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       Preface 
This publication serves as a guide for the preparation of hydrological drought 

frequency maps. The work has been supported by the United States Geological Survey 
(USGS) grant 2009TX334G to provide the required material to aid drought planning and 
management.  

The report is divided into four parts. The first part describes the methodology 
employed for developing drought severity-duration-frequency (S-D-F) relationships for 
uniform grids over Texas, and presents results and discusses them. The second part 
includes drought iso-severity maps generated for drought durations ranging from 3 to 36 
months and return periods from 5 years to 100 years. Third and fourth parts include the 
maps derived using the same methodology, drought durations and return periods, but the 
data used for deriving the drought properties are precipitation and naturalized stream 
flow, respectively. Parts 3 and 4, hence, serve as a validation for the drought maps 
constructed. An illustrative example with sample calculations for each step is also 
included in the report. 
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Abstract 

Maps depicting the spatial variation of hydrological drought severity for Texas are presented in 
this report. The return periods chosen are 5, 10, 25, 50 and 100 years for drought durations of 3, 
6, 9, 12, 18, 24 and 36 months, respectively. The maps were constructed using the drought 
severity-duration-frequency (S-D-F) relationship derived using a copula-based multivariate 
probabilistic approach. For purposes of deriving drought properties, monthly stream flow 
simulations from a large scale land surface model, known as variable infiltration Capacity (VIC) 
model, were utilized. The stream flow time series obtained was gridded at 1/8th degree resolution 
over Texas. The marginal distribution most suitable for fitting each of the drought variables was 
determined after testing commonly used distributions, such as exponential, gamma, log-normal, 
and Weibull. The marginal distributions of drought severity and duration with the smallest root 
mean square error (RMSE) value between observed and theoretical probabilities were selected. 
For modeling the joint distribution of drought characteristics, the following classes of bivariate 
copulas were considered: Archimedean, extreme value, Plackett and elliptical families. The best 
performing copula, determined using the RMSE and the Akaike information criterion (AIC), 
were used to determine the conditional and joint return periods and hence derive the drought S-
D-F curves. The information obtained from the S-D-F curves was used for the preparation of 
drought atlas, which depicts the spatial variation of drought severity for specific drought 
durations and return periods in Texas.  

Keywords: Drought atlas, copula, hydrological drought, S-D-F curves 

Introduction 

A drought can generally be defined as a temporary meteorological event that starts with shortage 
of precipitation, and may affect streamflow, soil moisture, and ground water. This is considered 
as a recurring normal event that occurs in all climate regions. Since it is a creeping phenomenon, 
it is often difficult to detect its beginning, thus making it a complex natural phenomenon which 
is difficult to quantify and manage (Wilhite and Glantz, 1985).  

Droughts are dynamic and are characterized by multiple attributes, like severity, duration and 
magnitude (Mishra and Singh, 2010). For any drought event, the cumulative deficit of the 
variable of interest during the drought event is defined as drought severity. Drought duration is 
the time between the onset and the end of a drought event. Drought magnitude is the average 
deficit per unit duration. A significant problem associated with drought analysis is the 
assessment of the rarity of events, such as long or severe droughts. This is of particular interest 
from a design point of view. Just like intensity-duration-frequency curves have been used for a 
long time to synthesize a “design storm”, a similar approach can also be taken in the case of 
droughts.  



5 

 

The purpose of this study is to develop a relationship between drought parameters, severity, 
duration and frequency, and then utilize it for plotting drought iso-severity curves, thus 
improving the hydroclimatic design for the state of Texas.   

Historical Review 

Previous works, cited in the literature, which focused on the construction of drought maps, are 
briefly reviewed. Dalezios et al. (2000) developed S-D-F relationships for wet periods and 
drought events for Greece using an extreme value distribution and prepared iso-severity maps of 
various return periods and durations over the region. The drought events in this study were 
characterized using the Palmer drought severity index (PDSI). Saghafian et al. (2003) analyzed 
meteorological droughts in Iran using the run theory and then derived the S-D-F curves and iso-
severity maps for the region. In these studies, analysis of extreme events was performed using an 
empirical relationship based on a plotting position formula. Yoo et al. (2008) applied a 
rectangular Pulse Poisson Process Model (RPPM) for quantification and analysis of droughts in 
Korea. The occurrence of drought was assumed as a Poisson process, and the overlap probability 
between consecutive rectangular pulses was estimated. Based on model structure of RPPM, they 
presented a theoretical methodology for drought S-D-F analysis. Santos et al. (2012) investigated 
regional frequency analysis of droughts in Portugal using monthly precipitation data from 144 
rain gauge stations. In their study, drought was modeled using the Standardized Precipitation 
Index (SPI) at multiple time scales (1, 3, 6 and 12 consecutive months) and three spatially 
defined regions were identified using L-moments analysis. Then, drought magnitude maps of the 
region were developed using the kriging technique for various return periods. In this study, rather 
than going for the empirical approaches previously used for deriving drought maps, an analytical 
approach derived by Shiau et al. (2006) was applied, since it accounts for the multi-attribute 
nature of droughts in a simple manner.  

Part 1. Analysis 

Data  

Since fine scale observed data is essential to account for spatial heterogeneity of droughts, it 
might not be wise to use stream gauge data because stream gauges integrate over large spatial 
areas and thus do not account for the spatial variability of droughts (Andreadis et al., 2005). 
Besides, in Texas, the distribution of gauging stations is not uniform, since most of the stations 
are concentrated in the eastern part and relatively few stations are located in the western part of 
the state. To avoid this problem and to overcome the lack of long-term continuous stream flow 
data from all over Texas, a land surface model, called Variable Infiltration Capacity (VIC) 
model, was used to simulate stream flow for a period of 1950-2000, and results were validated 
against observed values from several USGS stream gauges. This particular model was chosen, 
since it focuses on simulating hydrological processes relevant to the water and energy balance 
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over the land surface for studying the effect of climate change on stream flow generation. 
Distinguishing characteristics of the model include sub-grid variability in land surface vegetation 
classes, sub-grid variability in the soil moisture storage capacity, and drainage from the lower 
soil moisture zone (base flow) as a nonlinear recession. 

The data used in the study can be divided into three categories: (1) Stream flow simulation 
obtained from the hydrological model; (2) meteorological forcing, soil and vegetation data used 
for driving the hydrological model; and (3) naturalized stream flow data from hydro-climatic 
data network (HCDN) stream gauges.  

(1) Stream flow simulation using Variable infiltration capacity (VIC) model 

The VIC-3L is a large scale land surface model and is used for simulating land-atmosphere 
fluxes by solving water and energy balance at a daily or sub-daily temporal scale (Liang et al., 
1994). The land surface is essentially divided into grids of specified resolution. Each of these 
cells is simulated independent of each other. Land surface is divided into different vegetation 
covers in such a way that multiple vegetation classes can exist within a cell. The soil moisture 
distribution, infiltration, drainage between soil layers, surface runoff, and subsurface runoff are 
all calculated for each land cover tile at each time step. Then, for each grid cell, the total heat 
fluxes (latent heat, sensible heat, and ground heat), effective surface temperature, and the total 
surface and subsurface runoff are obtained by summing over all the land cover tiles weighted by 
the fractional coverage. It should thus be noted that the VIC model does not account for the 
interflow between grids. Because of the absence of observed data for evaporation, soil moisture 
and runoff for each grid, to evaluate the model simulation results a routing model should be used 
as a post processing tool to produce stream flow at the points of interest.  

In the VIC-3L model, soil is typically partitioned into three layers vertically, with variable soil 
depths and the main soil parameters include hydraulic conductivity, thickness of each soil layer, 
soil moisture diffusion parameters, initial soil moisture, bulk density and particle density. The 
VIC model has been widely used, particularly for stream flow and soil moisture simulations. 
Abdulla et al. (1996), Nijssen et al. (1997), Lohmann et al. (1998), and Nijssen et al. (2001) used 
VIC primarily for stream flow simulation. Sheffield et al. (2004), Andreadis and Lettenmaeir 
(2006), Sheffield and Wood (2008), and Shukla and Wood (2008) demonstrated the use of VIC 
simulated soil moisture and runoff in the context of droughts. Since the grid-based VIC model 
simulates the time series of runoff only for each grid cell, which is non-uniformly distributed 
within the cell, a stand-alone routing model (Lohmann et al., 1996, 1998a) is employed to 
transport grid cell surface runoff and base flow to the outlet of that grid cell and then into the 
river system. In this routing scheme, the surface runoff simulated by VIC in each grid cell is 
transported to the outlet of the grid cell using a unit hydrograph approach. Then, runoff from 
each grid cell is routed through the channel using a linearized Saint-Venant equation.  
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In this study, the model was run separately for each of the twenty three river basins in Texas and 
once stream flow simulations within each grid cell were obtained, the routing model was 
employed to transport grid cell surface runoff and base flow to the outlet of that grid cell and 
then into the river system.  

(2) Data requirements for the model 

For this study, the VIC model for stream flow simulation was run at 1/8th degree resolution and 
hence all input files, including forcing files, soil and vegetation parameters had this resolution. 
This is the default resolution at which the VIC model runs (Salathe, 2003).  This resolution was 
chosen by taking into consideration the availability of gridded daily forcing data of precipitation 
(mm), maximum and minimum temperature (oC) and wind speed (m/s) which are needed to drive 
the model at the 1/8th resolution from Maurer et al. (2002) who have provided a data base for 15 
delineated basins in the United States, Canada and Mexico. The time period of data used was for 
the latter half of the 20th century: 1949-2000. The year 1949-1950 was considered as the spin up 
year for the model. Apart from the forcing data, soil and land cover data is also required by the 
VIC model. The soil characteristics which were not considered for calibration were taken from 
gridded 1/8 degree datasets developed as part of the Land Data Assimilation System (LDAS) 
project (Mitchell et al., 1999). Within the conterminous United States, these datasets are based 
on the 1-km-resolution dataset produced by the Pennsylvania State University (Miller and White, 
1998). Soil texture in the LDAS dataset is divided into 16 classes for each of 11 layers, inferring 
specific soil characteristics (e.g., field capacity, wilting point, saturated hydraulic conductivity) 
based on the work of Cosby et al. (1984) and Rawls et al. (1993), and Reynolds et al. (2000). 
These LDAS datasets were used to specify the relevant soil parameters required by the VIC 
model directly. For the remaining soil characteristics (e.g., soil quartz content), values were 
specified using the soil texture from the 1-km database, which were then indexed to published 
parameter values [the primary source was Rawls et al. (1993)], and aggregated to the 1/8th 
degree model resolution. Vegetation parameters needed were also obtained from LDAS. The 
land cover characterization was based on the University of Maryland global vegetation 
classification described by Hansen et al. (2000), which has a spatial resolution of 1 km, and a 
total of 14 different land cover classes. From these global data we identified the land cover types 
present in each 1/8 grid cell in the model domain and the proportion of the grid cell occupied by 
each, as described by Maurer et al. (2001). The leaf area index (LAI) needed was derived from 
the gridded (1/4 degree) monthly global LAI database of Myneni et al. (1997), which is inverted 
using the Hansen et al. (2000) land cover classification to derive monthly mean LAIs for each 
vegetation class for each grid cell. 

The data needed for the routing scheme includes a fraction file, flow direction file, Xmask file, 
flow velocity and diffusion files, and unit hydrograph file. ArcMap was used for the preparation 
of files, and the DEM files needed for creating the required files were obtained from the USGS 
hydro 1k datasets. 
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(3) Station data used for model validation 

Since the model simulated stream flow was used for analysis in this study, validation of the 
results was carried out with respect to the actual flow values. The stream flow obtained after 
calibrating the model parameters was validated using the USGS hydro climatic data network 
(HCDN) stream flow data. The HCDN stream flow data provides the naturalized stream flow 
data which can be used for analyzing the hydrologic response to climate change. Since VIC 
model simulates naturalized stream flow, it makes sense to validate it using HCDN data rather 
than the data from the original USGS gauge network.  

Figure 1 shows five major climate zones within Texas, namely arid, semi-arid, subtropical semi 
humid, subtropical humid and continental steppe, and locations of stream gauge stations used for 
validating the stream flow obtained from the VIC model. Table 1 gives details of the validation 
stations. 

Table 1. Information on validation stations within Texas 

Station Name Station 

ID 

Latitude Longitude Validation 

Period 

Climate Zone 

Frio River Near Derby 8205500 31.436 -103.467 1951-1952 Arid 

Spring Creek Near Spring 8068520 35.471   -101.880 1981-1982 Continental 

Village Creek Near Kountze 8041500 34.837 -101.414 1968-1969 Continental 

Neches River Near Neches 8032000 35.935 -100.371 1965-1966 Continental 

Nueces River Near Three rivers 8210000 30.452 -101.733 1975-1976 Semiarid 

Nueces River Below Uvalde 8192000 28.5 -99.682 1959-1960 Semiarid 

Mill Creek Near Bellville 8111700 32.628 -101.285 1989-1990 Subtropical 

North Concho River Near Carlsbad 8134000 31.494 -99.574 1969-1970 Subtropical 

Millers Creek Near Munday 8082700 33.329 -99.465 1972-1973 Subtropical 

Ecleto Creek Near Runge 8186500 29.335 -98.689 1982-1983 Subtropical 

Cowhouse Creek at Pidcoke 8101000 31.285 -97.885 1955-1956 Subtropical 

Coleto Creek Near Victoria 8177300 28.752 -97.317 1979-1980 Subtropical 

Los Olmos Creek Near Falfurrias 8212400 27.2645 -98.136 1967-1968 Subtropical 
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Big cow Creek Near Newton 8029500 32.763 -95.463 1982-1983 Subtropical 

Long king Creek Near Livingston 8066200 30.907 -95.088 1991-1992 Subtropical 

Bayou Toro Near Toro 8025500 29.6947 -95.216 1973-1974 Subtropical 

 

 

Figure 1. Location of validation stations within different climate zones in Texas 

Data Processing 

(1) Gridding of Meteorological Forcing data 

The default resolution of the VIC model is 1/8th degree. Hence, all the forcing parameters 
required to run the model should be in gridded data format with the same resolution. Maurer et 
al. (2002) explains how the gridding of forcing data can be done to match the model resolution. 
The VIC model was designed to use daily precipitation, maximum and minimum temperature 
and daily averaged wind speed. Out of these, the daily 10-m wind fields were obtained from the 
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NCEP–NCAR reanalysis and regridded from the T62 Gaussian grid, which is 1.9° grid, to the 
1/8° grid using linear interpolation. Daily precipitation data was obtained from National Oceanic 
and Atmospheric Administration (NOAA) Cooperative Observer (Co-op) stations. The 
precipitation gauge data were gridded to the 1/80 resolution using the synergraphic mapping 
system (SYMAP) algorithm of Shepard (1984). The gridded daily precipitation data were then 
scaled to match the long-term average of the parameter-elevation regressions on independent 
slopes model (PRISM) precipitation climatology, which is a comprehensive dataset of 12 
monthly means for 1961–90 that is statistically adjusted to capture local variations due to 
complex terrain. The scale factor would be the ratio of mean monthly PRISM precipitation for 
the period 1961-1990 to the unscaled mean monthly observed precipitation for the grid during 
1961-1990. For each grid, there would be a different scaling factor for each month. For the 
minimum and maximum temperatures the same procedure for precipitation was followed for 
gridding. 

(2) Stationarity checking for stream flow data 

Before using stream flow data for drought classification and further analysis, the time series was 
checked for stationarity. The assumption of stationarity might no longer be valid for time series 
of hydrological variables due to substantial climate change brought about by human intervention 
(Milly et al., 2008). If the time series was found to be non-stationary, it was rendered stationary 
by means of a transformation, like data differencing or detrending, which is given as: 

 
*

1 , 1, 2... 1                                                                                                       (1)i i iX X X i N     

where Xi , i=1, 2,…, N, is the monthly time series under consideration. To test for stationarity, 
two tests were used. The augmented Dickey Fuller test (ADF), proposed by Dickey and Fuller 
(1979), which tests the difference stationarity, and KPSS test, proposed by Kwiatkowski et al. 
(1992), which tests trend stationarity, were used. The ADF tests were conducted through 
ordinary least squares (OLS) estimation of regression models with either an intercept or a linear 
trend. The KPSS test complements the Dickey-Fuller unit root test. In this test, the series is 
decomposed into the sum of a deterministic trend, a random walk, and a stationary error. The 
null hypothesis for the test is that the intercept is a fixed element. Both tests were carried out at 
the 5% significance level. If the time series fails to pass the KPSS test, detrending is carried out 
to remove the trend component from the series. If it fails the ADF test, data differencing is 
carried out to achieve stationarity. 

From this step onwards, a small example subset will be used to illustrate the calculations 
involved in each step. The observed stream flow data from the USGS station: Brazos River near 
upper bend has been utilized for this purpose. The location details of the station are: Latitude is 
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33001’ and longitude is 98037’. Figure 2 shows the logarithmized monthly stream flow time 
series for the time period 1962-2000. 

 

Figure 2. Monthly stream flow time series 

Tables 2 and 3 show a sample streamflow data before and after transformation (here logarithm 
was used for transforming the data). Table 4 shows that the mean and standard deviation of the 
time series when split into two parts remain almost unchanged after transformation compared to 
the case before transformation.  

Table 2. Sample streamflow data before transformation 

91 118.5 100 40.2 53.3 60.4 1743 42.1 223.2 12.3 
156.6 502.5 44.7 267.5 99.9 148.6 21.5 133.9 60.5 237.6 
110.9 138.4 168.1 706.3 87.9 597.4 177.5 53.6 119.2 414.1 
1672 379.5 81.8 82.7 80.8 101.3 107.8 28.7 5.92 58.1 
101 433 27 56.9 38.5 261 94.5 182 15 111.1 

577.3 44.4 1017 62.7 128.1 51.9 105 66 159.3 119.1 
285.1 109.9 900.4 94.2 1359 119.6 274.1 136.7 251.3 8987 
705.4 118.9         

 

Table 3. Sample streamflow values after transformation by taking logarithm 

 1.96 2.07 2.00 1.60 1.73 1.78 3.24 1.62 2.35 1.09
 2.19 2.70 1.65 2.43 2.00 2.17 1.33 2.13 1.78 2.38
2.04  2.14 2.23 2.85 1.94 2.78 2.25 1.73 2.08 2.62
3.22 2.58 1.91 1.92 1.91 2.01 2.03 1.46 0.77 1.76
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2.00 2.64 1.43 1.76 1.59 2.42 1.98 2.26 1.18 2.05
2.76 1.65 3.01 1.80 2.11 1.72 2.02 1.82 2.20 2.08
2.45 2.04 2.95 1.97 3.13 2.08 2.44 2.14 2.40 3.95
2.85 2.08    

 

Table 4. Comparison of mean and standard deviations of time series before and after 
transformation 

Time period Before transformation After transformation 
 

1951-1954 
Mean SD Mean SD 
253.57 392.42 2.122 0.468 

1955-1958 477.58 1490.81 2.137 0.593 
Error percentages 88.33% 279.9% 0.715% 26.72% 

 

It can be seen from Table 4 that there is considerable improvement in stationarity after 
transformation. The error percentage, particularly for mean, is quite negligible, when compared 
over two parts of the time series. 

Study area  

The area considered for this study is the state of Texas. There are five distinct climate zones in 
Texas showing the variation from arid to sub-tropic humid zones. The varied physiography in the 
state of Texas with forests in the east, coastal plains in the south to the elevated plateaus and 
basins in the north and west, results in a wide variety of weather throughout the year (Benke and 
Cushing, 2005). The land surface elevation follows a decreasing trend from west to east, with 
arid climate zone covering higher elevation areas, whereas most of the sub-tropic humid zone 
and parts of sub-tropic semi-humid zone cover the low lying regions in Texas. There are 13 
major river basins in Texas that vary greatly in size, shape and stream patterns. Climate, 
particularly rainfall and evaporation, strongly controls the flows of rivers and streams in Texas. 
The region is traversed by a strong decreasing rainfall gradient from east to west and a 
temperature gradient from north to south that strongly influences vegetation, land use and river 
flow. In Sabine River basin in east Texas, mean annual rainfall is nearly 60 inches and annual 
evaporation is less than 70 inches, whereas in Rio Grande basin in west Texas, mean annual 
rainfall ranges from 8 to 20 inches and annual evaporation is as much as 105 inches. Therefore, 
east Texas rivers flow year around, whereas most of the west Texas streams flow only part of the 
year (Bureau of Economic Geology, 1996). Figure 3 shows a river basin map of Texas and the 
precipitation (annual average in inches) gradient within the state.  
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Figure 3. River basin map of Texas with precipitation pattern (annual average Precipitation in 
inches) 

Part 1: Analyses 

(1) Determination of drought severity and duration using theory of runs 

A drought event is characterized by severity, duration and magnitude (Mishra and Singh, 2010). 
For any drought event, the cumulative deficit of the variable of interest during the drought event 
is defined as drought severity. Drought duration is the time between the onset and the end of a 
drought event. Drought magnitude is the average deficit per unit duration. In this study, drought 
duration and severity were considered. For the monitoring and quantification of drought, a wide 
range of drought indices are available in the literature (Keyantash and Dracup, 2002). Since this 
study deals with hydrological droughts, stream flow is the indicator variable of a drought event. 
Hence, a drought index based on stream flow, namely standardized stream flow index (SSFI), 
was used in this study to quantify drought properties.  

Standardized stream flow index (SSFI) 
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The concept of SSFI is statistically similar to that of standardised precipitation index (SPI) 
introduced by McKee (1993) and has been applied by Modarres (2007). Shukla and Wood 
(2008) used a standardised runoff index (SRI) as a complement to the SPI to assess hydrological 
aspects of a drought. Table 5 gives the classification of events based on the SSFI values 
(Modarres, 2007). Following this classification, a threshold value of -0.99 was chosen, since any 
value below that indicates the onset of a dry event.  

Table 5.  SSFI Classification 

SSFI value Classification 
2.0 or more Extremely wet 
1.5 to 1.99 Very wet 
1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 
-1.0 to -1.49 Moderately dry 
-1.5 to -1.99 Severely dry 
-2.0 or less Extremely dry 

 

The calculation of SSFI involves the following steps: (1) A suitable probability distribution is 
fitted to the monthly stream flow time series for the time period 1950-2000. (2) From the fitted 
frequency distribution, the cumulative probability distribution of stream flow is obtained. (3) 
Cumulative probability is transformed to a standard normal variate of zero mean and unit 
standard deviation. This is calculated from a numerical approximation to the normal cumulative 
distribution function (CDF). The approximation given by Abramowitz and Stegun (1964) was 
used to obtain the standard cumulative normal probability distribution function (CDF). The 
approximation for ф(x) for x>0 is given as: 

2 3 4 5
1 2 3 4 5

0

1
( ) 1 ( )( ) ( ),                                                       (2)

1
x x b t b t b t b t b t x t

b x
         


 

where ( )x is the standard normal CDF, b0=0.2316419, b1=0.319381530, b2=-0.356563782, 
b3=1.781477937, b4=-1.821255978, b5=1.330274429. 

Having approximated the normal CDF using eq. (2), the standard normal variate Z can be 
calculated as: 

2
0 1 2

2 3
1 2 3

                                                                                                           (2a)
1

2 ln( ( ))  ( ) 0.5

2 ln(1 ( ))  0.5< ( ) 1

c c t c t
z t

d t d t d t

t Z for Z

t Z for Z

 

 

 
 

  

  

   

 

C0 = 2.515517, C1= 0.802853, C2= 0.010328, d1= 1.432788, d2= 0.189269, d3= 0.001308. 
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SSFI is essentially the standard Z-variate calculated in the previous step. In other words, SSFI for 
a given series can simply be represented as the standard normal variate with zero mean and unit 
standard deviation and is given as: 

                                                                                                                            ( 3 )iF F
SSFI






where Fi is the flow rate in time interval i, F  is the mean of the series, and σ is the standard 
deviation of the series.  Conceptually it represents the number of standard deviations above or 
below that an event is from the mean (McKee, 1993). 

Considering a number of previous studies, like Zaidman et al. (2001), Kroll and Vogel (2002), 
McMahon et al. (2007), Shukla and Wood (2008) and Nalbantis and Tsakiris (2009), the log-
normal distribution was selected for fitting monthly stream flow data. In a previous study for 
Texas, the authors identified that log-normal distribution provided a satisfactory fit for stream 
flow data within various climatic regions in Texas.  

The calculations involved in the determination of SSFI are illustrated below: 

The first step would be fitting the log-normal distribution to stream flow data. From the log-
normal CDF obtained, the calculation of SSFI for one observation is shown below: 

x = 6.5, ф(x) = 0.75, Mean F =5.321 and standard deviation  =1.7478 

0

1 1
  = 0.1249

1 1+0.2316419*6.5
 


t

b x
 

2 3 4

5

( ) 1 0.75(0.319381530*0.1249 0.356563782*0.1249 1.781477937*0.1249 1.821255978*0.1249

1.330274429*0.1249 ) 0.97195

    

 

x

 

2
0 1 2

2 3
1 2 3

2 3

2 ln(1 0.97195) 2.673487

1

2.515517 0.802853*2.673487 0.010328*2.673487
2.673487

1 1.432788*2.673487 0.189269*2.673487 0.001308*2.673487
1.9181

t

c c t c t
SSFI Z t

d t d t d t

   

 
  

  
 

 
  



 

Figure 4 shows the SSFI time series for the data.  
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Figure 4. SSFI time series for the station location 

The theory of runs was used for deriving drought characteristics from the stream flow time 
series. This method has been widely used in the field of hydrology. Yevjevich et al. (1967), 
Rodriguez-Iturbe (1969), Saldarriaga and Yevjevich (1970), Millan and Yevjevich (1971), 
Guerrero-Salazar and Yevjevich (1975), and Sen (1976,1977) are among the first who  applied 
the run theory in hydrology. A run is defined as a portion of time series of drought variable Xt in 
which all values are either above or below a threshold level X0. Accordingly, it can be called a 
positive or a negative run. The threshold level may be constant or it may vary with time. Thus, 
the drought characteristics essentially depend upon the threshold chosen (Mishra and Singh, 
2010). Figure 5 depicts the drought characteristics derived using SSFI. 
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Figure 5. Drought characteristics derived using standardized stream flow index (SSFI) 

Having obtained the time series of SSFI from the previous step, the severity and duration values 
of the drought events can be calculated as follows. 

Table 6 shows a portion of the monthly SSFI time series and the calculated severity and duration 
values. 

Table 6. Sample SSFI time series 

SSFI Severity Duration (months) 
-0.464  

 
-1.225 

 
 
1 

-0.312 
-0.409 
-0.931 
-1.225 
-0.905  

 
-4.76 

 
 
3 

-1.609 
-1.124 
-2.027 
-0.720 

From Table 5, it can be seen that any SSFI value falling below -0.99 can be considered as a 
drought event. From the example subset given in Table 3, the first drought event has a magnitude 
of -1.225 and lasts for a month. The second drought event has a cumulative magnitude of (-
1.609-1.124-2.027) which is -4.76 and lasts over a period of 3 months. Figure 6 shows the scatter 
plot for the severity-duration values calculated. 

 

Figure 6. Severity Duration scatter plot 
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Table 7 gives the summary of the statistics of the drought properties at the station. 

A total of 42 drought events were observed. 

Table 7. Summary statistics of drought events 

Drought 
property Severity 

Duration 
(months) 

Mean 2.3058825 4.6054762 
Standard 
deviation 1.3375898 2.7289699 
Skewness 1.9339718 3.0202531 
Minimum 0.9988734 2 
Maximum 7.5951209 18 

 

(2) Determination of marginal distributions for drought severity and duration 

 Distribution Selection 

Sklar’s theorem requires that the marginal distributions should be continuous. In drought 
analysis, the two most commonly used continuous distributions are exponential and gamma for 
fitting the drought duration (Zelenhastic and Salvai, 1987) and drought severity (Shiau, 2006), 
respectively. However, since there are several grids to be considered, these two distributions 
might not fit well for all cases. Hence, additional distributions, like Weibull and log normal, 
which are usually used to describe hydrological variables, were also considered. 

Parameter Estimation 

Parameters of marginal distributions were estimated using the maximum likelihood estimation 
method. The procedure of finding the value of one or more parameters for a given statistic makes 
the known likelihood distribution a maximum. The maximum likelihood estimates are obtained 
by maximizing the log-likelihood function.  

The maximum likelihood method provides one solution to the estimation problem. Let {xi} be a 
set of observations from a population with probability distribution function: 

}){,(),....,;( 21 axaaax n                (4a) 

Parameters {a} influence the distribution function, but are generally unknown. The task of 
estimation is to determine functions of observations {x} to use as estimates of parameters. The 
probability of obtaining a set of observations {x} from a population with probability distribution 
function  }){,( ax  is the product of the probabilities of all the observations:  


i

i axaL }){,()(                                                                                                                     (4b)
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This joint probability function is called the likelihood and depends on parameters {a}. The value 
ak, for which the likelihood reaches its maximum value, is the maximum-likelihood estimate for  
parameter a. If W= ln(L{a}), then  

W = 
i

i ax }){,(                (4c) 

The maximum-likelihood estimate of parameters {a} satisfies the simultaneous equations: 

0



 ji aaja

W
                (4d) 

Figures 7 and 8 show the histogram of severity and duration data, respectively, and the 
distribution fits.  

 

Figure 7. Histogram for severity data and distribution fits 
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Figure 8. Histogram for duration data and distribution fits 

Calculations involved in the parameter estimation for one of the chosen distributions, viz., log 
normal for severity are shown below: 

2

2

ln (ln )
;                                                                                                 (4d)

k k
k k

x x

n n


 


 
  

 

where   is the estimator of mean and 2 is the estimator of variance, k is the number of 
observations, and Xk is the observations. Table 8 gives the values of Xk. 

Table 8. Severity values (Xk) used for parameter estimation 

1.609 
1.297 
1.010 
1.678 
1.404 

1.289 
1.273 
1.762 
1.963 
3.159 

3.151 
1.330 
1.844 
1.911 

1.159 
2.058 
2.789 
3.605 

1.495 
4.275 
4.385 
1.128 

2.356 
1.781 
3.365 
1.780 

1.623 
1.902 
1.577 
1.760 

1.917 
2.439 
0.999 
3.528 

1.039 
2.018 
4.432 
1.037 

3.155 
4.959 
7.595 
2.014 

 

2 2

29.728
ln 29.728; 0.708

42

9.811
(ln ) 9.811; 0.234

42

k
k

k
k

X

X
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Goodness of fit 

For choosing the most suitable marginal distribution from amongst the candidate distributions, 
goodness of fit statistics, like mean square error (MSE) and Akaike information criterion (AIC), 
AIC is a goodness of fit statistic which has an information entropy background and represents a 
relative measure of information lost in the system. The distribution with the lowest AIC was 
chosen.The AIC is defined as: 

( ) log( ) 2                                                                                                          (4)AIC m n MSE m   

where n is the number of observations and m is the number of fitted parameters.  

Mean square error denotes the difference between the estimated and true values. The distribution 
with the smallest MSE values between observed and theoretical probabilities was chosen. MSE is 
the mean square error of the fitted distribution with respect to the empirical distribution and is 
given as: 

2

1

1
( )                                                                                                              (5)

n

i i
i

MSE O P
n m 

 
 

 

where Oi and Pi represent the observed and estimated variables, respectively.  

A sample calculation for the estimation of goodness of fit parameters AIC and MSE for log 
normal distribution fit in the case of severity data is given below. Table 9 shows the observed 
and estimated severity values. 

Table 9. Observed and estimated severity values 

Observed severity values (O) Estimated severity values (P) (O-P)2 

1.6085 
1.288996 
3.150614 
1.158675 
1.494962 
2.356052 
1.622627 
1.917271 
1.038689 
3.155055 
1.297035 
1.273248 
1.330372 
2.057645 
4.274602 

1.723473
1.183367
3.131783
0.978645
1.358948
2.087721
1.570525
1.808434
1.223807
3.265075
1.305006
1.343874
1.381897
2.19255 
4.456096

0.013219 
0.011157 
0.000355 
0.032411 
0.0185 

0.072002 
0.002715 
0.011846 
0.034269 
0.012105 
6.35E-05 
0.004988 
0.002655 
0.018199 
0.03294 
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1.780895 
1.902308 
2.439114 
2.01824 
4.958802 
1.010203 
1.762338 
1.843975 
2.788553 
4.385018 
3.364899 
1.576833 
0.998873 
4.431861 
7.595121 
1.677634 
1.962933 
1.910923 
3.605031 
1.127742 
1.779639 
1.759909 
3.527597 
1.036974 
2.014445 
1.403509 
3.159355 

 

1.492546
1.528715
2.564702
2.160059
4.636471
1.072409
1.708479
1.74475 
2.781287
4.818158
3.855427
1.893163
0.931434
4.970311
8.009869
2.050186
2.091348
2.133444
3.765717
1.220839
1.663629
1.613274
3.361717
1.141186
2.463874
1.517982
3.695592

0.083145 
0.139572 
0.015772 
0.020113 
0.103897 
0.00387 
0.002901 
0.009846 
5.28E-05 
0.18761 
0.240618 
0.100065 
0.004548 
0.289928 
0.172016 
0.138796 
0.01649 
0.049515 
0.02582 
0.008667 
0.013458 
0.021502 
0.027516 
0.01086 
0.201986 
0.013104 
0.28755 

 

 

2( ) 2.456O P   

MSE=2.456/(42-2) = 0.061 

AIC(2) = 42*log(0.061) + 2*2 = -46.899 

Figure 9 gives the quantile plot with 95% confidence bounds for log-normal distribution which 
was chosen to fit the severity data.  
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Figure 9. Quantile plot for the log-normal distribution 

The chosen log-normal distribution thus has the following parameters: mu (μ) is 0.707 with a 
standard error of 0.0754 and sigma (σ) is 0.489 with a standard error of 0.054. Figure 10 gives 
the quantile plot with 95% confidence bounds for the exponential distribution which was chosen 
to fit the duration data. The chosen exponential distribution has the following parameters: mu is 
4.595 with a standard error of 0.0754. 
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Figure 10. Quantile plot for exponential distribution 

 (3) Construction of joint distribution of drought severity and duration  

Droughts are dynamic and are characterized by multiple attributes, such as severity, duration and 
magnitude (Mishra and Singh, 2010). Several studies related to drought properties have been 
conducted in the past. In some of the studies (Tallaksen et al., 1997, Fernández & Salas, 1999; 
Cancelliere & Salas, 2004) drought properties were investigated separately by unviariate 
frequency analysis. However, taking into account the fact that droughts are multi-attribute in 
nature, in several other studies, univariate analysis was extended to bivariate analysis (Shiau and 
Shen, 2001; Bonaccorso et al., 2003;  Kim et al., 2003;  González and Valdés, 2003; Salas et al., 
2005). However, the derivation of such bivariate distributions poses problems, since the marginal 
distributions used should belong to the same family, which might not be the case in reality since 
we use different distribution functions to fit different drought properties. The use of copulas to 
link marginal distributions to form a joint distribution was found to alleviate such problems and 
several studies focusing on the use of copulas in the context of drought analysis can be seen in 
the literature (Shiau, 2006, 2007, 2009; Kao & Govindaraju, 2010; Song & Singh, 2010a,b; 
Mirakbari et al., 2010).  

A bivariate distribution function FX,Y(x,y) of two correlated random variables X and Y with 
marginal CDFs FX (x) = P(X ≤x) and FY (y)=P(Y ≤y), respectively, can be expressed in terms of 
copula function C as (Sklar, 1959): 
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, ( , ) [ ( ) ( )] ( , )                                                                                            (6)X Y X YF x y C F x F y C u v 
 
where FX,Y(x,y) is the joint CDF of random variables X and Y.   

Copula functions for joint distribution 

In this study, four classes of bivariate copulas were considered: Archimedean, extreme value, 
Plackett and elliptical families. 

Archimedean copulas 

This family of copulas is related to Laplace transforms of bivariate distribution functions (Joe, 
1997). If L denotes the class of Laplace transforms, which consist of strictly decreasing 
differentiable functions: 

1 1

( )

:[0, ] [0,1] (0) 1, ( ) 0;
                                                                               (7)

( 1) 0; 1,...,j j
L

j

  



         
     

then the bivariate copula function 2:[0,1] [0,1]C  is defined as (Nelson, 1999): 

[ 1]( , ) [ ( ) ( )] , [0,1]                                                                                            (8)C u v u v u v    
 

where ф(.) is the copula generator and ф-1(.) is the pseudo inverse of ф(.). The Archimedean 
class of copulas considered in the study include: Clayton and Frank copulas. 

Extreme value copulas 

A bivariate random variable (X, Y) is said to follow an extreme value distribution with unit 
exponential margins 

, ,

( ) , ( ) ( 0, 0) for any n 1                                                          (9)

( , ) ( , )  ( 0, 0)

x y

n
X Y X Y

P X x e P Y y e x y

F x y F nx ny x y

       

  
 

The joint survivor function for any (X, Y) can be expressed as (Tawn, 1988): 

, ( , ) ( , ) exp ( ) ( 0, 0)                                         (10)X Y

y
F x y P Y y X x x y A x y

x y

  
           

  

where A(.) is the Pickands dependence function. Accordingly, a bivariate extreme value copula 
can be written in terms of Pickands dependence function as: 
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  log
( , ) ( ) , ( ) exp (log log )                                    (11)

log logX Y

u
C u v P F x u F y v u v A

u v

  
        

 

The extreme value copula considered in this study was Gumbel-Hougaard copula. 

Elliptical copula 

Under this class, Student’s t copula was considered in the study. This family of copulas does not 
have closed form expressions.  

Plackett copula 

The Plackett copula is formed by assuming a constant global cross ratio function. The 
expressions for the copulas considered in the study and the parameter space are explained in 
Table 10. 

Table 10. Joint cumulative distribution function for various types of copulas used in the study 

Names Equations Parameters 

Clayton 1

( 1)u v  


  
 

 0 1, ) \ 0    

Frank 1 ( 1)( 1)
ln(1 )

( 1)

u ve e

e

 



 



  



 

R  

 ( , ) \ 0   
 

 

Gumbel-
Hougaard  

1
exp ( )u v       

 [1, )    

 

Student t 1
1

( 2)
( ) 2 2 2( )

22

( 1)
2 2

1 2
1

(1 )2 (1 )

( 1)[ ]2( ) 1 ,  0
( )2

t v
t u

x

x rxy y
dxdy

rr

yt x dy
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Plackett 

2

1
( )

2( 1)

1 ( 1)( ), 4 ( 1)

b c

b u v c b uv



  




      
 

[0, ) \{1}    

 

Copula parameter estimation 

Copula parameters were estimated following the method proposed by Joe (1997), viz., Inference 
functions for margins (IFM). This is a two stage approach. In this study, suppose we have a 
bivariate distribution with n observations for each margin, the first step of IFM is to use 
maximum likelihood estimation (MLE) method to find the vector of marginal parameters β 
which maximizes the likelihood function: 

2

1 1

log ( ; ) log ( ; )                                                                                           (12)
n

ij i ij j
i j

L X f X 
 

  

where f(.) is the marginal pdf. If the likelihood function is simple, we can easily set its partial 
derivatives equal to zero, or the optimization procedure is usually conducted by iterative 

methods. Then, the estimated 1 2( , )T T T
IFM  
  

from step 1, along with sample data, were used to 

estimate copula parameters α, which maximize the likelihood function: 

1 1 1 2 2 2
1

log ( ; , ) log ( ( ; ), ( ; ))                                                                   (13)
n

ij i i
i

L X c F X F X   



 

 

where F(.) is the marginal CDF. 

Again, iterative methods are applied to optimize the likelihood function to obtain copula 

parameters IFM .   

For the estimation of parameters using the inference function for margins, the original data will 
be transformed as points represented within a 2-dimensional unit hypercube. This means the data 
will now be a 42 X 2 matrix with points in the interval [0,1].  Thus, in essence copula is the 
multivariate distribution on unit hypercube with uniform marginals. Table 11 gives the data in 
this format. 

  Table 11. Severity and duration data represented as points within a unit hypercube 

Severity (U) Duration (V)
0.059031
0.890036
0.330202

0.078112
0.852276
0.402932
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0.229701
0.113949
0.310923
0.228432
0.651997
0.06616 
0.275431
0.28182 
0.880066
0.44433 
0.755914
0.603296
0.783266
0.113931
0.978564
0.848597
0.050647
0.466202
0.325653
0.630205
0.230299
0.579885
0.603156
0.599879
0.448428
0.035424
0.513815
0.40773 
0.108046
0.459876
0.450883
0.55114 
0.805404
0.70085 
0.872236
0.052192
0.219681
0.459642
0.958534

0.112496
0.146598
0.366604
0.248906
0.571187
0.079638
0.795828
0.425222
0.99172 
0.42331 
0.986244
0.753069
0.710984
0.158839
0.940248
0.89539 
0.586408
0.425831
0.363858
0.325906
0.954493
0.60536 
0.708867
0.7625 

0.439857
0.084785
0.577633
0.490836
0.139395
0.784427
0.314409
0.659675
0.875285
0.78651 
0.840886
0.095428
0.108388
0.721368
0.99183 

 

This data has a linear correlation parameter of 0.805 and hence rho (ρ) = 0.65. 
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Using this, parameters for various copula families are calculated, as shown in Table 12.  

Table 12. Copula parameters estimated for sample example data 

Copula family Parameters 
Clayton Θ = 2.7263 
Frank Θ = 8.7613 

Gumbel Θ = 2.1372 
Plackett Θ = 3.187 

Students-t Θ = 0.8238,  r = 2.178 
 

Goodness of fit test 

To identify the appropriate copula model among the ones considered, distance based statistics, 
such as Anderson-Darling (AD), integrated Anderson-Darling (IAD), and Akaike information 
criterion (AIC) test statistics, were used to evaluate the performance of fitted copula models. The 
empirical copula can be calculated from the observed data. The empirical forms of AD and IAD 
statistics are given as: 

1 ,1

( , ) ( , )
max                                                                                  (14)

( , )[1 ( , )]

n p

i n j n

p p

i j i j
C C

n n n n
AD

i j i j
C C

n n n n



 

   








 

1 1

( , ) ( , )
                                                                                       (15)

( , )[1 ( , )]

n pn n

i j
p p

i j i j
C C

n n n n
IAD

i j i j
C C

n n n n



 
 

   






 

where i and j represent order statistics of random variables u and v.  

The expressions for AIC and MSE are given by eq. (4) and eq. (5), respectively. The copula 
family with minimum AD, IAD and AIC statistics were chosen. 

Table 13 gives the goodness of fit statistic for each copula family.  

Table 13. Goodness of fit statistics for copula families 

Copula family Log-likelihood AIC 
Clayton 31.786 -405.976 
Frank 28.812 -387.518 
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Gumbel 20.198 -391.276 
Plackett 25.729 -377.197 

Students-t 18.182 -328.871 
 

(4) Conditional distribution for severity based on duration 

Shiau (2006) derived expressions for the distribution of severity conditioned on duration from 
bivariate copulas for drought variables which can be given as: 
 

,( ) ( ', ) ( ) [ ( '), ( )]( , ')
( | ')                  (16)

( ') 1 ( ') 1 ( ')
S D S S D S

D D

F s F d s F s C F d F sP S s D d
P S s D d

P D d F d F d

  
    

  

Similarly, the conditional distribution of duration with respect to severity can be given as:
 

,( ) ( , ') ( ) [ ( '), ( )]( , ')
( | ')                (17)

( ') 1 ( ') 1 ( ')
D D S D D S

S S

F d F d s F d C F d F sP D d S s
P D d S s

P S s F s F s

  
    

  
 

Conditional probability plots are useful in water-supply management systems, where one 
determines if the drought duration and severity simultaneously exceed certain thresholds, to 
trigger a drought contingency plan. To evaluate the drought severity distribution given drought 
duration values exceeding a certain threshold d’ or to evaluate drought duration distribution 
given the drought severity exceeding a particular threshold s’, the conditional probability plots 
can be used. 

Tables 14 and 15 give the conditional probabilities for (a) severities given duration and (b) 
durations given severity, respectively. 

Table 14. Conditional cumulative probability for severity given duration 

Severity (S) Duration (months) (D) Conditional 
Cumulative 

probability FS|D

1.6085 
1.288996 
3.150614 
1.158675 
1.494962 
2.356052 
1.622627 
1.917271 
1.038689 
3.155055 
1.297035 

2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 

0.5931
0.6329
0.558

0.0585
0.5743
0.5275
0.457

0.3574
0.5249
0.9659
0.703
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1.273248 
1.330372 
2.057645 
4.274602 
1.780895 
1.902308 
2.439114 
2.01824 
4.958802 
1.010203 
1.762338 
1.843975 
2.788553 
4.385018 
3.364899 
1.576833 
0.998873 
4.431861 
7.595121 
1.677634 
1.962933 
1.910923 
3.605031 
1.127742 
1.779639 
1.759909 
3.527597 
1.036974 
2.014445 
1.403509 
3.159355 

 

3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
7 
4 
6 
7 
10 
18 

0.9783
0.3795
0.976
0.703

0.4518
0.6304
0.8046
0.758

0.9987
0.3501
0.4873
0.0735
0.9966
0.499

0.6364
0.72

0.4037
0.8861
0.5427
0.5661
0.5761
0.864

0.1764
0.6219
0.743
0.663

0.6216
0.786

0.0599
0.8045
0.9731

 

 

Table 15. Conditional cumulative probability for duration given severity 

Severity (S) Duration (months) (D) Conditional 
Cumulative 

probability FD|S

1.6085 
1.288996 
3.150614 
1.158675 

2 
2 
2 
2 

0.2089
0.7438
0.2658
0.8358
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1.494962 
2.356052 
1.622627 
1.917271 
1.038689 
3.155055 
1.297035 
1.273248 
1.330372 
2.057645 
4.274602 
1.780895 
1.902308 
2.439114 
2.01824 
4.958802 
1.010203 
1.762338 
1.843975 
2.788553 
4.385018 
3.364899 
1.576833 
0.998873 
4.431861 
7.595121 
1.677634 
1.962933 
1.910923 
3.605031 
1.127742 
1.779639 
1.759909 
3.527597 
1.036974 
2.014445 
1.403509 
3.159355 

 

2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
7 
4 
6 
7 
10 
18 

0.2246
0.2855
0.3319
0.5852
0.263

0.0185
0.1518
0.6269
0.4546
0.3623
0.3077
0.6481
0.1828
0.9337
0.6206
0.0001
0.4906
0.3223
0.858
0.005

0.4251
0.3486
0.2945
0.4338
0.0343
0.3508
0.2836
0.223

0.1181
0.6761
0.3183
0.545

0.4314
0.7124
0.083

0.8326
0.15

0.8568
 

 

(5) Construction of S-D-F curves  
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The relationship among drought severity, duration and frequency in terms of recurrence interval 
for drought events can be represented by the conditional recurrence interval which is given as 
(Shiau, 2007):  

|
|

1
( | )                                                                                                          (18)
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T s d
F s d




 
where s and d denote the drought severity and duration, respectively; FS|D(s|d) is the conditional 
CDF of S, given D=d; TS|D(s|d) is the conditional recurrence interval of S given D = d; and γ is 
the arrival rate of drought events which need to be fitted to the observed data. 
 

The conditional CDF is given as: 
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where FD(d) is the CDF of drought duration, and FS,D(s,d) is the joint CDF of drought severity 
and duration which will be derived using copulas. The conditional distribution in eq. (19) can be 
rewritten as:  
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where C is the unique copula function that links FS(s) and FD(d) to form the joint CDF. Eq. (17) 
can thus be rewritten as: 

|
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1
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The theoretical drought SDF relationship from eq. (21) can be used to construct the dependence 
between drought severity, duration and the arrival rate of drought events. This will be a useful 
tool for water management and project designs, since it helps determine when a certain severe 
drought of a specific duration may reoccur in the future. From the above equations, solving for 
FS(s) and FD(d) for specific value of | ( | )S DT s d , S-D-F curves for various recurrence intervals 

were obtained. The drought severity quantiles for specific duration and return period were thus 
obtained from these curves. 
 
A sample calculation for constructing the S-D-F curve is given below: 
 
For the given data, length of time period considered, N = 51 years 
Number of drought events, n = 42 
Inter arrival time = n/N = 42/50 = 0.84 
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Return period, TS|D(s=1.6 | d = 2 months) = 
1

0.84*(1 0.2089)
 = 1.5 years 

Results 

(1) Model Calibration and validation 

Since the VIC model involves a number of parameters, calibration of the same can become quite 
tedious. The recommended parameters and the plausible range of values for each of them are 
given in Table 6. In this study, six soil parameters were considered for calibration purposes. The 
VIC model calibration was performed using a random auto start simplex method program. The 
simplex method was applied using random auto start populations of 75-100 parameter sets. The 
entire cycle was repeated from 5-10 times for each sub-basin. Each auto start yielded different 
correlation coefficient (R2) values (usually within +/- 0.1), and different parameter sets. As 
regards calibration of the routing model, the suggested parameters for adjustment included 
velocity and diffusivity. The model developers are less specific about the routing model 
calibration as compared to the VIC model calibration. Application based studies focusing on 
monthly discharge from large basins have shown that it does not require high accuracy in the 
routing model parameter. Hence, while parameters like flow direction and contributing fraction 
can be obtained from the DEM, for other parameters like flow velocity and diffusivity physically 
reasonable values are chosen without further calibration (www.hydro.washington.edu).   If only 
monthly stream flows are required, diffusivity and velocity values of 800 m2/s and 1.5 m/s are 
deemed acceptable. In case daily flows are required, the calibration methodology to be followed 
for routing parameters is outlined in Lohmann et al. (1996, 1998). 

For purposes of comparison, the routing model was used to route the flow to the selected station 
locations. Results from the routing model were aggregated to a monthly scale (in cfs) and 
compared with the observed gauge data (in cfs). The three performance criteria selected were 
correlation coefficient, the Nash-Sutcliffe (N-S) efficiency, and mean flow ratio and these are 
defined as:  
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where M is the number of months, Si is the simulated stream flow for the ith month , Oi is the 

observed stream flow for ith month, and S  and  O  are the mean monthly simulated and observed 
stream flows, respectively.  

Higher values of correlation coefficient and the Nash-Sutcliffe (N-S) efficiency indicate good 
performance of the model. The closer the value is to 1, the more accurate the model is. 
Validation of the results obtained from the calibrated model with respect to the observed stream 
flow values at the respective gauges are shown in Figure 11. Table 16 gives a summary of 
performance measures at each of these stations. The validation period was two years. The start 
and end dates of the validation periods for each station is already given in Table 1. Since the time 
period considered in the study was lengthy (1950-2000), different validation periods were 
considered for the stations such that they cover the time period under consideration. The 
correlation coefficient values for the 16 stations lie within the range 0.65-0.92 which means the 
model is capable of explaining 42% to 84% of variability in the observed data. The N-S 
efficiency values range from 0.41-0.78. Since an N-S value of 1 corresponds to a perfect match 
and 0 corresponds to the situation where simulated values match the mean of observed values, a 
value of 0.5 may be considered to represent a ‘mediocre’ model performance. Hence, from the 
values obtained for the model at all 16 stations, it can be seen that the model performance is 
satisfactory. The mean flow ratio values for the model ranges from 0.54-1.46. It can also be seen 
from Table 16 that the mean flow values are lower than 1 at some stations, whereas it is higher 
than 1 in some others. Thus, the model is not showing any unidirectional bias while simulating 
stream flow. 

Table 16. Goodness of fit test values of model validation at the selected stations 

Station Name Correlation 

Coefficient 

Mean Flow Ratio Nash Sutcliffe 

Efficiency 
Frio River Near Derby 0.82 0.76 0.79 

Spring Creek Near Spring 0.89 0.92 0.69 

Village Creek Near Kountze 0.90 0.72 0.74 

Neches River Near Neches 0.86 1.04 0.71 

Nueces River Near Three rivers 0.69 1.06 0.41 

Nueces River Below Uvalde 0.82 0.87 0.57 

Mill Creek Near Bellville 0.72 1.12 0.49 

North Concho River Near Carlsbad 0.86 1.03 0.75 

Millers Creek Near Munday 0.83 1.09 0.74 

Ecleto Creek Near Runge 0.69 0.88 0.44 

Cowhouse Creek at Pidcoke 0.87 0.54 0.76 
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Coleto Creek Near Victoria 0.84 1.43 0.73 

Los Olmos Creek Near Falfurrias 0.92 1.26 0.78 

Big cow Creek Near Newton 0.91 0.82 0.72 

Long king Creek Near Livingston 0.85 0.69 0.61 

Bayou Toro Near Toro 0.65 1.46 0.63 
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Figure 11. Comparison of simulated and observed stream flows for selected stations  

Sample results for one grid are shown for the succeeding steps and the procedure followed is the 
same for other grids. The location of the grid is given by: latitude 31.31250 N and longitude -
103.68750 E. This grid lies in the arid climatic region of Texas. Drought statistics at the location 
are summarized in Table 17. 

Table 17. Summary of drought statistics for sample grid 

Drought variables Statistics 

Number of droughts 35
Severity Mean 4.63 

 Minimum 1.03 
 Maximum 18.52 
 Standard deviation 4.14 
 Skewness 3.78 

Duration Mean 4.5 
 Minimum 1 
 Maximum 20 
 Standard deviation 3.08 
 Skewness 2.91 
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The S-D-F curves derived for grids belonging to different climate regions are shown in the later 
section to demonstrate the variations that might accrue due to the change in climate. 

(2) Marginal distribution of drought variables 

Before using a copula to obtain the bivariate distribution of drought variables, appropriate 
marginal distributions must be identified for each drought variable. In this study, the best fit 
among the following distributions, namely gamma, exponential, log normal and Weibull were 
chosen to fit drought severity and drought duration, respectively. The maximum likelihood 
method was used for the parameter estimation of these distributions. The best fitted distribution 
for each drought variable was determined using the mean square error and AIC criteria. Table 18 
gives the fitting performance of various distributions. The results can be visually examined by 
means of PDF, CDF and probability-probability plots. Figure 12 shows the same for drought 
duration and severity, respectively. 

Table 18. Performance of different probability distributions for fitting drought severity and 
duration 

Drought variables Distributions MSE AIC 

Severity Exponential 0.0031 -394.87
 Gamma 0.0016 -422.08 
 Weibull 0.0021 -430.23 
 Log normal 0.0014 -436.79 

Duration Exponential 0.0011 -389.31 
 Gamma 0.0028 -340.73 
 Weibull 0.0019 -332.97 
 Log normal 0.0024 -328.56 
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Figure 12. PDF, CDF and probability plot for drought duration (months); PDF, CDF and 
probability plot for drought severity 

In the grid considered, log normal distribution and exponential distribution were found to be 
satisfactory for fitting drought severity and duration, respectively. 

(3) Joint probability distribution using copula 

The list of copulas considered in this study and their CDF expressions have already been given  
in Table 3. The maximum pseudo likelihood method was used for the parameter estimation of 
copulas. The fitted parameters and the values of AIC criteria, log-likelihood function, and 
distance statistics, like AD and IAD, are given in Table 19. The log-likelihood function for 
Gumbel-Hougaard copula which belongs to the extreme value copula class was slightly higher 
than other classes of copulas. The goodness of fit test was carried out using the distance statistics 
AD and IAD with respect to the empirical copula. In the case of distance statistics, the Gumbel-
Hougaard copula had smaller AD value than the rest of the copulas, whereas the Frank copula 
showed the least IAD value. Table 20 gives the goodness of fit statistics for all the copula 
families. 

Table 19. Log-likelihood and AIC values for copula functions 

Copula families  Copula 
parameter 

Log 
likelihood 

AIC 

Archimedean Clayton Θ= 1.26 17.29 -389.51
 Frank Θ=7.52 37.35 -378.09 

Extreme value Gumbel-Hougaard Θ=4.18 51.03 -412.37 

Elliptical Student t γ = 3.25, r= 0.872 28.18 -397.05 

Plackett Plackett Θ=25.79 41.45 -401.23 
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Table 20. Goodness of fit results based on distance statistics 

Copula families  AD IAD 

Archimedean Clayton 0.67 1.73 
 Frank 0.78 1.39 

Extreme value Gumbel-Hougaard 0.64 1.53 

Elliptical Student t 0.75 1.45 

Plackett Plackett 0.68 1.78 

 

To visualize the results, a scatter plot between the observed severity and duration values and 
randomly simulated pairs of severity and duration values from each copula class (which would 
be transformed from the copula scale to original data units) were plotted. Figure 13 shows the 
scatter plots between observed values and simulated values for all copula classes. The extreme 
value copula considered in the study, viz., Gumbel-Hougaard copula, adequately modeled the 
dependence structure between drought variables.  

 

Figure 13. Scatter plot between observed data and simulations from joint distributions belonging 
to various copula classes: a. Clayton b. Frank c. Gumbel-Hougaard d. Students t e. Plackett 

(4) Conditional distribution  

Shiau (2006) derived an expression for conditional distribution from bivariate copulas for 
drought variables [Refer to Eqs. (16) and (17)]. 

Figure 14 shows the conditional probability plots for drought severity and duration, respectively.  
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Figure 14. Conditional distribution of a. drought severity and b. drought duration 

(5) Frequency analysis and derivation of drought S-D-F curves  

Figure 15 shows S-D-F curves for grids belonging to all the five climatic regions in Texas. It can 
be seen that the grids belonging to arid, semi arid and continental steppe regions showed a 
convex down pattern for their S-D-F curves. Based on precipitation patterns and visualization of 
the spatial variation of stream flow droughts over Texas, these regions are found to be more 
drought prone. Accordingly, from the S-D-F curves, it can be seen that the rate of increase of 
drought severity is higher for longer durations, whereas it decreases for shorter drought 
durations. In the case of humid and semi humid regions, the curves show a concave downward 
pattern. This indicates that the rate at which drought severity increases is more for shorter 
drought durations, and it reduces with longer durations, ultimately reaching a constant value for 
very long drought duration. More severe droughts seem to occur in arid, semi-arid and 
continental steppe regions. 

 

Figure 15. Drought S-D-F curves for grids from: a. Arid, b. Semi-arid, c. Continental, d. Semi 
humid, and e. humid climatic regions 
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Drought iso-severity maps for specific durations and return periods 

Data used for plotting 

For the construction of iso-severity maps, the availability of continuous stream flow data record 
is an important factor. As previously mentioned, the distribution of the stream flow gauge 
stations within Texas is not uniform. Likewise, the length of the data recorded need not be 
continuous or lengthy enough at all the stations. Taking these factors into consideration, 
simulated stream flow records corresponding to spatially continuous 1/8th degree grids within 
Texas for the time period 1950-2000 was simulated using a hydrologic model: VIC. The results 
of simulation were then validated at specific stream gauge locations scattered within Texas to 
ensure that the model results were a good representation of the actual scenario. The drought 
durations considered for plotting the drought frequency maps were 3, 6, 9, 12, 18, 24 and 36 
months, respectively. The return periods considered were 5, 10, 25, 50 and 100 years. The 35 
iso-severity maps plotted permits variation of drought severity in two directions – duration and 
return period. A total of 4197 grids over Texas, each having a size of 1/8th degree was considered 
for plotting these 35 drought frequency maps. 

The analyses section explains the methodology followed, for ease of understanding, by taking an 
example grid whose location is given by: latitude 31.31250 N and longitude -103.68750 E. 
Further details of the results are already given under the results section. For convenience, a 
summary of the various steps to be followed is given below: 

1. The simulated stream flow time series corresponding to each grid is converted to 
standardized stream flow index (SSFI) from which drought severity and duration can be 
derived using the theory of runs.  

2. Suitable marginal distribution from among those listed in Table 6 is fitted to drought 
severity and duration, respectively. The MSE and AIC criteria are used for judging the 
best fit candidate distribution. 

3. Joint and conditional distributions are obtained from the marginal distributions of 
severity and duration by choosing a suitable copula. From eqs. (16)-(21) the relationship 
between drought severity, duration and different return periods are established which can 
be approximated by SDF curves with severity along the y-axis and duration along x-axis.  

4. Thus, by utilizing these curves, for selected recurrence intervals of 5, 10, 25, 50 and 100 
years, the drought severity quantile for specific drought durations can be obtained for 
each of the grids within Texas. This can be an important preliminary data to know while 
planning for future droughts. For example, for the grid under consideration, if we were to 
plan for a 3 month duration drought with a 10-year return period, then the drought 
severity to be considered would be 2.38. 
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5. The raster data consisting of drought severities for specific durations and return periods 
are then used for plotting contour maps using arcGIS. Figures 9a to x show the drought 
severity maps for Texas for different durations and return periods.  

Some other points to be noted while plotting the drought frequency maps are listed below: 

1. Smoothing of iso-severity lines may be required, since the isolines formed may be 
irregular while trying to fit all the points on the map. In arcgis, there is a contour 
smoothening algorithm which follows the Bezier interpolation and fits the Bezier curves 
between vertices. A Bézier curve is defined by a set of control points P0 through Pn, 
where n is called its order (n = 1 for linear, 2 for quadratic, etc.). The first and last control 
points are the end points of the curve. The intermediate control points do not lie on the 
curve. The resulting line passes through the vertices of the input line. Bezier curve is 
generally used in computer graphics and related fields to model smooth curves. This 
algorithm does not require a tolerance. 

2. Results are more reliable, since the spatial sampling error that might arise due to 
geographical distribution of stations does not arise in this case, as we are using 
continuously spaced and uniformly sized grids in lieu of stream gauge stations. Hence, it 
is possible that this has also an advantage of capturing the topographical influence on 
hydrological droughts 

3. The isoline interval ranges from 0.2-1.0, depending on the range of drought severity 
magnitude. The isolines are plotted at uniform intervals. 

4. The drought duration value starts at 3 months, since it can be considered as a sufficiently 
long enough drought to affect, in particular, the agro-sector. The maximum value of 
drought duration considered for plotting the maps is 36 months, since droughts longer 
than this duration might be considered rarer in the study region. 

5. Four different return period values, viz., 10, 25, 50 and 100 years, are considered for 
plotting the maps. One might come across situations, wherein drought severities 
corresponding to either an intermediate value of drought duration or return period for 
which no map has been plotted or for return periods greater than 100 years.  Construction 
of additional SDF curves should not be a problem. One may also use an extrapolation 
technique by plotting the drought severity values for available return periods at the 
location of interest obtained from all the plotted maps on a probability paper. 

Figures 16 a. to ah. show drought severity maps for Texas for different durations and return 
periods. These maps would be highly useful for knowing the frequency of specific drought 
events, or for estimating the design severity of a drought event for a given duration and 
return period. For example, for the grid under consideration, if we were to plan for a 3 month 
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duration drought with 10 year return period, then the drought severity to be considered would 
be 2.38. More severe droughts seem to occur in arid, semi-arid and continental steppe 
regions.  

For further comparison and validation purposes respectively, the drought maps have been 
developed for two more conditions: (a) based on precipitation (b) based on naturalized 
stream flow from gauges. Figures 10 a. to 10 ah. show the drought severity maps based on 
precipitation and figures 11 a. to 11 ah. show the maps developed based on the naturalized 
stream flow values.  

Summary and Conclusions 

The report presents a hydrological drought atlas for Texas. One major problem that might arise 
in such a study would be spatial sampling error that might arise due to the geographical 
distribution of stations. In the case of Texas, stream flow gauges are unevenly distributed with a 
majority of stations concentrated in east Texas, and very few covering the western part. To 
counter this problem, we use simulated stream flow over continuously spaced and uniformly 
sized grids in lieu of stream gauge stations. This can be expected to make the results more 
reliable. It is possible that this has also an advantage of capturing the topographical influence on 
hydrological droughts. The results obtained from the study can be summarized as below: 

1. The drought severity varies systematically for different durations and return periods, 
with maximum severity along western and northern Texas and then gradually 
decreasing towards south western Texas and eastern Texas. This pattern is expected, 
given that the basic climatic pattern within Texas is fairly simple: annual mean 
precipitation increases from west to east. Similarly, the prevalence of severe weather, 
like hurricanes which will contribute to copious amounts of rainfall, increases from 
west to east.    

2. As long as the drought duration increases, the corresponding severity also increases, 
as expected, although the rate at which it increases seems to depend on the climatic 
zone.  

3. In general, the severity-duration-frequency relationship shows a specific pattern in 
humid and semi-humid regions, i.e., the drought severity increases rapidly if the 
drought duration is short. As the drought duration increases, the drought severity also 
increases but the rate at which the severity increases becomes less for longer drought 
durations.  

4. Arid, semi-arid and continental steppe regions show a pattern for their S-D-F curves 
wherein it can be seen that the rate of increase of drought severity is higher for longer 
durations, whereas it decreases for shorter durations. 

5. From drought maps, for higher durations the contour lines are closer on the western 
side, indicating a larger rate of increase in severity along that part. However, in the 
eastern part, the contour lines are closer for shorter durations, indicating that the rate 
at which severity increases is higher for small drought durations. 
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6. Droughts with larger durations appear to have smoother contours than droughts with 
smaller durations. This might be due to the fact that droughts with durations 12 
months and greater seem to be rarer compared to shorter durations like 3-6 months. 

7. The maps tally with the water budget climatology of Texas (Norwine et al., 1995). In 
most of the maps, southern Texas shows higher severities. This tallies with the fact 
that the deficit component of the water budget (indicating the amount of additional 
water that plants need, but do not receive) is highest along the southern climate 
division of Texas due to the combination of high evapotranspiration rates and 
relatively low precipitation. Understandably, the deficit is on the higher side for 
western Texas too due to low precipitation. 

8. It should be noted that northern Texas too shows relatively higher severities, 
particularly for longer duration droughts. This tallies with the fact that the surplus 
component of the water budget, that reflects the water available as runoff, is on the 
lower side in northern Texas. This might be attributed to the combination of low 
rainfall and seasonality of the precipitation delivery. A majority of rainfall in this 
region occurs during summer. The low surplus leading to lower runoff will reflect a 
more severe hydrological drought event. 

9. The drought maps derived based on precipitation and naturalized flows are in fairly 
good agreement with the maps derived using the simulated flows. On average, there 
is a better agreement between precipitation and simulated flow results compared to 
naturalized flow and simulated flow results. The drought properties of severity and 
duration show error percentiles equal to 42.8 and 52.3%, respectively, between 
simulated and naturalized flows. But, it lowers down to 12.4 and 32 %, respectively, 
if precipitation and simulated flow results are compared. 
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Part 2: Iso-severity maps 
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Figure 16a. Iso severity map for 3 months drought duration with a return period of 5 
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years 
 

 
       Figure 16b. Iso severity map for 3 months drought duration with a return period of 10 years 
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       Figure 16c. Iso severity map for 3 months drought duration with a return period of 25 years 
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   Figure 16d. Iso severity map for 3 months drought duration with a return period of 50 years 
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Figure 16e. Iso severity map for 3 months drought duration with a return period of 100 years 
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   Figure 16f. Iso severity map for 6 months drought duration with a return period of 5 years 
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     Figure 16g. Iso severity map for 6 months drought duration with a return period of 10 years 
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   Figure 16h. Iso severity map for 6 months drought duration with a return period of 25 years 
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Figure 16i. Iso severity map for 6 months drought duration with a return period of 50 years 



61 

 

 

 

 Figure 16j. Iso severity map for 6 months drought duration with a return period of 100 years 
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Figure 16k. Iso severity map for 9 months drought duration with a return period of 5 years 



63 

 

 

Figure 16l. Iso severity map for 9 months drought duration with a return period of 10 years 
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Figure 16m. Iso severity map for 9 months drought duration with a return period of 25 years 
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Figure 16n. Iso severity map for 9 months drought duration with a return period of 50 years 
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Figure 16o. Iso severity map for 9 months drought duration with a return period of 100 years 
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Figure 16p. Iso severity map for 12 months drought duration with a return period of 5 years 
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Figure 16q. Iso severity map for 12 months drought duration with a return period of 10 years 
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Figure 16r. Iso severity map for 12 months drought duration with a return period of 25 years 
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Figure 16s. Iso severity map for 12 months drought duration with a return period of 50 years 
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Figure 16t. Iso severity map for 12 months drought duration with a return period of 100 years 
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Figure 16u. Iso severity map for 18 months drought duration with a return period of 5 years 
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Figure 16v. Iso severity map for 18 months drought duration with a return period of 10 years 
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Figure 16w. Iso severity map for 18 months drought duration with a return period of 25 years 
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Figure 16x. Iso severity map for 18 months drought duration with a return period of 50 years 
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Figure 16y. Iso severity map for 18 months drought duration with a return period of 100 years 
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Figure 16z. Iso severity map for 24 months drought duration with a return period of 5 years 
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Figure 16aa. Iso severity map for 24 months drought duration with a return period of 10 years 
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Figure 16ab. Iso severity map for 24 months drought duration with a return period of 25 years 
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Figure 16ac. Iso severity map for 24 months drought duration with a return period of 50 years 
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Figure 16ad. Iso severity map for 24 months drought duration with a return period of 100 years 
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Figure 16ae. Iso severity map for 36 months drought duration with a return period of 5 years 
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Figure 16af. Iso severity map for 36 months drought duration with a return period of 10 years 
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Figure 16ag. Iso severity map for 36 months drought duration with a return period of 25 years 



85 

 

 

Figure 16ah. Iso severity map for 36 months drought duration with a return period of 50 years 



86 

 

 

Figure 16ai. Iso severity map for 36 months drought duration with a return period of 100 years 
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Part 2: Precipitation based Drought maps 

The first part of the study derived the drought properties based on simulated stream flow from a 
large scale hydrological model.  It was thus based on a standardized form of stream flow, termed 
as standardized stream flow index (SSFI). To validate this result, in this section, we develop the 
drought atlas using drought properties derived based on precipitation. Additionally, it can be 
used for comparison of the hydrological and meteorological drought conditions over Texas.  

The methodology followed will be exactly the same, with the exception that a different drought 
index, namely standardized precipitation index (SPI) would be used to derive drought properties. 
SPI is statistically similar to SSFI. There are several pros and cons for the use of SPI. Pros 
include that, it is a very simple method based only on precipitation; it is usable at any time scale, 
it can be used universally at any location, and that it can provide early warnings of drought. Cons 
include the fact that values based on preliminary data may change, and that due to the 
characteristics associated with the normal distribution, severe and extreme droughts measured by 
SPI occur with the same frequency at all locations. This means that SPI cannot identify regions 
that may be more prone to drought than others. 

Estimation of SPI 

The SPI is calculated through the following steps. Continuous monthly precipitation data for 
long term will be required for this. This data will be fitted to a suitable distribution.  Thom 
(1966) found that precipitation series are well described by the gamma distribution. The gamma 
distribution is defined by its probability density function:  
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where α >0 is the shape parameter, β > 0 is the scale parameter, x>0 is the precipitation amount, 
and Г is the gamma function.  

Calculation of SPI involves fitting a gamma probability density function to the given frequency 
distribution of the precipitation of a station. Parameters α and β are estimated for each station, for 
every timescale of interest (1, 3, 6, 12, 24, 48), and for each month of the year. In this case the 
timescale of interest is 1 month. Using the maximum likelihood estimation method, the 
parameters are given as: 
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n is number of observations. 

After estimating the parameters, the cumulative probability for an observed event for a given 
precipitation event, in a given month, on a given timescale for the station in question can be 
calculated. The cumulative probability is given as: 
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But eq. (25.4) is not defined for x=0, and since precipitation time series will contain zeros, 
cumulative probability becomes: 

H(x) = (1-q) G(x) + q           (25.5) 

where q is the probability of zero value. 

H(x) will then be converted to standard normal variable with mean value of 0, and standard 
deviation 1, which is the value of SPI. This conversion procedure is same as the methodology for 
SSFI which is explained in section 1. The classification of SPI is same as that for SSFI, as given 
in Table 1.  

Data Source 

Long term monthly precipitation data was necessary for the calculation of SPI and derivation of 
drought properties for subsequent analysis.  The precipitation data required was obtained from 
the National Climate Data Center (NCDC) website. NCDC gauges have a wide coverage in 
United States (around 4000 gauges of which over 300 are in Texas).  

Kriging for map preparation 

Once the S-D-F curves were developed for all the station gauges in Texas, a geostatistical 
method called kriging was used to produce the drought maps. Kriging techniques can be used to 
describe and model spatial patterns, predict values at unmeasured locations, and assess the 
uncertainty associated with a predicted value at the unmeasured locations. Hence, it is an 
interpolation technique in which the surrounding measured values are weighted to derive a 
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predicted value for an unmeasured location. Weights are based on the distance between the 
measured points, the prediction locations, and the overall spatial arrangement among the 
measured points. Kriging is unique among the interpolation methods in that it provides an easy 
method for characterizing the variance, or the precision, of predictions. Kriging is based on 
regionalized variable theory, which assumes that the spatial variation in the data being modeled 
is homogeneous across the surface. That is, the same pattern of variation can be observed at all 
locations on the surface. 

The ArcGIS geospatial analyst toolbox will be made use of to perform kriging. 
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Figure 10a. Precipitation based iso severity map for 3 months drought duration with a 
return period of 5 years 
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Figure 10b. Precipitation based iso severity map for 3 months drought duration with a return 

period of 10 years 
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Figure 10c. Precipitation based iso severity map for 3 months drought duration with a return 
period of 25 years 
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Figure 10d. Precipitation based iso severity map for 3 months drought duration with a return 
period of 50 years 
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Figure 10e. Precipitation based iso severity map for 3 months drought duration with a return 
period of 100 years 
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Figure 10f. Precipitation based iso severity map for 6 months drought duration with a return 
period of 5 years 
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Figure 10g. Precipitation based iso severity map for 6 months drought duration with a return 
period of 10 years 
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Figure 10h. Precipitation based iso severity map for 6 months drought duration with a return 

period of 25 years 
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Figure 10i. Precipitation based iso severity map for 6 months drought duration with a return 

period of 50 years 
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Figure 10j. Precipitation based iso severity map for 6 months drought duration with a return 
period of 100 years 
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Figure 10k. Precipitation based iso severity map for 9 months drought duration with a return 

period of 5 years 
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Figure 10l. Precipitation based iso severity map for 9 months drought duration with a return 

period of 10 years 
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Figure 10m. Precipitation based iso severity map for 9 months drought duration with a return 

period of 25 years 
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Figure 10n. Precipitation based iso severity map for 9 months drought duration with a return 

period of 50 years 
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Figure 10o. Precipitation based iso severity map for 9 months drought duration with a return 

period of 100 years 
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Figure 10p. Precipitation based iso severity map for 12 months drought duration with a return 

period of 5 years 
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Figure 10q. Precipitation based iso severity map for 12 months drought duration with a return 

period of 10 years 
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Figure 10r. Precipitation based iso severity map for 12 months drought duration with a return 

period of 25 years 
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Figure 10s. Precipitation based iso severity map for 12 months drought duration with a return 

period of 50 years 
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Figure 10t. Precipitation based iso severity map for 12 months drought duration with a return 

period of 100 years 
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Figure 10u. Precipitation based iso severity map for 18 months drought duration with a return 

period of 5 years 
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Figure 10v. Iso severity map for 18 months drought duration with a return period of 10 years 
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Figure 10w. Precipitation based iso severity map for 18 months drought duration with a return 

period of 25 years 
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Figure 10x. Precipitation based iso severity map for 18 months drought duration with a return 

period of 50 years 
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Figure 10y. Precipitation based iso severity map for 18 months drought duration with a return 

period of 100 years 
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Figure 10z. Precipitation based iso severity map for 24 months drought duration with a return 

period of 5 years 
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Figure 10aa. Precipitation based iso severity map for 24 months drought duration with a return 

period of 10 years 
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Figure 10ab. Precipitation based iso severity map for 24 months drought duration with a return 

period of 25 years 
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Figure 10ac. Precipitation based iso severity map for 24 months drought duration with a return 

period of 50 years 
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Figure 10ad. Precipitation based iso severity map for 24 months drought duration with a return 

period of 100 years 
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Figure 10ae. Precipitation based iso severity map for 36 months drought duration with a return 

period of 5 years 
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Figure 10af. Precipitation based iso severity map for 36 months drought duration with a return 

period of 10 years 
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Figure 10ag. Precipitation based iso severity map for 36 months drought duration with a return 

period of 25 years 
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Figure 10ah. Precipitation based iso severity map for 36 months drought duration with a return 

period of 50 years 
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Figure 10ai. Precipitation based iso severity map for 36 months drought duration with a return 

period of 100 years 
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Part 3: Naturalized Flow Based Drought Maps 

In this part, the naturalized stream flow values from the gauges are used to prepare the drought 
maps. In this case, the procedure followed is exactly same as in part 1. The only difference is in 
the data set used. This part would enable us to validate the performance of the land surface 
model so as to make sure that the model simulations are reliable.  

Data Sources 

Two data sources were made use of, to obtain the naturalized stream flow data in Texas. 

(a) Hydro climatic data network (HCDN) 

This is a national data set of stream flow records that are relatively free of confounding 
anthropogenic influences. The purpose of the dataset is for studying the variation in surface-
water conditions throughout the United States. United States Geological Survey (USGS) 
maintains this record. Naturalized stream flow records for around 89 sites in Texas is available 
till the water year 1988.  

(b)  Water Rights analysis package (WRAP) 

An alternate source of naturalized flow data is the water rights analysis package (WRAP) 
developed by Dr. Ralph Wurbs of Texas A&M University.  Although it is basically a package for 
analyzing water rights, naturalized flow is one of the outputs of this package. These flow values 
have been adjusted to remove anthropogenic effects of both management and use (e.g. reservoirs, 
diversions). Thus, sequences of monthly flows which represent the historical natural hydrology 
are typically developed by adjusting recorded flows at gaging stations to remove the past impacts 
of upstream major reservoirs, water supply diversions, return flows from surface and ground 
water sources, and other possible factors. The WRAP naturalized flow data is available for 17 
river basins in Texas. 

Both these data sources have been made use of, depending upon the availability at the location. 
Kriging is  performed after the at-site drought S-D-F curves are derived.  
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Figure 11a. Naturalized flow based iso severity map for 3 months drought duration with 

a return period of 5 years 
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Figure 11b. Naturalized flow based iso severity map for 3 months drought duration with a return 

period of 10 years 
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Figure 11c. Naturalized flow based iso severity map for 3 months drought duration with a return 
period of 25 years 
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Figure 11d. Naturalized flow based iso severity map for 3 months drought duration with a return 
period of 50 years 
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Figure 11e. Naturalized flow based iso severity map for 3 months drought duration with a return 
period of 100 years 
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Figure 11f. Naturalized flow based iso severity map for 6 months drought duration with a return 
period of 5 years 

 



132 

 

 

Figure 11g. Naturalized flow based iso severity map for 6 months drought duration with a return 
period of 10 years 
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Figure 11h. Naturalized flow based iso severity map for 6 months drought duration with a return 

period of 25 years 
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Figure 11i. Naturalized flow based iso severity map for 6 months drought duration with a return 

period of 50 years 
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Figure 11j. Naturalized flow based iso severity map for 6 months drought duration with a return 
period of 100 years 
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Figure 11k. Naturalized flow based iso severity map for 9 months drought duration with a return 

period of 5 years 
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Figure 11l. Naturalized flow based iso severity map for 9 months drought duration with a return 

period of 10 years 
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Figure 11m. Naturalized flow based iso severity map for 9 months drought duration with a 

return period of 25 years 
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Figure 11n. Naturalized flow based iso severity map for 9 months drought duration with a return 

period of 50 years 
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Figure 10o. Precipitation based iso severity map for 9 months drought duration with a return 
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period of 100 years 

 

 

Figure 11p. Naturalized flow based iso severity map for 12 months drought duration with a 

return period of 5 years 
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Figure 11q. Naturalized flow based iso severity map for 12 months drought duration with a 

return period of 10 years 
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Figure 11r. Naturalized flow based iso severity map for 12 months drought duration with a 

return period of 25 years 
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Figure 11s. Naturalized flow based iso severity map for 12 months drought duration with a 

return period of 50 years 
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Figure 11t. Naturalized flow based iso severity map for 12 months drought duration with a 

return period of 100 years 
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Figure 11u. Naturalized flow based iso severity map for 18 months drought duration with a 

return period of 5 years 
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Figure 10v. Iso severity map for 18 months drought duration with a return period of 10 years 
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Figure 11w. Naturalized flow based iso severity map for 18 months drought duration with a 

return period of 25 years 
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Figure 11x. Naturalized flow based iso severity map for 18 months drought duration with a 

return period of 50 years 
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Figure 10y. Precipitation based iso severity map for 18 months drought duration with a return 
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period of 100 years 

 

Figure 11z. Naturalized flow based iso severity map for 24 months drought duration with a 

return period of 5 years 
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Figure 11aa. Naturalized flow based iso severity map for 24 months drought duration with a 

return period of 10 years 
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Figure 11ab. Naturalized flow based iso severity map for 24 months drought duration with a 

return period of 25 years 
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Figure 11ac. Naturalized flow based iso severity map for 24 months drought duration with a 

return period of 50 years 
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Figure 11ad. Naturalized flow based iso severity map for 24 months drought duration with a 

return period of 100 years 
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Figure 11ae. Naturalized flow based iso severity map for 36 months drought duration with a 

return period of 5 years 
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Figure 11af. Naturalized flow based iso severity map for 36 months drought duration with a 

return period of 10 years 
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Figure 11ag. Naturalized flow based iso severity map for 36 months drought duration with a 

return period of 25 years 
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Figure 11ah. Naturalized flow based iso severity map for 36 months drought duration with a 

return period of 50 years 
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Figure 11ai. Naturalized flow based iso severity map for 36 months drought duration with a 
return period of 100 years 
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Appendix 1 

Comparison of drought properties at a location when using: (a) Simulated stream flow (b) 
Precipitation (c) Naturalized stream flow. 

Table 9. Summary statistics for drought variables under three conditions 

Climatic variable Statistic Value 
Naturalized streamflow 

Station : 08029500 
Big Cow Creek, TX 

Lat: 30.49 N, Long: 93.47 W 
Time: 1953-1988 (monthly) 

 

Mean (cfs) 
Standard deviation (cfs) 

Number of droughts 
Mean severity 

Minimum severity 
Maximum severity 

Mean duration (months) 
Minimum duration (months) 
Maximum duration (months) 

146.78 
216.51 

47 
3.312 
0.064 
14.56 

4 
1 
11 

VIC model streamflow 
Lat:30.4375N, Long:93.4125 W 

Time: 1950-2000 (monthly) 
 

Mean (cfs) 
Standard deviation (cfs) 

Number of droughts 
Mean severity 

Minimum severity 
Maximum severity 

Mean duration (months) 
Minimum duration (months) 
Maximum duration (months) 

140.75 
145.46 

57 
5.799 
0.0084 
38.84 
8.378 

1 
12 

Precipitation 
Station: Sabine near Ruliff 
Lat: 30.18N, Long: 93.44W 

Time: 1950-2000 
 

Mean (cfs) 
Standard deviation (cfs) 

Number of droughts 
Mean severity 

Minimum severity 
Maximum severity 

Mean duration (months) 
Minimum duration (months) 
Maximum duration (months) 

53 
14.1 
54 

3.78 
0.03 
35.9 
5.89 

1 
27 

 

Table 10. Summary of error statistics between (a) simulated and naturalized flow 
(b) simulated flow and precipitation 

Variable Error% 
VIC vs. naturalized VIC vs. precipitation 

Number of droughts 
Mean severity 
Mean duration 

17.54 
42.88 
52.25 

12.96 
12.38 
32.08 
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