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ABSTRACT 

 

Unreinforced masonry walls are structural elements consisting of brick units and 

mortar layers, which show brittle and nonlinear inelastic response with regards to their 

mechanical behavior. Brick and mortar components show large variations in their 

mechanical responses, which are attributed to variabilities in the processing conditions, 

compositions and types of constituents, and testing methods. The mechanical responses of 

brick and mortar ‘components’ strongly influence the performance and load bearing 

capabilities of masonry walls thought as ‘systems’. Thus, developing appropriate 

constitutive models and calibration of material parameters in the constitutive models are 

important tasks for scientists in order to generate accurate model-based predictions. 

Determining material parameters of a constitutive model for a nonlinear inelastic response, 

while being a key factor to predict its mechanical response, is a tedious task. This difficulty 

is due to the limited experimental tests that can be performed. Thus, a proper determination 

of these material parameters is necessary to improve the predictions of the overall response 

of masonry walls. A Bayesian probabilistic calibration is conducted to investigate the effects 

of the uncertainty of concrete damage plasticity model parameters in masonry wall 

components, i.e., brick, mortar, and concrete. For this purpose, experimental tests are 

simulated using finite element method (FEM) and their responses are integrated to the 

probabilistic calibration algorithm. Markov Chain Monte-Carlo and Metropolis-Hastings 

algorithms are used to integrate the material parameters using random variables. A Neural 

Network Optimization algorithm is proposed to identify and characterize the material 

parameters for describing the mechanical response of unreinforced masonry walls. 
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Unreinforced masonry wall models are validated using the optimal material parameters that 

provide the best fitting between the simulation results of a masonry prism and the 

corresponding experimental data taken from the literature. From the tangential shear stress 

and normal stress distributions between brick units and mortar layers during lateral loading 

and vertical compression stress, potential failure modes along with their failure criteria are 

determined. The influence of vertical compressive stress, length-to-height “aspect ratio”, and 

material parametric sensitivity (e.g., flexural tensile strength, compressive strength, 

coefficient of friction and cohesion stress) is investigated.  
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1. INTRODUCTION  

 

1.1. Problem Statement  

Unreinforced masonry (URM) walls are widely used in many countries in the world, 

owing to their cultural and historical context and architectural charm. URM walls are a 

structural element consisting of brick and mortar ‘components’ which play a vital role in the 

resistance of structures against vertical and lateral loads. Because of the variation in their 

material properties and failure modes between the masonry layers, the mechanical response 

of this structural component becomes difficult to predict. Physical models of unreinforced 

masonry walls have the capability to reproduce all possible combinations of components, 

material parameters, and geometrical characteristics in order to provide a clear 

understanding of the mechanical responses of the URM walls under different load 

combinations ‘thought as systems’. The physical models rely on appropriate constitutive 

material behaviors for all components of the masonry walls. Therefore, predicting accurately 

the model response through calibration of model parameters is a key process for obtaining 

realistic model-based predictions. The present study uses a Concrete Damaged Plasticity 

(CDP) model, which is available in ABAQUS FE analysis software, to simulate the 

nonlinear inelastic behavior of brick, mortar, and concrete, which are the components of an 

URM wall system (Hillerborg, Modéer, & Petersson, 1976; Lee & Fenves, 1998; J Lubliner, 

Oliver, Oller, & Oñate, 1989). 

Design criteria of URM walls is effectively included into the International Building 

Code (IBC) due to the risk posed on this type of buildings found before the issuing of the 

most recent code seismic provisions. However, due to the uncertainty of the material 
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parameters an inherent vulnerability is present and small safety factors are anticipated 

according to IBC. This uncertainty depends on different aspects such as the inherent 

variation in the material behaviors and the wall system responses. The inverse problem of 

obtaining the URM system wall material properties by minimizing the error between the 

numerical and the experimental results has been implemented based on a probabilistic 

formulation. An early study of an inverse probability analysis was adapted to infer the actual 

values of the model parameters (Tarantola, 2005). Chisari, Macorini, Amadio, and Izzuddin 

(2015) identify and characterize material parameters using inverse problem for unreinforced 

masonry walls. A proper determination of the material parameters becomes necessary in 

order to obtain better predictions of the overall response of masonry walls systems. The 

probabilistic calibration also ensured that the material properties for each component fall 

within certain limits to better predict their behavior and be integrated into a full system of 

URM walls assemblages. The feasibility of the deterministic and calibration procedure is 

examined through correlation with the results of experimental work done by Blackard, Kim, 

Citto, Willam, and Mettupalayam (2007) , Mehrabi (1996), and Epperson and Abrams 

(1990). 

Safety of URM walls systems has been a major concern in past decades due to many 

defects of resisting a possible earthquake or strong wind load which can cause severe 

failures. Generally, the material parameters govern the strength limit which is possible to 

affect the failure modes due to high or low vertical compressive stress Xu and Abrams 

(1992). FEMA 306 p.138 claim that variation of material properties ( e.g., compression and 

tensile strength, young’s modulus, shear moduli and shear strength) is an essential factor for 

in-plane capacity and masonry strength (Council, Response, & Agency, 1999). Therefore, 
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increasing the lateral resistance capacity by deterministic material parameters can provide a 

significant enhancement in the entire building during extensive loads. Also, evaluating the 

shear strength can provide a significant understanding of failure mechanisms. Many 

researchers have widely investigated the failure mechanisms of masonry, which mainly 

depend on the material parameter, under uniaxial compression, combined shear and 

compression, and tension in both experimental and theoretical analysis. Yokel and Fattal 

(1976) verified their hypotheses on failure mechanisms in URM walls systems, such as joint 

separation and splitting of four wall masonry panels, through experimental studies of 32 

URM walls. Magenes and Calvi (1997) evaluate the strength, deformability, and energy 

dissipation capacity within in-plane loads of existing buildings. Recently, Rahman and Ueda 

(2014) investigated the shear stress through parametric studies of various parameters such 

as cohesion and friction angle by experiment and numerical analysis. Xu and Abrams (1992) 

evaluated the post cracking behavior of masonry walls tested by others subjected to vertical 

and lateral loads. These studies showed the variations in the masonry failure modes and 

failure criteria such as shear sliding, compressive splitting, and diagonal failure. 

1.2. Research Objectives 

The objectives of this research are:  

• To identify & characterize key parameters of CDP influencing the strength and 

mechanical response for masonry’s three independent components: Mortar, Bricks 

and Concrete in a Finite Element Method (FEM) simulation framework.  

• To assess key parameters and experimental uncertainty which can be associated with 

the experimental observations using probabilistic calibration approach for Mortar 

and Bricks. 
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• To investigate the effects of material heterogeneity in masonry prism by randomly 

varying degrees of material parameters to predict the overall behavior.  

• To investigate the effect of various parameters on lateral strength of unreinforced 

masonry walls (e.g., compressive strength, flexural strength, and coefficient of 

friction and cohesion stress)  

• To investigate the relationship between shear strength and lateral displacement in 

term of the length-to-effective height “aspect ratio ( / )effl h ”.  

1.3. Research Outline 

Chapter 2 presents the collection of data to investigate the masonry infill wall 

component (e.g., brick, mortar and concrete), study material parametric sensitivity of seven 

parameters in CDP model, and obtain optimal parameters of masonry components using 

nonlinear least square optimization. Chapter 3 introduces the Bayesian probabilistic 

calibration of the optimal parameters for mortar and brick units using the Markov Chain 

Monte Carlo approach coupled with Metropolis Hastings criteria (MCMC- MH) to infer the 

statistical results. Chapter 4 illustrates the validation of the CDP model that is established 

through comparison of its numerical results related to FE analysis of a masonry prism to 

corresponding experimental stress strain curves using the NNO algorithm. Chapter 5 

presents the study of material heterogeneity of masonry prisms and the development of a 

neural network optimization (NNO) algorithm to obtain the optimal constitutive parameters 

of the Abaqus CDP model which fit best the experimental stress strain response of the 

masonry prism. Afterwards, the optimal parameters of a CDP model established in chapter 

4 will be used in chapter 6 to validate the experimental wall tests and investigate the shear 
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strength of the masonry walls in term of a relation between a vertical compressive stress and 

lateral load-displacement. Chapter 7 discusses the conclusions and future work. 
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2. OPTIMIZING THE MATERIAL PARAMETERS IN A CONCRETE DAMAGE 

PLASTICITY MODEL IN MASONRY INFILL WALLS 

 

2.1. Introduction  

This chapter discusses the identification and characterization of material parameters 

in a concrete damage plasticity constitutive model that is being used for describing the 

mechanical responses of brick, mortar, and concrete in an unreinforced masonry infill wall. 

Each of the above components exhibits a nonlinear and inelastic response, which requires a 

number of material parameters to capture its response. Experimental data also show large 

variations in their mechanical responses, which are attributed to various material 

compositions, processing conditions, and specimen types. Thus, a proper determination of 

these material parameters becomes necessary in order to obtain better predictions of the 

overall responses of the masonry wall. In this study, a concrete damage plasticity model was 

used to describe the stress-strain relationship in each constituent of an unreinforced masonry 

infill wall under uniaxial compression. Extensive datasets of the material properties of 

mortar, brick, and concrete, as well as the associated stress-strain curves, were collected 

from the literature. A parametric analysis is first conducted to evaluate the correlated and 

uncorrelated parameters in representing the overall compressive responses of the 

constituents, in order to engage in proper calibration. In this study, Abaqus2Matlab (A2M) 

is used as an interface for linking ABAQUS and MATLAB. The A2M application serves for 

transferring results from ABAQUS to MATLAB and vice versa, allowing for an integrated 

programing and simulation environment. The post-processing algorithm A2M 

(Papazafeiropoulos, Muñiz-Calvente, & Martínez-Pañeda, 2017) and an inverse method 
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were used to optimize the parameters and minimize the differences between the experimental 

observations and numerical predictions. The A2M optimization algorithm was then 

employed to fit the stress-strain curves associated with the uncertainties, allowing for a 

comparison with the data observations. 

2.2. Background 

Unreinforced masonry (URM) walls are structural elements consisting of brick and 

mortar, which show brittle and nonlinear inelastic responses with regards to their mechanical 

behaviors. Formulating constitutive models and calibrating material parameters in the 

constitutive models are essential in order to provide reliable predictions of the responses of 

materials. Typical constitutive models for nonlinear inelastic materials include a number of 

material parameters that are usually determined from experimental tests. Examples of 

constitutive models that have been formulated for masonry walls and their constituents as 

well as a discussion on validating the calibrated material parameters can be found in the 

following literature (Gambarotta & Lagomarsino, 1997; Grassl & Jirásek, 2006; Lee & 

Fenves, 1998; Lotfi & Shing, 1991; Jacob Lubliner, 1991; J Lubliner et al., 1989). Several 

studies have discussed a wide variety of the material parameters calibrated from 

experimental data and provided a typical range for different parameters, e.g., the dilatancy 

angle , 𝜓, (0-36), biaxial strength ratio ,
𝑓𝑏

𝑓𝑐⁄ , (1.10-1.16) and deviatoric plane in the yield 

surfaces , 𝜅, (0.5-1) (Jankowiak & Lodygowski, 2005; Kmiecik & Kamiński, 2011; J 

Lubliner et al., 1989). An alternative approach has been on identifying material parameters 

by determining the parameters using forward calibration process instead of inverse problem 

techniques to validate experimental parameters by using a constitutive models and try to 



 

9 

 

minimize the errors between the model and the experiment(Cecchi & Sab, 2002; Chisari, 

Macorini, Amadio, & Izzuddin, 2018; Jankowiak & Lodygowski, 2005; Renata Morbiducci, 

2003; R Morbiducci & Shing, 1998; Sarhosis & Sheng, 2014). To minimize errors between 

the observation-based datasets and model parameters, inverse methods have been applied to 

identify and characterize the material properties in the constitutive models (Carmeliet, 1999; 

Chisari, 2015, 2019; Chisari et al., 2015; Chisari et al., 2018; Fadale, Nenarokomov, & 

Emery, 1995; Muñoz-Rojas, Cardoso, & Vaz, 2010; Nazari & Sanjayan, 2015; Rechea, 

Levasseur, & Finno, 2008; Sarhosis & Sheng, 2014; V. V. Toropov & van der Giessen, 

1993). In this paper, the objective function was applied using the least-squares technique 

suggested by Legendre and Gauss in the 1800s, which minimizes the sum of the square of 

the difference between experiment-based measurements and the calculated response of a 

model. 

The present study uses a concrete damage plasticity (CDP) model, which is available 

in ABAQUS FE analysis, to simulate the nonlinear inelastic behavior of brick, mortar, and 

concrete, which are the constituents of a masonry wall (Hillerborg et al., 1976; Lee & 

Fenves, 1998; J Lubliner et al., 1989). The CDP model has two components: the plasticity 

and damage mechanics with the typical failure modes (i.e., cracking in tension and crushing 

in compression). The CDP model is first examined in capturing the mechanical response of 

brick, mortar and concrete. For this purpose, experimental data from (Blackard et al., 2007) 

and (Mehrabi, 1996) are used. Models for the brick, mortar, and concrete are generated using 

3D continuum element in order to mimic the tested specimens (cylindrical specimens for 

mortar and concrete and a rectangular cuboid for the brick) in the experiments. In order to 

safe computational cost during the optimization, we also consider an axisymmetric element 
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to represent the cylinder specimen and a one-eight symmetric model for the brick. Responses 

from different elements are assessed for their numerical accuracy and cost efficiency. A 

sensitivity analysis is also performed for the material parameters in the CDP (e.g., 

𝐸, 𝜐, 𝑓′𝑐, 𝜓,
𝑓𝑏

𝑓𝑐⁄ , 𝜖, 𝜅, 𝜇) for the mortar in order to understand the influence of each of 

these parameters on the overall mechanical response.  

In this research, experimental data, in terms of stress-strain relations, were collected 

for mortar, brick, and concrete under a uniaxial compression in order to study variations in 

material properties with different material compositions (e.g., the cement type, lime 

contents, and water-to-cement ratio), processing conditions, and specimen shapes (C. 

Barbosa, Lourenço, Mohamad, & Hanai, 2007; C. S. Barbosa, Lourenço, & Hanai, 2010; 

Ciornei, 2012; Fiorato, Sozen, & Gamble, 1970; Gonçalves, Tavares, Toledo Filho, 

Fairbairn, & Cunha, 2007; Illampas, Ioannou, & Charmpis, 2014; Kaushik, Rai, & Jain, 

2007; McNary & Abrams, 1985; Mohamad, Lourenço, & Roman, 2006; Nguyen, 2014; 

Singh & Munjal, 2017; Venkatarama Reddy & Gupta, 2006; Xavier & Francisco, 2015) (See 

Appendixes A). Variations in the material properties became very useful in the optimization 

strategies for selecting the range of material properties based on the data population. Because 

of variations in the stress-strain curves that appear in the literature, the empirical cumulative 

density (ECD) function was considered. This study employed a new optimization algorithm 

based on the Abaqus2Matlab software (A2M), which is an interface process used to calibrate 

the proper parameters through inverse problem analysis. The extensive variations in the 

stress-strain experimental data allow to test capability for optimizing the appropriate 
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material parameters in the CDP (e.g., 𝐸, 𝜐, 𝑓′𝑐, 𝜓,
𝑓𝑏

𝑓𝑐⁄ , 𝜖, 𝜅, 𝜇), by setting the upper and 

lower bounds of each parameter.  

2.3. Data Collection for Mortar, Concrete, and Brick 

Various combinations of cement, lime, sand, and water produce either strong or weak 

mortar. Early studies found that Portland cement provides strong mortar compared to 

pozzolanic cement. However, the water-to-cement ratio and amount of lime more directly 

control mortar’s hardness or softness. Soft mortar can offer a good cohesion bond with the 

masonry unit as well as weak strength, while strong mortar can easily be separated under a 

load. Figure 2.1 lists uniaxial compressive stress-strain responses of mortar under various 

conditions discussed above. These variations result in different material parameters in the 

CDP model. 

Early studies investigated concrete cylinders or cubes in an effort to understand the 

distribution of stress through a compression zone and the general stress-strain relationship 

(Desayi & Krishnan, 1964; Fiorato et al., 1970; Hognestad, Hanson, & McHenry, 1955; 

Mehrabi, 1996; Mosalam, 1996; Smith & Young, 1956; Stavridis, 2009) (see Figure 2.2). 

These data were used to validate the accuracy of the parameters embedded in ABAQUS and 

simulate the concrete frame of a URM wall. 

Brick is the most common type of masonry in the world. There can be substantial 

variations in brick strength due to the material type, geometric effect, and manufacturing 

process. Several studies have tested these individual components, seeking to understand the 

behavior of brick under compression loads (C. S. Barbosa et al., 2010; Blackard et al., 2007; 

Blackard, Willam, & Mettupalayam, 2009; Kaushik et al., 2007; Mohamad, Fonseca, 
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Vermeltfoort, Martens, & Lourenço, 2017; Mosalam, 1996; Singh & Munjal, 2017; 

Stavridis, 2009; Yang, Lee, & Hwang, 2019) (see Figure 2.3). 

 

 

 

Figure 2.1 Mortar data collections(Fiorato, et al. 1970; Mosalam 1996; Fransico 1997; 

Blockrad et. al 2009; Blockrad et. al 2007; Barbosa et al. 2010; Cheng & Khoo 1972; 

Gonçalves et al., 2007; Mohamad et al. 2006 ; Mohamad et al., 2016 ; Ciornei 2012; 

Nguyen 2014; Kaushik, et. al. 2007; Bu.et al., 2016; Singh & Munjal 2016) 
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Figure 2.2 Concrete data collections (Fiorato 1970; Mehrabi 1996; Stavridis 2009; 

Nguyen 2014; Hognstad et al., 1955; Smith & Young 1956) 

 

 

 

Figure 2.3 Brick data collections (Mosalam 1996; Barbosa et al. 2010; Andreas 2009; 

Mohamad et al., 2016; Singh & Munjal 2016; Kaushik et al., 2007; Blockrad et. al., 

2009; Blockrad et. al., 2007; Singh & Munjal 2016 ) 

 

 

0

1

2

3

4

5

6

0 0.002 0.004 0.006 0.008

S
tr

es
s 

K
si

Strain

Concrete Tests
Andreas Stavridis 2009

Fiorto et al. 1970

Hognstad et al 1955

Mehrabi 1994

Mosalam 1996

SMITH and YOUNGt

1956

0

1

2

3

4

5

0 0.005 0.01 0.015

S
tr

es
s 

K
si

strain

Brick Tests Andreas 2009 test A

Andreas 2009 Test B

Barbosa et al. 2010

Blackrad 2009

Kaushik 2007

Kaushik 2007

Kaushik 2007

Kaushik 2007

Mosalam 1996

Mohamad et al. 2017

Singh and Munjal 2016

Singh and Munjal 2016

Singh and Munjal 2016

Singh and Munjal 2016



 

14 

 

2.4. Concrete Damage Plasticity Model  

The identification of constitutive parameters is a fundamental phase of replicating 

experimental tests of stress-strain curves. The constitutive model for concrete materials is 

expressed within the framework of plasticity theory and the theory of damage mechanics, 

both of which have been investigated since the 1970s (A. C. Chen & Chen, 1975; Demin & 

Fukang, 2017; Feenstra & De Borst, 1996; Grassl, 2004; Grassl, Xenos, Nyström, Rempling, 

& Gylltoft, 2013; Hillerborg et al., 1976; Pramono & Willam, 1989). Concrete material is a 

complex phenomenon reflecting elastic and inelastic behaviors of brittle materials. The 

typical failure modes of concrete materials include crushing under compression and cracking 

under tension. In this study, to analyze the mechanical response of masonry structures a CDP 

constitutive model that describes both plasticity modes and damage behaviors, J Lubliner et 

al. (1989), is used.  

For brittle materials that undergo small deformation, the elastic and inelastic strains 

are additively decomposed:  

 e p= +ε ε ε   
(1) 

The superscript ‘e’ and ‘p’ denotes elastic and inelastic components of strain. The 

model introduces two types of stresses, the actual stress σ  and the apparent stressσ , which 

is the stress defined based on the degraded elastic fourth order tensor (stiffness matrix) C . 

The actual and apparent stresses are related though the damage variable d , whose values are 

between 0 (no damage) and 1 (complete damage), as follow: 

 (1 )d= −σ σ  
(2) 

The general stress-strain relationship can be written as: 
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 : ( ) (1 ) : ( )p e pd= − = − −σ C ε ε D ε ε   
(3) 

where e
D  is the initial (undamaged) elasticity tensor. For an isotropic material e

D is 

expressed in terms of the elastic modulus E  and Poisson’s ratio . 

In order to determine the inelastic strain component, a plastic flow potential G  and 

the associated yield function (in this case failure surface) F  need to be defined. In brittle 

and granular materials like mortar and concrete, significant volume changes during inelastic 

deformation can induce distortion. Such an effect can be incorporated by having the flow 

potential G  to depend on the dilatancy angle  and stress measure, see Lubliner et al. (1989). 

The CDP assumes a non-associated potential plastic flow and for the Drucker-Prager 

hyperbolic form, the following form is considered: 

 ( )
2

2 1tan 3 / 3tantG J I  = + +ò  
(4) 

where J2 is the second invariant of the deviatoric stress, I1 is the first invariant of stress. 

Another parameter in CDP is the eccentricity ò  is a ratio of tensile strength to compressive 

strength ratio which depends on the cross-section of the deviatoric plane, and t  is the 

uniaxial tensile test to failure that is obtained from experiment. 

For the CDP, Lubliner et al. (1989) considered the following form for the failure 

surface F: 

 
( )

2 1 max max

1
3

1
F J I    


 = + + − −
 −

 
(5) 

where   is a dimensionless constant that depend on the ratio of the initial equibiaxial and 

uniaxial compressive yield stresses /b cf f  as: 
( )

( )

/ 1

2 / 1

b c

b c

f f

f f


−
=

−
. The parameter   involves 
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the ratio of the uniaxial compressive yield stress to the uniaxial tensile yield stress ft, written 

as ( )( )1 / (1 )c tf f  = − − + . Finally,  represents a constant from triaxial compression 

( )3 1

2 1






−
=

−
 where  is the ratio of the distance between the hydrostatic axis and with respect 

to the compression meridian (CM), and the tension meridian (TM) in the deviatoric plane, 

known as deviatoric out of roundness. Under a uniaxial compressive test ( )max 1 21/ 3 3 .I J = +  

Finally, concrete and mortar experimental tests are usually shown softening behavior 

and stiffness degradation. Capturing the softening behaviors often result in numerical 

convergence. In ABAQUS FE, the softening behaviors are solved by introducing a 

viscoplastic constitutive equation in order to avoid numerical convergence. Thus, an 

additional material parameter, i.e., viscosity   is required for the softening behavior. 

In summary, the above CDP model involves seven material parameters (i.e., 

, , ,, , ' , ,b

c

f
E f c

f
   ò ). The CDP was developed to represent all damage states, using the 

concept of fracture energy-based damage and stiffness degradation mechanics (Grassl & 

Jirásek, 2006; Lee & Fenves, 1998). The CDP model is available in the ABAQUS library, 

which has the ability to capture the appropriate nonlinear inelastic behaviors of brittle 

materials. The above material parameters need to be characterized from available 

experimental tests. For many brittle materials, such as concrete and mortar, these parameters 

are bounded by certain ranges, discussed below. 

The compressive strength 'f c  is the capacity of uncrack portion of the concrete 

structural member to carry the loads prior to cracking. Several studies tested a plain concrete 

and reinforced concrete to determine critical stressed which lie between 0.6 'f c and 0.8 'f c
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(Jenq & Shah, 1985; Karsan & Jirsa, 1969). Hognestad et al. (1955) studied the ultimate 

strength based on s flexural stress distribution and developed a stress-strain relation from the 

tested prism specimens under concentrated compression loads. Philleo (1955) tested and 

compared concrete specimens under three loads conditions (static, resonance, and pulse 

velocity) to determine the elastic and inelastic response and computed the Young’s modulus

E  . The author stated that the results showed a variation in the results which are associated 

with the heterogeneity of the concrete, size and shape of the specimens, and equipment’s 

accuracy. Kolluru, Popovics, and Shah (2000) tested a 3D cylinder concrete sample to 

determine the Young’s modulus E  and Poisson’s ratio   using the dynamic method.  

The variable b

c

f
f

 is the ratio of biaxial initial yield stress to the uniaxial yield stress. 

J Lubliner et al. (1989) determined the value of b

c

f
f

 by testing a concrete specimen under 

biaxial compression at the yield surface max( ) 0F  =  with respect to the uniaxial compression 

to obtain stresses b

c

f
f

. J Lubliner et al. (1989) claimed that during his experimental tests, the 

value for b

c

f
f

 was between 1.10 to 1.16 and the recommended value according to 

ABAQUS’s manual is 1.16 (Hibbitt, Karlsson, & Sorensen, 2011).  

 The value of the deviatoric out of roundness   varies from 0.5 to 1. When  equal 

to 1 it means the yield surface has a circular shape which represents the Dracker-Prager yield 

surface criterion (W.-F. Chen & Han, 2007; J Lubliner et al., 1989). 

 The value of the dilatancy angle was between 0 and 36. Michał and Andrzej (2015) 

recommended that the value be low as possible, in order to capture realistic model behavior. 

During the present study, the dilatancy angle correlated with the viscosity value used to 
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capture the model behavior. For the eccentricity, it is necessary to have the value of 𝜖 greater 

than 0 which means the compression meridian CM should be different than the tensile 

meridian TM and the eccentricity 𝜖 and deviatoric out of roundness   are necessary to be 

greater than 0 and 0.5 to preserve the convexity condition of the failure (Jirasek & Bazant, 

2002). The value of eccentricity ò is affected by the shape of the deviatoric section and the 

load angle ( )r   between the meridians, and the recommended value in ABAQUS is 0.1 

(Hibbitt et al., 2011). The formula that used to calculate theò is correlated to b

c

f
f

 in which 

is proposed by Jirasek and Bazant (2002). 

 1

2





+
=

−
ò  

(6) 

where 𝛽 =
𝑓𝑡𝑓𝑏

2−𝑓𝑐
2

𝑓𝑏𝑓𝑐
2−𝑓𝑡

2, cf  and tf  are the compression and tension strength and bf  the biaxial 

strength. In addition, the values for ò  and   parameters should be greater than zero and 

0.5, respectively, in order to obtain the convexity condition of the failure surface.  

 The viscosity   is a parameter that can control the softening behavior is adopted in 

ABAQUS FE. Michał and Andrzej (2015) calibrated the viscosity   in the ABAQUS FE 

for different parameters (i.e., 0, 0.0001, 0.001, and 0.01), and the recommended value for 

using the viscosity is 0.0001. 

2.5. Model Validation  

Blackard et al. (2007) tested and numerically simulated masonry prisms, including 

each component of cement mortar and clay brick, and subjected them to uniaxial 

compression loads. The compression simulations for the cement mortar, concrete, and brick 

were conducted on 4” × 8” cylinders of mortar and concrete, and 4.5” × 3.75” × 2.25” 
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samples of clay brick. The simulations were done using a CDP constitutive model available 

in ABAQUS and the results are compared to the experiments. 3D cylinder models have used 

for mortar and concrete and a 3D rectangular cuboid for brick to verify the stress-strain 

curves from the experiments. The CDP model is shown capable in capturing the stress-strain 

relations for the mortar, brick, and concrete (see Figure 2.4. The simulation in the present 

research showed better results and was closer to the experiment results than were other 

simulations (see Figure 2.5). Also, tests on concrete were conducted to validate the 

compressive strength of masonry infill walls (Mehrabi, 1996). The simulation shows that 

CDP model is capable in describing the overall stress-strain response. Table 2.1-3 is showing 

the calibrated material parameters performed in the present study, which are also compared 

to the parameters used by (Blackard et al., 2007; Mehrabi, 1996).  
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Figure 2.4 Model validation vs data from experiment and literature (Blackard et al., 

2007; Mehrabi 1996) 
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Figure 2.4 Continued  

 

 

 

Figure 2.5 Present Simulation Compared to Experiment and simulation by Blackard 

et al. (2007) 
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Table 2.1 Model Validation Parameters Vs Previous Study Parameters for Mortar 

Mortar Test ( )E psi      b

c

f
f

 ò      

Blackard et 

al. (2007) 
5 × 105

 0.2 20 1.15 0.1 0.7 0 

Initial Guess 5 × 105
 0.2 20 1.16 0.1 0.667 0.001 

 

 

Table 2.2 Model Validation Parameters Vs Previous Study Parameters for Brick 

Brick Test ( )E psi      b

c

f
f

 ò      

Blackard et 

al. (2007) 
3 × 106

 0.1 20 1.15 0.1 0.7 0 

Initial Guess 3 × 106
 0.1 20 1.16 0.1 0.667 0.001 

 

 

Table 2.3 Model Validation Parameters Vs Previous Study Parameters for Concrete 

Concrete Test ( )E psi      b

c

f
f

 ò      

Mehrabi 

(1996) 
3 × 106

 
     

 

Initial Guess 3 × 106
 0.15 36 1.16 0.1 0.667  

 

 

2.6. Model Parameters Analysis  

Model parameters are the most influential component with regards to results, and 

they need to be identified through model analysis sensitivity. To evaluate the parameters of 

the CDP model a 3D cylinder mortar was simulated. The ABAQUS simulation employed a 

3D model with a 4” in diameter and 8” height of a cylindrical shape. The concrete damage 
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plasticity (CDP) model has many parameters ( , , ,, , ' , ,b

c

f
E f c

f
   ò ) that needed to be 

investigated to better understand their influence on the stress-strain relationship. Because 

there are many variations in the stress-strain curves that appear in the literature, an Empirical 

Cumulative Density (ECD) function was employed in the present work only for Young’s 

modulus and compressive stress (see Figure 2.6). Other parameters (e.g, ,, ,, ,b

c

f
f

   ò ) 

values were considered from the validation model to represent the main model for the 

parametric analysis study. These parameters were varied individually to facilitate an 

understanding of the sensitivity level of each. The Empirical Cumulative Density Function 

(ECDF) was measured for the Young’s modulus E  and compressive strength, 'f c , the most 

sensitive parameters in the CDP model. The main model was developed based on the ECD 

results and parameters obtain by model validation individually for illustrating the stress-

strain curves for each parameter change (∓10%, 20%, and 30%). Four parameters were 

shown to be more sensitive ( ,, ,'E f c   ) than the others (see Figure 2.7). The process of 

the parametric analysis illustrates in flow chat (see Figure 2.8). 

2.7. Optimization  

An optimal parametric study was conducted using the Abaqus2Matlab interface 

(Papazafeiropoulos et al., 2017) in order to minimize the difference between the experiment-

based observations and numerical predictions related to the CDP model. Abaqus2Matlab 

(A2M) is a post-processing algorithm connecting ABAQUS and MATLAB, which is used 

to simulate a finite element model (Papazafeiropoulos et al., 2017). The simulations in this 

study were conducted for three components – mortar, concrete, and brick – in order to obtain 
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the optimum parameters of the constitutive model, such as the Young’s modulus, Poisson 

ratio, compressive strength, etc., and minimize errors in the stress-strain curves. The 

axisymmetric model was used to evaluate both mortar and concrete samples of cylindrical 

specimens, and the symmetry model was used for brick specimen (see Figure 2.9). The 

objective function used to simulate the model parameters was nonlinear least squares 

2 2| ||| ( ) || min || ||obs predMin f x −= d d  , where obsd  and 
predd are used to identify and 

characterize the uncertainty associated with the stress-strain of the observations obsd  and the 

stress-strain of the predictions 
predd  obtained from experimentation and numerical 

simulations respectively:  

 

 

 

a) 

Figure 2.6 Empirical Cumulative Density Function for a) compressive strength b) 

Young's modulus 
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b)  

Figure 2.6 Continued  

 

 

 

a) 

Figure 2.7 Model parameters sensitivity of the CDP model for a)Young’s modulus, b) 

Compressive Strength, c) dilatancy angle, d) Poisson’s ratio, e) eccentricity, f) Biaxial 

to uniaxial yield stress, g) deviatoric out of roundness h) viscosity 
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b) 

 

 

 

c) 

Figure 2.7 Continued 
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d) 

 

 

 

e) 

Figure 2.7 Continued 
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f) 

 

 

 

g) 

Figure 2.7 Continued 
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h) 

Figure 2.7 Continued 
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Figure 2.8 Flow chart of parametric analysis 
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A better way to describe the main elements of the optimization technique is by 

discussing the process of obtaining the appropriate model parameters through A2M. These 

elements are as follows: 

• Initial guess: the initial model parameter values such as the Young’s modulus, Poisson 

ratio, compressive strength, etc., implemented into ABAQUS. The values of the design 

variables in the initial guess can be selected randomly, or according to certain 

distributions. The initial sets of design variable values should be chosen so that they span 

a sufficiently large range, so that it includes the optimal solution. Care should be taken 

so that the number of initial points is neither too small nor too large with respect to the 

capacity of the neural network, in order to avoid overfitting or underfitting respectively.  

• Objective function: the difference between the experimental stress-strain curve and the 

theoretical prediction of the stress-strain curve accomplished via the Abaqus simulation.  

• Boundary limitations: upper and lower bound values specifying the domain for each 

parameter as obtained from the literature. 

The flowchart in Figure 2.10 illustrates the optimization interface between ABAQUS 

and MATLAB. First, the model was run in ABAQUS by providing the initial guess 

parameters, in order to obtain a theoretical model of the stress-strain curves; this was then 

compared to the stress-strain from the experiment. It is noted here that the values of the 

initial guess parameters do not affect the result of the optimized parameters. Next, the 

objective function and optimization were calculated through Abaqus2Matlab, based on the 

nonlinear least squares function. If the optimization was less than the tolerance value, the 

parameters defined in the mathematical model were accepted and the iteration stopped.  
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Figure 2.9 ABAQUS 3D model a) axisymmetric b) symmetry model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Optimization flowchart 
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Otherwise, the algorithm proceeded to establish a new set of parameters based on upper and 

lower bounds. Finally, the process was repeated iteratively until the minimum possible 

objective function was accomplished. 

2.8.  Conclusion 

The parameters for three URM infill wall components were optimized by A2M and 

compared to the test data obtained from the literature. In other words, the optimum material 

parameters were determined by fitting a particularly experimental test to the CDP 

constitutive model under uniaxial compression loads (Blackard et al., 2007). As shown in 

Figure 2.11 the stress-strain models analyzed using A2M to identify the optimization 

parameters produced results that nearly coincided with those of actual experiment-obtained 

stress-strain curves found in Blackard et al. (2007) and Mehrabi (1996). The optimization 

process accurately fit the stress-strain relationship models, as compared to the ABAQUS 

(i.e., initial guess) simulation. 

The tolerance value controlled the iteration number and enhanced the optimization 

results for the model parameters. Figure 2.12 shows the residual value versus the iteration 

number, which demonstrated an error approaching 1% (which is negligible). Approaching 

the minimum error was required for computational time, meaning the cumulative error was 

insignificant. Table 2.4-6 shows the optimization for all components (i.e., mortar, brick, and 

concrete), illustrating certain parameter results as compared to the parameters employed by 

Blackard et al. (2007) and Mehrabi (1996). The agreement between the objective data 

function with a Gaussian fit and the histogram with a normal distribution (see Figure 2.13) 

demonstrated a poor representation of the observations for mortar, brick, and concrete, and 

a small amount of bias. 
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Figure 2.11 Optimization results for the CDP model compared to experiment teats 

(Blackard et al., 2007;Mehrabi 1996) 
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Figures 2.11 Continued  

 

 

Table 2.4 Optimization Results for Mortar Compared to ABAQUS Model and 

Literatures 

Mortar Test ( )E psi      b

c

f
f

 ò      

Blackard et 

al. (2007) 
5 × 105 0.2 20 1.15 0.1 0.7 0 

Initial Guess 5 × 105 0.2 20 1.16 0.1 0.667 0.001 

Optimizations 
6.399 
× 105 

0.18 18.8153 1.088 0.108 0.6340 0.0022 

 

 

Table 2.5 Optimization Results for Brick Compared to ABAQUS Model and 

Literatures 

Brick Test ( )E psi      b

c

f
f

 ò      

Blackard et 

al. (2007) 

3 × 106 0.1 20 1.15 0.1 0.7 0 

Initial Guess 
3 × 106 0.1 20 1.16 0.1 0.667 0.001 
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Table 2.5 Continued 

Optimizations 
3.132 
× 106 

0.104 19.69 1.1418 0.0933 0.958 0.0015 

 

 

Table 2.6 Optimization Results for Concrete Compared to ABAQUS Model and 

Literatures 

Concrete Test ( )E psi      b

c

f
f

 ò      

Mehrabi 

(1996) 
3 × 106       

Initial Guess 3 × 106 0.15 36 1.16 0.1 0.667  

Optimizations 
2.9491
× 106 

0.147 35.7 1.143 0.094 0.659 
0.0018 

 

 

 

Figure 2.12 Residuals of the mortar, brick and concrete model 
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Figure 2.13 Gaussian fit and histogram of the objective function for mortar, concrete 

and brick, respectively. 
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Figure 2.13 Continued  
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Figure 2.13 Continued  
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3. PROBABILISTIC CALIBRATION OF CONSTITUTIVE PARAMETERS OF A 

CONCRETE DAMAGE PLASTICITY MODEL IN MASONRY WALLS 

 

3.1. Introduction  

This study discusses a Bayesian probabilistic calibration in determining material 

parameters in a concrete damage plasticity constitutive model that is being used for 

describing the mechanical responses of brick and mortar for an unreinforced masonry wall. 

The main objective is to identify the uncertainty and correlation of the material parameters 

defined in the constitutive model to assess the confidence of the structure response 

containing it, which in this case would reflect scenarios of the inelastic behavior of the brick 

and mortar components. In this study, a concrete damage plasticity model which is available 

in ABAQUS FE analysis is used to describe the stress-strain relationship in each component 

of an unreinforced masonry wall under uniaxial compressive loads. Once the material 

parameters of all the components in the wall are calibrated, they can then be used to 

investigate the effect of spatial variations and material heterogeneities on the overall 

mechanical responses of unreinforced masonry walls. This study demonstrates the 

mechanical response using the probabilistic calibration approach to show the benefits of 

assessing the performance of model predictions, by taking into account all likely scenarios 

of material variations for mortar and brick when incorporated into an unrein-forced masonry 

wall. 

Various combinations of cement, lime, sand, water and variations in brick strength 

due to material type, geometric effect, and manufacturing process may produce masonry 

walls with significant variance in their load bearing performance. Early studies investigated 
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brick and mortar samples in an effort to understand the distribution of stress through 

compression zones and general stress-strain relationship (C. S. Barbosa et al., 2010; 

Blackard et al., 2007; Blackard et al., 2009; Kaushik et al., 2007; Kaynia et al., 2008; 

Mohamad et al., 2017; Mosalam, 1996; Singh & Munjal, 2017; Stavridis, 2009; Yang et al., 

2019). The Bayesian probabilistic calibration framework applied in the following studies 

(Gauer, Medina-Cetina, Lied, & Kristensen, 2009; Medina-Cetina, 2007; Ranalli, Gottardi, 

Medina-Cetina, & Nadim, 2010; Rechenmacher & Medina-Cetina, 2007) allowed for a 

deeper understanding of the overall mechanical responses of such wall systems, as expressed 

through the model parameters. This framework facilitated a systematic exploration of 

parametric space through a functional formulation that employed knowledge of governing 

parameters and the rheological behavior of masonry components. A Concrete Damaged 

Plasticity (CDP) constitutive model that described both plasticity models and damage 

behaviors was used to analyze the mechanical responses of masonry structures, J Lubliner 

et al. (1989). This CDP model included seven material parameters. The three more sensitive 

parameters (i.e., Young’s modulus E  , viscosity   , and deviatoric out-of-roundness   ), 

as previously demonstrated in Chapter II , were used for the probabilistic brick and mortar 

calibration analysis, to illustrate the applicability of the probabilistic calibration 

methodology. This study used a mortar and brick model to present the results for Young’s 

modulus E , viscosity  , and deviatoric out-of-roundness  , where  , and   are 

parameters controlling hardening and softening behavior in stress-strain curves, 

respectively. Abaqus2Matlab was used as an interface software for linking ABAQUS and 

MATLAB, which was used for optimization and for the probabilistic calibration of the CDP 

parameters of both the brick and the mortar (Papazafeiropoulos et al., 2017).  
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3.2. Probabilistic Calibration 

3.2.1. Uncertainty Framework  

The uncertainty quantification of an inverse problem identifies, characterizes, and 

simulates the various sources of uncertainty inherent in the physical process of interest. The 

expected output of the true process is represented by a set of random vectors d and 

experimental observations obsd . It can be retrieved from lab or field measurements and 

compared to predicting outcomes of the same process predd . The uncertainty quantification 

framework in terms of d , obsd  , and predd can be summarized by Medina-Cetina (2007):  

 
obs obs

pred pred

obs pred obs pred

= + 

= + 

− =  −

d d d

d d d

d d d d

 

(7) 

The uncertainty involved in the present research was assumed both in the 

experimental observations and theoretical predictions. Eq. (7) illustrates the tradeoff 

between the scientific evidence obsd and predd  through the gradientsd . Herein, obsd are 

comprised of mathematical predictions stemming from a forward model ( )g θ , which is 

governed or characterized by a set of parameters θ  that represent geometric and material 

properties (i.e., the Young’s modulus E , viscosity   , and deviatoric out-of-roundness  ). 

The proposed probabilistic calibration method follows a Bayesian approach that 

accounts for the full probabilistic description of the model’s parameters through probability 

maps(Zhu, Cong, Hu, & Medina-Cetina, 2012). This starts with an expert’s belief setting up 

to the prior ( )( )  θ  state for model parameter θ  before the experimental evidence is 
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presented to the mathematical model (i.e., the forward model). This prior knowledge ideally 

facilitates calibration of the model parameters by limiting and defining plausible values in 

the form of the probability distribution, which later is updated systematically via quantifying 

the likelihood ( )( )| obsf d θ between available observations obsd  and model parametersθ . 

From the basic definition of the Bayes theorem:  

 ( | ( ), ) ( )
( | ) ( | ( ), ) ( )

( | ( ), ) ( )

obs
obs obs

obs

f g
f g

f g d



  


=



d θ θ θ
θ d d θ θ θ

d θ θ θ θ
 

(8) 

The posterior ( )| obs θ d  is the probability proportional to the prior ( )  θ  and the 

likelihood ( )( )| obsf d θ . This is because of the integral of the denominator is a normalizing 

constant over the parametric space  θ , so that the integral of the posterior ( )| obs θ d  can 

be 1. 

3.2.2. Probabilistic Calibration for Mortar and Brick 

The probabilistic calibration method is used in this work to study the uncertainty 

quantification of the material parameters of the concrete damage plasticity model 

implemented in the FE model. Concrete mortar and brick unit was tested under an axial 

compression load with cylindrical dimensions of 4” x 8” and parallelepiped dimension 4.5” 

x 3.75” x 2.25”, respectively (Blackard et al., 2007). A numerical model simulated in 

ABAQUS was used to optimize the material parameters E  ,   , and   via MATLAB using 

a nonlinear least square algorithm (Levenberg, 1944; Marquardt, 1963).The optimal vector 

of parameters θ  was used as the starting point for the probabilistic calibration. The 

probabilistic calibration starts from the optimal set of parameters, where MCMC, coupled 
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with Metropolis-Hastings, is implemented. Table 2.2 in chapter two shows the optimal 

parameters compared to the numerical parameters obtained by Blackard et al. (2007) .  

3.2.2.1. One-Parameter Calibration for Mortar and Brick Model 

The likelihood measured from the trade-off between the experimental observation 

obsd and the model prediction predd  , which is the variation around the experimental 

observation assumed as a Gaussian distribution, from the deterministic optimal parameters. 

The prior is probability function in which depends on the expert’s judgment or previous prior 

distribution introduced by experimental data (Medina-Cetina & Arson, 2014). Therefore, the 

prior considered non-informative, which is relay on a lower and upper bond of previous 

experimental observation of the parameters Young’s modulus E  viscosity µ , and 

deviatoric out-of-roundness  , to generate a uniform probability density function. The 

proposed distribution was the sampling of the posterior that is derives from the Markov 

Chain Monte Carlo approach coupled with Metropolis Hastings criteria (MCMC- MH) to 

infer the statistical results. The solution to the numerical integration of the posterior was 

certainly converging for single experimental study such as E , and   after the number of 

iterations reaches to 1.5e+4 and for, µ , to 3e+4 with a coefficient of variation 0.03 to obtain 

the statistical results (see Figure 3.1-3.3). The coefficient of variation values (e.g., 0.01, 

0.015, 0.02, 0.025, and 0.03) for mortar and brick unit were examined in prior in this study 

to investigate the effect of response behavior in CDP model. The burn-in iterations were 

varying based on the convergence of the parameters which are considered between 30% and 

50% of the total number of iterations to ensure the statistical inference. 
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a) 

 

 

 

b) 

Figure 3.1 Sample sequence a) Young’s modulus E  b) Deviatoric out-of-roundness 

 c) Viscosity   
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c) 

Figure 3.1 Continued 

 

 

 

a) 

Figure 3.2 Sample mean for mortar a) Young’s modulus E  b) Deviatoric out-of-

roundness  c) Viscosity   
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b) 

 

 

 

c) 

Figure 3.2 Continued 
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a) 

 

 

 

b) 

Figure 3.3 Sample Std for mortar a) Young’s modulus E  b) Deviatoric out-of-

roundness  c) Viscosity   
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c) 

Figure 3.3 Continued 

 

In addition, the inverse problem solution can be used to simulate potential 

realizations of the model prediction in which the Figure 3.5 shows the empirical cumulative 

density functions of for each parameter of interest. From this figure is observed, that model 

showed an excellent agreement the mean of the observations. Figure 3.4 illustrates the 

frequency histogram for the parameter models for the Young’s modulus E , viscosity   

and deviatoric out-of-roundness , respectively. Similarly, the analysis for the brick model 

has been shown (Figure 3.6-3.10).  
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a) 

 

 

 

b) 

Figure 3.4 Frequency histogram for mortar a) Young’s modulus E  b) Deviatoric 

out-of-roundness  c) Viscosity   
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c) 

Figure 3.4 Continued 

 

 

 

a) 

Figure 3.5 Empirical cumulative density function for mortar a) Young’s modulus E  

b) Deviatoric out-of-roundness  c) Viscosity   
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b) 

 

 

 

c) 

Figure 3.5 Continued 
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a) 

 

 

 

b) 

Figure 3.6 Sample sequence for brick a) Young’s modulus E  b) Deviatoric out-of-

roundness  c) Viscosity   
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c) 

Figure 3.6 Continued 

 

 

 
a) 

Figure 3.7 Sample mean for brick a) Young’s modulus E  b) Deviatoric out-of-

roundness  c) Viscosity   
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b) 

 

 

 

c) 

Figure 3.7 Continued 
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a) 

 

 

 

b) 

Figure 3.8 Sample Std for brick a) Young’s modulus E  b) Deviatoric out-of-

roundness  c) Viscosity   
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c) 

Figure 3.8 Continued 

 

 

 
a) 

Figure 3.9 Frequency histogram for brick a) Young’s modulus E  b) Deviatoric out-

of-roundness  c) Viscosity   
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b) 

 

 

 

c) 

Figure 3.9 Continued 
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a) 

 

 

 

b) 

Figure 3.10 Empirical cumulative density function for brick a) Young’s modulus E  

b) Deviatoric out-of-roundness  c) Viscosity   
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c) 

Figure 3.10 Continued 

 

Table 3.1 Statistical Parameters for Mortar Young’s modulus E  Deviatoric out-of-

Roundness  and Viscosity   

Mortar ( )E psi    µ  

Mean 748427.905 0.530 0.0042 

Std 34294.613 0.00307 0.000315 

 

 

Table 3.2 Statistical Parameters for Brick Young’s modulus E  Deviatoric out-of-

Roundness  and Viscosity   

Brick ( )E psi    µ  

Mean 2917957.265 0.671 0.00981 

Std 80310.394 0.00850 0.000367 

 

 

According to the MCMC simulations, the realization of the model predictions can be 

constructed by sampling random parameter combinations after the burn-in point. In order to 
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estimate their mean and standard deviation and second moments (correlation structure) (see 

Table 3.1-2). Consequently, the probabilistic calibrations of the model parameters are 

assessing the confidence of the model prediction (see Figure 3.11 and 3.12).  

After the stationary condition of the parameters is grasped on the MCMC- MH, the 

first order statistics of model response is formulated from the statistical inferences of the 

parameters. The mean and standard deviation of the burn-in points plotted with respect to 

the axial stress for each data point for brick unit and mortar are shown in Figure 3.13 and 

3.14. The mean reveals a good fitting with the experimental observation. Also, the standard 

deviation of Young’s modulus E  mortar reflects the variability on the model predictions 

that start with a steep growth and a sudden drop at about strain equal to 0.0016 in which 

coincides approximately with strain equal to 0.0012 of the stress-strain curves while   and 

µ  gradually increase to reach the maximum values of standard deviation at 0.0035 in which 

did not match with strain of stress-stress curves. However, the brick unit shows that the 

parameters   and µ  gradually increase to reach the maximum values at about strain equal 

to 0.0035 in which coincides approximately with strain equal to 0.0035 of the stress-strain 

curves while the Young’s modulus E  is differentiate with maximum strain in which the 

value of maximum the standard deviation at about 0.0013 (see Figures 3.13 and 3.14). 
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a) 

 

 

 

b) 

Figure 3.11 Model realization for mortar a) Young’s modulus E  b) Deviatoric out-

of-roundness  c) Viscosity  (Blackard et al., 2007) 
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c) 

Figure 3.11 Continued 

 

 

 

a) 

Figure 3.12 Model realization for brick a) Young’s modulus E  b) Deviatoric out-of-

roundness  c) Viscosity  (Blackard et al., 2007) 
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b) 

 

 

 

c) 

Figure 3.12 Continued 
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a) 

 

 

 

b) 

Figure 3.13 Mean of model predictions E for mortar b) Mean of model predictions 

 for mortar c) Mean of model predictions  for mortar d) Standard deviations of 

model predictions E for mortar e) Standard deviations of model predictions  f) 

Standard deviations of model predictions  for mortar (Blackard et al., 2007) 
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c) 

 

 

 

d) 

Figure 3.13 Continued 
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e) 

 

 

 

f) 

 Figure 3.13 Continued 
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a) 

 

 

 

b) 

Figure 3.14 a) Mean of model predictions E for brick b) Mean of model predictions 

 for brick c) Mean of model predictions  for brick d) Standard deviations of 

model predictions E for brick e) Standard deviations of model predictions  f) 

Standard deviations of model predictions  for brick (Blackard et al., 2007) 
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c) 

 

 

 

d) 

Figure 3.14 Continued 
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e) 

 

 

 

f) 

Figure 3.14 Continued 
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3.2.2.2. Two-Parameters Calibration for Mortar and Brick Model 

The probabilistic calibration method introduced in the preceding sections is now 

applied for two parameters at the time for brick unit and mortar. A bimodal distribution with 

non-linear relationships is investigated for the parameters the Young’s modulus E with 

viscosity µ , and Young’s modulus E with deviatoric out-of-roundness  . These types of 

inferences are very engaging characteristics of the probabilistic calibration as compared to 

typical optimization approaches, which predict identify uncertainty associations with two 

parameters. The solution of the numerical was converging at 1e+5 in which the statistical 

inference can be obtained for the mortar (see Figure 3-15-3.17). However, the brick unit 

model converges faster in which was guaranteed at 5e+4, and the burn-in points started at 

50% to infer the statistical results (see Figure 3-18-3.20).  
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a) 

 

 

 

b) 

Figure 3.15 Sample Sequence for Mortar a) Young’s modulus E and deviatoric out-

of-roundness  b) Young’s modulus E and viscosity  
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a) 

 

 

 

b) 

Figure 3.16 Cumulative Mean for Mortar a) Young’s modulus E and deviatoric out-

of-roundness  b) Young’s modulus E and viscosity  
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b) 

 

 

 

b) 

Figure 3.17 Cumulative Std for Mortar a) Young’s modulus E and deviatoric out-of-

roundness  b) Young’s modulus E and viscosity  
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a) 

 

 

 

b) 

Figure 3.18 Sample Sequence for Brick a) Young’s modulus E and deviatoric out-of-

roundness  b) Young’s modulus E and viscosity  
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a) 

 

 

 

b) 

Figure 3.19 Cumulative Mean for Brick a) Young’s modulus E and deviatoric out-of-

roundness  b) Young’s modulus E and viscosity  
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a) 

 

 

 

b) 

Figure 3.20 Cumulative Std for Brick a) Young’s modulus E and deviatoric out-of-

roundness  b) Young’s modulus E and viscosity  
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The objective of the probabilistic calibration is to populate a joint probability 

distribution of the model parameters of interest for Young’s modulus E  with deviatoric 

out-of-Roundness   and Young’s modulus E  and viscosity µ . Figures 3-21 and 3.22 

show the joint relative frequency histograms (JRFH) of E with , and E with µ  that 

quantifies the marginal probability distributions of each parameter in order to estimate their 

mean and standard deviation and second moments (correlation structure) (see Table 3.3-4). 

These figures show bimodal distribution with non-linear relationships between parameters 

for instance, and   in which the higher values of Young’s modulus E , the higher values 

for deviatoric out-of-Roundness   increase. Frankly, the higher values of Young’s modulus

E , the viscosity µ  intents to decrease. The viscosity µ is controlling the softening part of 

the stress-strain curve while deviatoric out-of-Roundness  depends on hardening part of 

stress-strain curves. Consequently, the probabilistic calibrations of the model parameters are 

assessing the confidence of the model prediction in which can infer the statistical results. 

 

 

Table 3.3 Statistical Parameters for Mortar of Young’s modulus E and deviatoric 

out-of-roundness  b) Young’s modulus E and viscosity  

Mortar ( )E psi    ( )E psi  µ  
Mean 736440.483 0.536 729076.941 0.0041 

Std 33401.476 0.0023 33100.650 0.00032 

 

 

Table 3.4 Statistical Parameters for Brick of Young’s modulus E and deviatoric out-

of-roundness  b) Young’s modulus E and viscosity  

Brick ( )E psi    ( )E psi  µ  



 

86 

 

Table 3.4 Continued  

Mean 2893077.56 0.662 2875354.256 0.01029 

Std 121014.48 0.0152 127212.711 0.00063 

 

 

According to the MCMC simulations, the realization of the model predictions can be 

constructed by sampling random parameter combinations after the burn-in point (see Figure 

3.23 and 3.24). 

 

 

 

a) 

Figure 3.21 Joint relative frequency histograms (JRFH) of mortar a) Young’s 

modulus E and deviatoric out-of-roundness  b) Young’s modulus E and viscosity
  
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b) 

Figure 3.21 Continued  

 

 

 

a) 

Figure 3.22 Joint relative frequency histograms (JRFH) of brick a) Young’s modulus

E and deviatoric out-of-roundness  b) Young’s modulus E and viscosity  
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b) 

Figure 3.22 Continued  

 

 

 

a) 

Figure 3.23 Model realization of mortar a) Young’s modulus E and deviatoric out-of-

roundness  b) Young’s modulus E and viscosity (Blackard et al., 2007) 
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b) 

Figure 3.23 Continued 

 

 

 

a) 

Figure 3.24 Model realization of brick a) Young’s modulus E and deviatoric out-of-

roundness  b) Young’s modulus E and viscosity (Blackard et al., 2007) 
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b) 

Figure 3.24 Continued 

 

After the convergence condition of the parameters is reached on the MCMC- MH, 

the first order statistics of model response is formulated from the statistical inferences of the 

parameters. The mean and standard deviation of the burn-in points plotted with respect to 

the axial stress for each data point for mortar and brick unit are shown in Figure 3.25 and 

Figures 3.26, respectively. The mean shows a good fitting with the experimental observation 

compared to single parameters calibration in section 3.2.2.1. Also, the standard deviation 

reflects of E  with  and E  with 
µ

 for mortar the variability on the model predictions 

that start with a steep growth and a sudden drop at about strain equal to 0.0016 in which 

coincides approximately with strain equal to 0.0012 of the stress-strain curves. However for 

the brick unit the parameters of E  with  and E  with 
µ

 show that maximum strain of 
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the standard division curve did not match with in the stress-strain curve (see Figure 3.25 and 

2.26). 

Table 3.5-6 illustrates the statistical results of the mean and standard deviation for 

the individual constitutive CDP parameters of the brick for one parameter and two 

parameters calibrations. The results the uncertainty associated with two parameters 

calibration are reduced compared to one parameter calibration. Besides this, the result proves 

the existence of a unique range of material parameters that are closed with parameter values 

obtain from literatures. 

 

 

 

a) 

Figure 3.25. a) Mean of model predictions young’s modulus E and deviatoric out-of-

roundness  for mortar b) Mean of model predictions young’s modulus E and 

viscosity  for mortar c) Standard deviations of model predictions E with  for 

mortar d) Standard deviations of model predictions E with  for mortar (Blackard 

et al., 2007). 
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b) 

 

 

 

c) 

Figure 3.25 Continued 
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d) 

Figure 3.25 Continued 

 

 

 
a) 

Figure 3.26. a) Mean of model predictions young’s modulus E and deviatoric out-of-

roundness  for brick b) Mean of model predictions young’s modulus E and 

viscosity  for brick c) Standard deviations of model predictions E with  for brick 

d) Standard deviations of model predictions E with  for brick (Blackard et al., 

2007). 
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b) 

 

 

 

c) 

Figure 3.25 Continued 
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d) 

Figure 3.25 Continued 

 

Table 3.5 Statistical Results for One and Two Parameters for Mortar. 

 Two-parameters Calibration One-parameter Calibration 

Mortar ( )E psi    ( )E psi  µ
 ( )E psi    µ  

Mean 736440.483 0.536 729076.941 0.0041 748427.905 0.530 0.0042 

Std 33401.476 0.0023 33100.650 0.00032 34294.613 0.00307 0.000315 

 

 

 

Table 3.6 Statistical Results for One and Two Parameters for Brick. 

 Two-parameters Calibration One-parameter Calibration 

Brick ( )E psi    ( )E psi  µ
 ( )E psi    µ  

Mean 2893077.56 0.662 2875354.256 0.01029 2917957.265 0.671 0.00981 

Std 121014.48 0.0152 127212.711 0.00063 80310.394 0.00850 0.000367 
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3.3. Conclusion  

A Bayesian probabilistic calibration was conducted to investigate the effects of the 

uncertainty of concrete damage plasticity model parameters in URM walls. The main 

objective of this work was to identify the uncertainty and correlation structure of the model 

parameters, capturing the mechanical responses of brick and mortar in masonry walls. 

Furthermore, by assessing the model’s responses and related statistics, the model was 

validated in terms of its ability to capture the trend in mechanical response behavior for the 

brick unit and mortar. In addition, the CDP model presented higher flexibility for capturing 

nonlinear behavior throughout the time relaxation of the viscosity parameters µ and the 

hardening of deviatoric out-of-Roundness  with respect to the linear elastic response of 

the Young’s modulus E. The JRFH show ability to retrieve the correlation structure that is 

defining the degree of association between the parameter of interest and capture the true 

mechanical response. Consequently, the final results of the stress-strain behavior show a 

good agreement with the experimental observations. Further investigation should be based 

on the influence of masonry walls under different load combinations (e.g., wind load, seismic 

loading) to understand the overall response.  
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4. A NEURAL NETWORK OPTIMIZATION ALGORITHM FOR THE CALIBRATION 

OF MATERIAL PROPERTIES OF URM WALL PRISMS 

 

4.1. Introduction  

A Neural Network Optimization (NNO) algorithm is presented to calibrate the 

material constitutive parameters in masonry prisms for describing the mechanical response 

of the Unreinforced Masonry (URM) walls. The goal herein is to demonstrate that the 

optimal values of the material properties of conventional small-scale (prism) experiments 

can be directly used for validation of large-scale (wall) experiments, implying thus that the 

proposed inverse algorithm is sufficiently robust and efficient. The Concrete Damaged 

Plasticity (CDP) constitutive model in ABAQUS commercial finite element software is 

being used for the calibration of the material parameters. The optimal material parameters 

for the prism showed a good agreement between the experimental curve and the model 

prediction. The general procedure of the material parameter identification method and the 

numerical results are presented. The interface behavior is described by considering a 

Coulomb-type friction criterion on the mortar bed joints. 

Unreinforced masonry (URM) walls are structural elements, which generally show 

brittle and nonlinear inelastic mechanical response. Formulating constitutive models and 

calibrating material parameters in the constitutive models is essential in order to provide 

reliable predictions of the response of structures comprised of these materials. A concrete 

damage plasticity (CDP) constitutive model that describes both stages of plasticity modes 

and of damage behavior was used to analyze the mechanical response of masonry structures 

(Lee & Fenves, 1998; Jacob Lubliner, 1991; J Lubliner et al., 1989). The CDP model 
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includes eight material parameter ( ). ., , , ’ , , / , , ,b ce E f c f fi    ò ; however, among these, 

the four most sensitive parameters Young’s modulus E, viscosity, deviatoric out-of-

roundness κ, and dilation angle ψ ) were used for the prism calibration analysis, to 

demonstrate the applicability of the proposed Neural Network Optimization (NNO) 

methodology. The numerical implementation of the NNO requires an interface to establish 

communication between ABAQUS and MATLAB. Abaqus2Matlab (A2M) was used for 

this purpose, which allowed to run the NNO algorithms developed in MATLAB 

(Papazafeiropoulos et al., 2017).  

Extensive laboratory tests have been carried out in the past decades at the University 

of Illinois-Urbana-Champaign to evaluate the behavior of masonry structures (Abrams & 

Shah, 1992; Epperson & Abrams, 1990; Xu & Abrams, 1992). On the other hand, many 

studies have used various constitutive models that have been formulated for masonry walls 

and their constituents. Representative studies have been presented and developed for 

concrete constitutive models such as concrete damage plasticity CDP and smeared crack 

model and validated their material parameters through experimental tests (Gambarotta & 

Lagomarsino, 1997; Grassl & Jirásek, 2006; Lee & Fenves, 1998; Lotfi & Shing, 1991; 

Jacob Lubliner, 1991; J Lubliner et al., 1989; Sarhosis & Sheng, 2014), et al.  

To minimize errors between the observation-based datasets and model parameters, 

inverse methods have been applied to identify and characterize the material properties in the 

constitutive models (Carmeliet, 1999; Chisari, 2015, 2019; Chisari et al., 2015; Chisari et 

al., 2018; Fadale et al., 1995; Muñoz-Rojas et al., 2010; Nazari & Sanjayan, 2015; Rechea 

et al., 2008; Sarhosis & Sheng, 2014; V. V. Toropov & van der Giessen, 1993). Several 

studies have discussed a wide variety of material parameters calibrated from experimental 
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data and provided typical ranges for the different parameters, e.g., the dilatancy angle ( )  

(0-36), biaxial strength ratio ( )/b cf f  (1.10-1.16) and deviatoric plane in the yield surfaces 

( ) , (0.5-1) (Jankowiak & Lodygowski, 2005; Kmiecik & Kamiński, 2011; J Lubliner et al., 

1989). In this paper, the objective function was applied using the least-squares technique 

which minimizes the sum of the squares of the differences between experiment-based 

measurements and the calculated response of the model (Levenberg, 1944; Marquardt, 

1963). 

In this chapter, calibration of the material properties of the Abaqus CDP model with 

reference to an experimental stress – strain curve is performed. The experimental stress – 

strain curve is obtained from a uniaxial compression test of a wall prism. The material 

properties that correspond to the optimum fit between the numerical and experimental curves 

are found using a novel NNO algorithm.  

4.2. Description of the Prism Model  

The model is comprised of 5 bricks and 4 layers of mortar between the former. The 

cross-section dimensions of the prism are 3.75” x 8” x 12.65” and the mortar thickness 

between the bricks is 0.375” (Epperson & Abrams, 1990). The prism is fixed at its bottom 

and at the top a uniform displacement is imposed. The ABAQUS model of the prism is 

discretized in 530 3D solid elements (C3D8R), defined by 1073 nodes (see Figure 4.1). The 

constitutive behavior of both the bricks and the mortar is defined by the CDP model, the 

parameters of which are the design variables of the NNO problem. The Poisson ratio of the 

brick is equal to 0.1 whereas the Poisson ratio of the mortar is 0.2. In addition, the flow 

potential eccentricity ( )ò is equal to 0.1 for both the bricks and the mortar layers, and the 
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ratio of initial equibiaxial compressive yield stress to initial uniaxial compressive yield stress 

( )/b cf f  is set equal to 1.16 for both the brick and mortar materials. The bricks and the 

mortar layers are considered to be tied across their interfaces. A static analysis is performed 

to obtain the response of the prism due to the imposed displacement. An appropriate mesh 

sensitivity analysis has been performed in order to ensure that the mesh refinement does not 

affect significantly the final results. 

 

 

 

Figure 4.1 3D FE prism model (Epperson & Abrams, 1990) 

 

 

More specifically, there are 8 design variables in this optimization problem:  

• The moduli of elasticity ( ),C M   of the brick and the mortar respectively 

• The dilation angles in the p–q plane of the brick and the mortar ( ),C M    

• The ratios of the second stress invariant on the tensile meridian to that on the 

compressive meridian of the brick and the mortar ( ),C M    
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• The viscosity parameters 𝝁 of the brick and the mortar ( ),C M   

• The upper and lower limits are set for the design variables based on the literature and 

are shown in Table 4.1. 

 

 

Table 4.1 Description and Bounds of The Design Variables Considered for Fitting the 

Experimental Stress Strain Curve Of The Prism. 

Design 

variable 
Description 

Lower 

bound 

Upper 

bound 

C  Modulus of elasticity of the brick 

material 
800000 4000000 

C  Dilation angle in the p–q plane of the 

brick material 
0.1 36 

C  

Ratio of the second stress invariant on 

the tensile meridian to that on the 

compressive meridian for the brick 

material 

0.51 1 

C  Viscosity parameter of the brick 

material 
0.0001 0.1 

M  Modulus of elasticity of the mortar 100000 900000 

M  
Dilation angle in the p–q plane of the 

mortar 
0.1 36 

M  

Ratio of the second stress invariant on 

the tensile meridian to that on the 

compressive meridian for the mortar 

0.51 1 

M  Viscosity parameter of the mortar 0.0001 0.1 

 

 

4.3. Proposed Method for Material Parameter Identification 

The NNO algorithm that has been used for the optimization process employs a novel 

technique that combines inverse analysis and neural network optimization. The essential 

steps are illustrated in the flowchart presented in Figure 4.2. 
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4.3.1. General 

The constitutive properties of the ABAQUS Concrete Damaged Plasticity (CDP) 

model were calibrated so that the numerical stress-strain curve (SSnum) fits the 

corresponding experimental curve (SSexp). This is done through the implementation of an 

inverse analysis, whereby an optimization procedure is implemented which minimizes the 

least square error between the numerical and experimental data. ABAQUS Simulia (2016) 

was used for purposes of Finite Element (FE) simulation and MATLAB (2016) was used for 

the implementation of the optimization procedure. MATLAB was appropriately coupled 

with ABAQUS by using Abaqus2Matlab (Papazafeiropoulos et al., 2017), a novel software 

that can transfer model data and results between ABAQUS with MATLAB and vice versa, 

leading thus in a user-friendly integrated simulation and programming environment.  

4.3.2. Initial Sets of Values Assigned to the Design Variables 

Initially, a set of initial values is assigned to the design variables, let’s say M sets of 

values for the design variables. The values of the design variables can be selected randomly, 

or according to a given distribution which can be different among the various design 

variables. Each one of the M design variable combinations corresponds to a single ABAQUS 

simulation case. The initial sets of design variable values should be chosen so that they span 

a range which is large enough, so that it includes the optimal solution. Generally, the more 

initial points that are specified, the higher the performance of the neural network. However, 

care should be taken so that the number of initial points is neither too small nor too large 

with respect to the capacity of the neural network. In the first case of low number of training 

data, the Artificial Neural Network (ANN) could learn the initial data too “well” and over 

fit the initial dataset, which prevents the ANN from performing well on new training data 
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that are generated as the neural optimization algorithm proceeds. The opposite happens in 

the case of under fitting, i.e. when the ANN has capacity too high to learn from the initial 

training data. In this case, the ANN cannot learn neither from the initial training data, nor 

from the new training data generated during the neural optimization procedure. As a result, 

there is an optimum size of the initial training data that needs to be considered, to avoid both 

of the above negative situations. Currently, there is not any standard methodology of 

selecting the initial data size; this depends on the nature of the algorithm, the ABAQUS 

model(s) involved and also the hyperparameters of the ANN and the optimizer function. 
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Figure 4.2 General flowchart of the neural network optimization algorithm used in 

this study. 
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4.3.3. Calculation of Initial Stress Strain Curves 

The M ABAQUS models that correspond to the M design variable value 

combinations generated in the previous step are analyzed using the ABAQUS software, the 

stress – strain curve of the prism model is obtained using Abaqus2Matlab after the ABAQUS 

analysis terminates, and is stored in an array so that after the loop finishes, all stress-strain 

curves of the various cases are accessible. During this step, the ABAQUS capabilities are 

exploited, a practice which eliminates the difficulty of developing the FE simulation method 

of the model analyzed in MATLAB.  

The stress strain curve is obtained in Abaqus2Matlab by reading the stresses at the 

upper surface of the prism and summing them appropriately to obtain the stress averaged 

over the loading area. The strain is obtained by reading the imposed displacement at the 

upper surface of the prism, and then dividing it by the prism length. Furthermore, the 

computations are efficiently carried out by using a for loop which scans all the M sets of the 

initial design variable values by taking advantage of Abaqus2Matlab capabilities to read and 

modify ABAQUS input files automatically. 

4.3.4. Discretization of Stress-Strain Curves 

The stress – strain curves that are extracted from the ABAQUS simulations are 

further discretized in a larger number of points via linear interpolation and extrapolation, in 

order to render the calculation of the error between the numerical and experimental curves 

more accurate. These data points are generated from the lower and upper bounds of the 

material parameters to simulate the stress-strain curves of the masonry prism. This operation, 

apart from making the estimation of the error more accurate, it can enable the application of 

weighting factors that depend on strain values that are specified a priori. For example, if for 
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some reason emphasis is placed on the error between the experimental and numerical stress 

strain curves in their elastic branch, then this part of the curve should be highly discretized 

and/or appropriately weighted.  

4.3.5. Training of the ANN 

The ANN is set up and trained with the initial data. The training function that is 

specified for the ANN is Bayesian Regularization (‘trainbr’). This function uses the 

Levenberg-Marquardt optimization algorithm to update the weight and bias values of the 

ANN, and then determines a combination of squared errors and weights so as to produce a 

network that generalizes well. MATLAB’s ‘trainbr’ function can train any network as long 

as its weight, net input, and transfer functions have derivative functions.  

The procedure of neural network training can be viewed as a function optimization 

problem, where the weights and biases are considered as design variables and the network 

error is considered as the objective function to be minimized. The neural network can be 

considered as an arbitrary function of the input vector x  and the weights of the network w  

as follows: 

 ( ), =F x w y
 (9) 

where y  is the corresponding output vector approximated or predicted by the network. The 

Levenberg-Marquardt algorithm approximates the function F  by solving in each iteration 

the equation: 

 ( )+ =T TJ J I J E 
 (10) 

where: 



 

111 

 

• J is the Jacobian 
tn  – by –

wn  matrix, where 
tn  is the number of entries in the 

training set and 
wn  is the number of number of the design variables (weights and 

biases), containing all the first-order partial derivatives of F  with respect to w  (

J F w=    ). 

•  is the damping factor which is adjusted at each iteration according to the 

convergence rate of the optimization process. If the reduction in the error is rapid, 

then   can be reduced, which gradually makes the algorithm behave in a way 

similar to that of Gauss-Newton algorithm. In the opposite case of insufficient 

reduction in the residual, then   can be increased, which makes the algorithm 

resemble to the gradient descent algorithm. 

• E is the error vector containing the residual for each input vector that is used for 

training the network. 

•  is the update of the weights. 

Bayesian regularization minimizes a linear combination of squared errors and 

weights (cost function), mainly to overcome the problem in interpolating noisy data (Foresee 

& Hagan, 1997; MacKay, 1992). Two Bayesian hyperparameters   and   are used in the 

cost function, which determine the direction that the learning process must seek, in order not 

only to minimize the errors, but the weights as well. These parameters are updated after each 

training cycle. The cost function is given by the following equation: 

 = +e wC E E   (11) 

where 
eE  is the sum of squared errors and 

wE  is the sum of squared weights. The Bayesian 

parameters are updated using MacKay’s formulae as follows: 
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( )1

wn tr H  − = − 
 

 
(12) 
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= t
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n
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

 (13) 

2
=

wE




 (14) 

Typically, the flowchart of the Levenberg-Marquardt algorithm expanded with 

Bayesian regularization is similar to that shown in Figure 4.3.  

 

 

 

 

Figure 4.3 Flowchart of the Levenberg-Marquardt algorithm expanded with 

Bayesian regularization. 

1. Compute the jacobian  =  J F w

2. Compute the error gradient
Tg J E=

3. Compute the Hessian approximation = TH J J

4. Compute the cost function  = +e wC E E 

5. Solve                                    to find  ( )+ =T TJ J I J E  

6. Update the network weights: = +w w 

7. Calculate the cost function using the updated weights

8. If the cost has not decreased

8.1. Discard the new weights, increase      and go to step 5

9. Else decrease 

10. Update the Bayesian parameters
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The ANN has three hidden layers, each of which has size 10. One of the objectives 

of the proposed NNO algorithm is that it should approach the optimum solution by using a 

minimum amount of training data, which saves ABAQUS simulation time. To achieve this 

goal, the target data are fully exploited to train the ANN and no target data are used for either 

its validation or testing. The maximum number of epochs of the ANN training process is 

specified equal to 50.  

4.3.6. Optimization Procedure  

An optimization procedure is carried out in order to minimize the error between the 

experimental and the numerical stress – strain curve,
ANNf , subject to the following 

constraints: 
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(15) 

The objective function 
ANNf  is a function that accepts any set of design variable 

values (input data of the ANN) and gives as output the error (output data of the ANN). It is 

important to note here that as the algorithm proceeds, the training data increases, the trained 

ANN becomes “better”, and the objective function that is based on this ANN becomes better 

as well. This means that the objective function changes continuously as the algorithm 

proceeds. Consequently, the optimum values of the design variables and the objective value 

change as well (see Figure 4.4).  
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Figure 4.4 Evolution of the objective function during the NNO process. 

 

 

The gradient-based interior point algorithm (IPA) approach is used for the solution 

of the optimization problem (Byrd, Gilbert, & Nocedal, 2000; Byrd, Hribar, & Nocedal, 

1999; Waltz, Morales, Nocedal, & Orban, 2006). According to this algorithm, the original 

inequality-constrained minimization problem is stated as follows: 

 ( ) min ANN
X

f X
Subject to 

( )
0

0

−   
=    

−   

LB X
g X

X UB
 

(16) 

where X  is a vector containing the 8 design variables and LB , UB are also vectors containing 

the lower and upper bounds of the design variables respectively. Eq. (16) is solved as a 

sequence of the following approximate equality-constrained minimization problems for 

>0: 

( )  ( )  ( )
, ,

min , min ln= − ANN A
X s X

NN i

i
s

f X s f sX 

 Subject to 
( ) 0+ =g X s

 (17) 
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There are two slack variables ( 0is  ) for each inequality and each design variable, 

namely the optimization problem at hand has 16 slack variables. For two stiffeners there will 

be a total of 4 slack variables. As   decreases to zero, the minimum of [
ANNf ,  ] and the 

minimum of 
ANNf  should coincide. 

To solve the approximate problem, the algorithm uses one of the following two main 

types of steps at each iteration: 

N Step. A direct (Newton) step in ( ),X s . This step attempts to solve the Karush-

Kuhn-Tucker (KKT) equations (Karush, 1939; Kuhn & Tucker, 1951) for the approximate 

problem using a linearized Lagrangian as follows: 

 

0

0

b

T T

g g

g

H J X k J

S S s S e

J S I g s



 



    − − 
    

 −  = − −    
    − − +      

(18) 

where H  is the Hessian of the Lagrangian of the approximate equality-constrained 

minimization problem, calculated according to the BFGS formula (Broyden, 1970; Fletcher, 

1970; Goldfarb, 1970; Shanno, 1970), 
gJ  is the Jacobian of the inequality-constraint 

function ( )g X , S  is a diagonal matrix with entries 
is ,   denotes the Lagrange 

multiplier vector associated with constraints ( )g X ,   is a diagonal matrix with entries 

i , and e  is a vector of ones the same size as ( )g X . Eq. (10) defines the direct step

( ),X s  : 

CG Step. A CG (Conjugate Gradient) step, using a trust region. The conjugate 

gradient approach to solve the approximate problem, Eq. (17) adjusts both X  and s , 
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keeping the slacks s  positive. The algorithm obtains Lagrange multipliers by approximately 

solving the KKT equations: 

 ( ) 0X X i ib

i

L Xk g = − +  =
 (19) 

subject to 0  . The following quadratic approximation to eq. (9) is minimized in 

a trust region of radius R : 

 
2 1 1

,

1 1
min

2 2
b

T T T T

XX
X s

X X L Xk e S s s S s − −

 

 
−  +    +  +   
   

(20) 

subject to the linearized constraints: 

 ( ) 0gg X J X s+  + =
 (21) 

From Eq. (24) the step ( ),X s   is obtained. 

By default, the algorithm first attempts to take a direct N step. If it cannot, it attempts 

a CG step. The algorithm takes a CG step either if the approximate problem is not locally 

convex near the current iterate, or if the Hessian is not positive definite at the current 

iteration. 

For the first iteration, the initial guess that is supplied to the optimization function 

corresponds to the best case (i.e. that has the minimum error) among the initial design 

variable value combinations. For subsequent iterations the initial guess corresponds to the 

optimum values that have been obtained in the last iteration of the NNO algorithm.  

4.3.7. Evaluation of Stress Strain Curves of the Optimal Points 

An ABAQUS analysis is performed in which the material constitutive properties of 

the prism model are set equal to the optimum solution obtained in the optimization procedure 

that is described in section 4.2.3.5 From the ABAQUS analysis the stress – strain curve is 
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obtained in the same way as outlined in section4.2.3.2 At this step it is checked if any one 

of the termination conditions is satisfied. Two termination conditions have been included in 

the neural optimization algorithm: 

 maxj Iter  (22) 

 err tol  (23) 

If any of these two conditions is satisfied, the algorithm terminates and returns as 

output the best design that is achieved so far (i.e. the design that corresponds to minimum 

error). If no one of the above conditions is satisfied, the last optimum solution is treated as 

an additional input – output training data and is added into the pool of the initial training 

data. The procedure continues to step 4.2.3.4 where the ANN is re-trained based on the 

enriched training data. 

4.4. Calibration results 

The stress strain curve is showing a good fitting with experimental observations (see 

Figure 4.5). The deterministic optimal parameters of the masonry prism implemented in the 

numerical simulations of walls are summarized in Table 4.2.  

 

 

Table 4.2 Optimal Parameters for Prism. 

Mortar Test E (psi) ψ κ  

NNO 

algorithm 
647361.223 27.1953 0.9894 0.010221 

Brick Test E (psi) ψ κ  

NNO 

algorithm 
424382.869 35.3803 0.5025 0.099214 
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Figure 4.5 Stress-strain experimental Observation Vs FE model prediction(Epperson 

& Abrams, 1990). 

 

 

4.5. Conclusion 

A novel Neural Network Optimization (NNO) algorithm has been proposed for the 

calibration of the material properties of URM walls based on experimental stress – strain 

curves taken from compression tests of a wall prism. It is shown that the proposed NNO 

algorithm is sufficiently robust and accurate for calibration of constitutive material 

properties based on experimental data. In addition, an appealing characteristic of the NNO 

is its ability to fit numerical model with minimal computational effort. Consequently, the 

concrete damaged plasticity (CDP) showed high flexibility to fit the experimental 

observation as well as all parameters verified within a proper range. 
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5. EVALUATION OF THE EFFECT OF THE HETEROGENEITY OF THE PRISM ON 

ITS STRESS STRAIN RESPONSE USING THE NEURAL NETWORK 

OPTIMIZATION ALGORITHM.  

 

5.1. Introduction  

This study examines the influence of a constitutive model and its parameters on the 

predictions of the stress-strain relationship with the correlated random variable field. The 

prism model simulation in ABAQUS involves constitutive model parameters that are 

optimized to validate ABAQUS URM models against laboratory experiments. The validated 

model was used as a baseline to generate four individual simulations, where each simulation 

examined the heterogeneity of different material parameter combinations. The concrete 

damage plasticity (CDP) constitutive model consisting of plasticity modes and damage 

indices was used to analyze the mechanical response of masonry prism (J Lubliner et al., 

1989). Abaqus2Matlab was used as an interface platform for linking ABAQUS and 

MATLAB, which was used for deterministic calculation of material parameters by using 

random variables (Papazafeiropoulos et al., 2017). It is well known that the response of 

masonry walls (and consequently of the prism) is highly nonlinear, which is attributed to the 

material nonlinearities inherent to the bricks and the mortar, microstructural topology, and 

interfacial responses between the various structural components of the masonry wall (bricks, 

mortar, etc.). Therefore, it is expected that the FEA of masonry walls is generally 

computationally demanding. Given this fact, and also taking into account the relatively large 

number of simulations that are required for performing an optimization procedure, it is 

generally attempted to minimize the required number of simulations for reaching the 
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optimum fit between model and experiment, so that the computational effort and running 

time are minimized. The suitability of an optimization algorithm for addressing the 

aforementioned issues usually depends on the model that is analyzed. In the case of the URM 

walls considered in this thesis, a novel Neural Network Optimization (NNO) algorithm is 

being presented to calibrate the material parameters of a masonry prism. The Neural 

Network that is incorporated in this algorithm is expected to accelerate the optimization 

procedure through the more effective use of the optimization history (i.e. the history of the 

unsuccessful points from which the algorithm has passed so far), which is used for training 

an Artificial Neural Network (ANN). This in turn gives better directions for the algorithm 

to proceed, compared to the gradient information alone. The masonry prism that is 

considered for calibration has been tested by Blackard et al. (2007). Esmailzadeh, Medina-

Cetina, Kang, and Kallivokas (2015) introduce a methodology to infer the spatial variation 

of model parameters and their corresponding mechanical characteristics by using random 

variables. Another study introduces by Medina-Cetina, Kang, Esmailzadeh, and Kallivokas 

(2013) to investigate the spatial correlation across the parameters using Bayesian inversion 

of 1D heterogeneity media. In this study, correlation between four parameters of CDP model 

). ., ,( , ,i e E     are being investigated using as random variable throughout a masonry prism 

in which consist of five brick units and four mortar layers. 

5.2. Calibration of Masonry Prism 

5.2.1. Model Description  

The model consists of 5 bricks and 4 layers of mortar between the brick units. The 

cross-section dimensions of the prism are 3.75” x 4.5” x 12.75” and the mortar thickness 

between the bricks is 0.375” (Blackard et al., 2007). The prism is fixed on its bottom and on 



 

124 

 

the top surface a uniform displacement is imposed. The ABAQUS model of the prism is 

discretized in 5120 3D solid elements (C3D8R), defined by 7337 nodes (see Figure 5.1). 

The model parameters of each brick unit and mortar layers have been defined using the CDP 

model. The optimal parameters of individual components (brick and mortar) obtained in 

Table 2.2 of Chapter II are used as initial guess to validate the stress-strain relationship 

against the experiment tests. According to the parametric sensitivity analysis that was 

conducted in chapter 2, the parameters ). ., ,( , ,i e E     seem to be more sensitive compared 

to other parameters ( ). ., , / ,b ci e f f ò . Therefore, the Poisson ratio of the brick is taken as 0.1 

whereas the Poisson ratio of the mortar is 0.2 which remain constant during the simulation 

as well as the flow potential eccentricity ( )ò  and the ratio of initial equibiaxial compressive 

yield stress to initial uniaxial compressive yield stress ( )/b cf f  are equal to 0.1 and 1.16 for 

both the bricks and the mortar layers, respectively. The interface elements between the bricks 

and the mortar layers are considered to be tied across the intact area. A static analysis has 

been performed to obtain the response of the prism under vertical imposed load-

displacement. An appropriate mesh sensitivity analysis has been performed in order to 

ensure that the mesh refinement provides sufficiently accurate results. 

5.2.2. Material Parameters Identification 

The constitutive parameters that were considered in this study for the brick and the 

mortar materials have been designated as the parameters with the highest influence on the 

stress –strain response according to the sensitivity study that has been carried out in Chapter 

2.  
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Figure 5.1. 3D Model Prism (Blackard et al., 2007) 

 

 

Therefore, there are four material parameters for each brick layer and mortar layer that will 

be investigated using random variables in which the dilation angle has been found sensitive 

when two parameters are varying randomly. The purpose of this study is to examine the 

influence of material heterogeneity on these eight parameters that can be randomly varying 

in a masonry prism. More specifically, there are 8 design variables in this optimization in 

CDP model namely the moduli of elasticity ( ),C M   of the brick and the mortar 

respectively, the dilation angles in the p–q plane of the brick and the mortar ( ),C M  , the 

ratios of the second stress invariant on the tensile meridian to that on the compressive 

meridian of the brick and the mortar ( ),C M  , and the viscosity parameters   of the brick  
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Table 5.1 Description and Bounds of the Design Variables of the Prism 

Design 

variable 
Description 

Lower 

bound 

Upper 

bound 

C  Modulus of elasticity of the brick 

material 
100000 5000000 

C  Dilation angle in the p–q plane of the 

brick material 
0.1 36 

C  

Ratio of the second stress invariant on 

the tensile meridian to that on the 

compressive meridian for the brick 

material 

0.51 1 

C  Viscosity parameter of the brick 

material 
0.0001 0.1 

M  Modulus of elasticity of the mortar 100000 900000 

M  Dilation angle in the p–q plane of the 

mortar 
0.1 36 

M  
Ratio of the second stress invariant on 

the tensile meridian to that on the 

compressive meridian for the mortar 

0.51 1 

M  Viscosity parameter of the mortar 0.0001 0.1 

 

 

and the mortar ( ),C M  . The upper and lower limits are set for the design variables based 

on the available experimental results in literature and are shown in Table 5.1.  

More specifically, there are 4 cases of the prism model which will be assigned a 

combination of material parameters as random variables in order to investigate the effect of 

material heterogeneity in five brick units and four mortar layers:  

• 8 random variables (8RV): Four parameters assigned as dependent random 

variables for five brick units as well as for four mortar layers in which the prism will 

consist of eight design variables for all bricks and mortar layers

1 11 1 1 , 1 1 1( . ., , , , , ), ,C C C C M M MMe g        . 
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• 16 random variables (16RV): sixteen parameters assigned as independent 

random variables for four mortar layers only in which the prism consists of sixteen 

design variables varying independently for only mortar layers (e.g., 

( . ., , , ),MMq Mq qq Me g     , where q starts from 1 to 4. The parameters in the brick 

units are fixed (see Table 4.2). 

• 20 random variables (20RV): twenty parameters assigned as independent 

random variables for five brick units only in which the prism consists of twenty 

design variables varying independently for only brick units ( . ., , , ),CCn Cn nn Ce g     

where n starts from 1 to 4. The parameters in the mortal layers are fixed (see Table 

4.2). 

• 36 random variables (36RV): thirty six parameters assigned as independent 

random variables for five brick units and four mortar layers in which the prism 

consists of thirty six design variables varying independently for both brick units and 

mortar layers (e.g., 
11 1 1, , ...... , , ,,C C C Cn Cn CnC Cn       ) and (e.g., 

11 1 1, , ...... , , ,,M M M Mq Mq MqM Mq       ) where n starts from 1 to 4 and q is from 1 to 

4, respectively ( see Table 5.3). 

5.2.3. Neural Optimization Algorithm 

In this thesis a new algorithm has been used for the calibration of the material 

properties, which combines neural network and optimization techniques. More specifically, 

it involves a Neural Network and an interior point optimization algorithm, both of them 

implemented in MATLAB programming language. In Figure 5.2 the flowchart of the 

calculation procedure is shown. The main steps of the algorithm are described below: 
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Table 5.2 Fixed Material Parameters for the Prism 

Fixed All Brick Parameters & 

All Mortar Parameters 

 Brick1 Mortar1 Brick2 Mortar2 Brick3 Mortar3 Brick4 Mortar4 Brick5 

E 2.89E+06 7.36E+05 2.89E+06 7.36E+05 2.89E+06 7.36E+05 2.89E+06 7.36E+05 2.89E+06 

Ψ 19.69E+00 18.81E+00 19.69E+00 18.81E+00 19.69E+00 18.81E+00 19.69E+00 18.81E+00 19.69E+00 

Κ 0.662 0.536 0.662 0.536 0.662 0.536 0.662 0.536 0.662 

µ 0.01029 0.0041 0.01029 0.0041 0.01029 0.0041 0.01029 0.0041 0.01029 

 

 

• Step 1: Initial sets of values assigned to the constitutive parameters 

An initial set of values (initial points) are generated for the unknown constitutive parameters 

of the material in question. The initial points can be specified at random or according to a 

specified distribution. Each combination of these values of the constitutive properties 

corresponds to an ABAQUS simulation. It has to be noted that the selection of the initial 

points must span an adequately large interval, ensuring that the optimum values of the 

constitutive properties lie within this interval. The number of the initial points must lie within 

acceptable limits, namely it must not be too low or too high with respect to the capacity of 

the neural network. Generally, as this number increases, the performance of the ANN 

increases as well. However, large size of training data can lead to overfitting in premature 

stages of the optimization process which prevents the ANN from performing well on new 

training data that are generated as the neural optimization algorithm proceeds. 
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Table 5.3 Illustrate the Material Parameters Distribution of Random Variables for 

the Prism 

Prism 
Brick & 

Mortar 

Mortar 

Layers 
Brick Units 

All 

Parameters 

Brick1 

E1 2.89E+06 E1 E1 

Ψ1 19.69E+00 Ψ1 Ψ1 

Κ1 0.662 Κ1 Κ1 

µ1 0.01029 µ1 µ1 

Mortar1 

E2 E1 7.36E+05 E2 

Ψ2 Ψ1 18.81E+00 Ψ2 

Κ2 Κ1 0.536 Κ2 

µ2 µ1 0.0041 µ2 

Brick2 

E1 2.89E+06 E2 E3 

Ψ1 19.69E+00 Ψ2 Ψ3 

Κ1 0.662 Κ2 Κ3 

µ1 0.01029 µ2 µ3 

Mortar2 

E2 E2 7.36E+05 E4 

Ψ2 Ψ2 18.81E+00 Ψ4 

Κ2 Κ2 0.536 Κ4 

µ2 µ2 0.0041 µ4 

Brick3 

E1 2.89E+06 E3 E5 

Ψ1 19.69E+00 Ψ3 Ψ5 

Κ1 0.662 Κ3 Κ5 

µ1 0.01029 µ3 µ5 

Mortar3 

E2 E3 7.36E+05 E6 

Ψ2 Ψ3 18.81E+00 Ψ6 

Κ2 Κ3 0.536 Κ6 

µ2 µ3 0.0041 µ6 

Brick4 

E1 2.89E+06 E4 E7 

Ψ1 19.69E+00 Ψ4 Ψ7 

Κ1 0.662 Κ4 Κ7 

µ1 0.01029 µ4 µ7 

Mortar4 

E2 E4 7.36E+05 E8 

Ψ2 Ψ4 18.81E+00 Ψ8 

Κ2 Κ4 0.536 Κ8 

µ2 µ4 0.0041 µ8 

Brick5 

E1 2.89E+06 E5 E9 

Ψ1 19.69E+00 Ψ5 Ψ9 

Κ1 0.662 Κ5 Κ9 

µ1 0.01029 µ5 µ9 

R.V 8 16 20 36 
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In addition, when the training data is too low with respect to the ANN’s capacity, the 

performance of the latter deteriorates, losing its ability to evaluate the objective value 

correctly. The selection of the size of the initial data depends on the nature of the algorithm, 

the ABAQUS model(s) involved and also the hyperparameters of the ANN and the optimizer 

function. 

• Step 2: Calculation of initial stress strain curves 

The ABAQUS simulation cases that correspond to the initial training data are 

executed and then post-processed by Abaqus2Matlab (Papazafeiropoulos et al., 2017)in 

order to calculate the corresponding stress – strain curves for the various values of the 

constitutive parameters. Hence, the ABAQUS capabilities are exploited, eliminating the 

need for MATLAB code development in order to carry out the FE analysis.  

• Step 3: Discretization of stress strain curves 

The stress – strain curves that are calculated in the previous step are discretized in an 

increased number of strain values, in order to calculate the error between the numerical and 

experimental curves more accurately. This discretization is made through linear 

interpolation and extrapolation. Another advantage of this operation is that weighting factors 

can be imposed in selected values of strains. For example, if for some reason emphasis is 

placed on the error between the experimental and numerical stress strain curves in their 

elastic branch, then this part of the curve should be highly discretized and scaled with 

increased weighting factors.  

• Step 4: Training of the ANN 

The ANN is set up and trained with the initial data. The training function that is 

specified for the ANN is Bayesian Regularization (‘trainbr’). In this function the Levenberg-
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Marquardt optimization algorithm is used to update the weight and bias values of the ANN, 

minimizing a linear combination of squared errors and weights so as to overcome the 

problem in interpolating noisy data(Foresee & Hagan, 1997; MacKay, 1992) and thus allow 

for proper generalization of the ANN. MATLAB’s ‘trainbr’ function can train any network 

as long as its weight, net input, and transfer functions are differentiable. The ANN has three 

hidden layers, each of which has size 10. The maximum number of epochs of the ANN 

training process is specified equal to 50.  

• Step 5: Optimization procedure 

In each repetition of the main loop of the NNO algorithm an optimization procedure 

is carried out in order to minimize the error between the experimental and the numerical 

stress – strain curves,
ANNf , subject to the constraints shown in eq. (24) below. It is noted that 

the values of the lower and upper limits of these constraints are specified so that a realistic 

formulation of the involved constitutive models is ensured. For the selection of these values 

the data collection that is presented in Chapter 2 was used. 
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Figure 5.2. General flowchart of the neural network optimization algorithm used in 

this study. 

 

 

The objective function 
ANNf  is a function that accepts any set of constitutive material 

parameter values (input data of the ANN) and gives the error between simulation and 

Read the experimental stress-strain curve 

Define combinations of the 8 design variables independently

for from 1 to 

• Simulate in ABAQUS the wall prism test corresponding to parameters 

• Read stress-strain curve with Abaqus2Matlab and store it in array 

end

Refine the stress-strain curves and by adding extra strain points and 

interpolation to increase accuracy.

Initialize , and with 

Train an Artificial Neural Network (ANN), , as follows:

• Training function: Bayesian regularization

• Input training data:  

• Output training data:  

Find optimum values by constrained nonlinear optimization as follows:

• Optimization algorithm: Interior point

• Objective function: the ANN , (see previous step)

• Initial guess: for random selection from . For select . 

• Constraints: 

Simulate in ABAQUS the wall prism test corresponding to parameters 

Read stress-strain curve with Abaqus2Matlab and add it in the array 

YES

END

NO

Neural Network Optimization (NNO) Algorithm
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experiment as output (output data of the ANN). The same job is done from the ANN which 

is continuously trained as the number of the available ABAQUS simulation data increases. 

Therefore, the main idea here is to use the ANN as the objective function of the optimization 

process. As the algorithm proceeds, the size of the training data increases and consequently 

the ANN becomes “better”. This means that as the NNO algorithm proceeds, the quality of 

the objective function increases as well. Thus, the optimum values of the constitutive 

parameters and the objective value change as well (see Figure 5.3). 

 

 

 

Figure 5.3. Evolution of the objective function during the NNO process 

 

 

The gradient-based interior point algorithm (IPA) approach is used for the solution 

of the optimization problem ((Byrd et al., 2000; Byrd et al., 1999; Waltz et al., 2006). 
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According to this algorithm, the original inequality-constrained minimization problem is 

stated as follows: 

 ( ) min ANN
X

f X
Subject to 

( )
0

0

−   
=    

−   

LB X
g X

X UB
 

(25) 

where X  is a vector containing the 8 constitutive parameters and LB , UB are also vectors 

containing the lower and upper bounds of the constitutive parameters respectively. The 

algorithm attempts to take a direct Newton step in each iteration, or, if this is impossible, it 

attempts a CG step. For the first iteration, the initial guess that is supplied to the optimization 

function corresponds to the best case (i.e. that has the minimum error) among the initial 

constitutive parameter value combinations. For subsequent iterations the initial guess 

corresponds to the optimum values that have been obtained in the last iteration of the NNO 

algorithm.  

• Step 6: Evaluation of the stress strain curve of the optimal point 

After the optimization algorithm of each repetition of the main loop completes, an 

ABAQUS analysis that corresponds to the optimum values is performed and the stress – 

strain curve is obtained, in a way similar to that described in steps 2 & 3 above. After this, 

it is checked if any one of the termination conditions is satisfied. Two termination conditions 

have been included in the neural optimization algorithm: 

 maxj Iter  (26) 

 err tol  (27) 

If any of these two conditions is satisfied, the algorithm terminates and returns as 

output the best design that is achieved so far (i.e. the design that corresponds to minimum 

error). If no one of the above conditions is satisfied, the last optimum solution is treated as 
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an additional input – output training data and is added into the pool of the initial training 

data. The procedure continues to step 4 above where the ANN is re-trained based on the 

enriched training data.  

5.2.3.1. 8 Parameters Optimization  

In order to investigate the material properties of masonry prisms, a relationship 

between the 8 material parameters, 1 11 1 1 , 1 1 1( . ., , , , , ), ,C C C C M M MMe g         and 

experimental observation is investigated. These parameters are varying dependently as 

random variables for instance, 
1C  is varying with same value in five brick units each 

iteration as well as for the other seven parameters. The objective function for the 8RV case 

converges faster compared to other cases. However, the 8RV started with highest errors 

0.105 and end with 0.05. Figure 5.4 show a good agreement between the experimental 

observation and FE model prediction. Table 5.4 lists the 8 parameters that are converging 

with same values for example 
1C in brick1 is equal to 

1C  for brick 2.  

 

 

Table 5.4 Material Parameters Distribution of 8 Random Variables for the Prism 

8 Random Variable All Brick Parameters & 

All Mortar Parameters 

 Brick1 Mortar1 Brick2 Mortar2 Brick3 Mortar3 Brick4 Mortar4 Brick5 

E 2.29E+06 2.80E+05 2.29E+06 2.80E+05 2.29E+06 2.80E+05 2.29E+06 2.80E+05 2.29E+06 

Ψ 9.84E+00 3.59E+01 9.84E+00 3.59E+01 9.84E+00 3.59E+01 9.84E+00 3.59E+01 9.84E+00 

Κ 1.02E+00 6.12E-01 1.02E+00 6.12E-01 1.02E+00 6.12E-01 1.02E+00 6.12E-01 1.02E+00 

µ 1.37E-02 1.00E-02 1.37E-02 1.00E-02 1.37E-02 1.00E-02 1.37E-02 1.00E-02 1.37E-02 

 



 

136 

 

 

Figure 5.4. Stress-strain experimental observation vs model prediction for Case 8RV 

(Blackard et al., 2007). 

 

 

5.2.3.2. 16 Parameters Optimization 

The sixteen parameters are designated only for mortar layers in which each layer 

assigned of the four parameters ( . ., , , ),MMq Mq qq Me g    , where q ranges from 1 to 4, varying 

independently. For example, young’s modulus 
1M  for mortar layers 1 is assigned a different 

value in mortar layer 2, layers 3 and layer 4, and the same applies for the other parameters. 

Figure 5.3 shows the objective function for the 16RV convergence which may take longer 

to reach a smooth convergence than for the 8RV. However, the final error appears to be 

slightly less than the case of 8RV. Figure 5.5 illustrates the stress strain curves from the 

analysis and experimental observation, which show a good agreement. Table 5.5 presents 16 

parameters that have converged with same range of variation with respect to that presumed 

in the literature. 
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Table 5.5 Material parameters distribution of 16 random variables for the prism 

16 Random Variable Mortar Parameters 

 Brick1 Mortar1 Brick2 Mortar2 Brick3 Mortar3 Brick4 Mortar4 Brick5 

E 2.89E+06 2.67E+05 2.89E+06 2.71E+05 2.89E+06 2.63E+05 2.89E+06 2.89E+05 2.89E+06 

Ψ 19.69E+00 5.27E+01 19.69E+00 5.56E+01 19.69E+00 5.55E+01 19.69E+00 5.04E+01 19.69E+00 

Κ 0.662 0.59992 0.662 0.66160 0.662 0.66236 0.662 0.59676 0.662 

µ 0.01029 0.01063 0.01029 0.01101 0.01029 0.01050 0.01029 0.01079 0.01029 

 

 

 

Figure 5.5. Stress-strain experimental observation vs model prediction for Case 16RV 

(Blackard et al., 2007). 

 

 

5.2.3.3. 20 Parameters Optimization 

This section presents the parameter optimization for the five brick units in the prism. 

The values of the four parameters ( . ., , , ),CCn Cn nn Ce g    , where n ranges from 1 to 4, are 
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varying independently. Similarly, in case 16RV the brick parameters’ values are different 

for each brick unit in the prism. The objective function is obviously dropping in terms of the 

error compared to the 8RV and 16RV cases (see Figure 5.3). Although the analysis may take 

longer to converge the procedure yields better results compared to 8RV and 16RV cases (see 

Figure 5.6). Table 5.6 presents the values of parameters that have converged in the final 

iterations in which lie on the same range of the material parameters from the literature. 

 

 

Table 5.6 Material parameters distribution of 20 random variables for the prism 

20 Random Variable Brick Parameters 

 Brick1 Mortar1 Brick2 Mortar2 Brick3 Mortar3 Brick4 Mortar4 Brick5 

E 2.34E+06 7.36E+05 2.15E+06 7.36E+05 2.07E+06 7.36E+05 2.18E+06 7.36E+05 2.15E+06 

Ψ 9.36E+00 18.81E+00 9.29E+00 18.81E+00 9.18E+00 18.81E+00 9.23E+00 18.81E+00 9.36E+00 

Κ 0.9500 0.536 0.9597 0.536 0.9745 0.536 0.9602 0.536 0.9494 

µ 0.0146 0.0041 0.0139 0.0041 0.0130 0.0041 0.0140 0.0041 0.0146 
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Figure 5.6. Stress-strain experimental observation vs model prediction for case 20RV 

(Blackard et al., 2007). 

 

 

5.2.3.4. 36 Parameters Optimization 

This is the most extreme case in which thirty-six parameters are varying 

independently. In other words, the prism consists of five brick units and four mortar layers 

are randomly assigned to the prism model. Figure 5.3 shows that the objective function of 

36RV has the least error compared to other cases while the convergence took the longest 

running time to reach a steady state condition. The relationship between the experimental 

observation and the prediction model shows better fitting compared to other cases (see 

Figures 5.7). Table 5.7 presents the 36 parameters that are varying in independent intervals, 

and all parameters are converged within the same range. 

 



 

140 

 

Table 5.7 Material parameters distribution of 36 random variables for the prism 

36 Random Variable All Brick Parameters & 

All Mortar Parameters 

 Brick1 Mortar1 Brick2 Mortar2 Brick3 Mortar3 Brick4 Mortar4 Brick5 

E 2.38E+06 2.56E+05 2.08E+06 2.55E+05 2.08E+06 2.90E+05 2.44E+06 3.03E+05 2.13E+06 

Ψ 9.08E+00 5.30E+01 9.12E+00 5.29E+01 9.14E+00 5.29E+01 9.38E+00 5.29E+01 9.35E+00 

Κ 0.95054 0.611673 0.954089 0.621056 0.957345 0.643381 0.942894 0.606075 0.948019 

µ 0.014686 0.010874 0.013289 0.010673 0.013259 0.011214 0.01496 0.010649 0.014404 

 

 

 

Figure 5.7. Stress-strain experimental observation vs model prediction for case 36RV 

(Blackard et al., 2007). 

 

 

Table 5.8 presents the statistical results of the mean and standard deviation for the 

individual constitutive CDP parameters of the brick and the mortar of a masonry prism 
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obtained from NNO algorithm. Apart from the mean and standard deviation, the coefficient 

of variation is calculated. It is obvious that the CoV is sufficiently small, which verifies the 

convergence of the optimization algorithm. Besides this, the low value of CoV proves the 

existence of a unique combination of optimum CDP models for brick and mortar, regardless 

of the number of random design variables considered for fitting the numerical and the 

experimental curves.  

 

 

Table 5.8 Statistical parameters E, κ, ψ and μ for the prism. 

Mortar ( )E psi        

Mean 2.74E+05 5.32E+01 0.62535 0.01079 

Std 17669.5865 1.6664226 0.02686 0.00023 

CoV 0.0645 0.0313 0.0430 0.0213 

Brick ( )E psi        

Mean 2.20E+06 9.25E+00 0.95467 0.01407 

Std 135646.6 0.1134754 0.00886 0.00069 

CoV 0.0617 0.0123 0.0093 0.0490 

 

 

5.3. Conclusion  

The results obtained from the NNO algorithm that is formulated in this study show 

very good agreement with the corresponding experimental observations. The concrete 

damage plasticity model has the capability to predict of the stress-strain relationship with 

the correlated random variable field. The converged values of the design variables 

(constitutive properties) show consistence for all cases and lie within the range of the lower 

and upper bounds. The Concrete Damaged Plasticity (CDP) showed high flexibility to fit the 

experimental observation as well as all parameters verified within a proper range. The prism 
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with thirty-six random variables shows the least error compared to the other cases while the 

convergence took longer to obtain steady state. Brick units have more influence on the 

mechanical response of the prism compared to mortar layers. The convergence of model 

simulation is faster for fewer number of parameters. The higher the number of parameters 

that are independently varying, the more accuracy there is in the prediction of the 

experimental observation of stress-strain relationship.  
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6. EVALUATION OF LATERAL RESPONSE OF URM WALLS SUBJECT TO 

VERTICAL COMPRESSION STRESS AND LATERAL LOAD 

 

6.1. Introduction  

Unreinforced masonry walls consider as complex structures due to the uncertainty of 

inherent variation of material properties, errors associated with experimental tests, and errors 

associated with the numerical model. The CDP model with the constitutive material 

properties that are calibrated in the previous chapter is used to predict the structural response 

of URM walls that had been tested in the laboratory subject to compressive and lateral loads. 

Wang, Heath, and Walker (2013) studied the contact behavior between brick units and 

mortar layers under compression, flexure and shear, and the perforations appears of brick 

units control the shear strength in which the forces redistributed in both directions normal 

and tangential along the brick/mortar interface. Sarhosis and Sheng (2014) obtained directly 

the material parameters for masonry constitutive models from the results of compressive, 

tensile and shear strength tests on small masonry prisms. The effect of variation in material 

parameters for small-scale are problematics due to load conditions, raw material and 

manufacturing methods, the uncertainty of material parameters and boundary 

conditions(Hendry, 1998; Sarhosis & Sheng, 2014; Vermeltfoort, 1997). On the other hand, 

constructing small-scale consider less complexity in laboratory which could be controlled to 

avoid unnecessary devices and human errors and inexpensive compared to large masonry 

structures (Lignola, Prota, & Manfredi, 2009; Sarhosis & Sheng, 2014). V. Toropov and 

Garrity (1998) proposed an optimization method to identify material parameters which is 

based on the responses of relatively ‘‘non-trivial’’ large scale masonry elements. A proposed 
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method presented by Sarhosis and Sheng (2014) to identify the material parameters for 

masonry to reflect the complex nature of masonry and the range of stress state. Sarhosis and 

Sheng (2014) investigated the relative mechanical response masonry wall simulation as a 

large-scale based on results obtained from small-scale experiments or on the codes of 

practice or on engineering judgment are used in the model for the simulation of the large 

experiments. Then, the material parameters are implemented in masonry walls and modified 

through an optimization process to minimize the errors that express the difference between 

the responses measured from the large-scale experiments and those obtained from the 

numerical analysis. Because optimizing the material parameters of large-scale experiments 

is very expensive especially for masonry structures, the aim of this study is to optimize the 

material parameters through small-scale (prism) experiments and use these optimized values 

into simulation of large-scale (wall) experiments to validate experimental observations with 

numerical results. Also, the hypothesis is the identification of material parameters of small-

scale throughout an optimization procedure in which the optimal parameters used for 

minimizing the errors that express the difference between the responses measured from the 

large-scale experiments and those obtained from the numerical analysis.  

Richart, Moorman, and Woodworth (1932) investigated variation of the material 

properties, geometry and code specification for mortar and brick unit from individual 

components to full wall system experimentally in order to determine the factors influence 

masonry wall strength. Also, Richart et al. (1932) studied the influence the slenderness ratio, 

opening and load combinations effects in which they found the wall thickness is an important 

factor in determining the wall strength. The influence of the wall aspect ratio, which is 

essential to understand shear strength capacity and identify the mechanism failure of URM 
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walls under lateral loads, is investigated in several studies (Abrams & Shah, 1992; Agnihotri, 

Singhal, & Rai, 2013; Epperson & Abrams, 1990; Magenes & Calvi, 1997; Salmanpour, 

Mojsilović, & Schwartz, 2015; Xu & Abrams, 1992).  

The results of model prediction showed a good agreement with the experimental 

data. Numerical simulations of Unreinforced Masonry (URM) walls were also performed 

for different aspect ratios to evaluate their failure mechanisms. The general procedure of the 

material parameter identification method and the numerical results are presented. The 

interface behavior is described by considering a Coulomb-type friction criterion on the 

mortar bed joints. Based on the shear and normal stress distributions derived with the model, 

possible failure modes are examined. 

In this chapter, the optimal material parameters from chapter four will be used for 

two purposes: (a) to validate two experimental cases regarding the shear response of URM 

walls and (b) to discuss different types of failure criteria corresponding to their failure 

modes. Then, the procedure will be developed to discuss the shear strength in term of a 

relation between lateral load and vertical compressive stress, aspect ratio, and the material 

sensitivity on four parameters (e.g., flexural tensile strength, compressive strength, 

coefficient of friction and cohesion stress). 

6.2. Evaluation of Lateral Strength of Unreinforced Masonry Walls 

An essential consideration to assess masonry walls is to examine their resistance 

capability against a lateral force caused by wind or earthquake loads. Flexural cracking, 

shear sliding, and compressive failure are the most common failure modes that are 

predominantly a function of in-plane shear capacity of the walls. The feasibility of the 

evaluation process is verified through comparison with corresponding experimental results 
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(Abrams & Shah, 1992; Epperson & Abrams, 1990; Xu & Abrams, 1992). The numerical 

simulations of masonry walls showed a good agreement with experimental observations 

based on deterministic material parameters obtained from small-scale (prism) simulations as 

mentioned in chapter four. The essential aspects that control the cracks in masonry walls are, 

apart from the material parameters, the wall geometry and the ratio of vertical load to lateral 

load. Therefore, the effect of different parameters is accounted for by performing a 

parametric study of load combination and wall aspect ratio 𝑙/ℎ𝑒𝑓𝑓  to investigate the crack 

failure patterns due to flexural cracking, compressive failure and sliding shear failure 

through varying the tensile strength, compressive strength, and coefficient of friction and 

shear stress on the intact elements between mortar layers and bricks. The ultimate shear 

strength is determined from the sum of lateral forces at the top nodes of the masonry wall 

divided by the gross sectional area. 

6.2.1. Mesh Convergence Study 

An issue that is usually overlooked in FE simulations and affects accuracy is mesh 

convergence, namely the mesh refinement that is required, so that the FE solution becomes 

practically independent of the mesh size. Since the geometry of the wall is simple, i.e. 

without curved geometry, it is obvious that there are not any geometric constraints on the 

mesh refinement process. The model WallE3 was used for the mesh convergence study. This 

FE model of the URM wall was solved for two levels of refinement for the mortar and three 

levels of refinement for the bricks. The refinements of the mortar and the bricks are 

independent, thus they yield six refinement cases, as shown in Table 6.1. The naming 

convention of the six models used for the mesh convergence study is meshRefBXMY, where 

X is the refinement level of the bricks and Y is the refinement level of the mortar. As X 
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and/or Y increase, the refinement increases, i.e. the number of nodes and elements of the FE 

mesh increase, leading to more accurate solutions. X=1 corresponds to discretization of the 

brick edges in two finite elements. Y=1 corresponds to discretization through the thickness 

of the mortar in a single finite element. For example, in the model meshRefB1M1 all bricks 

are discretized in two finite elements per edge (i.e. 4 finite elements per brick), and one 

element along the mortar thickness. X=2 and X=3 correspond to discretization of three and 

four elements per edge respectively. Y=2 corresponds to discretization through the thickness 

of the mortar in two finite elements. It is noted that the aspect ratio of the finite element of 

the mortar is equal, or as closest as possible to unity, in order to preserve a good mesh quality. 

Furthermore, special attention has been paid to ensure that hourglassing and shear locking 

phenomena do not occur in the FE mesh during the solution process (Reddy, 2014). The 

number of nodes and elements of the bricks and the mortar of each model is shown in Table 

6.1. 

The naming convention of Table 6.1 is used in the legend of Figure 6.1, where the 

shear stress – top displacement curves are plotted for the various cases. For reasons of easy 

comparison, the experimental result has been plotted in Figure 6.1. It is apparent that the 

cases with increased mesh refinement are closer to the experimental curve than those with 

the coarse mesh, which shows that the former cases have increased accuracy. In addition, 

since the numerical results of the refined mesh are in satisfactory agreement with the 

experimental results, it is justified that a further refinement of the mesh is not necessary. 

Therefore, the mesh refinement of the case meshRefB3M2 is used for the parametric analysis 

the results of which are presented in this study. 
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Table 6.1 Details of the 6 Models Used for the Mesh Refinement Study. 

Model Part 
Element 

type 
Elements Nodes 

meshRefB1M1 
MORTAR CPS4R 10108 19570 

BRICKS CPS4R 1568 3528 

meshRefB1M2 
MORTAR CPS4R 34941 50822 

BRICKS CPS4R 1568 3528 

meshRefB2M1 
MORTAR CPS4R 10108 19570 

BRICKS CPS4R 3528 6272 

meshRefB2M2 
MORTAR CPS4R 34941 50822 

BRICKS CPS4R 3528 6272 

meshRefB3M1 
MORTAR CPS4R 10108 19570 

BRICKS CPS4R 6272 9800 

meshRefB3M2 
MORTAR CPS4R 34941 50822 

BRICKS CPS4R 6272 9800 

 

 

 

Figure 6.1. Mesh convergence results for the case WallE3 (Epperson & Abrams, 

1990). 
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6.2.2. Masonry Wall Model Validation 

To check the validity of optimal material parameters obtained from the NNO 

algorithm for the prism, two URM walls (referred from now on as “wall 1” and “wall 2”) 

were simulated and compared to experimental tests by Epperson and Abrams (1990). The 

geometrical model of URM walls was represented by clay brick panel with same height of 

72” height and two different width 114” and 94” for wall 1 and wall 2, respectively. The 

cross-section area of wall 1 is 1870 in2 and for wall 2 1600 in2 which are tested by vertical 

compressive stress and lateral load-displacement. The walls are fixed at their bottom and 

free at their ends. The ABAQUS model of the wall is represented by 2D plane-stress 

elements (CPS8R). The constitutive behavior of both the bricks and the mortar thickness of 

0.75” is defined by the ABAQUS CDP model. The Poisson ratio of the bricks is equal to 0.1 

whereas the Poisson ratio of the mortar is 0.2. In addition, the flow potential eccentricity (𝜖) 

is equal to 0.1 for both the bricks and the mortar layers, and the ratio of initial equibiaxial 

compressive yield stress to initial uniaxial compressive yield stress ( )/b cf f is set equal to 

1.16 for both the bricks and the mortar. The optimal parameters of the masonry prism that 

were taken from Table 4.2 of Chapter 4 have been specified in the material definition of the 

walls which showed a good agreement with experiment tests (see Figure 6.2). 
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(a) 

 

 

 

(b) 

Figure 6.2. Model validation. a) Wall 1 b) Wall 2 (Epperson & Abrams, 1990). 
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6.3. Failure Modes and Failure Criteria 

6.3.1. Flexural Crack 

An important parameter in terms of shear strength is the flexural tension strength 

which is perpendicular to the bed joints and can affect the distribution of shear and normal 

stress between masonry layers through flexural cracking. However, the flexural tension 

strength is more important for URM with aspect ratio / 0.5effl h =  with a relatively low 

vertical compressive stress (see Figure 6.5c). Increasing lateral loads can significantly 

propagate the crack towards the toe. Theoretically, if the flexural tensile stress exceeds the 

allowable flexural tensile strength, the wall cracks propagate near the wall-base. 

 y tf   
(28) 

where 
y  is the tension stress at the base of the wall which is normal to the bed joint and 

tf  

is the flexural tensile strength. In general, the flexural crack initiates when the linear stage 

of the wall response ends. Figure 8 shows that the onset of cracking corresponds to lateral 

displacement equal to 0.1” which means that the linear stage is between 0-0.1”. Also, it is 

obvious that the flexural failure occurs for low vertical compressive stresses 
v  between 0-

50 psi combined with high lateral force. Consequently, as the lateral force applied in-plane 

of the wall increases, the inelastic (nonlinear) behavior is more pronounced. As a result, 

when the flexural tensile cracks extend to the toe of the wall, overturning will occur. 

Overturning can occur only when the unreinforced wall cracks and the following criterion is 

used to check failure due to overturning: 

 ( )
2

v

eff

l

h


 =  

 

(29) 
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Xu and Abrams (1992) presented an equation to evaluate the crack of unreinforced 

walls due to flexural tensile stress 
1

( )( )
6

t v

eff

l
f

h
 = +  where  is the nominal shear stress 

between the brick and mortar layers.  

6.3.2. Shear Sliding  

The typical shear failure along the bed joint is due to the high lateral forces that cause 

high shear stress between the bricks and mortar layers. Also, the shear stress between the 

layers depends on several factors to resist the shear sliding such as the bond between the 

layers, friction, cohesion, and material heterogeneities. In this study, the friction a cohesion 

stress between the elements have been investigated. Failure due to sliding may occur in 

slender walls with high aspect ratio 
/ 1.5effl h

 (Xu & Abrams, 1992). However, for aspect 

ratio 
/ 0.5=effl h

 shear sliding along the wall length may prevail when it subjected to high 

lateral force and low vertical compressive stress. Because the failure can extend over the full 

width, slender walls are most likely to fail in earlier loading stages compared to stocky walls 

(see Figure 6.5c). A major factor which affects this is the bond between brick and mortar 

layers; for this reason, friction and cohesion stresses have been studied in detail. According 

to the Mohr-Coulomb shear friction relationship, the shear failure criterion is as follows:  

 o y   +  
(30) 

where
o ,is the cohesion stress and  is the coefficient of friction. The latter have been 

considered in ABAQUS software in order to investigate the effects of the normal and 

tangential behavior in the contact interfaces between bricks and mortar layers.  
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6.3.3. Diagonal Compressive Splitting 

The diagonal compressive splitting occurs usually when / 1.25effl h   which is a 

common failure mechanism, especially when the wall is subjected to high lateral force and 

vertical compressive stress. Compressive splitting is the last stage before collapse of the 

unreinforced walls. In other words, when the wall starts to deflect and a local area of shear 

sliding starts to form, the diagonal compressive splitting occurs toward the toe causing the 

wall to overturn. When the URM wall reaches shear sliding failure redistribution of normal 

and shear stresses takes place which can be induced from the resultant shear force and can 

generally delay the collapse event (see Figure 6.5b). Consequently, toe crashing or diagonal 

compression splitting may happen due to redistribution of the stresses. Page (1981) defined 

the failure criteria of the biaxial stresses and the principal stresses 
1 2( , )  with their 

orientation   in term of 3D surface stresses. These stresses are the normal, tangential, and 

shear stress to the bed joint which can be represented by
n , 

t and  respectively. The 

failure criteria of biaxial stress is given by:  

 
2 ( )( )mt t mn nf f   − −  

(31) 

where 
mtf  and 

mnf  are the compressive strength at the normal and tangential directions at 

the bed joints respectively, which can be obtained from masonry prism tests. When the 

normal stress 
n  is larger than the compressive strength 

mnf  crushing occurs at the toe(Xu 

& Abrams, 1992) (see Figure 6.5a). 

6.3.4. Diagonal Tension Cracking 

In this mode, the wall tends to crack at the heel due to high lateral forces and lack of 

diagonal tensile strength such as seismic loads (Council et al., 1999). This type of failure can 
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occur in the strong brick units and weak mortar which is typically found in walls with aspect 

ratio / 1.25effl h  . Xu and Abrams (1992) stated that strong mortar and weak units cracked 

with high vertical compressive stresses while weak mortar strong units cracked with low 

vertical compressive stresses. Essawy and Drysdale (1986) presented an equation to 

determine the principal tensile stress according to Mohr’s circle at a point: 

 ( ) (1 )(1 )t n

o o o

 

  
= − −  

(32) 

where
o  is the diagonal tension strength in which the diagonal crack occurs when diagonal 

tensile stress is larger than the diagonal tensile strength. 

6.4. Influence of Vertical Compressive Stress 

In order to understand the effect of vertical compressive stress, a relationship has 

been considered between the lateral displacement and shear strength. An aspect ratio / effl h

equal to 1.5 is used with compressive strength 1600 psi, coefficient of friction 0.5 and 

cohesion stress 100 psi. The values of vertical compressive stress applied at the top of the 

walls range from 50 psi to 250 psi (see Figure 6.3). The variation of vertical compressive 

stress can significantly affect the failure mode. When low vertical compressive stress is 

applied at the top of a slender wall with high lateral loads, the shear sliding may predominate 

the failure modes. The wall with aspect ratio / 0.5effl h =  is more likely to fail by sliding due 

to its short length. The effect of vertical compressive stress on the shear strength is slightly 

increased after the shear sliding modes start to propagate between the brick units and bed 

joints. Consequently, the shear stress is redistributed in some local areas in the normal and 

tangential directions that can increase the shear strength till a compression failure is reached. 
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The URM wall with lateral displacement between 0-0.8” exhibits elastic behavior while 

nonlinear behavior takes place as soon as the wall starts cracking.  

 

 

 

Figure 6.3. Influence of compressive vertical stress on shear strength of URM walls 

 

 

6.5. Influence of Aspect Ratio 

In this section the relationship between the lateral shear load-displacement and shear 

strength is investigated in terms of the length-to-effective height (aspect) ratio
/ effl h

. The 

shear strength is estimated from the summation of lateral forces (e.g., 0, 0.02”, 0.04”, 0.06”, 

and 0.1”-0.6”) at the top nodes of masonry walls divided by the gross sectional area. The 

vertical compressive stress, flexural tensile strength and compressive strength are specified 

equal to 150 psi, 300 psi and 3000 psi respectively. The friction coefficient and cohesion 

stress are equal to 0.7 and 150 psi respectively. The aspect ratio is the only parameter that is 
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varied to investigate the effect shear strength capacity (e.g., 0.55, 1.3 and 1.6). The shear 

strength resistance increases significantly when / effl h  increases (see Figure 6.4). The 

common failure mechanisms are flexural cracking, shear sliding and compressive splitting 

which occur in sequence. The higher the aspect ratio, the more failure modes show up during 

high lateral loads combined with low vertical compression stress. When the aspect ratio is

/ 1.5effl h  , most failure modes occur during high lateral loading (e.g., rocking, bed joint 

sliding, diagonal tension splitting and toe crush) (see Figure 6.5a). The sequence of this 

failure started with cracks usually near the wall base which then propagate across the wall. 

Then, the wall started unbinding between the brick units and mortar layers in which this 

stage may extend across the wall length especially with / 1.25effl h  (see Figure 6.5c). Shear 

sliding can play a significant role to redistribute the normal and tangential stresses between 

the bed joints and brick units. Consequently, the propagation of shear sliding forms a typical 

stair-stepped bed-joint that can enhance a ductile mode with significant hysteretic energy 

dissipation capability. Masonry walls with 0.5 / 1.5effl h   may show all failure 

mechanisms except rocking foundation during high loads (See Figure 6.5b). 

6.6. Influence of Material Parametric Sensitivity 

In order to investigate the effects of material parameters sensitivity, a relationship 

between lateral displacement and shear strength has been constructed for URM walls. The 

shear strength of a cracked wall is calculated by the maximum in-plane lateral force divided 

by the gross sectional area. In other words, the shear strength is obtained from the sum of  

 

 



 

158 

 

 

Figure 6.4. Influence Aspect Ratio in Shear Strength of URM walls. 

 

 

 

(a)Stocky 

Figure 6.5. URM walls simulations in ABAQUS for max. Absolute in-plane 

principal stress (Pa). 
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(b) Slender (c) Square 

Figure 6.5 Continued 

 

lateral force of the top nodes of unreinforced walls divided by their gross sectional area. The 

masonry wall is simulated in ABAQUS with dimensions of 72” height and 114” length and 

its gross area is 1870 in2. The wall is subjected to an in-plane lateral load-displacement for 

example (e.g., 0, 0.02”, 0.04”, 0.06”, and 0.1”-0.6”) and for each simulation the shear 

strength is determined from the sum of lateral force divided by the gross sectional area. The 

CDP model is used with the material parameters that have been used for the verification of 

the wall response in section 5.3.1. In order to understand the post-cracking behavior, it is 

essential to carry out parametric studies, the parameters of which are the tensile strength, 

compressive strength, the coefficient of friction and the cohesion between the brick units 

and mortar layers. 

6.6.1.  Flexural Tensile Strength 

Flexural tensile strength is the most important factor which contributes to the shear 

resistance and controls the ductility when the masonry walls are subject to in-plane lateral 

loads. The low vertical compressive stress and high lateral displacement can significantly 
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affect slender walls. In order to investigate the flexural shear strength, the relationship 

between the lateral displacement and shear strength is considered. The aspect ratio is 1.5 

with 1600 psi as compressive strength and coefficient friction and cohesion stress 0.7 and 

100 psi respectively. Flexural tensile strength is the only parameter that is varied (e.g., 10 

psi, 50 psi, and 100 psi) to evaluate the shear strength. Figure 11 shows that for higher 

flexural tensile strength, the masonry wall’s resistance to the lateral loads and ductility 

increase. For lateral displacement equal to 0.8” flexural cracks begin to propagate. In 

addition, when the wall is subjected to lateral load-displacement equal to 0.5”, it failed with 

10 psi of flexural tensile strength. Also, the shear sliding failure predominates in the failure 

stage as illustrated in Figure 6.6 compared to other failure stages. Consequently, the shear  

 

 

 

Figure 6.6. Influence of flexural tensile strength on shear strength of URM walls. 
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sliding between the bed joints increases the resistance against collapse as well as ductility. 

6.6.2. Compressive Strength 

Compressive strength is an important parameter that controls failure due to vertical 

compressive stresses. Three values for compressive strength have been considered in the 

simulation (e.g., 1000 psi, 2000 psi, and 3000 psi). The vertical compressive stress is equal 

to 150 psi for masonry wall, / 1.5effl h =  and the other parameters are as follows: flexural 

tensile strength 300 psi, cohesion stress 150 psi and coefficient of friction 0.7. However, 

when the compressive strength is equal to 1000 psi, the strength of the wall is significantly 

reduced, and it failed at lateral load-displacement equal to 0.4” (see Figure 6.7). From Figure 

6.7 it is noted that flexural cracks were created when the lateral displacement ranges from 

0.1” to 0.2” and the shear sliding ranges between 0.2” and 0.4” and then compressive 

splitting takes place until collapse. The variation of compressive strength demonstrates 

clearly that all curves start in the same range of flexural cracking and shear sliding whereas 

the compressive splitting controls the shear strength. Consequently, if the wall does not fail 

due to the compressive stress, then the shear strength of the wall does not depend on the 

compressive strength. 

6.6.3. Coefficient of Friction and Cohesion Stress 

Coefficient of friction and cohesion stress depend on the normal and tangential 

behavior between the brick units and mortar layers. The Mohr-Coulomb criterion in eq. 30 

shows that friction and cohesion affect significantly the shear sliding failure. As these two 

parameters increase, the shear strength to resist shear sliding failure that propagates along 

the length of masonry wall increases (see Figure 6.8). When the applied lateral load is low,  
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Figure 6.7. Influence of compressive strength on shear strength of URM walls 
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strength can be achieved (see Figure 6.8a). The variation of cohesion significantly controls 

the shear strength when the wall is subjected to in-plane lateral loads. For lower values of 

cohesion stress the effect on the shear strength becomes more pronounced. Figure 6.8b 

illustrates that shear sliding begins earlier for cohesion equal to 100 psi compared to the 

other cohesion values. 

6.7. Conclusion 

The calibrated material properties that are calculated from the NNO algorithm that 

is presented in the previous chapter have been inserted in suitable FE models which have 

shown good agreement with analogous experimental data. Consequently, it is concluded that 

the proposed NNO algorithm is sufficiently robust and accurate for calibration of 

constitutive material properties based on experimental data. Apart from this, the influence 

of various factors on the shear response of URM walls is investigated. It has been found that 

the shear stress is redistributed in some local areas in the normal and tangential directions 

that can increase the shear strength till a compression failure is reached. Shear sliding can 

play a significant role to redistribute the normal and tangential stresses between the bed 

joints and brick units. Consequently, the propagation of shear sliding forms a typical stair-

stepped bed-joint that can enhance a ductile mode with significant hysteretic energy 

dissipation capability. Generally, the shear sliding between the bed joints increases the 

resistance against collapse as well as the ductility of the wall.  
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a) 

 

 

 

b) 

Figure 6.8. Influence of contact properties on shear strength of URM walls: a) 

friction, b) cohesion stress. 
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7. CONCLUSION – FUTURE STUDY 

 

7.1. Conclusions 

• This work introduces the calibration of the Concrete Damaged Plasticity (CDP) 

material properties in ABAQUS for URM infill walls (e.g. comprised of brick, 

mortar and concrete) by using stress-strain data of compressive masonry prism 

experimental tests taken from the literature 

• The ABAQUS model with the optimal CDP material parameters showed good 

agreement with experimental observations. The algorithm of nonlinear least squares 

proved to be an efficient formulation for capturing optimal parameters. 

• The optimal parameters are used as a starting point for the probabilistic calibration 

of a brick unit and mortar.  

• The Markov Chain Monte Carlo approach coupled with Metropolis Hastings criteria 

(MCMC- MH) algorithm showed a unique capability to fit the experimental 

observation and validated the stress strain curves when applied for the elastic and 

inelastic model response.  

• Spatial statistical inferences were produced from the solution to the numerical 

integration of the posterior from the numerical predictions, and the experimental 

observations. 

• Material heterogeneity is studied for a masonry prism using random variables for 

predicting stress strain curves using the ABAQUS CDP model. Four cases were 

considered about the inverse problem of calibrating the CDP model parameters. In 
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each case different material parameter combinations for fitting the experimental 

stress strain curve were examined. 

• A novel Artificial Neural Network Optimization (NNO) algorithm was introduced to 

calibrate the material parameters in masonry prisms for describing the mechanical 

response of the Unreinforced Masonry (URM) walls.  

• An appealing characteristic of the NNO is its ability to fit numerical model 

parameters based on experimental data, so that the agreement between simulation 

and experiment is very good and also requires minimal computational effort. 

• The URM walls was validated using the optimal material parameters of a masonry 

prism. Then, shear strength capacity is evaluated in term of a relationship between 

the sums of lateral-loads divides by gross sectional area and the maximum lateral 

displacement.  

• Mesh sensitivity is considered in order to examine the convergence accuracy with 

different levels of mesh refinement between the brick units and mortar layers to 

preserve a good mesh quality and prevent shear locking and hourglassing 

phenomena. 

• The influence of various factors on the shear response of URM walls is investigated 

in terms of length-to-effective height “aspect ratios ( / )effl h ” and vertical 

compressive stress.  

• Parametric studies are carried out to investigate three common failure mechanisms 

associated with URM walls (e.g., flexural failure, shear sliding, compressive failure).  
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7.2. Future Study 

“It is controversy issues and important tasks for engineers and scientists perform is 

to model natural phenomena” said by Reddy, 2019. Therefore, there is always a chance to 

develop a theory to capture the true behavior of a mechanical response; however, the errors 

between the natural phenomena and the model prediction exist. The possible future studies 

based on this thesis are threefold:  

• Investigate the probabilistic calibration of three material parameters in CDP 

model (e.g., Young’s modulus E  viscosity µ , and deviatoric out-of-roundness 

 ) and the uncertainty associated with the observations and predictions model.  

• Determine the optimal parameters associated with failure modes and failure 

criteria of URM walls (e.g., flexural tensile strength, compressive strength, 

coefficient of friction and cohesion stress). 

• Investigate the correlation between the failure mechanisms (e.g., flexural failure, 

shear sliding, compressive failure) by using the Markov Chain Monte Carlo 

approach coupled with Metropolis Hastings criteria (MCMC- MH) algorithm. 
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Table A-1 Mortar Data 

Reference 
Spe

c # 

Spec 

Shape 

Dim 

(in³ ) 
  Material 

Properties 
   

    E (psi) f'c (psi) Mix w/c Material Load Days 

Fiorato, et al. 

(1970) 
1 Cylinder 4 x 8 x5 1.23E+06 1390  1.35 sand 15,000 Ib /min 25 

Mosalam 

(1996) 
1 Cylinder 2x4 2.00E+06 3070 S S 1 : 0.2: 3.83 1.2 

Cement-

Lime-

sand 

 28 

Mosalam 

(1996) 
1 Cylinder 2x4 6.00E+05 1770 N 1: 0.5:4.5  

Cement-

Lime-

sand 

  

Fransico 

(1997) 
4 cylinder 2x4  1494 1:0.5:4.5 S  

Cement-

Lime-

sand 

 28 

Blockrad et. al 

(2009) 
 Cylinder 4x8 5.00E+05 732 1:1:5 M  

Cement-

Lime-

sand 

 28 

Blockrad et. al 

(2009) 
5 Cylinder 4x8  1160 1:1:5 M  

Cement-

Lime-
Sand 

Triaxial load 28 

Barbosa et al. 

(2010) 
4 Cylinder 2x4 1.18E+06 1116 1:1.3:5.3 1.4 

Cement-

Lime-

Sand 

0.005 mm/s 14 

Cheng & Khoo 

(1972) 
6 Cylinder 1.5x4  4949 1 : 0.25 : 3 0.64 

Cement-

Sand-

aggr 

0 psi 14 
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Table A-1 Continued 

        
Cement-

Sand-

aggr 

282 psi 14 

        
Cement-

Sand-

aggr 

590 psi 14 

        
Cement-

Sand-

aggr 

896 psi 14 

     1033 1 : 1 : 6 1.25 

Cement-

Sand-

aggr 

1206 psi 14 

         1510 psi 14 

Gonçalves et 

al., (2007) 
4 Cylinder 2x4 3858004 7992 1:1.5 c/agg 0.4 

cement -

sand 
 28 

Gonçalves et 

al., (2007) 
4 Cylinder 2x4 3567928 5932 1:1.5 c/agg 0.5 

cement -

sand 
 28 

Mohamad et 

al. (2006) 
 Cylinder 2x4 1.63E+06 2886 1:1/4:3  

Cement-

Lime-

Sand 

 28 

Mohamad et 

al., (2006) 
 Cylinder 2x4 584937 609.2 1:1:6,  

Cement-

Lime-

Sand 

 28 

Mohamad et 

al., (2016) 
 Cylinder 2x4 1.86E+06 2944 1:1/4:3  

Cement-

Lime-

Sand 

 28 

Mohamad et 

al., (2016) 
 Cylinder 2x4 6.96E+05 1073 1:0.5:4.5  

Cement-

Lime-

Sand 

 28 
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Table A-1 Continued 

Mohamad et 

al., (2016) 
 Cylinder 2x4 4.64E+05 652.7 1:1:6,  

Cement-

Lime-

Sand 

 28 

Ciornei (2012) 5 cube 2x2x2  1407     66 

Nguyen (2014) 2 cube 2x2x2  1200   
Cement-

Lime-

Sand 

0.0001 in/s 28 

Kaushik, et al. 

(2007) 
3 cube 2x2x2 79034.4 450 1 : 0 : 6 0.7 

Cement-

Lime-

Sand 

 28 

 3 cube 2x2x3 543876 2175 1 : 0.5 : 4.5 0.7 

Cement-

Lime-

Sand 

 28 

 3 cube 2x2x2 478611 2200 1 : 0 : 3 0.7 

Cement-

Lime-

Sand 

 28 

Bu et al., 

(2016) 
3 cube 2x2x6 6584.71 5E+06  0.4    

    5859.53 4E+06  0.45    

    5337.39 3E+06  0.5    

Singh & 

Munjal (2016) 
3 cube 2x8 478611 3023 1 : 0 : 3 0.7 

Cement-

Lime-
Sand 

 28 

     2355 1:1:4, 0.7 

Cement-

Lime-

Sand 

 28 

     1836  0.8 

Cement-

Lime-

Sand 

 28 
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Table A-2 Brick Data 

Reference  Spec # Dim (in³ ) type Material Prop. 

  

   

E (psi) f'c (psi) 

Mosalam (1996) 

 

7.5x15.5 concrete block 1.41E+06 

 

Barbosa et al. (2010) 

 

5.5x7.5x15 concrete block 

 

1624.4 

Andreas (2009) 
8 7.6x3.6x3.4 concrete bricks 

 

1377 

Mohamad et al., (2016) 
10 5.5x7.5x15 concrete bricks 2987777 

 

Singh & Munjal (2016) 
1 8x4x4 concrete bricks 

 

2422.13 

Kaushik et al., (2007) 
10 9x4x3 clay bricks 7.63E+05 2567.15 

  

   

7.30E+05 2335.1 

  

   

1.09E+06 4191.57 

  

   

9.48E+05 2987.76 
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Table A-2 Continued 

  

   

8.84E+05 3016.77 

Blockrad (2009) 
2 4.5×3.75×2.25 clay bricks 3.00E+06 4840 

Singh & Munjal (2016) 
3 9x4.5x3 clay bricks 

 

1595.42 

  

    

1934.8 

  

    

1195.11 

 

Table A-3 Concrete Data 

Reference  

Spec 

# 

Spec 

Shape 

Dim (in³ 

)    Material Prop.  

     

f'c 

(psi) Mix 

w/

c Material Load Days 

Fiorato (1970) 1 Cylinder 4 x8 x5 5510 

1:1:4 

M 0.8 

fine & coarse 

aggregate  

75,000 Ib 

/min 25 

Mehrabi (1996) 3 cube 6x6x6 3900     28 

Stavridis (2009) 3 Cylinder 6x12 5500     28 
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Table A-3 Continued 

Nguyen (2014) 5 Cylinder 2x8 3000     28 

Hognstad et al., 

(1955) 5 Cylinder 6x12 4000     28 

Smith & Young 

(1956)  Cylinder       45 
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