Table 2.4(b) that the identified model is very close to the true model both in terms of the
governing functions as well as their coefficients. As shown in Fig. 2.4(a), both the temperature
and concentration profiles obtained from Step 3 are nearly identical to the actual process, and the
relative error of the updated model is within the tolerance limits (Fig. 2.4(b)). Thus, in terms of
predictive performance, the model identified in Step 3 is superior to the previously obtained models
as it contains essential features only.

In real-time applications, a major challenge of model adaptation is to rapidly update the model
to capture all of the changing dynamics. Therefore, analyzing the computational time of each step
is important. For the case study presented in this work, the model is updated from a point where
it diverges from the actual behavior of the system. The computational times taken for updating
the models in Step 2 and Step 3 of the proposed method are 0.137 s and 1.862 s, respectively.
From the results it can be interpreted that in these steps the model structure is improved almost
instantaneously since only a limited amount of data is used in both the steps. Note that, during this
time of model update, the model identified in the previous steps continues to be in use until a new

model is identified.

Remark 3. The number of samples used for training the model is one of the most important fac-
tors for any data-driven model identification methods. In this work, multiple numerical simulations
were performed considering varying number of data samples in order to train the model. How-

ever, not all of the results obtained are reported in this work. Only the results of the best model
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identified and the corresponding data size is discussed in the manuscript. The proposed algorithm

is observed to perform well for any dataset having the size larger than this optimum value.

Remark 4. Please note that the presence of noise may lead to frequent model updates if not

handled appropriately. Once the data is cleaned using the previously mentioned techniques, the

effects of measurement noise can be mitigated preventing frequent model updates.
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Figure 2.4: (a) Comparing the future behavior of individual models obtained using the proposed
method for concentration and temperature profiles, and (b) relative errors of the models identified
using the proposed method with respect to time.
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2.4.2 Validation of the adaptive method

To evaluate the quality of the final model derived using the proposed method,

against various sets of input profiles at different operating conditions.

it is validated
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Figure 2.5: Open-loop validation of concentration and temperature profiles described by the adap-
tive model for three different input settings.
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The validation datasets are generated using three kinds of heat input profiles; a random input with
signals varying between —1.2 x 10> KJ/h and 2 x 105 KJ/h, an input with a step of 5 x 103
K J/h, and a sinusoidal input with an amplitude and frequency of 6 K.J/h and 2 h~!. The sampling
and simulation time steps are the same as that of the training data, and the validation results are
presented in Fig. 2.5. The results observed from the figure show that in all the three cases, the

adaptive model predicts the process dynamics accurately.
2.4.3 Comparison with SINDy

In this subsection, the proposed method is compared with SINDy in terms of future state pre-
diction. In order to do this, the input-output dataset used in obtaining the adaptive model is consid-
ered. For the comparison to be consistent, the number of samples used to perform SINDy is taken
to be the same as the total number of samples used for the proposed method (i.e., all three steps
combined). The resulting sparse regression problem is solved using STLS with a thresholding
parameter of 0.22, and 100 iterations are employed for proper convergence. Once the models are
discovered by the proposed method and SINDy, their prediction performance is compared using
validation data generated with a random input profile. From the results presented in Fig. 2.6(a),
it can be observed that the model identified by SINDy fails to interpret the actual dynamics while
the adaptive model (final model obtained after implementing Step 3) accurately represents both the
concentration and temperature dynamics. Furthermore, the final model identified by the proposed
method has a very low relative error at each time point (Fig. 2.6(b)). For the same number of sam-
ples, the proposed adaptive method could approximately predict the real model (Table 2.4), while
an additional amount of data may be required for SINDy to fully identify the system. To general-
ize the validation results across different input settings, both the models are compared using 100
different random input profiles. The relative errors based on Frobenius norm are calculated for
each of the input profiles and their average values are shown in Table 2.5, highlighting the superior

performance of the proposed method.
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Table 2.5: Average relative error computed for 100 different datasets.

Model Relative error

Adaptive  3.60 x 1073
SINDy 2.51 x 1071
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Figure 2.6: (a) Open-loop validation of the adaptive and SINDy models identified using the same
number of samples for concentration and temperature profile, and (b) comparison of the relative
errors for the adaptive and SINDy models identified using the same amount of data.

Additionally, the performance of both the methods is tested for the case when the SINDy model
is trained using a large amount of training data. Specifically, 6 times the total number of samples

used in identifying the adaptive model is used in training the SINDy model. In Fig. 2.7(a), the
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response of the final model previously identified by the proposed method is compared with the
model identified by SINDy with respect to the concentration and temperature variables. Also,
the relative errors estimated at each time point for both the models are compared in Fig. 2.7(b).
Although the performance of the model identified by SINDy using a high number of samples is
improved when compared to the previous case (using a less number of samples), the accuracy of
the adaptive model still outperformed SINDy. Overall, the results ascertain the usefulness of the

proposed approach in obtaining a reasonable model using a less amount of data.
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Figure 2.7: (a) Open-loop validation of the adaptive model and SINDy model identified using a
large amount of data for concentration and temperature profiles, and (b) comparison of the relative
errors for the adaptive model and SINDy model identified using a large amount of data.
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3. ONLINE ADAPTIVE SPARSE IDENTIFICATION OF SYSTEMS (OASIS)

3.1 Motivation

Despite the simplicity of SINDy algorithm, it may require a large amount of data to discover
the governing equations representing complex process dynamics. Therefore, it is challenging to
use SINDy for model-based control, especially in the presence of any parameter uncertainties or
changing process dynamics, because recovering the model by solving a sparse regression problem
online is computationally expensive. To address this, we previously proposed an adaptive model
identification framework that utilizes a small amount of data to identify and recover the model in
real-time [62]. Though the method provides a direction to apply SINDy for adaptive modeling, it
is useful to have a robust framework that guarantees to adapt well with the changing process dy-
namics. In line with this methodology, we now propose an algorithm that leverages the advantages
of SINDy for online adaptive modeling using a deep neural network (DNN).

In the last two decades, DNNs have been widely used for various chemical engineering ap-
plications such as process control [63, 64, 65, 66, 67], fault diagnosis [68], system identification
[69, 70, 71], sensor data analysis [72], and process design and simulation [73]. This success can
be attributed to their ability to learn and approximate any underlying complex nonlinearities using
a simple architecture. Moreover, advancements in parallel computing technology, and the ease of
implementation supports the use of DNNs. Specifically, a lot of studies have been done to apply
DNNSs to model predictive control (MPC) as it is widely used in the industry because of its capabil-
ities in dealing with output constraints and multi-variable processes [74]. In MPC, control action
is prompted by solving an online optimization problem that requires a nonlinear model with high
prediction accuracy and good generalization properties. To meet this demand, several researchers
have incorporated DNNs within an MPC framework in different ways [75, 42, 43]. Generally,
there are two ways to integrate a NN into an adaptive control structure [76]. One is a direct adap-

tive scheme which does not require a model; instead a DNN acts as a controller whose parameters,
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the weights and biases, are updated online according to the control objective. However, this ap-
proach is challenging and time consuming when there are too many network parameters to handle
[77]. The other method is an indirect adaptive scheme which uses a DNN to model the process,
based on which the control action is determined [78]. In this case, both model update and control
take place simultaneously within the MPC scheme. In this paper, we are particularly interested in
applying DNNs for modeling and indirect adaptive control of nonlinear dynamical systems.

In this work, we propose an adaptive modeling and control procedure based on the SINDy
algortihm and deep learning. The key novelty is to combine the usefulness of SINDy in discovering
nonlinear dynamics with DNNs to adaptively model and control the process dynamics in real-time.
The proposed method is implemented in two steps: system identification and controller design.
For the system identification, we utilize several sets of process historical data that are available
for various input settings and identify their corresponding models using SINDy. Next, we train a
DNN using the previously collected historical datasets and their respective models such that the
DNN approximates the relationship between process data and SINDy models. We use this trained
DNN to design a controller wherein the DNN predicts the model to estimate the future behavior
of the process. In this way, the proposed approach supports the application of SINDy for real-time
prediction and control. For application purposes, we used the proposed online adaptive sparse
identification of system (OASIS) framework to identify and control the nonlinear dynamics of a
CSTR system.

The remainder of this chapter is structured as follows: in Section 3.2 a brief introduction of
the SINDy algorithm is provided, followed by a short description of the DNN. Next, the proposed
OASIS framework is presented in Section 3.3. In the following subsections, the results obtained
from numerical simulations performed in identifying models via SINDy, developing DNNs, and

designing a model-based controller for a CSTR are discussed.
3.2 Deep neural networks

A DNN consists of an input layer, an output layer, and a series of hidden layers that learn the

input-output relationship in a dataset. Each layer contains multiple individual units called nodes
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or neurons. The connection between two nodes in two consecutive layers is characterized by a
parameter called weight, w. In a feed-forward DNN, as represented in Fig. 3.1, the input to a
layer is the weighted sum of the outputs of the nodes in the previous layer. Another important
parameter is bias, b, which is added to the weighted sum of the inputs to control the output of a
node. Inside each node, its input is processed through an activation function, o, in order to learn
the underlying nonlinearities. Some of the popular activation functions are Hyperbolic tangent,
Sigmoid, Rectified Linear Unit (ReLLU), and Leaky ReLLU. Suppose there is a particular layer p
having W” and B? as its weight vector and bias vector, respectively. If the output vector from the

previous layer is O, then the output of the layer p, Y?, is given as

7P — WPQP~1 4+ BP (3.1a)

Y? = o(ZP) (3.1b)

Hidden layers

Output
layer

Input
layer

Figure 3.1: Deep neural network.
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The accuracy of the network is evaluated based on the difference between the output predicted
by the DNN and the actual output, called loss function, H. Hence, the objective during the DNN
training step is to minimize this loss function. This is achieved by updating the weights and bias
iteratively through an optimization algorithm. Each cycle of computing H, and updating w and b is
called an epoch. There are many methods such as Gradient descent [79, 80], Newton method [81],
Conjugate gradient [82], Quasi-Newton method [83], Levenberg-Marquardt algorithm [84, 85, 86],
and Bayesian regularization [87, 88] that are popularly used as learning algorithms. Because of
these advancements in learning algorithms, in recent years DNN-based models have performed

better than the existing state-of-the-art models [89, 90].
3.3 OASIS methodology

The proposed OASIS framework combines the SINDy algorithm with deep learning to identify
f(x,u). The schematic of the OASIS method is presented in Fig. 3.2. The blue colored section in
the figure represents offline training using SINDy and DNN, and the black one represents online
implementation of the DNN for controller design. The system learning step is performed offline
wherein we use n sets of historical time-series process data available either from experimental
measurements or numerical simulations of high-fidelity equations. In this step, we identify several
models offline, i.e., SINDy coefficients, using these multiple training datasets obtained at various
operating conditions of the system and applied inputs. Please note that we use a limited number of
samples for every case, and therefore, each of the models obtained by SINDy is not expected to be
applicable beyond the training data (i.e., a typical extrapolation issue with any data-based models).
On the contrary, considering multiple input trajectories improves the availability of models for a
broad range of operating conditions. For an i'" dataset with i = 1,...,d, let X; represent the
state variables, U; be the applied inputs, and 3; be the model coefficients identified by SINDy.
The SINDy algorithm is applied to these d datasets individually in order to identify function co-
efficients, 3J;, using which the corresponding model, ®;3;, is obtained. We use these d pairs of
(Xj, U;) and X; data to train the DNN that learns the relationship between them. For effective

learning, it is recommended to consider a sufficient number of data samples.
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Figure 3.2: OASIS methodology.

Once the network is well-trained, it is used in a model-based controller to predict the future
behavior of the process. The model predicted by the DNN is used within the controller to predict
the states and calculate the control actions. As the process begins, a baseline SINDy model is
determined by the DNN using the initial process conditions. This initial model is used for predic-
tion until the next sampling time at which the current state, x(¢), and the control input, u(t), are
then fed to the DNN to update the model. The resulting model is further used in the next control
step. In such a manner, the sequence of control action is obtained through the nonlinear models
predicted by the DNN. Hence, the DNN serves as a tool to successfully use SINDy for adaptive
modeling and control applications. The advantages of the proposed method are twofold: First, the
nonlinear models predicted by the DNN continue to preserve the physical meaning of the process,
since the DNN is developed using SINDy. Second, it is easy to update the models using the DNN

online without loss of performance. The summary of the OASIS framework is briefly presented in
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Algorithm 1.

Algorithm 1 OASIS methodology

1: Collect n sets of time-series data, X and U.
2: Compute the derivatives of X and build a X matrix.
3: Construct a candidate library, ®, containing a variety of functions including any prior knowl-
edge.
4: Solve the sparse regression problem, ¥ = argmin|| X — ©(X, U)X/||; + A||X'||..
-

5: Perform the above steps for all the datasets to obtain multiple models for multiple inputs.

6: Train a DNN to learn the relationship between 3; and (Xj, U;).

7. Design a model-based controller using the trained DNN that identifies and updates the models
for process control.

Remark 5. Please note that the optimization problem mentioned in Eq. (1.6) can be solved using
sparsity promoting methods such as STLS, LASSO [47], and RIDGE [48]. The sufficient conditions
related to the convergence of the SINDy algorithm are discussed in [32] The authors prove that
the SINDy algorithm converges to an optimum solution in a finite number of steps. Additionally, in
[91], the authors provided a condition to guarantee convergence when the data used in identifying
governing equations are collected from multiple sources. Also, the convergence of sparse relaxed
regularization problems is detailed in [92] Following such theoretical developments guarantees to
achieve convergence of the sparse solution using SINDy. Hence, in our proposed method, SINDy

can readily converge to a local minimizer for every dataset.

3.4 Simulation results

In this section, we present the numerical experiments related to system identification and con-
trol of CSTR dynamics using OASIS. We first demonstrate the OASIS architecture in training the
DNN using SINDy, and subsequently use the trained DNN to design a controller. All the simu-
lations are performed using MATLAB R2018b programming platform. The data required to train

the models using SINDy and to develop the DNN is numerically generated by solving Egs. (2.6) -
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(2.7) using the ode45 solver. We used 1 x 1072 hand 1 x 10~* h as the measurement sampling

and numerical integration time steps, respectively.
3.4.1 Model identification using SINDy

This is the first step in the proposed framework where we identify SINDy models for concen-
tration and temperature dynamics using STLS algorithm offline. To generate training data, we
introduced 100 random heat input profiles in the range of —3.54 x 10° K.J/h to 1.96 x 10° K.J/h
to the process for a total duration of 1 h. In this manner, 100 time-series datasets with varying
trajectories are obtained. Also, using multiple trajectories ensures variation within the training
datasets and is helpful in generalizing the DNN. After preparing for the data, we built a candidate

library matrix using the following 9 functions:

O(x,u)= |1 =z, a9 2 22 23 23 exp (g—E> 11? u} (3.2)

T2

where x,, r9, and u represent concentration, temperature, and rate of heat input, respectively.
Based on the prior knowledge of the system, i.e., the reaction rate constant exponentially varying
with temperature, we included an exponential function in the library. The size of the library ma-
trix developed is m x 9 with m as 10000 in this case. In such a manner, 100 library matrices are
developed for all of the datasets. For the case study presented, the order of magnitude of the expo-
nential function in the library is relatively higher than the other terms present. This dissimilarity in
scales affects the regression calculations. Hence, we normalized all the library elements to a same
scale by dividing each element with the mean of the corresponding column in the library. In the
next step, we calculated the derivatives using central difference method. This sequence of collect-
ing and pre-processing data, building candidate library, and computing derivatives is repeated for
all the 100 datasets. For each of the datasets, we solved the sparse regression problem presented
in Eq. (1.6) iteratively using STLS algorithm until the coefficient values converge. Thereby, we
identified 100 parsimonious models for all the 100 datasets. As discussed in Section 2, A plays

an important role in balancing sparsity with accuracy. The chance of not identifying the required
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functions increases with A, and this affects the prediction accuracy of the model. For this reason,
we used 100 different values of A between 0.01 to 10 to train the models using STLS. Amongst
all the models obtained, we selected the one having the lowest value of the /;-norm-based error, e,

given as follows:

e =Y |Ix(t:) — %(t:)l2 (3.3)
=1

In the above equation, x(t) denotes the actual states of the system as seen in the data, and X(t)
represents the model predicted value. Please note that each of the models is identified using 10000
data samples only. Hence, they may not approximate well for a different dataset which is not used
in its training. To qualitatively prove this point, we selected a model from these 100 models and
compared its prediction performance when an input other than its training input is applied to it.
The results are presented in Fig. 3.3, and it can be observed that the model performs well in
replicating the dynamics of its training dataset used in its identification, but could not approximate
the dynamics of the test dataset to a satisfactory degree. Therefore, the 100 models, derived using
SINDy are not completely identical to each other and this variation is advantageous in training the

DNN.
3.4.2 Training the DNNs

In this step, the objective is to build a DNN that can predict the SINDy coefficients online,
precisely describing the changing process dynamics. For the purpose of DNN training, we utilized
the 100 models identified using SINDy and their corresponding training states and inputs. These
datasets are normalized before using them for DNN training. Instead of building a single DNN
that predicts all the SINDy coefficients, we developed two feed-forward DNNS, i.e., one each for
the concentration and temperature variables. This is because having individual structures for each
of the states enables the DNN to learn more effectively. Please note that we used the structure with
5 layers including 1 input layer with 3 nodes, 1 output layer with 9 nodes, and 3 hidden layers with
2, 10, and 10 nodes, respectively. From each of the 100 datasets, we selected 100 data points, and

thus, a total of 10000 samples were utilized in training the DNNGs.
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Figure 3.3: Performance of a model identified by SINDy with respect to the (a) same training input
used in its identification, and (b) testing input.

These samples containing the time-series data of C4, 7', and u are the training inputs to the
DNNs. The training outputs are the coefficient values of the 9 functions representing the SINDy
models. Hence, the size of input and output training data for both the DNNs is 3 x 10000 and
9 x 10000, respectively. For every input, i.e., C'4, T, and u, the DNN predicts the SINDy co-
efficients as illustrated in Fig. 3.4. Once the structure of the DNNs is defined, we trained both
the DNNs individually using MATLAB’s Deep Learning toolbox. To begin the DNN learning,
the parameters w and b are randomly initialized, and an initial output is predicted. Based on the
output, loss function is computed and accordingly the parameters w and b are further updated

using Bayesian regularization algorithm. Generally, the training process aims at minimizing the

35



T Hidden
layers

T3

exp(—E/RT)C4

Figure 3.4: Structure of the DNN.

sum of squared errors as the loss function. But the Bayesian regularization algorithm includes an

additional regularization term containing the sum of square of weights in the loss function, H, as

k

H= Z Oé(Xi — )A(i>2 + Bwf (34)

i=1

where o and (3 are the parameters that decide the relative importance of terms in the loss function,
x; and X; are the true and predicted values, respectively. This step of penalizing weights improves
the DNNs’ ability to generalize well for new inputs. Moreover, having small weights will allow the

response of the network to be smooth [93] and prevents the network from over-fitting. Bayesian



regularization follows the same update rule as Levenberg-Marquardt algorithm given as

where .J is the Jacobian matrix containing the gradients of loss function with respect to network
parameters; specifically, p is the combination coefficient, and [ is the identity matrix. The main
difference of this algorithm from the Levenberg-Marquardt algorithm is that the former aims at
minimizing a linear combination of the sum of squared errors and the sum of squared weights,
while the latter minimizes only the sum of squared errors. To activate the network layers, we used
sigmoid function for hidden layers and linear function for the output layer. One important point to
note is that we trained the DNNs by feeding the data in a series of 5 batches with 2000 samples
(i.e., 2000 epochs per batch). This is because training in large batches or using all the data at once
does not improve the performance of the model and can cause over-fitting [94, 95]. On the other
hand, training in small batches combines the information from both old and new data, and has an
advantage of faster convergence [96]. Such a method of sequential training improves the learning
process, and this can be seen in Fig. 3.5 which shows the performance of the DNNSs for the training

data. The prediction accuracy is evaluated by calculating relative error, RE(t), based on /;-norm as

() — 28]l
REt) = ———— 2= 3.6
O =" 00, (3.6)

It can be observed that both the DNNs for C'y and T" perform well in reproducing the dynamics
for training data. Note that these results only indicate the learning curve of the DNNs and do not
prove the generalizing abilities of the networks. We evaluate the generalization properties of the

DNNss using test data as explained in the following section.
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Figure 3.5: (a) Prediction of concentration and temperature dynamics using the DNNs with respect
to the training data, and (b) the relative error of the DNNs’ predictions with respect to the training
data.

3.4.3 Testing the DNNs

To check the performance of DNNs, we tested the networks using data generated at different
operating conditions. The test data are obtained by solving Eqgs. (2.6)-(2.7) using a step change in
heat input, with the simulation and sampling times identical to the training data.

The main objective of network training is to achieve local generalization. In this work, tech-
niques such as regularization-based learning algorithm and small-batch training helped with the
generalization in terms of interpolation. The ranges of C'4, T', and u in the training data are pre-

sented in Table 3.1. Based on this range, we evaluated the performance of DNNs, and the results
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Figure 3.6: (a) Validation of the performance of the models obtained from DNNs (a) when the rate
of heat input violates the upper bound of the constraints, i.e., 1.5 x 10° KJ/h (due to the high value
of heat input, the temperature may exceed training values for the initial conditions considered),
and (b) when the rate of heat input violates the lower bound of the constraints, i.e., —1.5 x 10°
KJ/h.

are presented in Figs. 3.6-3.7. From Fig. 3.6 it can be seen that there are fluctuations in the pre-
dicted output. This happens because high rates of heat input can cause the reactor temperature
to go beyond the training data span, i.e., 589 K. Furthermore, prediction inaccuracies are ob-
served in the case of lower values of heat input. Hence, to ensure the states remain within the
training range and improve the prediction accuracy, we selected the constraints for heat input as
u € [-1.5 x 10°,1.5 x 10°]. Consequently, these constraints will be used in designing a model-
based controller, which is discussed in the next section. The test results of the DNNs with respect
to the input constraints are presented in Fig. 3.7. It can be observed that in both the test cases, the
DNNSs perform well with respect to their interpolation within the span of the training samples. This
proves the generalization abilities of the DNNs in predicting the nonlinear dynamics when inputs

other than the training inputs are given to the system. In the following section, we present the use
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Figure 3.7: Evaluating the performance of the models obtained from DNNs when the rate of heat
input is in the range of [-1.5 x 10°, 1.5 x 10°] KJ/h.

of these trained DNNs in controlling the reactor dynamics. Please note that at every sampling time,
the feedback from the process is utilized by the DNNs to update the models for all the prediction

results presented in this work (Fig. 3.8).
3.4.4 Model predictive control

In this section, we demonstrate the application of the OASIS framework in designing a model
predictive controller for the CSTR system described earlier. In the first step of OASIS, we trained
DNN architectures using SINDy offline. In the second step, the obtained DNNs are used online
to predict the SINDy coefficients, using which the controller takes action to move the process
towards the desired set-point value. The schematic of DNN-based predictive control is illustrated
in Fig. 3.8.

In this case study, the control objective is to operate the reactor at its unstable steady-state

condition, T, = 401.87 K and C4, = 1.95 Kmol /m3. To meet this objective, we formulated the
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min
u(k),...,;u(k+N—-1)
7j=1
s.t 3 (k)
x(k+j) =

Table 3.1: Training data range for DNN inputs.

Variable Units Range
Temperature, T’ K [142, 589]
Concentration, Cy ~ Kmol /m? [0.26, 4]

Rate of heat input, u K .J/Kmol

[—3.54 x 10%, 1.96 x 10°]

Deep
—-»  neural

network

~ SINDy |
model —— Optimizer
. ex
_________________________________________________ u
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I
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Figure 3.8: Model predictive control using the proposed OASIS algorithm.

roblem as follows:

= DNN(x(k),

OX(k+j—-1),

N
D &k A+ j) — %) T Qe(%(k + ) — )

u(k — 1))

U(k’ +] - ]-) S Umax Vj =

u(k +j —1)%(k),

\Z]

=1,...,N

(3.7a)

(3.7b)
(3.7¢)

(3.7d)

where X and x are the vectors containing the states available from the DNN models and process,
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Figure 3.9: Closed-loop simulation results under the proposed OASIS-based MPC.

respectively, X are the desired set-point values for C'4 and 7', Q. is a positive definite weighting
matrix that weighs the importance of the states variables, & is the current time step, and w« is the
rate of heat input which is manipulated to control the state variables. We considered the above
problem as a receding horizon MPC with horizon length as /N at any step k. Also, the control
horizon is the same as the prediction horizon. In the above mentioned formulation, the objective
of the optimization problem is to minimize the squared deviation of process variables from their
desired set-point values. The optimization problem is solved utilizing the models predicted by the
pre-trained DNNs for C'4 and 7" states. We selected the constraints for MPC based on the span of
the training data. Specifically, the input should vary between the minimum and maximum values,
1.e., Umin and Up,q,. The optimization problem in Eq. (3.7) is solved in a closed-loop manner with

the sampling time of 1 x 1072 h for a total duration of 1 h. The MPC is initialized with initial
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conditions for C'y and T as 2.5 K'mol/m? and 385 K, respectively. At every sampling time, the
measurement values are collected by solving Egs. (2.6)-(2.7) using the parameters mentioned in
Table 2.1. These measurements and control inputs are fed to the DNNs to obtain an updated SINDy
model (as in Eq. (3.7b)) which is used in the MPC (as in Eq. (3.7¢c)) to compute the control inputs
until the next sampling time. Specifically, at every step k, the MPC is evaluated for a prediction
horizon of length N = 10, computing an input profile as [u(k),...,u(k + N — 1)]. The first
input, u(k), is then applied as the control action to the CSTR process, and the SINDy model is
re-estimated at the next sampling time. This procedure is followed throughout the duration of the

process for every sampling time.
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Figure 3.10: The manipulated heat input profile under the proposed MPC.
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From the closed-loop simulation results in Fig. 3.9, it can be observed that the designed con-

troller could drive both the states to their target set-points. This is due to the fact that the DNNs
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performed reasonably well in updating the models with respect to feedback from the process. The
corresponding heat input profile that is manipulated to achieve steady-state operation is presented
in Fig. 3.10. These results proved the capabilities of the OASIS framework in predicting nonlinear

systems for a defined window of operating conditions.

Remark 6. Please note that in practical applications, the measurements are usually corrupted by
noise, and therefore, it is important to have a model that counters the effect of noise. Fortunately,
the proposed method has the potential to perform well even in the presence of noise when compared
to the methods that solely rely on neural networks. This is because in the OASIS framework, we use
the SINDy algorithm to obtain sparse models and it was proven that models identified by sparse
regression methods such as SINDy and its variants are robust to noise [97, 98, 21]. Moreover, as
the DNN is trained using SINDYy, when we integrate the proposed method with an MPC framework,
it is possible for the DNN to successfully identify models that are capable in dealing with noisy

data.
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4. SUMMARY AND CONCLUSIONS

This thesis proposes two different methods for adaptive model identification of nonlinear sys-
tems. The first method proposed in Chapter 2 seeks to identify and improve the model following
the three steps. First, a set of potential candidate functions is identified using sequentially thresh-
olded sparse regression. In the following step, the coefficients of these identified functions are
updated using least-squares regression, and lastly, stepwise regression is implemented for select-
ing the best combination of the most important features. The choice of candidate library functions,
the thresholding parameter value considered, the feature selection criterion for stepwise regression,
and the number of samples used at every step significantly affect the performance of this adaptive
approach. The effectiveness of the proposed methodology was demonstrated on a CSTR system
with second-order kinetics. For a less amount of data, the adaptive model successfully identified
the coupled dynamics between concentration and temperature variables. In all the cases tested,
the prediction accuracy of the model identified by the proposed algorithm was much higher than
that of its off-line counterpart, SINDy. Furthermore, the final model was observed to perform well
when it is validated with different operating conditions, making it a viable representation of the
actual dynamics. To conclude, the adaptive method presented proves to be useful in predicting
complex process dynamics from a less amount of data.

Improving upon the previous method, in Chapter 3, we proposed an online model identification
framework based on SINDy and deep learning for nonlinear process systems. The novel aspect of
this proposed method is to utilize the potential of SINDy in identifying an interpretable model
for adaptive modeling and control applications through a DNN. Following this approach, we first
used SINDy to identify multiple models from historical /simulation process data. Then, we trained
DNNSs using the SINDy models and their corresponding process data. Subsequently, we imple-
mented the resulting network in a MPC framework for identifying and updating the models in
real-time in order to obtain optimal control performance. We demonstrated the applicability of this

method to a non-isothermal chemical reactor. One of the key challenges is to train the DNN that
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generalizes well and predicts accurately. To achieve this, we trained two individual DNNs for con-
centration and temperature models using Bayesian-regularization learning algorithm. Additionally,
the DNN training was carried out in a small-batch fashion to prevent over-fitting. Further, the test
results indicated that the trained DNNs perform well with a high prediction accuracy, and thus,
are suitable for designing a model predictive controller. The closed-loop results showed that the
proposed OASIS framework can be effectively used in adaptive modeling and control of nonlinear

processes.
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