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ABSTRACT

Survival analysis has emerged as a promising tool in biostatistics for life expectancy

prognosis and personalized healthcare. However, its accuracy and potential are limited

by the modern big data challenges to which the traditional survival analysis models

have not yet adequately adapted. This refers to the data laced with challenges of vol-

ume, variety, velocity, and veracity. In this dissertation, we are concerned with the

challenges of data imbalance—veracity and multi-view data—variety and volume. To

achieve the overarching goal of improving prognosis accuracies, this dissertation was

aimed at proposing methodological improvements and leveraging statistical advance-

ments for solving the big data challenges in survival analysis and addressing the limiting

assumptions of the most commonly used proportional hazard models.

Firstly, we address the data imbalance issue by proposing a balanced random sur-

vival forest (BRSF ) model that integrates a synthetic minority over-sampling technique

with random survival forests for improved mortality prediction. Secondly, for the multi-

view survival learning challenge, we proposed an integrated non-parametric survival

(iNPS ) learning method that captures the joint and individual structures in different

data types and models their non-linearity and interactions by using a non-parametric

survival learning method. Theoretical results and extensive empirical comparisons us-

ing complex cancer and cardiovascular data sets suggests major improvements in the

survival prognosis accuracy due to the methods presented in this dissertation.

Finally, we extend non-parametric survival learning to multiple recurring events

for continuous prediction of epileptic seizures and to provide probabilistic estimates

for seizure onset over a broad prediction horizon. These estimates are essential for de-

veloping individualized quantitative risk measures and management plans for epilepsy

patients and potential application in a wearable seizure alert system.

We believe that that the methodological advancements and their clinical applica-
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tions presented in this study may provide a foundation for further knowledge discovery

and subsequent improvement in survival analysis—a healthcare domain of immense

importance.
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1. INTRODUCTION

1.1 Motivation

The field of survival analysis encompasses methods and tools to predict the time-

to-event of a process, which is the length of time until the occurrence of an event [1].

Historically, the term “event” used to refer to the health outcome or change of status

such as death, owing to its root in the clinical trial literature and life table analy-

sis [2, 3]. Since then, survival analysis has emerged as an effective prognosis tool in

numerous domains besides medical research and trials, e.g., machine failure prediction

in complex manufacturing systems [4], market failure and crash prediction in busi-

ness intelligence [5, 6], and assessment of healthcare utilization [7]. Specifically, in the

biostatistics/bioinformatics domain, establishing the survival prognoses for patients is

essential. It is utilized for varied important tasks such as mortality prediction, risk

stratification, and key biomarker identification in acute and high-risk patients [8, 9].

Their importance is further accentuated while dealing with life-threatening conditions

such as acute cardiovascular diseases, neurological disorders, cancer, and diseases that

may extend for several years [10].

This broad and crucial utilization has been facilitated by the development of various

survival analysis models. All parametric, semi-parametric, as well as non-parametric

survival analysis models, are available in the literature [11, 12]. Parametric survival

regression models are used to study the effect of covariates/features on the event time.

Let xi be a set of features for individual i; it’s effect on the event time T can be modeled

by using a hazard rate, λi(t) at time t. The parametric survival regression model then

reduces the estimation of this hazard function, λi(t) at time t into a regression problem

of the form λi(t) = λ0(t) exp(β>x), where β is an unknown vector of the regression

coefficients and the features have a multiplicative effect. The baseline hazard function,
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λ0(t) within parametric models, attaches to the event time T through the underlying

parametric distribution of the event time, for example, if λ0(t) is a constant c, then the

resulting survival regression model becomes exponential.

Parametric models are sometimes preferred for their ease of interpretability. How-

ever, they can be used only when the underlying distribution of the event time data can

be correctly identified apriori. This has been increasingly infeasible with the increased

data complexity. Incorrect distributional assumption can make the parametric model

fitting, and hence their interpretation, biased.

The semi-parametric survival analysis models such as Cox proportional hazard

(CPH) alleviates the need for specifying distributional assumption, i.e., CPH does not

require a distributional assumption of λ0(t) to estimate β [13]. Since its proposal in

1972, CPH has been used in almost all application areas and remains the gold standard

for survival analysis [14], so much so that survival analysis has now almost become

synonymous to CPH. However, this domination, perhaps disproportionately, by the

celebrated CPH model, is not warranted without limitations. The CPH model makes

certain restrictive assumptions [15], many of which do not hold in real-life scenarios.

Two such assumptions are:

1. Linearity assumption: here the log-risk is assumed to be a linear combination of

the features, i.e., log(λi(t)) = log(λ0(t)) + β>x. Furthermore, it also does not

take into account the missing features or their interaction effects. Interaction

can be introduced by using brute force to incorporate the interaction as a new

feature. With the increasing number of features, neither linearity can be satisfied,

nor interactions can be incorporated successfully as the number of high-level

interaction terms grows. When dealing with large data, these cause a severe

decrease in accuracy, basically rendering the CPH model useless.

2. Proportional hazard assumption: here, the hazard ratio between any two patients

is assumed to be constant at every time instant, t. The growing complexity of
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application, such as prognosis of survival in cancer patients certainly makes this

assumption overly simplistic for real-life applications.

Despite the tremendous growth of survival analysis applications, it’s methodological

advancement has been relatively slow compared to the machine learning regression and

classification problems. Nonetheless, there are two key machine learning survival models

(referred to as survival learning henceforth in this dissertation) developments that have

addressed some of the traditional survival model’s limitations. These methodologies for

predicting time-to-event, based on advanced machine learning techniques, have opened

new possibilities to overcome the limitations of CPH models [15, 16].

To solve the problem of linearity, non-linear survival learning models have resulted

from the application of deep learning for survival analysis. Nonetheless, their CPH

based activation function can still be a limiting factor [16]. Another method is random

survival forests (RSF) [15], a non-parametric approach for producing ensemble esti-

mates of the hazard, based on a Breiman’s ensemble tree, random forests model. Since

RSF is virtually free from the limiting assumptions of CPH and is determined to be

the current state of the art in survival learning, we later explore and compare it with

CPH for complex applications with real-world data.

Although the new survival learning models address the limitations of traditional

proportional hazard models, the Big Data related challenges in the biological survival

data sets have been largely ignored, resulting in decreased accuracy of prognosis [17].

Since survival analysis models are one of the key tools which provide decision support

to the physicians, not only for intervention selection but also for identifying high-risk

patients and for patient counseling/consent for intervention [18, 19, 20], the limited

accuracy of current survival models which guide critical life and death decisions is a

major concern.

Accurate prognosis of the event and the effect of features can allow risk-calibrated

interventions for better management of the outcomes. Thus the overarching goal of this
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dissertation is to improve the healthcare data analysis outcomes by focusing on two

aims: (1) increasing the accuracy of survival prognosis by exploring the survival learning

methods and proposing methodological development to address the data challenges for

survival analysis and (2) its application in critical healthcare areas such a cardiac

disease and cancer to improve mortality prediction. Application is also extended to

beyond the time-to-death prediction by applying survival learning for epileptic seizure

prediction where the events are multiple/recurring seizure episodes.

1.2 Challenges

A key limitation to the survival model’s accuracy is the challenges posed by the

exponential increase of Big Data in healthcare. During the last decade, we have seen

tremendous improvements in sensing and data collection technologies. These improve-

ments have led to the exponential growth in data collection, especially in biomedical

research, where it has facilitated an easy collection of high-throughput data through

technologies such as genome sequencing, imaging, multichannel physiological moni-

toring, and continuous longitudinal data using wearables. It has consequently led to

growing volume, complexity, veracity, and variety of the survival data. It is fair to as-

sume that most of the survival data now fits the characteristics of Big Data [21] and

can be referred to as healthcare big data.

When analyzing healthcare big data, it becomes challenging to filter the relevant

knowledge and build a useful model. Prior efforts in building a useful model from

Big Data to address the challenge of volume, veracity, variety, etc. have engendered

some innovative and indeed useful methodologies [22, 23]. However, the most primarily

benefit the traditional regression, classification, and clustering domains where survival

analysis has been largely ignored. In this dissertation, we explore and address two

specific problems related healthcare big data to build more accurate survival models:

(1) Data imbalance (related to veracity) and (2) Multi-view survival data (related to

variety and volume). Below we describe these problems with respect to the survival
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data and our research objectives to address them.

1.2.1 Data imbalance

The first challenge we explore and address in this dissertation is data imbalance—related 

to the veracity of the healthcare big data. The survival learning techniques used for 

survival status and time-to-event prognosis can become biased and undermine hazard 

estimation when there is an imbalance in the survival data. Here imbalance refers to

a significantly u nequal r epresentation o r d ominance o f o ne c lass o ver t he o ther. For 

example, the majority of the data samples are either in censored/survival class or 

death/mortality class. For example, the imbalance shown in Figure 1.1 is representa-

tive of one of the real dataset used in this paper (the STEMI dataset) which consists 

of tracking 267 patients for their mortality over a period of 1 year, out of which 62

(only 23%) belong to the minority class (i.e., suffered mortality). Such situations are 

common and often beyond control in clinical studies and bioinformatics. The accu-

racy of survival prognosis further decreases with a high-dimensional low sample size

(HDLSS) data. However, obtaining real clinical data with large sample size is again 

beyond control in survival analysis, especially when the study focuses on patients with

a specific d isease [ 10]. The c onjugation o f t hese two f actors s ignificantly wo rsens the 

survival learning method’s performance.
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Figure 1.1: Representation of the class imbalance in the feature space (minority class
in red).

Data imbalance problem has been recognized in the machine learning literature

for almost three decades now [24]. Due to its importance in increasing classification

and regression model’s accuracy and robustness, it has been studied extensively with

many techniques being proposed to balance the class sizes with most having a primary

focus on classification tasks [25, 26]. However, it’s exploration and application in the

survival domain is highly scarce, and more importantly, most of the balancing tech-

niques proposed for the classification literature does not directly apply to the survival

domain. For example, one of the most common balancing strategies is to pre-process

and manipulate the class distributions to have equal representation by undersampling

the majority class and drive the learning algorithm to focus equally on both classes,

however with HDLSS survival data, it is infeasible.

Chapter 2 of this dissertation presents theoretical results on the effect of data

imbalance on the prognosis accuracy and hazard estimation of survival models. We

also obtain empirical performance of balanced and unbalanced survival models for a
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variety of benchmark and real-life survival data sets. Consequently, a balanced random

survival forests (BRSF) method is proposed to address the imbalance.

1.2.2 Multi-view data

Data growth in volume and complexity is not very new. However, beyond growing in

volume and complexity, survival data has, very recently, also grown in variety. Through

simultaneous advancements in a variety of sensing techniques, high dimensional data

can now be recorded for the same set of subjects from multiple different sources. Cou-

pled with decreasing data acquisition costs, multi-view data set collection have become

a routine part of a patient’s standard clinical workflow [27], for example, the ‘omics’

data such as genomics, transcriptomics, proteomics, etc. measured in cancer studies.

Owing to the genome sequencing, this is predominantly known as multi-omics data in

the bioinformatics literature. However, such data can exist in other biological scenar-

ios such as Electroencephalography (EEG) and fMRI (Functional magnetic resonance

imaging) data in neuroinformatics studies as well as multiple sensors data acquisition

from wearable devices. Since these different varieties of data sets provide a different

view of the same subject/patient, here we use the term multi-view to refer to such data

and it’s constituent data sets are referred to as data type.

There are different types of multi-view data [28], and two common types are: (1)

vertical multi-view data: multiple data types for the same subject. For example, the

breast invasive carcinoma dataset (BRCA) from The Cancer Genome Atlas (TCGA)

project—a landmark cancer genomics program (https://www.cancer.gov/tcga) [29].

This dataset contains multiple data types, including gene expression, DNA methy-

lation, and micro RNA or miRNA expression data for the same set of patients. We

are calling it vertical data as for the same set of patients, different data types can

be concatenated vertically, and (2) horizontal multi-view data: same data type mea-

sured for a different group of subjects. For example, The Cancer Proteome Atlas

(TCPA) (http://tcpaportal.org) with protein expression measured for a set of patients

7

(https://www.cancer.gov/tcga)
(http://tcpaportal.org)


with 32 different cancer types. Figure 1.2 presents a pictorial representation of the

vertical and horizontal multi-view data. In this dissertation, we will be focusing on

vertical multi-view data.

Figure 1.2: A pictorial representation of (a) vertical integration (b) horizontal integra-
tion and (c) multi-view representation of the same sample using different data types.

For vertical multi-view data, it is well accepted that analyzing all data types in an

integrated form can reveal more information about the patients. By providing multiple

views of the same subject from different yet significant biological processes/molecular

level, they open up new opportunities for not only understanding biological pathways

of disease but also develop personalized treatment for them [30]. Nonetheless, an in-

tegrated analysis of multi-view data poses significant challenges [31, 32]. The simplest

way is to concatenate the data types. However, when each of the data types is high

dimensional (hundreds and thousands of features), their simple concatenation increases

the dimension immensely, and with this sheer immensity comes numerous challenges

in the data analysis. Some of these challenges are: HDLSS data, redundancy, computa-

tional complexity, model overfitting, and multicollinearity- since each data type for the

same patient can be inter-related [33]. Hence, an effective and robust data integration

method is crucial.

8



Nonetheless, most of the key integrated multi-view analysis methods are exploratory

and unsupervised with very few methods for supervised and even fewer for survival anal-

ysis [34]. Furthermore, the current multi-view survival analysis methods have, almost

exclusively, utilized parametric or semi-parametric survival analysis methods such as

accelerated failure time [35] and CPH, thus imposing limiting assumptions to extremely

complex data sets [36, 37].

Hence, towards our overarching goal, in Chapter 3 of this dissertation, we aim to ex-

plore the multi-view data integration performance for survival prognosis and to propose

a non-parametric multi-view survival learning method for overcoming the limited prog-

nosis accuracy of parametric and semi-parametric models. In summary, this chapter

accommodates various healthcare big data challenges, including high-dimensionality

and multi-view data integration into one.

1.3 Survival Analysis for Prognosis using Smart Wearables

In this dissertation, addressing the healthcare big data challenges has been mo-

tivated by the proposed overarching goal of improving the survival analysis accuracy

and healthcare outcomes. Here the survival analysis in healthcare is exclusively done in

a traditional ‘in-clinic’ or ‘in-hospital’ patient care scenario where patients visit med-

ical practitioners post experiencing disease symptoms and are followed through the

duration of study or until an event to assess their survival or outcome of treatment.

Nonetheless, in the last decade, we have experienced a dramatic shift in the status-

quo of patient care from hospital to at-home, point-of-care (POC) setting to provide

accessible quality care in rural and resource-limited areas. This remodeling of patient-

care has been possible through the development of wearable sensors/devices. These

wearable devices are transforming biomedicine by facilitating continuous, longitudinal

health monitoring outside of the clinic [38]. Furthermore, this requires the integration

of machine learning with wearable devices to make them smart wearables that are ca-

pable of not only physiological monitoring but also disease diagnosis, prognosis, and
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rehabilitation [39] (see fig. 1.3). However, very limited smart wearables are available

for prognosis. The limited methods that do exist for prognosis in smart wearables are

based on point-prediction and fail to provide a continuous prognosis, which is much

needed for smart wearables that are made to be worn continually by the patients.

Figure 1.3: A pictorial representation of smart wearables with minimum-configuration 
wireless sensing and embedded advanced analytics. Their integration allows for point-
of-care and accurate disease diagnosis, prognosis, and rehabilitation that can 
shift the status quo of patient care from hospital to in-home setting.

To address this, the final part of this dissertation aims at implementing survival 

learning for continuous prognosis to facilitate its application in smart wearables. More

specifically, we used survival learning for continuous time-to-seizure event prediction 

using EEG data, where there are multiple/recurring seizure events. Further, this appli-

cation of the proposed survival analysis method on one of the fastest-growing and one 

of the most transformative areas of healthcare, i.e., personalized and precision medicine

using smart wearables [38], is aimed at significantly improving the broader impact of

Reprinted with permission from [39]. Copyright 2020 by Wiley Periodicals, Inc.
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this dissertation.

1.4 Organization of this Dissertation

This dissertation contains four main parts/components:

1. Survival prognosis for imbalanced dataset—addressing data complexity and ve-

racity

2. Survival prognosis for multi-view dataset—addressing volume and variety

3. Extension of survival prognosis for continuous time—series or longitudinal data

4. Conclusion

Each of these parts is discussed in different chapters and is organized as follows.

Chapter 2 explores the effect of data imbalance in survival prognosis accuracy. Based

on this exploratory insight, a data balancing approach is incorporated along with the

survival models to improve the accuracy of prognosis. A comprehensive assessment of

several benchmark and case study data sets illustrates a significant improvement in the

prognosis accuracy of the balanced models over their unbalanced counterparts.

Chapter 3 explore the survival prognosis accuracy for multi-view data. This chap-

ter consists of two main parts, the first part emphasizes on the effective integration

of multi-view data and the second part deals with the use of non-parametric sur-

vival learning model to improve survival analysis modeling for multi-view dataset. A

real-world dataset is used for comparative assessments to demonstrate the significance

of effective multi-view data integration and the efficacy of a non-parametric survival

learning model on the integrated data.

Chapter 4 proposes an extension of the use of survival learning beyond the retro-

spective analysis of right-censored clinical data with a single event, fixed follow-up

time, and often time-invariant features to continuous time series data with multi-

ple/recurring events. The significance of this extension is in leveraging the strength of
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the survival analysis model for continuous outcome prediction and laying the ground-

work for event/episode prediction using smart wearable devices. Its efficacy is shown

using epileptic seizure prediction on EEG data collected from small mammals.

Finally, chapter 5 summarizes the key findings and contributions and briefly de-

scribes the potential future work directions.
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2. BALANCED RANDOM SURVIVAL FORESTS FOR MORTALITY

PREDICTION FROM EXTREMELY UNBALANCED DATA

2.1 Introduction

Accuracies of survival models for life expectancy prediction as well as critical-care

applications are significantly compromised both due to the use of traditional propor-

tional hazard models and challenge associated with the survival data such as sparsity

of samples and extreme imbalance between the survival (usually, the majority) and

mortality class sizes. Motivated by the goal of improving survival prognosis accuracy,

this chapter focuses on exploring the impact of data imbalance on survival model’s

performance and the necessary methodological development to address this challenges.

As presented in section 1.2, the characteristics of the survival data pose significant

challenges to survival models. The presence of extreme imbalance between the sur-

vival/censored and the death/mortality classes with as low as 2-10% data in the minor-

ity is a commonly occurring, yet often ignored aspect. Due to the contemporary clinical

practice and infrastructure across the US, acute cardiac and other life-threatening dis-

eases are mostly treated in small tertiary care hospitals and, as a result, the cohort size

tends to be small, further exacerbating this challenge. Balancing is an essential step in

maximizing the utility and improved mortality prediction performance. Although data

balancing is important, only a few works focus on addressing class imbalance from a

survival analysis context [40]. In this chapter, we propose a BRSF survival learning

method by integrating a synthetic data balancing scheme with RSF model to improve

its prognosis accuracy. We present some key theoretical results on the effect of data im-

balance on improving model’s predictive performance from a survival analysis context.

Additionally, for empirical validation, the performance of the balanced survival models,

i.e., the balanced CPH and BRSF are compared to their unbalanced counterparts. Fur-
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ther, the performance of BRSF is also compared to an optimized balanced CPH model.

Here, optimized CPH refers to the CPH model where overfitting errors are minimized

through predictor selection. All models are assessed on a set of 5 benchmark data sets

each representing a different degree of class imbalance, as well as a dataset gathered

at the Heart, Artery, and Vein center of Fresno from 267 acute cardiac STEMI (ST

Elevated Myocardial Infarction) patients after they underwent cardiac revasculariza-

tion therapy. In summary, this chapter reports the following three contributions: (1)

we developed a BRSF approach to address the challenges with high class imbalance

and small data size in survival analysis context, which to our knowledge, has not been

previously addressed in the literature, (2) we established theoretical results on why and

how balancing the class sizes can improve accuracy of survival prediction and provide

results for estimating the relative improvement in survival of model’s prediction after

balancing the class sizes, and (3) we applied the proposed BRSF model in multiple

real data with high imbalance and compared its performance to other contemporary

survival models. These contributions collectively can enhance informed treatment de-

cision for healthcare providers. This chapter is organized as follows. In the first section

we give a detailed description of the RSF and the synthetic data balancing method

used. Here we also discuss the effect of data imbalance on survival prognosis accuracy.

The second section provide the details for the survival data sets used in this paper,

performance evaluation metrics, and the comparative results obtained before and af-

ter addressing the data imbalance. Finally, the last section summarizes our work on

addressing the data imbalance in survival analysis.

2.2 Balanced Random Survival Forests

Recent advent of innovative methodologies for predicting time-to-event, based on

advanced machine learning techniques such as RSF [15] have opened new possibilities to

overcome the limitations of CPH models [15, 41]. However, the data related challenges

still undermine the performance of these methodologies. In this section, we review
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the RSF method and explain through theoretical assessment, how data imbalance in

survival analysis context can be a detriment to prediction accuracies of RSF.

RSF is a non-parametric approach to right-censored survival analysis based on a

Breiman’s ensemble tree, random forests model. Growing a random survival forests, F

can be thought of as a hierarchical procedure which initializes by randomly drawing

B bootstrap samples from the training data consisting of N samples, each with R

predictors (here, features), and growing a survival tree {Tb}1≤b≤B for each of the drawn

samples (see Figure 2.1). The bootstrap samples are invariably extracted from right-

censored survival data. For analyzing survival data, follow up time and associated right

censoring are important considerations. Right-censored survival data of N individuals

is the collection of values in a set, Φ = {(xi, Ti, δi)}1≤i≤N , where the subscript i is the

patient index, and xi = (xri ), i = 1, . . . , N ; r = 1, . . . , R are independent and identically

distributed (i.i.d.) features of patient i. Let T 0
i and Ci be the true event (death) and

censoring times, respectively for subject i. The observed survival time is then given as

Ti = min(T 0
i , Ci), and δi := 1T 0

i ≤Ci is the binary censoring status specified as follows:

an individual i is said to be right-censored if T 0
i > Ci, i.e., δi = 0 or else the individual

is said to have experienced death at time at time Ti(δi = 1).

Here, the construction of a survival tree, Tb from the bth bootstrapped data begins

with a random selection of p out of R possible features in x. Although we used the

suggested, p =
√
R [42, 43], the value of p depends on the number of available features

and is data specific. Previous studies have even shown good performance with p = 1,

care must be taken as an increase in p tend to result in correlated trees [44]. Next,

all the N bootstrapped samples are assigned to the root node, i.e., the topmost node

of the tree. The root node is then split into two daughter nodes, and each of thus-

generated daughter nodes is then recursively split with progressively increasing within-

node homogeneity. Now, for any parent node with p features, the split on a given

feature, xv is of the form xv ≤ ζvγ and xv > ζvγ ; 1 ≤ v ≤ p. Here, ζvγ conventionally takes
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values at the midpoint of consecutive distinct observations of xv corresponding to the

individuals in the parent node being split [45]. Thus, γ has at most one less than the

parent node size values.

Let t1,q < t2,q < ... < tm,q be m unique event (death) times at a parent node, q, and

dl,q denote the number of mortality samples in node q at time {tl,q}1≤l≤m and Yl,q is the

number of individuals who are alive (at risk) in node q at time {tl,q}1≤l≤m. Similarly,

dl,j and Yl,j denote the number of deaths and individuals who are alive (at risk) in

the daughter node j ∈ {1, 2} at time {tl,q}1≤l≤m. It follows that dl,j individuals had

survival time less than tl,q, and Yl,j individuals had a greater survival time. For a split

using feature xv and its splitting values ζvγ , the goodness-of-split is measured using a

log-rank statistic [45] represented as:

L(xv, ζvγ ) =

∑m
l=1

(
dl,1 − Yl,1

dl,q
Yl,q

)
√∑m

l=1

Yl,1
Yl,q

(
1− Yl,1

Yl,q

)(
Yl,q − dl,q
Yl,q − 1

)
dl,q

(2.1)

The log-rank statistics in (2.1) compares the survival difference between the two daugh-

ter nodes at each distinct event time, {tl,q}1≤l≤m. A larger difference between the two

nodes represents a greater homogeneity within the node, hence, the best split at a

node q is determined by the feature x∗ and its value at the cut point ζ∗ such that

|L(x∗, ζ∗)| ≥ |L(xv, ζvγ )| ∀ xv and ζvγ . Algorithm 1 presents the procedure to select x∗

and ζ∗ for any given parent node with κ distinct values of γ.

RSF inherits the robustness and desirable properties (increased accuracy, minimized

bias, and variance) of random forests model to the survival analysis. Recent works using

RSF for survival data have shown improved results as compared to the CPH models

and are getting popular as a survival analysis tool [46, 14]. Additionally, RSF effectively

imputes the missing data—a common problem in healthcare data sets. However, along

with inheriting the merits of random forests, RSF also inherits random forest’s curse of
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Algorithm 1 Growing an RSF
1: Initialize: i← 1, b← 1, x∗ ← 0, ζ∗ ← 0
2: Select B, s0,Φtrain

3: while b ≤ B do
4: Grow Tb
5: while unique deaths in L(Tb) ≥ s0 do
6: Find x∗, ζ∗
7: Perform node split
8: end while
9: end while

10: Calculate CHF(F) for ΦOOB

Figure 2.1: A pictorial representation of (a) an RSF (F) consisting of B trees and (b)
split of a parent node, q into two daughter nodes using the feature x∗ at value ζ∗.

learning from the imbalanced data which emphasizes on the minimizing the overall error

rate and results in poor accuracy for the minority class [47]. The presence of extreme

imbalance between the survival/censored and the mortality classes with as low as 2-

10% data in the minority is a commonly occurring, yet often ignored aspect. Due to

the contemporary clinical practice and infrastructure across the US, acute cardiac and

other life-threatening, low-prevalence diseases are mostly treated in small tertiary care

hospitals and, as a result, the cohort size tends to be small [40, 48], further exacerbating
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this challenge. Thus, data balancing is an essential step in maximizing the utility and

improved mortality prediction performance. Despite this, only a few works focus on

addressing class imbalance in the survival data [40] and none, to our knowledge, have

done extensive theoretical and empirical studies on the effect of balancing in the survival

analysis context.

Data balancing is an already developed area of research in the classification lit-

erature [49, 50] with several different balancing techniques being widely adopted to

address the class imbalance problem. One popular balancing approach are data level

sampling techniques that deals with modification of class distribution of the dataset

before the learning algorithm is applied, such as, undersampling —randomly under

sampling the majority class samples [51]; oversampling —randomly oversampling (with

replacement) the minority class samples, until both classes have equal number of sam-

ples [26]. However, prior investigations suggest that over-sampling does not improve

the minority class representation significantly and under-sampling is a better approach

than over-sampling [52, 22]. Unfortunately, various real-life scenarios, including the

present context where data is obtained from tertiary care hospitals, only limited sam-

ples are available. In such cases, under-sampling leads to an unwanted decrease in the

training dataset and is not a feasible option.

This led us to explore a synthetic generation of minority class samples without

resorting to excessive under-sampling. We adopt the synthetic minority over-sampling

technique (SMOTE) proposed by [22]. This synthetic generation process proceeds in

the feature space by selecting k nearest neighbors of the minority class samples (we

selected the default value of k to be 5). Let xi be the feature vector representing the

features for the selected minority and xj be the feature vector of a randomly chosen

neighbor, then a new synthetic minority, xs is generated in the feature (feature) space
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as follows:

xs = xi + Γ (xi − xj)

where, Γ ∼ Uniform(0, 1) is a uniform random variable. Thus, the synthetically gen-

erated data can be interpreted as a randomly sampled point along the line segment

between the minority samples and their nearest neighbors in the feature space. Based

on the amount of oversampling needed, neighbors from the k nearest neighbors are ran-

domly chosen. For example, if the amount of over-sampling needed is 200%, then two

of the k nearest neighbors are chosen and one sample is generated in the direction of

each (see [22] for further details). Representation of this scheme in two-dimensional fea-

ture space is shown in Figure 2.2 and the class ditributions before and after SMOTE’s

application is shown in Figure 2.3.

Figure 2.2: Representation of the imbalance in STEMI dataset and synthetically gen-
erated minority (in green) using SMOTE.
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Figure 2.3: (a) Representation of the class imbalance in the feature space (minority
class in red) and (b) representation of the balanced data using synthetically generated
minority.

2.3 Results

In this section, we assess the performance RSF, BRSF, CPH, and balanced CPH

through their application in mortality data sets with various level of imbalance. Along

with the model accuracy results, a brief discussion of the data sets and details on the

performance measures employed are also delineated.

2.3.1 Performance Measure

In the automated prognostics and decision support practice, where data drives the

critical decision-making, the robustness of the model is of utmost importance. Recently,

there have been vigorous debates on the effectiveness of the performance measures and

on the efficacy of one measure over the other [42]. Here, we compare the performance

of BRSF relative to contemporary survival models based on two of the most popular

metrics in survival analysis literature—concordance index and Integrated Brier score.

Further, we use 10 fold cross-validation (cv) scheme to calculate both of the measures

to minimize bias for the test data, and to improve precision in the scenario of induced
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variance due to the data-driven steps in model building and validation measure.

2.3.1.1 C-index

Harrell’s concordance index or C-index [53] is one of the most popular accuracy

measure in the right-censored survival analysis literature. It assesses the model’s dis-

criminative strength by comparing the number of pairs of subjects where the model

predicted a lower risk for the subject with higher survival time (concordant pairs),

among all permissible pairs. In order to compute C-index, we first need to define per-

missible and concordant pairs. To account for the censoring, the set Θ of permissible

pairs consists of all possible pairs of individuals, i and j in the data, but with two ex-

ceptions: 1) the ones in which shorter survival time is censored, and 2) when Ti = Tj,

but neither of i and j has the event (death). Now, for any randomly selected pair out

of the permissible cases, a pair can be concordant or partially concordant depending

on their values of ensemble hazard, event time, and censoring status. For example,

for a pair with distinct ensemble hazard and event times, a concordance value to 1 is

assigned if the predicted risk (in terms of ensemble CHF) is greater for the individual

that experiences death first i.e., Pr
(∑n

l=1 Ĥe(t
∗
l |xi) >

∑n
l=1 Ĥe(t

∗
l |xj)|Tj > Ti

)
. Here

t∗1, ..., t
∗
n denote all the unique event times in Φ. For each pair in Θ, the concordant

pairs and their assigned concordance values can be given as:
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I =



1,


(Ĥe(t

∗
l |xi) > Ĥe(t

∗
l |xj)|Tj > Ti)

(Ĥe(t
∗
l |xi) > Ĥe(t

∗
l |xj)|Tj = Ti) & (δi = 1, δj = 0)

(Ĥe(t
∗
l |xi) = Ĥe(t

∗
l |xj)|Tj = Ti) & (δi = δj = 1)

0.5,



(Ĥe(t
∗
l |xi) = Ĥe(t

∗
l |xj)|Tj 6= Ti)

(Ĥe(t
∗
l |xi) 6= Ĥe(t

∗
l |xj)|Tj = Ti) & (δi = δj = 1)

(Ĥe(t
∗
l |xi) = Ĥe(t

∗
l |xj)|Tj = Ti) & (δi = 1, δj = 0)

(Ĥe(t
∗
l |xi) < Ĥe(t

∗
l |xj)|Tj = Ti) & (δi = 1, δj = 0)

0, otherwise

Then the C-index can be expressed as the ratio of the sum of concordance values

and the total number of permissible pairs as:

C =

∑
i,j∈Θ I
|Θ|

Since C represents the classification accuracy of the model and is equiavlent to the

area under the curve, a higher value is desirable. For concordance index valued from 0

to 1, a value of 0.5 is essentially no better than random guessing.

2.3.1.2 Integrated Brier Score (IBS)

We use prediction error curve (PEC) to capture a model’s prediction of the survival

probability for the test data at different time points. In the absence of censoring, PEC

for an individual i in the test data is an expectation of the squared difference between

the true survival status and predicted survival probability of i at time t with features xi.

However, censoring introduces bias in the population average of PEC. The introduction

of inverse probability of censoring weight (IPCW) by [54] provides a versatile measure

22



to overcome this limitation by weighting the squared residuals using IPCW. Given the

survival data Φ = {(xi, Ti, δi)}1≤i≤N , let the test dataset DM contain M independent

and identically distributed replicates of Φ, whereM < N . With the observed status for

subject i, Ỹi(t) = 1Ti>t and its predicted survival probability Ŝ(t|xi), the prediction

error or Brier score at time t is given as:

ρ(t) =
1

M

∑
i∈DM

Ŵi(t)
{
Ỹi(t)− Ŝ(t|xi)

}2

(2.2)

In (2.2), the inverse probability of the censoring weights is estimated as [55]:

Ŵi(t) =
(1− Ỹi(t))δi
Ĝ(Ti − |xi)

+
Ỹi(t)
Ĝ(t|xi)

where Ĝ(t|x) ≈ P (Ci > t|xi = x) denotes the estimated conditional survival function

of the censoring time. The aim here is to give the averaged prediction error at every

time point in the test data. We also use survival probability plots of individuals in

the test data at all event time points to show the predicted survival probability of the

balanced and unbalanced models.

IBS consolidates the PEC estimates over all time points and is defined as:

IBS(ρ, τ) =
1

τ

∫ τ

0

ρ(µ)dµ

Where τ is the total time span for which the prediction errors can be estimated. Since

Brier score is an error measure, a small value is desirable with 0 indicating perfect

prediction.
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2.3.2 Data Description

2.3.2.1 Benchmark Data

Six data sets were used the effect of data balancing in survival analysis. Five of

the six data sets (except the STEMI dataset) used in this study were obtained from

online repositories, each with a different level of imbalance. These 5 data sets consists

of survival analysis data for acute diseases such as lung cancer (veteran and lung data

sets), a plasma cell immune disorder which may result in malignancy (mgus dataset),

acute stroke in patients with atrial fibrillation (COST dataset), a rare and fatal chronic

liver disease (pbc dataset). A summary of the class proportions in all the data sets for

the survival and the mortality classes is given in Table 2.1.

Table 2.1: Summary of the survival data sets used for model evaluation.

Class proportions

Dataset Total Censored Mortality
veteran [1] 137 9 128
mgus [56] 241 16 225
COST [57] 518 114 404
STEMI [58] 267 205 62
lung [59] 228 63 165
pbc [60] 418 257 161
* Minority class size is represented in red.

The next subsection provides the description for the STEMI dataset that was ob-

tained from our collaborators at the Heart, Artery, and Vein center of Fresno.

2.3.2.2 ST Elevated Myocardial Infarction Data

The study cohort for the STEMI dataset consisted of 278 consecutive patients.

The patients had electrocardiographic criteria for STEMI and a presumed diagnosis

of acute coronary syndrome at the time of presentation to the emergency room of a
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tertiary care hospital in central California, USA. Electrocardiographic, radiographic,

and basic laboratory investigations were obtained at the time of presentation and an

emergent coronary angiography was performed. Patients underwent coronary artery

bypass grafting (CABG) or primary percutaneous coronary intervention. Enrollment

into the study began in January 2007 and patient were followed for one year until Jan-

uary 2008. A detailed design of this retrospective study has previously been published

[58]. We focused primarily on N = 267 patients (187 male and 80 female) who did not

have preexisting left bundle branch block or paced rhythm on ECG. Dataset consisted

of a large set (R = 150) of features. These features included therapy provided, physio-

logical and anatomical variables such as age, gender, ethnicity, BMI, ECG criteria, the

occurrence of cardiac arrest during admission, troponin levels at the time of discharge,

Brain Natriuretic Peptide (BNP) levels, and clinical risk measures such as TIMI index,

Mayo Clinic risk score etc. along with the previously mentioned laboratory measure-

ments. The dataset had ethnically diverse population including Black, Caucasian, and

a high percentage of representative minority populations such as American Indian,

Asian, and Hispanics. Mortality data were obtained either from the hospital, Califor-

nia Department of Public Health (CDPH) or Social Security Death Index records. To

avoid any confounding effects of loss to follow-up and accurate determination of the

cause of the death, an all-cause mortality was selected as a primary endpoint. Out of

the 267 patients, 62 patients died in one-year duration (representing the minority class

for this dataset).

2.3.3 Performance Comparison

Most of the data sets contained several missing values which were then imputed

using adaptive tree imputation [15] and the data was balanced for equal class repre-

sentation. To compare CPH and RSF and to determine the effect of balancing on these

models, we use the C-index and IBS measures described in subsection 2.3.1. Table 2.2

presents the average C-index and IBS scores for CPH, balanced CPH (BCPH), RSF,
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and BRSF obtained via a 10 fold cv scheme. The best model obtained for both C-index

and IBS are shown in blue. As evident from this Table, BCPH and BRSF consistently

performed better than their unbalanced counterparts.

Table 2.2: Performance evaluation results for the benchmark data sets.

Model

Dataset Error measure CPH BCPH RSF BRSF

veteran C-index 59 (0.24) 58 (0.21) 61 (0.11) 77 (0.04)

IBS 0.15 (0.04) 0.14 (0.03) 0.15 (0.05) 0.09 (0.02)

mgus C-index 71 (0.05) 89 (0.021) 69 (0.07) 88 (0.02)

IBS 0.13 (0.02) 0.06 (0.01) 0.14 (0.02) 0.04 (0.01)

COST C-index 69 (0.03) 76 (0.03) 64 (0.04) 85 (0.01)

IBS 0.17 (0.01) 0.15 (0.01) 0.18 (0.02) 0.06 (0.01)

STEMI C-index 80 (0.12) 79 (0.05) 82 (0.08) 82 (0.06)

IBS 0.18 (0.07) 0.12 (0.04) 0.17 (0.06) 0.08 (0.01)

lung C-index 61 (0.09) 70 (0.04) 59 (0.09) 76 (0.03)

IBS 0.18 (0.01) 0.13 (0.01) 0.18 (0.02) 0.08 (0.01)

pbc C-index 77 (0.09) 79 (0.02) 78 (0.08) 83 (0.02)

IBS 0.14 (0.02) 0.12 (0.01) 0.13 (0.02) 0.07 (0.01)

* Numbers inside the bracket represents standard deviation across the 10 fold cv.
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Figure 2.4: Boxplots of estimated IBS calculated for the test data in 10-fold cv scheme
for 6 data sets arranged in decreasing order of class imbalance. The horizontal line
inside the box represents the median and the box is bounded by the 25th and 75th

percentile (IQR). Whiskers extend to 1.5× IQR and the outliers are represented by the
red dot.

Additionally, the performance of BRSF supersedes all other models. There was an

overall improvement of 25% in the C-index and 55% in the IBS score from RSF to

BRSF. This is summarized in Figure 2.4.

The performance improvement in C-index can be better represented in terms of the

survival probability curves. Figure 2.5, presents the survival probability plots for the

veteran, mgus, COST, and lung data sets for which survival class is the minority and

STEMI and pbc data sets which has mortality class as minority (refer to Table 2.1).

In this figure, the red curve represents survival probability of the mortality samples,

blue curve represents the survival of the censored samples at different event times,

and the dashed lines are used to represent the synthetic samples. Ideally, the survival
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probability of the mortality should be low and that for the censored samples should

be high. However, due to imbalance, the hazard/survival probability estimates are

underestimated when m2 << m1 and overestimated when m1 << m2. After the classes

are balanced not only their separability (i.e. higher survival probability for the censored

samples and lower for the mortality samples) increases but also the survival/hazard

probability estimates for the minority samples improves.

Since the data size increases after balancing, to ensure that the performance im-

provement after balancing was not due to the difference in the number of samples in

the leaf node (terminal nodesize) of BRSF and RSF, we compared the results for dif-

ferent nodesize sequence. Figure 2.6 shows the average prediction performance in terms

of C-index (Figure 2.6 (a)) and IBS scores (Figure 2.6 (b)) for the 5 benchmark data

sets across 7 different nodesizes. This figure shows a consistently better performance

of BRSF at all nodesizes with the minimum average C-index of BRSF (0.81) being

higher than the maximum average C-index accuracy of RSF (0.69) and the maximum

IBS averaged error of the BRSF (0.09) being lower than the minimum average IBS of

RSF (0.15).
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Figure 2.6: Average prediction performance of RSF (green) and BRSF (red) for the 5
benchmark data sets at 7 different node sizes in terms of (a) C-index and (b) IBS score.

Further, we obtained 7 best features for STEMI data based on the backward se-

lection. Their OOB error was 15.8% compared to 18% with all 150 features. It turns

out these features have high importance as per both Breiman’s variable importance

(VIMP) [61] and Ishwaran et. al.’s minimal depth (MD) scores [62] (see Table 2.3).

From a physiological standpoint, these features are among the most significant indica-

tors of survival during acute cardiac diseases, as elaborated in the following paragraphs.

Table 2.3: The top 7 features for the STEMI dataset.

features

Ranks Disch MCRS Cron GRACE MCRS CHF ACS

(statistics) Trop MS DC Prob MACE in1yr in1yr

MD 1(8.16) 2(8.39) 3(8.53) 4(8.75) 7(9.28) 8(9.30) 12(9.69)

VIMP 9(0.01) 3(0.02) 1(0.02) 8(0.01) 7(0.01) 4(0.02) 5(0.02)
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We graphically explored the relation of thus selected most important features (top

7) with the survival probability using partial dependence plots. In a survival setting, a

partial dependence plot represents the response corresponding to the feature of interest

at a particular time by averaging out the joint effect of the remaining features [63, 64].

In Figure 2.7, the two curves corresponding to each of the features shows the trend

of survival probability with the changing value of the feature at 16th and 32nd week

for 100 randomly chosen subjects. It shows nonlinearly-decreasing survival probability

with increasing value of “DischTrop”, “MCRS-Mortality Score(MS)”, “CronDC”, “GRA-

CEProb”, “MCRS-MACE”, “CHFin1yr”, “ACSin1yr”. For all the features, we can see

the decreasing survival probability with increasing time (blue line for 32nd week is be-

low the green line for 16th week). Most importantly, the non-proportional hazard trend

is evident from the “WBC” or white blood cell count feature. This trend will be disre-

garded by the CPH model which has a proportional hazard assumption. The variables

selected were evaluated by a cardiologist to have a significant physical meaning and

correlation with the prediction of mortality.
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Figure 2.7: Partial dependence plot of predicted survival probability plotted as a func-
tion of top 6 features for randomly chosen 100 subjects (market as “circle” and “trian-
gle”). The green and blue lines show the trend at 16th and 32nd weeks respectively.

The variables selected were evaluated by a cardiologist to have a significant physical

correlation with the prediction of mortality. In particular, the DischTrop (discharge tro-

ponin) feature, recording the troponin levels during the patient discharge is studied as

a primary diagnostic component [65, 66]. Troponin is a protein released during myocar-

dial infarction. A higher level of troponin indicates more damage to the cardiac muscle.

Figure 2.8 is a visualization of survival probability trend with varying DischTrop level

across the mortality and survival samples. Patients with a higher level of troponin

content during the discharge are shown to have lower survival probabilities. Though

application of machine learning algorithms, in particular, ensemble based approaches

are often criticized for their lack of interpretability in real-world data, the variable

and partial dependence plots for all the features can provide insightful information on
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their relationship with mortality. Consequently, the proposed technique can be used

by healthcare practitioners as an analytical tool to achieve improved throughput and

accuracy.

Figure 2.8: Variable dependence plot of survival probability plotted as a function of
DischTrop level at 16th and 32nd weeks.

2.4 Summary

In this chapter, we introduced a BRSF model for survival analysis to address the

limitations in handling extremely imbalanced data sets in survival analysis. The the-

oretical results, as well as extensive experimental analysis presented in this chapter,

demonstrates the benefits of data balancing in survival learning. Empirical studies with
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6 data sets suggest a 55% improvement in IBS score of BRSF as compared to RSF.

Although class imbalance has been extensively studied in the machine learning liter-

ature, its theoretical analysis and application in the domain of survival analysis still

remain largely unexplored. Pertinently, this is among the first extensive investigations

into the effect of class imbalance on the performance of survival models. Specifically,

the theoretical results on performance improvement accrued from balancing the RSF

models as well as the detailed empirical studies can lead to further improvements to

the algorithms for RSF as well as more optimized balancing strategies. Future work

on extensive comparison of different data balancing techniques could be essential in

shedding more light on data imbalance in the survival analysis context and develop

more customized balancing techniques.
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3. NON-PARAMETRIC SURVIVAL LEARNING FOR HIGH DIMENSIONAL

MULTI-VIEW DATA

3.1 Introduction

Simultaneous advancements in a variety of sensing and data acquisition techniques

have created a data explosion that has not only impacted the engineering or IT domain

through internet traffic and social network data but also created healthcare big data.

Within a few decades, the challenge of learning with limited features has now metamor-

phosed into the challenge of learning from high dimensional big data with hundreds and

thousands of features. More recently, the innovations in high-throughput technologies

and the creation and collaborations of big consortium such as The Genome Technol-

ogy Program at the National Human Genome Research Institute [67], International

Cancer Genome Consortium [68], and TCGA program [29] have facilitated low-cost

and high-quality genomic data collection from multiple sources [33]. The data (often

heterogeneous) collected from multiple sources provide complementary information or

different views of the same process and are referred to as multi-view data [28]. For

example, in multimedia content understanding, a video and audio signal can provide

complementary information for a multimedia segment. It can be simultaneously used

to describe it [34], and in molecular biology, different omics data, i.e., genomics and

transcriptomics, can provide complementary information for phenotype determination.

Since the integrated analysis of the multi-view data has been shown to provide com-

plementary information and elucidate the underlying complex disease mechanisms [69],

multi-view data analysis has emerged as a promising area of research. However, most

of the key integrated multi-view analysis methods are exploratory and unsupervised.

Studies in survival learning using multi-view data have been very limited [70] despite

one of the key applications of multi-view dataset in healthcare being cancer prognosis
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and progression studies using survival analysis.

In line with our goal of improving survival prognosis accuracy, in this chapter, we

focus on addressing the challenges imposed by the multiple multivariate or multi-view

dataset for survival learning. Specifically, we will be focusing on vertical multi-view

data or multi-view data with the same set of samples/patients (see Figure 1.2) for

survival prognosis. This chapter has two specific aims: (1) to turn the challenge of

using high dimensional multi-view data into an opportunity of learning from various

significant biological processes by utilizing an efficient data integration method and

(2) to implement a non-parametric survival learning model on the integrated data for

prognosis performance improvement.

This chapter is organized as follows. In the first section, we review the multi-view

data integration literature and give a brief description of the Joint and Individual

Variation Explained (JIVE) method that is used in this dissertation for multi-view

data integration. In the second section, we propose a non-parametric survival learning

for the integrated multi-view data. Finally, the last section provides the assessment and

performance comparison results for data integration and survival learning for breast

invasive carcinoma data.

3.2 Multi-view Data Integration

The integration of different data types for understanding the same set of subjects

has several advantages. Some of them are as follows: (1) novel biological insights: differ-

ent data types in the multi-view data can provide insights that are often not available

from a single data type. For example, in genetics, expression of biological activity such

as a tumor is suspected to depend on the interaction among the gene, protein, and

transcriptional regulators, thus their integration provides a different vantage point to

observe the same biological phenomena and gather more details than ever possible with

single data type [71, 72, 69], (2) increased accuracy in noisy data: in many applica-

tions including high-throughput technologies in genomics, the signal-to-noise ratio is
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often low. In such conditions, obtaining complementary information from multiple-data

types can significantly increase the accuracy of the analysis, and (3) robustness in rare

disease prognosis: the current diagnostic accuracies for a variety of rare diseases is just

25-50%. The integration of different data types can not only increase this accuracy but

can provide additional evidence for a molecular event, establishing a causality chain

that can not be established using only a single data type [69, 73].

Hence several efforts have been made for integrated multi-view analysis, and it is

a new and growing area of research [70]. However, multi-view data integration is chal-

lenging due to the redundancy, HDLSS issue, and complex associations between the

constituent data types [28]. Additional challenges arise when multi-view data integra-

tion is followed by downstream analysis, such as classification and survival prognosis.

Hence a robust and effective data integration is a crucial first step for accurate survival

prognosis.

Existing multi-view data integration methods in the literature can primarily be clas-

sified into two extremes—early or late integration. In the early integration approach,

all data types are concatenated and then used for subsequent analysis. In the late in-

tegration, each data type is analyzed separately, followed by an ad-hoc combination

of their results [74, 75, 28]. One advantage of the early and late integration method

is that they allow for a straightforward application of single multivariate data anal-

ysis methods, for example, the application of dimensionality reduction methods such

as the principal component analysis (PCA) and singular value decomposition (SVD)

on the concatenated data in early integration and the individual data type in late

integration [75, 76]

However, both these approaches have significant limitations [77]. The early integra-

tion of high dimensional data can have scaling and interpretability issues. It may fail to

capture information specific to a single data type and their relation with the response.

The late integration, on the other hand, neglects the association and interactions be-
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tween the data types by analyzing them individually and leads to decreased statistical

power.

Hence, effective multi-view data integration methods are required to address these

challenges. Recently, several methods have been proposed to address these issues for op-

timal integration and joint analysis of multi-view data. These include data transforma-

tion methods such as matrix factorization, network-based learning, etc. that transform

the data types in a common space. Several methods focused on exploring the associa-

tions between the data types have also been proposed. Canonical correlation analysis

(CCA) [78] and co-training [79] are one of the earliest methods for investigating the

association between two sets of variables. Extensions of CCA for high-dimensional [80]

and multiple data types (more than two data types) have been proposed [32] for use in

multi-view data analysis. Similarly, methods such as O2-PLS, an extension of partial

least square (PLS), is used to explore the association between a pair of data types [81]

and multi-level functional PCA or MF-PCA is used to explore the between and within

variation of grouped samples on the same functional data [77, 82].

Since our emphasis is on exploring the impact of each data type and their association

on the response, a method that can extract the common and disparate structures in each

data type is of interest. One such method is joint and individual variation explained

(JIVE) [31]. JIVE is an extension of PCA that decomposes the multi-view data into

a low-rank approximation of joint and individual components capturing the joint (or

shared) variation and individual variations in each data type. JIVE was selected as it

provides both a robust and insightful understanding of the integrated data structure,

including the contribution of each data type [83, 84]. In the next section, we provide

a brief summary of the JIVE integration method (details of the JIVE method are

presented in [31]).
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3.2.1 Joint and Individual Variation Explained (JIVE)

It is well established that the data types obtained from multiple sources for the

same set of subjects are associated with each other [72]. For example, in molecular

biology, the central dogma explains the flow of information from DNA to messenger

RNA (mRNA) and mRNA to protein through the translation and transcription pro-

cess, making these molecular level associated with each other when measured for the

same subject [33, 85]. Thus, a multi-view data integration method that can exploit and

explore these associations can provide additional information for improved prognosis

and elucidate the effect of each data type on the response. JIVE is one such exploratory

data integration method that separates and analyzes the joint and individual (infor-

mation uniquely present in a data type) effects in multi-view data [31].

As discussed in the foregoing, JIVE is based on decomposing each data type into

a sum of three terms, namely, a low-rank approximation of joint structure capturing

the shared variation across the data types, a low-rank approximation of the individual

structure capturing the variations specific to each data type, and the residual noise [31].

Let X1,X2, . . . ,Xk with k ≥ 2 be vertical data types where each data type has the

same number of N columns regarded as subjects and pi features or rows that may

or may not be the same. Hence, their vertical integration, X has N columns and

p = p1 + p2 + · · · + pk rows (see Fig. 1.2). Now, let Ji be the sub-matrix of the joint

structure matrix and Ii be the individual structure matrix associated with Xi, then

the unified JIVE model is given as:



X1

X2

...

Xk


=



J1

J2

...

Jk


+



I1

I2

...

Ik


+



ε1

ε2

...

εk


(3.1)

where εi are the error matrix of independent entries with zero expectation and has
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N columns and pi rows, corresponding to Xi and the joint structure matrix, J can be

given as the vertical concatenation of the joint sub-matrices as:

J =



J1

J2

...

Jk


(3.2)

The JIVE model imposes rank constraints on the joint and individual matrices

where rank(J) = r and rank(Ii) = ri such that r < rank(X) and ri < rank(Xi) for

i = 1, . . . , k. The rank selection is done using a permutation testing approach and is

a critical first step in the subsequent estimation of the joint and individual structures.

The choice of ranks is crucial to avoid over and underestimation of joint and individual

variations. Now, for fixed ranks, r, r1, . . . , rk, J and Ii are estimated by minimizing the

sum of squared error. Let R be the p×N residual matrix after accounting for the joint

and individual structures, given as:

R =



R1

R2

...

Rk


=



X1 − J1 − I1

X2 − J2 − I2

...

Xk − Jk − Ik


(3.3)

Then the JIVE model iteratively estimated J and I1, I2, . . . , Ik by minimizing

||R||2. This iterative estimation is summarized in algorithm 2 (more details on the

estimation of joint and individual structures and rank selection can be found in the

supplementary section of [31]).

This estimation imposes orthogonality constraint between the rows of the joint and

individual matrix, i.e., JITi = 0p×pi for i = 1, . . . , k ensuring that the estimated joint

structure between the data types and the individual structures are unrelated and are
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Algorithm 2 Estimation of joint and individual structures using JIVE
1: Initialize: XJoint = J = [J ′1, . . . ,J

′
k]
′ and RF = ∆

2: while R > RF do
3: For a given rank r, estimate J = [J ′1, . . . ,J

′
k]
′ by a rank r SVD of XJoint

4: while i ≤ k do
5: Set: X Individual

i = Xi − Ji
6: Estimate Ii by a rank ri SVD approximation of X Individual

i

7: Set: XJoint
i = Xi − Ii

8: Estimate ||R|| and
9: end while

10: Set XJoint = [XJoint′
i , . . . ,XJoint′

i ]′

11: end while

uniquely determined.

Through the JIVE decomposition, the collinearity and redundancy between the

data types are accounted for in the joint component. It also facilitates identifying the

data types that contain useful information not present in others [36, 77]. However,

JIVE is an exploratory unsupervised method. In the next section, we extend JIVE for

survival prediction.

3.3 Multi-view Survival Learning

Multi-view data integration has been primarily motivated by real-life applications

aimed at improving prognosis and precision medicine for complex and severe diseases

such as cancer using multiple data sets that can provide different vantage points to

understand the disease prognosis. However, most of the early and prominent methods

proposed (as discussed in section 3.2) in the multi-view data analysis literature, includ-

ing JIVE, are unsupervised methods aimed for exploratory analysis of high-throughput

data, dimensionality reduction, and easy visualization. Nonetheless, the importance of

incorporating phenotype labels (disease or normal) in biostatistics, i.e., an extension

of multi-view method to supervised and semi-supervised learning is paramount as it

enables disease diagnosis. Recognizing this significance, several methods are now being

proposed for supervised and semi-supervised multi-view data analysis [86, 87, 88].
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However, the supervised and semi-supervised approaches are used to classify pa-

tients into two groups but are unable to link the features to the time-to-event and fail

to provide a continuous risk score for the patients [89]. Nonetheless, the clinical data

analysis is now moving from supervised diagnosis to early prediction and long-term

prognosis using survival analysis methods with emphasis on prognostic feature deter-

mination that can inform decision-making, such as personalized treatment, patient

management, and risk stratification. However, a review of the literature until 2015

found no methods for predictive analysis from multi-view data [90, 36]. Currently, only

a few methods exist that integrate multi-view data for survival analysis [70]. Further,

the adaptation of the unsupervised methods for survival data is not trivial due to the

censoring of data making it an open area of study in the multi-view literature.

The recent development in multi-view survival analysis has two fundamental limita-

tions that we are trying to address in this chapter. Firstly, the data types are integrated

either using the early or late integration method resulting in several limitations, as ex-

plained in the foregoing. Secondly, the survival analysis models used are primarily

dominated by the parametric or semi-parametric models like CPH model which inflicts

several restrictions (see section 1) that does not hold in real-life, especially when the

data is as complicated as the multi-view genomics data for cancer prognosis [36, 37]. To

resolve these issues, we propose an integrated non-parametric survival learning method

or iNPS learning that use JIVE method for effective integration and exploration of mul-

tiple data types followed by the implementation of the non-parametric RSF method,

for survival learning.

As stated previously, JIVE is an extension of PCA to multi-view data. Similar to

the factorization of a single multivariate data matrix using PCA, the JIVE factorization

of each data type is given as follows:

Xi = UiS +WiSi + εi, i = 1, . . . , k (3.4)
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where S is r × N common joint score matrix that summarizes the joint structure

between the data types and Ui is pi × r are loadings that provide how the joint scores

are expressed in features of data type i. Similarly, Si is ri×N scores summarizing the

individual variation with the data type i and Ui is pi × ri corresponding loadings.

Now, these scores can be used for subsequent analysis of time-to-event. The CPH

model to predict the time-to-event for a subject i using two data types (k = 2) with

joint and individual scores of ranks r, r1, and r2 can be given as:

λ(t|Xi) = λ0(t) exp(
r∑
j=1

βjJji +

r2∑
l=1

βlI1li +

r2∑
m=1

βmI2mi) (3.5)

Leveraging the strength of JIVE, using CPH for survival prognosis using the joint

and individual scores is promising due to the dimension reduction and removing the

redundancy between multiple data types [36]. However, the limitations of the CPH

model, such as the proportional hazard assumption (see section 1.1) still undermines

the accuracy of the estimated survival prognosis. Hence, we use the RSF learning

method with the scores of the joint and individual matrices are treated as composite

biomarkers [36]. The subsequent analysis and performance estimation of the JIVE

and iNPS method is demonstrated using the real-world dataset for cancer prognosis

described in the following section.

3.4 Results

3.4.1 Data Description

3.4.1.1 Breast Invasive Carcinoma Data

To assess the performance of the parametric and non-parametric survival anal-

ysis methods on multi-view data, we used the breast invasive carcinoma (BRCA)

dataset from TCGA (https://www.cancer.gov/tcga) [29]. BRCA is one of the bench-

mark data sets predominately used in the studies for multi-view data analysis [91].

This data contained 620 patients with three omics data types, including gene expression
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(illuminahiseq_rnaseqv2-RSEM_genes_ normalized), miRNA (illuminahiseq_mirnaseq-

miR_gene_expression), and methylation (illumina humanmethylation 450k). The ex-

pression data sets were downloaded from Broad institute’s Genome Data Analysis

Center (GDCA) Firehose (https://gdac.broadinstitute.org) and the clinical and phe-

notype data with the overall survival status and time to event was downloaded from

UCSC XENA (https://xena.ucsc.edu) [92].

The dataset was preprocessed to remove all patients and features with more than

20% missing values, and the remaining missing values were imputed using k-nearest

neighbor imputation. For the methylation, only 5000 features with maximal variance

were selected [91]. Following the preprocessing, each sample had p1 = 20531 genes,

p1 = 1046 miRNAs, and p1 = 5000 methylation. We also chose to include 10 clin-

ical features along with the expression data: gender, age, menopause status, binary

response parameter for the occurrence of any new tumor event after the initial treat-

ment, pathologic stage for each patient, neoplasm cancer status, pathologic T, which is

a discrete parameter that measuring the total progression of the tumor, progression of

the metastases (pathologic M), progression of cancer in the lymph nodes (pathologic

N), and the overall progression (pathologic stage) [91] .

The assessment presented in the next section was done using 5-fold cross-validation

with each fold containing 80% training data, and 20% testing data and accuracy of

time to event prognosis was measured using c-index values (see 2.3.1.1).

3.4.2 Performance Comparison

Using the three omics data types, i.e., miRNA(p1 = 1046), methylation(p1 = 5000),

and genes(p1 = 20531) in the BRCA dataset, we performed some comparisons and

performance evaluation of the proposed iNPS method.

Firstly, we applied the unsupervised JIVE on the normalized concatenated data

for extracting the joint and individual structures from these three data types and

dimensionality reduction for subsequent survival analysis. Using the permutation test,
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the joint rank of r = 2 individual ranks of r1 = 4, r2 = 35, and r3 = 2 were obtained for

miRNA, methylation, and gene data types, respectively. The importance of effective

multi-view data integration using JIVE can be seen from Figure 3.1. This figure shows

the c-index performance of the time-to-event prediction on the BRCA test data using

RSF with 5-fold cross-validation. The performance of each individual data type is shown

with the highest median accuracy of the methylation data type. However, a simple

concatenation of these data types did not result in a significant accuracy improvement.

On the contrary, the median performance of the concatenated data was worse that

each of the individual data types. This is most likely due to the HDLSS problem, i.e.,

(p >> N) and here p = 26577 and N = 620. For the survival prognosis using JIVE, the

joint and individual scores with the estimated ranks were viewed as individual columns

of the composite feature vector for each patient [36]. Thus a total of 43 features were

considered with (2, 4, 35, 2) joint and individual ranks. This significant elimination of

redundancy and dimensionality reduction while preserving the critical variations within

and across the 3 data types using JIVE resulted in a 49.6% improvement in accuracy.

This result clearly emphasizes the importance of an effective integration method prior

to the downstream analysis.
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Figure 3.1: Box plot of estimated mean c-index for the test data in 5-fold cv scheme
for the BRCA dataset for individual data types, concatenated data, and JIVE using
RSF. The horizontal line inside the box represents the median and the box is bounded
by the 25th and 75th percentile (IQR), whiskers extend to 1.5× IQR.

Nonetheless, the maximum median c-index accuracy achieved by the JIVE even

with the non-parametric RSF method was only 63.4%. One of the factors contributing

to this low accuracy is the unsupervised nature of JIVE. We know that PCA is an

unsupervised approach, hence the score estimation using JIVE (which is an extension

of PCA) is also unsupervised, i.e., it does not take the response (survival time or status)

into account when determining the scores. However, taking the response into account

can help us identify the most important features. Hence we extend the unsupervised

JIVE method to supervised JIVE using the supervised PCA method proposed in [93].

As shown in Fig. 3.2, taking the response into selecting the most critical joint and

individual components using the supervised JIVE is shown to have improved perfor-

mance than its unsupervised counterpart.
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Nonetheless, the increased accuracy of 6.1% is still insufficient to handle the critical

task of mortality prediction. Another reason for this low accuracy is the exclusive use

of genomic features and not taking the clinical information into account for survival

prognosis. It is known that a more remote genomic data from the physiological trait can

have a lesser influence on it [94]. Further, some clinical information has been shown

to improve the survival accuracy estimation in several studies. Hence, we selected

10 clinical features (as described in section 3.4.1.1) along with the 43 scores for the

genomic data types. As expected, significant improvement can be seen after including

the clinical features, as shown in Fig. 3.2. Including 10 clinical features along with

the genomic features resulted in the accuracy of iNPS to increase to 87.5%. These 10

clinical features are described in section 3.4.1.1.
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Figure 3.2: Box plot of estimated mean c-index for the test data in 5-fold cv scheme for
the BRCA dataset for unsupervised JIVE, supervised JIVE, and supervised JIVE with
10 clinical features. The horizontal line inside the box represents the median and the
box is bounded by the 25th and 75th percentile (IQR), whiskers extend to 1.5× IQR.

All the time-to-event prognosis result shown so far in this section were done using

the non-parametric RSF model, resulting in the best mean c-index of 87.5% for the

JIVE dataset, including clinical features. However, as discussed in the foregoing, the

survival prognosis in multi-view literature is primarily performed using the CPH model.

Hence, in the subsequent assessment, we compared the result of RSF and CPH on the

scores estimated by JIVE along with the clinical features. Figure 3.3 presents the box

plot for mean error in each of the 5-fold cross-validation. With a 50.9% improvement

in the c-index accuracy, significant evidence towards using non-parametric analysis is

presented.
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Figure 3.3: Box plot of estimated mean c-index for CPH and iNPS using BRCA test
dataset in 5-fold cv scheme. The horizontal line inside the box represents the median
and the box is bounded by the 25th and 75th percentile (IQR), whiskers extend to
1.5× IQR.

3.5 Summary

In this chapter, we introduced an iNPS model for survival analysis to address the

limitations in handling multi-view data in survival analysis. This approach proposed

an effective integration multi-view data to extract the joint and individual variations

in each data type and reduce the dimension for subsequent downstream analysis using

survival learning. The use of a non-parametric survival learning method using RSF

is proposed to address the limitations imposed by the traditional proportional hazard

models, which are often invalid in complex real-life data. Application for breast cancer

prognosis using gene expression, methylation, and miRNA data types suggest a 50.9%
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improvement in c-index accuracy of time to event prognosis of iNPS as compared to

the use of CPH on the joint and individual components.

This is a relatively new area of research where both effective multi-view data integra-

tion and survival learning on multi-view data are active areas of research. Future work

on extensive comparison of different survival learning techniques, including more inter-

pretable parametric models such as accelerated failure time models and deep learning

survival models, could be essential in developing understanding in their utilization for

multi-view survival learning. Furthermore, a direct extension of the proposed method

can be its application in pan-cancer survival analysis, where the vertical multi-view

data is presented for different tumor types. This is a crucial area for discovering the

evolution and prognosis of same cancer with varying types of tumors. Such detailed

exploration and increased accuracy of the survival learning models can significantly im-

pact cancer risk assessment, treatment decisions, and long-term survival estimations.
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4. SURVIVAL LEARNING FOR PROGNOSIS USING SMART WEARABLES

4.1 Introduction

The key motivation of this study (as presented in chapter 1) is inspired by improv-

ing the healthcare data analysis outcomes such as personalized risk prediction and key

biomarker identification via statistical development and accuracy improvement of sur-

vival models. While the earlier two chapters emphasized one aspect of this goal, i.e., the

survival prognosis accuracy improvement by addressing the methodological challenges

posed by healthcare big data and semi-parametric survival analysis models. This chap-

ter focuses on increasing the broader impact of our goal by extending the application

of the proposed survival learning methods beyond the retrospective analysis of clinical

studies with a fixed follow-up/decision horizon time and often time-invariant covariates

to continuous time-series healthcare data where the event is not death or mortality.

More precisely, the current chapter of this dissertation is focused on applying survival

learning for continuous prognosis of recurring epileptic seizure events. This will enable

us to use survival learning as a robust prognostic tool to quantitatively estimate the

risks of seizure at every time point. Such a seizure warning system will not only enable

the patients to be aware of their impending risks over various time horizons and take

necessary precautions but also allow the caregivers/medical experts to plan out and

provide timely interventions.

This application is motivated by a broader objective of applying survival learning

to one of the fastest-growing and most transformative areas of healthcare, i.e., per-

sonalized and precision medicine using smart wearables [38]. This application aims at

extending survival analysis to wearable prognosis and bringing the strength of survival

analysis models such as continuous prognosis to personalized health prediction.

Wearable devices that were initially developed for in-clinic use and health moni-
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toring enthusiasts have significantly developed over time and are already transforming

biomedicine through digital health and personalized medicine by facilitating continu-

ous, longitudinal health monitoring outside of the clinic [38]. Such applications of smart

wearables is crucial for shifting the status-quo of patient care from hospital to at-home,

POC setting and to provide accessible quality care in rural and resource-limited areas.

This shift of patient-care can only be possible through the development of machine

learning algorithms and their integration with wearable sensors, transforming them

from wearable to smart wearable technology [39].

Several studies in the wearable sensor literature have been focused on harnesing the

innovations in healthcare electronics for the design of wearable devices to collect high-

quality, real-time physiological data and its use in providing functionalities ranging from

monitoring to rehabilitation [95]. For example, photoplethysmography based wearable

watches that collect blood volume change data and provides heart rate and blood

oxygenation values to the users [96, 97]. Moreover, the physiological data collection

and monitoring has moved from vital measurement of heart rate to critical applications

such as continuous glucose monitoring [98] and rehabilitation for disorders such as

motion disorder in Parkison’s disease [99]. Initial application of advanced analytics

with wearable sensing (or smart wearables) have also facilitated the analysis of data

for point-of-care diagnosis such as arrhythmia detection [100].

Nonetheless, most of the current wearable technologies are limited to monitoring

or diagnosis and prognosis for event prediction using smart wearable is very limited.

Furthermore, the limited methods that do exist are based on point-prediction and fail

to provide a continuous prognosis which is much needed for smart wearables that are

made to be worn continually by the patients. Application of survival analysis instead

of the commonly used prediction methods not only enables continuous prediction but

also opens other opportunities. For example, survival analysis models can be used to

provide continuous and quantitative estimates for the occurrence of an event and thus
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can be used as a tool in event monitoring using smart wearables for critical and chronic

health conditions such as the application proposed in this chapter for epileptic seizure

alert systems via continuous prognosis using electroencephalography (EEG) data.

This chapter is organized as follows. In the first section, we provide a detailed

description of the methodology for seizure prognosis using survival learning. The second

section provides the details for results including the performance measure used, seizure

data description, and the performance assessment of using survival learning for seizure

prognosis. Finally, the last section summarizes the research work for this chapter.

4.2 Epileptic Seizure Prognosis

An epileptic seizure is characterized by recurrent seizures and a major challenge in

managing epilepsy comes from the difficulties in predicting impending seizure events

and associated adverse outcomes. In the absence of drugs that can halt the development

of seizures, patients with epilepsy are always on a lookout for the “next” unforeseen

seizure event which impairs their daily activities and are significantly detrimental to the

quality of life [101]. Several efforts have been made in the seizure prediction literature

to predict a seizure episode and provide early warning to the patients. However, the

current seizure prediction studies are based on the conjecture that a “pre-ictal” state

exists before a seizure onset and that this state is easily identifiable using EEG signals

and can be used to give a warning for imminent seizure events (ictal state) [102]. Thus,

the current models are unable to provide continuous risk estimates, i.e., probability of

seizure event risk at any given point in time. To address this limitation, we propose

a new approach by utilizing time-to-event survival analysis for seizure prediction. In

this method, a quantitative risk of a seizure event is predicted continuously at every

time point. Consequently, it eliminates the need for pre-ictal stage identification. To

our knowledge, the present work is the first study to use survival analysis model in a

seizure prediction context.

To apply survival learning on continuous EEG data, we first convert the EEG signal
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into seizure event data constituting the phase and frequency-based features, survival

status, and the seizure event time information based on a decision horizon. A detailed

discussion of the seizure event data is provided in the following section.

4.2.1 Seizure Event Data

To be able to apply survival learning to the streaming EEG data, we need to

transform the streaming EEG data into the classical survival analysis format, i.e., for

every subject, there will be an event time (seizure onset time), censoring status, and

a fixed decision horizon or study duration, TD until when the subjects are monitored.

However, this transformation is not trivial and has several challenges. These challenges

and their corresponding solutions are listed below:

1. Multiple/ recurring event: the first and the main challenge is of multiple/recurring

events. Unlike time-to-death analysis, where the event happens only once, seizure

episodes can happen multiple times during a patient’s lifetime. Hence, our pri-

mary task was to process and segment the data to allow only one event during a

study. To accommodate this constraint, we selected the time horizon, TD as the

global minimum time duration between two consecutive seizure events for the

entire study population. Since a majority of inter-ictal times for the specimens

were below 300 sec and following recommendations in the literature [103], a de-

cision horizon TD = 300 sec was chosen. Intuitively, this allows for treating every

300 sec of the data for a subject i as a new subject. Let T 0
i represent the actual

time to first seizure event for the subject i then the observed survival time for

that ith subject in the decision horizon TD is given as Ti = min(T 0
i , TD).

2. Censoring status: In accordance with the decision horizon, TD every 300 seconds

of a subject’s data is treated as a new subject, hence in all decision horizons

where the seizure event was not observed, the status was given as “right-censored”

(δi = 0) and where the event occurred, status was given as “event” (δi = 1). Status
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is also “right-censored” during a decision horizon when the subject dies or is

removed from the study (due to injuries or other possible reasons). Furthermore,

since the seizure event can continue for some time duration, the status remained

“event” until a decision horizon where the seizure has stopped and no episodes

are found for the entire decision horizon.

Let xi be the feature vector extracted from subject i during time horizon TD, then

the survival data for subject i is given as Φi = (xi, Ti, δi)(1≤i≤N), where N is the total

number of subjects for a given decision horizon. In this dissertation, we selected TD as

300 seconds, nonetheless, extension of this method to a much longer decision horizon

is straightforward by selecting a longer TD value. The feature extraction is detailed in

the next subsection.

4.2.2 Feature extraction and selection

Numerous features have been explored in the literature for their statistical sig-

nificance in differentiating between the seizure and non-seizure characteristics of the

EEG signal. These features include, but are not limited to, those extracted from fre-

quency, time-scale domain analyses [104, 105] as well as other sophisticated geometric

and graphical representations [106] and physiological transfer functions [107]. With

the recent interest in studying the ripple patterns of EEG as precursors to seizure

episodes, spectral features offer one of the convenient means to capture EEG signal

patterns [102]. This formed the motivation for using the frequency domain features

of EEG for seizure prognosis. We also propose a novel snowball feature which can

accumulate the temporal variations in the EEG signal characteristics.

1. Frequency and phase features:

The frequency-based features were estimated by applying a windowed Fourier

transform, also referred to as a short-time Fourier transform (STFT) [108]. Here,

the length of the sliding window, i.e., the time window in which the feature is
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estimated, determines the consistency of the estimated feature values. It is well

known that seizure spreads very quickly and lasts just for a few seconds [109, 110].

Hence, the length of the window should be long enough to assure consistency of

the feature value estimates but sufficiently short to maintain the purity of the

EEG patterns the emerge during a seizure episode [110, 111, 112]. Based on

different recommendations in the seizure prediction literature [109, 113], we con-

sidered three non-overlapping time windows of lengths w = 1024, 2048, and 4096

data points (i.e., ≈ 0.25− 1s) and extracted the spectral features, xE for differ-

ent w, xE1024, xE2048, and xE4096 as the energy of the frequency content (measured

as the sum square of the FFT magnitude). These were calculated over every 4Hz

frequency band (e.g. 0-4 Hz) with an overlap of 1Hz over the 0−50 Hz frequency

range for all three windows. Due to the lack of consensus in the literature on the

most effective time window length, w for seizure prognosis [109, 113], we used

features estimated from all three window lengths (i.e., every feature that was cal-

culated had three values corresponding to each of the windows). This was done to

ensure the robustness of the feature estimates. The frequency bandwidth and the

range were selected to identify sensitive neural pathological activities that give

rise to a seizure event [114, 115, 116]. For example, three energy feature values

were computed for the delta band (0-4 Hz), one each for 1024, 2048, and 4096

window lengths. Following this procedure, 51 features (17 spectral features with

each of the three window lengths) were obtained. Additionally, one overall vari-

ance, as a measure of the volatility of the data was calculated to give a total of 52

frequency spectral features. This feature estimation is summarized in Figure 4.1.
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Figure 4.1: Summary of the spectral feature extraction procedure.

Although the frequency domain features are known to have a high significance in

characterizing seizure and non-seizure EEG signals, they are bounded by the lin-

earity and stationarity constraints. However, the EEG dynamics, in turn, are in-

herently nonlinear and non-stationary [117]. To overcome this limitation, we used

the Hilbert Transform (HT), which is a prominent method for analyzing nonlin-

ear and non-stationary processes [118]. Our approach employed HT to capture

the shape of the frequency spectrum, especially the relative intensities of various

frequency bands. These features are particularly relevant for early-stage predic-

tion of seizure for the following reason. A well-developed seizure is marked by

a high amplitude response over narrow frequency bands, typically spread over

4-30 Hz range. However, such a pronounced high-intensity frequency response is

unlikely to standout a few minutes before seizure onset. Therefore, it becomes

hard to detect seizures at early stages using frequency features alone. However,

systematic, subtle changes in the shape of the frequency portrait, especially in

the distribution of energy across the various frequency bands, can portend the

emergence of seizure and associated intensification of certain frequency bands of
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EEG signals. The instantaneous phase values xφ1024, x
φ
2048, x

φ
4096 estimated from

the HT of the spectral features are used to capture this subtle variation.

This procedure holds a similarity to cepstrum analysis, in that we treated the

spectral energy features as a waveform [119]. However, unlike cepstrum analysis,

we do not conduct a logarithmic transform of the energy values. Consequently,

this approach allows the capture of small variations in the dominant frequency

bands, and thereby track the variation of the salient frequency bands over time

relative to each other [120]. Corresponding to the 52 spectral features xE, 52

phase features xφ were obtained.

2. Snowball features: In this dissertation, we introduce a new feature called Snowball

feature as a way to accumulate the time-related changes [121] in the frequency

and phase-based features. In the epilepsy literature, it is well known that im-

pending seizure characteristics often build slowly over time [122]. Therefore, the

accuracy of seizure prognosis can be increased by accumulating the subtle, consis-

tent change between the features in successive windows. The proposed snowball

features, based on capturing the cumulative changes in the feature values over

time, are given by Equation 4.1.

S(W ) = xw(i+ 1)− xw(i) (4.1)

In Equation 4.1, xw(i) represents a given feature at time window i and xw(i +

1) − xw(i) captures the dynamic change in the features measured between two

consecutive windows. In our work, these changes were accumulated over a period

of t = 30 sec (W = t/w). Furthermore, by calculating the features over a small

window length (that ensures consistency of the estimates while reducing the ef-

fects of transients) and then obtaining their corresponding snowball features, we
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ensured that our feature set encapsulates non-stationarity without compromising

statistical accuracy. The snowball features were obtained for every frequency and

phase-based features.

Finally, with 52 snowball frequency features and 52 snowball phase features, a 104-

dimensional feature vector was extracted from the data. However, the high dimension-

ality of the feature space (104 features) can lead to added computational complexity

in a large dataset, especially with streaming data. To reduce the dimensionality, the

features most effective in the prognosis of seizure events were selected based on Min-

imal Depth (MD) statistics of RSF. MD is a relatively new high-dimensional feature

selection method based on the order statistics for a tree [62]. MD measures the feature

importance in terms of its splitting performance relative to the root node. Here, the ar-

gument employed is that the feature that frequently split the nodes farther down from

the root node effects a relatively smaller sample of the original data in the root node.

Thus, these features do not significantly affect the leaf node assignments as compared

to the features that frequently split the root node and nodes closer to it and hence are

less informative. Additionally, MD is more robust as compared to the Variable Impor-

tance (VIMP) measure, which is commonly employed for feature selection in tree-based

methods [42]. VIMP measures the feature importance by the increase/decrease in pre-

diction error by features when it is randomly “noised up”. Reliance on the prediction

error makes VIMP largely an ad-hoc method and highly susceptible to bias in the

model. Hence, we preferred MD over VIMP. Out of the 104 features, 20 most signifi-

cant features which were selected where features less than an MD threshold were most

important (for more details on threshold selection please refer to [42]). In the selected

top 20 features, 6 were spectral features and the rest 14 were phase-based features.
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4.3 Results

4.3.1 Performance Measure

In this chapter, four performance metrics were used to evaluate the performance of

the proposed seizure prognosis model. The first two metrics, C-index and Integrated

Brier Score (IBS), as described in section 2.3.1 are used to assess the survival learning

model. In addition to C-index and IBS, we also used the sensitivity and specificity

evaluation metrics that are commonly used in seizure prediction literature. It is com-

monly noted that sensitivity is more critical than specificity as a missed prediction of

a seizure episode can become perilous for the patient. At the same time, a very low

specificity can become a nuisance by providing seizure alert even without the presence

of an actual seizure episode. Furthermore, the sensitivity and specificity are measured

at four different prediction horizons to test the prognosis accuracy as the seizure event

becomes imminent. To validate the consistency of the result, all four performances were

measured via a 10 fold cross-validation.

4.3.2 Data Description

4.3.2.1 Small Mammal EEG Data

The performance was assessed on intracranial EEG data from 80 small mammals

(mice and rats). Experiments, as well as data collection, were conducted at the Depart-

ment of Neuroscience and Experimental Therapeutics at the Texas A&M College of

Medicine. As part of the experiments, an intracranial electrode (PlasticsOne, Roanoke,

VA) was inserted into the hippocampus of 80 small mammals. EEG readings (in milli-

Volt) at 4 KHz sampling frequency were acquired for each of these specimens continu-

ously over a 3-month period. These specimens were exposed to organophosphate (OP)

intoxication according to the protocol previously published [123, 124]. This treatment

induces the mammal subjects with progressive chronic epilepsy, which were random

in occurrence and seizure intensity, closely mimicking epileptic episodes of human pa-
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tients [125]. This model is quite different from chemical toxin injections, such as kainic

acid or pilocarpine that are excitatory chemicals not normally exposed to humans or

not used for poisoning, so they are purely for lab research only, not relevant to field

situation or cannot be extrapolated to humans. All animal procedures were approved

by the university’s institutional animal care and use committee in compliance with the

guidelines of NIH Guide for the Care and Use of Laboratory Animals [126]. The EEG

signals were recorded at 4 KHz sampling rate in an abf-1.8 (Axon Binary Format) file

format. The continuous EEG data was collected 24/7 for 3 months. For each animal

recording, we took snapshots of data for 2 days for seizure prognostics study. The

spontaneous seizures occurring during this time span is a representation of the chronic

epilepsy state with seizure occurring normally [123]. Figure 4.2 shows a 20 second long

strip of EEG data (10 sec of normal state juxtaposed with 10 sec of epileptic EEG)

acquired from one of the 80 rat specimens employed for this test. As shown in the

figure, the EEG patterns (including the signal energy) during a seizure episode differ

from those during a normal state. The EEG signals were carefully annotated by trained

technicians to identify epileptic episodes and different period of EEG, i.e., non-ictal,

pre-ictal, ictal segments including their onset and offset points [127]. For verification,

seizure episodes were correlated with continuous video measurements taken during the

tests.

Figure 4.2: Representation of 10-sec strips of normal and epileptic EEG signal recorded
by the hippocampal intracranial electrodes of a rat specimen.
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4.3.3 Performance Comparison

To determine which survival learning method to use, we first compare the effec-

tiveness of RSF and CPH for the prognosis of seizure events by comparing them on

the IBS error measure. Figure 4.3 shows the variation of the prediction error over the

decision horizon for RSF, CPH, and a reference Kaplan Meir method [12]. On the basis

of IBS, RSF yields the best predictions among the three methods tested. To validate

the consistency of this result, we performed a 10 fold cross validation test. The results

of the 10 fold cross validation is summarized in Figure 4.4. Evidently, RSF performed

consistently better in terms of the IBS values as well as their variation. The C-index

score for both the model CPH and RSF models averaged over the 300-sec duration are

summarized in Table 4.1 with RSF outperforming CPH with an 87.5% reduction in

the IBS score and a 17.5% increase in the C-index value. Extension of this approach to

other, less controlled scenarios where the mean inter-ictal times can be much higher is

rather straightforward in the sense that we need to extend the time of prediction error

curve evaluation beyond the current 300-sec decision span [14].

Figure 4.3: Prediction error curves (PEC) for RSF (in red), CPH (in blue), and Kaplan-
Mier (in black) for the test dataset.
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Table 4.1: Summary of RSF seizure prognosis performance for the test dataset.

Error measure CPH RSF
C-index 80.6 94.7
IBS 0.08 0.01

Figure 4.4: Boxplots of IBS error for Kaplan-Meir, CPH, and RSF models, calculated
for the test data in 10-fold cross validation scheme. The horizontal line inside the box
represents the median and the box is bounded by the 25th and 75th percentiles.

Now with established preference of RSF, we used it for further analysis of the

seizure data using the other two error metrics, time varying sensitivity and specificity.

Figure 4.5 presents the survival probability plots for non-seizure and a seizure events

with each curve representing RSF’s estimate of the survival probability (or inverse of

cumulative hazard) for the event occurrence at any given time. Clearly, the survival

probability is higher when the event does not occur and is lower otherwise.
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Figure 4.5: Survival probability curves for seizure event (in red) and no seizure event
(in blue) obtained using the RSF methodology.

Furthermore, the sensitivity and specificity at different prediction horizons from

time periods of 60 − 300 seconds and for the out-of-sample test data are summarized

in Table 4.2. These accuracies were calculated based on a threshold probability value

of 0.69 to classify between a seizure vs non-seizure event. This threshold was chosen

to be significantly higher than 0.5 for the robustness of the estimated sensitivity and

specificity and was also based on the accuracy of the model during the training phase.

It is noted that both sensitivity and specificity improve as the time to seizure event

decreases. This result is in line with the expected outcome and supports the relevance

of the proposed work for seizure warning applications.
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Table 4.2: Performance of the prediction model on test dataset at different time points.

Event ID Time to event (s) Sensivity (%) Specificity (%)

1 300 82.40 77.40

2 240 77.43 85.78

3 120 82.19 85.00

4 60 82.99 86.79

4.4 Summary

In this chapter, we introduced a survival learning- based seizure prognosis model to

provide a continuous prognosis of seizure events,i.e., the probability distribution of the

time remaining until the next seizure event based on harnessing information from the

measured EEG data. This new approach allows the estimation of the times till the next

event when the event is not “death” but instead a recurring epileptic seizure episode.

EEG data used in this study was continuously collected over a period of 3-months

from intracranial electrodes placed in the hippocampus of organophosphate intoxicated

rodents. Using EEG data from the rat and mice specimens, we demonstrated the robust

prognostic ability of the proposed method. The average test IBS error and C-index of

using RSF for continuous seizure prognosis was 0.01 and 94.7, respectively. As compared

to the current “gold standard” CPH survival model, the IBS decreased by 87.5% and

C-index increased by 17.5%. These consistent empirical results open new opportunities

for using survival analysis-based seizure prediction and quantitative risk management

approaches. The current study in this chapter employs rodent EEG to assess the proof

of concept of the novel approach. Our future work includes using the proposed model

for seizure prediction in human subjects and the adoption of an adaptive, risk-informed

threshold for a seizure warning system using smart wearables.
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Application of the proposed method in a seizure warning system can enable the

patient and caregivers to monitor the likelihood of seizure at any given point in time

instead of waiting for sudden and unexpected warnings or having to train a separate

model to predict the likelihood of seizure at different future times. From a clinical

perspective, multiple physical symptoms and patterns of EEG exist as a forbearer of

an impending seizure, but these symptoms rely on patient and health care provider’s

“intuition” or other qualitative assessment. Having a tool with continuous, quantitative

assessment of seizure will help to relate these symptoms quantitatively to the seizure

likelihood. Such studies can ultimately improve the fundamental knowledge of epilepsy

and its behavior. Further, it can address the missing data problem by the use of cen-

soring. Signal recording using smart wearables is extremely prone to missing data for

multiple reasons including device malfunction, turning the device off at night, etc.

While the traditional machine learning method suffers from a significant decrease in

accuracy as a result of missing data, the concept of censoring in survival analysis can

be used to effectively handle them.

Another future work direction is using the proposed model for seizure prognosis over

a much longer prediction horizon with consideration of the influence of environment

and other exogenous factors. We anticipate that our work would spur further efforts in

this front.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

The overarching goal of this dissertation was to improve the time-to-event prog-

nosis accuracy for better healthcare outcomes. To achieve this goal, we focused on

the methodological developments required to address the big data challenges in the

survival data and address the limitation of traditional parametric and proportional

hazard models. Accuracies of the proposed methods were demonstrated through ap-

plication in critical healthcare areas such as cardiac disease and cancer to improve

mortality prediction. The application was also extended to beyond the time-to-death

prediction by applying survival learning for epileptic seizure prediction where events

are multiple/recurring seizure episodes. The big data challenges in survival learning

were addressed in Chapter 2 and Chapter 3, and the application for seizure prediction

and smart wearables were addressed in Chapter 4.

In Chapter 2, we proposed a balanced random survival forest or BRSF method to

address the challenge of data imbalance in healthcare big data. The proposed BRSF

method integrated a synthetic minority over-sampling technique with RSF learning for

mortality prediction. Theoretical results were used to establish the negative impact of

imbalance in survival data for hazard estimation. Through intensive empirical stud-

ies, we demonstrated that the prognosis accuracy significantly increased after survival

models were trained with balanced data sets. In terms of the integrated Brier score and

concordance index, the balanced RSF performed 25% and 55% better that the RSF,

respectively. The balanced CPH performed 8.2% and 24%, respectively, as compared

to CPH.

In Chapter 3, we proposed an integrated non-parametric survival learning or iNPS

learning method to address the challenge of accurate survival prognosis using multi-
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view data. In the first part of this chapter, we used a joint and individual variation

explained (JIVE) method to effectively integrate the multi-view data to separate and

analyze the joint (or shared) and individual variations in different data types. Next, a

non-parametric survival learning method was used on the integrated data for increased

prognosis accuracy compared to the most gold-standard CPH model. Empirical studies

on simulated data and the breast invasive carcinoma data showed that the proposed

iNPS method had a 50.9% better performance than the CPH.

Finally, in the last chapter, we extended the application of survival learning beyond

time to “death” prediction. We used an RSF model for time to epileptic seizure prognosis

using continuous EEG signals and recurrent/multiple seizure events. We assessed the

proposed application using intracranial EEG data from small mammals. The model

performance was 0.01 and 94.7 based on the integrated Brier score and concordance

index. Further, the sensitivity and specificity were 82.4% and 77.4%, respectively, 300s

before a seizure episode was imminent.

5.2 Future Directions

Survival analysis is one of the oldest methods that merged medical or clinical data

and data analysis. With the increasing data collection and use of machine learning

and data analytics for clinical decision making, it’s relevance is greater than ever.

Several opportunities exist, both for its statistical advancement and more innovative

applications. Along these lines, we plan to extend the future work in the following

directions:

1. Directionally dependent multi-view survival learning: In chapter 3, we introduced

survival learning using multi-view data. In recent healthcare studies, it is a fun-

damental problem to integrate different data types for the same subject/patients.

Exploring the association between multiple data types has been shown to reveal

significant insights. Hence, we used a joint and individual variation explained
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method for the integrated analysis of the multi-view data and to analyze the

joint and individual structure in multiple data types. However, accurately es-

timating the associations between real-world data types is rarely feasible. This

is especially true in genomic data with complex underlying biology. For exam-

ple, the central dogma of molecular biology that governs the flow of information

between different omics level makes this association directional or causal. Differ-

ent data types are now directionally dependent with a pre-specified direction of

dependence. Incorporating this directional dependency in survival learning can

provide several insights, including the most significant features and the influence

structure/network of the features on the mortality prediction. One of our recent

work incorporates this directionality using a biology-inspired Bayesian integrated

multi-view clustering model [33]. We used an asymmetric copula to accommodate

the directional dependencies between the data types before clustering. Significant

research needs to be done in this nascent area to capture such biological insights

in the statistical model effectively. Furthermore, extensions in survival analysis,

i.e., a complete analysis of dependence/directional dependence from genotype to

phenotype, can provide unprecedented insights.

2. Application of multi-view survival learning for smart wearable seizure progno-

sis: One primary issue that limits the broader adoption of smart wearables for

diagnosis and prognosis is their limited accuracy, especially when concerning a

critical application such as seizure prognosis. This limited accuracy is often a

result of low signal to noise ratio of the data collected using smart wearables due

to movement-related artifacts. Nonetheless, due to the miniaturization of elec-

tronic components, smart wearables often have more than one sensor, for example,

the most common wearable for physiological monitoring, Fitbit, within its small

watch configuration includes a photoplethysmography sensor, 3-axis accelerome-

ter, an altimeter, and a gyroscope. Similarly, a device for seizure prediction can
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have an electroencephalography sensor, accelerometer, and electrooculography to

detect the seizure status of a person at any given time. These data types can be

treated as multi-view data, and vertical integration techniques (see Chapter 3)

along with survival learning, can be used for effective seizure prognosis. Using

multi-view survival analysis will increase the prognosis accuracy by jointly im-

proving the signal to noise ratio.
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APPENDIX A

INVESTIGATION OF THE EFFECT OF CLASS BALANCING ON SURVIVAL

ANALYSIS

Proposition 1 For m2 << m1, let {m1,m2, ρ(t)} and {m1,m
′
2, ρ
′(t)} be the sur-

viving and the mortality class sizes, and the Brier score (BS) before and after balanc-

ing, respectively, and let d0 be the minimum number of unique death (mortality class)

samples present in the censored leaf nodes of a survival tree to obtain non-zero haz-

ard. Assuming an almost perfect split with m2 − d0 samples in the mortality node and

m1 + d0 samples in the censoring node, ρ′(t) can be approximated as:

ρ′(t) = ρ(t)

(
m1 +m2

m1 +m′2

){
(m′2 − d0)e−2Ĥ′M (t) + d0e

−2ĤC(t) +m1(1− e−ĤC(t))2

(m2 − d0)e−2ĤM (t) + d0e−2ĤC(t) +m1(1− e−ĤC(t))2

}

Proof. Growing a survival tree proceeds with recursively splitting of the parent nodes

into daughter nodes such that the survival difference between the daughter nodes is

maximized. Further, the forest ensemble hazard for the individual is an average across

all such leaf nodes in the forest. Consequently, determining the ensemble hazard and

proving related result reduces to demonstrating them for a single node split. Therefore,

for simplicity, we demonstrate our result for a single split and results thus derived can be

adapted to a generalized survival tree construction and hence to the RSF. Nonetheless,

we consider all possible case splits, i.e., (a) case 1: impure censored node, (b) case 2:

impure mortality node, and (c) case 3: impure mortality and censored node.

LetM and C denote the mortality and censored/survival nodes respectively and the

parent node has m1 censored and m2 mortality samples. For case 1, the leaf nodes then

have the following conditions: (i) the censored nodes has d0 mortality samples and (ii)
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Figure A.1: Survival tree node split for three different cases (a) impure censored leaf
node, (b) impure mortality leaf node, and (c) impure mortality and censored leaf nodes.

except for the d0 misclassified mortality samples, both the nodes have a homogeneous

population. Thus, the censored leaf node has m1 + d0 samples and the mortality leaf

node has m2− d0 samples. Note that, with this construction, a reasonable assumption

is that m1 > d0, i.e., censored node has more censored samples than the mortality

samples. Further, both leaf nodes have distinct event times. For case 2, the leaf nodes

have the following conditions: (i) the mortality nodes has d1 misclassified censored and

m2 mortality samples and (ii) except for the d1 misclassified censored samples, both

the nodes have a homogeneous population. Finally, the leaf nodes for case has the

following conditions: (i) the censored node has d0 misclassified mortality and a total

of m1 − d1 + d0 samples (ii) the mortality nodes has d1 misclassified censored samples

and a total m2 − d0 + d0 samples.

The prediction error of an individual i at any time t can be defined in terms of the

expected Brier score (refer to section 2.3.1.2) which is given as follows:

ρi(t) = E(Ỹi(t)− Ŝi(t))2

where, Ỹi(t) = 1Ti>t is the actual survival status of individual i at time t and Ŝi(t) is

the predicted survival, which we know is equal to the survival estimates of the node

they belong to (refer to section 2.2 of the main text). Further, the survival function

estimated at a time t for the mortality node, ŜM(t) and the censored node, ŜC(t) are
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given as follows:

ŜM(t) = e−ĤM (t)

ŜC(t) = e−ĤC(t)

Now, given the case 1 node split, as defined above, BS score calculated for the

unbalanced data, m1 and m2 can be represented as:

ρ(t) =
(m2 − d0)(0− ŜM(t))2 + d0(0− ŜC(t))2 +m1(1− ŜC(t))2

m1 +m2

=
(m2 − d0)e−2ĤM (t) + d0e

−2ĤC(t) +m1(1− e−ĤC(t))2

m1 +m2

For an imbalance with m2 << m1, let the mortality class size after balancing be

m′2(m′2 ≥ m2) and m′2 ≈ m1 (with fixed m1 and d0), the balanced Brier Score, ρ′(t)

can then be given as:

ρ′(t) =
(m′2 − d0)e−Ĥ

′
M (t) + d0e

−2ĤC(t) +m1(1− e−ĤC(t))2

m1 +m′2

Hence the ratio of ρ′(t) and ρ(t) can be represented as:

ρ′(t)

ρ(t)
=

(
m1 +m2

m1 +m′2

){
(m′2 − d0)e−2Ĥ′M (t) + d0e

−2ĤC(t) +m1(1− e−ĤC(t))2

(m2 − d0)e−2ĤM (t) + d0e−2ĤC(t) +m1(1− e−ĤC(t))2

}
(A.1)

�

For m1 << m2 before balancing, let the censored class size after balancing be

m′1(m′1 ≥ m1) and m′1 ≈ m2 (with fixed m2 and d0), the proposition 1 can be repre-
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sented as:

ρ′(t)

ρ(t)
=

(
m1 +m2

m′1 +m2

){
(m2 − d0)e−2ĤM (t) + d0e

−2Ĥ′C(t) +m1(1− e−Ĥ′C(t))2

(m2 − d0)e−2ĤM (t) + d0e−2ĤC(t) +m1(1− e−ĤC(t))2

}
(A.2)

The expression for ratio of ρ′(t) and ρ(t) for case 2 and case 3 can be derived

similarly. We skip these derivations for the brevity of the paper and proceed to an

interesting result in Corollary 1.

Corollary 1 Let {ρ(t), ρ′(t)} be the Brier scores before and after balancing the class

sizes, then ρ′(t) < ρ(t).

Proof. Let {ρ(t), ρ′(t)} be the Brier scores before and after balancing the class sizes,

as expressed in Proposition 1. Since m′2 > m2, we know that
(
m1+m2

m1+m′2

)
< 1. Now,

let f(m2) = (m2 − d0)e−2ĤM (t), showing that f(m2) is a decreasing function of m2

would suffice to prove Corollary 1. In order to do so, we first derive the expression for

ĤM(t) for Case 1. Let M and C denote the mortality and censored/survival nodes,

respectively. At the termination point, there are L(Tb) terminal/leaf nodes in the tree,

Tb. Let, t1,h < t2,h < ... < tN(h),h be N(h) ordered, unique event (death) times in the

leaf node, h ∈ L(Tb), then the CHF for individuals in this node is given using the

Nelson-Aalen estimator as:

Ĥ(t|xi) = Ĥh(t) =
∑
tl,h≤t

dl,h
Yl,h

, if xi ∈ h (A.3)

In (A.3), dl,h and Yl,h represent, respectively, the number of deaths and the number of

patients at risk in node h at times {tl,h}1≤l≤N(h). Since the construction survival tree

is based on binary splits, xi corresponding to each individual i ends up in a unique

leaf node of L(Tb). Forest ensemble hazard for the individual is an average across all

such leaf nodes in the forest. Further, in practice the trees are grown using bootstrap

data which needs to be considered while estimating the ensemble hazard (for details
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of growing RSF and estimating ensemble hazard please see section 2.2 of the main

text). For ease of calculation, we estimate the cumulative hazard of the nodes at their

respective maximum event times. Let t∗ be the maximum event time at node M then

ĤM(t∗) is given as:

ĤM(t∗) =
∑

tl,M≤t∗

dl,M
Yl,M

=
1

(m2 − d0)− 1
+

2

(m2 − d0)− 2
+ ...+

(m2 − d0 − 1)

1

Let m2 − d0 = y, then ĤM(t∗) can be represented as:

ĤM(t∗) =

(
1

y − 1
+

2

y − 2
+ ...+

y − 1

1

)
(A.4)

Alternately, (A.4) can be written in the form of a harmonic series as follows:

zy−1
1 =

1

y − 1
+

1

y − 2
+

1

y − 3
· · ·+ 1

2
+

1

1

zy−2
2 =

1

y − 2
+

1

y − 3
+ · · ·+ 1

2
+

1

1

zy−3
3 =

1

y − 3
+

1

y − 4
+ · · ·+ 1

2
+

1

1

...

z2
y−2 =

1

2
+

1

1

z1
y−1 =

1

1

The sum of the 1st series, zy−1
1 with (y − 1) terms can be approximated using the

following:

zy−1
1 =

y−1∑
n=1

1

n
= γ + ψ0((y − 1) + 1) = γ + ψ0(y)

Where, γ ≈ 0.577 is the Euler-Mascheroni constant [128] and ψ0(·) is the diagmma
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function [129]. Similarly, zy−2
2 = γ+ψ0(y−1) and so forth. Hence, the hazard estimate

for the mortality node can be given as:

ĤM(t∗) = (y − 1)γ +

y−1∑
n=1

ψ0(n+ 1)

= (m2 − d0 − 1)γ +

m2−d0−1∑
n=1

ψ0(n+ 1) (A.5)

We perform first order differentiation by parts of f(m2) with respect to m2 which

results in:

df(m2)

dm2

= e−2ĤM (t)
(
1− 2(m2 − d0)

dĤM(t)

dm2

)
(A.6)

Using ĤM(t∗) from (A.5) in (A.6), the differentiation is given as follows:

df(m2)

dm2

= e−2(y−1)γ+
∑y

i=2 ψ0(i)
(
1− 2y

d(2(y − 1)γ + ψ0(2) + ...ψ0(m2 + d0))

dm2

)
= e−1.154(y−1)+

∑y
i=2 ψ0(i)(1− 2y(0.577 + ψ1(2) + ...+ ψ1(y)))

Here, y = (m2 − d0) and γ = 0.577. Clearly, with exponential and Trigamma function

being positive [129], df(m2)/dm2 < 0. Now that we have established f(m2) is a de-

creasing function, for m′2 > m2, the right hand side of (A.1) becomes less than 1 and

hence ρ′(t) < ρ(t). �

This implies that the prediction of RSF improves after balancing. For m1 << m2, sim-

ilar result holds. This is empirically corroborated from the results present in Table 2.2

and Figure 2.4 in the main text.
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Figure A.2: Representation of the lower-bound on ρ̃(t) for all the 6 datasets used in
this paper.

Finally, from the propositions and corollary, we establish a lower bound on the

BS after balancing. Figure A.2, we show the actual BS, ρ̃(t) obtained after balancing

and the predicted lower-bound for all the six datasets across 10 fold cv iterations. As

evident from Figure A.2, the proposed lower-bound is a reasonable estimate.

Remark 2 Let m1 and m2 be the number of censored and mortality samples in Φ

and ĤC(t), ĤM(t) be the estimated cumulative hazard function for the censored and

mortality nodes, respectively. Then for m2 << m1, ĤM(t) < Ĥ ′M(t) and for m1 << m2,

ĤC(t) > Ĥ ′C(t), where Ĥ ′M(t) and Ĥ ′C(t) are the estimated cumulative hazard function

for the censored and mortality nodes, respectively, after balancing.

In this remark, we establish the relationship between the hazard functions before and

after balancing and more importantly the result on improvement in the hazard esti-

mates for both censored and mortality class after balancing. Let us first start with case

1. We already know the expression for hazard function, ĤM(t∗) for the mortality node,
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M from (A.5). Now, the hazard function for the censoring node, C estimated at or

after the maximum event time, t∗∗, ĤC(t∗∗) can be represented as:

ĤC(t∗∗) =
1

(m1 + d0)− 1
+

2

(m1 + d0)− 2
+ ...+

d0

m1

Let m1 + d0 = u, then ĤC(t∗∗) can be represented as:

ĤC(t∗∗) =

(
1

u− 1
+

2

u− 2
+ ...+

d0

u− d0

)
(A.7)

Alternately, (A.7) can be written in the form of a harmonic series as follows:

vd01 =

{
1

u− 1
+ · · ·+ 1

u− d0
+

(
1

u− d0 − 1
+ · · ·+ 1

1

)}
−
(

1

u− d0 − 1
+ · · ·+ 1

1

)
vd0−1

2 =

{
1

u− 2
+ · · ·+ 1

u− d0
+

(
1

u− d0 − 1
+ · · ·+ 1

1

)}
−
(

1

u− d0 − 1
+ · · ·+ 1

1

)
vd0−2

3 =

{
1

u− 3
+ · · ·+ 1

u− d0
+

(
1

u− d0 − 1
+ · · ·+ 1

1

)}
−
(

1

u− d0 − 1
+ · · ·+ 1

1

)
...

v2
d0−1 =

{
1

u− d0 + 1
+

(
1

u− d0 − 1
+ · · ·+ 1

1

)}
−
(

1

u− d0 − 1
+ · · ·+ 1

1

)
v1
d0 =

{
1

u− d0
+

(
1

u− d0 − 1
+ · · ·+ 1

1

)}
−
(

1

u− d0 − 1
+ · · ·+ 1

1

)

The sum of the 1st series, vd01 with d0 terms can be approximated using the following:

vd01 =
u−1∑
n=1

1

n
−

u−d0−1∑
n=1

1

n

=
(
γ + ψ0((u− 1) + 1)

)
−
(
γ + ψ0((u− d0 − 1) + 1)

)
= ψ0(u)− ψ0(u− d0)

Similarly, the sum of the last series, v1
d0

= ψ0(u − d0 + 1) − ψ0(u − d0). Hence, the
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hazard estimate for the censored node can be given as:

ĤC(t∗∗) =
u−1∑

n=u−d0

ψ0(n+ 1)− d0ψ0(u− d0)

=

m1+d0−1∑
n=m1

ψ0(n+ 1)− d0ψ0(m1) (A.8)

It can be shown that the hazard estimate or survival function of the leaf nodes and

thus the RSF is consistent [130]. Let us consider a class imbalance with m2 << m1.

Then, for case 1, m2 − d0 mortality samples have hazard ĤM(t∗) and the remaining

d0 samples have a small hazard of the censored node, ĤC(t∗∗). With m2 << m1 and

ĤC(t∗∗) << ĤM(t∗), the overall estimate of the hazard for m2 mortality samples is

(m2 − d0)ĤM(t∗) + d0ĤC(t∗∗) < m2ĤM(t∗). Now, with additional synthetic mortality

samples and the new mortality class size m′2(m′2 > m2), the hazard of the mortality

class at t∗ becomes:

Ĥ ′M(t∗) = (m′2 − d0 − 1)γ +

m′2−d0−1∑
n=1

ψ0(n+ 1)

Also, Ĥ ′M(t∗)−ĤM(t∗) = (m′2−m2)γ+(
∑m′2−d0−1

n=1 ψ0(n+1)−
∑m2−d0−1

n=1 ψ0(n+1)).

Since m′2 > m2 and ψ0 is an increasing function in R+ and the hazard estimate of

the individuals in the mortality node has now improved. Further, the d0 mortality

samples present in censored node still have hazard ĤC(t∗∗). Nonetheless, the proportion,

d0/m2 > d0/m
′
2, thus overall hazard of the individuals in the unbalanced mortality

class is underestimated which is further worsened when the size m2 itself is small.

Conversely, when m1 << m2 with an additional d0 mortality samples in the censored

node, the unbalanced hazard of the censored node ĤC(t∗∗) is more than the hazard of

the censored node with balanced samples, Ĥ ′C(t∗∗). Without any mortality cases in the

censored node, it has a flat survival curve or zero hazard. Since digamma is an increasing

function and the first part of (A.8) also has d0 terms
∑m1+d0−1

n=m1
ψ0(n+ 1) > d0ψ0(m1),
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i.e., ĤC(t∗∗) > 0, which implies an inflated hazard for the censored node. Further, after

balancing, the hazard estimate of the censored node with m′1(m′1 > m1) can now be

represented as:

Ĥ ′C(t∗∗) =

m′1+d0−1∑
n=m′1

ψ0(n+ 1)− d0ψ0(m′1) (A.9)

Ĥ ′C(t∗∗)− ĤC(t∗∗) =
(m′1+d0−1∑

n=m′1

ψ0(n+ 1)−
m1+d0−1∑
n=m1

ψ0(n+ 1)
)

(A.10)

−d0

(
ψ0(m′1)− ψ0(m1)

)
In (A.11), both parts have the same number of terms and since m′1 > m1, ψ0(m′1) >

ψ0(m1) and
(∑m′1+d0−1

n=m′1
, ψ0(n + 1) >

∑m1+d0−1
n=m1

ψ0(n + 1)
)
. Further, the derevative of

digamma is a decreasing function (Trigamma [129]), therefore
(
ψ0(m′1) − ψ0(m1)

)
>(

ψ0(m′1 + 1)−ψ0(m1 + 1)
)
. Hence, Ĥ ′C(t∗∗) < ĤC(t∗∗), i.e., the hazard for the censored

node improves/decreases after balancing.

For case 2, ĤM(t∗) is given as:

ĤM(t∗) =
1

(m2 + d1)− 1
+

2

(m2 + d1) + 2
+ ...+

m2

d1

(A.11)

Now, (A.11) can be simplified as:

Let m2 + d1 = µ, then ĤM(t∗) can be represented as:

ĤM(t∗) =

(
1

µ− 1
+

2

µ− 2
+ ...+

m2

µ−m2

)
(A.12)
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Alternately, (A.12) can be written in the form of a harmonic series as follows:

θm2
1 =

{
1

µ− 1
+ · · ·+ 1

µ−m2
+

(
1

µ−m2 − 1
+ · · ·+ 1

1

)}
−
(

1

µ−m2 − 1
+ · · ·+ 1

1

)
θm2−1

2 =

{
1

µ− 2
+ · · ·+ 1

µ−m2
+

(
1

µ−m2 − 1
+ · · ·+ 1

1

)}
−
(

1

µ−m2 − 1
+ · · ·+ 1

1

)
θm2−2

3 =

{
1

µ− 3
+ · · ·+ 1

µ−m2
+

(
1

µ−m2 − 1
+ · · ·+ 1

1

)}
−
(

1

µ−m2 − 1
+ · · ·+ 1

1

)
...

θ2
m2−1 =

{
1

µ−m2 + 1
+

(
1

µ−m2 − 1
+ · · ·+ 1

1

)}
−
(

1

µ−m2 − 1
+ · · ·+ 1

1

)
θ1
m2

=

{
1

µ−m2
+

(
1

µ−m2 − 1
+ · · ·+ 1

1

)}
−
(

1

µ−m2 − 1
+ · · ·+ 1

1

)

The sum of the 1st series, θm2
1 with m2 terms can be approximated using the following:

θm2
1 =

µ−1∑
n=1

1

n
−
µ−m2−1∑
n=1

1

n

=
(
γ + ψ0((µ− 1) + 1)

)
−
(
γ + ψ0((µ−m2 − 1) + 1)

)
= ψ0(µ)− ψ0(µ−m2)

Similarly, the sum of the last series, θm2
1 = ψ0(µ−m2 +1)−ψ0(µ−m2) and so forth. Hence,

the hazard estimate for the mortality node can be given as:

ĤM (t∗) =

µ−1∑
n=µ−m2

ψ0(n+ 1)− d0ψ0(µ−m2)

=

m2+d1−1∑
n=d1

ψ0(n+ 1)−m2ψ0(d1) (A.13)

However, the censored leaf node has m1 − d1 censored samples and no mortality samples.

Without any mortality cases, the censored node will have a flat survival curve or zero hazard.

After balancing, the hazard estimate of the mortality node, Ĥ ′M (t∗) with m′2 samples and
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Ĥ ′M (t∗)− ĤM (t∗) can now be represented as:

Ĥ ′M (t∗) =

m′2+d1−1∑
n=d1

ψ0(n+ 1)−m′2ψ0(d1) (A.14)

Ĥ ′M (t∗)− ĤM (t∗) =

m′2+d1−1∑
n=m2+d1−1

ψ0(n+ 1)− d1

(
ψ0(m

′
2)− ψ0(m2)

)
(A.15)

Since, m′2 > m2 and digamma is an increasing function, we know that ψ0(m
′
2) > ψ0(m2) and∑m′2+d1−1

n=m2+d1−1 ψ0(n+ 1) > d1(ψ0(m
′
2)− ψ0(m2)) and thus Ĥ ′M (t∗) > ĤM (t∗).

Finally, for case 3, the estimated cumulative hazard of the mortality node is given as:

ĤM (t∗) =
1

(m2 − d0 − 1) + d1
+

2

(m2 − d0 − 2) + d1
+ ...+

(m2 − d0)

d1

Again, after simplifying, ĤM (t∗) can be written as:

ĤM (t∗) =

m2−d0+d1−1∑
n=d1

ψ0(n+ 1)− (m2 − d0)ψ0(d1)

On the other hand, the estimated cumulative hazard of the censored node is given as:

ĤC(t
∗∗) =

1

m1 − d1 + (d0 − 1)
+

2

m1 − d1 + (d0 − 2)
+ ...+

d0

m1 − d1

=

m1−d1+d0−1∑
n=m1−d1

ψ0(n+ 1)− d0(ψ0(m1 − d1))

Now whenm2 << m1, after balancing Ĥ ′M (t∗) =
∑m′2−d0+d1−1

n=d1
ψ0(n+1)−(m′2−d0)ψ0(d1)

and Ĥ ′M (t∗)− ĤM (t∗) is given as:

Ĥ ′M (t∗)− ĤM (t∗) =

m′2−d0+d1−1∑
n=m2−d0+d1−1

ψ0(n+ 1)−
(
(m′2 −m2)ψ0(d1)

)
(A.16)

Both terms in (A.16) have the same number of terms. Further, it is reasonable to assume that

m2 − d0 > d0, i.e., the number of mortality samples in mortality node is greater than the

number of mortality samples in the censored node, then it follows that (m2 − d0 + d1) > d1.
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Since ψ0 is an increasing function, Ĥ ′M (t∗) > ĤM (t∗). Conversely, for m1 << m2 after

balancing Ĥ ′C(t
∗∗) =

∑m1−d1+d0−1
n=m1−d1 ψ0(n + 1) − d0(ψ0(m1 − d1)) and Ĥ ′C(t

∗∗) − ĤC(t
∗∗) is

given as:

Ĥ ′C(t
∗)− ĤC(t

∗) =

(∑m′1−d1+d0−1

n=m′1−d1
ψ0(n+ 1)−

∑m1−d1+d0−1
n=m1−d1 ψ0(n+ 1)

)
− d0

(
ψ0(m

′
1 − d1)− ψ0(m1 − d1)

)
(A.17)

In (A.17),
(∑m′1−d1+d0−1

n=m′1−d1
ψ0(n+1)−

∑m1−d1+d0−1
n=m1−d1 ψ0(n+1)

)
and d0

(
ψ0(m

′
1−d1)−ψ0(m1−

d1)
)
have the same number of terms, i.e., d0. Again, using the same reasoning as in case 1,(

ψ0(m
′
1−d1)−ψ0(m1−d1)

)
>
(
ψ0(m1−d1 +1)−ψ0(m1−d1 +1)

)
. Thus, Ĥ ′C(t

∗) < ĤC(t
∗).

These improvements in the hazard of the mortality and the censored node is shown em-

pirically in Figure 2.5 of the main text.
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