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ABSTRACT 

Endogenous Variables and Weak Instruments in Cross-Sectional Nutrient Demand and 

Health Information Analysis: A Comparison of Solutions. (May 2004) 

Rafael G. Bakhtavoryan, B.S., Armenian Agricultural Academy 

Chair of Advisory Committee: Dr. George C. Davis 

 

 In recent years, increasing attention has turned toward the effect of health 

information or health knowledge on nutrient intake.  In determining the effect of health 

information on nutrient demand, researchers face the estimation problem of dealing with 

the endogeneity of health information knowledge.  The standard approach for dealing 

with this problem is an instrumental variables (IV) procedure.  Unfortunately, recent 

research has demonstrated that the IV procedure may not be reliable in the types of data 

sets that contain health information and nutrient intakes because the instruments are not 

sufficiently correlated with the endogenous variables (i.e., instruments are weak). 

This thesis compares the reliability of the IV procedure (and the Hausman test) 

with a relatively new procedure, directed graphs, given weak instruments. The goal is to 

determine if the method of directed graphs performs better in identifying an endogenous 

variable and also relevant instruments.  The performance of the Hausman test and 

directed graphs are first assessed through conducting a Monte-Carlo sampling 

experiment containing weak instruments.  Because the structure of the model is known 

in the Monte-Carlo experiment, these results are used as a guideline to determine which 

procedure would be more reliable in a real world setting. The procedures are then 
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applied to a real-world cross-sectional dataset on nutrient intake. This thesis provides 

empirical evidence that neither the IV estimator (and Hausman test) or the directed 

graphs are reliable when instruments are weak, as in a cross-sectional dataset. 
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CHAPTER I 

INTRODUCTION 

 

According to Variyam and Golan, over the past century consumption patterns of 

many food commodities have changed in the face of changing consumer demand due to 

such major economic factors as constantly changing relative price and income levels 

(USDA, 2002). But many studies have shown that another important factor that also 

affects consumers’ consumption patterns is health information knowledge [e.g., Brown 

and Schrader 1990; Capps and Schmitz 1991; Carlson and Gould 1994; Variyam, 

Blaylock, and Smallwood 1996, 1998]. Many consumers have adjusted their food choices 

according to the health information that they receive from different sources, such as 

government education programs, nutrition facts labels, product health claims, and the 

popular media (USDA, 2002). Consumers can also get nutrition information through the 

sources such as the food guide pyramid and the formulation of quantitative 

recommendations in the dietary guidelines for Americans provided by the US 

Department of Agriculture (USDA). 

Information will continue to be one of the key determinants in affecting 

consumers’ food consumption patterns. Even though many people spend considerable 

time watching programs on TV and listening to the radio, there is also another significant 

source of information, which is the Internet. It creates an additional opportunity to inform 

more and more consumers about the relationship between health information knowledge  

________________ 
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and nutrient intake and the results of that relationship through numerous publications, 

articles, papers, and discussions available on the web. Consumers may keep adjusting 

their product preferences when they become more and more aware of health benefits of 

specific products. They may increase their spending on relatively nutritional and healthy 

products, and cut down on the consumption of relatively less nutritional food. This 

consistent consumption of relatively nutritional and healthy food will benefit consumers 

by eventually reducing their costs on health care (Fries, Koop, and Beadle 1993). Of 

course, in order for this argument to work it is implicitly assumed that the effect from the 

health information is significant. Furthermore, health care costs are a major public 

concern and their reduction (or at least reduction in rate of increase) is the focus for many 

public policy interventions. For policy to be efficiently designed and implemented it 

becomes important to compute accurate parameter estimates of the health information 

knowledge and the nutrient intake relationship. 

The accurate estimation of the relationship between health information knowledge 

and nutrient intake requires using the appropriate procedure. It is expected that health 

information is an endogenous variable. That is true for two reasons. First of all, nutrient 

intake is a matter of choice, and it is up to consumers to decide on the amount of nutrient 

to consume. Second of all, consumers can also choose and control health information. 

That is, they can increase the level of their health information knowledge to some extent 

through reading, television, and the Internet (Park and Davis, 2001). Thus, there is 

expected to be a correlation between the regressor of interest (health information) and the 

disturbance term in a nutrient demand equation. Yet, one of the several assumptions in 

the theory of ordinary least squares (OLS) is that the explanatory variables and the 
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disturbance term must not be correlated. If they are correlated then it becomes impossible 

to isolate the impact of the explanatory variable on dependent variable by the OLS. This 

problem of correlation between an explanatory variable and disturbance term can be due 

to endogeneity or measurement error. When we have the endogeneity or measurement 

error problem then the parameter estimate yielded by the ordinary least squares is biased. 

In this thesis these problems will just be called the endogeneity problem. 

One of the solutions to this endogeneity problem is the method of instrumental 

variables (IV). The objective of instrumental variables, or simply, instrument, estimation 

is to obtain a theory-consistent estimator by finding an instrument that is highly 

correlated with the explanatory variable of interest and uncorrelated with the disturbance 

term, using the method of moments. The method of instrumental variables provides 

consistent parameter estimates when there is a correlation between an explanatory 

variable and the disturbance term. However, for the IV estimator to provide consistent 

parameter estimates, the instrumental variables must satisfy two conditions: 

1. The instrumental variables must be highly correlated with the explanatory 

variable of interest; 

2. The instrumental variables must be uncorrelated with the disturbance term. 

The failure to meet either of these two assumptions will result in the estimation of 

biased and inconsistent parameter estimates. A common approach for determining 

whether the OLS or IV is an appropriate estimation technique is to conduct the Hausman 

specification test (Hausman 1978). However, the Hausman specification test also depends 

on the degree of correlation between the instruments and explanatory variables. That is, 

the higher the correlation between the variable of interest and the instrument, the better 
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the performance of the Hausman test. Conversely, as the correlation between the variable 

of interest and the instrument decreases then the performance of the Hausman test 

deteriorates. It would be appealing to have an alternative to the Hausman specification 

test, because condition 1, and possibly condition 2, may not be satisfied, especially in 

cross-sectional data, where the instruments are often weak.  

A possible alternative to the Hausman specification test is the method of the 

directed graphs. The method of the directed graphs is designed to assign ‘causal’ flows 

between variables that will indicate what variables are endogenous or exogenous. 

However, unlike the Hausman test, we do not know if the directed graphs are a reliable 

method when the correlation between variables is low. 

 

Objectives 

The major purpose of the thesis is the assessment of the Hausman test versus the 

method of the directed graphs in determining the endogeneity of the health information, 

given weak instruments. More specifically the objectives are: 

1. To determine if the method of the ordinary least squares outperforms the method 

of the instrumental variables in terms of yielding unbiased and consistent 

parameter estimates given the low correlation between variables; 

2. To determine how well the Hausman specification test performs when instruments 

are not highly correlated with regressors, or when correlations are low; 

3. To determine how well the method of the directed graphs performs, as an 

alternative to the Hausman specification test, in identifying which variables are 

endogenous and which are exogenous when correlations are low; 
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4. To apply the methods to the real world health information and nutrient intake data 

and contrast the results. 

For the Directed Graph analysis Tetrad II (Scheines, Spirtes, Glymour, and Meek 

1994) software was used. Also, TSP and Microsoft Excel software were used in the 

thesis. 

 

Rationale and Significance 

The successful completion of the objectives will be significant in two aspects: 

econometric and applied. The research will suggest whether the Hausman specification 

test or the method of the directed graphs is more reliable for constructing models when 

instruments are weak. The applied significance will be obtaining an accurate measure of 

the impact of health information knowledge on nutrient intake. If policy makers have 

more accurate estimate of the parameter on health information obtained from the most 

reliable estimation technique, they will know better as to what level of health information 

consumers would need to lead a healthy lifestyle that would eventually lead to the 

reductions in the consumers’ health care costs. The policy makers can influence the 

desired level of information, having the accurate results of the research at hand, through 

expansion of the level of health education programs, thus encouraging the consumption 

of those products and thereby accomplishing the ultimate objective, which is the 

reduction in the health care costs. 

Consumers’ consistent consumption of nutritional and healthy food might result 

in the reduction of the health care costs that will also reduce the cost on government. As 

such, it can be concluded that government has an interest in obtaining accurate parameter 
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estimates on the health information and nutrient demand relationship. In addition to all 

the private sources, such as friends, neighbors, personal physicians, and commercial 

advertising, some of the health information comes from the government regulatory role. 

Through its regulatory role government can mandate that health information be provided 

various ways, or at least foster a clear schematic, such as the Food Pyramid, so that 

people can understand optimal food choices. Also, government spends money on 

numerous health education programs (expanded nutrition program, extension service). So 

it becomes clear that government has a vested interest in obtaining accurate parameter 

estimates on the health information and nutrient intake relationship. As such, a successful 

completion of the thesis will improve the decision-making of government, which will be 

reflected in more effective design and implementation of all types of nutrition 

intervention programs.  

This thesis proceeds in the following manner. A review of the literature will be 

provided in Chapter II. Chapter III will discuss the empirical results from a Monte-Carlo 

sampling experiment and the Hausman test, and the results from the method of the 

directed graphs will also be provided. Chapter IV employs a real-world cross-sectional 

dataset and presents the results from the Hausman Test and the method of the directed 

graphs. Thesis summary and conclusions will be presented in Chapter V. 
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CHAPTER II 

LITERATURE REVIEW 

 

The literature reviewed in this thesis is for the purpose of demonstrating the 

relationship between health information knowledge and nutrient demand, and also for 

presenting some auxiliary procedures for handling the endogeneity issue present in that 

particular relationship. This section consists of two different subsections. Presented first 

is literature showing the relationship between health information knowledge and nutrient 

intake, while the second subsection focuses on the improvement of statistical procedures 

for tackling the health information endogeneity issue.  

 

Literature on Health Information and Nutrient Intake 

Identification of the different economic and socio-demographic factors that 

influence the demand for various nutrients or foods is becoming an increasingly 

important issue. However, mere identification of those factors is just a part of the overall 

picture. Another significant issue that needs to be considered is the technique used in 

measuring the impacts of the economic and socio-demographic factors on the demand for 

different nutrients or foods. Growing scientific evidence suggests that a relationship 

exists between health information knowledge and the nutrient intake [e.g., Brown and 

Schrader 1990; Capps and Schmitz 1991; Carlson and Gould 1994; Variyam, Blaylock, 

and Smallwood 1996, 1998]. However, discussions in some of these papers were done 

subject to some caveats that might possibly arise due to the choosing inappropriate 
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technique (Park and Davis, 2001), or neglecting an important problem, such as 

endogeneity issue. 

The endogeneity issue may be caused by measurement error, meaning that health 

information cannot be measured without error. Also, the endogeneity issue may be 

caused by the fact that consumers may have control over the level of their knowledge. 

That is, consumers can dedicate as much time to becoming more knowledgeable as they 

want, because it is completely up to them. These two problems lead to the endogeneity 

issue. And, given the importance of the accurate estimation of the relationship between 

the health information knowledge and nutrient intake, it becomes crucial to use 

appropriate technique that would take into account the endogeneity issue and yield 

legitimate results from the estimation procedure. In this chapter some of the literature will 

be reviewed in terms of what is the relationship between health information knowledge 

and nutrient intake, or food demand. However, major focus will be on the approach used 

during the estimation procedure. 

Brown and Schrader (1990) investigated the impact of cholesterol information on 

the consumption of the shell eggs. The quarterly time-series data used in the study came 

from 1955-87 and 1966-87 from various sources, such as US Department of Agriculture, 

Bureau of Labor Statistics. Also, data from Livestock and Poultry: Situation and Outlook, 

and Survey of Current Business, Grain and Feed Market News, Fats and Oils Situation, 

and Monthly Labor Review were used. A demand equation included the shell egg 

consumption as a dependent variable, and the price for grade A large eggs to retailers, the 

real price of meat as a substitute, per capita income, cholesterol information index, the 

percentage of women in the labor force, and time (quarterly) as independent variables. 
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The cholesterol index was constructed after reviewing almost 3,200 journals from 

Medline database that contained materials on basic health research. The cholesterol index 

was developed based on the running total of the number of articles that either supported 

or questioned a link between diet cholesterol or serum cholesterol and heart disease. Each 

article that supported a link between cholesterol and heart disease added one unit to the 

running total (lagged two quarters) and each article questioning such a link subtracted 

one unit from the running total. 

A variant of a double log demand equation was estimated using fixed coefficients 

weighted two-stage least-squares (instrumental variables procedure). At first, the demand 

equation for the shell eggs was estimated using the quarterly time-series data from 1966-

87. They were able to obtain the cholesterol information index during that time period. 

However, because of high multicolinearity between some variables, they had to 

reestimate the demand equation using the quarterly time-series data that came from 1955-

87 setting the value of the cholesterol information index to zero before 1966. The results 

of the study employing the data from 1955-87 showed that cholesterol index was 

statistically significant at the 1% significance level. Also, according to the results of the 

study using the data from 1955-87, cholesterol information led to a decrease in a per 

capita shell egg consumption of about 16% by the end of 1986. According to the results 

of the study using 1966-87 data, cholesterol index was significant at the 5% significance 

level, and cholesterol information decreased per capita shell egg consumption by 25% by 

the end of 1986. 

Obviously, in this study the endogeneity problem was handled through 

implementing the instrumental variables procedure, however, the authors did not point 
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out the instruments throughout their discussion, nor did they mention the possibility of 

weak instruments. 

Capps and Schmitz (1991) measured the impact of the health information on the 

consumption of beef, pork, poultry and fish. In their study they employed annual data 

from 1966-1988 from the USDA series Food Consumption, Prices, and Expenditures. 

The dependent variables of the demand equations were the quantity of beef, pork, 

poultry, and fish consumed, and the independent variables included in the demand 

equations were prices of beef, pork, poultry, and fish, total meat expenditure, and the 

cholesterol information index developed by Brown and Schrader. 

After building a Rotterdam model the iterative Zellner estimation procedure was 

used to estimate the coefficients of the demand equation at the 0.10 significance level. 

The estimation results showed that cholesterol information index had a negative effect on 

beef and pork consumption, and had a positive effect on poultry and fish consumption, all 

else held constant. The cholesterol index coefficient estimates of beef, pork, poultry, and 

fish were -0.000219, -0.000884, 0.000892, and 0.00021, respectively. However, the 

cholesterol index coefficient of beef was statistically insignificant. As a result the 

conclusion can be drawn that the cholesterol information had very small effects on the 

consumption of pork, poultry and fish. 

The endogeneity issue was not considered in this study, or, at least no discussion 

regarding checking for the endogeneity was presented in their work, indicating that the 

authors implicitly assumed there was no endogeneity problem. 

Variyam, Blaylock, and Smallwood (1998) estimated the effect of nutrition 

information knowledge on cholesterol consumption. The cross-sectional data used in this 
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study came from the USDA’s 1989-91 Continuing Survey of Food Intakes of Individuals 

(CSFII) and the companion Diet and Health Knowledge Survey (DHKS). Cholesterol 

intake was included in the model as a dependent variable. As independent variables they 

included nutrition information, income, household size, age, sex, race, ethnicity, 

schooling, presence of children in the family, place of living (regional or urbanization), 

employment (part employed, not employed), program participation (e.g., Food Stamp 

Program), body mass index (BMI), being vegetarian, being smoker, dieting status, 

disease, TV hours watched, comparing product nutrition on labels (always, sometimes, 

never). Two variables were included in the model for capturing the nutrition information 

effects, INFO1 and INFO2. While the nutrition variable INFO1 examined consumers’ 

opinions about cholesterol control, without considering any specific diet-health link, the 

nutrition variable INFO2 measured consumers’ ability to name health problems caused by 

excessive cholesterol intake. 

The reduced-form intake and information equations were estimated using a 

generalized probit minimum distance estimator (MDE) to measure the impact of 

consumers’ socio-demographic and attitudinal factors on cholesterol intake. The 

estimation results indicated that the estimate of the INFO1 coefficient was – 0.066, and it 

was significant at the 1% level. The estimate of the INFO2 was -0.243, and it was 

significant at the 10% level. Both results indicate that greater nutrition information leads 

to the reduction in the consumption of cholesterol, ceteris paribus. The results of the 

estimation also showed that, everything else constant, income and BMI variables had a 

significant positive total effect on cholesterol consumption with 10 mg total income 

effect and 44 mg total BMI effect at 1% significance level. The study also found that 
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variables such as age, sex (female), being vegetarian, and being on low-calorie diet had a 

negative significant effect. For example, total age effect was 0.62 mg, total sex (female) 

effect was 91 mg, ceteris paribus, at 1 % significance level. The other independent 

variables included in the model turned out to be insignificant at the 1% significance level. 

The authors handled the endogeneity problem in their analysis by separating 

direct and indirect informational effects of independent variables that had an impact on 

both information and cholesterol intake simultaneously, by treating those variables as 

endogenous. Because of the problem of endogeneity the OLS estimation was considered 

inappropriate. As a result, they used instruments for the information variables included in 

the structural model, thus tackling the problem of endogeneity. Also, it is worth pointing 

out that no weak instrument possibility was mentioned. 

In a study by Carlson and Gould (1994), the authors examined the impact of 

health information on determining dietary fat intake. The cross-sectional data employed 

in this study came from 1989 to 1990 and 1990 to 1991 Continuing Survey of Food 

Intakes of Individuals (CSFII) and companion Diet and Health Knowledge Surveys 

(DHKS). The binary dependent variables in the model were total fat and saturated fat. 

Independent variables included in the models were socio-demographic and attitudinal 

characteristics of the meal planners, such as health awareness, income, age, education 

(less than 12 years education, one to three years of college, four years or more of 

college), race (black), ethnicity (Hispanic), region of residence, disease (having high 

blood pressure or high cholesterol), pregnancy, TV watching (watched no TV yesterday, 

watched about an hour or less of TV yesterday, watched about two or three hours of TV 

yesterday) , the presence of children in the family, the importance of nutrition when 
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buying food (always, sometimes), dieting status (low-fat diet). Dummy variables were 

used to represent health awareness for both total fat and saturated fat: if a meal planner 

was knowledgeable about the relationship between fat (total and saturated) intake and 

health effects the dummy variable took on the value of 1, otherwise 0. 

The probit model was estimated implementing Heckman’s two step estimation 

procedure. In the study they split dietary fat intake into two categories: total fat and 

saturated fat. “Each fat type required estimation of a first-stage probit equation relating 

health knowledge status to a set of meal planner characteristics, and a pair of second-

stage nutrient intake equations, one for each health knowledge regime” (p.377). 

The study found that coefficients associated with health awareness for both total 

fat and saturated fat for the health “aware” regime (when the dummy variable took on the 

value of 1) were -8.981 and -3.465, respectively. Although, both coefficients were 

negative, they appeared to be significant at the 5% significance level. The coefficients 

associated with health awareness for both total and saturated fat for the health “unaware” 

regime (when the dummy variable took on the value of 0) were -5.863 and -1.658, 

respectively. Both coefficients were negative, as well as insignificant at the 5% 

significance level. 

The results also showed that such variables as income, education (one to three 

years of college, four years or more of college), TV watching (watched about an hour or 

less of TV yesterday, watched about two or three hours of TV yesterday), and the 

importance of nutrition when buying food (always, sometimes) had a positive significant 

effect on total fat intake, whereas the effect of race was significant, though negative, at 

the 5% significance level. The effects of the rest of the variables were inconclusive at the 
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5% significance level. For the saturated fat, among the variables that appeared to have a 

positive significant effect was income, the importance of the nutrition when buying food 

(always, sometimes), education (four years or more of college), and TV watching 

(watched no television yesterday, watched about two or three hours of television 

yesterday) at the 5% significance level. Such variables as education (less than 12 years 

education), race (black), and ethnicity (Hispanic) had negatively influenced the saturated 

fat intake at the 5% significance level. The rest of the variables were statistically 

insignificant. 

The information endogeneity issue was addressed by using a switching regression 

models. Another thing that needs to be pointed out is that no weak instrument possibility 

was mentioned in the study. Considering the results of the 1994 study, Carlson and Gould 

made several suggestions regarding implementing education programs that would 

enhance consumer’s awareness on the link between the health knowledge and the fat 

intake specifically involving people with less education, less income, and those who 

watch more hours of television. 

Variyam, Blaylock, and Smallwood (1996) investigated the influence of fiber-

related nutrition information on the dietary fiber intake. The cross-sectional data used in 

the study came from the 1989 Continuing Survey of Food Intake of Individuals (CSFII) 

and the companion Diet and Health Knowledge Survey (DHKS). The dependent variable 

in the model was total dietary fiber intake, whereas a wide set of independent variables 

was divided into three categories: 

1. Health information knowledge, household characteristics, which include income, 

program participation, household size, presence of children in the family, region 
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of the household (Midwest, South, West), location of the household (Suburban, 

Nonmetro), meal planners; 

2. Socio-demographic characteristics, such as gender (female), race (black), 

ethnicity (Hispanic), education (High school, College, Postgraduate), age, 

employment (not employed); 

3. Meal-planner health-diet characteristics, such as smoker, vegetarian, special diet, 

fiber supplement, body mass index. 

Fiber information was represented by three variables knowledge, awareness, and 

attitude. 

A probit latent variable model was estimated using computationally tractable 

estimation procedures, based on the minimum distance estimator. The results of the study 

confirmed the expectation that fiber information variables did affect the dietary fiber 

intake. The coefficients of the fiber information variables, knowledge, awareness, and 

attitude were 0.067, 0.126, and 0.071, respectively. Even though the coefficients of all the 

three fiber information variables had a positive direct effect on fiber intake, however, the 

knowledge coefficient was insignificant, whereas the awareness coefficient was 

significant at the 1% level and the attitude coefficient was significant at the 10% level. 

Also, according to the results of the estimation, such variables as income, program 

participation, race (black), smoker, and body mass index had a negative significant effect 

on the dietary fiber intake. However, region of the household (West), gender (female), 

education (High school, College, Postgraduate), age, vegetarian, special diet, and fiber 

supplement positively influenced the intake of the dietary fiber intake. 
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Isolating direct and indirect effects of exogenous variables on the dietary fiber 

intake and treating the information variables as endogenous determinants of intake 

handled the endogeneity problem. Also, it should be pointed out that no weak instrument 

possibility was mentioned in the study. 

The authors directed readers’ attention to the fact that all the analysis of the 

results had to be done with caution. They pointed out two problems: mismeasurement and 

generalizability. The first problem might be caused by the question format and wording, 

yet the second problem called for the questioning every member of the household. 

 

Literature on Statistical Procedures and Methods 

All the work discussed above implements procedures to analyze the health 

information knowledge and nutrient demand relationship. However, the appropriate 

procedures usually depend on underlying statistical assumptions, which may or may not 

be satisfied. This is especially true of the IV procedures in cross-sectional datasets, 

because the correlations between variables are relatively low, as opposed to the 

correlations in the time-series datasets. 

As was already mentioned above, the high correlation between the regressor and 

the instrument is an important condition that needs to be satisfied, so that the technique of 

the IV estimation can be considered legitimate. Instrumental variables are said to be 

relevant if they are highly correlated with explanatory variables. The strength of 

correlation (relevance) is extremely important. This is important because in cross-

sectional datasets there are normally low correlations between variables. Low degree of 

relevance results in inconsistent IV parameter estimates. In fact, in the paper by 
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Nakamura and Nakamura the authors attach a great deal of importance to the relevance 

issue (Nakamura and Nakamura 1998). They argue that failure of the instruments to 

capture the part of variation in the endogenous regressors of interest that is crucial from 

application standpoint can be one of the major reasons strongly advocating against the 

procedure of instrumentation. One of the major findings in the study by Staiger and Stock 

(1997) was that when there is a low correlation between the instrument and the 

endogenous explanatory variable the conventional asymptotic property of the 

instrumental variable estimator cannot be considered as legitimate even in the case of a 

large sample size. These conclusions bring up motivation for developing an accurate 

measure of the instrument relevance. 

In his 1997 paper, John Shea suggests the following procedure for calculating the 

partial R2p that measures instrument relevance: 

For a given explanatory variable Xi compute the squared correlation 
between the component of Xi orthogonal to the other explanatory 
variables, and the component of Xi’s projection on the instruments 
orthogonal to the projection of the other explanatory variables on the 
instruments. This partial R2p can be computed using a series of simple 
ordinary least squares (OLS) regression (p.348). 
 

However, Godfrey, in his 1999 paper, suggested a simpler way of computing the 

partial R2p. Specifically, he proposed the following formula for partial R2p: 

R²p = (VARols/VARiv)*(SSRV/SSRS), 

where VARols is the variance of the OLS estimate, VARiv is the variance of the IV 

estimate, SSRV is the error variance estimate of the IV estimate, and SSRS is the error 

variance estimate of the OLS estimate. The motivation for Godfrey to write a critique on 

Shea’s paper was the assumption made by Shea. Specifically, Shea assumed that common 
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error variance must be used to get covariance matrix estimates for the OLS and IV. 

Godfrey disagrees with this assumption by claiming that the variance of error term is 

unknown and computer software uses estimated error variances of OLS and IV parameter 

estimates to calculate estimates of covariance matrices. Godfrey goes on to argue that 

failure to recognize the importance of common error variance can lead to the 

underestimated instrument relevance. 

Park and Davis (2001 use the partial R2p as a measure of instrument relevance in 

their paper on the relationship between health information and nutrient demand. One of 

the objectives of the paper was to identify whether the results through the IV estimation 

outperformed the results yielded by the OLS with the help of different specification tests 

employing 1994-1996 Continuing Survey of Food Intakes by Individuals (CSFII) and 

Diet and Health knowledge survey (DHKS) data. As with the most cross-sectional data 

settings, they had to face the problem of endogeneity and measurement error. They 

developed appropriate instruments according to a procedure developed by Lewbel (1997) 

to handle the problem. To measure the relevance of those instruments they reported 

values of auxiliary R2 and partial R2p. These values implied that instruments were 

extremely weak, as a result, it was expected that the Hausman test would not be reliable 

because of the present relevance problem. However, for comparison they conducted the 

Hausman test and the result of that test indicated the need of using the IV instead of the 

OLS. That is, the Hausman test rejected the null hypothesis and concluded that the 

estimate obtained from the IV estimator was different from the estimate yielded by the 

OLS estimator. Because the Hausman test does not tell us about the strength of the 

endogeneity but rather the existence of it, Park and Davis followed technique suggested 
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by Nakamura and Nakamura (1998), which advocates for considering the predictive 

evaluations of alternative sets of estimation results. They reported results from both OLS 

and IV estimation and then made out of sample comparisons. According to those out of 

sample comparisons, the OLS estimation technique clearly outperformed the IV 

estimation technique, in spite of all the results from the Hausman test. This provides 

further evidence that the Hausman test may not be reliable when the instruments are 

weak. 

Based on the literature reviewed above, it becomes clear that there might be other 

procedures to better handle the health endogeneity issue. This becomes more appealing 

especially considering the fact that in the many of the papers reviewed the authors did not 

consider that issue in their analysis. In the next chapter, a Monte-Carlo sampling 

experiment will be conducted, and the Hausman test and the method of the directed 

graphs will be applied to the artificially created dataset.  
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CHAPTER III 

MONTE–CARLO 

 

Description of Monte-Carlo Experiment 

A Monte-Carlo sampling experiment is a useful method to use when evaluating the 

performance of different estimators. The current econometric literature strongly suggests 

the use of this method for studying the properties of different estimators for small or 

finite samples (Kennedy 1998, p. 22; Gujarati 2002, p. 92.). The advantage of doing a 

Monte-Carlo sampling experiment is that the researcher already knows the underlying 

model structure because he is the one who makes decisions on the parameter settings. 

The complete knowledge about the underlying model structure will make it a lot easier to 

evaluate the performance of various estimators. 

The general structure of a Monte-Carlo sampling experiment consists of several 

steps: 

1. We have to come up with a model, which is going to be used for generating the 

data. Suppose, we have the following linear function: 

Y=β1X1+β2X2+ε, 

where Y is the dependent variable, X1 and X2 are the regressors of interest, β1 and 

β2, are the true values of the parameters, and ε is the disturbance to the equation. 

2. We set β1 and β2 equal to certain numbers (one number for each β), and hold 

them constant across experiments. 

3. Then we have to specify the sample size (N). It is a prerogative of a researcher to 

set the sample size at any specific level. 
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4. Next we set X1 and X2 equal to certain numbers. We are going to have N values 

of X1 and X2. These are going to remain constant across all experiments. 

5. The next step is to generate N values of ε. Those N values of ε are randomly 

drawn from a normal distribution with mean zero and known variance σ². 

Nowadays, most statistical packages have built-in random number generators, 

which enable us to get these N values of ε. A key feature of the study is that all of 

the (usually unknown) parameter values are known to the person conducting the 

study, because this person chooses these values. 

6. Now that we have N values of all the necessary variables, N values of Y can be 

created. 

7. After creating N values of Y, we regress them on N values of X1 and X2 chosen 

in step 3. Thus, we will get the ordinary least-squares estimates 1and β̂ 2. β̂

8. We can repeat this same experiment many times. But, we have to keep in mind 

that every such experiment will differ from the next one due to the changes in the 

values of ε, because, as mentioned above, every time N values of ε are going to 

be randomly drawn from normal distribution with zero mean and known variance 

σ². Usually this experiment is conducted many times, say 1000 or 2000. 

9. After getting, say 1000 or 2000 ordinary least-squares estimates β̂ 1and β̂ 2, we, 

then, have an empirical distribution for β1 and β2, from which we may compute 

the average and compare those numbers with the true values of β1 and β2. If the 

computed least-squares estimates are about the same as their respective true 

values, then we conclude that least-squares estimator is performing appropriately. 
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Experimental Statistics 

The above Monte-Carlo experiment framework must be amended if there is intent in 

comparing an OLS to an IV estimator. This can be done using a data-generating process 

similar to one discussed by Shea (1997). 

Y = β0 + β1X1 + β2X2 + λu1 + (1- λ)u2 (3.1) 

X1 = γu1 + (1 - γ)e1 (3.2) 

X2 = γu2 + (1 - γ)e2 (3.3) 

Z1 = δe1 + φv1 (3.4) 

Z2 = δe2 + φv2 (3.5) 

where u1, u2, e1, e2, v1, and v2 are unobserved disturbances drawn from independent 

standard normal distributions; and where Y, X1, X2, Z1, and Z2 are generated observable 

variables. Equation (3.1) is the structural equation of the interest. From equations (3.2) 

and (3.3), the OLS estimation is inappropriate, because X1 and X2 are correlated with u1 

and u2, respectively. From equations (3.4) and (3.5), the Z’s are correlated with the X’s 

but uncorrelated with the u’s, so that the instrumental variables (IV) estimation of 

equation (3.1) may be warranted using Z’s as instruments. The relevance control 

parameter δ governs correlation among the Z’s and X’s. When the value of the relevance 

control parameter δ goes down, so does the correlation between Z’s and X’s. The 

parameters λ and γ govern the correlation between the X’s and the disturbance to 

equation (3.1). Increases in the endogeneity control parameter γ raise the endogeneity of 

both X1 and X2, but they also reduce the correlation with Z for a given δ from equations 

(3.2) and (3.3). Increases in λ raise the endogeneity of X1 relative to that of X2. Prior 

research suggests that the performance of the IV estimator may deteriorate as γ increases, 
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particularly if relevance is weak (Bound, Jaeger, and Baker 1995; Buse 1992; Shea 1997; 

Staiger and Stock 1997). The parameter φ, finally, governs the amount of variation in the 

Z’s and is unrelated to the exogenous components of the X’s. 

 In all cases β0 is set equal to 3, β1 to 1, β2 to 2, λ to 0.9, and φ to 0.1; the relevance 

control parameter δ and the endogeneity control parameter γ vary across experiments. 

Specifically, three values of 0.3, 0.7, and 0.9 were chosen for the endogeneity control 

parameter γ, and five values of 0.1, 0.07, 0.014, 0.01, and 0.008 were chosen for the 

relevance control parameter δ. The values for the endogeneity control parameter γ and the 

relevance control parameter δ were chosen carefully so that the data generated through 

Monte-Carlo sampling experiment would mimic our real-world data. For that purpose, 

the parameter values of the endogeneity control parameter γ and the relevance control 

parameter δ needed to be set at such levels, so that the correlations between variables in 

the artificially created dataset would be similar to the correlations between variables in 

our real-world dataset. That objective was accomplished through several iterations by 

varying the parameter values of the endogeneity control parameter γ and the relevance 

control parameter δ until the desired correlations were computed. Only one set of the 

parameter values of the endogeneity control parameter γ and the relevance control 

parameters δ, which are 0.7 and 0.014, respectively, generated necessary correlations in 

the artificial dataset. Then from that one set, the parameter values of the endogeneity 

control parameter γ and the relevance control parameter δ were increased and decreased 

trying to stay within a range of numbers that generated correlations similar to the ones in 

the real-world dataset. 
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Experiment 1 (200 Observations per Row) 

In all, there are 15 combinations of γ and δ (5x3). Each experiment consists of 10 

trials. Hence, there are 10 OLS and IV estimates. The OLS and IV estimates are obtained 

by drawing 200 observations for each trial. For each experiment the median values of the 

10 parameter estimates and the absolute median value of the 10 biases of the parameter 

estimates are reported. Consideration of the absolute median value of the biases will 

provide an alternative picture of true bias, because the sign of the bias may be of little 

concern. Also reported are the median of partial correlation between X1 and Z1 denoted 

by R²p1 and the median of partial correlation between X2 and Z2 denoted by R²p2. Partial 

correlations measure the relevance of the instruments and were calculated using 

Godfrey’s formula (Godfrey 1999, pp.550-52). Low partials correlations imply that the 

instruments are weak, and most likely they will not perform well bringing up the 

relevance problem. Finally, the percentage of the times the Hausman test rejects the null 

hypothesis is reported. The null hypothesis of Hausman test is whether the OLS estimator 

yields a value that is significantly different from that produced by the IV estimator 

(Griffiths, Judge, and Hill 1992, pp. 463). 

Before presenting the results, prior reasoning suggests that with decreasing 

relevance control parameter δ the OLS estimator is expected to perform better than the IV 

estimator in terms of parameter estimation and in terms of bias. The reason the OLS will 

outperform the IV in terms of parameter estimation and bias is because the relevance 

control parameter δ governs the correlation between Z’s, as well as Z’s and X’s; lower 

correlation between Z’s and X’s violates one of the two assumptions about IVs that they 

should be highly correlated with the regressors, (i.e. the relevance problem). It should be 
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pointed out that a monotonic relationship is expected between the median estimates from 

both estimators and the relevance control parameter δ, as well as between the median 

absolute biases from both estimators and the relevance control parameter δ. A decline in 

the values of both partial correlations is expected with the decrease in the relevance 

control parameter δ as well, with the endogeneity control parameter γ being held 

constant, because decreasing the relevance control parameter δ lowers correlation 

between Z’s and X’s. Also, it should be noted that the value of the partial correlation 

associated with the independent variable of X2 is expected to be greater compared to the 

value of the partial correlation associated with the independent variable of X1, for each 

level of the endogeneity control parameter γ, because by the parameter setting for λ, X1 is 

more endogenous than X2. In case of a small value of the partial correlation the Hausman 

test behaves poorly. In other words, the power of the Hausman test is low (Park and 

Davis, p. 846), so it is expected that the percentage of the times the Hausman test rejects 

the null hypothesis will go down given weak instruments when the relevance control 

parameter δ declines. 

Changes in the value of the endogeneity control parameter γ will also have their 

implications. An increase in the value of the endogeneity control parameter γ will raise 

the level of endogeneity of both variables X1 and X2. However, the endogeneity level of 

X1 will increase by more relative to the endogeneity level of X2, because the coefficient 

of the λ is 0.9. So, when there is an increase in the level of the endogeneity, the OLS 

estimator is expected to perform better relative to the IV estimator in terms of bias for the 

regressor of X2 for each level of the relevance control parameter δ. However, the IV 

estimator is expected to perform better relative to the OLS estimator in terms of bias for 
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the regressor of X1 for each level of the relevance control parameter δ. One thing that 

needs to be pointed out is that there is expected to be a monotonic relationship between 

the median estimates from both estimators and the endogeneity control parameter γ, as 

well as between the median absolute biases from both estimators and the endogeneity 

control parameter γ. It is expected that both partial correlations will decline when there is 

an increase in the endogeneity control parameter γ. Increased endogeneity in the 

regressors indirectly influences the instruments (through their correlation with the 

regressors) by increasing their level of endogeneity, thus making them less relevant. This 

is reflected in the declining values of both partial correlations (Shea 1997). Furthermore, 

because increases in the endogeneity control parameter γ raises the endogeneity of both 

explanatory variables, we expect the value of the percentage of the times the Hausman 

test rejects the null hypothesis to go up indicating the need to instrument. 

Table 3.1 presents results from a series of experiments generated by equations 

(3.1)-(3.5). In the discussion below table 3.1 is broken into three blocks: block 1, block 2, 

and block 3. Within each block the value of the endogeneity control parameter γ is held 

constant at a certain level and the value of the relevance control parameter δ is decreasing 

moving down the block. 

 
 
 

 



 

Table 3.1. Results from Monte-Carlo Experiment with the Number of Observations 200 per Row 

 δ γ 
Median 
β1OLS 

Median 
β2OLS 

Median 
β1IV  

Median 
β2IV 

Median 
abs bias 
β1OLS 

Median 
abs bias 
β2OLS 

Median 
abs bias 
β1IV 

Median 
abs bias 
β2IV 

Median 
R2p1 

Median 
R2p2 

% of times 
Hausman 

Test 
rejects 

null 
hypotheses

              
              
              
             
           
              
             

       
         

              
              
              
            
              
             

           
          

              
              
            
         
              
  

   

.1 .3 1.46588 2.05946 .91672 1.97835 .46588 .059456 .17304 .10374 .39873 .4461 1
.07 .3 1.51816 2.06325 1.01377 2.07522 .51816 .080627 .11253 .075218

 
.27599 .26566 .3

.014
 

.3 1.44731 2.06145 1.36434 1.51608
 

.44731 .061449
 

.43686 .93486 .016896 .0084154 0
.01 .3 1.47191 1.99966 1.21005 2.061 .47191 .03943 .33178 .28079 .014333 .0093178 0

.008 .3 1.49279
 

2.04646 1.22311 2.07468 .49279 .047629 .93873 1.03514 .0068119 .0021077 0

Average 
 

1.47921
 

2.046056 1.145598 1.941066 .47921 .0577182
 

.398588 .4859496 .14255218
 

.14632018
 

.26

.1 .7 2.09308 2.11633 .73248 2.00593 1.09308 .11633 .33657 .14127 .064108 .067393 1
.07 .7 2.0861 2.11432 .93233 2.02962 1.0861 .11432 .19671 .40117 .042013 .047401 1

.014
 

.7 2.08995 2.11537 1.46361 1.28488 1.08995 .11537 .61093 1.07874
 

.0019344 .0011909 .1
.01 .7 2.06464 2.11077 1.82733 2.03075 1.06464 .11077 1.00102 .43842 .0019756 .0071541 0

.008 .7 2.07788
 

2.10646 2.42251 2.18857 1.07788 .10646 1.42251 .36584 .0015688 .0036815 0

Average 
 

2.08233
 

2.11265 1.475652 1.90795 1.08233 .11265 .713548 .485088 .02231996
 

.0253641
 

.42

.1 .9 1.98408 2.10926 1.39899 2.03503 .98408 .10926 .61192 .43277 .009436 .0051607 1
.07 .9 1.98669 2.1105 1.37524 2.3599 .98669 .1105 .64648 1.14158 .0062251 .0051371 1

.014
 

.9 1.98424 2.1122 1.87034 2.30635 .98424 .1122 1.01286
 

.58626
 

.00041689 .00055417 0
.01 .9 1.98793 2.10677 1.97493 2.05395 .98793 .10677 .97493 .3751 .0028262 .00088341 0

.008
 

.9 1.98618
 

2.10974
 

2.02086
 

2.21645
 

.98618
 

.10974
 

1.02086
 

.25188
 

.0027157
 

.0020875
 

0
 

Average 1.985824 2.109694 1.728072 2.194336 .985824 .109694 .85341 .557518 .004323978.002764576 .4

27

 



 28

Block 1 (γ = 0.3) 

In block 1 the relevance control parameter δ decreases, whereas the endogeneity 

control parameter γ is held constant at 0.3 moving down the block. Because the relevance 

control parameter δ does not influence the OLS estimator, these changes are not expected 

to directly affect the OLS estimates. Alternatively, the IV estimator will depend on the 

relevance control parameter δ. 

The median of the OLS estimator of β1 is overall exhibiting an increasing pattern, 

except when the relevance control parameter δ decreases from 0.07 to 0.014. The median 

of the IV estimator of β1, overall, exhibits increasing pattern, except when the relevance 

control parameter δ decreases from 0.014 to 0.01. The median of the OLS estimator of β2 

displays an increasing pattern in the first and in the last rows of block 1 (δ equals to 0.1 

and 0.008). In the second and in the third rows it displays decreasing pattern (δ equals to 

0.07 and 0.014). The median of the IV estimator of β2, overall, exhibits increasing 

pattern, except when the relevance control parameter δ decreases from 0.07 to 0.014. 

Given the random patterns of the medians of the OLS estimator of β1 and β2 as well as the 

medians of the IV estimator of β1 and β2, the conclusion can be drawn that there is not a 

monotonic relationship between the median estimates from both estimators and the 

relevance control parameter δ for the given low levels of correlations. This implies that at 

these low levels of correlations there is a lot of uncertainty involved, which makes it 

difficult to see a clear-cut pattern as to which way the median estimates of both 

estimators vary given the continuous decline in the relevance control parameter δ. 

Changes in median absolute biases of both OLS estimators exhibit a very subtle 

pattern of slight increases in the first and in the last rows of block 1 when the relevance 
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control parameter δ equals to 0.1 and 0.008, respectively. When the relevance control 

parameter δ is decreasing the instruments are getting weaker and both median absolute 

biases of the IV estimators respond in a somewhat similar manner: they both decrease, 

then increase, and then decrease and increase again. The results of the median absolute 

biases of both estimators imply that at these low levels of correlations there is not a 

monotonic relationship between the median absolute biases from the OLS and the IV 

estimators and the relevance control parameter δ. Also, it should be pointed out that there 

is a high level of uncertainty involved due to the low levels of correlations. 

As for the partial correlation between X1 and Z1 (R2p1), overall, it exhibits a 

decreasing pattern when the value of δ is decreasing, which is expected. The situation is a 

little bit different for the partial correlation between X2 and Z2 (R²p2). Although the 

partial correlation does exhibit overall decreasing pattern, as expected, however, it 

slightly goes up by 0.0009024 when the relevance control parameter δ decreases from 

0.014 to 0.01. 

The results of the percentage of the times the Hausman test rejects the null 

hypothesis are consistent with prior reasoning. As the relevance control parameter δ 

decreases, so does the percentage of the times the Hausman test rejects the null 

hypothesis, which starts out with the value of 1, and gradually decreases becoming 0 as 

we read down block 1 of table 3.1. 

 

Block 1 - Averages 

A summary of block 1 is considered by averaging over the rows. Specifically, in 

block 1 of table 3.1 the OLS estimator of β1 is overestimated, on average, by 0.47921. 
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Alternatively, the IV estimator of β1 does a slightly better job, because it is only 

overestimated, on average, by 0.145598. The situation changes for the OLS estimator of 

β2 and the IV estimator of β2. The OLS estimator of β2 is overestimated again, but only, 

on average, by 0.046056, whereas the IV estimator of β2 is underestimated, on average, 

by 0.058934, which implies that in this particular case OLS does a better job than IV. 

The average of the median absolute bias of the OLS estimator of β1 is 0.47921, 

whereas the average of the median absolute bias of the IV estimator of β1 is 0.398588, 

implying that IV is doing a slightly better job compared to OLS. However, the average of 

the median absolute bias of the OLS estimator of β2 is 0.0577182, which is less than the 

average of the median absolute bias of the IV estimator of β2 of 0.4859496, meaning that 

in this case the OLS outperforms the IV. All the abovementioned results are completely 

expected because X1 is more endogenous relative to X2. 

In block 1 the average value of the in R²p1 is 0.14255218. The average R²p2 is 

equal to 0.14632018 which is just by 0.003768 greater than the average value of R²p1. 

Also, in block 1 the average of the percentage of the times the Hausman test rejects the 

null hypothesis is equal to 0.26. 

 

Block 2 (γ = 0.7) 

In block 2, the level of endogeneity is increased by increasing the endogeneity 

control parameter γ from 0.3 to 0.7. Due to the setup the relevance control parameter δ 

does not influence the OLS estimator. Thus, the changes in the value of the relevance 

control parameter δ are not expected to directly affect the OLS estimates. 
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The median of the OLS estimator of β1 displays the following pattern moving 

down block 2: it decreases, then increases, and then decreases and increases again. The 

median of the IV estimator of β1 exhibits increasing pattern reading down block 2. 

Overall, the median of the OLS estimator of β2 exhibits decreasing pattern, except when 

the relevance control parameter decreases from 0.07 to 0.014. The median of the IV 

estimator of β2 exhibits increasing pattern, except when the relevance control parameter 

declines from 0.07 to 0.014. All this points out to the fact that at these low levels of 

correlations there is not a monotonic relationship between the median estimates from 

both estimators and the relevance control parameter δ, and also, there is a high level of 

uncertainty involved due to the low levels of correlations. 

Changes in the median absolute bias of the OLS estimator of β1 exhibit a very 

subtle pattern of slight decrease and increase, and then decrease and increase again. The 

median absolute bias of the IV estimator of β1 exhibits overall increasing pattern. The 

changes in the median absolute bias of the OLS estimator of β2 display decreasing pattern 

moving down block 2, except for the case, when the relevance control parameter δ 

declines from 0.07 to 0.014. Finally, the median absolute bias of the IV estimator of β2 

increases to the point, where the relevance control parameter δ equals to 0.014, and 

decreasing thereafter. It is clear that at these low levels of correlations no monotonic 

relationship exists between the median absolute biases of the estimates from both 

estimators and the relevance control parameter δ, and due to these low levels of 

correlations there is a high level of uncertainty involved. 

Both partial correlations exhibit the same decreasing pattern which is expected: 

they keep decreasing down to the point where the relevance control parameter δ declines 
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from 0.014 to 0.01, after which they slightly go up, but then again go down again in the 

last row of block 2. The percentage of the times the Hausman test rejects the null 

hypothesis displays declining pattern, which is expected as the relevance control 

parameter δ decreases. 

 

Block 2 - Averages 

When summarizing block 2 in terms of average values, it should be noted that 

almost in all cases the OLS estimator of β1 is overestimated, on average, by 1.08233. Yet 

the IV estimator of β1 is only overestimated, on average, by 0.475652, doing a slightly 

better job than OLS. When comparing the OLS estimator of β2 and IV estimator of β2, it 

becomes clear that in this case IV estimator is doing better job than OLS estimator again. 

The OLS estimator of β2 is overestimated, on average, by 0.11265. The IV estimator of β2 

is underestimated, on average, by 0.09205. 

The average of the median absolute bias of the OLS estimator of β1 is 1.08233, 

and the average of the median absolute bias of the IV estimator of β1 is 0.713548, 

meaning that IV does a better job as opposed to OLS. However, the average of the 

median absolute bias of the OLS estimator of β2 is 0.11265, and the average of the 

median absolute bias of the IV estimator of β2 is 0.485088, meaning that OLS does a 

better job than IV. These results are in agreement with the fact that X1 is more 

endogenous than X2. In block 2 the average value for the R²p1 is 0.02231996 and the 

average value for the R²p2 is 0.0253641. The average of the percentage of the times the 

Hausman test rejects the null hypothesis is equal to 0.42. 
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Block 3 (γ = 0.9)  

In block 3, the level of endogeneity is increased by increasing the endogeneity 

control parameter γ from 0.7 to 0.9. As a result, the median of the OLS estimator of β1 

exhibits the following pattern: it increases, then decreases, and then increases and 

decreases again. The median of the IV estimator of β1 exhibits increasing pattern, except 

when the relevance control parameter δ declines from 0.1 to 0.07. The median of the OLS 

estimator of β2, overall, exhibits increasing pattern, except when the relevance control 

parameter δ declines from 0.014 to 0.01. The median of the IV estimator of β2 increases 

at the beginning and at the end of block 3, and decreases in the middle of block 3. These 

random patterns of the median estimates of both estimators indicate that there is not a 

monotonic relationship between the median estimates from both estimators and the 

relevance control parameter δ at these low levels of correlations. These random patterns 

of the median estimates of both estimators also indicate that there is a high level of 

uncertainty involved due to the low levels of correlations. 

Changes in the median absolute bias of the OLS estimator of β1 exhibit pattern of 

slight increase and decrease, and then increase and decrease again. The median absolute 

bias of the IV estimator of β1, overall, exhibits increasing pattern, except when the 

relevance control parameter δ declines from 0.014 to 0.01. The changes in the median 

absolute bias of the OLS estimator of β2 display increasing pattern moving down block 3, 

except for the case, when the relevance control parameter δ declines from 0.014 to 0.01. 

The median absolute bias of the IV estimator of β2 increases to the point, where the 

relevance control parameter δ equals to 0.07, and decreases thereafter. Once again, it 

should be pointed out that there is not a monotonic relationship between the median 
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absolute biases of the estimates from both estimators and the relevance control parameter 

δ at these low levels of correlations, and that there is a high level of uncertainty involved 

due to the low levels of correlations. 

The partial correlation of R²p1 overall displays a decreasing pattern, except when 

the relevance control parameter δ decreases from 0.014 to 0.01. The partial correlation of 

R²p2 exhibits slight pattern of decrease at the beginning of block 3, and slight pattern of 

increase at the end of the block. As the relevance control parameter δ declines, so does 

the percentage of times the Hausman test rejects the null hypothesis. It starts out with 1, 

and then decreases becoming 0 moving down block 3 of table 3.1. 

 

Block 3 - Averages 

When summarizing block 3 using average values, it should be noted that in block 

3 the OLS estimator of β1 is overestimated, on average, by 0.985824, whereas, the IV 

estimator of β1 does a slightly better job, because it is only overestimated, on average, by 

0.728072. The situation changes when comparing the OLS estimator of β2 to the IV 

estimator of β2. The OLS estimator of β2 is overestimated again, but only, on average, by 

0.109694, whereas the IV estimator of β2 is overestimated, on average, by 0.194336, 

meaning that in this case OLS does a slightly better job than IV. 

When summarizing block 3 in terms of median absolute biases we see that the 

average of the median absolute bias of the OLS estimator of β1 is 0.985824, whereas the 

average of the median absolute bias of the IV estimator of β1 is 0.85341, meaning that IV 

is doing a slightly better job compared to OLS. The average of the median absolute bias 

of the OLS estimator of β2 is 0.109694, which is relatively less than the average of the 
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median absolute bias of the IV estimator of β2 of 0.557518, implying that in this case 

OLS does a better job than IV. These results for the median estimates and the median 

absolute biases are in accordance with the fact that the X1 is more endogenous than X2. 

In block 3 of table 3.1 the average value of the in R²p1 is 0.004323978, and the 

average of R²p2 equals to 0.002764576. Also, in block 3 the average of the percentage of 

the times the Hausman test rejects the null hypothesis is equal to 0.4. 

 

Across the Blocks Comparison 

When conducting analysis across the blocks in table 3.1, it should be noted that 

the only parameter that is changing is the endogeneity control parameter γ, which keeps 

increasing moving down the blocks. Because the endogeneity control parameter γ 

governs the correlation between X’s and the disturbance term, increase in the 

endogeneity control parameter γ raises the endogeneity of both X1 and X2, although the 

level of endogeneity for X1 increases more than the level of endogeneity of X2. 

When comparing the OLS estimator of β1 with the IV estimator of β1 it becomes 

obvious that the IV estimator does a better job than the OLS, as expected. Although both 

median estimates keep increasing across the blocks, however, the OLS estimator of β1 

goes up by greater margin than the IV estimator of β1. The opposite is true for the OLS 

estimator of β2 and the IV estimator of β2, indicating that the OLS outperforms the IV in 

terms of median parameter estimation, as expected, because the level of endogeneity 

associated with X1 is relatively higher than the level of endogeneity associated with X2. 

Overall, there is not a monotonic relationship between the OLS estimator of β1, the OLS 

estimator of β2, the IV estimator of β2 and the endogeneity control parameter γ. This 
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implies that there is high level of risk involved these low levels of correlations. However, 

a monotonic relationship can be observed between the IV estimator of β1 and the 

endogeneity control parameter γ. 

When comparing the median absolute bias of the OLS estimator of β1 with the 

median absolute bias of the IV estimator of β1 it is clear that the IV performs better than 

the OLS, as expected. Although, the median absolute biases of both estimators go up 

moving down the blocks the amount of increase in the median absolute bias of the OLS 

estimator is slightly bigger than that of the median absolute bias of the IV estimator of β1. 

However, the OLS estimator does a better job relative to the IV estimator in terms of the 

median absolute bias of β2, as expected, because the median absolute bias of the OLS 

estimator of β2 is greater than the median absolute bias of the IV estimator of β2 for every 

level of the endogeneity control parameter γ. It needs to be pointed out that there is a non-

monotonic relationship between the median absolute bias of the OLS estimator of β1, the 

median absolute bias of the OLS estimator of β2, the median absolute bias of the IV 

estimator of β2 and the endogeneity control parameter γ, meaning that there is a high level 

of uncertainty involved because of the low levels of correlations. However, there is a 

monotonic relationship between the median absolute bias of the IV estimator of β1 and 

the endogeneity control parameter γ. 

The averages of both partial correlations decline moving down the blocks, which 

is expected, because the increasing endogeneity control parameter γ indirectly raises the 

endogeneity level of the instruments through their correlation with the regressors making 

them less relevant. Also, the average partial correlation associated with X2 is slightly 

bigger as opposed to the average partial correlation associated with X1 for every level of 
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the endogeneity control parameter γ, except for the case when the endogeneity control 

parameter γ equals to 0.9. The relatively low level of endogeneity of X2 is the reason why 

the average R2p2 is slightly bigger than R2p1. 

Even though the average of the percentage of times the Hausman test rejects the 

null hypothesis, overall, increases moving down the blocks, which is expected, due to the 

fact that the regressors become more and more endogenous, however, it slightly goes 

down by 0.02, moving from block 2 to block 3. 

 
Summary of Experiment 1 (200 Observations per Row) 

In summary, it should be pointed out that all the results presented in table 3.1 are 

consistent with the expectations discussed earlier. Particularly, the decreases in the 

relevance control parameter δ led to biased IV estimation (relevance problem), and the 

same result was observed when there were increases in the endogeneity control parameter 

γ (endogeneity problem). What is somewhat surprising is that there does not seem to be a 

monotonic relationship between the median parameter estimates from both estimators and 

the relevance control parameter δ. A non-monotonic relationship was also observed 

between the median absolute biases of the parameter estimates from both estimators and 

the relevance control parameter δ. In both cases a non-monotonic relationship suggests 

that there is a high level of uncertainty involved due to the low levels of correlations. 

Also, a non-monotonic relationship is observed between the median parameter 

estimates from both estimators (except for the IV estimator of β1) and the endogeneity 

control parameter γ, as well as between the median absolute biases of the parameter 

estimates from both estimators (except for the IV estimator of β1) and the endogeneity 
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control parameter γ, implying that there is a high level of uncertainty involved because of 

the low levels of correlations. 

The OLS estimator seems to be doing a better job in contrast to the IV estimator 

in terms of the parameter estimation and in terms of bias with respect to the independent 

variable of X2. The explanation for that is the relatively low level of endogeneity of X2, in 

which cases the OLS estimator is expected to perform better. However, the IV estimator 

outperforms the OLS estimator in terms of the parameter estimation and bias with respect 

to the independent variable of X1, which is explained by the relatively high level of 

endogeneity associated with that variable. 

The decreasing pattern of both partial correlations within each block, and across 

the block is consistent with the expectations. Also, it is noteworthy that the average value 

of the partial correlation between X1 and Z1 is lower compared to the average value of the 

partial correlation between X2 and Z2 when the endogeneity control parameter γ equals to 

0.3 and 0.7. However, the average value of the partial correlation between X1 and Z1 is 

greater compared to the average value of the partial correlation between X2 and Z2 when 

the endogeneity control parameter γ equals to 0.9. 

The declining pattern of the percentage of the times the Hausman test rejects the 

null hypothesis within each block is in accordance with the expectations. The decrease in 

the percentage of the times the Hausman test rejects the null hypothesis within each block 

is explained by the decrease in the value of the relevance control parameter δ. However, 

the percentage of the times the Hausman test rejects the null hypotheses, overall, exhibits 

an increasing pattern reading down the blocks. The amount of the increase in moving 

from block 1 to block 2 is equal to 0.16. The percentage of the times the Hausman test 
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rejects the null hypothesis then declines slightly (0.02) in moving from block 2 to block 

3. This pattern may be explained by two factors. First, the value of the endogeneity 

control parameter γ increases by 0.4 when moving from block 1 to block 2, and by 0.2 

when moving from block 2 to block 3. Second, these results again underscore the non-

monotonic relationship between the endogeneity control parameter γ and the Hausman 

test statistic. 

 

Experiment 2 (2000 Observations per Row)  

The overall purpose of analyzing the data in table 3.1 was to get insights for 

Monte-Carlo experiment. Even though results in table 3.1 are useful, however, they are 

not representative of a real-world estimation problem, because they involved 10 samples 

for each true parameter setting. Yet, in real-world estimation problem there is only one 

sample drawn from dataset implicitly employing only one combination of both the 

relevance control parameter δ and the endogeneity control parameter γ, as opposed to 10 

samples that were drawn when estimating results in table 3.1. Given the fact that the 

results in table 3.1 are not representative of a real-world estimation problem, data should 

be generated that are comparable to the real-world estimation problem. For this purpose, 

all of the 10 trials of 200 observations per row are going to be pooled together forming 

one trial of 2000 observations for each known combination of control parameters. As a 

result, 15 models are going to be estimated, one model for each combination of the 

relevance control parameter δ and the endogeneity control parameter γ. Point estimates 

are going to be reported, as opposed to before where 150 (15x10) models were estimated 

and median of the estimates were reported. Also, an important objective of this analysis is 

 



 40

to obtain and interpret the results that are going to be compared with the results obtained 

from using the method of the directed graphs using the same data. The results obtained 

from estimating 15 models of 2000 observations each per row are presented in table 3.2. 

For each trial the following are reported in table 3.2: the correlation between X1 

and Z1, the correlation between X2 and Z2, the values of the estimates of the OLS and the 

IV estimators, the absolute values of the biases of the parameter estimates, partial 

correlations between X‘s and Z‘s, and the Hausman P values (probability of making Type 

I error, where the null hypotheses is rejected given it is true). 

Overall, the results are expected to be similar to the patterns in table 3.1 for the 

same reasons. Because the relevance control parameter δ is the only parameter that 

affects the correlation between X’s and Z’s, the correlations between X’s and Z’s are 

expected to go down as the relevance control parameter δ decreases and the endogeneity 

control parameter γ is held constant. Also, when the relevance control parameter δ 

decreases and the endogeneity control parameter γ is held constant the OLS parameter 

estimator is expected to perform better than IV parameter estimator in terms of parameter 

estimation and in terms of bias. A monotonic relationship is expected between the 

estimates from both estimators and the relevance control parameter δ, as well as between 

the absolute biases of the parameter estimates from both estimators and the relevance 

control parameter δ. Partial correlations are expected to go down as the relevance control 

parameter δ keeps decreasing and the endogeneity control parameter γ is held constant. 

Low partial correlation has its implications in terms of the Hausman test. According to 

Park and Davis, when the partial correlations are low, (weak instruments) the Hausman 

test is not very reliable (Park and Davis, 2001, p. 846). As a result, when the relevance 
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control parameter δ decreases and the endogeneity control parameter γ is held constant 

we would expect the Hausman P value to increase, implying that the probability of 

making Type I error, where the null hypotheses of the Hausman test is that the OLS and 

IV estimates do not differ, will go up. 

As in table 3.1, the endogeneity control parameter γ governs the correlations 

between X’s and the disturbance term. As such, the level of the endogeneity of X1 will 

increase by more than the level of the endogeneity of X2 due to the increase in the value 

of the endogeneity control parameter γ, because of the coefficient of λ, which equals 0.9. 

Given this increase in the levels of endogeneity of both X1 and X2, it is expected that the 

OLS estimator would outperform the IV estimator in terms of parameter estimation and 

bias for X2 for each level of the endogeneity control parameter γ. However, the opposite 

is true for the regressor of X1. Also, it should be pointed out that a monotonic relationship 

is expected between the parameter estimates from both estimators and the endogeneity 

control parameter γ, as well as between the absolute biases of the parameter estimates 

from both estimators and the endogeneity control parameter γ. A declining pattern for 

both partial correlations is expected when the relevance control parameter δ is held 

constant and the endogeneity control parameter γ increases. Given the increase in the 

level of endogeneity by increasing γ, when the relevance control parameter δ is held 

constant, we would expect the Hausman P value to go down, meaning that the probability 

of making Type I error (reject the null hypotheses given it is true) will go down. 

As in table 3.1 the discussion of table 3.2 presented below is broken into three 

blocks: block 1, block 2, and block 3. The value of the endogeneity control parameter γ is 
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held constant at a certain level within each block and the value of the relevance control 

parameter δ is decreasing reading down the block. 

 

Block 1 (γ = 0.3) 

In block 1 of table 3.2 the relevance control parameter δ decreases, whereas the 

endogeneity control parameter γ is held constant at 0.3 reading down the block. The 

correlation between X1 and Z1, as well as the correlation between X2 and Z2, is exhibiting 

a decreasing pattern, which is expected every time the parameter that governs those 

correlations is exhibits decreasing pattern itself. 

Due to the design in the setup, the changes in the relevance control parameter δ 

are expected to directly affect IV estimates. However, the OLS estimates are not going to 

be directly influenced by the changes in the relevance control parameter δ. Thus, the OLS 

estimator of β1 is, overall, displaying an increasing pattern, except when the relevance 

control parameter δ decreases from 0.07 to 0.014, where it slightly decreases. The IV 

estimator of β1 is overall displaying increasing pattern, except when the relevance control 

parameter δ goes down from 0.07 to 0.014. The OLS estimator of β2 is exhibiting the 

pattern of decrease and increase, and then decrease and increase again. The IV estimator 

of β2 is exhibiting the pattern of increase and decrease, and then increase and decrease 

again. As a result, we can say that there is not a monotonic relationship between the 

estimates from both estimators and the relevance control parameter δ at these low levels 

of correlations. This is very important information, which implies that there is a high 

level of uncertainty involved because of the low levels of correlations. 
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  δ γ Corr X1-Z1 Corr X2-Z2 β1ols β2ols β1iv β2iv 
Abs bias 
β1ols 

Abs bias 
β2ols 

Abs bias 
β1iv 

Abs bias 
β2iv R2p1 R2p2 

Hausman 
Pval 

                
        
          
           
          
          
              

           
           

        
         
          
        
        
           

           
          

         
         
          
        
         
  

     

.1 .3 .63592 .66161 .47458 2.05219 .913899 1.99727 .47458 .05219 .086101 .00273 .4046 .43791 0
.07 .3 .53747 .51279 .50337 2.04081 1.05944 2.10242 .50337 .04081 .05944 .10242 .30307 .24588 0

.014 .3 .15165 .1026 .41652 2.07897 .976064 1.39132 .41652 .07897 .023936 .60868 .022679 .0099051 .00248
.01 .3 .12252 .097641 .49163 2.029 1.09329 1.99688 .49163 .029 .09329 .00312 .014614 .0079143 .12476

.008 .3
 

 .061823
 

 .034533 .49806 2.0436 1.2911 1.39662 .49806 .0436 .2911 .60338 .0059923 .0016953 .43555

Average
 

.3018766
 

.2818348 1.476832 2.048914 1.0667586 1.776902 .476832 .048914 .1107734 .264066 .15019106
 

.14066094
 

.112558
 

.1 .7 .25332 .28457 2.09392 2.12638 .785543 1.87916 1.09392 .12638 .214457 .12084 .061464 .076988 0
.07 .7 .21742 .24025 2.08922

 
 2.10856 .885987 1.90476 1.08922 .10856 .114013 .09524 .046993 .056793 0

.014 .7 .074489 .031578 2.087 2.12452 1.57834 1.26266 1.087 .12452 .57834 .73734 .0021056 .00090531 0
.01 .7 .022688 .005562 2.07521 2.11388 1.3922 3.00886 1.07521 .11388 .3922 1.00886 7.39160D-06 .000013282 .00037

.008 .7
 

 .00048031
  

 .021648 2.07273 2.11558 2.99307 3.95046 1.07273 .11558 1.99307 1.95046 0.00067127
 

.00024717
 

.02265

Average
 

.113679462
  

 .1167216 2.083616 2.117784 1.527028 2.40118 1.083616 .117784 .658416 .782548 .027808468
 

.026989352
 

.004604
 

.1 .9 .099845 .087231 1.98375 2.1087 1.25172 1.90139 .98375 .1087 .25172 .09861 .0096372 .0086279 0
.07 .9 .068958 .073823 1.98644 2.10904 .984148 2.0894 .98644 .10904 .015852 .0894 .0048015 .0055805 0

.014 .9 .036921 .028783 1.98552 2.11275 1.2472 1.57878 .98552 .11275 .2472 .42122 .0004059 .00024432 0
.01 .9 .0047634 .031371 1.98929 2.10851 -.450693 0.032327 .98929 .10851 1.450693 1.967673

 
.000033216 .000048135 0

.008 .9
 

 -.013369
 

 .0058544
 

 1.98634
 

 2.11211
 

2.7906
 

 1.66916
 

.98634
 

.11211
 

1.7906
 

.33084
 

.00036557
 

.000011704
 

0
 

Average .03942368 .04541248 1.986268 2.110222 1.164595 1.4542114 .986268 .110222 .751213 .5815486 .003048677 .002902512 0
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The absolute bias of the OLS estimator of β1 shows no real pattern. The absolute 

bias of the IV estimator of β1 decreases at the beginning of the block, but then goes up 

slightly at the end of the block. The absolute bias of the OLS estimator of β2 shows no 

real pattern as well moving down block 1. The absolute bias of the IV estimator of β2 

shows no real pattern either. Overall, there is a non-monotonic relationship between the 

absolute biases of the estimates of both estimators and the relevance control parameter δ 

at these low levels of correlations. Thus, there is a high level of uncertainty involved due 

to the low levels of correlations. 

Both partial correlations, R²p1 and R²p2, exhibit a decreasing pattern reading 

down the block, as expected. Finally, the Hausman P value clearly exhibits increasing 

pattern reading down block 1, which is consistent with expectations. 

 

Block 1 - Averages 

Block 1 is summarized using absolute values. The average correlation between X1 

and Z1 is 0.3018766 and the average correlation between X2 and Z2 is 0.2818348. 

As for OLS estimator, β1 is overestimated, on average, by 0.476832. 

Alternatively, the IV estimator for β1 does much better job compared to OLS, because, on 

average, it is only overestimated by 0.0667586. However, when we compare the OLS and 

IV estimators for β2, we see that the OLS estimate is, on average, overestimated by 

0.048914, while the IV estimate is underestimated, on average, by 0.223098. 

In block 1 the absolute bias of OLS parameter estimate of β1 has an average of 

0.476832. The absolute bias of IV parameter estimate of β1 has an average absolute bias 

of 0.1107734. The absolute bias of OLS parameter estimate of β2 has an average of 
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0.048914. The average of the absolute bias of IV parameter estimate of β2 is 0.264066. It 

should be noted that there is no uniform result in terms of the performance of the IV 

estimator as the relevance control parameter δ changes, which is somewhat expected. 

This just highlights the relevance problem associated with these parameter settings. The 

above discussions on parameter estimates and absolute biases are in agreement with the 

fact that X1 is more endogenous than X2. 

The results for partial correlations are totally expected. As the relevance control 

parameter δ decreases, so do the partial correlations between X’s and Z’s. The average 

partial correlation of X1 and Z1 is 0.15019106, and the average partial correlation of X2 

and Z2 is 0.14066094. 

The Hausman P values are expected to be inversely related to the relevance 

control parameter δ. This is exactly what happens, as the relevance control parameter δ 

decreases the probability of rejecting the null hypothesis increases. The average of the 

Hausman P value is 0.112558. 

 

Block 2 (γ = 0.7) 

In block 2 of table 3.2, the level of endogeneity is increased by increasing the 

endogeneity control parameter γ from 0.3 to 0.7. Even though the correlation between X2 

and Z2 slightly increases in the last row of block 2 where the relevance control parameter 

δ equals to 0.008, overall, both correlations between X’s and Z’s exhibit decreasing 

pattern moving down the block. 

The OLS estimator of β1 exhibits no real pattern, as the relevance control 

parameter δ decreases. The IV estimator of β1 displays an overall increasing pattern as the 
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relevance control parameter δ decreases. The OLS estimator of β2 exhibits no real pattern 

as well. The IV estimator of β2 displays no real pattern either. A conclusion can be drawn 

that there is not a monotonic relationship between the estimates from both estimators and 

the relevance control parameter δ at these low levels of correlations. One of the 

implications of the non-monotonic relationship between the estimates of the both 

estimators and the relevance control parameter δ is that there is a high level of risk is 

present because of the low levels of correlations. 

The absolute bias of the OLS estimator of β1 exhibits decreasing pattern moving 

down the block. The absolute bias of the IV estimator of β1 shows no real pattern moving 

down the block. The absolute bias of the OLS estimator of β2 also exhibits no real pattern 

moving down the block. The absolute bias of the IV estimator of β2 shows no real pattern 

as well. It should be pointed out that there is not a monotonic relationship between the 

absolute biases of the estimates from both estimators and the relevance control parameter 

δ at these low levels of correlations. And, due to these low levels of correlations there is a 

high level of risk present. 

Both partial correlations clearly display decreasing pattern moving down the 

block, in spite of the fairly insignificant increase in the value of R²p2 at the end of the 

block when the relevance control parameter δ goes down from 0.01 to 0.008. The 

Hausman P value also displays an increasing pattern moving down the block. 

 

Block 2 - Averages 

Average values of all the column headings are used summarizing the block. The 

average correlation between X1 and Z1 is 0.11367946, and the average correlation 
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between X2 and Z2 is 0.1167216. The reason for the decrease in the values of both 

correlations is the decrease in the value of the relevance control parameter δ. 

In the second block we see that the OLS estimator of β1 is overestimated, on 

average, by 1.083616, whereas the IV estimator of β1 is only overestimated, on average, 

by 0.527028. This implies that IV parameter estimate of β1, on average, performs better 

than OLS parameter estimate of β1. However, when comparing the OLS parameter 

estimate of β2 with the IV parameter estimate of β2, it becomes clear that the OLS 

estimator does a better job. The OLS parameter estimate of β2 is overestimated, on 

average, by 0.117784, yet the IV parameter estimate of β2 is overestimated, on average, 

by 0.40118. 

The average absolute bias of the OLS estimator of β1 is 1.083616, and the average 

absolute bias of the IV estimator of β1 is 0.658416. This supports the point that the IV 

estimator does a better job compared to the OLS estimator in terms of the absolute bias of 

the parameter estimate of β1. The average absolute bias of the OLS estimator of β2 is 

0.117784, and the average absolute bias of the IV estimator of β2 is the 0.782548. This 

implies that the OLS estimator performs better than the IV estimator in terms of the 

absolute bias of the parameter estimate of β2. It should be pointed out that these 

discussions of parameter estimates and biases are in accordance with the expectations 

given the fact that X1 is more endogenous than X2. 

The average R²p1 is equal to 0.027808468, and the average R²p2 is equal to 

0.026989352. The average of the Hausman P value equals to 0.004604. 
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Block 3 (γ = 0.9) 

In block 3 the level of the endogeneity control parameter γ is raised from 0.7 to 

0.9. Both correlations between X’s and Z’s exhibit a declining pattern reading down the 

block, as expected. Even though the correlation between X2 and Z2 slightly increases 

when the relevance control parameter δ declines from 0.014 to 0.01, but the amount of 

the increase is insignificant and it does not distort an overall decreasing pattern of the 

correlation between X2 and Z2. 

The OLS and IV estimators of β1 both display no real pattern moving down the 

block. The OLS and IV estimators of β2 also display no real pattern moving down the 

block. As such, there is not a monotonic relationship between the parameter estimates 

from both estimators and the relevance control parameter δ at these low levels of 

correlations. As a result there is high level of uncertainty involved, because of the low 

levels of correlations. 

The absolute bias of the OLS estimator of β1 displays no real pattern moving 

down the block. The absolute bias of the IV estimator of β1 shows an overall increasing 

pattern moving down the block. The absolute bias of the OLS and IV estimators of β2 

shows no real pattern moving down the block. Again, there is not a monotonic 

relationship between the absolute biases of the estimates from both estimators and the 

relevance control parameter δ at these low levels of correlations. The direct implication 

of the non-monotonic relationship is that there is a high level of uncertainty involved, 

because of the low levels of correlations. 

Both partial correlations clearly display decreasing pattern reading down block 3, 

in spite of the insignificant increase in the value of R²p1 at the end of the block when the 
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relevance control parameter δ goes down from 0.01 to 0.008. The Hausman P value is 

equal to 0 moving down block 3. 

 

Block 3 - Averages 

The absolute average correlation for X1 and Z1 is 0.04477128, and the average 

correlation between X2 and Z2 is 0.0454125. In terms of the parameters estimate of β1, the 

IV estimator is doing relatively better job than the OLS estimator. Specifically, the OLS 

estimator of β1 is overestimated, on average, by 0.986268, whereas the absolute average 

number of overestimation of IV estimator of β1 is 0.3448722. In case of the parameter 

estimate of β2 the OLS estimator is doing relatively better job than the IV estimator. The 

OLS estimator of β2 is overestimated, on average, by 0.110222, whereas the IV estimator 

of β2 is underestimated, on average, by 0.5457886. 

The average absolute bias of the OLS estimator of β1 is 0.986268, and the average 

absolute bias of the IV estimator of β1 is 0.751213. This comparison implies the IV 

estimator does a better job compared to the OLS estimator in terms of the absolute bias of 

the parameter estimate of β1. The average absolute bias of the OLS estimator of β2 is 

0.110222, and the average absolute bias of the IV estimator of β2 is the 0.5815486. This 

means that the OLS estimator performs better than the IV estimator in terms of the 

absolute bias of the parameter estimate of β2. 

The average R²p1 is equal to 0.003048677 and the average R²p2 is equal to 

0.002902512. The average P value of the Hausman test is equal to 0. 
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Across the Blocks Comparison 

When summarizing the results in table 3.2 across the blocks, it should be pointed 

out that the only parameter that is changing is the endogeneity control parameter γ, which 

keeps increasing reading down the blocks. The correlations between X’s and Z’s exhibit 

the expected decreasing pattern reading down the blocks. 

Comparing the OLS estimator of β1 with the IV estimator of β1 it should be 

pointed out that the IV estimator does a better job than the OLS, as expected. Although 

both parameter estimates display the same pattern of increase, and then decrease reading 

across the blocks, however, the OLS estimator of β1 goes up by greater margin than the 

IV estimator of β1 moving from bock 1 to block 2. Also, the OLS estimator of β1 goes 

down by less than the IV estimator of β1 moving from block 2 to block 3. However, the 

OLS outperforms the IV in terms of parameter estimation associated with X2, as 

expected. Even though both estimates show the same pattern of increase when moving 

from block 1 to block 2, and then decrease when moving from block 2 to block 3, 

however, the OLS estimator of β2 changes by relatively less than the IV estimator of β2. 

What seems to be somewhat surprising is that there does not seem to be a monotonic 

relationship between the parameter estimates from both estimators and the endogeneity 

control parameter γ. This implies that there is a high level of uncertainty present due to 

the given low levels of correlations. 

The same results are observed when summarizing the results in table 3.2 across 

the blocks in terms of absolute biases. Comparing the absolute bias of the OLS estimator 

of β1 with the absolute bias of the IV estimator of β1 it becomes clear that the IV 

estimator performs better than the OLS estimator, as expected, because the absolute bias 
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of the OLS estimator is bigger compared to the absolute bias of the IV estimator of β1 for 

every level of the endogeneity control parameter γ. Yet, the OLS estimator does a better 

job relative to the IV estimator in terms of the absolute bias of β2, as expected. That is true 

because the absolute bias of the OLS estimator of β2 is greater than the absolute bias of 

the IV estimator of β2 for every level of the endogeneity control parameter γ. A non-

monotonic relationship can be observed between the absolute bias of the OLS estimator 

of β1, the OLS estimator of β2, the IV estimator of β2 and the endogeneity control 

parameter γ, except in the case of the IV estimator of β1. A non-monotonic relationship 

means that there is a high level of uncertainty involved due to the low levels of 

correlations. 

The averages of both partial correlations decrease reading across the blocks, 

which are expected, because the increasing endogeneity control parameter γ indirectly 

raises the endogeneity level of the instruments, because of their correlation with the 

regressors, making them less relevant. 

The average of the P value of the Hausman test exhibits the expected pattern by 

declining across the blocks in table 3.2. This is expected, because when there is an 

increase in the level of the endogeneity in the regressors the Hausman test should 

communicate the idea of using the instruments. And this is reflected in the decreasing 

pattern of the Hausman P value, which implies that the probability of making Type I error 

goes down. 
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Summary of Experiment 2 (2000 Observations per Row) 

In summarizing table 3.2, it should be noted that all the results are consistent with 

the expectations. As expected, the values of the correlations between X’s and Z’s 

displayed declining pattern moving down the blocks. 

The OLS tends to outperform the IV in terms of the parameter estimation and in 

terms of bias with respect to X2. The relatively low level of endogeneity associated with 

X2 can explain this. Alternatively, the IV seems to be doing a better job in terms of 

parameter estimation and in terms of bias with respect to the X1. The reason for that is the 

relatively high level of endogeneity of X1 in which case IV tends to perform better than 

the OLS. Another important observation is that there is not a monotonic relationship 

between the parameter estimates and the relevance control parameter δ, as well as 

between the biases of the parameter estimates and the relevance control parameter δ. This 

means that there is a high level of risk present due to the low levels of correlations. 

Overall, there does not seem to be a monotonic relationship between the parameter 

estimates and the increasing endogeneity control parameter γ, as well as between the 

biases of the parameter estimates and the increasing endogeneity control parameter γ, 

indicating that there is a high level of risk present due to the low levels of correlations. 

With respect to the partial correlations, it needs to be pointed out that both of 

them exhibit expected decreasing pattern both within each block and across the blocks. 

Also, it is noteworthy that the average value of the partial correlation between X1 and Z1 

is greater compared to the average value of the partial correlation between X2 and Z2 

when the endogeneity control parameter γ equals to 0.3, 0.7, and 0.9.  
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With respect to the P value of the Hausman test, it needs to be pointed out that the 

increasing pattern of the P value of the Hausman test within each block is caused by the 

relevance problem. However, the declining pattern of the P value of the Hausman test 

across the blocks is explained by the endogeneity problem. 

 

Summary of OLS vs. IV 

In general, we see that our expectations about the results in table 3.1 and table 3.2 

being the same turned out to be plausible. We can clearly see that decreases in the 

relevance control parameter δ indeed brought up the relevance problem, and increase in 

the endogeneity control parameter γ brought up the endogeneity problem. 

Specifically, in both tables the OLS estimator of β1 tends to be overestimated by 

greater margin as opposed to the IV estimator of β1 for a given level of the relevance 

control parameter δ and also for a given level of the endogeneity control parameter γ. 

However, the opposite is true for the β2 parameter estimate of both estimators. That is, the 

OLS estimator of β2 tends to perform better compared to the IV estimator of β2 for a 

given level of the relevance control parameter δ and also for a given level of the 

endogeneity control parameter γ. Perhaps most importantly, a non-monotonic relationship 

between the parameter estimates from both estimators and the relevance control 

parameter δ, as well as between the parameter estimates from both estimators and the 

endogeneity control parameter γ, due to the low levels of the correlations was the case in 

table 3.1, as well as in table 3.2, pointing out to the fact that there is a high level of risk 

present due to the low levels of correlations. 

 

 



 54

Directed Graphs 

When conducting the Hausman test it was implicitly assumed that X’s were 

independent variables that cause the dependent variable Y, and that Z’s were legitimate 

instruments for X’s, meaning Z’s cause X’s. However, in a real-world setting, the 

researcher usually designates a priori what will be the explanatory variables and what 

will be the instruments. In other words, in the real-world setting the true structural causal 

relationship between variables is unknown to the researcher. A useful tool would be one 

that told the researcher the structural causal relationship between the variables. Under 

certain assumptions, the method of the directed graphs is such a tool. This method is 

expected to yield legitimate structural causal relationship between the variables. The 

following discussion on the theory of directed graphs is borrowed from the work of 

Bessler (Introduction to Directed Graphs, 2002) and Pearl (Causality, Cambridge 

University Press, 2000). 

 

Description of the Directed Graphs 

Even in the case when the “true” system is unknown to the researcher, the method 

of the directed graphs can be used to identify causal relationship between variables in a 

dataset. One needs to obtain the variance-covariance matrix from different variables for 

the directed graphs to work. The reliability of a directed graph algorithm for determining 

causality rests on three assumptions: 

1. Causal sufficiency; 

2. Markov condition; 

3. Stability (faithfulness) condition. 
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According to the causal sufficiency condition a casually sufficient set of variables 

must be included in an observational dataset. However, one needs to make sure that no 

other variable that might possibly cause the other two variables is missing in the dataset. 

For example, if variable X causes both Y and Z and X is not considered, then an apparent 

causal flow from Y to Z (or from Z to Y) may be spurious because both Y and Z are 

caused by X. In econometric terminology, there can be no omitted variables. 

According to the Markov condition if Z is caused by Y and Y is caused by X, the 

underlying joint probability distribution for the three variables can be factored as: 

P r( , , ) P r( ) P r( ) P r( )X Y Z X Y X Z Y=  (3.6) 

To put it in words, the causal flows that we are trying to identify must respect a 

genealogy condition; a genealogy condition states that only direct causal variables (called 

parents) should be conditioning variables, if we want to fully capture the variable 

generating probability distribution. There is no need to condition on indirect variables, or 

parents of parents (i.e. grandparents). 

Pearl gives the following definition about the stability condition: 
 
Let I (P) denote the set of all conditional independence relationships 
embodied in P (probability distribution). A causal model M = (D, Θ d) 
generates a stable distribution if and only if P (D, Θ d) contains no 
extraneous independences. The stability condition states that, as we vary 
the parameters from Θ to Θ’, no independence in P can be destroyed; 
hence the name “stability” (Pearl, 2000, p. 48). 

 

A graph contains a set V of non-empty vertices (representing variables), a set M 

of non-empty marks, which are symbols at the ends of undirected edges, and a set E of 

edges, or lines, representing a certain relationship. Two vertices (variables) are said to be 
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adjacent if a line connects them. When we have vertices or variables X and Y the 

following graphs can be observed: 

1. An undirected graph consists only of undirected lines, and is denoted as X—Y. 

This means that a relationship exists between X and Y, however, the algorithm is 

unable to identify which way the causal flow goes. In other words, the algorithm 

can’t determine whether X causes Y, or the other way around. 

2. A directed graph consists only of directed edges, and is denoted as X Y® . This 

means that X causes Y. In other words, the values of Y will be changed, every 

time we change the values of X. 

3. A graph with confounders or unobserved common causes denoted as 

X                 Y. 

Directed graphs allow for directed cycles (e.g., X Y® , Y ), but do not allow 

for self-loops (e.g., 

X®

X X® ). A graph that does not include directed cycles is referred to 

as acyclic. Any graph that is both directed and acyclic is called a directed acyclic graph 

(DAG). Only a directed acyclic graph will be used in this thesis. Various relationships in 

a graph are denoted through the terminology of kinship (e.g., parents, children, 

descendants, ancestors, spouses). For example, consider the graph in Figure 3.1. 

 
 
 
 
W 
 
    Z                X 
 
             Y  

 
Figure 3.1. A graph including both directed edges and confounders 
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In the figure above Y has two parents, X and Z, three ancestors, X, Z, and W, and 

no children. X has no parents (hence no ancestors), one spouse, Z, and one child, Y. Y 

has one grandparent, W. 

Consider the following underlying model: 

Y = β0 + β1X + U 

X = λZ + (1- λ)U 

where U is disturbance to the equation. In the case when the variables Y, X, Z and U are 

all observed then the relationship in Figure 3.2 would be expected. 

 
Z 
 
X              U 
 
         Y 

Figure 3.2. A graph showing causal flow between Z, X, Y, and U Y when each 

variable is observed 

 
 
 
However, when U is not observed the directed graph would look as in Figure 3.3. 

 
 
 

 
Z         X             Y 

 
Figure 3.3. A confounding arc embracing causal flow X Y®  (U is not observed) 
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In Figure 3.2 it is clear that both X and U cause Y. However, in Figure 3.3, when 

U is not observed we can’t be sure which way the casual flow would go. That is, the total 

effect of X on Y cannot be identified because of a confounding arc (dashed) embracing a 

causal link between X and Y and represents the existence in the diagram of unobserved 

variable U. However, in case of a linear model, the total effect of X on Y can become 

identifiable due to the addition of an arc to a confounding arc pattern. That is the 

computation of the total effect of X on Y will be possible through instrumental variable 

formula, if we can find variable Z that is highly correlated with X, but not correlated with 

U (simply adding an arcZ X® ). 

With this brief background on directed graphs, the same data used for estimating 

the results in table 3.2 are going to be analyzed using the method of the directed graphs. 

Given the underlying causal structure and assuming that the conditions for the legitimate 

instruments are satisfied, it is expected that both independent variables, X1 and X2, are 

going to cause Y. Also it is expected, that both instruments, Z1 and Z2, are going to cause 

X1 and X2, respectively. In terms of arrows, the following is expected: 1 1® ®Z X Y , and 

2 2X® ® YZ . 

 

Analysis Using the Directed Graphs (0.05 Significance Level) 

For the analysis of the directed graphs Tetrad II (Scheines, Spirtes, Glymour, and 

Meek 1994) software was used. Tetrad II employed the variance-covariance matrix from 

the set of variables, Y, X1, X2, Z1, and Z2. The results from the directed graphs are 

presented in two tables: table 3.3 and table 3.4. The results in table 3.3 and in table 3.4 

will be presented at the 0.05 and 0.005 significance levels, respectively. Although the 
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standard significance level used is 0.05, however, in case of a large sample size, it is 

strongly suggested to decrease the significance level. Because in our case, the sample size 

is 2000 observations, it provides us with motivation to report results at the two 

significance levels. Each table is broken into three blocks: block 1, block 2, and block 3. 

In each block the endogeneity control parameter γ is held constant at a certain level and 

the relevance control parameter δ is decreasing moving across the block. 

 

Block 1 (0.05 significance level)  

 In block 1 of table 3.3 the endogeneity control parameter γ is held constant 

at 0.3 and the relevance control parameter δ is decreasing moving across the block. When 

the relevance control parameter δ equals to 0.1 and 0.07, both X1 and X2 cause Y, Z1 

causes Y, and there are undirected edges from X1 to Z1, as well as from X2 to Z2, meaning 

the algorithm is not able to sort out the causal flow between X1 and Z1, as well as 

between X2  

and Z2. Also, when the relevance control parameter δ equals to 0.07, there is an 

undirected edge from X1 to Z2, meaning the algorithm is unable to sort out causal flow 

between X1 and Z2.  

When the relevance control parameter δ equals to 0.014 and 0.01, both X1 and X2 

cause Y, and there are undirected edges from X1 to Z1, as well as from X2 to Z2, meaning 

the algorithm is not able to sort out the causal flow between X1 and Z1, as well as 

between X2 and Z2. Also, when the relevance control parameter δ equals to 0.014, Y 

causes Z2.  
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Table 3.3. Results from the Directed Graphs Using Artificially Created Data 

with the Number of Observations 2000 for Each Combination of δ and γ (0.05 

Significance Level)  

Block 1         
δ=.1; γ=.3  δ=.07; γ=.3  δ=.014; γ=.3  δ=.01; γ=.3  δ=.008; γ= .3

         
x1 -> y  x1 -> y  x1 -> y  x1 -> y  x1 -> y 
x2 -> y  x2 -> y  x2 -> y  x2 -> y  x2 -> y 
z1 -> y  z1 -> y  y -> z2  x1 -- z1  x1 -- z1 
x1 -- z1  x1 -- z1  x1 -- z1  x2 -- z2  z2 
x2 -- z2  x1 -- z2  x2 -- z2     

  x2 -- z2       
         

Block 2         
δ=.1; γ=.7  δ=.07; γ=.7  δ=.014; γ=.7  δ=.01; γ=.7  δ=.008; γ=.7

         
x1 -> y  x1 -> y  x1 -> y  x1 -> y  x1 -> y 
x2 -> y  x2 -> y  x2 -> y  x2 -> y  x2 -> y 
z1 -> y  z1 -> y  z1 -> x1  z1  x1 -- z2 
x1 – z1  x1 -- z1  z1 -- z2  z2  z1 
x2 – z2  x2 -- z2       

         
Block 3         
δ=.1; γ=.9  δ=.07; γ=.9  δ=.014; γ=.9  δ=.01; γ=.9  δ=.008; γ= .9

         
x1 -> y  y -- x1  x1 -> y  x1 -> y  x1 -> y 
x2 -> y  y -- x2  x2 -> y  x2 -> y  x2 -> y 
x1 -- z1  x1 -- x2  z1  z1  z1 
x2 -- z2  x1 -- z1  z2  z2  z2 

  x2 -- z2       
  z1 -- z2       

 
 
 
 

When the relevance control parameter δ equals to 0.008, both X1 and X2 cause Y, 

and there is an undirected edge from X1 to Z1, meaning the algorithm is unable to sort out 

causal flow between X1 and Z1. Also, Z2 is independent, meaning it does not cause any 

other variables.  
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Block 2 (0.05 significance level) 

 In block 2 of table 3.3 the level of endogeneity is increased to 0.7 and the 

relevance control parameter δ is decreasing moving across the block. When the relevance 

control parameter δ equals to 0.1 and 0.07, both X1 and X2 cause Y, Z1 causes Y, and 

there are undirected edges from X1 to Z1, as well as from X2 to Z2, meaning the algorithm 

is not able to sort out the causal flow between X1 and Z1, as well as between X2 and Z2.  

When the relevance control parameter δ equals to .014, both X1 and X2 cause Y, 

Z1 causes X1, and there is an undirected edge from Z1 to Z2, meaning the algorithm is 

unable to sort out causal flow between Z1 and Z2. 

 When the relevance control parameter δ equals to .01, both X1 and X2 cause Y, 

and both Z1 and Z2 are independent, meaning they do not cause any other variables. 

When the relevance control parameter δ equals to .008, both X1 and X2 cause Y, and 

there is an undirected edge from X1 to Z2, meaning the algorithm is unable to sort out the 

causal flow between X1 and Z2. Also, Z1 is independent, meaning it does not cause any 

other variables. 

 

Block 3 (0.05 significance level)  

 In block 3 of table 3.3 the level of endogeneity is raised up to 0.9 and the 

relevance control parameter δ is decreasing moving across the block. When the relevance 

control parameter δ equals to 0.1, both X1 and X2 cause Y, and there are undirected edges 

from X1 to Z1, as well as from X2 to Z2, meaning the algorithm is not able to sort out the 

causal flow between X1 and Z1, as well as between X2 and Z2.  
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 When the relevance control parameter δ equals to .07 there are undirected edges 

from Y to X1, from Y to X2, from X1 to X2, from X1 to Z1, from X2 to Z2, from Z1 to Z2, 

meaning the algorithm is unable to sort out the causal flows between Y and X1, Y and X2, 

X1 and X2, X1 and Z1, X2 and Z2, Z1 and Z2.  

When the relevance control parameter δ equals to .014, .01, and .008, both X1 and 

X2 cause Y, and both Z1 and Z2 are independent, meaning they do not cause any other 

variables.  

 

Summary of the Directed Graphs (0.05 significance level) 

The results presented in table 3.3 are inconsistent with our expectations in every 

block. Although almost in every block both X’s caused Y, as expected, however, at these 

low levels of correlations there is not a clear-cut pattern of causal flows between Z’s and 

X’s. Thus, a conclusion can be drawn, that at the 0.05 significance levels the method of 

the directed graphs does not do a good job in terms of identifying the instruments.  

 

Analysis Using the Directed Graphs (0.005 Significance Level) 

As it was mentioned above, the results from the directed graphs are also going to 

be reported at the 0.005 significance level, because of the large sample size of 2000 

observations. 

 

Block 1 (0.005 significance level) 

 In block 1 of table 3.4 the endogeneity control parameter γ constant at the level of 

0.3, whereas the relevance control parameter δ is decreasing reading across the block. 
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When the relevance control parameter δ equals to 0.1 and 0.07, X1, X2, and Z1 cause Y, 

and there are undirected edges from X1 to Z1, as well as from X2 to Z2, meaning the 

algorithm is not able to sort out the causal flow between X1 and Z1, as well as between X2 

and Z2.  

When the relevance control parameter δ equals to 0.014 and 0.01 both X1 and X2 

cause Y, and there are undirected edges from X1 to Z1, as well as from X2 to Z2, meaning 

the algorithm is not able to sort out the causal flow between X1 and Z1, as well as 

between X2 and Z2 . When the relevance control parameter δ equals to 0.008, both X1 and 

X2 cause Y, and both Z1 and Z2 are independent, meaning that they do not cause any 

other variables. 

 
 

Block 2 (0.005 significance level) 

In block 2 of table 3.4 the level of endogeneity is raised to 0.7 and the relevance 

control parameter δ is decreasing reading across the block. When the relevance control 

parameter δ equals to 0.1 and 0.07 both X1 and X2 cause Y, Z1 causes X1, and there is an 

undirected edge from X2 to Z2, meaning the algorithm is unable to sort out causal flow 

between X2 and Z2.  

When the relevance control parameter δ equals to 0.014, 0.01, and 0.008, both X1 

and X2 cause Y, and both Z1 and Z2 are independent, meaning that they do not cause any 

other variables. 
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Table 3.4 Results from the Directed Graphs Using Artificially Created Data with the 

Number of Observations 2000 for Each Combination of δ and γ (0.005 Significance 

Level)  

Block 1         
δ=.1; γ=.3  δ=.07; γ=.3  δ=.014; γ=.3  δ=.01; γ=.3  δ=.008; γ=.3

         
x1 -> y  x1 -> y  x1 -> y  x1 -> y  x1 -> y 
x2 -> y  x2 -> y  x2 -> y  x2 -> y  x2 -> y 
z1 -> y  z1 -> y  x1 -- z1  x1 -- z1  z1 
x1 -- z1  x1 -- z1  x2 -- z2  x2 -- z2  z2 
x2 -- z2  x2 -- z2       

         
Block 2         
δ=.1; γ=.7  δ=.07; γ=.7  δ=.014; γ=.7  δ=.01; γ=.7  δ=.008; γ=.7

         
x1 -> y  x1 -> y  x1 -> y  x1 -> y  x1 -> y 
x2 -> y  x2 -> y  x2 -> y  x2 -> y  x2 -> y 
z1 -> x1  z1 -> x1  z1  z1  z1 
x2 -- z2  x2 -- z2  z2  z2  z2 

         
Block 3         
δ=.1; γ=.9  δ=.07; γ=.9  δ=.014; γ=.9  δ=.01; γ=.9  δ=.008; γ=.9

         
x1 -> y  x1 -> y  x1 -> y  x1 -> y  x1 -> y 
x2 -> y  x2 -> y  x2 -> y  x2 -> y  x2 -> y 
z1 -> x1  x1 -- z1  z1  z1  z1 
x2 -- z2  z2  z2  z2  z2 

 
 
 
 

Block 3 (0.005 significance level)  

In block 3 of table 3.4 the level of endogeneity is increased to 0.9 and the 

relevance control parameter δ is decreasing reading across the block. When the relevance 

control parameter δ equals to 0.1, both X1 and X2 cause Y, Z1 causes X1, and there is an 

undirected edge from X2 to Z2, meaning the algorithm is not able to sort out the causal 

flow between X2 and Z2.  
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 When the relevance control parameter δ equals to 0.07, both X1 and X2 cause Y, 

and there is an undirected edge from X1 to Z1, meaning the algorithm is unable to sort out 

the causal flow between X1 and Z1. Also, Z2 is independent, meaning it does not cause 

any other variables.  

When the relevance control parameter δ equals to 0.014, 0.01, and 0.008, both X1 

and X2 cause Y, and both Z1 and Z2 are independent, meaning that they do not cause any 

other variables. 

 

Summary of the Directed Graphs (0.005 significance level)  

The results from the directed graphs at the 0.005 significance level show that even 

though in most of the cases both X1 and X2 do cause Y, however, this method is unclear 

on assigning causal flows between X’s and Z’s, meaning that directed graphs still does 

not perform well in terms of identifying the instruments given the low levels of 

correlations between variables. 

 

Summary of the Directed Graphs Across the Significance Levels 

The method of directed graphs, overall, did not perform well in terms of 

identifying the instruments. Even though, in both tables the algorithm was able to identify 

causal flows between X’s and Y, however, it failed to sort out the causal flows between 

X’s and Z’s, thus failing to determine whether Z’s can be used as legitimate instruments 

for X’s. For some combinations of the relevance control parameter δ and the endogeneity 

control parameter γ the algorithm was able to assign causal flow between Z1 and X1, but 

it did not do that with respect to Z2 and X2.  
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CHAPTER IV 

AN INVESTIGATION OF ACTUAL FAT INTAKE 

 

In the previous chapter the Hausman test and the method of the directed graphs 

were applied to the artificially generated dataset. However, in this chapter the Hausman 

test and the method of the directed graphs are going to be applied to the dataset on actual 

fat intake.  

 

Data Description 

The data consist of 1778 observations from the 1994-1996 from the Continuing 

Survey of Food Intakes by individuals (CSFII) and Diet and Health Knowledge Survey 

(DHKS) conducted by the Human Nutrition Information Service of the U.S. Department 

of Agriculture. These data have been used in the paper by Park and Davis on studying the 

endogeneity of health information (Park and Davis 2001). The CSFII data contains 

information on socioeconomic variables and nutrient intake for members of a 

representative sample of US household over a time period of two nonconsecutive days. 

The CSFII was followed with the DHKS in such a manner so that information from it 

could be linked to information from the CSFII. Twenty years and older individuals who 

participated in the CSFII were contacted approximately three weeks after they responded 

to the CSFII and asked a series of questions about their diet-health knowledge and 

attitudes. The DHKS was conducted in such a way so that only one respondent per 

household took part in the survey. 
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The dependent variable in the analysis is total fat intake for the individual and is 

calculated as a simple average of fat intake in grams during two-day time period. The 

explanatory variables are hypothesized to be as follows. Total Fat/Disease Knowledge is 

measured based on the responses to several questions on respondents’ awareness on the 

relationship between fat intake and diseases. Each respondent is graded from 0 to 100 

based on a special answer key (see Park and Davis for discussion, p. 844). Total 

fat/Disease Knowledge is considered endogenous as in Park and Davis. Household Size is 

represented by the number of members of household. Age is represented by the actual age 

of a main meal planner in years. Income is represented by total household income in 

$1,000. TV is represented by the average hours of watching TV on daily basis. Body Mass 

Index (BMI) is represented by the ratio of body weight (kilograms) to squared height 

(meters), and, for obvious reasons, it is also considered endogenous. College is awarded 1 

if a main meal planner has more than 12 years education, otherwise, 0. Smoker is 

awarded 1 if a main meal planner is a smoker, otherwise, 0. Special Diet is awarded 1 if a 

main meal planner is on a special diet, otherwise, 0. 

The summary statistics are given in table 4.1. In table 4.1 the standard deviation 

(38.20501) of Total Fat is almost half the size of the mean (72.83802), meaning a wide 

range of intake across the sample. The average of the total fat/disease knowledge for 

Total Fat is 50.04687, while the standard deviation is 19.84786. The average household 

size is almost three, and the average age of main meal planner is almost fifty. The 

average annual income is $33.04641. The average hours of TV watching per day is 

almost three, and the average BMI is approximately twenty-six, while the standard 

deviation is just above six. Because the answer associated with such variables as college, 
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smoker, and special diet was either “yes” or “no”, hence their respective means indicate 

the percentage of respondents that gave positive answers. 

 
 
 

Table 4.1. Variables, Definitions, and Summary Statistics for 1994  

Variable Definitions and Units Mean and Standard Deviation 
   
Total fat Two day average intake in grams 72.83802 
  (38.20501) 
   
Total fat/disease 
knowledge 

Grade on Total Fat/Disease questions 
relative to nutritionist  50.04687 

  (19.84786) 
   
Household size Number of members of household 2.64961 
  (1.48841) 
   
Age Age of main-meal planner in years 49.52868 
  (17.25673) 
   
Income Total household income in $1,000 33.04641 
  (25.34951) 
   
TV Average hours of TV watching per day 2.7635 
  (2.22715) 
   

Body mass index Ratio of body weight (kilograms) to 
Squared (height meters) 25.89314 

  (6.33006) 
   

College 1 if attending school beyond 12th grade; 
zero otherwise  0.4252 

  (0.49451) 
   
Smoker  1 if smoker; zero otherwise 0.25759 
  (0.43743) 
   
Special diet 1 if on special diet; zero otherwise  0.18504 
  (0.38844) 
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It is expected that total fat/disease knowledge will have a negative effect on total 

fat intake, because as consumers become more and more knowledgeable about the 

possible diseases associated with fat consumption they are going to reduce their 

consumption of fat. 

It is unclear what the sign on the household size will be. Household size could 

have a positive or negative impact on Total Fat intake. It is hard to hypothesize about the 

effect of age, because it strongly depends upon cultural backgrounds and dietary habits 

(Variyam, Blaylock, and Smallwood 1998). 

Income could have a positive or negative impact on Total Fat intake. An increase 

in a household’s income will allow household members to buy normal or luxurious 

goods, thus cutting down on the consumption of relatively cheaper goods that contain fat. 

However, individuals might view products containing fat as their major source of protein, 

and thus keep consuming products containing fat even if their income goes down.  

TV watching is expected to be negatively related to fat consumption. Because 

television can be considered as one of the major source for consumers, extensive TV 

watching will allow consumers to become more knowledgeable about potential diseases 

linked to fat consumption and eventually reduce their intake of fat. However, TV 

watching might contribute to increased fat intake, but that would be a direct result of a 

sedentary lifestyle. 

The effect of the body mass index is unclear because it might be the case when 

the people with higher BMI might cut down their further consumption of fat trying to 

stay in a good shape. However, it can also be the case when people with higher BMI 
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might get more of calories from foods rich in fat because they are larger (Variyam, 

Blaylock, and Smallwood 1998). 

College is expected to have a negative effect on fat intake. It is expected that an 

additional year in college will allow improving of individuals’ information processing 

ability. Smoker is predicted to have positive effect on fat consumption given the 

indifferent attitude towards the health issues on smokers’ part. 

Special diet is expected to be negatively related with fat consumption because 

people on diet tend to pay a great deal of attention to their consumption patterns, which is 

mostly fat-free food oriented, because excessive fat consumption creates conducive 

conditions for gaining weight. 

 

Estimation Procedure: OLS and IV 

Before presenting the results, it should be pointed out that the following statistics 

are going to be reported at the 5% significance level: the OLS and IV parameter estimates 

for the abovementioned variables, R-squared from the OLS and IV estimation, Hausman 

P-value, and partial correlations R2p1 and R2p2 just as in Monte-Carlo experiment. The R-

squared statistic – sometimes referred to as the coefficient of determination – is the 

percent of the variation that can be explained by the regression equation. The Hausman 

P-value is the probability of rejecting the null hypothesis, given it is true. The null 

hypothesis of the Hausman test is that the OSL and IV estimates are the same. R2p1 and 

R2p2 are measuring instrument relevance between Total fat/Disease Knowledge and the 

rest of the variables, and BMI and the rest of the variables, respectively. The instruments 

were calculated according to the method developed by Lewbel (1997), using second and 
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third moments of variables as instruments. When Park and Davis (2001) investigated the 

endogeneity of the health information, they also used Lewbel’s method. According to 

Lewbel, if xi is an element of the X matrix, then r1 = (y1- 1y )(y2- 2y ), and  

ri = (xi- ix )(y2- 2y ) are all legitimate instruments, in addition to the xi variables, and the IV 

estimator is consistent. ix  and iy  indicate averages of the variables. In the present 

discussion, continuous variables, such as total fat/disease knowledge, age, household 

size, income, TV, are used to form instruments for Body Mass Index (BMI) and total 

fat/disease knowledge (y1). The IV generation process looks the following way: 

z1 = (y1-72.8380)*(h1-50.046) (4.1) 

z2 = (age-49.528)*(h1-50.046) (4.2) 

z3 = (hhsz-2.649)*(h1-50.046) (4.3) 

z4 = (inc-33.046)*(h1-50.046) (4.4) 

z5 = (tv-2.763)*(h1-50.046) (4.5) 

z6 = (y1-72.8380)*(bmi-25.8931) (4.6) 

z7 = (age-49.528)*(bmi-25.8931) (4.7) 

z8 = (hhsz-2.649)*(bmi-25.8931) (4.8) 

z9 = (inc-33.046)*(bmi-25.8931) (4.9) 

z10 = (tv-2.763)*(bmi-25.8931) (4.10) 

Below is the representation of the real-world model in mathematical form so that 

it could be compared to the actually estimated model: 

y1=β0+β1h1+β2BMI+β3hhsz+β4age+β5inc+β6TV+β7college+β8smoker+β9sdiet+ε1 

(4.11) 
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h1= γ0+γ1z1+γ2z2+γ3z3+γ4z4+γ5z5+γ6hhsz+γ7age+γ8inc+γ9TV+γ10college+ 

γ11smoker+γ12sdiet+ε2 (4.12) 

BMI= δ 0+δ 1z6+δ 2z7+δ 3z8+δ 4z9+δ 5z10+δ6hhsz+δ 7age+δ 8inc+δ 9TV+ 

δ10college+δ11smoker+δ 12sdiet+ε3 (4.13) 

Equation (4.11) is the structural equation of interest. Equation (4.12) and (4.13) 

define total fat/disease knowledge and BMI, respectively, in terms of instruments. The 

parameters ε1, ε2, and ε3 are disturbances to the equations (4.11), (4.12), and (4.13), 

respectively. 

The values of the abovementioned statistics are presented in table 4.2. The results 

in table 4.2 show that the OLS parameter estimate for total fat/disease knowledge is a 

negative -.082927 and is significant at the 6% level, while the IV parameter estimate is 

also negative, which is consistent with our expectations, but is about 19 times as large  

(-1.64178) and is significant at the 5% level. The OLS parameter estimate for BMI is a 

positive .611346 and significant at the 5% level, while the IV parameter estimate is a 

negative -1.29042, but is about twice as large and significant at the 5% level. These 

positive and negative effects of BMI on fat consumptions are possible, but troubling that 

a different estimation procedure can cause the sign to change. 
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Table 4.2. OLS vs. IV Results 

 OLS IV 
     

Variable Estimated Coefficient P-value Estimated Coefficient P-value 
     
C 74.6934 .000 202.277 0 
     
H1 -.082927 .058 -1.64178 0.01 
     
BMI .611346 .000 -1.29042 0.026 
     
HHSZ -.707586 .270 -0.511417 0.558 
     
AGE -.307067 .000 -0.262223 0.001 
     
INC .132610 .000 0.113823 0.024 
     
TV .289013 .459 -0.13106 0.821 
     
COLL -1.36992 .479 -4.2308 0.121 
     
SMOKER 9.44550 .000 7.36382 0.009 
     
SDIET -18.8229 .000 -16.2921 0 
     
R-squared OLS 0.090777    
     
R-squared IV 0.010781    
     
Hausman P-value 0    
     
R2p1 0.0086461    
     
R2p2 0.10461    
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The OLS parameter estimate for household size is a negative -.707586 and not 

significant at the 5% level, while the IV parameter estimate is negative -.511417 and not 

significant at the 5% level. The OLS parameter estimate for age is a negative -.307067 

and significant at the 5% level, while the IV parameter estimate is a negative -.262223 

and significant at the 5% level. The negative effect of age on fat consumption might be 

due to the fact that older people are less active and require fewer calories, hence 

consuming less and less fat. The OLS parameter estimate for income is a positive 

.132610 and significant at the 5% level, while the IV parameter estimate is positive 

.113823 and significant at the 5% level. Although both OLS and IV parameter estimates 

for income contradict to our expectations, however, the positive effect to income might 

be explained by the fact that consumers tend to buy energy dense food rich in fat as they 

enjoy increase in their income. The OLS parameter estimate for TV is a positive .289013 

and not significant at the 5% level, while the IV parameter estimate is a negative -.13106 

and not significant at the 5% level. The OLS parameter estimate for college is a negative 

-1.36992 and not significant at the 5% level, while the IV parameter estimate is a 

negative -4.2308 and not significant at the 5% level. The OLS parameter estimate for 

smoker is a positive 9.44550 and significant at the 5% level, while the IV parameter 

estimate is a positive 7.36382 and significant at the 5% level. The positive effect of 

smoker on fat consumption is consistent with our expectations. The OLS parameter 

estimate for special diet is a negative -18.8229 and significant at the 5% level, while the 

IV parameter estimate is a negative -16.2921 and significant at the 5% level. The 

negative effect of special on fat consumption is in agreement with our expectations. 
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The R-squared statistic from the OLS estimation is a positive 0.090777, meaning 

that independent variables can account for just above 9 percent of the variation in 

consumption of total fat. The R-squared statistic from the IV estimation is a positive 

0.010781, meaning that independent variables can account for just above 1 percent of the 

variation in consumption of total fat. 

The Hausman P-value equals to 0, which means we can reject the null hypotheses 

without fearing of making Type I error, according to which the null hypotheses is 

rejected given that it is true. Considering the Hausman P-value conclusion is drawn that 

the OLS parameter estimate is significantly different from the IV parameter estimate. 

Both R2p1 and R2p2 are small and equal to .0086461 and .10461, respectively. 

These small partial correlations mean that the IV estimator won’t be reliable, and the 

Hausman test might be misleading. 

Summarizing the results in table 4.2, it needs to be pointed out that both OLS and 

IV parameter estimates for total fat/disease knowledge are negative, however, the IV 

parameter estimate is about 19 times greater than the OLS parameter estimate. Also, it is 

noteworthy that the OLS parameter estimate for total fat/disease knowledge is significant 

at the 6% level, while the IV parameter estimate is significant at the 5% level. The OLS 

parameter estimate for BMI is positive and significant at the 5% level, while the IV 

parameter estimate is negative, but is about twice as large and significant at the 5% level. 

Even though these positive and negative effects of BMI on total fat intake are possible, 

however, it is somewhat troubling that the sign can be changed due to the different 

estimation procedure. Reading down the table we see that the coefficient estimates from 

both estimators have the same signs, except for coefficient estimates associated with the 
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hours of TV watching per day. Specifically, the OLS parameter estimate for TV is a 

positive and not significant at the 5% level, while the IV parameter estimate is negative 

and not significant at the 5% level. 

Both coefficients of determination from the OLS and IV estimation are positive, 

although fairly small too. However, R-squared associated with the OLS regression is 

slightly larger than that of the IV estimation, meaning that the OLS performs better than 

the IV in terms of explaining the amount of variation in the dependent variable. 

The direct conclusion reached from the Hausman P-value is that the IV estimator 

should be preferred over the OLS estimator. But, the message that we get from both 

partial correlations is that the result of the Hausman test may be misleading due to the 

fact that both partial correlation are fairly small. 

 

Directed Graphs 

Next, the method of directed graphs is implemented to the same real-world 

dataset. It is expected for the total fat intake to be caused by total fat/disease knowledge, 

BMI, and the rest of the exogenous variables. Also, according to the IV generation 

process it is expected for total fat/disease knowledge to be caused by z1, z2, z3, z4, and 

z5 and other exogenous variables, as well as for BMI to be caused by z6, z7, z8, z9, and 

z10, and other exogenous variables, if our priors on instruments are correct. The results 

from the method of directed graphs are presented in table 4.3 at two significance levels, 

.005 and .05. In table 4.3 y1 represents total fat intake, sdiet represents special diet, inc 

represents income, hhsz represents household size, coll represents college, h1 represents 
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total fat/disease knowledge, and z1, z2, z3, z4, z5, z6, z7, z8, z9, and z10 represent 

instruments. 

 
 
 

Table 4.3. Directed Graphs Results 

S.L.=0.05 S.L.=0.0050 
      

age -> y1 age -> y1 
inc -> y1 y1 -> smoker 
bmi -> y1 y1 -> sdiet 

smoker -> y1 z1 -> y1 
sdiet -> y1 y1 -> z6 
y1 -> z1 age -> hhsz 
z6 -> y1 inc -> hhsz 
y1 -> z9 hhsz -> z3 
z1 -> h1 hhsz -> z8 
age -> hhsz coll -> age 
inc -> hhsz age -> smoker 

hhsz -> sdiet age -> sdiet 
hhsz -> z3 age -> z7 
hhsz -> z8 coll -> inc 
coll -> age inc -> smoker 
age -> smoker tv -- z5 
age -> sdiet coll -> bmi 
age -> z7 bmi -> sdiet 
coll -> inc z6 -> bmi 
inc -> z6 z7 -> bmi 
z5 -> tv bmi -> z8 

z10 -> tv bmi -> z9 
coll -> bmi coll -> smoker 
sdiet -> bmi z2 -> z1 
z6 -> bmi z1 -> z4 
z7 -> bmi z3 -> z2 
z8 -> bmi z3 -> z4 

bmi -> z9 z7 -> z8 
z1 -> z2 z7 -> z9 
z1 -> z4 h1   
z1 -> z5 z10   
z2 -> z3    
z3 -> z4    
z8 -> z3    
z8 -> z7    
z7 -> z9    

z10 -> z7    
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According to the results in table 4.3 at the 0.05 significance level age causes total 

fat intake, household size, smoker, special diet, and z7, income causes total fat intake, 

household size, and z9, BMI causes total fat intake, and z9, smoker causes total fat 

intake, special diet causes total fat intake, and BMI, total fat intake causes z1, and z9, 

household size causes special diet, z3, and z8, college causes age, income, and BMI, z1 

causes total fat/disease knowledge, z2, z4, and z5, z2 causes z3, z3 causes z4, z5 causes 

TV, z6 causes total fat intake, and BMI, z7 causes BMI, and z9, z8 causes BMI, z3, and 

z7, z10 causes TV, and z7. 

In mathematical form, the TETRAD output at the 0.05 significance level can be 

represented similar to the equations (4.11) – (4.13): 

y1= β0+β1age+β2inc+β3bmi+β4smoker+β5sdiet+β6z6 (4.14) 

h1= γ0+γ1z1 (4.15) 

BMI= δ0+ δ1coll+δ2sdiet+δ 3z6+δ 4z7+δ 5z8 (4.16) 

Unlike the equation (4.11), the equation (4.14) does not include such variables as 

total fat/disease knowledge, household size, college and TV, meaning that these variables 

do not cause the total fat intake. Equation (4.15) does not contain such instruments as z2, 

z3, z4, z5 and other exogenous variables in contrast to the equation (4.12). Equation 

(4.16) includes only such instruments as z6, z7 and z8 unlike equation (4.13) and it only 

includes college and special diet of all the other endogenous variables.  

According to the results in table 4.3 at the .005 significance level age causes total 

fat intake, household size, smoker, special diet, and z7, total fat intake causes smoker, 

special diet, and z6, income causes household size, and smoker, household size causes z3, 

and z8, college causes age, income, BMI, and smoker, BMI causes special diet, z8, and 
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z9, z1 causes total fat intake, and z4, z2 causes z1, z3 causes z2, and z4, z6 causes BMI, 

z7 causes BMI, z8, and z9. The algorithm is unable to sort out the causal flow between 

TV and z5. Also, z10 and total fat/disease knowledge are independent, meaning that they 

do not cause any other variables. 

In mathematical form the TETRAD output at the 0.005 significance level can be 

represented similar to the equations (4.11) and (4.13): 

y1= β0+β1age+β2z1 (4.17) 

BMI= δ0+ δ1coll+δ2z6+ δ3z7 (4.18) 

When comparing equation (4.17) with equation (4.11), we see that such variables 

as total fat/knowledge disease, household size, income, TV, BMI, college, smoker, and 

special diet are left out of the equation (4.17). The equation that would possibly define 

total fat/knowledge disease does not include any instruments or any other exogenous 

variables. The equation (4.18) includes only such instruments as z6 and z7, missing the 

rest of the instruments, such as z8, z9, and z10. It also does not include only of the other 

exogenous variables, except college.  

The results presented in table 4.3 are not consistent with our expectations. 

Specifically, at the .05 significance level the results show that total fat intake is caused by 

exogenous variables, such as age, income, BMI, smoker, special diet. However, such 

exogenous variables as college and household size do not cause total fat intake. 

Furthermore, the only instrument that causes total fat/disease knowledge is z1. Also, z6, 

z7, and z8 are the only instruments that cause BMI. The same results can be observed 

from equations represented in mathematical form (i.e. (4.14), (4.15), and (4.16)). 
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Neither are the results in accordance with our expectations at the 0.005 

significance level. Specifically, age is the only exogenous variable that causes total fat 

intake. Furthermore, total fat/disease knowledge is independent, meaning that it is not 

caused by any of its instruments. Also, z6 and z7 are the only instruments causing BMI. 

The same points are supported by the equations (4.17) and (4.18). 

The results obtained from analyzing the real-world data implementing the method 

of the directed graphs lead us to believe that this particular method does not perform well 

in identifying the instruments. There are three possible reasons why the method of the 

directed graphs may not perform well. The first reason is that, the method of the directed 

graph is correct and prior on model structure is wrong. The second reason is that, the 

method of the directed graph is unreliable and the priors are correct. And, finally, the 

third reason is some combination of the first two reasons mentioned above.  
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CHAPTER V 
 

SUMMARY AND CONCLUSIONS 
 

Summary 

The main purpose of this thesis has been the evaluation of the performance of the 

Hausman test as opposed to the method of the directed graphs in terms of identifying the 

endogeneity of the health information given weak instruments. 

For that purpose a Monte-Carlo experiment was carried out, wherein the 

underlying model structure was known. Overall, two Monte-Carlo experiments were 

carried out. The first experiment utilized fifteen datasets, each consisting of ten separate 

datasets. The median values of parameters were reported in table 3.1. The overall picture 

obtained from that experiment was that the OLS estimator performed better than the IV 

estimator in terms of the parameter estimation and absolute bias of the parameter 

estimates associated with the relatively less endogenous explanatory variable. Another 

important finding was that a there does not seem to be a monotonic relationship between 

the median parameter estimates from both estimators and the relevance of the instrument 

at levels of correlation. A non-monotonic relationship was also observed between the 

median parameter estimates from both estimators (except for the IV estimator of β1) and 

the degree of endogeneity of the variable. In both cases a non-monotonic relationship 

suggests that there is a high level of risk involved because of the low levels of 

correlations. The percentage of the times the Hausman test rejects the null hypothesis 

exhibited declining pattern as instrument relevance decreased, and the percentage of the 

times the Hausman test rejects the null hypothesis overall exhibited increasing pattern as 

the degree of endogeneity increased. In both cases the Hausman statistic communicated 
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the right idea, however, it cannot be considered as a reliable method, because both the 

partial correlations, which measure instrument relevance, were fairly small (Park and 

Davis 2001). 

 The second Monte-Carlo experiment used fifteen datasets, with 2000 observations 

each. As a result, 15 models were estimated, one model for each degree of instrument 

relevance and the degree of endogeneity. Again, the OLS estimator proved to be doing a 

better job than the IV estimator in terms of parameter estimation and in terms of bias with 

respect to the relatively less endogenous explanatory variable. Another significant finding 

was that there did not appear to be a monotonic relationship between the parameter 

estimates from both estimators and the instrument relevance, as well as the parameter 

estimates and the degree of endogeneity. In both cases it means, that there is a high level 

of uncertainty present, due to the low levels of correlations. The decreasing pattern of the 

Hausman P-value within each block, and its increasing pattern across the blocks 

communicated the right idea, however, because the partial correlations that were used to 

measure instrument relevance were fairly small, we cannot consider the results of the 

Hausman test as reliable. 

 The method of the directed graphs was applied to the second Monte-Carlo 

experiment and did not do any better. Even though in the majority of cases it identified 

the dependent variable correctly, the method of the directed graphs failed to sort out the 

causal flow between the endogenous variables and their instruments. In other words, the 

directed graphs did not do a good job in identifying the instruments. 

When analyzing the real-world data it was assumed that total fat/disease 

knowledge and BMI variables were endogenous for obvious reasons. The results of the 
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analysis using the real-world data presented in table 4.2 show that even though both OLS 

and IV parameter estimates for total fat/disease knowledge are negative, the IV parameter 

estimate (-1.64178) is about 19 times greater than that of the OLS (-.082927). Also, the 

IV parameter estimate is significant at the 5% level, while the OLS parameter estimate is 

significant at the 6% level. The OLS parameter estimate for BMI is positive and 

significant at the 5% level (.611346), while the IV parameter estimate for BMI is 

negative (-1.29042). Also, the IV parameter estimate for BMI is about twice larger than 

that of the OLS and significant at the 5% level. The Hausman P-value clearly suggests 

using the IV estimator as opposed to the OLS estimator, however, considering fairly 

small values of partial correlations, a conclusion is drawn that the result of the Hausman 

test might be misleading. 

The method of the directed graphs did not do a good job in identifying the 

instruments, which implies that either the results obtained from the method of the 

directed graph are correct and our prior on model structure is wrong, or the method of the 

directed graph is unreliable and the priors on model structure are correct. But it might 

also be the case that the combination of these two possibilities may account for not 

considering the method of the directed graphs as a reliable method when dealing with low 

levels of correlations between variables.  

 

Conclusions 

The overall conclusion reached from conducting the Hausman test and the 

directed graphs using cross-sectional dataset is that neither of them performs well when 

correlations are low. As such, the advice from Nakamura and Nakamura should be 
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followed, wherein they call for reporting results from both OLS and IV estimations. 

Under certain assumptions the performance of the Hausman test was concluded as 

unreliable, and the performance of the method of the directed graphs also did not do a 

good job given low levels of correlations. These conclusions still hold for both artificially 

generated and real-world dataset. The major conclusion of this research is significant to 

those who are further willing to do a further study on finding a method, or a procedure 

that would possibly allow to better handle the endogeneity issue.  

Assuming the objective of public policy is to decrease health care cost associated 

with consuming total fat by conducting health education programs, it is unclear whether 

the OLS or IV estimates are to be preferred. The OLS estimates indicate a smaller effect 

on total fat intake of health information than the IV estimates. To err on the side of 

caution would indicate that the OLS estimates would be preferred. Because these 

estimates are smaller, if they are underestimated, then the target level would be reached 

with less health information and less money than expected.  

 

Research Scope and Extensions 

Extensive research has been done so far to investigate the impact of the health 

information on the demand for food and different nutrients. In most of the papers the 

endogeneity issue was handled through making choices in favor of specific estimation 

procedures, while in the others it was handled through the improvement of the method of 

the data collection. However, the concept of the weak instruments was not mentioned in 

any of them (see literature review). This thesis not only shows the importance of the 

instrument relevance, but it also shows the unreliability of the Hausman test and the 
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directed graphs when the instruments are weak. Nevertheless, further research should be 

conducted using the dataset that is more representative. That is, besides main meal 

planners, the rest of the household members should be included in the survey. As a result 

more representative results might be obtained. 
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