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ABSTRACT 

 

The analysis of production from fractured Ultra-Low Permeability (ULP) reservoirs is 

routinely conducted using numerical simulation, which requires large 3D grids, a very 

large number of time-steps, numerous input data, long execution times, and the specialized 

computational expertise.  The main objective of this research is to develop a set of new 

semi-analytical results that reduce or eliminate the need for spatial and temporal 

discretization of numerical models and address their shortcomings, thus providing fast and 

simpler alternatives that can deliver reliable results for the analysis of production and 

reservoir performance, as well as for history matching. 

 

The new set of solutions is based on variants of a hybrid analytical-numerical approach 

called the Transformational Decomposition Method (TDM) that involves successive 

applications of Finite Cosine Transforms for the elimination of multiple dimensions in 

space, and Laplace Transforms for the elimination of the time variable.  Application of 

this method reduces the 3D diffusivity equation of the nearly-incompressible oil flow into 

either an algebraic equation (referred to as TD-0D) or a simple Ordinary Differential 

Equation (ODE) in the x-dimension (referred to as TD-1D).  The strongly non-linear 3D 

flow of compressible gas does not allow the application of Laplace transforms, leading to 

the development and application of the Partial Transformational Decomposition Method 

(PTDM), which reduces the 3D gas diffusivity equation into either a simple ODE in time 

(referred to as PTD-0D) or a 1D Partial Differential Equation (PDE) in space and time 
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(referred to as PTD-1D). Both the TDM and PTDM solutions exist in multi-transformed 

space and/or time environments, from which they are inverted numerically to obtain 

solutions at any point in space and time through a process that vastly simplifies and 

decreases the size of the simulation problem, as well as the execution time. 

 

Both the TDM and the PTDM solution were coded in a FORTRAN90.  Using a 3D stencil 

(the minimum repeatable element in hydraulically-fractured reservoirs produced by 

horizontal wells), solutions over an extended production period and covering a substantial 

pressure drop were obtained for (a) a range of isotropic and anisotropic matrices and 

fracture properties, (b) constant and time-variable flow rates and bottomhole pressure 

regimes, and (c) combinations of Stimulated Reservoir Volume (SRV) and non-SRV 

subdomains.  The results were compared to the solutions from the FTSim code -- a fully-

implicit 3D simulator -- using a finely-discretized (high-definition) 3D domain.  The TDM 

results of oil flow and production were shown to be in excellent agreement with the FTSim 

numerical solutions during the entire production periods.  The PTDM performance was 

not uniform across the time spectrum: the FTSim solutions were in excellent agreement 

with the PTD-1D results at any time during production and with the PTD-0D solutions at 

early times, but the PTD-0D performance deteriorated at later times. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW  

 

1.1 Background 

 

The advent and advances in reservoir stimulation technologies (mainly hydraulic 

fracturing) since the beginning of the 21st century have resulted in an explosive growth in 

the production of hydrocarbons from unconventional resources such as tight sand and 

shale reservoirs. Such stimulation methods have enabled production from reservoirs that 

were previously considered uneconomical (or even technically impossible) because of 

ultra-low permeability (ULP). Thus, oil production from ULP reservoirs as a fraction of 

total crude oil production in the U.S. has experienced a dramatic growth, from practically 

nil in 2005 to 59% in 2018 (U.S. EIA, 2019), when daily production at the end of the year 

reached 6.5 million barrels. Additionally, the stimulation process has been so successful 

that currently, the majority of the natural gas production in the U.S. comes from shale gas 

and tight oil plays (US DOE, 2019). 

 

The importance of tight-gas/oil and shale-gas/oil reservoirs as energy resources 

necessitates the ability to accurately estimate reserves, to analyze and interpret well 

performance, and to evaluate, design, manage and predict production from such systems 

over a wide range of time frames and spatial scales. Analytical and numerical models 

provide the necessary tools for these activities. Simple analytical and semi-analytical 
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models to predict flow in fractured shale-gas and tight-gas reservoirs have been proposed 

early on (e.g., Gringarten, 1971; Gringarten et al., 1974; Blasingame and Poe, 1993), but 

the geometry they described was inflexible and limited to single fractures, thus limiting 

severely their applicability. Since then, more powerful analytical and semi-analytical 

models for multi-fractured horizontal wells have been developed (Medeiros et al., 2006; 

Bello and Wattenbarger, 2008; Mattar, 2008; Anderson et al., 2010), but these suffer from 

a fixed and inflexible geometry that limit their applications to very limited configurations 

of the fracture-matrix-well system that do not lend themselves to critical engineering 

activities such as predicting well and reservoir performance and the analysis of well tests.  

In the case of gas flow, the problem is further complicated by the strong dependence of 

the gas properties that inserts strong non-linearities into the equation of flow and 

significantly reduces the scope for, and validity of, analytical solutions. 

 

The complex geometries and the heterogeneity in the properties of the matrix, of the 

hydraulic or native fractures and of the well in such multi-fractured systems have led to 

the development of numerical reservoir simulators that address the particularities of these 

systems. These constitute powerful tools that have significant advantages over analytical 

solutions, being the only realistic option in most (if not all) cases as they can routinely 

handle the complexities of real-life systems without the need for simplifications of 

geometry, boundaries, heterogeneity and fluid properties.  They do so by using fine spatial 

and temporal discretization to capture complex geometries and accurately describe 

changes in the properties and composition of the reservoir fluids (an impossible task for 
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analytical solutions), resulting in a large number of space and time subdomains (cells or 

elements) into which the reservoir and the production period are subdivided. The 

equations of fluid mass and energy balance need to be solved in each one of these cells, 

resulting in matrix equations that are solved simultaneously.   

 

Recent numerical studies (Cipolla et al., 2009; Miller et al., 2010; Freeman, 2010; 

Freeman et al., 2009; 2013; Moridis and Freeman, 2014; Moridis et al., 2017) conducted 

sensitivity analyses using high fidelity grids to identify the most important mechanisms 

and factors that affect shale-gas and shale-oil reservoir performance. Such numerical 

models are a very powerful tool in the solution of the problem of flow, production and 

pressure interference in multi-fractured systems involving horizontal wells. They have the 

ability to describe systems of complex (even arbitrary) geometry with challenging 

boundary conditions and can easily handle any kind of non-linearity (especially those 

arising from strong fluid compressibility regimes and multi-phase flows). Thus, such 

methods are widely used – and may even be considered indispensable — in extensive 

forward and backward (history-matching) studies analyzing the flow through, and 

production of fluids from, fractured hydrocarbon reservoirs such as the unconventional 

(shale gas and shale oil) plays that have exploded in importance as energy resources over 

the last decade. 

 

Despite their power and importance, numerical modeling and its applications poses some 

significant challenges in forward modeling and, more importantly, in history-matching 
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studies. Domain discretization for accurately capturing the system behavior is an art as 

well as a science, and it is a time-consuming process that requires significant experience 

and expertise. The numerical simulation process (a) has significant input data 

requirements, (b) requires the involvement of specially-trained individuals, (c) 

necessitates the solution of matrix equations that may involve millions of equations that 

are often beyond the capabilities of serial simulators on most desktop computers, requiring 

the use of codes of parallel architecture and their application on clusters and 

supercomputers, (d) requires long execution times and specialized skills for the analysis 

and interpretation of the outputs, and, for all these reasons and more, (e) is cumbersome, 

and often arduous. In the case of ULP gas reservoirs, the problem is exacerbated by the 

high compressibility of the fluid (and the associated strong non-linearity) and the 

extremely low permeability, which lead to very steep gradients and solution surfaces and 

require extremely fine discretization (often on the order of mm in the vicinity of the 

hydraulic fractures) in order to accurately capture the curvature of the flow lines and the 

transient flow regimes (Freeman et al., 2013; Moridis and Freeman, 2014).  These 

challenges make predictions and the analysis of production data slow and expensive, and 

often beyond the reach of practicing engineers without the necessary specialized 

background. 
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1.2 General Equation of Flow 

 

The flow of fluids through porous media and fractured media can be described by the 

following diffusivity equation that reflects the mass balance of the fluid within and across 

a control volume: 

( ) ( )k p g z
t


 



  
  −  = 

 
................................................................................  (1.1) 

where 

g = gravitational acceleration, (= 9.806) m/s2 

𝑘 = is permeability, m2 

µ = is fluid viscosity, Pa-s 

p = is pressure, Pa 

ϕ = is porosity, fraction 

𝜌 = is fluid density, kg/m3 

t = is time, sec 

z = is elevation, m 

 

Eq. 1.1 applies to all fluids, i.e., liquid and gaseous and is valid while Darcy's law (which 

is represented on the left-hand side of the equation) is valid, (i.e., when the fluid flow is 

laminar).  The solution of this diffusivity equation can be obtained with the various 

methods that were briefly discussed in the previous section, some of which are dictated by 

the properties of the fluids.  Thus, liquids have very low fluid compressibility (i.e., very 
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weak dependence on pressure) and their viscosity is practically insensitive to pressure, 

attributes that allow linearization of Eq. 1.1 and the development of analytical solutions 

with relatively few assumptions and simplifications.  Conversely, the high compressibility 

of gases and the strong dependence of their density and viscosity on pressure preclude the 

easy development of closed-form analytical solutions, which are made possible only after 

the introduction of complex artificial variables and are valid only within the limited range 

of pressures in which the significant assumptions and simplifications (that were necessary 

for the development of the solutions) are valid.   

 

The effort to develop analytical or semi-analytical solutions to the problem of flow 

through multi-fractured ULP reservoirs produced by horizontal wells faces particular 

challenges: strong heterogeneities, defined by significant differences in the properties of 

(a) the proppant-impregnated hydraulic fractures, (b) the Stimulated Reservoir Volume 

(SRV) and (c) the virgin (unfractured) matrix of the ULP reservoir, in addition to 3D flows 

that do not lend themselves to simplification and complex boundary conditions.  Thus, for 

reasons already discussed, numerical solutions are currently the most commonly-used 

methods, and often the only option, to solve the problem of flow in multi-fractured ULP 

systems.  The main objective of this study is to develop a powerful semi-analytical 

alternative to the numerical simulation of this problem. 
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1.3 Methods Eliminating the Temporal Discretization 

 

Because of the aforementioned difficulties and shortcomings, several attempts have been 

made to minimize the problems posed by the use of numerical simulators by reducing (at 

a minimum) the simulation times while maintaining their power and flexibility. Reduction 

in the space and time discretization were the obvious first targets because these were the 

main reasons for the significant computational effort of standard numerical models. New 

numerical approaches, such as the use of fully implicit schemes that allowed fewer and 

longer time steps (i.e., coarser time discretization) and fewer computations were 

introduced as the first step in this direction. These approaches maintained the high level 

of spatial discretization to attain the desired spatial resolution, thus allowing accurate 

description of a reservoir geometry and heterogeneity.  

 

The next step in this direction was the complete elimination of the need for time 

discretization through the introduction of Laplace transforms and their coupling with 

conventional space discretization schemes. Thus, Sudicky (1989) coupled Laplace 

transforms (LTs) with a standard Galerkin-based Finite Element space discretization 

method to solve the problem of contaminant transport in groundwater that involved 

advection, diffusion and mechanical dispersion. Later, the LTFD model of Moridis and 

Reddell (1991a) and Moridis et al. (1994) coupled standard Finite Difference (FD) models 

with LT to solve the problems of slightly compressible liquids in geologic media. LTs 

were also coupled with other spatial discretization methods such as boundary elements 
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(Moridis and Reddell, 1991b; Moridis, 1992) and multi-quadrics (Moridis and Kansa, 

1992; 1994). All these methods to provided solutions that were numerical in space (and 

thus capable of describing heterogeneity at any desired level of resolution) and analytical 

in time at any desired time.  Because of the strong (and intractable) non-linearities 

associated with multi-phase flows, these models could only resolve single-phase, single-

component isothermal flows. 

 

1.4 Methods Eliminating Both the Temporal and the Spatial Discretization 

 

Because of the difficulty of the endeavor, there have been far fewer attempts to eliminate 

both the space and time discretization in the solutions of PDEs of flow through porous 

media. Goode and Thambynayagam (1987) provided a first window in this approach in an 

analytical/semi-analytical (A/SA) method that combined LTs and Finite Cosine 

Transforms (FCTs) to solve the 3D problem of oil production using a horizontal well. 

Their solution and its approximations were analytical in space and time, and was 

sufficiently general to account for anisotropy (although not for spatial heterogeneity).  

 

The Transformational Decomposition Method (TDM) proposed by Moridis (1995) 

followed the same general approach in the solution of multi-dimensional problems: it first 

used LTs to eliminate the need for time discretization, followed by successive FCTs to 

eliminate the spatial coordinates in either the entire domain (in homogeneous systems) or 

in heterogeneous subdomains that were analytically interconnected. TDM provided A/SA 

solutions at any point in space and time without the need for discretization. These solutions 
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were analytical in space (obtained through successive inverse FCTs) and semi-analytical 

in time: the inability to derive closed-form equations from the inversion of the Laplace-

space solutions necessitated the use of numerical inversions to obtain the solutions in time. 

 

Recently, a powerful new semi-analytical method for describing flow to a well in a multi-

fractured reservoir was proposed by Stalgorova and Mattar (2013). Their solution is 

applicable to both liquids and gases, involves subdividing the heterogeneous domain in 

five 2D regions in an approach similar to that of earlier work (Medeiros et al., 2010; Brown 

et al., 2011), and assumes that flow in each region is linear (1D) and parallel to the 

coordinate axes of the system. In the solution of several problems, the method of 

Stalgorova and Mattar (2013) showed some very good agreements with results from a 

numerical simulator, but still suffered from weaknesses that are associated with the 

geometry of the system (as it affects the flow regime). In addition to the assumption of 

linear 1D flows in 2D subdomains (a simplification that cannot describe the curvature of 

flow lines in any of the subdomains and especially close to the fracture and the well), their 

method (a) cannot accurately describe flow in 3D domains but relies on a "curvature skin" 

approximation, (b) cannot describe partial vertical fracture penetration into the reservoir, 

(c) assumes that the well lies on the plane of symmetry at the middle of the reservoir 

thickness and (d) can only consider fluid production at a constant well rate. 

 

  



 

10 

 

 

 

1.5 Impetus for the Study 

 

Because of the aforementioned difficulties posed by standard numerical methods, there 

would be significant benefit in the availability of fast, yet robust, A/SA alternatives that 

can provide some basic information for the analysis of the properties and behavior of 

multi-fractured horizontal well systems under production without having to resort to 

numerical modeling. A new generation of analytical or semi-analytical solutions that 

eliminate space and time discretization and are free of the limitations of the earlier, 

simplest solutions to this problem can fulfill that role. Note that such solutions would 

require limited data inputs and would be expected to be fast because they do not involve 

domain discretization and solution of large matrix equations, but may not necessarily be 

"simple" in terms of their functional forms. However, they would be invariably simple in 

their application in a computer application and readily usable by non-specialist engineers.  

 

A further motivation for the development of such capabilities comes from the recent 

interest in the study of problems in which fine scale features are unknown, making high 

fidelity numerical solution inefficient. For hydraulic fractured reservoirs, the subdivision 

of the reservoir into subdomains with characteristic properties (permeability) has proven 

popular in currently available A/SA solutions (Medeiros et al., 2010; Brown et al., 2011; 

Stalgorova and Mattar, 2013), but also suffers from the significant limitations that the 

study of Stalgorova and Mattar (2013) clearly identified.  
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In this study, we aim to propose an alternative to the solution of the problem of oil flow 

and production in a multi-fractured shale oil reservoir serviced by horizontal wells by 

applying the concepts of the Transformational Decomposition Method (TDM) of Moridis 

(1995), building on the accumulated experience on the subject of discretization-free 

models, and attempting to overcome their limitations. 

 

1.6 Objectives 

 

The overall objectives of this work are: 

● To extend the Transformational Decomposition Method (TDM) proposed by Moridis 

(1995) to the solution of three-dimensional problems of fluid flow through multi-

fractured horizontal well systems in ULP reservoirs; 

● To further extend the TDM by introducing advanced capabilities such as (a) time-

variable production rates or bottomhole pressures, (b) fully or partially penetrating 

hydraulic fractures and (c) heterogeneity at the sub-domain scale; 

● To develop a compact and easy-to-use FORTRAN program implementing the TDM 

solutions; 

● To validate the TDM solutions against (a) the results from existing analytical solutions 

and (b) the predictions of a numerical reservoir simulator;  

● To extend the concept of TDM to ULP gas systems by developing the Partial 

Transformational Decomposition Method (PTDM) that addresses the challenge posed 
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by the severe non-linearity caused by the strong pressure dependence of gas density 

and viscosity;  

● To develop a compact and easy-to-use FORTRAN program implementing the PTDM 

solutions; 

● To validate the TDM solutions against the predictions of a numerical reservoir 

simulator; 

● To demonstrate the power, efficiency, accuracy and other advantages of the TDM and 

PTDM solutions in the solution of a variety of complex problems of flow and 

production of oil and gas, respectively; 
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CHAPTER II  

DEVELOPMENT AND APPLICATION OF THE TRANSFORMATIONAL 

DECOMPOSITION METHOD (TDM) TO THE PROBLEM OF 3D FLOW OF OIL 

THROUGH FRACTURED MEDIA 

 

This chapter discusses in-detail the development of a TDM-based solution to the problem 

of 3D oil flow through, and production from, a multi-fractured shale oil reservoir. The 

work is an expansion of the TDM to three-dimensional problems of oil flow through 

fracture and matrix complex systems after its earlier application to one- and two-

dimensional problems of flow through porous media. In the subsequent sections, we 

present the development of the method, provide validation examples through comparisons 

to analytical and numerical solutions, and demonstrate application of the TDM method to 

complex 3D problems. 

 

2.1 Objectives and General Description of the Transformational Decomposition 

Method (TDM) 

 

The main objective of this study is to expand the concepts of the Transformational 

Decomposition Method (Moridis, 1995) to the solution of the 3D PDE of flow of oil in 

ultra-tight permeability media (such as shale oil reservoirs), thus developing fast 

analytical/semi-analytical solutions (and the corresponding simulators) to the problem of 

production, flow and pressure interference of multi-fractured systems developed between 

parallel horizontal wells. These solutions have the potential to provide a reliable and fast 
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tool to identify the dominant mechanisms and factors controlling the system behavior, to 

provide early estimates of expected production rates and recovery, and can act as the basis 

for a rapid initial parameter identification in a history-matching process, for possible 

further refinement using full numerical modeling (if necessary). 

 

The TDM process involves first the selection of a primary variable that allows recasting 

the 3D general PDE of flow of slightly compressible liquids (such as water and oil) into a 

completely linearized form without loss of generality. The resulting linearized 3D PDE is 

then subjected to Laplace Transform (LTs) to eliminate time. The subsequent 

'Decomposition Stage' involves the application of successive Finite Cosine Transforms 

(FCTs) to eliminate either (a) all three dimensions, yielding a simple algebraic equation 

or (b) two dimensions, yielding an ODE in time only. In the final 'Reconstruction Stage', 

the solutions of the multi-transformed space equations are inverted (in a reverse order than 

that followed in the Decomposition Stage) to provide solutions that are analytical in space 

and semi-analytical in time because the complexity of the resulting equations precludes 

the development of closed-form relationships of time dependence from the LT inversion 

of LTs, thus necessitating numerical inversion. 

 

TDM is expected to offer some significant advantages. The elimination of the spatial and 

temporal discretization reduces the computer memory storage needs to a trivial level and 

saves time and effort required for the creation of a grid system. Because it treats the 3D 

space and time as a continuum, it can provide solutions only at the desired point and time 
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without the requirement of numerical simulators to obtain results at times and locations of 

no interest. The simplicity of the concept does not pose significant coding challenges and 

leads to the generation of a compact code that uses limited input data, is easy to implement 

and does not require highly specialized personnel (as do numerical simulators) for its 

application. This compact, very fast code can be used to conduct a large number of 

simulations within a limited time that can serve a number of purposes: Monte Carlo 

simulations, history matching, sensitivity analyses, evaluation of alternative production 

scenarios, etc. 

 

2.2 TDM Approach and Implementation 

 

2.2.1 Underlying Assumptions 

The current stage of the TDM development involves some assumptions. These include 

single phase oil flow, indicating flow at pressures 𝑃 higher than the bubble pressure 𝑃𝑏 

(aqueous and/or gas phases, if present, are assumed immobile, and the oil effective 

permeability is taken as the matrix permeability of the reservoir); the hydraulic fracture 

(HF) has a very high permeability, with flow exhibiting negligible pressure loss along and 

across it; the oil flow is isothermal (a valid assumption over long production periods); the 

flow properties may be anisotropic but homogeneous within regularly-shaped 

subdomains, although the domain may be heterogeneous as a whole; the size of the 

horizontal well is very small compared to the dimensions of the domain (a reasonable 

assumption); and gravitational effects are negligible (a valid assumption, given the high 

pressure of the system, especially in shale oil reservoirs with limited thickness). As will 
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become obvious in the ensuing discussion, TDM can deal with subdomain-based 

heterogeneity of the domain and can easily describe the behavior of partial penetration 

HFs (i.e., HFs with a surface area that is smaller than that of the vertical surface (i.e. 

𝑌𝐹 × 𝑍𝐹 at 𝑥 = 0) for production at a constant or time-variable rate. Its current 

development cannot yet address the case of production at a constant or time-variable 

pressure with a partially-penetrating HF, as well as that of a HF with sufficiently low 

permeability to affect a measurable pressure drop along its length.  However, work to 

resolve these limitations is well advanced. 

 

2.2.2 The TDM Simulator and the Code Validation Approach 

The mathematical equations describing the decomposition and reconstitution stages of the 

TDM were coded in a computer program written in FORTRAN 95. The code was written 

in a general fashion, allowing either double or quad-precision variables through the value 

of a single input. Compared to the double-precision, the quad-precision version that was 

also developed (providing 32 decimal digits of precision in the computations) required 

significantly longer execution times without any significant difference in the results; 

consequently, the quad-precision option was used rarely and mainly for testing and 

confirmation purposes. Note that memory requirements in TDM are minimal (if not 

trivial) because the nature of the solution (fully analytical in space and semi-analytical in 

time) does not require the large storage needed (a) for the description of the discretized 

domain and (b) for the coefficients of matrix equation of flow that need to be solved to 

provide the required solution. To maximize computational efficiency, the infinite 
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summations in the computations of the inverse FCTs (see Appendix A) were conducted 

in 'batches' of 100, after the end of which the convergence of the solutions was checked. 

Continuation of the computations ceased when the partial sums fell below a very tight 

criterions (10-8 %), thus ensuring a very accurate solution for the subsequent inversions of 

the LT equations. 

 

The TDM results were compared to the results obtained from FTSim with the oil property 

module.  FTSim is a simplified version of the TOUGH+ compositional numerical 

simulator (Moridis and Pruess, 2016) with the OilGasBrine V1.0 option that has been 

extensively validated and used in important investigations (e.g., Reagan et al., 2015; 2019; 

Sarkar et al., 2020; Moridis and Reagan, 2020). As in TOUGH+, FTSim is a family of 

codes that comprises (a) a core component that is based on the Integral Finite Difference 

(IFD) method for space discretization, and which is common to the simulations of all the 

problems that can be solved by this code and (b) a case-specific component (option) that 

solves a particular type of problem. It provides a general-purpose simulation framework 

and has been used in a wide range of applications covering practically all aspects of fluids 

and heat flow and transport through porous and fractured media. 

 

2.2.3 The Simulation Domain 

The TDM solutions are based on a stencil, i.e., the smallest repeatable symmetric element 

that can be identified within the domain of multi-fractured systems in reservoirs produced 

by parallel horizontal wells. It can accurately describe the performance and behavior of a 

subset of the well-HF system continuum and its use has additive properties, i.e., 
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production from the entire system can be accurately estimated through a simple 

summation of the stencil-based results. The work of Olorode (2011), Olorode et al. (2013) 

and Freeman et al. (2013) has provided conclusive evidence of the usefulness and accuracy 

of stencils to predict the behavior of the entire horizontal well + HF system for very long 

times. Additionally, the use of stencils allows investigation of processes and phenomena 

occurring at very fine (mm-level) scales that may be have important effects on production, 

the results of which may be attenuated at the coarser scales of numerical simulator 

discretization that are dictated by the need to keep the size of the simulated problem to 

manageable levels. 

 

Fig. 2.1 shows the domain of the simulated Cartesian stencils in our study, which is typical 

of a Type I fractured system (Freeman et al., 2013) and represents 1/8th of the reservoir 

volume drained by a single HF connected to a horizontal well. The sufficiency of such a 

small subset of the horizontal well + HFs system to describe the system behavior stems 

from (a) the significant symmetries in its geometry, i.e., the vertical (y,z) planes of 

symmetry at x = 0 and x = Lx, the vertical (x,z) planes of symmetry at y = 0 and y = Ly 

and (b) the assumption of negligible gravitational effects, which creates a horizontal (x,y) 

plane of symmetry at z = 0. The stencil is bounded by an impermeable overburden that 

begins at z = Lz. Production from a horizontal well with NHF hydraulic fractures can be 

estimated by multiplying the results from the study of a single stencil by 8NHF after 

ensuring the appropriate representation of the boundary stencils. 
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Note that investigation of flow through, and production from, such stencils is by no means 

an easy task, as accurate description that captures all important processes requires a very 

fine spatial discretization that results in 100,000s of elements (Freeman et al., 2013; Sarkar 

et al., 2020; Moridis and Reagan, 2020). The IFD grid of the stencil for the FTSim 

simulations (needed for comparisons to the TDM solutions) in this study involved over 

356,000 cells because of the need for very fine (mm-level) spatial discretization in the 

vicinity of the HF. 

 

 

Figure 2.1 — The TDM domain: the stencil of the multi-fractured shale oil/gas 

reservoir used in this study (reprinted from Freeman et al., 2013). 

 

 

 

2.2.4 Properties, Initial and Boundary Conditions 

The oil and reservoir properties, as well as the initial reservoir conditions, are listed in 

Table 2.1. The paucity of the data in Table 2.1 attests to the limited input needs (and the 

associated storage requirements) for the TDM solution and compares very favorably with 
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the input needs for the FTSim solution, for which the size of the grid-associated inputs 

and information exceeds 115 MB. The boundary conditions include no-flow (Neuman) 

boundaries at x = Lx, y = 0, y = Ly , z = 0 because of symmetry; a no flow boundary at and 

z = Lz because the assumption of an impermeable boundary at that elevation; a no flow 

boundary at the x = 0 at any location of the vertical (y,z) plane outside the HF; either a 

prescribed-rate (constant or time-variable, Neuman type) or a prescribed-pressure 

(constant or time-variable, Dirichlet conditions) boundary on the surface of the HF on the 

vertical (y,z) plane at x = 0. 

 

2.3 TDM Development 

 

2.3.1 The General Equation of Flow 

2.3.1.1 The Linearized Form 

Following Moridis et al. (1994) and ignoring gravitational effects, the linearized general 

equation of flow is 

2
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and δ = δ(x,y,z,t) is the primary variable of Eq. 2.1, defined from the following equations. 

( )0exp   and   1  oR c p p R  = − = +  .......................................................................... (2.2) 

i.e., δ is the deviation of R from unity. This formulation of the general equation of flow 

imparts practically complete linearity and involves the following important equations 

(Moridis et al., 1994). 
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from which 

1 1
   and   

o od c R d R c R

    
= =

    
 ................................................................................ (2.4) 

It is obvious that, in the absence of gravitational effects and at t = 0, R0 = 1 and δ0 = 0.  

 

The same analysis has provided the following porosity-associated equations. 
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 ........................................... (2.5) 

leading to the following estimate of ( )( )   1/ /T oC c p = +   . 
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 ............................................................................ (2.6) 

 

This approximation is accurate when the matrix porosity is invariable (cm = 0). It is also 

valid for small pressure changes, and practically for all pressures above the bubble point 

when cm/co ≤ 0.1.  

 

There are two options for the boundary conditions at x = 0, i.e., at the face of the hydraulic 

fracture. For Dirichlet (constant or known time-variable pressure) conditions at the 

hydraulic fracture, the known boundary pressure px=0 yields 

( )0 0 0exp 1 x o xc p p = =
 = − −   ...................................................................................... (2.7) 

 

Some possible options for δx=0 and its relationship to the boundary pressure px=0 are 
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where 

pc = the constant pressure at x = 0, Pa 

pi = the initial pressure at x = 0, Pa 

pt = dp/dt, Pa/s 

pj = the step-wise constant pressure at x = 0 and at the j-th step, Pa 

δc = the constant δ at x = 0, as computed by Eq. 2.8 

δj = exp[co(pj−p0)]−1: the step-wise constant δ at x = 0 

U(t−tj) = the Heavyside step function 

 

For Neuman conditions with known constant or time variable flux Qx=0 (associated with 

the production rate qx=0 = AF Qx=0, with AF being the area of flow), the boundary at x = 0 

is described by 
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........................................................................ (2.9) 

 

Obviously, Eq. 2.9 can be used to compute the unknown time-variant flux Qx=0 (and the 

oil production rate qx=0) at the x = 0 boundary (i.e., the Dirichlet boundary at the hydraulic 

fracture surface) when the pressure px=0 is known. Some possible options for Qx=0 are 
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where 

b = a constant, s-1 

Qc = the constant flux at x = 0, kg/s/m2 

Qi = the initial flux, kg/s/m2  

Q' = dQ/dt, kg/s2/m2 

Qj = the step-wise constant flux at x = 0 and at the j-th step, kg/s/m2 

U(t−tj) = the Heavyside step function 

 

All other boundary conditions are of the Neuman type, and are defined as follows. 

0 00,       0,      and       0 
z y xz z L y y L x LQ Q Q Q Q= = = = == = = = =  ......................................... (2.11) 
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2.3.2 The TDM Decomposition Stage: Successive Transforms 

2.3.2.1 Step D1: The Laplace Transform of the General Equation of Flow 

Taking the Laplace transform of Eq. 2.1 yields 

2

2
, ,

   d T

d x y z

C s
d

 



  
=  

  
  ......................................................................................... (2.12) 

where s is the Laplace space parameter and  

( )    , , , ,  x y z s  =  = L  ........................................................................................ (2.13) 

with  L  denoting the Laplace transform of the quantity within the braces. 

 

For Dirichlet (constant or time-variable pressure) conditions at the hydraulic fracture at    

x = 0, the Laplace transform of the boundary condition yields 

 0 0  x x= = = L  ......................................................................................................... (2.14) 

 

The Laplace transforms of Eq. 2.8 provides the following options: 
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For Neuman (constant or time-variable flux Q) conditions, the Laplace transform of the 

boundary at x = 0 results in 
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Note that if x = 0 and/or Qx=0 are constants or known functions of time, the estimation of 

appropriate expression for 0x=  is almost certain. Eq. 2.16 applies to the estimation of the 

unknown flux when the pressure at x = 0 is known (Dirichlet-type boundary). The Laplace 

transforms of Eq. 2.10 provides the following options: 
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 ...................................... (2.17) 

All other boundary conditions are of the Neuman type and unimportant because of Eq. 

2.11. 
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2.3.2.2 Step D2: The First Finite Cosine Transform (FCT) of the z-Coordinate 

Taking the FCT of the first kind (hereafter referred to as FCT-1) of the Laplace-

transformed Eq. 2.12 along the z-coordinate, and considering that 0 0
zz z LQ Q= == = , we 

obtain 

( )
2

2
,

   0d l T

d x y

L C s
d

 



 
− +  = 

  


  ............................................................................. (2.18) 

where 

( )  
2

c1  , , , ,   l z

z

l
x y l s L

L



 

 =  =  =  
 

F  ................................................................. (2.19) 

l is the integer parameter of the FCT-1 space along the z-coordinate, and c1  F  denotes 

the FCT-1 of the quantity within the braces (see Appendix A). 

 

The FCT-1 of the Dirichlet boundary condition at a hydraulic fracture that span the entire 

reservoir thickness Lz at x = 0 results in 

  0

0 c1 0

                   if   0

0                          if   0 

z x

x x

L l

l

=

= =

 =
 =  = 


F  ......................................................... (2.20) 

 

Assuming that fluid removal occurs along the entire thickness of the reservoir at x = 0, the 

FCT-1 of the Neuman boundary condition at x = 0 results in 

   0

0 c1 0 x 0

0

                       if   0

0                            if   0 

z x

x x

x

L l

lx
  =

= =

=

= 
= = =  

  
F  .......................... (2.21) 
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If the hydraulic fracture occurs in the interval between Zb and Ze of the reservoir thickness, 

then the FCT-1 of the Neuman boundary condition yields 

 
 

0

0 c1 0 x 0

00

                                   if   0

     sin sin      if   0 

F x

x x

n x ne nbx

Z l

Z Z Z lx
 

=

= =

==

= 
= = =   −   
F  ............... (2.22) 

where ZF = Ze-Zb, Zn = Lz/(l𝜋), Zne = Ze/Zn , Znb = Zb/Zn and 0x=  is obtained from Eq. 

2.16 or 2.17. 

 

2.3.2.3 Step D3: The Second FCT-1 of the y-Coordinate 

2.3.2.3.1 Finite boundary at y = Ly 

Taking the FCT-1 of Eq. 2.18 along the y-axis, and considering that 0 0
yy y LQ Q= == = , 

we obtain 

( )
2

2
   0x ln TL L C s

x


  
− + +  = 

 
 .............................................................................. (2.23) 

where 
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L



 

 =  =  =   
 

F  ................................................................. (2.24) 

and n is the integer parameter of the FCT-1 space along the y-coordinate. 

 

The FCT-1 of the Dirichlet boundary condition at a hydraulic fracture that spans the entire 

length Ly along the y-direction at x = 0 results in 

  0 0

0 c1 0
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   
F  .............. (2.25) 
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because of Eq. 2.20. 

 

Assuming that fluid removal occurs along the entire length Ly of the reservoir along the y-

direction at x = 0, the FCT-1 of the Neuman boundary condition at x = 0 results in 

  0

0 c1 0 0

0

             if   0

0                     if   0 

y x
x x x

x

L n

x n
  =

= =

=

 = 
= = =  

   
F  ..................................... (2.26) 

in which 0x=  is provided by Eq. 2.21 or 2.22. If the hydraulic fracture extends from Yb 

to Ye along the y-direction, the FCT-1 of the Neuman boundary condition yields 

 
0

0

0

                                     if   0

     sin sin          if   0 

x

x

n x ne b

F

n

Y n

Y Y Y n

=

=

=

 =
= 

− 
 ........................................................... (2.27) 

where YF = Ye-Yb, Yn = Ly/(n𝜋), Yne = Ye/Yn, Ynb = Yb/Yn and 0x=   is obtained from Eq. 

2.21 or 2.22. 

 

Note that Ynb = 0 always because the beginning of the HF occurs always at y = 0 => Yb 

= 0, given the domain symmetry about the (x,z) plane. 

 

2.3.2.3.2 Infinite boundary at y = Ly 

This case represents the conditions in a stencil associated with an outermost horizontal 

well in a system of parallel wells. The solution to this problem can be adequately 

represented by the Eqs. 2.23 to 2.27 using a very large value of Ly. The use of quad 

precision real variables in the FORTRAN code implementing these solutions (which 

allows for 32 decimal places and a maximum value of ±1.1897 × 104932) makes this 

approach possible. 
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2.3.2.4 Step D4: First Option - The ODE in x and the TD-1D Solution 

After a minor manipulation, Eq. 2.23 is rendered in the form of an ODE as 

( )
2 2

2 2

d 1 d
 0

x

n l TL L C s A
dx dx

 
− + +  = −  =  ............................................................. (2.28) 

its characteristic equation is 

2

1,20   ,A A − =  =   ...................................................................................... (2.29) 

and the general solution to Eq. 2.28 is 

( ) ( ) ( )1 2, , , exp   exp  x n l s B A x B A x = = + −  .................................................... (2.30) 

where B1 and B2 are parameters to be determined. Eq. 2.30 is a simple one-dimensional 

ODE in x in the multi-transformed (x+n+l+s) space into which the original three-

dimensional, time-dependent PDE of flow has been decomposed, and is hereafter referred 

to as the TD-1D solution. 

 

The derivative of Eq. 2.30 is 

( ) ( )1 2exp   exp  
d

A B A x B A x
dx

  = − −
 

 ............................................................. (2.31) 

and the Neuman (no-flow) conditions at the x = Lx boundary (the fracture face) necessitate 

that 

( ) ( )1 2exp   exp   0B A x B A x− − = ............................................................................ (2.32) 
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2.3.2.5 Dirichlet conditions (constant or time-variable px=0) at x = 0, finite no-flow 

boundary at x = ±Lx 

For an internal stencil (i.e., not involving the x = 0 and the x = Lx boundaries) with 

Dirichlet conditions at the local x = 0 boundary (the hydraulic fracture), Eq. 2.30 imposes 

that 

1 2 0 2 0 1 x xB B B B= =+ =  = −  ............................................................................... (2.33) 

 

From Eq. 2.32 

( )
( ) ( )

0

1

exp  
,

exp   exp  

x A x
B

A x A x

= −
=
 + −
 

 ............................................................................ (2.34) 

where 0x=  is provided by Eq. 2.25. Knowledge of B1 and B2 allows the estimation of   

at any point x in the domain through the application of Eq. 2.30. 

 

Estimation of the flux at the x = 0 boundary (= the oil production rate) is obtained from 

the application of Eqs. 2.26 and 2.31 as 

( )0 x 0 x 0 1 2

0

x

x

A B B
x

   =

=

 
= = − 

 
 ................................................................. (2.35) 

 

2.3.2.6 Dirichlet conditions (constant or time-variable px= 0) at x = 0, infinite 𝒙 →

± ∞ boundary 

These conditions describe an edge stencil associated with the last horizontal fracture (𝐿𝑥 →

 ∞, Right Infinite Boundary or RIB) or the first horizontal fracture (𝐿𝑥 → − ∞, Left 
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Infinite Boundary or LIB). Then, Eq. 2.32 dictates that B1 = 0 for (𝐿𝑥 →  ∞, and Eq. 2.33 

yields B2 = 0x= . Conversely, when 𝐿𝑥 → − ∞, B2 = 0 and B1 = 0x= . 

 

Note that in the case of RIB, an accurate computation of production from this hydraulic 

fracture cannot be accommodated by simply doubling the RIB-associated estimate, but it 

necessitates computation and addition of the contribution of the finite semi-domain to the 

left of the hydrate fracture, which is estimated from the equations in this section but with 

the Lx related to this sub-domain (stencil) being replaced by the finite - Lx of the adjacent 

stencil in the Eqs. 2.33 to 2.35. The opposite occurs in the case of a LIB; the effect of the 

LIB is estimated using a very large negative value for Lx in the Eqs. 2.33 to 2.35, and then 

it is necessary to estimate (and to add to the LIB estimate of production from the hydraulic 

fracture) the contribution of the finite semi-domain to the right of the hydraulic fracture 

(obtained by using the finite Lx of the adjacent stencil in the Eqs 2.33 to 2.35). 

 

2.3.2.7 Neuman conditions (constant or time-variable Q) at x = 0, finite no-flow 

boundary at x = ±Lx 

For an internal stencil and for Neuman conditions at the x = 0 boundary, Eqs. 2.26 and 

2.31 impose that 

( ) 0
1 2 2 1

x 0

 xB B D B B D
A 

=− = =  = −  ............................................................... (2.36) 

From Eq. 2.32. 
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( )
( ) ( )

1

exp  

exp   exp  

D A x
B

A x A x

−
=
 − −
 

 ............................................................................. (2.37) 

 

Eq. 2.30, with the coefficients described by Eqs. 2.33, 2.34, 2.36 and 2.37, are the solution 

of the analytical solution of the original 3D time-variable problem of Eq. 2.1 in the multi-

transformed space (x+n+l+s). It is referred to as the TD-1D solution because it is the 

solution of the final multi-transformed ODE in a single dimension (x). 

 

2.3.2.8 Neuman conditions (constant or time-variable Q) at x = 0, infinite 𝒙 → ± ∞ 

boundary 

These conditions describe an edge stencil associated with the last horizontal fracture (𝐿𝑥 →

 ∞,, i.e., the RIB) or the first horizontal fracture (𝐿𝑥 → − ∞, i.e., the LIB). The approach 

to be followed is exactly analogous to that in corresponding Dirichlet conditions, and the 

associated discussion will not be repeated here. 

 

2.3.2.9 Step D5: Second Option - The FCT of the x-Coordinate and the TD-0D 

Solution 

Under Neuman conditions (constant or time-variable Q) at x = 0 and at the finite x = ± Lx 

boundary (where 0
xx LQ = = ), the FCT-1 of Eq. 2.23 along the x-axis yields 

( )1 1 x

0

 m n l T

x

L L L C s
x


=

 
− + + +  =  

 
 ..................................................................... (2.38) 

where 
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

 

 =  =  =  
 

F  ..................................................... (2.39) 

For Dirichlet conditions (constant or time-variable px=0) at the hydraulic fracture at x = 0 

and for the known condition of 0
xx LQ = = , taking the 2nd type FCT (hereafter referred to 

as FCT-2, see Appendix A) of Eq. 2.23 along the x-axis results in 

( ) ( )
( )

2 2 0

2 1    
  1   ,

2
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m n l T x x
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m
L L L C s

L


 =
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 
 .......................................... (2.40) 

where 
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m
m n l s L

L



 −

 =  =  =  
 

F , ................................................ (2.41) 

0x=  is provided by Eq. 2.25 and 2{}cF  denotes the FCT-2 of the quantity within the 

brackets. 

 

For a time-variable pressure at the x = 0 boundary, the treatment is somewhat more 

complicated. In that case, application of the FCT-2 requires that 
0x =

 be unconditionally 

a constant at all times. This necessitates replacement of the primary variable by

0D x   == −  in Eq. 2.1. The time dependence of 𝛿𝑥=0 is resolved during the Laplace 

transform stage, which eliminates time from consideration in all subsequent steps. 

Additionally, the consistent value of 0D =  at x = 0 relieves the need to deal with its FCT 

transforms there. Because the TDM process in this case is straightforward and analogous 

to the process followed in all other cases, it will not be further described here. 
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2.3.2.10 General form of the zero-dimension TD-0D solution in the multi-

transformed space 

Eq. 2.38 or 2.40 lead to 

( )
,  1,2i

i

mi n l T

E
i

L L L C s
 = =

+ + +
.............................................................................. (2.42) 

where 
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and 
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=
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= 
  

 ........................... (2.44) 

 

Eq. 2.42 is a simple algebraic equation in the multi-transformed (m+n+l+s) space into 

which the original three-dimensional, time-dependent PDE of flow has been decomposed. 

As the solution of Eq. 2.42 no longer involves spatial dimensions, it is hereafter referred 

to as the TD-0D solution. 

 

Because of the conditions in the domain of the stencil of the shale oil problem, this 

approach is applicable only to problems involving Neuman-type boundary conditions (i.e., 

involving known fluxes) at both the x = 0 and x = Lx boundaries, and cannot be applied to 

problems involving a known time-variable pressure at the hydraulic fracture face. Thus, 
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this approach has a much narrower applicability than the one involving the solution of the 

ODE described in Step D4. 

 

2.3.3 The TDM Reconstruction Stage: Successive Inverse Transforms 

The reconstruction stage includes successive inverse transforms: two or three inverse FCT 

transforms (depending on whether the decomposition process was terminated that the   

TD-1D or TD-0D solutions, respectively), and an inverse Laplace transform. At the end 

of the reconstruction process, the collapsed TDM solution in the multi-transformed space 

yields solutions at any point in space and time. 

 

2.3.3.1 Step R1: Inversion of the TD-0D Equation and Retrieval of the Solution 

Along the x-Axis 

If the solution involves the FCT of the x-coordinate (i.e., if the decomposition process 

reaches the stage of the collapsed TD-0D equation), the first step in the process to obtain 

a solution in the (x+y+z+t) space involves the application of the inverse FCT of the 

solution i  (Eq. 2.42) to obtain the solution at any point x in the multi-transformed space 

(x+n+l+s), leading to 

( )   ( ) ( )1

1 1 1 1

1

1
, , , 0, , , 2 , , , cosc

mx x

m x
x n l s n l s m n l s
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  
 =  =  =  +   

   
F  ....... (2.45) 

or 
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where 1  ci

−F  {i=1,2} denotes the inverse FCT-i of the quantity within the brackets. 

 

2.3.3.2 Step R2: Inversion of the TD-1D Equation and Retrieval of the Solution 

Along the y-Axis 

The next step involves the restoration of the y-coordinate by applying the inverse FCT-1 

to   from Step R1 according to 

( )   ( ) ( )1

1

1

1
, , , ,0, , 2 , , , cosc

ny y

n y
x y l s x l s x n l s

L L

 −

=

  
 =  =  =  +    

   
F  ........... (2.47) 

This inversion provides a solution at any point (x,y) in the transformed space (x+y+l+s). 

 

2.3.3.3 Step R3: Inversion of the FCT Transform and Retrieval of the Solution 

Along the z-Axis 

The final step in the multi-stage inversion process involves the application of the inverse 

FCT to the   solution from Step R2 in order to restore the z-coordinate, thus providing 

the Laplace-space solution at any point in the (x+y+z+s) domain according to 

( )   ( ) ( )1

1

1

1
, , , , ,0, 2 , , , cosc

lz z

l z
x y z s x y s x y l s

L L

 −

=

  
 =  =  =  +   

  
F  ........... (2.48) 

 

2.3.3.4 Step R4: Inversion of the Laplace Space Solution 

Because of the complexity of the Laplace-space equation provided by the inverse FCT-1 

in Eq. 2.48, it is not possible to invert it analytically to obtain a closed form of the time-

dependent equation of three-dimensional flow.  Thus, inversion of any Laplace space 
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solution ( ), , ,x y z s  from Step R3 is accomplished through a numerical process 

according to the general relationship  

( ) ( ) 1, , , , , ,x y z t x y z s  −= = L  .......................................................................... (2.49) 

where 1  −L  denotes the inverse Laplace transform of the quantity within the brackets.  

The pressure p = p(x,y,z,t) at any point in space and time is then obtained from the p vs   

relationship in Eq. 2.3. 

 

The numerical inversion of the LT-space solutions can be accomplished by any robust 

numerical method of the several available in the literature.  In this study, we use two 

methods. on one of the following two methods (or any other robust numerical inversion 

method). The first is the Stehfest algorithm (Stehfest, 1970a;b) (hereafter referred to as 

StA), a simple and computationally efficient method, This algorithm has been shown to 

be powerful and applicable to most LT inversion equations, but may exhibit limitations in 

the accuracy of the inversion of particularly steep or complex functions (Moridis et al., 

1999) because of limitations associated with the real nature of the Laplace-space 

parameter s used in the computations (as opposed to the advantages of a complex s).  

 

The other alternative is the very robust inversion method of DeHoog et al. (1982), 

hereafter referred to as the DHM. This method has been shown to provide very accurate 

solutions in the inversion even of complex functions with steep fronts (such as step 

functions), and to be accurate in the description of the challenging problem of transport of 

both parent radionuclides and all their daughters (Moridis et al., 1999).  More information 
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on the StA and DHM inversion options, as well as on the sensitivity of the TDM solutions 

to the StA and DHM parameters, can be found in Appendix C.  

 

2.4 TDM Validation and Application 

 

To validate TDM and gain confidence in its abilities and power, we compared its 

predictions in a wide range of problems of results from analytical solutions (where 

available) and from FTSim simulations involving a grid comprising 356,000 elements. In 

the following sections, we present the analytical, FTSim and TDM (TD-1D and TD-0D) 

solutions to the following types of problems; (a) prescribed (constant and time-variable) 

production rate q in a stencil with a fully-penetrating HF, (b) prescribed (constant and 

time-variable bottomhole) pressure pwf at a fully-penetrating HF, (c) production under 

constant q and pwf  regimes in a heterogeneous system with an SRV in a stencil with a fully 

penetrating fracture, and (d) constant production rate from a partially-penetrating fracture.  

We compared the evolution of (a) the pressure distributions at particular locations in the 

domain (pressure along x-direction for fully-penetrating HF and pressure on the horizontal 

(x,y) plane at z = 0 for partially-penetrating HF), and (b) the production rates for q for 

prescribed pwf, or (c) the flowing pressures at the HF when producing for prescribed q. 

Additionally, we compared the TDM results from the two different numerical methods of 

LT inversion in order to evaluate their relative performance and strengths.  Note that 

production results presented here correspond to a system involving 50 HFs, i.e., 50 x 8 = 

400 stencils (see Table 2.1). The input to the study is shown as follows. 
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Table 2.1 — Inputs in the TDM and the FTSim simulations. 

Parameter Value 

Initial pressure Pi 2.5 x 107    Pa ≈ 3,626 psi 

Fracture pressure pwf 6.894757 x 106 Pa ≈ 1,000 psi 

Production rate qc 0.0003 kg/s ≈ 90 bopd from 400 stencils 

Temperature T 30°C = 303.15 K 

Matrix reference porosity 𝜙0 0.3 

Matrix compressibility cm 1 x 10-9 Pa-1 

Oil compressibility co 2.5 x 10-9 Pa-1 

Oil density ρo 750 kg/m3 

Oil viscosity μo 2.96 x 10-4 Pa-s 

Matrix permeability (undisturbed) kx = ky = kz 1.5 x 10-19 ≈ 0.15 µD 

Matrix permeability (SRV) kx = ky = kz 1.5 x 10-18 ≈ 1.50 µD 

Stencil length (Half of fracture interval) Lx 10 m 

Stencil depth Ly 60 m 

Stencil height Lz 5 m 

Fracture Dimensions (YF, ZF) 

Fully-penetrating fracture (Case 1, 2, 3, 4, 5, 7, and 8) 

Half of fracture length YF 60 m 

Half of fracture height ZF 5 m 

Fracture Dimensions (YF, ZF) 

Partially-penetrating fracture (Case 6) 

Half of fracture length YF 40 m 

Half of fracture height ZF 3 m 

Specifications of Laplace Inversion Methods 

Number of terms (Ns) for the Stehfest algorithm 8 (all cases) 

Number of terms (MH) for the DeHoog Method 
10 (all cases except Case 8) 

14 (Case 8) 
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2.4.1 Validation Cases 

2.4.1.1 Case 1: Constant Production Rate q at x = 0 (Neuman Boundary) 

Fig. 2.2 presents the evolution of the pressure distribution along the x-direction at z = 0 

and y = 0 in response to production at a constant rate q (a Neuman-type boundary, see 

Table 2.1). This figure shows that the TDM results from both the TD-1D and the TD-0D 

solutions practically coincide with the numerical results from the FTSim simulations 

(considered as the reference solution). There are two additional sets of results that are not 

included in this figure because they are identical to those obtained from the TDM 

solutions; results from an analytical solution (AS) to this problem, as well as from a TD-

1D study in which the domain was subdivided by a vertical (y,z) at x = 5 m in two separate, 

equally sized subdomains with identical properties (the HS solutions). The latter study 

was conducted in order to test and evaluate the validity of the TD-1D solution for 

heterogeneous systems (see Appendix B). 

 

The TDM results in Fig. 2.2 were obtained using the StA for the numerical inversion of 

the LTs in the R4 stage of reconstruction (which yields the solution in time), and they are 

identical with those in Fig. 2.3 that were obtained using the DHM. The evolution of the 

StA-based solutions of the flowing pressure pwf over time in Fig. 2.4 shows the 

coincidence of the TD-1D and (the FTSim solutions, and the AS and HS results mentioned 

earlier are not included because they differ only in the 3rd decimal place and beyond. For 

both the StA and the DHM inversions, the average deviation between the FTSim and both 
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the TD-0D and TD-1D results was 0.11%. Figs. 2.2 and 2.3 provide evidence of the 

validity and accuracy of the TDM solutions.  

 

 

Figure 2.2 — Case 1: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for constant-rate production: comparison of the TD-1D 

and TD-0D solutions with the Stehfest (1970a;b) algorithm (Ns = 8) for 

the LT numerical inversions. The FTSim numerical solution is included 

for reference. 
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Figure 2.3 — Case 1: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for constant-rate production: comparison of the FTSim 

to the TD-1D and TD-0D solutions with the DeHoog et al. (1982) 

method (MH = 10) for the LT numerical inversions. The results are 

identical to those in Fig. 2.2. 
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Figure 2.4 — Case 1: Evolution of the flowing bottomhole pressure pwf over time at x 

= 0 for constant-rate production: comparison of the FTSim and the TD-

1D solution with the StA (Ns = 8) inversion of the LT-space solution.  

 

 

Figure 2.5 — Case 1: Evolution of the flowing bottomhole pressure pwf over time at x 

= 0 for constant-rate production: comparison of the FTSim and the TD-

1D solution with the DHM (MH = 10) inversion of the LT-space 

solution.  The results are identical to those in Fig. 2.4. 
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2.4.1.2 Case 2: Constant Bottomhole Pressure pwf at x = 0 (Dirichlet Boundary) 

Figs. 2.6 and 2.7 correspond to results obtained with the StA- and DHM-based inversions 

of the LT space solutions, respectively, and show the evolution of the pressure distribution 

along the x-direction at z = 0 and y = 0 in response to production at a constant bottomhole 

pressure pwf at x = 0 (a Dirichlet-type boundary, see Table 2.1). As in Case 1, the TD-1D, 

TD-0D and the FTSim solutions coincide, and also coincide with AS results and the HS 

solutions (not shown in the figure). Figs. 2.8 and 2.9 correspond to results obtained with 

the StA- and DHM-based inversions of the LT space solutions, respectively, and show the 

time-variable production rate q determined from the TD-1D and FTSim solutions in 

response to the pressure pwf at the hydraulic fracture. The coincidence of these solutions 

confirms the validity and accuracy of the TDM. The results in Figs. 2.6 and 2.8 are 

identical to those on Figs. 2.7 and 2.9, indicating no obvious advantage of the much more 

complex DHM inversion method of the LT space solution over the mush simpler StA. 

Finally, identical results were obtained when the solutions discussed above were obtained 

using the TD-1D approach when the stencil domain subdivided in two equally-sized 

segments. In Case 2, for both the StA and the DHM inversions, the average deviation 

between the FTSim and the TD-0D results was 0.53%, and between FTSim and the TD-

1D results was 0.22%. 
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Figure 2.6 — Case 2: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for constant-pressure production: comparison of the 

FTSim to the TD-1D and TD-0D solutions obtained with the StA 

inversion (Ns = 8). 
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Figure 2.7 — Case 2: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for constant-pressure production: comparison of the 

FTSim to the TD-1D and TD-0D solutions obtained with the DHM 

inversion (MH = 10). 
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Figure 2.8 — Case 2: Evolution of the production rate q over time at the HF at x = 0 

for constant-pressure production: comparison of the FTSim to the TD-

1D solution obtained with the StA inversion (Ns = 8). 

 

Figure 2.9 — Case 2: Evolution of the production rate q over time at the HF at x = 0 

for constant-pressure production: comparison of the FTSim to the TD-

1D solution obtained with the DHM inversion (MH = 10). The results 

are identical to those in Fig. 2.8. 
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2.4.2 Additional Application Cases 

2.4.2.1 Case 3: Linearly-Declining Production Rate q at x = 0 (Neuman Boundary) 

This case is entirely analogous to that in Case 1, from which it differs in that the production 

rate qx=0 is time-dependent, declining linearly from the original level of 43 10−  (= 90 

BOPD) to 42 10−  (= 60 BOPD) over the 2-year production period. The results in Figs. 

2.10 and 2.11 show the evolution over time of the pressure distribution, and Figs. 2.12 and 

2.13 show the time-dependent flowing bottomhole pressure, all at the same locations as 

those discussed in Case 1. Figs. 2.10 to 2.13 do not include FTSim results because the 

declining boundary rate can produce results of accuracy comparable to that obtained by 

the TD-1D and TD-0D solutions only by significantly reducing the timestep size (to avoid 

obtaining 'jagged' curves) and, consequently, significantly increasing the already very long 

execution times for the solution of the equations of flow for the 356,000-element 

numerical grid. 

 

As expected, pwf in Case 3 begins to diverge relatively early from, and exceeds 

consistently, that for Case 1.  Their divergence increases as time advances because of the 

declining qx=0 (Fig. 2.12). Additionally, the TDM solutions in Figs. 2.10 and 2.12, which 

were obtained using the StA approach for the LT inversion, coincide (a) with the analytical 

solution that is available for this problem, (b) with the TD-1D solution from a subdivided 

stencil domain, and (c) with the DHM-based solutions (Figs. 2.11 and 2.13) of the same 

variables. The results in Case 3 provide further evidence of the power, accuracy and 



 

49 

 

 

reliability of the TDM in the analysis of flow though, and production from, multi-fracture 

shale reservoirs serviced by horizontal wells. 

 

Figure 2.10 — Case 3: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for a linearly declining production rate: comparison of 

the TD-1D and TD-0D solutions obtained with the StA inversion (Ns = 

8).  
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Figure 2.11 — Case 3: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for a linearly declining production rate: comparison of 

the TD-1D and TD-0D solutions obtained with the DHM inversion (MH 

= 10). 
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Figure 2.12 — Case 3: Evolution of the flowing bottomhole pressure pwf over time at x 

= 0 for a linearly declining production rate, obtained using the TD-1D 

method with the StA inversion (Ns = 8). The analogous results from 

Case 1 are included for comparison.  

 

 

Figure 2.13 — Case 3: Evolution of the flowing bottomhole pressure pwf over time at x 

= 0 for a linearly declining production rate, obtained using the TD-1D 

method with the DHM inversion (MH = 10). The analogous results from 

Case 1 are included for comparison. 
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2.4.2.2 Case 4: Linearly-Declining Bottomhole Pressure pwf at x = 0 (Dirichlet 

Boundary) 

This case is entirely analogous to that in Case 2, from which it differs in that the 

bottomhole pressure pwf is time-dependent, declining linearly from the original level of 

1,000 psi to 500 psi over the 2-year production period. The results in Figs. 2.14 and 2.15 

show the evolution over time of the pressure distribution, and Figs. 2.16 and 2.17 show 

the time-variable production rate, all at the same locations as those discussed in Case 2. 

Note that a TD-0D solution is not possible because the formulation of the FCT of the 2nd 

kind requires a constant boundary pressure; TD-1D has no such limitations. For the reason 

explained in Case 3, Figs. 2.14 to 2.17 do not include FTSim results. 

 

As expected, the production rate q in Case 4 is consistently higher than that in Case 2 

(from which it begins to diverge early) because of the declining bottomhole pressure, 

which increases the pressure gradient at the HF. The TDM solution in Figs. 2.14 and 2.16, 

which were obtained using the StA approach for the LT inversion, coincide (a) with the 

TD-1D solution from a subdivided stencil domain, and (b) with the DHM-based solutions 

(Figs. 2.15 and 2.17) of the same variables. The results in Case 4 show the power and 

flexibility of the TDM in the study of production from shale oil reservoirs. 
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Figure 2.14 — Case 4: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for a linearly declining bottomhole pressure pwf. The 

TD-1D results were obtained using the StA inversion (Ns = 8) of the 

LT-space solutions 
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Figure 2.15 — Case 4: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for a linearly declining bottomhole pressure pwf.  The 

TD-1D results were obtained using the DHM inversion (MH = 10) of 

the LT-space solutions. 
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Figure 2.16 — Case 4: Evolution of the production rate q over time at the HF at x = 0 

for a linearly declining bottomhole pressure pwf obtained using the TD-

1D method with the StA inversion (Ns = 8). The analogous results from 

Case 2 are included for comparison.  

 

 

Figure 2.17 — Case 4: Evolution of the production rate q over time at the HF at x = 0 

for a linearly-declining bottomhole pressure pwf obtained using the TD-

1D method with the DHM inversion (MH = 10). The analogous results 

from Case 2 are included for comparison. 
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2.4.2.3 Case 5: Constant Bottomhole Pressure pwf at x = 0, heterogeneous domain 

with SRV (Dirichlet Boundary) 

This case is entirely analogous to that in Case 2, from which it differs in that the domain 

is no longer homogeneous but involves 2 subdomains with different properties; a 

Stimulated Reservoir Volume (SRV) subdomain from x = 0 to x = 5 m, and the 

undisturbed matrix from x = 5 m to x = Lx = 10 m. The properties of the two subdomains 

are listed in Table 2.1. The FTSim and the TD-1D results in Fig. 2.18 show the evolution 

over time of the pressure distribution at the same locations discussed in Case 2. The 

boundary between the two subdomains is clearly identified by the sharp change in the 

slope of p at this location. The agreement between the numerical and the TDM solutions 

is excellent. The small deviations exhibited early are caused by the discrete-volume nature 

of the space discretization in FTSim; although it is possible to obtain a very accurate 

solution, this would require very fine discretization near the SRV boundary and would 

greatly increase the size of the grid beyond the already very high number of 356,000. Thus, 

the TDM provides inherently more accurate solutions in the vicinity of interfaces of 

heterogeneous subdomains with different properties. Note that a TD-0D solution is not 

possible because it cannot handle this type of heterogeneity. 

 

Fig. 2.19 shows the evolution over time of the time-variable production rate. Again, there 

is an excellent agreement of the FTSim and the TD-1D predictions. The small deviations 

occur when the pressure front reaches the boundary early in the production period and are 

caused by the imperfect FTSim discretization at this location. The TDM solution in Figs. 
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2.18 and 2.19, which were obtained using the StA approach for the inversion of the LT-

space solutions, coincide with the DHM-based solutions of the same variables. For both 

the StA and the DHM inversions, the average deviation between the FTSim and the TD-

1D results was 0.57%. The power and flexibility of the TDM, and its superiority over the 

numerical solution in this case, are evident from the results. As in all the cases discussed 

thus far, the significant complexity of applying the DHM inversion cannot be justified by 

any superiority in the predictions, which coincide with those from the much simpler StA 

approach. 

 

 

Figure 2.18 — Case 5: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for a constant bottomhole pressure pwf in a stencil with 

an SRV subdomain. The TD-1D predictions are based on a StA 

inversion (Ns = 8) and coincide with the corresponding DHM-based 

solutions.  
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Figure 2.19 — Case 5: Evolution of the production rate q over time at the HF at x = 0 

for a constant bottomhole pressure pwf in a stencil with an SRV 

subdomain. The TD-1D predictions are based on a StA inversion (Ns = 

8) and coincide with the corresponding DHM-based solutions.  
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2.4.2.4 Case 6: Linearly-Declining Production Rate q at x = 0, Partially-Penetrating 

HF 

The dimensions of the partially-penetrating hydraulic fracture in Case 6 are shown in 

Table 2.1. As in Case 3, the production rate qx=0 declines linearly from the original level 

of 43 10−  (= 90 BOPD) to 42 10−  (= 60 BOPD) over the 2-year production period. The 

evolution of the pressure spatial distribution in the 3D system is shown in the panels of 

Fig. 2.20. The results depicted here were obtained from TD-1D solution with the StA 

inversion, and fully coincide with the FTSim results. The pressure depletion at the middle 

of the HF (i.e., at the base of the stencil, at x = 0, z = 0 and 0 ≤ 𝑦 ≤  𝑌𝐹 ) is more severe 

than in the case of full HF penetration, and conforms to expectations as it concentrates the 

same fluid removal rate through a smaller surface. Fig. 2.20 shows the curvature of the 

3D pressure system (which implicitly describe the 3D flow lines) and shows the unique 

capabilities of TDM in the analysis of 3D subsystems of shale oil reservoirs with partially 

penetrating HFs. 
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(a) t = 1 day (d) t = 1 year 

  

(b) t = 1 month (e)  t = 1.5 years 

  

(c) t = 6 months (f)  t = 2 years 

 

Figure 2.20 — Case 6: Evolution of pressure distribution over time in the 3D domain 

of the stencil for a linearly-declining production rate, obtained from the 

application of the TD-1D method with the StA inversion (Ns = 8).  
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2.4.2.5 Case 7: Stepwise-Constant Production Rate q at x = 0 (Neuman Boundary) 

This case is related to Cases 1 and 3, from which it differs in that the production rate qx=0 

is time-dependent in the stepwise-constant manner described by Fig. 2.21. This test was 

designed to demonstrate the unique power of the LT-component of the TDM solutions, 

which can yield accurate predictions at any point in the continuous time domain despite 

(and regardless of) any time variability in qx=0. The FTSim and TD-0D results in Fig. 2.22, 

and the FTSim and TD-1D results in Fig. 2.23, show the evolution over time of the 

pressure distribution at the same locations discussed in Cases 1 and 3; they also provide a 

comparison of the effectiveness of the StA vs. the DHM inversions. In order to accurately 

capture the effect of qx=0 variations with time, the FTSim simulations required very fine 

discretization in the vicinity of the step changes. The near-coincidence of the FTSim 

pressure results in Figs. 2.22 and 2.23 with those obtained with the both inversion options 

in this demanding problem provides additional evidence and confirmation of the power, 

accuracy and flexibility of the TDM. 

 

The better performance of the DHM-based results in Figs. 2.22 and 2.23 is due to the 

superior ability of the method in the inversion of very sharp fronts, including step 

functions such as those imposed by the conditions depicted in Fig. 2.21. The StA-based 

inversions of the LT-space solutions tends to attenuate such sharp fronts. This can be seen 

in Fig. 2.24, which shows the evolution over time of the flowing bottomhole pressure pwf 

obtained from the TD-1D method with both the StA and DHM inversions, as well as the 

corresponding FTSim solution. The FTSim results perfectly match the solutions obtained 
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from TD-1D with DHM inversions, but the StA-based TD-1D results show smoothing in 

the vicinity of the times when step changes occur. For the DHM inversion, the average 

deviation between the FTSim and both the TD-0D and the TD-1D results was 0.07%; for 

the StA inversion, the deviation was 0.09%. Nevertheless, both TD-1D solutions are more 

than satisfactory, further enhancing the confidence in the TDM approach. 

 

 

Figure 2.21 — Case 7: The step-wise variations of qx=0 with time in Case 7. 
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Figure 2.22 — Case 7: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for the step-wise production rate q shown in Fig. 2.21: 

comparison of the FTSim solution to the TD-0D solutions with the StA 

(Ns = 8) and DHM (MH = 10) inversions. 

 

 

 

 



 

64 

 

 

 

Figure 2.23 — Case 7: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for the step-wise production rate q shown in Fig. 2.21: 

comparison of the FTSim solution to the TD-1D solutions with the StA 

(Ns = 8) and DHM (MH = 10) inversions. 
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Figure 2.24 — Case 7: Evolution of the flowing bottomhole pressure pwf over time at x 

= 0 for the step-wise production rate q shown in Fig. 2.21: comparison 

of the FTSim solution to the TD-1D results with both the StA (Ns = 8) 

and the DHM (MH = 10) inversions. Note the smoothing effect of the 

StA approach at the times of step changes in qx=0. 

 

2.4.2.6 Case 8: Stepwise-Constant Bottomhole Pressure pwf at x = 0 (Dirichlet 

boundary) 

This case differs from Cases 2 and 4 in that pwf is time-dependent in the stepwise-constant 

manner described by Fig. 2.25. As in case 7, this test was designed to demonstrate the 

unique ability of the LT-based TDM solutions to yield accurate predictions at any point in 

the continuous time domain regardless of sharp changes in pwf. The FTSim and TD-1D 

results in Fig. 2.26 show the evolution over time of p at the same locations discussed in 

Cases 2 and 4, in addition to providing a comparison of the effectiveness of the StA vs. 

DHM inversions. To accurately capture the effect of the sharp pwf variations, the FTSim 

simulations required very fine discretization in the vicinity of the step changes. There is a 
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practical coincidence of the FTSim results with the TD-1D solutions obtained with the 

DHM inversion, and an excellent agreement with the TD-1D solutions based on the StA 

inversion. The TD-1D method with either the StA or the DHM inversion provide very 

accurate pressure predictions. For the DHM inversion, the average deviation between the 

FTSim and the TD-1D pressure results was 0.28%; for the StA option, the average 

deviation was 0.42%. 

 

The superiority of the DHM-based LT inversion is evident in Fig. 2.27, which shows the 

evolution of the production rate q calculated from (a) FTSim and (b) from TD-1D with 

the two LT inversion options. The very fine temporal discretization about the time of the 

stepwise change in pwf allows FTSim to capture accurately the production 'spikes' that are 

caused by the augmented pressure drop, and these are effortlessly matched by the TD-1D 

solution with the DHM inversion when the number of the MH terms is raised to 14 (see 

Table 2.1). The inability of the StA inversion to accurately capture sharp fronts results in 

the 'smearing' (smoothing) of the spikes in the q curve. Thus, the Stehfest (1970a;b) 

method is not recommended for TD-1D if the study aims to determine the q associated 

with this type of pwf scenario. The TD-1D solution with the DHM inversion has a superior 

performance, providing accurate and reliable predictions of the flow and production 

behavior in multi-fractured shale oil reservoirs. Actually, the ability of the method to 

accurately incorporate sharp temporal changes into its solutions without attenuation or 

smoothing sharp effects and events makes it a superior choice over numerical simulators, 
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which often do not invest the necessary effort for the careful implementation of a very fine 

time discretization in order to accurately capture such sharp changes. 

 

 

Figure 2.25 — Case 8: The step-wise variations of pwf with time in Case 8. 
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Figure 2.26 — Case 8: Evolution of pressure distribution over time in the x-direction at 

z = 0 and y = 0 for the step-wise boundary pressure pwf shown in Fig. 

2.25: comparison of the FTSim solution to the TD-1D solutions with 

the StA (Ns = 8) and DHM (MH = 14) inversions. 

 

 

 



 

69 

 

 

 

Figure 2.27 — Case 8: Evolution of the production rate q over time at x = 0 for the 

step-wise boundary pressure pwf shown in Fig. 2.25: comparison of the 

FTSim solution to the TD-1D results for both the StA (Ns = 8) and 

DHM (MH = 14) inversions. Note the smoothing effect of the StA 

approach about the times of step change in pwf. 

 

2.5 TDM Execution Times 

 

The execution times for TDM at 1001 locations in the domain, and for the FTSim solutions 

for the same problems were recorded and compared in order to provide an additional 

criterion for the evaluation of the power and efficiency of TDM. 

 

Regarding computer storage, there can be no scalable comparison between a numerical 

simulator and TDM. The FTSim grid for the numerical simulations in this study exceeded 

115 MB in size, and multiples of that were needed for storage of the variables describing 

the attributes of each element and for storage of the coefficients of the matrix equation. 
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The elimination of spatial discretization in TDM reduces the memory requirements for the 

method to practically negligible levels. 

 

We investigate the computational efficiency of TDM, as quantified by the execution time 

on a specific computational platform, against that for the FTSim numerical simulator. This 

was not an easy task because of the necessity to use different computational platforms 

because of the very large requirements of FTSim that necessitated the use of a cluster, 

leading to comparisons of unequal quantities. However, the information gleaned from this 

comparison was sufficient to demonstrate the advantages of TDM. The FTSim simulations 

were conducted on the LR4 cluster of Lawrencium at the Lawrence Berkeley National 

Laboratory (LBNL, 2019). Each FTSim run involved 384 cores, and the runs required a 

minimum of one and up to two 12-hour cycles (depending on the type of the problem) to 

cover the 2-year production period. Dirichlet-type boundaries required longer execution 

times because of the drastic pressure gradient at the HF boundary at t = 0, which created 

very steep solution surfaces posed numerical challenges and required short timesteps. The 

number of cores and the length of the execution times provide a measure of the 

computational effort for the FTSim solutions. 

 

We also compared the relative performance (in terms of execution speed) of the PTD-1D 

and PTD-0D options for the same LT inversion method, and the relative performance of 

the StA and DHM inversions for the same TDM option. The basis for the comparisons 

was the execution speed for the computation of the pressures at 1001 at the end of 2 years 
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of production, i.e., at a time when the domain pressure is substantially depleted. The 

execution time is insensitive to the time at which solutions are desired because there is no 

time discretization in TDM; it takes about the same computational effort (and execution 

time) to compute solutions at any time with the StA inversion. The situation is different 

for the DHM because its properties allow that solutions at any time t ( )0.2T t T   can 

be obtained almost instantaneously once the solution for T is computed, i.e., just one set 

of computations suffices for the estimation of solutions at any time within an entire order 

of magnitude of T.  

 

TD-0D cannot handle subdomain heterogeneity, and is suitable for pressure predictions at 

any location (x,y,z) in homogeneous domains only. Systems with subdomain heterogeneity 

can be easily handled by PTD-1D. In their application, neither TD-0D nor TD-1D requires 

spatial discretization. 

 

Table 2.2 shows the execution times for both TDM options in all cases (1 to 8) when the 

LT inversions are carried out by the StA. The corresponding execution times for DHM-

based inversions in the most interesting cases are listed in Table 2.3. All serial 

computations were performed using the Microsoft Visual Studio Community 2017 

(Version 15.9.15) and a platform with Intel R CoreTM i7-7700HQ@2.80 GHz processors 

(8CPUs) running serially on Windows 10 Home 64-bit (10.0, Build 18362). The parallel 

(Open MP-based) computations in Case 6 (denoted by an asterisk in Table 2.2) were 

carried out on a MacPro running MacOS version 10.12.26 with 12 Intel Xeon E5 cores. 
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The much longer execution time for Case 6 is caused by the need to compute a large 

number of cross products when a partially-penetrating fracture is involved. 

 

The results in Tables 2.2 and 2.3 provide clear evidence of the superiority of the TD-1D 

over the TD-0D option in terms of computational efficiency, as the execution times for 

the latter are orders of magnitude larger than those for the former. This observation holds 

true for StA inversions (Table 2.2) and for the slower DHM inversions (Table 2.3). 

Considering its other advantages, i.e., its superior accuracy and applicability to 

heterogeneous domains, TD-1D appears to have an overwhelming advantage over TD-

0D. As expected, DHM-based solutions (Table 2.3) are slower than those obtained from 

StA inversions (Table 2.2), but by margins that are practically trivial in TD-1D 

applications.  

 

Caution needs to be exercised in the interpretation of the data in Table 2.3, as these results 

can easily misinterpreted and the longer execution times may be misleading; these 

immediate observations need to be tempered by the realization that a single DHM-based 

solution can provide results at any time within the same order of magnitude of time, thus 

significantly reducing the actual execution time for the DHM-based solution if results at 

different times are desired– in other words, the DHM-based solution may be faster that 

what Table 2.3 suggests in realistic applications. Finally, consideration of the 

computational effort required for the FTSim solutions leads to the realization that even the 
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serial TDM solutions can be multiple orders or magnitude faster than a corresponding 

numerical 3D solution, thus further enhancing the attractiveness of the method. 

 

 

Table 2.2 — Execution Times for TDM with Stehfest algorithm Inversion. 

Execution time (sec) of 1001 locations TD-0D TD-1D 

Case 1 Constant rate 44.218 0.668 

Case 3 Linearly-declining rate 43.730 0.661 

Case 7 Step-declining rate 43.052 0.637 

Case 2 Constant pressure 54.873 0.636 

Case 4 Linearly-declining pressure 54.389 0.621 

Case 8 Step-declining pressure 55.977 0.661 

Case 5 Constant pressure with sub-domains N/A 0.717 

Case 6 

Linearly-declining rate with partially penetrating 

fracture (serial) 

N/A 43723.32 

Case 6 

Linearly-declining rate with partially penetrating 

fracture (parallel, OpenMP)* 

N/A 3842 

 

Table 2.3 — Execution Times for TDM with DeHoog method Inversion. 

Execution time (sec) of 1001 locations TD-0D TD-1D 

Case 1 Constant rate 352.398 0.836 

Case 3 Linearly-declining rate 345.959 0.845 

Case 7 Step-declining rate 346.403 0.928 

Case 2 Constant pressure 191.563 0.968 

Case 4 Linearly-declining pressure 188.241 0.965 

Case 8 Step-declining pressure 191.436 1.039 
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2.6 TDM Summary 

 

The Transformational Decomposition Method (TDM) is a fast analytical and/or semi-

analytical method for the analysis of the oil flow, pressure interference and production 

from multi-fractured ultra-low permeability (ULP) reservoirs such (as shale oil reservoirs) 

serviced by parallel horizontal wells. The method begins by recasting the 3D diffusivity 

PDE of oil flow through porous and fractured media in terms of a primary variable that 

completely linearizes the PDE without any loss of generality. Time is then eliminated from 

the resulting linearized 3D PDE by means of Laplace transforms. The subsequent 

'Decomposition Stage' involves the application of successive Finite Cosine Transforms 

(FCTs) to eliminate either (a) all three dimensions, yielding a simple algebraic equation 

or (b) two dimensions, yielding an ODE in time only.  

 

In the final 'Reconstruction Stage', the solutions of the multi-transformed space equations 

are inverted in a reverse order than that followed in the Decomposition Stage, i.e., the first 

coordinate to be restored is the last direction to be eliminated by FCTs during the 

Decomposition Stage, and the last inversion is that of the Laplace Transformed primary 

variable. The TDM process yields solutions that are analytical in all three spatial 

coordinates and semi-analytical in time because of the need for numerical inversion of the 

Laplace space solution. This is dictated by the inability to obtain closed-from relationships 

of the time dependence of the primary variable by inverting analytically the complex 1D 

or 0D solutions resulting from the elimination of space.  
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TDM is applicable to problems of single-phase oil flow, i.e., above the bubble point and/or 

when aqueous and the gas phases are either not present or immobile. Using 3D stencils 

(the minimum repeatable elements in the horizontal well and hydraulically-fractured 

system) as the basis of our study, we developed the theoretical basis and obtained solutions 

over extended production times in cases involving (a) a range of isotropic and anisotropic 

matrix and fracture properties, (b) constant and time-variable production regimes (rates or 

bottomhole pressures), and (c) combinations of SRV and non-SRV subdomains. Work is 

in progress to address areas in which the current form of TDM is not currently applicable, 

i.e., in multiply heterogeneous domains involving several subdomains (including HFs with 

measurable pressure losses), prescribed (constant or time-variable) pressure conditions at 

partially-penetrating HFs, more realistic geometries and location of boundaries, etc. 

 

Compared to conventional numerical simulators, TDM offers some significant 

advantages. It eliminates space discretization and results in a simple 1D ODE or an 

algebraic equation in multi-transformed spaces, both of which have simple analytical, 

closed form solutions. It also eliminates time discretization, yielding solutions continuous 

in time. The avoidance of space and time discretization allows predictions only at the 

desired points in space and time, without the wasteful need of numerical simulators to 

obtain results at times and locations of no interest. TDM reduces drastically (easily by 

orders of magnitude) some of the key requirements of (and challenges facing) 

conventional simulators, input and output data volumes and processing; computer memory 
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for the storage of the elements of the discretized domain and their attributes, as well as for 

the storage for the very large matrix equations arising from the space and time 

discretization; the execution times to process these data, but mainly to solve the large 

matrix equations. The limited input data requirements make the application of TDM easy 

to use and reduces the need for highly trained personnel to conduct the simulations. The 

elimination of the need for spatial discretization not only reduces the execution times but 

also eliminates the time and the specialized-personnel effort that are required to create a 

grid system (a tedious and complicated process that demands significant expertise and a 

large number of inputs).  

 

Both TDM versions (TD-1D and TD-0D) provide accurate solutions that deviate from the 

numerical solutions of the same problems by minuscule amounts (and there are reasons to 

expect TDM solutions to be the more accurate ones). Of the two versions, TD-1D appears 

to be by far the superior option; it can be multiple orders of magnitude faster than a 

standard numerical solution and routinely more accurate in the vicinity of subdomain 

boundaries because it does not suffer from discretization errors; it is 1-2 orders of 

magnitude faster than TD-0D, and can resolve accurately any number of heterogeneous 

subdomains (such as SRVs). Conversely, the accurate but much slower TD-0D method 

(which can still be orders of magnitude faster than a standard numerical solution involving 

discretized space and time) is conceptually inapplicable to systems with heterogeneous 

subdomains. In the presence of the more powerful TD-1D method, the usefulness of TD-

0D is limited. The reason for the slow behavior of TD-0D is the significant expansion of 
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the computations when the 3rd dimension is eliminated by the last FCT (a process that 

yields triple summations in the equations to invert), and the emergence of a large number 

of cross products (when the third dimension is eliminated) that converge slowly upon 

inversion. 

 

In this study we considered two methods for the numerical inversion of the Laplace space 

solutions; the Stehfest algorithm (StA - 1970a;b) and the method of DeHoog et al. (DHM 

- 1982). The StA-approach is easy to implement, requires only real values for the 

computation of the Laplace space parameter and provides faster TD-1D and TD-0D 

solutions, and resolve very accurately most problems. Its performance may deteriorate in 

the analysis of production regimes with sharp changes in the production rate or bottomhole 

pressure, in which cases it may have the tendency to smoothen performance spikes. The 

second inversion method can easily handle sharp fronts and very dynamic changes in the 

production schedules but requires complex values for the computation of the Laplace 

space parameter and is much more complex to implement. It may or may not be slower 

that StA, depending on the number of desired observations within each order of magnitude 

of the production period.  

 

Because of its simplicity, ease of application and speed, TDM is particularly useful for the 

evaluation of 'what-if' scenarios and identification of the factors, conditions and properties 

that dominate the production behavior of shale oil reservoirs, and to provide indications 

of their production potential before the onset, or at the early stages, of full production 
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operations (when limited data are available on the reservoir and its properties). Thus, TDM 

can provide a large number of production estimates (a task much more difficult, if not 

impossible, for large conventional simulators involving very large numbers of elements) 

to define the envelope of the possible system performance, and offers the additional 

benefit of being able to describe processes and phenomena that can only be captured at 

spatial scales (as low as at the mm-level) that are beyond the capabilities of most numerical 

simulators, and which may have a significant impact on production. Because of the ability 

of stencils to accurately predict production by a simple summation of the stencil-based 

results, reliable estimates of the expected production from horizontal wells can be obtained 

after properly accounting for the contribution of boundary stencils. 

 

TDM is thus a very useful tool for the analysis of pressure interference in multi-fractured 

ultra-low permeability reservoirs serviced by parallel horizontal wells. Another very 

significant potential application of TDM is in history matching and reservoir parameter 

identification, which is a difficult, cumbersome and lengthy process in full 3D studies of 

numerical simulators involving large numbers of elements and covering long production 

periods. The large number of computations needed for this process can be conducted very 

effectively using the fast TDM solutions to provide estimates of the reservoir properties 

which, if there is a need for further refinement, can be used as starting points in 

conventional, numerical-based history matching analyses. Note that the TDM, with its 

large number of mutually independent summations in the computation of the inverse FCTs 

and LTs, lends itself to parallel processing for even faster and more efficient performance. 
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CHAPTER III  

DEVELOPMENT AND APPLICATION OF THE PARTIALTRANSFORMATIONAL 

DECOMPOSITION METHOD (PTDM) TO THE PROBLEM OF THE 3D GAS FLOW 

THROUGH FRACTURED MEDIA 

 

This chapter discusses in-detail the development of PTDM-based for the solution of the 

problem of gas flow through, and production from, a multi-fractured shale gas reservoir.  

PTDM an adaptation of the TDM (Moridis, 1995) —originally developed a slightly 

compressible fluid flow—to highly compressible gas flow. In the following sections, we 

present the development of the mathematical basis of PTDM, we provide validation 

examples and demonstrate the application of the method to the solution of complex 3D 

problems of gas flow through matrix and fracture systems.  

 

3.1 Objectives and General Description of the Partial Transformational 

Decomposition Method (PTDM) 

 

The objective of this effort is to develop and introduce the Partial Transformational 

Decomposition Method (PTDM) for the solution of the flow equation of highly 

compressible fluids such as gases in multi-fractured ULP reservoirs. The reason for the 

"partial" moniker is because of the strong non-linearity in the compressibility and viscosity 

of gases (caused by their strong dependence on pressure) precludes the use of Laplace 

transforms over the entire time domain, forcing discretization of time either using a simple 
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backward FD approximation of the time derivative or applying a localized LT within each 

time subdomain (timestep).   

 

The problem of intense non-linearity in the gas flow equation is partially addressed by the 

use of a primary variable based on the concept of pseudo-pressure (Al-Hussainy, 1966). 

This approach enables the removal of all non-linear terms associated with the spatial 

derivatives in the PDE of flow and concentration of all non-linearities in variables that are 

associated only with the time derivative.  The elimination of non-linearities in the spatial 

derivates allows the application of successive Finite Cosine Transforms (FCTs) to the 

pseudo-pressure-based 3D diffusivity equation of gas flow, leading to the elimination of 

the corresponding dimensions.  For production at a defined rate q, 3 levels of FCTs yield 

a 1st-order ODE in time only.  For production in response to a defined boundary pressure 

pwf, 2 levels of FCTs lead to a 1D 2nd-order PDE in space and time.  Thus, PTDM is a 

hybrid numerical-analytical method.  The implicit numerical solutions to the FCT-based 

equations in the multi-transformed spaces are inverted, providing solutions that are 

analytical in 2 or 3 space dimensions, numerical in time, and account for the non-linearity 

of gas flow.   

 

PTDM offers some significant advantages over conventional numerical simulators. It 

minimizes grid discretization, limiting it to a single dimension (instead of 3 dimensions) 

or to no dimension at all (in which case solution at any point is possible, as no 

discretization is required).  This can drastically reduce input data requirements, computer 
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memory requirements and execution times, often by orders of magnitude. The 

minimization or elimination of the grid discretization requirement not only reduces the 

execution times, but also saves the time and effort that would be expended in the creation 

of a grid system. Because of the limited input data requirements, it is easy to use and to 

train personnel in its use.  It can be particularly useful during planning and the initial 

evaluation of the production potential of the reservoir, as well as during the early stages 

of production — i.e., at times when not much information is available on the reservoir and 

its properties. 

 

The speed of the PTDM execution allows the execution of many "what-if" scenarios of 

reservoir properties, thus making possible the definition of the envelope of possible 

solutions of production performance.  Additionally, the speed of PTDM is particularly 

useful in the analysis of early (as will be seen in a subsequent section) production data, as 

it can lead to very fast and efficient history matching and parameter identification.  This 

process can be difficult, cumbersome and lengthy if history matching is based on a full 3D 

model numerical model using 100,000s of elements and covering a long production 

period. 
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3.2 PTDM Approach and Implementation 

 

3.2.1 Underlying Assumptions 

Application of the PTDM involves several assumptions.  These include single-phase gas 

flow (if there is an aqueous phase, it needs to be immobile and the permeability in the 

matrix is the effective permeability); the hydraulic fracture (HF) has a very high 

permeability, with flow exhibiting negligible pressure loss along and across it (a 

modification of the PTDM to eliminate this assumption is in progress); gas flow is 

isothermal; the flow properties are homogeneous within regularly-shaped subdivisions of 

the TDM, although the domain may be heterogeneous as a whole; the size of the horizontal 

well is very small compared to the dimensions of the domain (a reasonable assumption); 

and gravitational effects are negligible (a valid assumption, given the high pressure of the 

system, the limited thickness of the reservoir and the relatively low density of the gas).   

 

3.2.2 The PTDM Simulator and the Code Validation Approach 

The PTDM solutions were coded in FORTRAN90.  The PTDM results were compared to 

the results obtained from the FTSim numerical simulator with a gas property module.  

FTSim is a simplified version of the TOUGH+ simulator (Moridis and Pruess, 2016) with 

the RealGasBrine V1.0 option (Moridis and Freeman, 2016—referred to as RGB), which 

has been validated through comparisons to a wide range of analytical and numerical 

solutions (Moridis and Freeman, 2014; 2016; Reagan et al., 2015).  As is the case of 

TOUGH+, FTSim is a family of codes that provides a general-purpose simulation 
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framework (based on the Integral Finite Difference (IFD) method for space discretization) 

for the solution of a variety of problems of non-isothermal fluid flow through porous and 

fractured media.    

 

3.2.3 The PTDM Simulation Domain 

The domain of the system used in the PTDM solutions is the stencil of a multi-fractured 

shale gas system produced by means of horizontal wells, and is the same (in terms of 

general characteristics) as the stencil used in the TDM simulations (see Section 2.2) and 

depicted in Fig. 2.1. The reasons for the use of the stencil and its adequacy in describing 

the performance of the entire system of a multi-fractured horizontal well in shale gas 

reservoirs have been fully explained in the discussion of the domain used in the TDM 

studies, and will not be repeated here.  Note that the spatial discretization of the Cartesian 

stencil for the FTSim simulations that are used for comparison to, and validation of, the 

PTDM solutions resulted in over 220,000 cells (with spatial discretization beginning at 

the mm-level next to the HF) and the same number of equations because of the assumption 

of isothermal flow.  The very fine discretization in the vicinity of the HF is necessitated 

by the very steep gas pressure fronts caused by the ultra-low permeability of the matrix of 

shale gas reservoirs. 
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3.2.4 Properties, Initial and Boundary Conditions 

The gas composition in this study was 100% methane.  The reservoir properties and the 

initial pressure Pi and temperature T are listed in Table 3.1. The boundary conditions are 

no-flow (Neuman) boundaries at x = Lx, y = 0, y = Ly, z = 0 and z = Lz because of 

symmetry; at the x = 0 location and outside the face (footprint) of the HF, there is also a 

no-flow boundary; at the same location and on the face of the HF, there may exist either a 

constant- or time-variable pressure boundary (Dirichlet conditions) or a constant- or time-

variable rate boundary (described by a Neuman condition).   

 

3.2.5 Overall PTDM Approach and the Treatment of the Nonlinearities 

The original pressure-based equation of gas flow is first transformed using a pseudo-

pressure primary variable that removes all non-linearities from the space derivatives and 

transfers them to a factor preceding the time derivative. The new form of the gas 

diffusivity equation is then transformed through series of FCTs. The first and second FCTs 

are performed along coordinates with known no-flow (Neuman-type) boundaries. In the 

stencil of Fig. 2.1, these are the z and y coordinates, and result in an 1D PDE in space and 

time that can be solved numerically using a FD approximation in space and time, thus 

drastically reducing the size of the problem compared to a full 3D numerical solution. 

There is also the option of further transforming the 1D PDE by applying an additional 

FCT to the x-coordinate, yielding an ODE in time in which space no longer exists and 

which can be solved either numerically or semi-analytically.  
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The strong non-linearities associated with the time derivative of the PDE of gas flow 

prohibit analytical solutions that cover the entire time domain, and the only options are 

either numerical FD solutions or piece-wise analytical solutions.  This requires the use of 

time steps that are sufficiently short to ensure that the non-linear terms remain practically 

constant during them, and is achieved by limiting the maximum pressure change P 

between successive timesteps to < 2.5% of the initial P0 (Fig. 3.1). Once the solution in 

space and time is obtained, it is possible to keep the values of the non-linear terms constant 

at their level at the beginning of the time-step, or to continuously update them through an 

iterative process that is expected to converge fast. 

 

 

Figure 3.1 — PTDM non-linearity assumption options: the value of the non-linear 

terms can be constant and equal to those at the beginning of the time-

step, or they can be continuously updated during the time-step. 

 

The solutions in the multi-FCT-transformed-space (either the 1D PDE or the 0D ODE) at 

each time step are then inverted to yield solutions of the value of the primary (pseudo-
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pressure-based) variable in space and time. In the next step, using appropriate correlations, 

the actual pressures at the desired locations in space are extracted from the primary 

variables at that timestep.  

 

3.3 PTDM Development 

 

3.3.1 The General Equation of Flow 

Following Al-Hussainy et al. (1966) and ignoring gravitational effects, the general 

equation of gas flow in a porous medium is described as 
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and  
 

cm = the pore compressibility, Pa-1 

ct = the total compressibility of the system, Pa-1 

 = the gas Molecular weight, kg/mol 

 = the gas viscosity, Pa-s 

P = the pressure, Pa 
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 = the porosity, fraction 

ξ  = the pseudo-pressure 

  = the primary variable as defined by Eq. 3.2  

gasR = the real gas constant, Pa-m3/mol/K 

 = gas density, kg/m3 

T = temperature, K 

0u  = pseudo-pressure factor, Pa-1s-1 

Z = the gas compressibility 

r = an appropriate reference state 

0 = the initial reservoir conditions 

 

Note that the pseudo-pressure-based formulation completely removes non-linearities from 

the LHS of Eq. 3.1, concentrating these in the ct term on the right-hand side. 

 

The non-linearities caused by the strong dependence of the gas compressibility and 

viscosity on pressure require the availability of reliable equations relating (a) pressure to 

pseudo-pressure and (b) pseudo-pressure to the combined term ct in Eq. 3.1.  Typical 

examples of these relationships are shown in Figs. 3.2 and 3.3.  Note that the needs of 

PTDM require the ability to obtain very accurate values in both the forward and inverse 

application of these equations. 
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Figure 3.2 — The pressure to pseudo-pressure relationship can be correlated with a 

polynomial function. 

 

 

 

Figure 3.3 — The pseudo-pressure to the combined term tc  relationship can be 

correlated with a double-exponential function. 
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This means that, beginning with a certain pressure and obtaining the corresponding 

pseudo-pressure through a forward equation, we need to be able to retrieve the initial 

pressure through the inverse relationship accurately to at least 14 decimal places.  This is 

achieved by applying the secant root finding method to the forward relationships to obtain 

the inverse relationships. 

 

For constant-rate q (= AF Q) production, i.e., Neuman boundary conditions, the reference 

state is that of the initial reservoir conditions; for constant-bottomhole pressure production 

(Dirichlet boundary), the reference state is that of the bottom-hole pressure pwf. The 

standard value of term 𝑢0  =  2, although the value 𝑢0  =  
𝜇0𝑍0

𝑃0
 has been used (Al-

Hussainy, 1966). 

 

For Neuman boundary conditions, the constant or time-variable flux Q is described as 
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3.3.2 Decomposition Stage: Neuman Inner-Boundary Conditions 

3.3.2.1 Step D1: The First Finite Cosine Transform of the Gas Flow Equation in the 

z-Direction 

The FCT-1 of the z-coordinate in Eq. 3.1, and considering 0 0
zz z LQ Q= == = , yields the 

following PDE in the (x+y+l+t) space:  

2
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where  c1 = F  and l is the integer parameter of the FCT-1 space corresponding to 

the z-coordinate.  At this step we also obtain c1

0 0x xx x

 

= =

  
=  

  
F  using Eq. 3.4. 

 

3.3.2.2 Step D2: The Second FCT of the Gas Flow Equation in the y-Direction 

Taking the FCT-1 of the y-coordinate in Eq. 3.5, and considering 0 0
yy y LQ Q= == = , we 

obtain the following PDE in the (x+n+l+t) space: 
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  .............................................................. (3.6) 

where  1c = F  and n is the integer parameter of the FCT space corresponding to the 

y-coordinate.  

 

At this point, the original 3D PDE in space and time has been reduced to an 1D PDE.  The 

PTDM process at this stage also requires estimating c1

0 0x xx x

 

= =

  
=  

  
F .   

As for the next step in PTDM, there are two possibilities; the first is to solve Eq. 3.6 to 

obtain   using a standard Finite Difference (FD) method.  The second alternative is to 

proceed to Step D3 (discussed below). 
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3.3.2.3 Step D3: The Third FCT of the Gas Flow Equation in the x-Direction 

(Optional) 

Applying the FCT-1 to the 2nd derivative in the x-coordinate in Eq. 3.6, and considering 

0
xx LQ = =  and 0

0

00

x x

xgas

M P
Q k

R Tu x
=

=


=



ξ
 (and its previous transformations), we obtain the 

following ODE (in time only) in the (m+n+l+t) multi-transformed space:  
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where  1 1c  = F and m is the integer parameter of the FCT-1 space corresponding to 

the x-coordinate.  

 

Thus, the original 3D PDE in space and time has been decomposed into a simple ODE in 

time only, in which space is no longer involved.  Rearranging Eq. 3.7 yields the following 

non-homogeneous ODE. 
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If we take time-steps that are sufficiently small to ensure that P (= the maximum pressure 

difference at any point in the domain) does not exceed a small value, e.g., < 2.5% of P0, 

then the quantity ct can be considered invariant during this time-step. This allows taking 

the Laplace transform of Eq. 3.8, which, upon inversion, yields  
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Note that t in Eq. 3.11 denotes local time (with t = 0 at the beginning of each time step, 

and t = t at its end) and 
1t−  denotes the value of 𝛺 at the end of the previous timestep 

(= the beginning of the new one). 

 

3.3.3 Reconstruction Stage: Neuman Inner-Boundary Conditions 

If the PTDM decomposition process stops at the 1D PDE attained after Step D2, then the 

reconstruction process begins by applying the FD method to obtain the solutions 

( ), , ,x n l t  to Eq. 3.6 at every timestep and at the subdomain in which the x-coordinate is 

subdivided in the (x+n+l+t) multi-transformed space. Once the ( ), , ,x n l t  solutions are 

obtained, the two steps in the reconstruction stage are the following. 
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Thus, Eq. 3.12 represents the inverse FCT of the 1st kind and restores the y-coordinate, 

Eq. 3.13 restores the z-coordinate, and at the end of the reconstruction stage we have 

solutions at any desirable location in space and time. These solutions are numerical in time 

and in the x-coordinate, and analytical in the y- and z-coordinates.  The solution obtained 

through this process is referred to as the PTD-1D solution because it originates from the 

solution of the 1D PDE of Eq. 3.6.   

 

If the PTDM decomposition process stops at Step D3, then the reconstruction stage 

involves three steps. The first is described by 
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which represents the inverse FCT-1 applied to Eq. 3.11 and restores the x-coordinate.  The 

next two steps in the reconstruction process involve the sequential applications of the 

inverse FCT transforms ( )  1

1, , ,   cx y l t −=F  and ( )  1

1, , , cx y z t −= F  that are the 

same as those described by Eqs. 3.12 and 3.13, and restore the y- and z-coordinates, 

respectively. The final solution ( ), , ,x y z t  is numerical in time and analytical in the x-, 

y- and z-coordinates, and the actual pressure P corresponding to it can be retrieved from a 

 vs. P relationship such as the one in Fig. 3.2. It is referred to as the PTD-0D solution 

because it originates from the inversion of the zero-dimensional Eq. 3.11.   
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3.3.4 Decomposition Stage: Dirichlet Inner-Boundary Conditions 

For Dirichlet conditions (constant or time-variable pressure) at x = 0, the process up to 

Step D2 of the Decomposition Stage that has already been described remains the same.  

However, the FCT-1 cannot be used because it applies to cases when both boundaries are 

of the Neuman type. Instead, because of the presence of one Dirichlet boundary at x = 0, 

the FCT of the 2nd kind (FCT-2) needs to be involved (see Appendix A).   

 

3.3.4.1 Step D3: Second Option - The Third FCT of the Gas Flow Equation in the x-

Direction 

Taking the FCT-2 of Eq. 3.6 along the x-axis (see Appendix A), and considering 𝑄𝑥=0 =

0 and applying 
xx L r= =ξ ξ , we obtain the following ODE: 

( )
22 2

2
2

2 1

2
x y z t

x y z

m n l
k k k c

L L L t

  


   −   
 − + +  =            

 ..................................... (3.15) 

where  2 2c  = F and m is the integer parameter of the FCT-2 space corresponding to 

the x-coordinate.  

 

Rearranging Eq. 3.15 yields the following non-homogeneous ODE: 

 

2
2E

t



= 


 .............................................................................................................. (3.16) 

where 

( )
( )

22 2
2 1

/
2 

x y z t

x y z

m n l
E k k k c

L L L

  


   −  
 = − + +           

 ................................................ (3.17) 
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Eq. 3.16 can be solved by the FD method in time, or by using Laplace transforms within 

each t (as has already been discussed previously).  The Laplace transform of Eq. 3.16 

leads to the simple algebraic equation  

( )2 2 20s t E − = =   ............................................................................................ (3.18) 

where  2 2 = L , and {}L   represents the Laplace transform of the quantity within the 

brackets.  Because the timestep is small, tc  can be assumed to be constant as long as 

the pressure changes during it are very small (P < 2.5% P0). Then, within this timestep, 

inversion of 2  yields the following solution: 

12, 2, 
j j

E t

t t e 

−

 =   ....................................................................................................... (3.19) 

where j and j-1 denote the current and previous the timestep.  

 

3.3.5 Reconstruction Stage: Dirichlet Inner-Boundary Conditions 

If Step D3 in the Decomposition Stage is as described by Eq. 3.15, then application of the 

inverse FCT-2 (see Appendix A) in the first step of the Reconstruction Stage restores the 

x-coordinate and results in the following solution in the (x+n+l+t) multi-transformed 

space: 

( )   ( )
( )1

c2 2 2

1

2 12
, , ,   , , , cos

2mx x

m x
x n l t m n l t

L L

 
 −

=

 −
=  =   

 
F  ................................ (3.20) 

The next two steps in the reconstruction process involve the sequential applications of the 

inverse FCT-1 transforms ( )  1

1, , ,   cx y l t −=F  and ( )  1

1, , , cx y z t −= F
 
.  These are 

the same as those described by Eqs. 3.12 and 3.13, and restore the y- and z-coordinates, 
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respectively.  For the same reasons discussed earlier, this   solution of the pseudo-

pressure is referred to also as the PTD-0D solution, and provides the corresponding P 

solution.  

 

3.3.5.1 Application to "Boundary" Stencils 

These are stencils associated either with the end HFs of horizontal wells (i.e., the first and 

last HFs along a horizontal well, in which case 𝐿𝑥 → ∞) or with the outermost horizontal 

wells in a system of parallel horizontal wells (in which case 𝐿𝑦 → ∞). The solutions 

presented thus far apply unchanged if the PTDM code (which is a very short and efficient 

code, given the need for limited inputs) is written in a general manner that allows the user 

the option of using double or quad precision variables.  Selecting the option of quad 

precision variables (which in FORTRAN95 provides 32 decimal place accuracy and a 

maximum value of ±1.1897 × 104932), in addition to (a) a very large value for Ly and/or 

(b) a very large value for Lx (for use in the PTD-0D equations, or to be discretized in the 

PTD-1D option) enables the use of the equations described earlier without any 

modification. 

 

3.4 PTDM Validation and Application 

 

In most of the problems considered, the PTDM results are compared to the FTSim results 

in an effort to validate the PTDM method and gain confidence in its power and abilities. 

Comparisons include pressure distributions within the body of the domain, as well as flow 

rates at the fracture surface at x = 0 (for Dirichlet boundaries) or pressures at the same 
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location for Neuman boundaries. The problems we investigated include (1) fully-

penetrating fracture (i.e., covering the entire surface of the domain boundary at x = 0) with 

constant production rate, (2) fully-penetrating fracture with constant pressure at the HF 

face, (3) fully-penetrating fracture with linearly-declining production rate, (4) fully-

penetrating fracture with linearly-declining fracture pressure, and (5) fully-penetrating 

fracture with constant fracture pressure and heterogeneous matrix properties. In order to 

evaluate the computational efficiency of the PTDM, the execution times of the 

computation of the solutions at a certain number of points in the domain have been 

recorded and analyzed.  

 

In this section, we provide the results from several verification/validation studies, as well 

as in some application studies.  Both the PTD-1D and the PTD-0D results are presented, 

and in the verification studies they are compared to those obtained from the FTSim 

simulations using 3D domains (stencils) subdivided in 220,000 elements.  The dimensions 

of the simulated stencil, as well as all the system relevant properties and conditions, are 

provided in Table 3.1 and show the limited data inputs needed for application of the 

PTDM.  Note that results are presented for a system involving 50 HFs, i.e. 50 × 8 = 400 

stencils.  
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Table 3.1 — Inputs in the PTDM and the FTSim simulations*. 

Parameter Value 

Initial reservoir pressure Pi 3 x 107 Pa ≈ 4,351 psi 

Fracture pressure pwf 6.894757 x 106 Pa ≈ 1,000 psi 

Production rate qc 0.001 kg/s per stencil ≈ 1.8 MMscfd from 400 

stencils              

Initial reservoir temperature T 65°C = 338.15 K 

Gas Composition 100% Methane 

Matrix porosity 𝜙 0.3 

Matrix compressibility cm 1 x 10-9 Pa-1 

Matrix permeability (undisturbed) kx = ky = kz 1.5 x 10-19 ≈ 0.15 µD    

Half of fracture interval Lx 10 m 

Half of fracture length Ly 60 m 

Half of fracture height Lz 5 m 

* The gas properties are described by the Peng and Robinson (1976) cubic equation of state (EOS) 

 
 

 

3.4.1 Validation Cases 

3.4.1.1 Case 1: Constant Production Rate q at x = 0 (Neuman Boundary) 

Fig. 3.4 shows that the PTD-1D results are in very good agreement with the FTSim results, 

matching perfectly at early times. There is a small deviation near the x = 0 boundary that 

increases at time advances and the pressure in the reservoir becomes more depleted, thus 

increasing the non-linearity of the μct term in Eq. 3.1. A possible reason for this deviation 

is the fact that discretization in the PTD-1D solution was not sufficiently fine in the 

vicinity of this location.  The average deviation between the PTD-1D and the numerical 

solutions is 0.58% over the 2-year simulation period, indicating a reliable solution method.  
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On the other hand, PTD-0D provides solutions that compare well with the FTSim ones 

only at early times (t ≤ 6 months), but then the deviations increase rapidly and become 

unacceptably high.  The reason for this behavior is not only the increasing non-linearity 

as time advances, but also the strong dependence of the μct term in Eq. 3.1 not only on 

pressure but also on the location along the x-coordinate.  This dependence on the location 

cannot be captured by the FCT, hence the unsatisfactory performance.  In other words, the 

initial pressure-based equation that includes P-dependent terms associated with the spatial 

derivatives cannot be set in the form of Eq. 3.1 if multiple FCTs are to be used without 

any discretization in a key direction because this inappropriately removes the location 

dependence of these terms. 

 

The average deviation between the PTD-0D and FTSim is only 0.18% during the first five 

months of production, and thus this is a perfectly adequate solution not only for estimation 

of the system behavior during early production but also for history matching and 

parameter estimation if there is an execution time advantage over the PTD-1D solutions 

(which is not the case, as will be shown later).  Obviously, the use of the PTD-0D solution 

is not advisable for long-term studies of production from shale gas reservoirs.  

 

The well-flowing pressure from the PTD-1D solution shows a very good agreement with 

that from FTSim (Fig. 3.5) for a long time and begins to exhibit deviations (increasing 

over time) only at late times when the pressure drop is over 2/3rds of the original pressure. 

However, these deviations remained small and within an acceptable range for the entire 
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2-yr production period, and are consistent with the observations in the estimates of the 

pressure distributions of Fig. 3.4.  As discussed earlier, it is expected that even better 

results can be obtained for a finer discretization of the x-axis. The increasing deviations at 

later times occur because the nonlinearity in the 𝜇ct term becomes much more pronounced 

(increasing rapidly) as pressure decreases. 

 

 

Figure 3.4 — Case 1: Evolution of the pressure distribution over time in the x-

direction for constant-rate production: comparison of the FTSim,  

PTD-1D and PTD-0D solutions.   
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Figure 3.5 — Case 1: Evolution of flowing bottomhole pressure pwf over time for 

constant-rate production: comparison of the FTSim and PTD-1D 

solutions.  

 

3.4.1.2 Case 2: Constant Bottomhole Pressure pwf at x = 0 (Dirichlet Boundary) 

In this case, the PTD-1D results match almost perfectly the FTSim results (Fig. 3.6), with 

their predictions differing by only 0.09% on average. On the other hand, the PTD-0D 

results are in good agreement with the PTD-1D and the FTSim solutions for t < 6 months.  

For t > 6 months, the deviations of the FTSim and PTD-0D predictions increase as time 

advances for the reasons already explained (i.e., the spatial variation of the μct term in Eq. 

3.1, which is not considered in the successive FCT transforms), making PTD-0D over-

predict the pressure near the fracture (x = 0) and under-predict it near the outer boundary 

(x = Lx).  

 



 

102 

 

 

A comparison of the time-variable production rates in Case 2 in Fig. 3.7 shows an 

excellent agreement of the FTSim and the PTD-1D predictions. The superiority of the 

PTD-1D in this and in Case 1 over the PTD-0D approach is due to the spatial discretization 

along the x-direction, which accurately captures the variability of the μct term along this 

crucial coordinate. As expected, the production rate shows a pattern of exponential decline 

with time, which is typical for constant-pressure production. 

 

 

 

Figure 3.6 — Case 2: Evolution of pressure distribution over time in the x-direction 

for constant-pressure production: comparison of the FTSim, PTD-1D 

and PTD-0D solutions.   
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Figure 3.7 — Case 2: Evolution of the gas production rate q over time for constant-

pressure production: comparison of the FTSim and PTD-1D solutions.   

 

In both Cases 1 and 2, the PTD-1D results match very well the FTSim ones. This is mainly 

because both PTD-1D and FTSim considered the spatial discretization in x and the gas 

properties were calculated separately in each element as functions of the pressure there. 

Conversely, the application of an FCT in the x-direction in PTD-0D leads to a solution 

that depends on the μct value only at the end of the previous time step, without accounting 

for spatial variability along x. This assumption may hold true early in the production period 

when the pressure remains high, but becomes progressively weaker as μct increases rapidly 

with a declining pressure.    

 

The average deviations between the FTSim and the PTD-1D and PTD-0D solutions for 5 

months and 2 years of production are shown in Tables 3.2 and 3.3, respectively.  
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Table 3.2 — Average deviations between the FTSim and the PTD-1D and PTD-0D solutions over 5 

months of production. 

Inner Boundary Condition PTDM Avg Percent Deviation from FTSim Result 

Neuman (Constant rate) 
0D 0.18% 

1D 0.09% 

Dirichlet (Constant pressure) 
0D 0.97% 

1D 0.10% 

 

Table 3.3 — Average deviations between the FTSim and the PTD-1D and PTD-0D solutions over 2 years 

of production. 

Inner Boundary Condition PTDM Avg Percent Deviation from FTSim Result 

Neuman (Constant rate) 
0D 2.49% 

1D 0.58% 

Dirichlet (Constant pressure) 
0D 1.92% 

1D 0.09% 

 

3.4.2 Additional Application Cases 

In the following cases, we investigate the performance of the PTDM method during gas 

production with (a) linearly-declining production rate and (b) linearly-declining fracture 

(boundary) pressure, as well as (c) in heterogeneous domains. 

 

3.4.2.1 Case 3: Linearly-Declining Production Rate q at x = 0 (Neuman Boundary) 

With a linearly-declining production rate (from q = 0.001 kg/s at t = 0 to q = 0.0005 kg/s 

at t = 2 years), it is obvious that the pressure depletion in Case 3 is slower than that in Case 

1 with a constant q.  This becomes evident from the comparison of the spatial distribution 

of pressures in Case 3 (Fig. 3.8) to the results from Case 1 (Fig. 3.4).  Note that the FTSim 

simulation results match perfectly the PTD-1D predictions and are not included in Fig. 
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3.8.  For reasons already explained, the PTD-0D solutions are accurate for t < 6 months, 

but increasingly deviate from the FTSim and PTD-1D solutions at later times. At early 

times, pwf in Case 3 is still close to that in Case 1 because the production rate has not 

declined sufficiently to begin affecting pwf (Fig. 3.9).  This changes with time and the 

divergence of pwf in Case 3 and the declining rate leads to higher pwf.  The pwf predicted 

from the FTSim simulation coincides with the PTD-1D solution and is not included in Fig. 

3.9.  

 

Figure 3.8 — Case 3: Evolution of pressure distribution over time in the x-direction 

for a linearly declining production rate: comparison of the PTD-1D and 

PTD-0D solutions.   
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Figure 3.9 — Case 3: Evolution of flowing bottomhole pressure pwf over time for a 

linearly declining production rate. The flowing bottomhole pressure for 

a constant rate (= initial) is also shown for comparison.   

 

3.4.2.2 Case 4: Linearly-Declining Bottomhole Pressure pwf at x = 0 (Dirichlet 

Boundary) 

In this case, the boundary pressure pwf declines linearly from 1000 psi at t = 0 to 500 psi 

at t = 2 years. The corresponding evolutions of the spatial distribution of pressure on the 

y = 0 plane are shown in Fig. 3.10, which clearly indicates the declining boundary pressure 

at the HF as time advances. The PTD-1D results coincide with the FTSim results (which 

are not included in Fig. 3.10).  Correct application of the PTD-0D approach requires the 

use of the primary variable 𝜉𝑟 in Eq. 3.1 and the application of an FCT of the 2nd kind.  

The PTD-0D results in Fig. 3.10 have been obtained with a constant 𝜉𝑟, which explains 

the larger than usual deviations even at relatively earlier times. 
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Because of the continuously declining pressure at the HF (x = 0) boundary, the gas 

production rate is expected to be higher than that for the constant pwf of Case 2.  Fig. 3.11 

confirms this expectation, with production being practically the same with that for a 

constant pwf initially (when insufficient time has passed for a significant pressure decline) 

but increasing continuously as time advances. Note that the logarithmic scale of the gas 

production rate on the y-axis of Fig. 3.11 makes it somewhat difficult to easily observe 

the significant larger production in Case 4. 

 

Figure 3.10 — Case 4: Evolution of pressure distribution over time in the x-direction 

for a linearly declining boundary pressure: comparison of the PTD-1D 

and PTD-0D solutions (the FTSim solutions coincide with the PTD-1D 

solutions and are not included in this figure).   
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Figure 3.11 — Case 4: Evolution of the gas production rate q over time for a linearly-

declining boundary pressure production: comparison of the PTD-1D 

solution with that from Case 2 (the FTSim solution coincides with the 

PTD-1D solution and is not included in this figure). 

 

3.4.2.3 Case 5: Constant Bottomhole Pressure pwf at x = 0, heterogeneous domain 

with SRV (Dirichlet Boundary) 

In addition to the superiority of performance already identified, the PTD-1D formulation 

has a major advantage over PTD-0D when subdomain heterogeneity is involved, e.g., in 

the case of a system involving a stimulated reservoir volume (SRV) subdomain in addition 

to undisturbed rock matrix. The spatial discretization in the x-dimension allows PTD-1D 

to easily describe the subdomain heterogeneity, i.e., in the same manner as in the FTSim 

and any other numerical simulator that involves spatial discretization. The higher 

permeability and porosity in the SRV subdomain of Fig. 3.12 are associated with faster 

pressure depletion than in the adjacent subdomain of undisturbed rock. The results in Case 

5 shows that the PTD-1D solution matches almost perfectly the FTSim one over the entire 
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2-yr-long production period, with the average deviation between the two being 0.46%. 

The predictions of the production rates from the two methods also coincide, as Fig. 3.13 

clearly shows. 

 

 

Figure 3.12 — Case 5: Evolution of pressure distribution over time in the x-direction 

in the heterogeneous system with constant-pressure production: 

comparison of the PTD-1D and FTSim solutions.   



 

110 

 

 

 

Figure 3.13 — Case 5: Evolution of the gas production rate q over time in the x-

direction in the heterogeneous system with constant-pressure 

production: comparison of the PTD-1D and FTSim solutions.   

 

3.5 PTDM Execution Times 

 

In order to investigate the computational efficiency of the PTDM (compared to that of the 

standard numerical simulation of FTSim) and the relative performance of the PTD-1D and 

PTD-0D options, we recorded the execution times needed to obtain the pressures at 1,001 

locations in the domain after t = 2 years of production, i.e., at a time when the domain 

pressure is substantially depleted. Remember that PTDM does require time discretization 

to reach the time t at which results are desired, and the time-step is such that the maximum 

pressure change P is maintained consistently at a level P < 2.5 P0.  Thus, the later the 

time at which an output is required, the longer the execution time.  

 

PTD-0D involves no spatial discretization, allowing pressure predictions at any location 

(x, y, z) in a homogeneous domain (stencil).  We have already discussed its limitations 
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when subdomain heterogeneity is involved.  On the other hand, PTD-1D requires 

discretization in the x-dimension and the corresponding solution needs to be calculated as 

an array at all individual 1,001 x-locations.  

 

Tables 3.4 and 3.5 show the execution times for the PTD-1D and PTD-0D solutions for 

cases 1 to 5. All computations were performed using the Microsoft Visual Studio 

Community 2017 (Version 15.9.15) and a platform with Intel® Core™ i7-7700HQ @ 

2.80 GHz processors (8CPUs) running serially on Windows 10 Home 64-bit (10.0, Build 

18362). Table 3.4 shows execution times without updating the ct term in Eq. 3.1 during 

a timestep (which remains constant at its initial value during the PTDM computations). 

Table 3.5 shows the execution times when the term ct is continuously updated at each 

timestep by iterating until convergence to a desired level is reached. 

 

The results in Tables 3.4 and 3.5 confirm the superiority of the PTD-1D over the PTD-

0D option in terms of computational efficiency, in addition to the other advantages already 

discussed (superior accuracy and applicability to heterogeneous domains). PTD-0D 

requires 1 to 2 orders of magnitude longer execution times the PTD-1D because the 

additional computations of the inverse FCTs can be quite time consuming. The iterations 

to update the ct significantly increase (at least double) the execution times, but, 

remarkably, without improving perceptibly the accuracy of the solutions (as the iterated 

and non-iterated solutions differ by less than 0.2 %).   
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For reference, in Case 2 the computations to obtain the FTSim numerical solutions of the 

220,000-element model after 20 timesteps required a computation time of 1,998 sec when 

running the simulator in a parallel (Open MP) mode using 20 processors on a cluster of 

9,632 cores running on a Linux (CentOS 7) system.  At the end of the 20 timesteps 

(beginning with a t = 1 sec), a production period of less than 2 sec was covered in this 

case because the drastic pressure differential at the HF boundary at t = 0 create very steep 

solution surfaces that are difficult to resolve and require very short timesteps, forcing t 

cutbacks. When Case 1 was solved on the cluster with the same number of processors, 

2,133 sec were required and covered a production period of 12.1 days because this is a 

much easier (numerically) problem.  Neither of these two solutions was anywhere close 

to the 2-year mark of the PTDM solutions. The obvious conclusions from these results are 

that (a) the PTD-1D can be orders or magnitude faster than a corresponding numerical 3D 

solution for the same problem (even its serial solution is at least 2-3 orders of magnitude 

faster than a parallel solution on a cluster), (b) PTD-1D is at least 1-2 orders faster than 

PTD-0D, and the latter run serially is still at least an order of magnitude faster than a 

parallel FTSim solution and (c) there is no benefit in attempting to iterate on the nonlinear 

terms in the PTDM solutions. 
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Table 3.4 — Execution Times for PTDM over 2 years of production (no iteration within each timestep). 

Execution time (sec) of 1001 locations PTD-0D PTD-1D 

Case 1 Constant rate 158.295 1.978 

Case 3 Linearly-declining rate 132.117 1.539 

Case 2 Constant pressure 13.558 3.523 

Case 4 Linearly-declining pressure 51.694 29.794 

Case 5 Constant pressure with sub-domains N/A 4.190 

 

 

Table 3.5 — Execution Times for PTDM over 2 years of production (iterations to convergence within 

each timestep). 

Execution time (sec) of 1001 locations PTD-0D PTD-1D 

Case 1 Constant rate 860.262 3.929 

Case 3 Linearly-declining rate 583.224 2.471 

Case 2 Constant pressure 21.624 8.552 

Case 4 Linearly-declining pressure 93.673 80.500 

Case 5 Constant pressure with sub-domains N/A 8.825 

 
 

3.6 PTDM Summary 

 

The Partial Transformational Decomposition Method (PTDM) is a hybrid approach that 

provides solutions to the non-linear problem of gas production in fractured shale gas 

reservoirs that are numerical in space and analytical (or a combination of analytical and 

numerical) in space.  The method begins by formulating the diffusivity PDE of gas flow 

in terms of a pseudo-pressure based primary variable, which removes the non-linearity 

associated with the spatial derivatives and transfers all non-linearities (caused by the high 
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compressibility of gases) to the time derivative.  Successive Finite Cosine Transforms 

(FCTs) are then applied to the reformulated PDE in the 3D domain of the stencil of these 

simulations, leading to the elimination of the corresponding dimensions.   

 

If two levels of FCTs are applied, the initial 3D PDE in space and time is transformed into 

a 1D PDE in the x-direction and time that is solved by means of a Finite Difference method 

in the multi-transformed space.  This is the basis of the PTD-1D option of PTDM.  If three 

levels of FCTs are applied, the initial 3D PDE is transformed into a simple ODE in time 

only, which is the basis for the PTD-0D option and is solved by means of Laplace 

transforms.  Both PTD-1D and PTD-0D require time discretization, and the use of Laplace 

transforms are limited to local time subdivisions, i.e., each timestep.  The PTD-1D and 

PTD-0D solutions at each timestep in their respective multi-transformed spaces are then 

inverted through inverse FCTs to yield solutions at any point in time and the 3D space.  

These solutions are either fully analytical in space (in the case of PTD-0D) or analytical 

in 2D and numerical in the x-coordinate (in the case of PTD-1D).   

 

In the case of PTD-1D, the 3D discretization required by numerical models is replaced by 

discretization along a single coordinate, yielding only a limited number of equations that 

are orders of magnitude fewer than those in a standard 3D numerical simulation.  The 

inverse FCTs in both the PTD-1D and PTD-0D involve considerable computational effort, 

but this is still dwarfed (again, by orders of magnitude) compared to the work required for 
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the solution of the matrices in the high-definition 3D numerical simulations needed to 

accurately describe the behavior of these ultra-low permeability shale gas reservoirs.  

 

Thus, PTDM offers significant advantages over conventional 3D simulators. It requires 

either minimal discretization (along a single coordinate) or no discretization at all, and 

provides fast solutions at any point in the 3D space and time. This approach requires 

limited input data and has computer memory storage requirements that are minuscule 

compared to those required for 3D numerical solutions using conventional simulators, 

with execution speeds that are orders of magnitude faster. The elimination of spatial 

discretization also saves time and effort that is required to create a 3D grid system (a 

tedious complicate process that involve a lot of inputs and personal expertise). Note that 

the computational process for the inverse FCTs is particularly well suited for parallel 

computing if so desired, although this is not generally needed because serial computing 

can provide predictions at thousands of locations in a 3D domain in as little as fractions 

of a second. 

 

Of the two PTDM versions, PTD-1D appears to be by far the superior option; it is 1-2 

orders of magnitude faster than PTD-0D (and the latter is still orders of magnitude faster 

than a standard numerical solution), it offers superior accuracy because it provides spatial 

dependence of the non-linear terms in the flow equation over long production periods, and 

allows the consideration of heterogeneous subdomains (such as SRVs).  Thus, in the 

presence of the more powerful PTD-1D, the applicability of the PTD-0D solution is 
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expected to be limited to cases where the early behavior of a multi-fractured shale gas 

system is investigated and there is no desire for space discretization.   

 

The speed and efficiency of the PTDM method makes it particularly appealing for early 

investigations of the production potential of shale gas resources before the development 

of the reservoir, for the analysis of pressure interference in multi-fractured parallel 

horizontal wells, and for the parameter identification in such systems by means of history 

matching using (preferably early, especially in the case of PTD-0D) production data.  Note 

that significant effort is in progress to enhance the theoretical basis of PTDM and expand 

its applicability to 3D systems with complex domains with significant heterogeneities. 
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CHAPTER IV  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK 

 

4.1 Summary 

 

We developed an advanced TDM-based solution to the problem of three-dimensional oil 

flow through, and production from, a multi-fractured shale oil reservoir based on the TDM 

of Moridis (1995). The method includes two stages.  In the decomposition stage, TDM 

eliminates time and space by using LT and multiple FCTs, respectively, leading to either 

a simple 1D analytical solution or a trivial algebraic solution in the multi-transformed 

space. In the reconstruction stage, successive inversions of the TDM solutions yield fast 

solutions applicable to any point in space and time. These solutions are analytical in space 

and semi-analytical in time, as they involve numerical inversions of the Laplace-space 

solutions. A set of TDM solutions was derived, reflecting different boundary conditions 

and the number of dimensions eliminated by the FCTs: the TD-0D involved elimination 

of all three dimensions, and TD-1D elimination of only two.  The TDM solutions were 

coded in FORTRAN95 and were validated against results from the FTSim numerical 

simulator. Both the TD-0D and the TD-1D solutions were shown to be in excellent 

agreement with the FTSim results regardless of the choice of the method (StA or DHM) 

for the numerical inversion of the LT-space solutions. However, the DHM was shown to 

be superior to StA in problems involving steep solution fronts, e.g., in the case of step-

wise boundary pressure changes over time (see Appendix C). 
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We also developed the PTDM-based solution to the problem of three-dimensional gas 

flow through, and production from, a multi-fractured shale gas reservoir. PTDM is a 

hybrid numerical-analytical method that retains time-discretization (as dictated by the 

strongly non-linear behavior of the gas) but reduces or eliminates spatial discretization.  

Like TDM, PTDM involves two stages.  In the decomposition stage, application of 

multiple FCTs leads to either a simple ODE in time or a 1D PDE in space and time in 

multi-transformed spaces. The reconstruction stage involves successive applications of 

inverse FCTs to restore the dimensionality of the system, and either standard FD time 

discretization or application of localized Laplace transforms to yield analytical solutions 

within each time step.  The time steps are sufficiently short to ensure that the non-linear 

terms remain practically constant during each time step, and this is achieved by limiting 

the maximum pressure change ΔP between successive timesteps to < 2.5% of the initial 

P0. The PTDM solutions are analytical or numerical in space, and semi-analytical or 

numerical in time. A set of PTDM solutions was derived, reflecting different boundary 

conditions and the number of dimensions eliminated by the FCTs: the PTD-0D involved 

elimination of all three dimensions, and PTD-1D elimination of only two.  In essence, the 

advantage of PTD-1D is that it reduces the 3D PDE of gas flow to an 1D PDE.  The PTDM 

solutions were coded in FORTRAN95 and were validated against results from the FTSim 

numerical simulator. The PTD-1D solutions were also shown to be in very good agreement 

with the FTSim results (often coinciding with them), but the PTD-0D solutions were 

sufficiently accurate only at early times (t < 6 months). 
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The superiority of the TD-1D over the TD-0D method, as well as that of PTD-1D over the 

PTD-0D, were indicated not only by their generally higher accuracy but also by their 

significantly higher computational efficiency, as demonstrated by the execution times. The 

TD-0D and the PTD-0D methods require 1 to 2 orders of magnitude longer execution 

times than the TD-1D and the PTD-1D, respectively, because of the additional 

computations for the inversion of the FCT of the 3rd dimension was shown to converge 

slowly and, thus, to be quite time consuming.  

 

4.2 Conclusions 

 

We derived the following conclusions from this work: 

 

1. TDM and PTDM are applicable to the problems of three-dimensional single-phase 

oil and a single-phase gas flow in/through the multi-fractured horizontal well system, 

respectively. The validation results show that both TD-1D and TD-0D yield solutions 

that are in excellent agreement with those from a numerical simulator. The PTD-1D 

results are in very good agreement (and often coincide) with the numerical simulation 

solutions; the PTD-0D results are also in very good agreement with the numerical 

predictions at early times (t < 6 months), but they begin to show progressively larger 

deviations for longer times. 

 

2.  Both TDM and PTDM can handle various production and system conditions such as 

(a) time-variable production rate or time-variable bottomhole pressure, (b) fully 
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penetrating fracture or partially penetrating fracture and (c) heterogeneous sub-

domains. 

 

3.  In TDM, the use of the more complex and computationally DHM for the inversion 

of the LT-space solutions does not offer any advantages over the much simpler StA.  

However, the superiority of the DHM in the inversion of steep solutions makes it the 

preferred option when sharp changes in the time-dependence of the boundaries (such 

as in the case step-wise changes in bottomhole pressure or production rate) are 

involved. 

 

4.  The elimination or reduction of the spatial discretization in TDM and PTDM results 

in limited input data and very low computer memory storage requirements that are 

practically negligible compared to those for 3D numerical solutions from 

conventional simulators.  The elimination or reduction of the time discretization in 

addition to the elimination or reduction of the spatial discretization drastically reduce 

the execution time requirements over those for numerical simulators, routinely by 

orders of magnitude. Finally, the elimination or reduction of spatial discretization 

drastically reduces the time and effort needed for the creation of the 3D grid system, 

a tedious and complicated process that involve a lot of inputs and specialized 

knowledge and expertise.  

 

5.  The elimination or reduction of the spatial discretization in TDM and PTDM results 

in limited input data and very low computer memory storage requirements that are 



 

121 

 

 

practically negligible compared to those for 3D numerical solutions from 

conventional simulators.  The elimination or reduction of the time discretization in 

addition to the elimination or reduction of the spatial discretization drastically reduce 

the execution time requirements over those for numerical simulators, routinely by 

orders of magnitude. Finally, the elimination or reduction of spatial discretization 

drastically reduces the time and effort needed for the creation of the 3D grid system, 

a tedious and complicated process that involve a lot of inputs and specialized 

knowledge and expertise.  

 

6. Because of their simplicity, ease of application, low input requirements and speed, 

TDM and PTDM are particularly useful for the evaluation of what-if scenarios and 

identification of the factors, conditions and properties that dominate the production 

behavior of shale reservoirs, and to provide indications of their production potential 

before the onset, or at the early stages, of full production operations (when limited 

data are available on the reservoir and its properties). Thus, TDM can provide a large 

number of production estimates (a task much more difficult, if not impossible, for 

large conventional simulators involving very large numbers of elements) to define 

the envelope of possible system performance, and offers the additional benefit of 

being able to describe processes and phenomena that can only be captured at spatial 

scales (as low as at the mm-level) that are beyond the capabilities of most numerical 

simulators, and which may have a significant impact on production.  
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7. TDM and PTDM are very useful tools for the analysis of pressure interference in 

multi-fractured ultra-low permeability reservoirs serviced by parallel horizontal 

wells. Another very significant potential application of TDM and PTDM is in history 

matching and reservoir parameter identification, which is a difficult, cumbersome and 

lengthy process in full 3D studies of numerical simulators involving large numbers 

of elements and covering long production periods.  The large number of computations 

needed for this process can be conducted very effectively using the fast TDM and 

PTDM solutions to provide estimates of the reservoir properties which, if there is a 

need for further refinement, can be used as starting points in conventional, numerical-

based history matching analyses.   

 

4.3 Recommendations for Future Work 

 

The following recommendations for future work are proposed: 

 

1. The current versions of TDM and the PTDM have a limitation in the type of boundary 

conditions they can handle if multiple diverse conditions exist along a given direction. 

Thus, in the case of a partially-penetrating fracture, TDM and PTDM can only be 

applied if the inner-boundary condition involves a time-variable production rate 

because dP/dx is well defined on the entire surface of the x = 0 plane. If a constant or 

time variable bottomhole pressure is applied to the HF, then it is not possible to obtain 

a solution with TDM or PTDM because their current stage of development cannot 

handle the different boundary conditions at x = 0: a known P at the partially-
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penetrating HF and a known dP/dt elsewhere on the x = 0 plane.  Work is in progress 

to resolve this issue. 

 

2. The TDM and the PTDM were coded in a computer program written in FORTRAN 

95. The code was written in a general way, allowing the use of either double or quad-

precision arithmetic through the value of a single input. For problems involving full 

HF penetration, the very fast execution time does not provide an impetus for 

improvements in the computational efficiency and reduction of the execution times.  

The situation is significantly different in the case of partially penetrating HFs because 

the corresponding computations involve cross products that converge slowly.  To 

address such a challenge, parallelization of the TDM and PTDM codes is the 

recommended approach because the computational processes for the inverse FCTs 

and LTs are particularly well suited for parallel computing.  

 

 

 

 



 

124 

 

 

NOMENCLATURE 

 

Variables: 

 

AF  =  surface area of flow, m2 

cm  =  pore compressibility, Pa-1 

co =  oil compressibility, Pa-1 

ct  =  total compressibility, Pa-1 

𝐶𝑇  =  as defined by Eq. 2.6 

d°  =  direction (x,y,z) 

 ciF  =  denotes the Finite Cosine Transform of the i-th kind (i=1,2) of the 

quantity within the brackets 

1  ci

−F =  denotes the inverse Finite Cosine Transform of the i-th kind (i=1,2) 

of the quantity within the brackets 

g =  gravitational acceleration, (= 9.806) m/s2 

j  =  timestep index 

k =  intrinsic permeability, m2 

Ld°  =  total stencil's length in the d°-direction, m 

l  =  integer FCT parameter associated with the z-coordinate 

 L  =  denotes the Laplace transform of the quantity within the brackets 



 

125 

 

 

1  −L  =  denotes the inverse Laplace transform of the quantity within the 

brackets 

M  =  gas molecular weight, kg/mol 

MH  =  number of terms for DeHoog Laplace inversion 

m  =  integer FCT parameter associated with the x-coordinate 

NHF  =  number of hydraulic-fractures 

Ns  =  number of terms for Stehfest Laplace inversion 

n  =  integer FCT parameter associated with the y-coordinate 

P,p  =  pressure, Pa  

P =  maximum pressure changes in a single timestep t, Pa 

pwf  =  bottomhole pressure at HF, Pa 

q  =  production rate, kg/s 

Q  =  production flux, kg/s/m2 

  =   QL  

  =   1cF  

 =   1cF  

R =  the expansion term of the oil density equation as defined by Eq. 2.2 

gasR  =  gas constant, Pa-m3/mol/K 

s =  Laplace space parameter 

T  =  temperature, K or °C 
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t  =  time, sec 

t =  timestep, sec 

U =  Heavyside step function 

𝑢0  =  pseudo-pressure factor (= 2, see Eq. 3.2) 

x  =  Cartesian coordinates, m 

y  =  Cartesian coordinates, m 

Z  =  gas compressibility or z-factor 

z  =  Cartesian coordinates, m 

 

Greek Symbols: 

 

   =  inversion of oil formation volume factor, STB/RB 

   = as defined by Eq. 2.1 

   =  fluid viscosity, Pa-s 

   =  fluid density, kg/m3 

   =  porosity, fraction 

   =  a deviation from the unity of the expansion term of the oil density 

equation as defined by Eq. 2.2 

   =   L  

   =   1c F  

   =   1c F  
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i   =    ( 1,2)ci i =F  

ξ   =  pseudo-pressure (as defined by Eq. 3.2) 

   =  dimensionless primary variable based gas pseudo-pressure  

(as defined by Eq. 3.2) 

   =   1c F  

   =   1c F  

i   =    ( 1,2)ci i =F  

i   =    ( 1,2)i i =L  

 

Subscripts and Superscripts: 

 

-1  =  inverse transform 

0  =  initial conditions 

d°  =  coordinate (= x, y, or z) 

F  =  hydraulic-fracture 

r  =  reference state 

STC  =  standard conditions 

wf  =  flowing well or HF surface 

 

Acronyms and Abbreviations: 

 

AS =  Analytical Solution 
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A/SA =  Analytical/Semi-Analytical Solution 

DHM =  DeHoog Method (DeHoog et al., 1982) for LT inversion 

EOS =  Equations of State 

FCT =  Finite Cosine Transformation 

FD =  Finite Difference 

HF  = Hydraulic Fracture 

HS  = Homogeneous Subdomains 

IFD =  Integral Finite Difference 

LHS =  Left Hand Side 

LIB =  Left Infinite Boundary 

LT  = Laplace Transform 

ODE =  Ordinary Differential Equation 

PDE =  Partial Differential Equation 

PTDM =  Partial Transformational Decomposition Method 

RIB =  Right Infinite Boundary 

SRV  =  Stimulated Reservoir Volume 

StA =  Stehfest Algorithm (Stehfest, 1970a;b) for LT inversion 

TDM  =  Transformational Decomposition Method  

ULP =  Ultra-Low Permeability 
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APPENDIX A 

THE TYPES OF FINITE COSINE TRANSFORM AND THEIR PROPERTIES 

 

This appendix A introduces the Finite Cosine Transformations (FCTs) and their 

applications in the development of the both the Transformational Decomposition Method 

(TDM) and the Partial Transformational Decomposition Method (PTDM).  

 

A.1 Definition of FCTs and Their Properties 

 

In this study, two kinds of finite cosine transformations are considered. The FCT of the 1st 

kind (hereafter referred to as FCT-1) is used to handle Neuman inner-boundary conditions 

at both 0x =  and xx L= , where / x   is well-defined at these locations as a function 

of time only. FCT-1 is defined by the following equation: 

( ) ( )1
0

cos  
xL

c

x

m
m x dx

L
 




 
= =  

 
F  ........................................................................ (A-1) 

where m is the FCT-1 transform variable in x-direction and   is defined on  0,  xL    

 

The FCT-1 of the second derivative is described by the following equation. 
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F  ...................................................... (A-2) 

 

With this transformation, the problem of a 1D second-order partial differential equation 

(PDE) is simplified to a simple algebraic equation. The solution in space (i.e., at any x) is 

obtained by inverting the solution of Eq. A-1 using the following equation: 
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( ) ( ) ( )1

c1

1

1
  0 2 cos l

mx x

m x
m

L L

 
   −

=

  
= = +  

   
F  ...................................................... (A-3) 

 

The FCT of the 2nd kind (hereafter referred to as FCT-2) is applicable to mixed 

Neuman/Dirichlet boundary conditions across the length of one of the dimensions of the 

domain. It applies to problems where / x   is well-defined as a function of time only 

at 0x =  and   is well-defined as a function of time at xx L=  (Thambynayagam, 2011). 

To reverse the location of the two boundaries, we define x  =  xL x−  and then FCT-2 is 

defined by the following equation: 

( ) ( )
( )

c2
0

2 1
cos  

2

xL

x

m
m x dx

L


  

 −
=



=  


F  .......................................................... (A-4) 

where m is the FCT-2 transform variable in x-direction and   is defined on  0,  xL  

 

The FCT-2 transformation of the second derivative is then 

( )
( )

( )
2

2

c2 2

0

2 1 2 1
1

2 2
x

m

xx x x L

m m

x L x L

  
 


=
=

   − −  
= − − − −    

      
F  ....................... (A-5) 

 

With this transformation, the problem with second-order partial differential equation 

(PDE) is simplified to just an algebraic equation. Inversion of FCT-2 to yield   is 

obtained from the following relationship: 

( ) ( )
( )1

c2

1

2 1  2
  cos

2

l

mx x

m x
m

L L

 
  −

=

 −
= =  

 

 F  .......................................................... (A-6) 
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More information on the subject can be found in Thambynayagam (2011).  Using FCTs 

and their properties, TDM and PTDM can be developed to solve the problem of gas 

production from fractured ultra-low permeability (ULP) reservoirs. The following section 

shows how FCTs are applied in the PTDM development. 

 

A.2 The FCTs of the Boundary Conditions 

 

To deal with the partially-penetrating fracture, the stencil could have been divided into 

two to four sub-domains, which will result a complex system of equations. However, using 

the FCT properties allows the problem to be solved within a single domain. 

 

If the fracture at ( )0x =  is fully-penetrating, then the production flux (Q) will be constant 

across the entire y-z cross section. Then, the FCT-1 of the boundary condition can be 

calculated from the following equations: 

( )1,

               when  0
 

    0        
ˆ

     when  0    

z

c z

L Q l
Q Q

l

=
= = 


F  ............................................................ (A-7) 

( )1,

ˆ               when  0ˆ ˆ  
    0         

ˆ

    when  0    

y
c y

L Q n
Q Q

n

 =
= = 


F ........................................................... (A-8) 

 

If the fracture at ( )0x =  is partially-penetrating, extending from y = 0 to FY   and from z 

= 0 to FZ , then the production flux (Q) will be constant in the FY - FZ  section. The         

FCT-1 of the boundary condition is obtained from the following equations: 
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( )1,

               when  0

 
      e

ˆ
  sin      wh n  0    

F

c z z F

z

Z Q l

Q Q L l Z
Q l

l L





=


= =  
 

 

F  .............................................. (A-9) 

( )1,

ˆ               when  0
ˆ ˆ  

ˆ        sin

ˆ

     when  0    
y

F

c y y F

Y Q n

Q Q L n Y
Q n

n L





 =


= =  
 

   

F  ........................................... (A-10) 

 

A.3 The FCTs of the Initial Conditions 

 

The initial pressure is assumed constant in the entire system represented by a stencil.  

When the transformations eliminate two coordinates with uniformly Neuman boundary 

conditions, the FCT-1 of the initial conditions is provided by the following equation: 

( )( )1, 1,

          when  0  and  0

0              others               

y z i

i c y c z i

L L n l
 

= =
= = 


F F  ................................... (A-11) 

 

When the transformations eliminate three coordinates with uniformly Neuman boundary 

conditions, the FCT of the initial conditions is provided by the following equation: 

( )( )( )1, 1, 1,

            when  0, 0  and  0

0               others                

x y z i

i c x c y c z i

L L L m n l


= = =
 = = 


F F F  ........ (A-12) 

 

When the transformations eliminate three coordinates and one of the boundaries represents 

a Dirichlet (constant pressure) condition, the FCT of the initial conditions is given by 

( )( )( )
( )

( )

1

2, 1, 1,

2 1
            when  0  and  0

2 1

0             others                

m

x

y z i

c x c y c z ii

L
L L n l

m


 

− −
= =

 = = −



F F F  ..... (A-13) 
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A.4 FCT Inversions 

 

When the transformations eliminate two coordinates with uniformly Neuman boundary 

conditions, the inversion of the FCT yields the original primary variable   through the 

application of the following equation: 

( )

( ) ( ) ( )

( )

1 1

1 1

0,0 2 0, cos 2 ,0 cos
1

,  

4 , cos cos

l nz y

y z

l n z y

l z n y
l n

L L
y z

L L l z n y
n l

L L

 

 

 
  


 



= =

= =

   
+ +     

    
=  

   
+     

    

 



 ............. (A-14) 

 

When the transformations eliminate three coordinates with uniformly Neuman boundary 

conditions, the inversion of the FCTs described below yields the original primary variable 

 : 

( )

( ) ( ) ( )

( ) ( )

( )

1 1

1 1 1

1 1

0,0,0 2 0,0, cos 2 0, ,0 cos

2 ,0,0 cos 4 0, , cos cos

1
, ,   4 ,0, cos cos

4

l nz y

m l nx z y

l mx y z z x

l z n y
l n

L L

m x l z n y
m n l

L L L

l z m x
x y z m l

L L L L L

 

  

 

 

  

 


= =

= = =

= =

  
 +  +      

   

    
+  +        

    

  
= +    

   

+

 

 



( )

( )

1 1

1 1 1

, ,0 cos cos

8 , , cos cos cos

n m y x

l n m z y x

n y m x
m n

L L

l z n y m x
m n l

L L L

 

  

 

  

= =

= = =

 
 
 
 
 
 
 
 
 
 
 

    
      

   
      +              





 

 ................................................................................................................................... (A-15) 
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When the transformations eliminate three coordinates and one of the boundaries represents 

a Dirichlet (constant pressure) condition, the original primary variable   is obtained from 

the inverse FCT that is described by the following equation: 

( )

( )
( )

( )
( )

( )
( )

( )

1

1 1

1 1

1 1 1

2 1
,0,0 cos

2

2 1
2 ,0, cos cos

22
, ,  

2 1
2 , ,0 cos cos

2

4 , , cos cos

m x

l m z x

x y z

n m y x

l n m z y

m x
m

L

m xl z
m l

L L
x y z

L L L m xn y
m n

L L

l z n y
m n l

L L



 

 

  








 

=

= =

= =

= = =

 −
  

 

 − 
+    

   
=

   −
+      

  

  
+    

   








( )2 1

cos
2 x

m x

L



 
 
 
 
 
 
 
 
 
 
 

 − 
   

  

 

 ................................................................................................................................... (A-16) 

Note that, for the sake of simplicity, time (through the Laplace space parameter s) is not 

included in Eq. A-14 to A-16. 

A.5 Nomenclature 

 

Ld°  =  total stencil's length in the d°-direction, m 

l  =  integer FCT parameter associated with the z-coordinate 

m  =  integer FCT parameter associated with the x-coordinate 

n  =  integer FCT parameter associated with the y-coordinate 

Q  =  production flux, kg/s/m2 

Q̂   =   1,c z QF  

ˆ̂
Q   =    1, 1,c y c z QF F  
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x  =  Cartesian coordinates, m 

𝑥′  =  𝐿𝑥 − 𝑥, m 

y  =  Cartesian coordinates, m 

z  =  Cartesian coordinates, m 

  =   1,c x F  

   =   2,c x F  

  =    1, 1,c y c z F F  

  =      ( ), 1, 1, 1,2ci x c y c z i =F F F  
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APPENDIX B 

TDM SOLUTIONS IN A SYSTEM WITH HETEROGENEOUS SUBDOMAINS 

 

This appendix discussed the approach of both TDM and PTDM in dealing with a system 

comprising heterogeneous subdomains. In PTDM, the system with heterogeneous 

subdomains can be easily handled with the single-dimension discretization involved in the 

PTD-1D option. This allows the seamless description of the heterogeneous subdomain by 

using the formation properties related to each subdomain. The behavior of PTDM with 

heterogeneous subdomain had been demonstrated in Case 5 of Section 3.4. 

 

On the other hand, TDM solutions eliminate all spatial discretization. In systems 

exhibiting heterogeneity along a single dimension, the spatial discretization of the TDM 

solutions is limited to the number of the subdomains.  In that case, ODEs and the 

corresponding analytical solutions in space are developed for each individual 

(heterogeneous) subdomain. The following section demonstrates the development of the 

subdomain-specific ODE approach in the TDM Decomposition stage when dealing with 

a system with heterogeneous subdomains. 

 

B.1 TDM Decomposition Stage, Step 4 – The ODE Approach in a System with 

Heterogeneous Subdomain 

 

If there a subdomain with different properties (e.g., an SRV subdomain) that divides the 

length X of the stencil into two subdomains with lengths X1 and X2 (X = X1 +X2), 
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respectively, then Eq. 2.30 in section 2.3 applies to both subdomains, with the solutions 

of the two subdomain 1 and 2 being 

( ) ( )1 11 1 1 12 1 1exp   exp  B A x B A x = + − .................................................................... (B-1) 

and 

( ) ( )2 21 2 2 22 2 2exp   exp  B A x B A x = + −  ................................................................. (B-2) 

where 1x , 2x  are the local x-coordinates in subdomains 1 and 2, respectively, and 11B , 

21B , 
21B  and 

21B  are parameters to be determined. The derivatives of 1  and 2  are: 

( ) ( )1
1 11 1 1 12 1 1

1

exp   exp  
d

A B A x B A x
dx

  = − −
 

 ...................................................... (B-3) 

and 

( ) ( )2
2 21 2 2 22 2 2

2

exp   exp  
d

A B A x B A x
dx

  = − −
 

 ................................................... (B-4) 

 

The Neuman conditions at the 
2 2x X=  boundary (the midpoint between fractures) 

necessitate that 

( ) ( ) ( )2 2 2 21 2 2 22 2 2exp   exp   0x X B A X B A X = = + − = ......................................... (B-5) 

from which 

( ) ( )21 22 2 2 22 21 2 2exp 2        exp 2  B B A X or B B A X= − =  ............................................... (B-6) 

 

At the boundary between subdomains 1 and 2, the equality of pressures and fluxes dictate 

that 
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( ) ( )11 1 1 12 1 1 21 22exp   exp  B A X B A X B B+ − = +  ........................................................ (B-7) 

and 

( ) ( ) ( )11 1 1 12 1 1 21 22exp   exp  B A X B A X B B− − = −  ................................................. (B-8) 

where 

2 2

1 1

x

x

k A

k A
 = ................................................................................................................ (B-9) 

 

B.1.1 Dirichlet Conditions (Prescribed 0xP = ) at 
1 0=x     , Finite No-Flow Boundary at

2 2=x     X  

For an internal stencil, prescribed (constant or time-variable) Dirichlet conditions at the 

local x1 = 0 boundary (the hydraulic fracture), Eq. B-1 impose that 

( ) ( )11 12 1 1 12 1 1 11  0   0B B x B x B+ =  =  = = − ................................................... (B-10) 

 

Substitution of 12B  and 
21B  or 

22B  (Eqs. B-6 and B-23) into Eqs. B-7 and B-8 yields: 

1 11 2A 22 1 3 11 4A 22 2G    and  GG B B H G B B H+ = + =  ..................................................... (B-11) 

or 

1 11 2B 21 1 3 11 4B 21 2G    and  GG B B H G B B H+ = + =  ...................................................... (B-12) 

from which 

2 1 1 31 4A 2 2A
11 22

1 4 3 2 1 4 3 2

G GG G
 and    

A A A A

H HH H
B B

G G G G G G G G

−−
= =

− −
 .................................................. (B-13) 

or 
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2 1 1 31 4B 2 2B
11 21

1 4 3 2 1 4 3 2

G GG G
 and   

B B B B

H HH H
B B

G G G G G G G G

−−
= =

− −
 ................................................... (B-14) 

where 

( ) ( )1 1 1 1 1exp expG A X A X= − −  ............................................................................ (B-15) 

( )2A 2 2exp 2 1G A X = − − +
 

 ................................................................................... (B-16) 

( )2B 2 21 exp 2G A X = − +
 

 ...................................................................................... (B-17) 

( ) ( )3 1 1 1 1exp expG A X A X= + −  ............................................................................ (B-18) 

( )4A 2 2ξ exp 2 1G A X = − − −
 

 ................................................................................. (B-19) 

( )4B 2 2ξ 1 exp 2G A X = − −
 

 .................................................................................... (B-20) 

( )( ) ( )1 1 1 1 1 20 expH x A X H= −  = − = −  ................................................................. (B-21) 

 

Knowledge of the Bij (i, j = 1,2) coefficients allows the estimation of   at any point x in 

the domain through the application of (a) Eqs. B-1 and B-2 and (b) the use of the local 

variables x1 and/or x2. 

 

Estimation of the flux at the x1 = 0 boundary (= the oil production rate) is obtained from 

the application of Eqs. 2.26 and 2.31 as 

( ) ( )
1 1 1

1

1
0 x 0 x 0 1 11 12

1 0

x

x

A B B
x

   =

=

 
= = − 

 
 ..................................................... (B-22) 
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B.1.2 Dirichlet Conditions (Prescribed 0xP = ) at 
1 0=x     , infinite 2 → x    boundary 

Eq. B-5 dictates that B21 = 0 for 2  X → , in which case ( )2 2exp 2 0A X− =  . Then, Eq. 

B-13 needs to be used, and applies unchanged but with G2A = -1 and G4A =  . 

 

Conversely, when 2  X →− , ( )2 2exp 2 0A X = , Eq. B-14 needs to be used, and applies 

unchanged but with G2B = -1 and G4B = − . Note that in this case 
1 10 x X   and 

2 20 x X  , i.e., the x-coordinates in the two subdomains have all negative values. 

 

B.1.3 Neuman Conditions (Prescribed Q ) at 
1 0=x     , Finite No-Flow Boundary at 

2 2=x     X  

For an internal stencil, for prescribed (constant or time-variable) Neuman conditions at 

the x = 0 boundary, Eqs. 2.26 and 2.31 impose that  

1

1

0

11 12 1 12 11 1

x 0 1

 
x

B B D B B D
A 

=
− = =  = − ............................................................... (B-23) 

Substitution of B12 and B22 (Eqs. 2.36 and 2.33) into Eqs: B-7 and B-8 yields: 

3 11 2A 22 3 1 11 4A 22 4G    and  GG B B H G B B H+ = + =  ..................................................... (B-24) 

or 

3 11 2B 21 3 1 11 4B 21 4G    and  GG B B H G B B H+ = + =  ...................................................... (B-25) 

from which 

3 4A 4 2A 4 3 3 1
11 22

3 4 1 2 3 4 1 2

G G G G
 and   

A A A A

H H H H
B B

G G G G G G G G

− −
= =

− −
 .................................................. (B-26) 
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or 

3 4B 4 2B 4 3 3 1
11 21

3 4 1 2 3 4 1 2

G G G G
 and   

B B B B

H H H H
B B

G G G G G G G G

− −
= =

− −
 ................................................... (B-27) 

where 

( )3 1 1 1 4expH D A X H= − − = −  ................................................................................. (B-28) 

and all other terms are as defined earlier. 

 

B.1.4 Neuman Conditions (Prescribed Q ) at 
1 0=x     , 2 → x    boundary 

As discussed in Dirichlet conditions – infinite boundary, these conditions describe an edge 

stencil associated with the last horizontal fracture ( 2  X →   , i.e., the RIB) or the first 

horizontal fracture (
2  X →−   , i.e., the LIB). The approach to be followed is exactly 

analogous to that discussed earlier. As before, Eq. B-5 dictates that B21 = 0 for 2  X → , 

in which case ( )2 22 0exp A X− = . Then, Eq. B-26 needs to be used, and applies 

unchanged but with G2A = -1 and G4A =  . 

 

Conversely, when 
2  X →− , ( )2 22 0exp A X = , Eq. B-27 needs to be used, and applies 

unchanged but with G2B = -1 and G4B = − . Note that in this case 
1 10 x X   and 

2 20 x X  , i.e., the x-coordinates in the two subdomains have all negative values. 

 

B.2 Nomenclature 

 

X1  =  first subdomain (near fracture) total length in the x-direction, m 
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X2  =  second subdomain (away from fracture) total length in the x-

direction, m 

kx =  intrinsic permeability in the x-direction, m2 

l  =  integer FCT parameter associated with the z-coordinate 

   = as defined by Eq. 2.1 

m  =  integer FCT parameter associated with the x-coordinate 

n  =  integer FCT parameter associated with the y-coordinate 

Q  =  production flux, kg/s/m2 

  =   QL  

  =   1cF  

 =   1cF  

   =  fluid density, kg/m3 

x  =  Cartesian coordinates, m 

𝑥′  =  𝐿𝑥 − 𝑥, m 

y  =  Cartesian coordinates, m 

z  =  Cartesian coordinates, m 

i  =      ( ), 1, 1, 1,2ci x c y c z i =F F F  

1  =  subscript for first subdomain (near fracture)  

2  =  subscript for second subdomain (away from fracture)   
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APPENDIX C 

TDM RECONSTRUCTION STAGE – OPTIONS FOR THE INVERSION OF THE 

LAPLACE SPACE SOLUTION 

 

Here we discuss the two different methods that can be used in the TDM Reconstruction 

stage in order to convert the Laplace-space solutions back to real-space solutions (Referred 

to Step R4 in section 2.3). The two methods that we will discuss is (1) Stehfest Method or 

StA (Stehfest, 1970a;b) and (2) DeHoog Method or DHM (DeHoog et al.,1982).  

 

C.1 TDM Reconstruction Stage, Step 4 – The Inversion of the Laplace Space 

Solution 

 

The inversion of any Laplace space solution ( ), , ,x y z s  from TDM Step R3 is 

accomplished through a numerical process that is based on one of the following two 

methods. The first is the Stehfest algorithm (Stehfest, 1970a;b). The Stehfest algorithm is 

a simple and computationally efficient method, and is widely used for inversion of Laplace 

space equations to yield solutions in time. 

 

C.1.1 The Stehfest Algorithm 

The Stehfest algorithm can be described as follows 

( ) ( ) 
( )

( )
2

1

1

ln 2
, , , , , , , , ,

sN

v v v

v

x y z t x y z s W x y z s
t

  −

=

= =  = L  .............................. (C-1) 

where 1  −L  denotes the inverse Laplace transform of the quantity within the brackets, 
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and 5 ≤ 𝑁𝑆 ≤ 10 (Moridis et al., 1994). 

 

The Stehfest algorithm will work as long as the real space solution ( ), , ,x y z t  is a 

continuous function on ( )0,t  . The accuracy of the inversion depends on the number 

of terms ( sN ) used for the inversion process. Using different values of sN  as an input 

affects the inversion results. Moridis and Reddell (1991a) reported that the method seems 

insensitive to Ns for 6 ≤ Ns ≤ 10 in the solution of the problem of liquid flow through 

porous media using double-precision arithmetic. In this study, we tested a range of sN  

values to arrive at the recommended value of    8sN = .  

 

As mentioned that the Stehfest algorithm works for continuous function on ( )0,t  . The 

method may exhibit limitations in the accuracy of the inversion for particularly steep or 

complex functions (Moridis et al., 1999), as well as step-functions. When the boundary 

conditions are steep functions of time (e.g., step-wise changes in the flow rate or the 

bottomhole pressure), the method of DeHoog et al. (1982) is the recommended option. 

 

 

 

 

 

 

 



 

150 

 

 

C.1.2 The DeHoog Method 

DeHoog Method is a very robust Laplace inversion method that has been shown to be very 

effective in practically any kind of inversion problem, providing very accurate solutions 

in the inversion even of some of the most complex functions with steep fronts (such as 

step-functions). Although the process is more complicated than in the case of StA (as it 

requires the computation of complex numbers), the method is more accurate, more 

versatile and can provide solutions over a wide time period using a single set of computed 

parameters (as opposed to StA, which requires different computations for a solution at any 

time).  

 

In DHM, s is a complex number given by Crump (1976) as 

( )
0 0

ln
,    ,    1,2, ,

2

R

v c H H

Ev
s s i s v N

T T


= + = − =  ..................................................... (C-4) 

where 2T  is the period of the Fourier series approximating the inverse function in the 

interval  0, 2T , 1ci = − , and    2   1H HN M= +  is an odd number. Moridis (1992) showed 

that very accurate solutions were obtained when 0H = , 12 910 10RE− −  , and 

0.9  1.1 max maxt T t  , where 
maxt  is the point in time or space at which a solution is 

required.  Moridis (1992) determined that the minimum MH for an acceptable accuracy is 

5, and that an accuracy comparable to that for the StA is obtained for MH ≥ 6. A unique 

advantage of the DHG method is that it can yield solutions at any time t over the entire 
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range of [0.2T, T] from a single set of the DHM parameters (Moridis, 1992; Moridis and 

Kansa, 1994), i.e., these do not need to be recomputed at any t (as is the case in the StA). 

 

The inversion of the Laplace space solution obtained using the DHM is a more 

complicated process than that for the StA, is outside the scope of this study and will not 

be discussed in detail here. The interested reader is directed to the paper of DeHoog et al. 

(1982) for a thorough description. 

 

C.2 Sensitivity Analysis of the Laplace Inversion’s Computational Parameters 

 

Both the StA and the DHM are numerical methods that yield solutions by computing a 

finite series of terms.  The number of the summation terms in the series can (and will) 

affect the accuracy of the inversion.  The discussion on StA and DHM in the previous 

sections already include discussions on recommendation for the number of terms (Ns and 

MH for the StA and the DHM, respectively) based on earlier studies. 

 

Thus, according to Moridis et al. (1994), the suitable range of Ns are integer between 5 to 

10.  In this study, after testing we used a value of Ns = 8 in the study of all TDM cases. 

Moridis et al. (1999) recommended a value of MH ≥ 10 in DHM inversions.  In this study, 

we used a value of MH = 10 in the solution of most TDM problems, except in the TDM 

Case 8 (in which pwf is time-dependent in the stepwise-constant manner described by Fig. 

2.25) where we used a MH = 14.  

 



 

152 

 

 

This section presents results of a sensitivity analysis of the effect of the summation terms 

on the accuracy of the calculated solutions. In order to evaluate Ns, we computed the 

average deviation between the TD-1D and the FTSim solutions in the validation problem 

in Case 2 (constant pressure pwf at x = 0 or a Dirichlet-type boundary). The sensitivity 

results in Fig. C-1 show an excellent agreement of the two solutions for 5 10SN  , 

consistent with the Moridis et al. (1994) recommendation. A value of Ns = 4 gives a 

substantially higher deviation, and the solutions for Ns = 11 are divergent and clearly 

inaccurate. In conclusion, a value of Ns = 8 yields consistently good results and is used in 

all TDM solutions in this study. 

 

 

Figure C-1 — Case 2: Average Percent Deviation of the TD-1D-StA solutions from 

the FTSim using different Stehfest Parameter (Ns) for constant-pressure 

production pwf (Red denotes inaccurate solutions and Green the 

recommended value) 
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We evaluated the effect of MH on the accuracy of the inversion by computing the average 

deviation between the TD-1D and the FTSim solutions in Case 8 (in which pwf is time-

dependent in the stepwise-constant manner described by Fig. 2.25). The sensitivity results 

in Fig. C-2 show an excellent agreement between the two solutions for a value of MH ≥ 

10, consistent with the Moridis et al. (1999) recommendation. Significant deviations are 

observed for MH = 8 and 9.  Note that, unlike StA, the accuracy of the DHM inversions 

increases monotonically (albeit slowly) by increasing the number of the summation terms 

MH, as Fig.C-2 confirms.  Based on these results, we used a value of MH = 10 in all but 

one (to be discussed later) of the TDM inversions in this study.  A larger MH would yield 

a more accurate solution, but would also require longer execution times with a marginal 

improvement in accuracy. 

 

 

Figure C-2 — Case 8: Average Percent Deviation of the TD-1D-StA solutions from 

the FTSim using different DeHoog Parameter (MH) for the step-wise 

boundary pressure pwf (Green denotes the recommended value) 
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Although MH = 10 provides sufficiently accurate results in most general cases involving 

smooth time-dependent boundary conditions and solution surfaces, it is inadequate in 

cases involving steep fronts and sharp changes in the boundary conditions.  In that case, a 

higher MH is recommended. For example, MH = 14 is recommended in order to accurately 

capture the spikes in the production rate in Case 8 (Fig. 2.27), in which the time-dependent 

bottomhole pressure pwf is described by the stepwise-constant regime described by Fig. 

2.25. Figs. C-3 to C-8 show the evolution of the production rate q calculated using the 

FTSim simulator and the TD-1D solutions obtained with the DHM Laplace inversion and 

MH values ranging from 8 to 18. The results show that the FTSim results with fine temporal 

discretization are matched well by the TD-1D solution with the DHM inversion when MH 

≥ 14 (and acceptably so when MH = 12).  The TD-1D results for MH < 12 are demonstrably 

inaccurate, and the improvements in the solution for MH > 14 are not discernible to the 

naked eye. 
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Figure C-3 — Case 8: Evolution of the production rate q over time at x = 0 for the 

step-wise boundary pressure pwf : comparison of the FTSim and  

TD-1D-DHM with MH = 8. 

 

 

 

Figure C-4 — Case 8: Evolution of the production rate q over time at x = 0 for the 

step-wise boundary pressure pwf : comparison of the FTSim and  

TD-1D-DHM with MH = 10. 
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Figure C-5 — Case 8: Evolution of the production rate q over time at x = 0 for the 

step-wise boundary pressure pwf : comparison of the FTSim and  

TD-1D-DHM with MH = 12. 

 

 

 

Figure C-6 — Case 8: Evolution of the production rate q over time at x = 0 for the 

step-wise boundary pressure pwf : comparison of the FTSim and  

TD-1D-DHM with MH = 14. 
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Figure C-7 — Case 8: Evolution of the production rate q over time at x = 0 for the 

step-wise boundary pressure pwf : comparison of the FTSim and  

TD-1D-DHM with MH = 16. 

 

 

 

Figure C-8 — Case 8: Evolution of the production rate q over time at x = 0 for the 

step-wise boundary pressure pwf : comparison of the FTSim and  

TD-1D-DHM with MH = 18. 
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C.3 Nomenclature 

 

 L  =  denotes the Laplace transform of the quantity within the brackets 

1  −L  =  denotes the inverse Laplace transform of the quantity within the 

brackets 

MH  =  Number of terms for DeHoog Laplace inversion 

Ns  =  Number of terms for Stehfest Laplace inversion 

P,p  =  pressure, Pa  

pwf  =  bottomhole pressure at HF, Pa 

q  =  production rate, kg/s 

s =  Laplace space parameter, see Eq. C-2 or C-4 

t  =  time, sec 

x  =  Cartesian coordinates, m 

y  =  Cartesian coordinates, m 

z  =  Cartesian coordinates, m 

 
 


