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ABSTRACT 

 

Soil variability is a complex but ubiquitous phenomenon that derived from many 

sources of uncertainty. This inherent in-homogeneous behavior can affect the accurate 

estimation of soil strength and ideally should be fully characterized for informed 

decision making. However, in traditional geotechnical engineering survey, quantification 

of soil variability is not routinely performed and materials are collectively considered as 

a homogenous body. This knowledge gap is likely to inhibit the true understandings of 

variations in soil properties, and lead the practical design compromised to conservative 

parameter values. Despite rapid proliferation of sensing techniques having enabled us to 

collect more detailed deformational evidence, to the author's knowledge, no statistical 

characterization has been performed on full field measurements. This research 

introduces a spatio-temporal statistical characterization of boundary kinematic 

phenomena captured by 3D digital image correlation (DIC) method. The combined 

interpretation of the displacement and kinematic operators provides a unique uncertainty 

quantification on the deforming granular media. 

First, we introduce a multi-scale data ensemble populated from a series of 

nominally similar triaxial sand specimens. First- (marginal statistics) and second-order 

(correlation analysis) statistics are assessed on each data scenario. The results reveal that 

the presence of shear and expansion band can introduce deformation dependencies in 

space and time. Also, the uncertainty of deformation pattern is greatly affected by the 

variability of localization behaviors, which is started as early as hardening phase. 
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Second, the complete set of 3D kinematic operators under the Cylindrical 

coordinates-for the first time-applied to the assessment of meso-scale kinematics 

manifested on triaxial specimens. Our results suggest the kinematic patterns during the 

course of compression are influenced by factors such as confining pressure, initial 

density, varying composition, among others. Further statistical analysis of kinematic 

fields shows that different localization effects can interact with each other as evolved in 

both space and time. The results shed much light on systematically recognizing 

prevailing deteriorating mechanisms as well as uncertainty distributions during the 

process of shearing. 

Finally, we include a case study of probabilistic calibration of a visco-

elastoplastic model representing the rheological property of sandstone. This is aimed to 

showcase the methodology we will apply to uncertainty quantification of modeling 

heterogeneous material responses in our future work. 
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1. INTRODUCTION  

 

1.1. Problem statement 

Soil variability is a complex but ubiquitous phenomenon that derived from many 

sources of uncertainties. The inherent variation is usually manifested as varying soil 

properties, stratigraphy, and spatio-temporal distributions that can be resulted from the 

synthesis of physical, hydrogeological, chemical and/or biological processes (Li et al., 

2014). In Geotechnical survey, such variability is crucial for the accurate estimation of 

soil strength and ideally should be fully characterized to permit informed decision 

making and risk management (Lacasse and Nadim, 1996; Phoon and Kulhawy, 1999). 

However, the practical constraints allow only limited standardized tests to be performed 

from which the soil parameters are estimated at discrete locations. This deterministic 

characterization would likely underestimate the varying properties of soils as well as its 

impact on constructions. Moreover, the conventional geotechnical tests taking the 

measurements such as global axial stress/strain, volumetric strains are implicitly 

assuming the testing sample as a homogeneous body. This simplification disregards 

local material heterogeneity and non-affine deformation patterns of natural sand, and 

yielded merely phenomenological evidence of global failure instead of physical process 

of particle-to-particle interactions (Andrade et al., 2011). 

To understand the mechanical behaviour of sand, one should realize the macro 

deformation is governed by failure mechanism at fine scales. Various experimental and 

numerical techniques have been developed to allow full-field measurement performed 
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on a deforming body. The foremost experimental investigation was carried out at 

Cambridge in 1960s. Roscoe (1970) used a 150kV X-ray apparatus to check the 

uniformity of the behaviour of soils at all stages of tests. The grain-scale density 

variation between localization zone and surrounding materials has been utilized in this 

sensing technique. Later from 1980s, several laboratories (Desrues, Lanier and Stutz, 

1985; Desrues et al., 1996; Alshibli et al., 2000; Higo et al., 2013) used X-ray 

tomography to study the localization patterns in sand. A special localization 

phenomenon, shear band, which encompass the major shear deformation of sand once it 

is fully formed, has drawn most attention in these research. The thickness, orientation, 

and volumetric behaviour of shear band have been of great interest among 

experimentalists since it is believed associated with governing failure mechanism in the 

post-peak regime (Desrues et al., 1996). A further detailed exploration that can 

recognize particle morphology and interactions has been achieved by the advent of 

microscopic X-ray CT system (Oda and Kazama, 1998; Viggiani and Desrues, 2004; 

Alshibli and Alramahi, 2006), in-site X-ray scanning (Desrues et al., 1996; Alshibli et 

al., 2000), and ID-Track techniques (Hall et al., 2010; Andò et al., 2012). Overall, the 

X-ray method has been demonstrated as an effective tool to capture interaction maps and 

density variations in grain-scale. However, the technique limits resulted most tests 

performed over large increments, small specimens or large particle size. Note that strain 

bifurcation or the initial location is considered over very small strain step, hence low 

sampling frequency would tend to average instantaneous strain fluctuations over the 
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whole increment, and as a consequence the characterization of competing localization 

effects over a small period is difficult to carry out.  

Digital Image Correlation (DIC) as a non-destructive, optical experimental 

technique has been extensively used over the last two decades. It analysis the surface 

displacement field from digital images taken from a process of interest, from which the 

overlapping subsets of pixels are tracked and meso-scale (soil clusters) displacements 

can be deduced (Sutton, Orteu and Schreier, 2009). Since the formation and collapse of 

'soil particle columns', often referred as force chains, have been regarded as a signature 

mechanical phenomenon within the localization areas (Oda and Kazama, 1998), the 

meso-scale is deemed suitable for presenting local displacement field of soil tests 

(Rechenmacher, 2006). The yielded spatio-temporal nominally continuous observations 

also provide great opportunity to assess the onset and evolution of kinematic phenomena 

within the shear bands. Rechenmacher and her co-workers (2010, 2011, and 2012) used 

DIC method to evaluate shear, rotational and volumetric strains, build-up and collapse of 

force chains, as well as vortex structures during a plane strain compression test. In 

addition, the introduction of multiple cameras for DIC system (i.e., 3D DIC) makes it 

possible to perceive 3D surface deformation, and has been used for the description of 3D 

displacement field and calibration of constitutive parameters of a heterogeneous model 

(Rechenmacher and Medina-cetina, 2007; Medina-Cetina and Rechenmacher, 2010).  

Although the advances in sensing technology have been improving our 

understanding of soil mechanism from micro- to macro-scales, the lack of statistical 

characterization of full field measurements is observed among current research 
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community. This knowledge gap is critical since non-unique material response have 

been reported (Song, 2012) and should be common due to various participating sources 

of uncertainty. The nature material heterogeneity, variation of testing apparatus, or 

human induced error can all exert certain amount of influence on the assessment result. 

The uncertainty may be also varying in space and time, and show distinct features when 

examined in different scales. In order to tackle this issue, a response population that 

sufficient to represent stochastic properties of physical process represents as a 

prerequisite before any serious characterization is about to make. 

It is also worth noting that despite the rapid growth of 3D DIC technique, limited 

studies have been seen to correlate the displacement fields with kinematic operators 

(translation, rotation, expansion/contraction, etc.) under three-dimensional stress 

conditions. The technique difficulty lies in the internal measurements, which is 

necessary for quantifying motions of 3D object, is unable to be sampled by current 

digital images. Further, the choice of a proper coordinate system also represents a 

challenge. Because the sampled data by 3D DIC are displacements occurred to 'soil 

clusters' (i.e., in meso-scale) manifested on curvilinear spatial coordinates (non-

rectangular layout). The previously adopted Spherical or Cartesian coordinates (Alshibli 

and Alramahi, 2006; Rechenmacher, 2006) cannot correctly accommodate the present 

specimen shape and show meso-scale kinematics without projecting to a rectangular 

plane. It is clear a systematic approach to account for 3D meso-scale kinematics under 

triaxial experimental conditions is still lacking. 
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In this work, we conduct a comprehensive statistical characterization towards a 

data ensemble populated from a series of nominally identical triaxial tests. First- and 

second-order statistics are calculated in a multi-scale framework. Following this, a 

complete set of first-order 3D kinematic operators under Cylindrical coordinates is 

introduced, and incorporated into the analysis of spatio-temporal evolution of kinematic 

behaviour of specimens under varying experimental conditions. Further, we perform 

again the statistical characterization towards kinematic fields generated from nominally 

similar tests, to reveal the prevailing localization mode among various competing ones, 

as well as uncertainty levels evolved in space and time.  

The last chapter of this work is a separate research regarding probabilistic 

calibration of a visco-elastoplastic model. We incorporate this study for the aim of 

presenting the probabilistic calibration methodology that will be used to quantify the 

uncertainty and model performance to reproduce the heterogeneous material responses. 

The ultimate goal is to provide the full probabilistic description of spatially distributed 

constitutive parameters, and their dependencies in capturing stochastic behaviour of soil 

failure process. 

1.2. Dissertation outline 

Although the content of this dissertation is around the same topic, each chapter 

represents an independent journal article consisting of introduction, methodology, results 

and conclusion parts. Chapter 2 introduces the spatio-temporal statistical 

characterization of displacement fields in a multi-dimensional context. First- and second-

order statistics are calculated for each data scenario. Chapter 3 introduces the 3D 
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kinematic operators under Cylindrical coordinates, and its application to 3D 

displacement fields captured on different triaxial compression tests. Chapter 4 further 

conducts the kinematic analysis but on a series of nominally similar tests, then mean and 

standard deviations are calculated across all participating tests. Chapter 5 introduces a 

Bayesian probabilistic calibration of a visco-elastoplastic model representing the 

rheological property of sandstone, to provide the methodology of uncertainty 

quantification that will be used in our future work of sand specimens. 
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2. SPATIO-TEMPORAL STATISTICAL ANALYSIS OF BOUNDARY 

DISPLACEMENT FIELDS CAPTURED BY 3D DIGITAL IMAGE CORRELATION 

METHOD 

 

2.1. Introduction 

Nature soil in its complexity offers a wide range of variability and heterogeneity 

of stratigraphy and material properties, this essential stochastic being complicated each 

geotechnical task with finite amount of uncertainty. For instance, in a typical laboratory 

triaxial compression test of soil, various failure modes can be observed among parallel 

groups even though experimenting process has been carefully controlled (Desrues and 

Viggiani, 2004; Song, 2012). The observed uncertainty may arise from inherent 

heterogeneity of material, variations associated with testing apparatus, human introduced 

errors, or a combination of those. This non-uniqueness behavior poses a challenge to 

anyone who intend to comprehend the underlying failure mechanism, and introduces 

several questions such as: "which failure mechanism is dominating, or most likely to 

occur?" Or, "What is the correlation amidst varying failure modes, and mechanisms 

evolved in the space and time?" For a systematic characterization of uncertainty 

associated with the process of interest, a statistical description is not only desirable but 

necessary complement to the conventional analysis methods. 

In order to understand the failure mechanism of soil material, one should 

recognize the continuum failure initiates from local material anomalies as fine as grain 

scale. However, in tradition plane or triaxial compression test, materials are collectively 
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considered as a homogeneous body-only global, averaged material responses are 

obtained. To proper characterize the heterogeneous deformation of granular material, 

full field measurement of testing specimen is necessary. The foremost experimental 

effort conducted can be traced back as early as 1960s. Roscoe (1970) firstly used a 150 

kV X-ray apparatus to check the non-uniform behaviour of specimens. Starting from 

1980s, Desrues and his co-workers (Desrues, Lanier and Stutz, 1985; Desrues et al., 

1996) used X-ray tomography to investigate strain localization patterns in sand, 

including orientation, thickness, and volumetric behaviour, etc. A further observation of 

microstructure and evolving mechanism inside of shear band has been achieved by the 

advent of microfocus X-ray CT system (Oda and Kazama, 1998; Oda, Takemura and 

Takahashi, 2004). These studies provide valuable insights towards showing particle 

interaction maps and density variations happened to specimen. Nevertheless, limitations 

in data acquisition resources have led to mainly post-mortem analysis or data captured 

over wide strain increments. This could smear out chronologically occurred localized 

strain over each short period of time, and resulted strain localizations may appear 

simultaneously in all regions (Desrues and Viggiani, 2004). One improved solution is to 

perform in-situ X-ray scanning during the course of loading (Desrues et al., 1996; 

Alshibli et al., 2000). More recent studies had even incorporated particle identification 

and tracking algorithms to assess the link between grain morphology and localization 

effects (Matsushima et al., 2006; Andò et al., 2012; Alshibli et al., 2016). However, the 

computational effort is proved expensive, and bifurcation initiates over a very small 

strain increments is still difficult to characterize. 
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Over the last two decades, Digital Image Correlation (DIC) has been extensively 

used as an alternative reliable experimental technique for non-destructive full-field 

measurements. It is essential a computational tool assessing consecutive digital images 

taken from a process of interest, from which meso- or micro-scale displacements can be 

deduced (Sutton, Orteu and Schreier, 2009). In terms of its application in soil mechanics, 

Rechenmacher and Medina-Cetina (2003, 2006) inferred thickness and inclination of 

shear band through direct delineation of grain-scale displacement fields within 

deforming sand specimens captured by 3D DIC. These approximate spatial-temporal 

continuous observations also provide opportunities to elucidate kinematic behaviour 

associated within shear bands (Abedi, 2012; Omidvar, Chen and Iskander, 2015), and 

evolution of force chains and vortex-structures through the course of specimen 

deformation (Rechenmacher, Abedi S. and Chupin, 2010; Rechenmacher et al., 2011). 

Note that the current DIC technique used for boundary displacement measurements only 

availed 2D kinematic analysis, which disregards out of plane translation or rotation.  

In spite of rapid proliferation of experimental techniques and processing skills as 

introduced above, the study accounts for uncertainty associated with failure modes, and 

a statistical characterization of soil deformation patterns are lacking in present research. 

As we mentioned previously, soil is heterogeneity in its nature, non-unique soil failure 

mechanisms should be expected for any research considering local heterogeneity of 

material, contrary to otherwise homogeneous assumptions. Further, in order to avoid the 

disadvantage of "can't see the forest for the trees", a multi-level inspection of 

deformation process is also preferred. Based on these concerns, the present paper use the 
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3D DIC technique to populate database from a series of nominally identical triaxial 

compression specimens. Then, the datasets were processed into "0D-T" data ensemble 

(axial stress-strain and axial strain-volumetric strain), 1D-T data ensemble (boundary 

vertical and radial displacements), and 3D-T data ensemble (either in Cartesian or 

Cylindrical coodinates). First- (mean and standard deviation analysis) and second-order 

statistics (correlation analysis) are calculated on each case, and the results were served to 

provide the insights of spatio-temporal deformation trend and dependencies of 

axisymmetric specimen under triaxial compression condition, in a spatio-temporal 

fashion.  

The paper is organized in three main parts: firstly, we give a brief account of 

laboratory experiments, comprised of triaxial compression tests coupling with 3D DIC 

technique. In following sections, multi-dimensional data ensembles (0D-T, 1D-T, and 

3D-T) were sequentially introduced and analysed through first- and second-order 

statistics. Finally, the paper is concluded according to obtained statistical results, as well 

as its interpretations in regards to uncertainty and associations among different failure 

modes during soil failure process, which reflects our exact intention to address the 

questions proposed at the beginning. 

2.2. Laboratory experiments 

2.2.1. Triaxial compression test 

Experimental results presented in this study come from a series of drained, 

vacuum-consolidated triaxial compression tests carried out at the John Hopkins 

University. Sieved construction sand ( 502.63, 0.50 , 2.34s uG D mm C   and 1.11cC  ), 
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graded as SP, was selected to reconstitute sand specimen owing to its color spectrum 

appropriate for pattern recognition during DIC analysis. Table 2.1 gives sample 

characteristics of 17 selected nominally similar tests in terms of aspect ratio, initial 

density, relative density, friction angle, and stress ratio at peak state. Most specimens 

were constituted through vibratory compaction in three uniformly compacting layers; 4 

additional ones were prepared using dry pluviation by controlling drop height to reach 

the similar initial density. 

 

Table 2.1 Summary of sample characteristics of 17 tests 

 

Test name 

Aspect 

ratio 

Initial 

density 

(kg/m3) 

Relative 

density 

(%) 

Friction 

angle 

(deg) 

Peak 

( 1 3/    ) 

Sample 

preparation 

      

092903b 2.18 1,710.95 91.09 49.51 7.35 

Vibratory 

compaction 

093003b 2.19 1,696.00 85.96 47.98 6.78 

Vibratory 

compaction 

100103a 2.21 1,702.22 88.10 48.66 7.03 

Vibratory 

compaction 

100103b 2.19 1,717.13 93.18 47.96 6.77 

Vibratory 

compaction 

100103d 2.18 1,702.41 88.17 47.37 6.57 

Vibratory 

compaction 

100203a 2.20 1,715.32 92.57 48.90 7.12 

Vibratory 

compaction 

100203b 2.17 1,711.91 91.41 47.96 6.77 

Vibratory 

compaction 

100303b 2.22 1,718.70 93.71 48.56 6.98 

Vibratory 

compaction 

120604c 2.25 1,717.48 93.30 48.89 7.11 

Vibratory 

compaction 

120904b 2.25 1,720.40 94.28 48.76 5.86 

Vibratory 

compaction 

120904c 2.25 1,713.13 91.83 48.77 5.86 

Vibratory 

compaction 
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Table 2.1 Continued 

 

Test name 

Aspect 

ratio 

Initial 

density 

(kg/m3) 

Relative 

density 

(%) 

Friction 

angle 

(deg) 

Peak 

( 1 3/    ) 

Sample 

preparation 

      

120904d 2.24 1,707.89 90.04 47.68 5.44 

Vibratory 

compaction 

120904e 2.25 1,718.70 93.71 47.79 5.51 

Vibratory 

compaction 

101204a 2.24 1,708.03 90.09 48.03 6.89 

Dry 

pluviation 

120604a 2.23 1,721.06 94.50 49.46 7.33 

Dry 

pluviation 

120604b 2.25 1,715.13 92.50 48.54 6.98 

Dry 

pluviation 

121304a 2.24 1,721.73 94.73 49.30 7.27 

Dry 

pluviation 

Basic statistics       

Mean 2.22 1712.83 91.72 48.48 6.68 - 

Standard 

deviation 0.03 7.20 2.45 0.62 0.61 
- 

 

The triaxial apparatus is practically similar to the conventional system, except 

Plexiglas cell was removed and specimen was subjected to a 40KPa confinement by 

making use of vacuum pump. This apart from conventional settings was designed for 

avoiding optical distortion which could occur to digital images that were taken during 

the course of shearing. All specimens were compressed under a strain control rate of 

0.2%/min until critical state was ensured reached (beyond 12% of strain level). Figure 

2.1 presents the global stress-strain and volumetric strain responses of 17 tests, 

variations are seen gradually emerged after elastic portion. However, in post-peak 

regime, data variability seems homoscedastic for stress-strain curves (Figure 2.1(a)), 

while continuing scattering for the other case (Figure 2.1(b)). A further investigation of 

bifurcating process and post-peak behavior will require a detailed description of full 
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field displacement, and a statistical inspection that is capable to assess the uncertainty 

inherent in the process of interest.  

 

 

Figure 2.1 (a) Triaxial stress-strain curves of 17 tests; (b) axial strain-volumetric 

strain curves of 17 tests 

 

2.2.2. 3D DIC 

In present study, we use 3D DIC technique to populate boundary displacement 

field during the course of shearing of 17 testing specimens. The full details of using 3D 

DIC technique to sample full field spatio-temporal datasets can be found in Medina-

Cetina (2006). Herein, we only review the most relevant sections regarding the analysis. 

Along with standard triaxial compression test, a 3D imaging system comprised two 

digital cameras were setup in front of soil specimen to provide access to 3D surface data 

throughout all compression processes. Synchronous images were captured every 15s 

(0.05% of axial strain) and digitalized through software VIC-Snap, by Correlated 

Solutions, Inc. To assimilate graphical information into full-field displacements, subsets 
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of pixels between two digital images were identified and correlated, through the 

algorithm such as normalized cross-correlation that is adopted in this study (Sutton, 

Orteu and Schreier, 2009). This will generate a batch of incremental (Eulerian) DIC 

displacement data. For accommodating Lagrangian-based strain and kinematic analysis 

mapping from undeformed to deformed state of specimen, consecutive image increments 

were accumulated through cubic spline interpolation referenced at the initial material 

coordinates. The resulted description of full-field displacements featured with a grain-

scale resolution of 0.4mm, over a sector approximate 85 degree around the specimen 

circumference. 

Figure 2.2 gives an example of 3D DIC displacement fields superimposed over a 

specimen’s deformed boundary shape, of test 092903b at strain level 7%. First row are 

measured 3D displacement field decomposed in Cartesian coordinates. From left to right 

are u, v, and w fields which represent local displacements in horizontal, vertical and out-

of-plane directions, respectively. Asymmetric deformation in u field and budging 

phenomena described in w field indicate strain localization has well developed in 

specimen at present shear stage. The layered deformation in vertical direction implies 

specimen’s varying density in depth which may be caused by preparation method 

(vibratory compaction in three layers).  

Instead of analyzing in Cartesian system, displacement vectors can also be 

decomposed in other orthogonal systems. For instance, radial, tangential, and axial 

displacement fields can be obtained if analysis performed in Cylindrical coordinate. 

Figure 2.2(b) gives corresponding results in Cylindrical coordinates based on the same 



 

18 

 

DIC measurements presented in Figure 2.2(a). Radial displacement as shown in the first 

plot demonstrates sample is mainly expanding in the middle and less evident towards 

two ends of the specimen. The second plot presents tangential displacement field 

indicating angular motion of subsets along specimen surface. Negative quantities denote 

clockwise rotations, which presented mainly in the middle height of specimen and 

following main diagonal direction (top-left to bottom-right). This associates well with 

intense particle rotation inside of shear band was previously found during softening 

stage (Oda and Iwashita, 2000). Note that the observations herein are merely depend on 

measurements obtained from one test and one specific loading stage. A proper 

characterization of behavior will require a statistical database, to present full populations 

of the process. 
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Figure 2.2 (a) 3D displacement field of test 092903b at strain level 7% decompose 

into in horizontal, vertical and out-of-plane directions (left to right); (b) Same 

displacement field decompose into radial, tangential, and axial directions in 

Cylindrical coordinate  

 

2.3. Statistical characterization of multi-scale data ensembles 

2.3.1. ‘0D-T’ data assembling 

Our first analyzing effort lies in statistical characterization of conventional global 

material responses, including axial stress-strain and axial strain-volumetric strain 

relationships. Due to the volumetric strain was not directly measured throughout the 

tests, an alternative method was employed to calculate sample volume by assuming 

specimen is composed of an assembly of 'stacked disks' (Macari, Parker and Costes, 

1997). The height H is determined as 1mm for each disk, while the diameter is derived 
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based on averaged radius measurements R captured through DIC images along the 

specimen boundary. The specimen volume can then be integrated as the sum of all disks 

volume, i.e., 

 2 2

0 0 0 0

H R HV rdrd dz R dz        (2.1) 

The global deviatoric stress and volumetric strain, as a function of axial strain for 

all tests, are depicted in Figure 2.3 (a) and (b), respectively. Selected axial strain range is 

from 0 to 9.6%, which in accordance with the maximum extent of sampled DIC data that 

is available for all tests. It shows in Figure 2.3 (a) that averaged stress response reached 

its peak at 3.2% of axial strain, with mean and standard deviation equal to 237.89 and 

8.92KPa, respectively. After this clear peak, the variation of deviatoric stress shows 

constant behaviour through the critical state. In Figure 3 (b), global dilatancy is clearly 

seen after initial volumetric straining. Unlike the constant trend showed in Figure 2.3 (a), 

an increase of uncertainty can be observed with the progression of the tests. Several 

constitutive parameters can be deduced from this mean plot of processes, for instance, 

the mean of Poisson's ratio   and dilation angle   were estimated as 0.123 and 22.62°, 

respectively. 
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Figure 2.3 (a) First order statistics of stress-strain curves; (b) First order statistics 

of axial strain-volumetric strain curves 

 

2.3.2. 1D-T data assembling 

2.3.2.1. 1D-T vertical displacements 

1D-T datasets herein refers to averaged vertical or radial displacement across 

specimen heights. Selected strain levels are from 0.0% to 9.6%, with 0.2% (1 minute) 

incremental steps. Figure 2.4 (a) presents 1D vertical displacements data ensembles at 4 

loading stages – 0.8%, 3.2%, 7.0%, and 9.6%, representing states regarding hardening, 

peak, softening, and critical, respectively. Specimen height has been normalized based 

on initial sample geometry, where we abandoned the top 10% data due to several tests 

suffered from the loss of material coordinates close to the critical state. Figure 2.4 (b) 

and (c) are first order statistics of datasets presented in Figure 2.4 (a). After the peak (

3.2%a  ), specimen is seen deformed non-linearly in the vertical direction as shown in 

Figure 2.4 (b). The bottom portion, nearly 20% of specimen height, soil exhibit 

somewhat homogeneous upward displacement. This "rigid body movement" can be 
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associated with relatively high density at the bottom, and the region separated from 

shearing and bulging plane developed primarily in the middle of specimen. Above this 

area, deforming presents with a linear decreasing trend which is believed to coincide 

with expansion band. The end of this portion is then connected with a non-linear zone, 

where displacement is gradually curve into zero at the top. Note that all testing 

specimens have been fixed at the top and loaded with the same strain rate from the 

bottom, it explains why uncertainty is small when it approaches to both ends, and the 

standard deviation (Figure 2.4 (c)) is seen mostly evident in the middle portion.  
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Figure 2.4 (a) 1D-T vertical data ensembles at 4 loading stages – 0.8%, 3.2%, 7.0%, 

and 9.6% of axial strain; (b) Mean of data ensembles; (c) Standard deviation of 

data ensembles 

 

Further, correlation analysis (second order statistics) are performed on the same 

data ensembles aiming at revealing spatio-temporal dependencies of local displacements. 

We use classical Pearson correlation coefficient to index this relationship, i.e., 
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(2.2) 

Where ix  and 
( )i ky 

 are two random variables, and k  represent lags between ix  

and 
( )i ky 

, which can be defined in space or time. Figure 2.5 (a) and (b) offer two 

illustrating cases for auto- and cross-correlation calculations. "Cross" herein denotes 

correlations are computed based on displacement fields obtained at different loading 

stages, namely, time lags 0 mint  . In the situation that first random variable is lagging 

behind second in space, as case highlighted by red triangles in Figure 2.5 (a), spatial lag 

ynorm  would be positive. Otherwise spatial lag 
ynorm   can be negative for instance 

showcased by blue squares. For auto-correlation, the generated correlation coefficients 

must be symmetric with respect to axis 0ynorm  , due to the identical data ensembles 

are used for computing correlations. But this is not hold for cross-correlation cases 

because different data ensembles are presented as shown in Figure 2.5 (b). 
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Figure 2.5 Illustrative cases of computing correlation coefficients towards 1D-T 

vertical displacement field: (a) auto-correlation coefficient versus lags of height 

ynorm  ; (b) cross-correlation coefficient versus lags of height 
ynorm  

 

For the aim of obtaining the whole picture of correlation relationships in space 

and time, we calculated completely 48 stages correlation fields. A surface is then 

searched through cubic spline interpolation trying to best fit all coefficient clouds, as 
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shown in Figure 2.6. X and Y axes represent temporal and spatial lags, and the colours 

indicate the intensity of correlations. It follows the approximate symmetric shape as we 

have seen in Figure 2.5. However, a downward skewness is gradually emerged beyond 

10 minutes in time lag (equals to 2%a  ). It can be interpreted physically, that a 

significant upper part displacement at early stage tends to positively associate with 

considerable lower part displacement if two phases apart at least 10 minutes. This 

quantitative conclusion is likely a consequence of porosity change in local areas of 

specimen during the tests. Because our testing specimens are all presented with high 

relative density (as shown in Table 2.1), local dilations should be evident inside of 

expansion band. Such behaviour can supposedly provide the accommodating ability of 

significant lower portion movement at later stages. 

 

 

Figure 2.6 Spatio-temporal empirical correlation map of 1D-T vertical data 

ensemble 
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2.3.2.2. 1D-T radial displacement 

1D-T radial displacement is mainly indicative of specimen's bulging effect. 

Figure 2.7 (a) and (b) show the anticipated deforming pattern that the magnitude of 

expansion is most evident about the middle of specimen. However, in Figure 2.7 (c), the 

higher uncertainty areas are seen located approximately 0.3 and 0.8 of normalized 

specimen height. This is also reflected on heterogeneous data ensembles in the last sub-

plot of Figure 2.7 (a). Even though most tests reach the local maximums about the same 

height of specimen, various decline gradients are observed towards the upper and bottom 

limits of specimen, suggesting that variability of expanding profile, instead of maximum 

bulging point, is the main contributing source of uncertainty at this stage of loading. 
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Figure 2.7 (a) 1D-T radial data ensembles at 4 loading stages – 0.8%, 3.2%, 7.0%, 

and 9.6% of axial strain; (b) Mean of data ensembles; (c) Standard deviation of 

data ensembles 

 

Figure 2.8 shows the spatio-temporal correlation map generated in the same 

manner as that of Figure 2.6. Interestingly, negative correlation arise where 0.5ynorm  

, indicating a general opposite radial deforming trend if two random variables spacing 

around half of specimen height. Such pattern can be understood as, if loading energy is 

greatly mobilized due to large deformation in one area, local deformation would be less 
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significant in other areas, and consequently leads to non-erratic volume change in the 

global sense.  

 

 

Figure 2.8 Spatio-temporal empirical correlation map of 1D-T radial data ensemble 

 

2.3.3. 3D-T data assembling 

3D-T data-sets consist of full-field spatio-temporal boundary displacement 

measurements by making use of 3D DIC technique. The raw data was processed through 

cubic spline interpolation on a prescribed mesh-grid for the sake of a consistent initial 

configuration (i.e., material coordinates) across all tests. In present research, we 

generated two 3D-T data ensembles from the identical set of digital image information, 

as shown in Figure 2.9 and 2.10, respectively. One is under the conventional Cartesian 

coordinates (named as 3D-T-Ca), another is processed through the Cylindrical 

coordinates (3D-T-Cy) which defines the analysing system consistent with specimen 

geometry. The comparative setting is intend to examine the first- and second-order 

statistics of 3D-T displacement fields from different perspectives, and the results are 
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anticipated to offer the insights of trend and variability of boundary deforming process, 

as well as local deformation dependencies characterized in space and time. 

 

 

Figure 2.9 3D-T-Ca data ensembles: (a) u displacement data ensembles (horizontal) 

at 4 loading stages – 0.8%, 3.2%, 7.0%, and 9.6% of axial strain; (b) v 

displacement data ensembles (vertical); (c) w displacement data ensembles (out-of-

plane) 
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Figure 2.10 3D-T-Cy data ensembles: (a) U
 displacement data ensembles (radial) 

at 4 loading stages – 0.8%, 3.2%, 7.0%, and 9.6% of axial strain; (b) U
 

displacement data ensembles (tangential); (c) 
yU  displacement data ensembles 

(axial) 

 

2.3.3.1. First order marginal statistics 

Figure 2.11 and 2.12 represent mean and standard deviation fields of data 

ensembles presented in previous section. In these plots, each column defines a specific 

loading stage, while each row indicate either mean or standard deviation of a particular 

ensemble displacement field. In Figure 2.11, the mean plot of u  fields show that 

specimen are primarily expanded in the middle which caused the material movement 

toward two opposite directions if viewed in horizontal plane. The mean surfaces of v  

displacement fields can well correspond to patterns seen in Figure 2.4 that three distinct 

'moving blocks' started to form since 7.0% of axial strain. For the last loading phase 
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( 9.6%)a  , standard deviation are clearly seen more evident along the diagonal 

direction of the specimen surface, suggesting that uncertainty of vertical displacement 

could be a result of various banding mechanisms. Patterns in w  field also reflect some 

similarities when compared to 1D-T data ensembles as presented in Figure 2.7. A clear 

bulging effect can be observed at the middle of specimen, however, again, the higher 

uncertainty regions are manifested at the places above and below the maximum bulging 

point, which demonstrate the bulging uncertainty are primarily influenced by the 

curvature of expanding profile, instead of relative position of maximum bulging point.  
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Figure 2.11 Mean and standard deviation distributions of 3D-T-Ca data ensembles, 

where column define each specific loading stage, and row denotes either mean or 

standard deviation of the data ensemble 
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Figure 2.12 presents analysing results of 3D-T-Cy data ensembles under the 

Cylindrical coordinates. Mean radial displacements, as shown in the first row, are most 

evident in the middle of specimen. However, the quantities are seen uniform across the 

same height of specimen, in contrast with bulging effect as depicted in the mean field of 

w  fields. This is due to radial displacement reflects the part of displacement that would 

cause specimen’s radius change, and such change as presented is constant along the 

same height of specimen. The mean field of U
 (tangential displacement) indicates that 

following off-diagonal direction, the specimen surface tends to rotate counter-clockwise. 

This associates well with intense particle rolling inside of shear band which was reported 

through experimental or modelling studies (Oda and Iwashita, 2000; Rechenmacher, 

2006). The uncertainty of tangential displacement field, contrarily, concentrate along a 

diagonal direction opposed to off-diagonal direction as manifested in the mean field of 

U
. Given only 6 out of 17 specimens were presented with diagonal shear bands at the 

end of the test, the highlighted diagonal uncertainty band may as a consequence of 

insufficient data regarding diagonal shear bands among all obtained testing results.  

 

 



 

35 

 

 

Figure 2.12 Mean and standard deviation distributions of 3D-T-Cy data ensembles, 

where column define each specific loading stage, and row denotes either mean or 

standard deviation of the data ensemble 
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2.3.3.2. Second order correlation statistics 

For the calculation of empirical correlation structure of 3D-T displacement fields, 

we assume each coordinate ip  is a random variable defined in space and time 

, ,( , , )i norm i norm i ip x y t . Thereby, the computation of correlation coefficient becomes a 

function of spatio-temporal lag distance ( , ,x y t   ) between two random variables. The 

calculation of empirical covariance, for example in u  displacement field, is defined as: 

 

1 2 1 1 2 2

1 1 2 2

1
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1
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Where 1p  and 2p  respectively represent two coordinates (
,1 ,1, ,norm norm ix y t ) and (

,2 ,2, ,norm norm ix y t ), u  represents the data at point ip , and u  represents the data mean at 

point ip . The empirical correlation coefficient is thus calculated as: 
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 
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Where ( )u ip  denotes the standard deviation of the samples at point ip .  

Figure 2.13 illustrates the process of computing spatio-temporal correlation coefficient 

from the 3D-T data ensembles, by taking the example of u  displacement fields at two 

different deforming stages (7.0% and 9.6%). As shown in Figure 2.13 (a) and (c), we 

randomly select two example spatial variables P1 and P2 in two displacement fields, 

with each variable consists of 17 entries resulted from triaxial compression tests. The 

spatial lags 0.475xnorm    and 1.042ynorm    can be explicitly presented if we project 
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these two spatial variables in ,norm normx y   plane, as shown in Figure 2.13(b). Aided by 

time lag can be determined by the difference of axial strain, the calculation of correlation 

coefficient will result a data point in the correlation field, characterized by lags 

0.475, 1.042xnorm ynorm      and 13mint  . By iterating this process through each 

pair of spatial variables, we can obtain the coefficient cloud field as shown in Figure 

2.13 (d).  

 

Figure 2.13 Illustration of computing spatio-temporal correlation coefficients for 

3D-T data ensembles: (a) spatial coordinates of first variable P1; (b) spatial lags 

between P1 and P2; (c) spatial coordinates of second variable P2; (d) Resulted 

correlation coefficient defined by spatio-temporal lags 
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Once the empirical correlations calculated for all loading phases (0.2 to 9.6%), it 

is then aimed to construct a smooth correlation structure to estimate the spatio-temporal 

correlations further than the empirical knowledge. The process is similar to spatio-

temporal correlation maps we generated for 1D-T datasets (Figure 2.6 and 2.8), except 

one more dimension is added to the definition of lags. The 4D volume fitting all 

empirical correlation coefficients for u , v , and w  displacement fields are presented in 

Figure 2.14, and for U
, U

 and 
yU  fields are presented in Figure 2.15. Not 

surprisingly, correlation gradually collapse with the increase of time lag for all 

displacement fields. The sub-plots in second row of Figure 2.14 and 2.15 are spatial 

correlations when time lag equals to zero ( 0 mint  ). In first sub-plot of Figure 2.14 

(b), two intense correlation bands showing along diagonal and off-diagonal directions 

implies shear bands have caused material translation dependencies in horizontal 

directions. Comparing correlation structures of v  and w  fields, positive values exhibit 

for nearly the entire domain for the former due to the upward compression process, yet 

significant out of plane correlation merely exist in a small circle centred at zero spatial 

lags, suggesting that bulging effect only evident inside of expansion band. In Figure 2.15 

(b), we can observe negative correlation distributed along the normalized heights of -1 

and 1 in the first sub-plot. This corresponds well with our finding in correlation analysis 

of 1D-T radius displacement, which shows an opposite radial deforming trend if two 

local spots on specimen surface spacing around half of specimen height. In second sub-

plot of Figure 2.15 (b), the correlations of the tangential displacements seems to be 

affected by diagonal and off-diagonal shear bands, but the patterns are not distinct. Note 
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that tangential displacement relates with surface rotation centred along specimen axis. 

However, in a 3D system, any particle rotation can be analysed with respect to three 

orthogonal axes. Thus, the further investigation of relationship between soil failure 

mechanism and localization effects would require the proper characterization of local 

kinematics in a 3D coordinates system, ideally should be consistent with specimen shape 

and principle stress directions. 

 

 

Figure 2.14 Spatio-temporal empirical correlation structures of 3D-T-Ca data 

ensembles: (a) smooth representation of correlation structures for u, v, and w 

displacement fields (left to right); (b) spatial correlation maps for u, v, and w 

displacement fields when 0 mint   (i.e. basis of Figure 2.14 (a)) 
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Figure 2.15 Spatio-temporal empirical correlation structures of 3D-T-Cy data 

ensembles: (a) smooth representation of correlation structures for U
 , U

 and 
yU  

displacement fields (left to right); (b) spatial correlation maps for U
 , U

 and 
yU  

displacement fields when 0 mint   (i.e. basis of Figure 15 (a)) 

 

In light of above results, the impact are not only offer the statistical insights of 

data ensembles, the obtained first- and second-order statistics are indeed essential 

elements for simulating these random displacement fields. If the studying random field 

satisfies the Gaussian stationary criteria, one can simply reproduce these random 

responses by Gaussian random simulation accounting for uncertainty and spatio-

temporal dependencies of the process (Medina-Cetina, 2006). However, if the empirical 

correlation structure does not present asymptotic Gaussian properties (non-Gaussian), 

and its first- and second- moments are varying in temporal domain (non-stationary), one 

must resort to some other non-Gaussian non-stationary simulation methods, such as 

Polynomial Chaos Expansion (PCE) (Ghanem and Spanos, 1991; Medina-Cetina, 2006). 
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Although the present authors' work has not yet proceeded to the quantification of these 

properties, the potential benefit of simulating material responses under multi-scale 

scopes is anticipated to alleviate burdens on experimental efforts to reproduce soil 

failure process, and likely to be able used as a surrogate in further studies.  

2.4. Conclusions 

This study introduces a general first- and second-order statistical research 

framework applied to boundary displacement observations sampled from a series of 

nominally similar triaxial compression tests. To the authors' knowledge, the statistics of 

localization patterns revealed in triaxial compression test has not been thoroughly 

considered previously. Even though the advances in non-destructive sampling technique 

has enabled us to gain detailed deforming information beyond global stress-strain 

responses, it is not certain which failure mechanism would occur, or dominate among 

several competing mechanisms. The results of this study provide insights toward the 

overall deformation patterns and inherent uncertainties of specimen undergoing three-

dimensional stress conditions, as well as spatio-temporal correlation patterns of 

displacement fields. The conclusion can be drawn as follows: 

(a) The first order statistics of boundary 1D-T vertical displacements shows that 

specimen is deformed with three distinct patterns along vertical direction–the rigid body 

upward movement at the bottom, the linear decreasing zone in the middle, and non-

linear decreasing area at the top. Further, spatio-temporal correlation analysis reveals the 

trend that a significant upper part displacement at early stage would associate with 

afterwards large lower part displacement if two phases apart at least 10 minutes (2% of 
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axial strain). We argued herein it may due to the development of expansion band which 

had caused local volumetric dilation of specimen at early phase, and it consequently 

created accommodating ability for significant lower portion movement at later stages.  

(b) The similar analysis performed on 1D-T radial displacement demonstrates the 

bulging uncertainty are primarily influenced by the curvature of expanding profile, 

instead of relative positions of banding area. Second order statistics of radial 

displacements presents the negative deformation dependency if two studying areas 

spacing around half of specimen height, which leads to the non-erratic volume change of 

specimen in the global sense. 

(c) Statistics of 3D-T full field measurements suggests that uncertainty of 

deformation pattern are greatly affected by the variability of localization behaviour, such 

as the development of expansion band and shear band, which is started as early as 

hardening phase. The presence of shear and expansion bands can also introduce 

deformation dependencies in space and time. However, a key element of elucidating 

these deformation dependencies and its relationship with soil failure mechanism would 

further require the illustration of local kinematic properties of testing specimen, 

including local translation, rotation, dilation or contraction behaviours as well as their 

uncertainties evolved in space and time. 
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3. ASSESSMENT OF 3D BOUNDARY KINEMATIC PHENOMENA IN SAND 

SPECIMENS UNDER VARYING EXPERIMENTAL CONDITIONS 

 

3.1. Introduction 

Strain localization in sand is a ubiquitous process associated with non-

homogeneous deformation occurred to material when subjected to compressive or tensile 

stress. In a typical soil failure process, the accumulating of strain localization commonly 

manifested as the onset and evolution of intense straining fields, such as shear or 

compaction band, which encompass the main material responses from softening to 

critical state in a deforming body (Borja, 2000; Rechenmacher and Finno, 2003). The 

analysis of such localization phenomena requires the access to full displacement field, 

and the selection of representative features of grains that is sufficient to contrast unique 

mechanical behaviour within the localization zone from the outside areas. The 

proliferation of simulation and sensing technology in the last few decades has enabled 

researchers to sample the whole boundary or volume of a deforming body, to a fine 

scope (meso- or micro-scale) that allows one to measure particle-scale mechanical 

properties. In modelling of micromechanics of granular material, DEM (Cundall and 

Strack, 1979; Bardet and Proubet, 1991) has played a vital role since the method based 

on particle-particle interactions and particle morphology so the strain localization can be 

revealed in micro-scale (Bardet and Proubet, 1991; Ng, 1994; Oda and Iwashita, 2000; 

Alonso-Marroquin et al., 2006; Mohamed and Gutierrez, 2010; Jiang et al., 2011). In 

addition, multiscale frameworks have been proposed by some authors (Andrade et al., 



 

47 

 

2011; Nitka et al., 2011), to bridge different material scales and allow discrete physics 

can be conveyed into continuum modelling. However, in spite of enormously 

improvement on computational power, such methods still suffer from high 

computational cost and difficulty in accounting for particle geometry. Additionally, the 

implementation of accurate models needs to be established on the foundation of exact 

knowledge of the physical process of interest, which largely depends on laboratory tests, 

otherwise the credibility of numerical simulations would be diminished and merely 

regarded as "virtual evidence". 

In experimental investigation of full displacement field, different techniques have 

been utilized to track the evolution of strain localization, including X-ray tomography 

(Desrues et al., 1996; Alshibli et al., 2000), synchrotron X-ray micro tomography 

(Viggiani et al., 2004; Matsushima et al., 2006; S.A. Hall et al., 2010), 2D or 3D digital 

image correlation (DIC) (Rechenmacher and Finno, 2003; Medina-Cetina, 2006), among 

others. The advantage of using X-ray related methods lies in its ability to reveal 

particulate movement that essentially as underlying mechanism governing macro-scale 

deformation, which can occur internally or along the boundary of specimen. However, 

the practical constraints have resulted relevant analyses conducted only over large 

increments, small specimens or large particle size. Theoretically, strain bifurcation prior 

to or at the peak state is anticipated to initiate over very small time step, thus sampling 

frequency is crucial to disclose the true process of band initiation. Behavior accumulated 

over wide increments, on the contrary, would tend to smear any instantaneous strain 
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fluctuations, or strain localization features, over the whole increment (Desrues and 

Viggiani, 2004).  

The DIC technique coupled with experimental exploration has proved as a 

promise method to elucidate grain-scale displacement field with a nominally spatial-

temporal continual configuration. The result of DIC analysis usually reflects meso-scale 

displacement field (smaller than global-scale and bigger than particle-scale), which 

derived from pixel analysis between two digital images to indicate deformation features 

of soils within subgroups. The relatively convenient implementation and nearly temporal 

continuous description of the motion makes it increasingly popular to be adpoted in the 

study of geomaterial mechanism (White, Take and Bolton, 2003; Liu and Iskander, 

2004; Stephen A Hall et al., 2010). For example, Rechenmacher (2006) used DIC to 

quantify the triggering of the formation of persistent shear bands and initially 

investigated kinematic properties within shear bands of sand specimen undergoing plane 

strain deformation. Following this, Rechenmacher and her co-workers ( 2010, 2011, and 

2012) further evaluated shear, rotational and volumetric strains, build-up and collapse of 

force chains, as well as vortex structures in a spatial-temporal manner. Note that all these 

work were carried out under two-dimensional stress conditions, which disregards out of 

plane translational or rotational behaviours.  

Even though 3D-DIC (stereovision system) has seen remarkable growth and used 

in the characterization of material response in recent years (Medina-Cetina, 2006; Sutton 

et al., 2008), to the author's knowledge, no relevant research has been found to address 

local kinematics (translation, rotation, expansion/contraction, etc.) under three-
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dimensional stress conditions. This is attributed to the basic characteristic of DIC as an 

approach that perform non-intrusive sampling, thus internal deformation gradient, which 

is necessary for quantifying 3D object motions, is hard to determine. In addition, in order 

to effectively reveal the desired kinematic properties of materials, the appropriate 

selection of a coordinate system is also a challenge. For example, under micro-scale that 

is able to accounts for particulate motions, Alshibli and Alramahi (2006) employed 

Spherical coordinates to compute rotational angles of soil particles. While in 

aforementioned two-dimensional stress conditions, Rechenmacher (2006) used 

conventional 2D rectangular Cartesian coordinates for calculating corresponding 

kinematics. These analysis frameworks, unfortunately, are not suitable for the present 

research due to the observed data in this research are displacements occurred to 'cluster 

of soil particles' (i.e. in meso-scale) manifested on curved specimen boundary (non-

rectangular layout). It is clear a systematic approach to account for 3D meso-scale 

kinematics of displacement field is still lacking.  

Here, we provide the complete set of first order 3D kinematic operators under 

Cylindrical coordinates that are consistent with specimen geometry and suitable to 

characterize meso-scale kinematics comprising translational, rotational and volumetric 

behaviours throughout triaxial compression process. The paper is outlined in four parts. 

First, we give a brief introduction of laboratory triaxial compression tests, and the 3D 

DIC techniques used in this research. Then, 3D kinematic operators under Cylindrical 

coordinates are explained, as well as the method to incorporate those into current 

research framework. Next, we provide the experimental design of kinematic 
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characterization, and the corresponding results composed of kinematic phenomena 

calculated under different experimental conditions. Finally, the paper is concluded on 

synthesis of obtained results, and the insights provided to help advance the current 

understanding of different deteriorating mechanisms that contribute to the failure process 

of sand.  

3.2. Experimental method 

3.2.1. Triaxial test 

Specimens of dry sand, classified as SP, were tested under three dimensional 

stress conditions. The coefficients of uniformity and curvature are 2.34 and 1.11 

respectively. Total five tests are selected in present kinematic analysis, the main sample 

features are summarized in Table 3.1. All specimens are approximately 160mm in 

height, and 70mm in diameter. Three specimens with relative density more than 90.00%, 

while one loose specimen and one layered specimen presented with much lower density 

than the rest. The layered specimen herein were designed as bottom half "dense" and the 

top half "loose", with the purpose of investigating the effect of varying specimen density 

on kinematics during the compression. Dry pluviation was used to prepare this layered 

specimen, and the loose part was constituted by carefully dropping sand at zero height of 

specimen top. 
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Table 3.1 Summary of main features of testing specimens 

 

Test name 

Height 

(mm) 

Diameter 

(mm) 

Relative 

density 

(%) 

Friction 

angle 

(deg) 

Peak 

( 1 3/    ) 

Notes 

       

092903b 155.50 71.33 91.09 49.51 7.35 

40kPa 

confinement 

121304d 159.50 71.38 99.71 50.95 7.95 

20kPa 

confinement 

121304c 160.00 70.48 93.72 48.59 7.00 

60kPa 

confinement 

121304b 158.17 70.86 46.39 40.88 4.79 

Loose 

specimen 

(40kPa) 

120704c 

157.67 70.88 68.90 43.71 5.43 

Layered 

specimen 

(40kPa) 

79.50 71.27 98.87 - - 

Lower: 

dense sand 

78.17 70.68 30.54 - - 

Upper:  

loose sand 

 

The testing apparatus is similar to that normally used in conventional triaxial 

compression test, except Plexiglass cell was removed and specimens were vacuum 

consolidated, for the purpose of avoiding light refraction or reflection that may disturb 

the proper image acquisition. Most tests were consolidated to 40kPa isotropic confining 

pressure, but two tests were consolidated at confining pressures of 20kPa (121304d) and 

60kPa (121304c) respectively. Axial compression was carried out at a constant axial 

strain rate of 0.2%/min until specimen was fully sheared. Global stress-strain and axial 

strain-volumetric strain responses were given in Figure 31. In Figure 3.1 (a), peak stress 

is evident for dense specimen (tests 092903b, 121304d and 121304c), but not for loose 

or layered specimen. Figure 3.1 (b) shows volumetric strain behaviors of all tests. 

Because confining cell was removed which makes it difficult to conduct direct 
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measurements of volume change, an indirect approach was adopted where volumetric 

strain was derived by calculating averaged radial and vertical displacement along the 

vertical direction of specimen, and then the global volumetric strain can be estimated as 

the accumulation of strains along each height of specimen. The technique details and 

validations can be found in Macari, Parker and Costes (1997) and Medina-Cetina (2006). 

In Figure 3.1 (b), the clear dilation is seen among dense specimens, and layered 

specimen again present with approximate loose specimen's behavior. 

 

  

Figure 3.1 Global material responses: (a) triaxial stress-strain curves (b) axial 

strain-volumetric strain curves 

 

3.2.2. 3D DIC 

The DIC method is a non-contact, optical method for measuring displacement 

field on a deforming body. The object tracked by DIC analysis is a cluster of coloured 

pixels, called subset. When studying material evolved from initial state to deformed 

state, DIC measures the translational and rotational behaviours of overlapping subsets 
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between the reference image and target image. These captured pixel subsets are 

essentially composed of colours of sand reflected on the latex membrane. Due to the 

innate heterogeneity of sand colours, the distinct greyscale patterns of each subset can be 

directly recognized through matching algorithm without any artificial intervention. In 

present work, two digital cameras were obliquely setup in front of specimen to construct 

a 3D scene, which is similar to how human eyes acquire an object's shape and position. 

The calibration of lenses involves capture synchronous images of a standard grid 

oriented at different angles. From obtained images, key camera parameters (e.g. position 

and orientations, focal length, lenses distortions, etc.) were calibrated. After confirming 

the object's 3D spatial information, 3D displacements can be computed as comparing 

overlapping pixel subsets between reference and target images as described above. 

The software VIC-3D, by Correlated Solutions, Inc., were utilized to extract 3D 

displacement fields from the stereo images. The error measure for best match of subsets 

was implemented through normalized cross-correlation criterion (Sutton et al., 2000). To 

enable the continuous displacement distribution and thus accommodating evaluations of 

subsets contraction/expansion, rotation, and other kinematic characteristics on a 

continuum scale, displacement vectors were interpolated to cubic order which resulted a 

resolution of spaced center-to-center around 0.4mm. The stereo images were taken every 

15 seconds corresponding to 0.05% of axial strain through the course of compression, 

but an increment of 0.2% of axial strain was deemed sufficient to represent the evolution 

of localization effects (Rechenmacher et al., 2011; Song, 2012), thereby incremental 

displacement were updated every 4 images, i.e. 0.2% of axial strain. The measurement 
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accuracy was assessed by comparing averaged vertical displacement through DIC data 

with global readings by LVDT transducers, and the difference was found approximately 

0.02mm .  

Figure 3.2 presents displacement fields of test 092903b between axial strain 3.2% 

and 7.0% in Eulerian description (superimposed on deformed body) resulted from 3D 

DIC analysis. The first row is displacement vectors decomposed into horizontal, vertical, 

and out-of-plane directions. The horizontal displacement as anticipated related to the 

development of expansion band, which concentrate in the middle of specimen and drive 

the soil moving towards opposite directions if viewed in horizontal plane. The vertical 

displacement field (second sub-plot) suggests the specimen was compressed 

approximately as three separate "moving blocks" that possess different deforming rate. 

This can associate with variation of specimen stiffness along the vertical direction 

(Medina-Cetina and Rechenmacher, 2010). The bulging effect of specimen was depicted 

well in the plot of out-of-plane displacement field (third sub-plot), and maximum value 

was seen appeared to the centre of specimen. The second row in Figure 3.2 is the same 

displacement vector but decomposed under the Cylindrical coordinates, yielded radial, 

tangential and axial displacement fields. Amidst three, tangential displacement shows 

interesting intensified region along the diagonal direction, suggesting local areas tend to 

rotate clockwise along the specimen circumference. This agrees well with previous 

findings that intense rolling of particles within the shear band (Oda and Iwashita, 2000; 

Rechenmacher, 2006). 
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Figure 3.2 (a) Incremental displacement fields of test 092903b between axial strain 

3.2% and 7.0%, left to right are displacements along horizontal, vertical and out-

of-plane directions; (b) Same displacement field decompose into radial, tangential, 

and axial directions in Cylindrical coordinates 

 

3.3. 3D kinematic operators under Cylindrical coordinates 

One of the special interest of present research is to link the localization effects 

with kinematic behavior of specimen, such as compression, rotation, and/or translation, 

which can be derived from the raw displacement measurements. Herein, we choose 

Cylindrical coordinate consistent with specimen geometry and suitable for presenting 

three-dimensional stress condition. The observed displacement fields across the 

specimen boundary are decomposed in radial, tangential, and axial directions, as 

described in preceding section. Figure 3.3 shows the steps to construct the 3D objects for 
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kinematic investigation. In sub-plot Figure 3(a), a surface area abcd  schematically 

represents sampled boundary coordinates by 3D DIC method. However, this does not 

allow us to directly compute kinematic quantities since no consecutive measurements 

along ̂  axis, which makes the calculation of gradient component along ̂  direction 

impossible. In order to overcome this issue, we introduced a series of auxiliary origins 

distributed along center axial of specimen, as depicted in Figure 3.3 (b). The radial and 

tangential displacements are assumed zero for these origins, while the axial 

displacements are estimated by averaging sampled vertical displacements along the 

boundary at the corresponding specimen height. This assumption is inspired by 

experimental evidence provided in Desrues et al. (1996) and Alshibli et al. (2000), 

where the failure mode in triaxial specimen was found comprised of a rigid cone located 

along the center axial line, and multiple shear planes linked the boundary of cone and 

extended to the specimen surface, implying the radial and tangential displacement 

occurred to the axial line should be trivial. The final step, as shown in Figure 3.3 (c), is 

to connect the introduced origins with the material coordinates at the specimen surface, a 

series of 3D studying objects are consequently established as the demonstrative one 

shaded in blue color. 
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Figure 3.3 Schematic illustration of 3D studying objects that produced by 

connecting boundary coordinates with introduced auxiliary origins 

 

After establishing the studying objects, next, is to identify the kinematic 

operators under current configuration. The conventional first-order kinematics includes 

gradient, divergence, and curl operators acting on the vector field U . The definition of 

these quantities is through an operator called del, or nabla, and its tensor, dot, and cross 

product with the vector field U . Equation 3.1 to 3.3 provide the expressions of gradient, 

divergence, and curl under Cylindrical coordinates. Gradient of a 3D vector field U  

would generate a deformation tensor F , comprised of nine components representing 

translational or rotational changing rate of local area affected by the vector field U . Sum 

of diagonal terms presented in F is the divergence indicating the magnitude of sink or 

source of local area. Moreover, the difference between every two off-diagonal terms in 

F gives each component of curl representing local rotational tendency with respect to 

every axis. Full derivation of first-order kinematic operators under Cylindrical 

coordinates can be found in Appendix A. By making use of these operators, we can 
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obtain a direct description of local straining or rotating kinematic behavior occurred to 

specimen during the course of shearing. 
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Figure 3.4 provides an example of nine components of gradient field based on 

one test's result (092903b), from undeform stage to critical state (axial strain 0.0% to 

9.6%). The coordinates has been normalized according to specimen's diameter. The first 

two sub-plots along diagonal direction 11F  and 22F , indicate local expansions in radial 

and tangential directions within the shear band. However, in axial direction, compression 

is observed inside of shearing zone, especially located at the top-left portion as shown in 

33F . The overall volumetric behavior in terms of these two competing phenomenon can 

be found in the plot of divergence field as shown in Figure 3.5. A general volumetric 

dilation is seen in the middle of specimen, further a local concentrating zone can be 

found coincide with area of shear band. On the other hand, inside of compaction band, 
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which expressed as negative divergence regions in Figure 5, intense volumetric 

contraction is found matching with areas of large axial compression as presented in 33F . 

It demonstrates the shear band can introduce highly volumetric expansion or 

compaction, depends on its overlapping with expansion band or compaction band. This 

observation can complement the previous studies about volumetric change influenced by 

shear band, which focused on the large voids (volumetric dilation) generated by intense 

rolling of soil particles under the plane strain conditions. (Oda and Kazama, 1998; 

Rechenmacher, 2006). 

Figure 3.6 presents the curl fields with respect to three axes. Sub-plots (d), (e), 

and (f) illustrate the positive rotation directions for each case. In Figure 3.6 (a), a shear 

band is explicitly depicted by highlighted clockwise rotation areas observed along the 

diagonal direction. It corroborates, again, intense rolling of soil particles occurred inside 

of shear band (Oda and Kazama, 1998; Rechenmacher, 2006). For rotation with respect 

to ̂  axis (as shown in Figure 3.6 (b)), two bands are seen rotating in opposite directions 

and separated by a neutral zone in the middle, suggesting the "barrel" shape of expansion 

band. As for curl along ŷ  axis, an approximate zero rotation is seen across the whole 

domain, except some deviations are found along the shear band. It is indicative of a 

general axisymmetric deformation of specimen at current loading stage, yet shear band 

can cause some global imperfections due to strain localizations. 
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Figure 3.4 Nine components of gradient deformation tensor F  based on test 

092903b from undeformed stage to loading level of 9.6%a   
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Figure 3.5 Divergence field based on test 092903b at loading level of 9.6%a   

 

 

Figure 3.6 Curl components calculated based on test 092903b at loading level of 

9.6%a   : (a) curl field with respect to ̂  axis; (b) curl field with respect to ̂  axis; 

(c) curl field with respect to ŷ  axis; (d) illustration of positive rotation for curl 

along ̂  axis; (e) illustration of positive rotation for curl along ̂  axis; (f) 

illustration of positive rotation for curl along ŷ  axis 
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3.4. Spatio-temporal evolution of 3D kinematics 

3.4.1. Experimental design 

In this section, we investigate the onset and evolution of localization effects on 

varying experimental conditions. Figure 3.7 shows the accumulated strain windows of 

every analysing increment, specifically, axial strains between 0.0 and 1.0%, 1.0 and 

3.0%, 3.0 and 5.0%, 5.0 and 7.0%, 7.0 and 9.0%, respectively. The first two windows, 

0.0-1.0% and 1.0-3.0%, are corresponding to elastic and hardening phases for most of 

tests. After peak stress reached approximately 3.0% of axial strain, dense specimens 

entered softening stage persisted to the last frame of interest, whereas no clear softening 

was seen on the loose and layered specimen. Figure 3.8 illustrates experimental design 

of proposed kinematic analysis. Four identical kinematic quantities, gradient along ̂  

axis (Grad_ρ), gradient along ŷ  axis (Grad_y), divergence (Div), and curl along ̂  axis 

(Curl_ρ), are desired across all tests. The criteria of choosing these properties lie in their 

denoting processes, such as volumetric behaviour, or rotational tendency along specimen 

surface, are proved tightly associated with localization effects in sand specimen (Oda 

and Iwashita, 2000; Rechenmacher, Abedi S. and Chupin, 2010). For each test, and each 

increment, the kinematic quantities will be tracked over a certain number of consecutive 

images and referenced to the initial image of that particular increment. Thus, the result 

will be plotted based on Lagrangian description. 
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Figure 3.7 Accumulated strain windows for kinematic analyses: 0.0~1.0%, 

1.0~3.0%, 3.0~5.0%, 5.0~7.0%, 7.0~9.0% 
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Figure 3.8 Four kinematic properties: Grad_ρ (F11), Grad_y (F33), Divergence, 

and Curl_ρ, are designed to be calculated for all tests 

 

3.4.2. Spatio-temporal evolution of gradient component along ̂  axis 

Figure 3.9 presents the spatio-temporal evolution of Grad_ρ fields across all 

tests, which is indicative of the development of expansion bands. It generally started 

from the hardening phase, distributed uniformly along the middle of specimen until the 

occurrence of dominant shear band that breaks the symmetry of intensity contour. For 

dense specimens, it is interesting to find the magnitude of expansion diminished in the 

last frame (7.0-9.0%), suggesting that radial dilation rate is decreasing when loading 

approach to the critical state. The main localization effect at this moment is shearing 

along one or multiple band directions that is essentially mobilize the energy formerly 

accumulated in the middle expansion band. In loose and layered specimens, the radial 

deformation is much less evident compared to former ones, indicating budging effect is 
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not significant in these low density specimens. The expansion in layered specimen is 

seen taking place at the upper part of specimen, which is comprised of loose material 

composition, suggesting the governing radial dilation/compaction behaviour is 

controlled by the weak portion of the specimen. Additionally, it is noted that the layered 

specimen has the magnitude of radial deformation similar to that of loose specimen, 

which is also reflected in accumulated global volumetric behaviours as depicted in 

Figure 3.1.  

3.4.3. Spatio-temporal evolution of gradient component along ŷ  axis 

Figure 3.10 shows the spatio-temporal evolution of gradient component along ŷ  

across all tests. The shear bands are highlighted by this kinematic field in the tests 

121304d and 092903b, indicating the collapse of 'soil particle columns' (force chains), 

which caused the local compression parallel to principle stress direction (Oda and 

Iwashita, 2000), is evident within the banding area. It is also noted that the shape of 

shear band is not exactly straight, and almost horizontally oriented at its lower end. This 

agrees well with previous observations through X-ray method (Oda and Kazama, 1998), 

that the boundary shape of shear band was found gently curved with varying inclination 

angles with respect to axial direction. In addition, comparing banding phenomena under 

varying experimental conditions, it is found multiple shear bands emerged when 

confinement is high (test 121304c), whereas no clear shear band presented when 

specimen’s density is low (loose and layered compositions), consistent with that of 

Alshibli et al. (2000) who showed that active localization effects are usually associated 

with dense material composition, and high confinement.  
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Figure 3.9 Evolution of gradient component along ̂  axis of all tests 
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Figure 3.10 Evolution of gradient component along ŷ  axis of all tests 
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3.4.4. Spatio-temporal evolution of divergence fields 

Figure 3.11 shows the progress of divergence fields based on all testing 

conditions. For dense specimens, it reveals that local dilation started as early as 

hardening phase (axial strain 1.0-3.0%) which happened to all three tests. Yet, the later 

developed compaction bands showed distinct features among different tests. Under low 

confining pressure (20kPa), the compacting zone is exclusively inside of shear banding 

area. However, two horizontal compaction bands simultaneously developed after the 

peak stress when specimen under confinement of 40kPa. Under the confining pressure of 

60kPa, two compaction bands seemingly appeared during the strain increment 3.0-5.0%, 

nonetheless, only one at the top persisted to the end of softening stage. For loose and 

layered specimens, both volumetric dilation and compaction are mild, which in 

accordance with our observations in other kinematic fields. 
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Figure 3.11 Evolution of divergence field of all tests 
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3.4.5. Spatio-temporal evolution of curl component along ̂  axis 

Finally, we examine the curl component along ̂  axis which is indicative of 

rotation with respect to radial axis. This kinematic behaviour is evident within shear 

band which is caused by intense particle rolling and leads to the formation and collapse 

of force chains after the peak stress (Oda and Kazama, 1998; Rechenmacher, 2006). 

Figure 3.12 shows the evolution of this kinematic field occurred to all tests. Under the 

dense specimen composition, confining pressure is seen playing an important role in 

determining the shear banding phenomena. Under low confining pressure (first row), 

shear band developed only at very last stage (7.0-9.0%). On the other hand, the high 

confining pressure can lead to multiple shear bands progressing simultaneously (third 

row). For loose and layered specimens, again, no obvious sign of fully developed shear 

band was observed during all studying periods, suggesting a more homogeneous 

deformation trend compared to dense speicmens. 
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Figure 3.12 Evolution of curl component along ̂  axis of all tests 
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3.5. Conclusion 

In this paper, a sptio-temporal kinematic analysis has been conducted on a series 

of triaxial sand specimens sheared under different experimental conditions. This has 

been achieved by making use of 3D kinematic operators under the Cylindrical 

coordinates, which can appropriately accommodate specimen geometry. The introduced 

new tool can faithfully represent 3D meso-scale kinematics occurring to triaxial 

specimens, and leads to the following conclusions drawn from the calculating results: 

(1) The development of expansion band and compaction band are occurred at 

different temporal windows. Expansion band is seen initiated as early as 

hardening stage. With strain started softening, the expanding rate was 

gradually declined, whereas the compaction band began to emerge in the 

vicinity of expansion band. 

(2) When shear band is fully formed, it can alter the radial deformation of 

specimen according to its shape and orientation. Also, local axial strain 

become concentrate exclusively within the shear band. 

(3) The localization effects is less evident when confinement is low, or 

experimented on loose specimen. On the other hand, the high confining 

pressure can lead to multiple shear bands progressing simultaneously.  

(4) The kinematic characterization of varying density specimen shows the similar 

behavior of loose specimen rather than that of dense one. Also, the failure 

mode is governed by the material response within the loose part of the 

specimen. 
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4. STATISTICAL CHARACTERIZATION OF BOUNDARY KINEMATIC 

PHENOMENA OBSERVED ON TRIAXIAL SAND SPECIMENS 

 

4.1. Introduction 

Strain localization in sand is often associated with development of various 

banding phenomena (e.g., shear or compaction band) that caused by heterogeneous 

deformational feature of granular materials when subjected to drained compression. In a 

failure process of geotechnical structures, the differential settlement may occur over a 

scale of meters. However, the initiation of this process which is known often related to 

material anomalies and localization effects can happen to a scale of millimetre or smaller 

(Mulilis et al., 1977; Liang et al., 1997; Rechenmacher and Finno, 2003). This pose a 

great challenge for engineers to properly characterize and predict the materials behaviour 

from their constitutive parameters. The conventional solution of this problem is to 

constitute a '3 in. by 6 in.' soil body in laboratory, and then measure the material 

response under the controlled experimental conditions needed to estimate constitutive 

parameters which is assumed also applied to the field scale. However, the global 

measurements of these tests can yield only volume-averaged deformational 

characteristics. The inherent non-homogeneous feature of nature sand, and its associated 

micro failure mechanisms, are smeared out in such analyses and consequently lead to 

rough or unrealistic representations. 

A viable method to overcome this issue is to perform full-field measurements 

across a deforming body over the course of failure. The common methods in this 
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category include Discrete-Element Method (DEM), Finite-Element Method (FEM) or 

multi-scale modelling (Bardet and Proubet, 1991; Borja, 2000; Oda and Iwashita, 2000; 

Andrade and Borja, 2006; Jiang et al., 2011), X-ray tomography or synchrotron X-ray 

tomography (Roscoe, 1970; Oda, Takemura and Takahashi, 2004; Alshibli and 

Alramahi, 2006; Viggiani and Hall, 2008), 2D or 3D digital image correlation (DIC) 

(Rechenmacher and Finno, 2003; Medina-Cetina, 2006; Hall et al., 2010), among others. 

Recent trend has been focusing more on linking kinematic aspects of displacement fields 

with the evolution of failure mechanisms. For example, Oda and Iwashita (2000) used 

DEM to simulate the micro- and macro behavior of granular media, and concluded that 

the formation and collapse of column-like structure by means of particle rolling 

comprise one of the most important kinematic signature after the peak stress. 

Rechenmacher and her co-workers (2010, 2011, and 2012) quantified the presence and 

evolution of force chains throughout the softening and critical state by calculating shear, 

rotational and volumetric kinematic components under plane strain conditions. Alshibli 

and his team (2016, 2018) identified and tracked the 3D particles translational and 

rotational behaviours, as well as the evolution of micro shear bands during hardening 

phase by making use of in-situ synchrotron microcomputed tomography. These work 

have provided precious insight of micro- or meso-scale kinematics associated with the 

localization effects.  

In spite of advances in sensing techniques provided access to much abundant 

information of material response at fine scales, however, no research is seen accounting 

for uncertainty involved in the varying bifurcation process. This absence of knowledge is 
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critical since non-unique material responses should be expected if testing specimen is 

viewed as a heterogeneous body. In addition, varying shape, thickness, and angle of 

shear bands, as well as variation of localizations in temporal domain have been 

repeatedly reported in many previous research (Desrues and Viggiani, 2004; Song, 

2012). The lack of statistical inspection of existing laboratory results inhibits us from 

better understanding the dominant failure mechanism among many competing ones, as 

well as the uncertainty evolved in space and time.  

In the present paper, the author conducted the first order statistics towards 3D 

kinematic fields sampled by DIC on 17 nominally similar triaxial tests. Mean and 

standard deviation fields were investigated over four selected kinematic properties 

across all tests. The objective is to reveal the prevailing localization mode among 

various competing ones, as well as uncertainty levels evolved in space and time.  

4.2. Laboratory test 

4.2.1. Triaxial compression test 

Dry sand, classified as SP, was used to constitute the testing specimens for 

triaxial compression tests. The median particle size is 0.50mm, and coefficients of 

uniformity and curvature are 2.34 and 1.11 respectively. Table 4.1 presents specimen 

characteristics of 17 tests and basic statistics of each parameters. The relatively small 

standard deviation as shown in the bottom row indicates experimental condition was 

well controlled and all tests were nominally similar in the global sense.  
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Table 4.1 Summary of specimen characteristics of all participating tests 

 

Test name 

Aspect 

ratio 

Initial 

density 

(kg/m3) 

Relative 

density 

(%) 

Friction 

angle 

(deg) 

Peak 

( 1 3/   ) 

Sample 

preparation 

      

092903b 2.18 1,710.95 91.09 49.51 7.35 

Vibratory 

compaction 

093003b 2.19 1,696.00 85.96 47.98 6.78 

Vibratory 

compaction 

100103a 2.21 1,702.22 88.10 48.66 7.03 

Vibratory 

compaction 

100103b 2.19 1,717.13 93.18 47.96 6.77 

Vibratory 

compaction 

100103d 2.18 1,702.41 88.17 47.37 6.57 

Vibratory 

compaction 

100203a 2.20 1,715.32 92.57 48.90 7.12 

Vibratory 

compaction 

100203b 2.17 1,711.91 91.41 47.96 6.77 

Vibratory 

compaction 

100303b 2.22 1,718.70 93.71 48.56 6.98 

Vibratory 

compaction 

120604c 2.25 1,717.48 93.30 48.89 7.11 

Vibratory 

compaction 

120904b 2.25 1,720.40 94.28 48.76 5.86 

Vibratory 

compaction 

120904c 2.25 1,713.13 91.83 48.77 5.86 

Vibratory 

compaction 

120904d 2.24 1,707.89 90.04 47.68 5.44 

Vibratory 

compaction 

120904e 2.25 1,718.70 93.71 47.79 
5.51 

Vibratory 

compaction 

101204a 2.24 1,708.03 90.09 48.03 6.89 

Dry 

pluviation 

120604a 2.23 1,721.06 94.50 49.46 7.33 

Dry 

pluviation 

120604b 2.25 1,715.13 92.50 48.54 6.98 

Dry 

pluviation 

121304a 2.24 1,721.73 94.73 49.30 7.27 

Dry 

pluviation 

Basic statistics       

Mean 2.22 1712.83 91.72 48.48 6.68 - 

Standard 

deviation 0.03 7.20 2.45 0.62 0.61 
- 
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The compression process was practically similar to conventional triaxial test. 

However, the Plexiglas cell was removed and specimen was consolidated at 40kPa 

confining pressure through vacuum pump. The loading applied to the specimen via the 

strain control approach ( 0.2%/ min  ) which follows the direction from the bottom up. 

Two digital cameras placed in front of testing sample, namely Q-Imaging PMI-4201, 

capturing synchronous images of the deforming specimen at every 0.05% axial strain.  

Figure 4.1 gives stress-strain and volumetric strain responses of all 17 tests. Since the 

confining cell was removed, volumetric strain cannot be directly measured and 

alternatively estimated through digital imaging data as detailed in Song (2012). The 

dashed intervals indicate strain windows for incremental kinematic analysis, which will 

be described in below sections. 
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Figure 4.1 Triaxial stress-strain and axial strain-volumetric strain curves of 17 

tests. Dashed intervals indicate temporal increments for kinematic analysis. 

 

4.2.2. 3D DIC 

DIC is a non-intrusive experimental method to measure displacements on a 

deforming surface. The basic unit of DIC analysis is a subgroup of image pixels, called 

subset, which comprised by a cluster of sand colours manifested through the latex 

specimen membrane in present case. Due to sand grains naturally characterized with 

colour variations, each subset in stereo images possessing unique mathematical entity 

that can be easily identified through pattern recognition. In present research, two digital 
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cameras were setup in front of specimen with different orientation angles while focusing 

on the common area of the studying surface. The 3D specimen boundary can be 

constructed through synchronous images capture by these two cameras during the 

compression, based on the similar principle of how human eyes perceive position and 

shape of an object. Displacement is derived by mapping the overlapping subsets between 

two digital images, and consequently the deforming vectors are defined by translational 

and rotational quantities of subsets in 3D space. Cubic spline interpolation was used to 

track the trajectory of subsets over several incremental images referenced to the initial 

material coordinates of interest and accommodated local straining data in a continuum 

domain. In all, displacement measurements covered a sector about 85 degree around the 

specimen circumference, and yielded approximate 40,000 displacement vectors with a 

resolution of 0.4mm from center to center of subsets. 

Figure 4.2 plots a typical 3D DIC result of displacement field between global 

axial strain 3.0% and 9.0%. The contours that indicate displacement intensity (in 

millimeters) along each axis are superimposed on the deformed body (Eulerian 

description), specifically, the shape of specimen surface at axial strain 9.0%. First row 

from left to right shows displacements along horizontal, vertical, and out-of-plane 

directions. A shear band can be barely observed following diagonal direction, whereas 

expansion band is clearly depicted in the out-of-plane displacement field. The second 

row of the plot is the same displacement vector but decomposed under the Cylindrical 

coordinates, yielded displacement fields along radial, tangential, and axial directions. A 

shear banding area, suggested by intense clockwise rotation in tangential displacement 



 

85 

 

field, has been proved prevailed at this stage of loading. Because Cylindrical coordinates 

can correctly accommodate specimen shape, and the unit vectors under such definition 

are consistent with principle stress directions (axial and radial), we consequently chose 

this system for the following kinematic analysis.  

 

 

Figure 4.2 (a) Incremental displacement fields of test 092903b between axial strain 

3.0% and 9.0%, left to right are displacements along horizontal, vertical and out-

of-plane directions; (b) Same displacement field decompose into radial, tangential, 

and axial directions in Cylindrical coordinates 

 

4.3. 3D kinematics in meso-scale analysis 

In this section, we explain 3D kinematic operators under the Cylindrical 

coordinates and how these can help investigate the onset and evolution of strain 
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localizations. Equations 4.1 to 4.3 offer the definition of first-order kinematics under the 

Cylindrical coordinates. The derivation of these quantities is through an operator called 

del, or nabla, and its tensor, dot, and cross product with the vector field U . 

Mathematically, the gradient of a 3D vector field is a second-order tensor, which 

indicate the straining (diagonal) and rotating (off-diagonal) tendency along each 

direction. A scalar that sums the diagonal terms in F  is called divergence, which 

represent volumetric sink or source (negative or positive) of local area. The difference 

between each two off-diagonal terms in F  defines curl component along each axis, as 

expressed in Equation 3. Note under current system, the unit vector ( )ˆˆ ˆ, , z   is as a 

function of position, meaning that they will point to difference directions if two were 

checked at different locations. Owing to this dynamic setting, the specimen shape is well 

incorporated and the calculated results can reflect 'authentic' kinematic phenomenon 

occurred to the curvilinear surface.  
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(4.3) 

 

One challenge in calculating 3D kinematics lies in the difficulty of computing 

directional derivative along radial direction, since no consecutive measurements beyond 

boundary is allowed by DIC sampling method. In order to address this issue, we 

introduce a series of auxiliary origins along axis of specimen, where radial and 

tangential displacements are assumed zero, and axial displacements are estimated by 

averaging vertical displacements captured on the specimen boundary at each specimen 

height. This assumption is supported by experimental evidence revealed in Desrues et al 

(1996), where the localization involves a rigid cone delimited by a circular shear surface, 

and multiple sets of plane extended outwards from the cone to specimen boundary, 

implying the radial and tangential displacement along the axis should be insignificant. 

Figure 4.3 gives the illustration of studying objects, we transform the sampling area from 

spatial surface to a series of 3D wedges by incorporating this set of auxiliary origins, 

and, hence, the localization effects can be properly evaluated in the kinematics of these 

3D shapes. 
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Figure 4.3 Schematic illustration of 3D studying objects that produced by 

connecting boundary coordinates with introduced auxiliary origins 

 

Figure 4.4 provides an example of nine components of gradient field depicted in 

Langrangian frame, based on one test's result (092903b) between axial strain 3.0% and 

9.0%. Figure 4.5 presents divergence field which is essentially the total of three diagonal 

terms in Figure 4.4. A clear expansion zone, coupled with two compacting areas are 

presented in the divergence plot. In addition, the presence of shear band caused local 

variation of volumetric behavior. Specifically, when shear band coincide with expansion 

band, it causes great local dilation that is believed associated with intense particle rolling 

within the shear band (Oda and Iwashita, 2000). However, when shear band intersect 

compaction band, local volumetric compaction will tend to tremendous as showed 

within the upper compaction band. This can be explained by 33F  in Figure 4.4, that local 

axial compression is seen severe and has outperformed expansion in radial and 
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tangential directions ( 11F  and 22F ) which ultimately leads to local volumetric sink in the 

specific area. Figure 4.6 gives the corresponding curl fields with respect to three axes. 

Sub-plots (d), (e), and (f) illustrate the positive rotation directions for each case. Shear 

band is well depicted with intense surface rotation as in the first sub-plot. Moreover, the 

existence of shear band also caused variations of kinematic fields as shown in the plots 

of rotational behaviors along other two axes ( ̂  and ŷ ). 

4.4. Statistical characterization of 3D kinematics fields 

4.4.1. Experimental design 

The experimental design of statistical analysis consists of spatial and temporal 

parts. As mentioned in Figure 4.1, five strain windows, comprised of 0.0 to 1.0%, 1.0 to 

3.0%, 3.0 to 5.0%, 5.0 to 7.0%, and 7.0 to 9.0%, are selected as analysing increments of 

interest. Four kinematic properties, divergence (div), curl along ̂  axis (curl_ρ), gradient 

along ̂  axis (grad_ρ), and gradient along ŷ  axis (grad_y), are calculated across all 

tests, as illustrated in Figure 4.7. Then, mean and standard deviation fields will be 

computed as indicative of prevailing localization mode and inherent uncertainty evolved 

in space and time. These statistical quantities are intended to plot over material 

coordinates for each increment. However, because every specimen has its own distinct 

deforming shape, we take the strategy by averaging specimen shape across all tests and 

use it as the basis to present statistics of kinematic fields. Note that this does not affect 

the merit of calculation results, since each kinematic field is computed based on the 

mesh of specific test. Only final presentation used averaged specimen shape, and it is 

actually provide further averaged boundary deformation over all tests. 
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Figure 4.4 Nine components of gradient deformation tensor F based on test 

092903b between axial strain 3.0% and 9.0% 
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Figure 4.5 Divergence field based on test 092903b between axial strain 3.0% and 

9.0% 

 

 

Figure 4.6 Curl components calculated based on test 092903b between axial strain 

3.0% and 9.0%: (a) curl field with respect to ̂  axis; (b) curl field with respect to ̂  

axis; (c) curl field with respect to ŷ  axis; (d) illustration of positive rotation for curl 

along ̂  axis; (e) illustration of positive rotation for curl along ̂  axis; (f) 

illustration of positive rotation for curl along ŷ  axis 
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Figure 4.7 Kinematic properties Divergence, Curl_ρ, Grad_ρ (F11), and Grad_y 

(F33) are selected to be calculated across all tests, and used for statistical analysis 
 

4.4.2. Statistical evolution of divergence field 

Figure 4.8 shows spatio-temporal evolution of mean field of divergence 

calculated from data ensemble. The first row are figures plotted in varying scales, for 

clear presenting small magnitudes of values especially those during initial steps. Second 

row are plots in the same scale so that observations evolved in different strain windows 

can be compared in a consistent framework. It is interesting to see that volumetric 

behavior takes place in a sequential order. The volumetric dilation, which mainly 

concentrated at the middle portion, was started as early as elastic regime (0.0-1.0%). 

Later, the diffuse bifurcation localized in a banding area at the middle of specimen, and 

step dilation reached its peak around the starting phase of softening (3.0-5.0%). 

Afterwards, the expanding trend was gradually diminished, and local contraction that 

manifested as two compaction bands around expansion area became the dominate 
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volumetric phenomenon of the specimen. It may indicate the compaction zone is 

essentially mobilized energy formerly accumulated in the middle expansion band, and 

leads to the softening of specimen in the global sense. Figure 4.9 presents evolution of 

standard deviation of divergence fields across all tests. It shows uncertainty is mainly 

reflected within compaction band, while not much associated with expansion band. This 

agrees well with our observation of post-mortem specimens in which the majority are 

expanded in the middle, but due to varying shear bands and other issues (e.g., 

imperfection of initial specimen shape), the curvature from maximum bulging point to 

the end of the specimen is varying from test to test.  

 

 

Figure 4.8 Evolution of mean of divergence field derived from data ensemble: the 

first row are plots in varying scales, while the second row is consistent with same 

scale (the rest figures in this paper follow the same fashion) 
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Figure 4.9 Evolution of standard deviation of divergence field derived from data 

ensemble 

 

4.4.3. Statistical evolution of curl along ̂  axis 

Figure 4.10 and 4.11 give the evolution of mean and standard deviation fields of 

curl along ̂  (radial) axis. In Figure 4.10, although strain bifurcation initiated from 

hardening stage (1.0-3.0%), it is not obvious of localization effects until post-peak 

reached (after 3.0%). Totally three shear banding areas exhibited at the last frame, and 

they are seen varying with inclination angles. Specifically, the shear band is oriented 

straighter when it appears to the middle of specimen compared to the upper and lower 

parts. This agrees well with previous observation made by Oda and Kazama (1998) 

through X-ray method, suggesting that shear band boundaries are gently curved with 

variation of the inclination angles. The standard deviation fields (Figure 4.11) indicate 

that rotational uncertainty is also highlighted along the shear bands, suggesting that after 
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the peak stress, varying strain localizations comprise the main uncertainty of failure 

mechanism.   

 

 

Figure 4.10 Evolution of mean of curl field along ̂  axis 

 

 

Figure 4.11 Evolution of standard deviation of curl field along ̂  axis 
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4.4.4. Statistical evolution of gradient along ̂  axis 

Figure 4.12 and 4.13 show the evolution of mean and standard deviation fields of 

gradient along ̂  (radial) axis. Since this quantity denotes radial deformation tendency, 

it explicitly signifies the development of expansion band. Figure 4.12 shows 

qualitatively similar trend as the divergence plot we described in Figure 4.8, that a 

middle expanding zone would keep growing from elastic to early softening stage, but the 

rate gradually declined once other localization effects become apparent, such as shear 

band and compaction band. It is also worth noting that the horizontal distribution of 

radial gradient transformed from uniform to irregular shape during this process. Figure 

4.13 shows when expansion band is well formed, the uncertainty distribution will 

present with a basin shape that higher values arisen in the periphery of the maximum 

bulging point, suggesting again the curvature of expanding profile rather than the 

maximum expanding point compose the main uncertainty in terms of radial deformation. 
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Figure 4.12 Evolution of mean field of gradient along ̂  axis 

 

 

Figure 4.13 Evolution of standard field field of gradient along ̂  axis 
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4.4.5. Statistical evolution of gradient along ŷ  axis 

Gradient field along ŷ  axis specifies local deformations following axial 

direction. Figure 4.14 shows an intense axial compression zone coincided with radial 

deformation area that emerged in the hardening phase, however, the localization effects 

appeared only after the peak state (around axial strain 3.0%). Additionally, in later 

softening stage, such effects only evident inside of shear bands. The standard deviation 

plot is similar to that for curl_ρ field, which shows uncertainty is exclusively within the 

shear banding area. These combined evidence suggests particle rolling with respect to 

radial axis, and compression along axial direction should be main kinematic signatures 

of the shear band. Its relationship with the form and collapse of force chains, and the 

spatio-temporal distribution warrants discussion in our future work. 

 

 

Figure 4.14 Evolution of mean field of gradient along ŷ  axis 

 



 

99 

 

 

Figure 4.15 Evolution of standard deviation of gradient along ŷ  axis 

 

4.5. Conclusion 

Spatio-temporal statistical characterization was carried on a series of kinematic 

fields generated from 17 nominally similar triaxial compression tests. Herein, we 

calculated mean and standard deviation over four kinematic quantities-divergence, curl 

along radial axis, gradient along radial axis, and gradient along axial axis. The main 

contribution of this work is summarized as follows: 

(a) During triaxial compression, local volumetric behavior takes place in a 

sequential order. The local dilation mainly in the middle of specimen is 

evident from hardening to peak state. Later, the onset of other localization 

effect, such as shear or compaction band, mobilized energy formerly 

accumulated and leads to the softening of specimen. 
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(b) Shear band appears to the specimen surface is seen varying with inclination 

angles. After the peak stress, the rotational uncertainty is localized within the 

shear banding area, suggesting varying strain localizations comprise the main 

source of uncertainty at this stage.  

(c) The development of shear band can influence radial change of specimen. In 

addition, the curvature of expanding profile rather than the maximum 

expanding point represents the main uncertainty of radial deformation.  

(d) Particle rolling with respect to radial axis, and compression along axial 

direction characterize the main kinematic signatures of the shear band. The 

spatio-temporal relationship of these two properties warrants further 

discussion in our ongoing work 

4.6. References 

Abedi, S., Rechenmacher, A. L. and Orlando, A. D. (2012) ‘Vortex formation and 

dissolution in sheared sands’, Granular Matter, 14(6), pp. 695–705. doi: 

10.1007/s10035-012-0369-5. 

Alshibli, K. A. et al. (2000) ‘Assessment of Localized Deformations in Sand Using X-

ray Computed Tomography’, ASTM Geotechnical Testing Journal, 23(3), pp. 274–

299. 

Alshibli, K. A. et al. (2016) ‘Influence of Particle Morphology on 3D Kinematic 

Behavior and Strain Localization of Sheared Sand’, Journal of Geotechnical and 

Geoenvironmental Engineering, 143(2), p. 04016097. doi: 

10.1061/(ASCE)GT.1943-5606.0001601. 



 

101 

 

Alshibli, K. A. and Alramahi, B. A. (2006) ‘Microscopic Evaluation of Strain 

Distribution in Granular Materials during Shear’, Journal of Geotechnical and 

Geoenvironmental Engineering, 132(1), pp. 80–91. doi: 10.1061/(ASCE)1090-

0241(2006)132:1(80). 

Amirrahmat, S. et al. (2018) ‘Micro Shear Bands: Precursor for Strain Localization in 

Sheared Granular Materials’, Journal of Geotechnical and Geoenvironmental 

Engineering. American Society of Civil Engineers, 145(2), p. 4018104. 

Andrade, J. E. and Borja, R. I. (2006) ‘Capturing strain localization in dense sands with 

random density’, International Journal for Numerical Methods in Engineering, 

67(11), pp. 1531–1564. doi: 10.1002/nme.1673. 

Bardet, J.-P. and Proubet, J. (1991) ‘Adaptative dynamic relaxation for statics of 

granular materials’, Computers & Structures. Elsevier, 39(3–4), pp. 221–229. 

Borja, R. I. (2000) ‘A finite element model for strain localization analysis of strongly 

discontinuous fields based on standard galerkin approximation’, Computer Methods 

in Applied Mechanics and Engineering. Elsevier, 190(11–12), pp. 1529–1549. 

Desrues, J. et al. (1996) ‘Void ratio evolution inside shear bands in triaxial sand 

specimens studied by computed tomography’, Géotechnique, 46(3), pp. 529–546. 

doi: 10.1680/geot.1996.46.3.529. 

Desrues, J. and Viggiani, G. (2004) ‘Strain localization in sand: An overview of the 

experimental results obtained in Grenoble using stereophotogrammetry’, 

International Journal for Numerical and Analytical Methods in Geomechanics, 

28(4), pp. 279–321. doi: 10.1002/nag.338. 



 

102 

 

Hall, S. A. et al. (2010) ‘Discrete and continuum analysis of localised deformation in 

sand using X-ray μCT and volumetric digital image correlation’, Géotechnique, 

60(5), pp. 315–322. doi: 10.1680/geot.2010.60.5.315. 

Jiang, M. J. et al. (2011) ‘Modeling shear behavior and strain localization in cemented 

sands by two-dimensional distinct element method analyses’, Computers and 

Geotechnics. Elsevier, 38(1), pp. 14–29. 

Liang, L. et al. (1997) ‘The use of digital image processing in monitoring shear band 

development’, Geotechnical Testing Journal. ASTM International, 20(3), pp. 324–

339. 

Medina-Cetina, Z. (2006) Probabilistic calibration of a soil model. The John Hopkins 

University, Baltimore, MD. 

Mulilis, J. P. et al. (1977) ‘Effects of sample preparation on sand liquefaction’, Journal 

of the Geotechnical Engineering Division. ASCE, 103(2), pp. 91–108. 

Oda, M. and Iwashita, K. (2000) ‘Study on couple stress and shear band development in 

granular media based on numerical simulation analyses’, International Journal of 

Engineering Science, 38(15), pp. 1713–1740. doi: 10.1016/S0020-7225(99)00132-

9. 

Oda, M. and Kazama, H. (1998) ‘Microstructure of shear bands and its relation to the 

mechanisms of dilatancy and failure of dense granular soils’, Géotechnique, 48(4), 

pp. 465–481. doi: 10.1680/geot.1998.48.4.465. 

Oda, M., Takemura, T. and Takahashi, M. (2004) ‘Microstructure in shear band 

observed by microfocus X-ray computed tomography’, Géotechnique, 54(8), pp. 



 

103 

 

539–542. doi: 10.1680/geot.2004.54.8.539. 

Rechenmacher, A., Abedi S. and Chupin, O. (2010) ‘Evolution of force chains in shear 

bands in sands’, Géotechnique, 60(5), pp. 343–351. doi: 

10.1680/geot.2010.60.5.343. 

Rechenmacher, A. L. et al. (2011) ‘Characterization of mesoscale instabilities in 

localized granular shear using digital image correlation’, Acta Geotechnica, 6(4), 

pp. 205–217. doi: 10.1007/s11440-011-0147-2. 

Rechenmacher, A. L. and Finno, R. J. (2003) ‘Digital image correlation to evaluate shear 

banding in dilative sands’, Geotechnical Testing Journal. ASTM International, 

27(1), pp. 13–22. 

Roscoe, K. H. (1970) ‘The Influence of Strains in Soil Mechanics’, Géotechnique, 20(2), 

pp. 129–170. doi: 10.1680/geot.1970.20.2.129. 

Song, A. (2012) Deformation analysis of sand specimens using 3D digital image 

correlation for the calibration of an elasto-plastic model. PhD DissertationTexas 

A&M University, College Station, TX. 

Viggiani, G. and Hall, S. A. (2008) ‘Full-field measurements, a new tool for laboratory 

experimental geomechanics’, in Fourth symposium on deformation characteristics 

of geomaterials, pp. 3–26. 

 



104 

 

5. BAYESIAN PROBABILISTIC CALIBRATION OF A VISCO-ELASTOPLASTIC 

MODEL REPRESENTING THE RHEOLOGICAL BEHAVIOR OF SANDSTONE 

 

5.1. Introduction 

Landslides represents one of the most concerning geological hazard in Three 

Gorges Reservoir area (Deng et al., 2000; Highland, 2008; Jiang and Zhou, 2013). Since 

first water impoundment in 2003, more than 5,000 landslides has been identified (Hu et 

al., 2015) in which a great number are found attributed to long-term gravitational 

deformation of rock mass (Wang et al., 2004, 2008; Jian, Wang and Yin, 2009), which is 

known can cause the stratum instability in the process of toppling or deep-seated creep 

(Wang et al., 2004). In contrast to spectacular short-time slide, the process of rock creep 

can goes on for years or centuries without noticeable phenomenon. However, the 

induced adverse effects, as shown by previous studies, could decrease rock strength by 

the order of magnitude of 40-60% compared to its short-term strength (Damjanac and 

Fairhurst, 2010; Deng et al., 2016), conditioned on the influence factors such as seating 

depth, thermo-hydrological conditions, initial defects of rocks, among others (Heap et 

al., 2009; Brantut et al., 2013). It is clear that a better understanding of creep nature is of 

practical need in optimizing stabilizing-slide design, which can help avoid or at least 

reduce the threat of landslides occurrence, in particular considering very densely 

populated area such as Three Gorge Reservoir that even a moderate landslide can entail 

enormous human and property losses (Highland, 2008). 
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The specific rock type studied in the present research is chosen as Jurassic 

sandstone, which is widely distributed around reservoir riverbanks and its acting sliding 

depth varying from 15 to 70 m (Xu, Yang and Chu, 2006; Li, Yin and Leo, 2010; Hu et 

al., 2015). Some authors have studied creep behavior of sandstone under the 

confinement of 10-60 MPa (Tsai et al., 2008; Weng et al., 2010; Zheng, X. Feng and 

Hao, 2015), yet the results cannot be directly referred to the present work since the 

sandstones sampled in this work were confined under low pressures according to their 

in-situ buried depth as mentioned above. Note it has been demonstrated that higher 

confining pressure can significantly inhibit stress erosion in sandstones, and reduce the 

creep strain rate by multiple orders of magnitude (Heap et al., 2009). It is consequently 

suggest the accurate laboratory approximation of sandstone's creep behavior in the 

nature environment needs to be carried out with the maximum restoration of its original 

low confinement conditions. Such experimental effort is only seen in Cong Lu and Hu 

Xinli (2017) amidst many recent studies, where triaxial compression tests and triaxial 

creep tests were conducted under a set of confining pressures consisting of 3.0 MPa, 5.0 

MPa, and 7.0 MPa, to investigate time-dependent behavior of sandstone in Three Gorges 

area. These experimental observations as a result were adopted in this work, to calibrate 

proposed creep constitutive model and subsequently assessed as a participating source of 

evidence in an uncertainty quantification framework.   

The creep constitutive model proposed in this paper were established by 

combination of different mechanical components, including Hooke spring (elastic 

behavior), Newtonian dashpot (viscous behavior), and plastic body. Theoretically, one 
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can simulate any visco-elastoplastic behavior of material by appropriate arrangement of 

above components, following the assumption that each rock property can be represented 

independently. This methodology provides great flexibility in describing complex solid 

rheological behavior and thus was widely embraced by rock rheology community. For 

instance, Boukharov et al.(1995) proposed a stress-triggered component model to 

describe three stages deformation of brittle rock (elastic, plastic and dilatant 

deformations). Xu et al.(2015) introduced a seven-component rheological model (Hohai 

model), and validated by the experimental and numerical modeling observations through 

rock creep tests and FLAC3D simulations. Zheng et al.(2015) modified Burger's model 

by introducing a volumetric creep component to illustrate the visco-elastic volumetric 

behavior. And Jiang et al.(2013), added a strain-triggered inertial element into Nishihara 

model to describe the quadratic accelerating creep of sandstone. Note that 

characterization of these model parameters are usually estimated by deterministic search 

engine, or simply put, deterministic calibration. Its outcome is typically composed of a 

single vector of parameter values that are chosen following the principle of minimizing 

the difference between model predictions and experimental observations. By such 

definition, this approach carries little interest to quantify uncertainty may inherent in 

experimental observations, model predictions, or even experts' beliefs. More 

importantly, the calibrated result may merely represent one realization among millions 

of other combinations of model parameters that can yield the same likelihood of hitting 

the same set of experimental observations (i.e., ill-posed problem). Under such 

circumstances, the interpretation of deterministically calibrated constitutive parameters, 
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and further the physical process of interest, could become less convincing or even 

misleading. 

The main goal of this paper is to improve the understanding of sandstone's 

rheological behavior under low confining pressures by systematically assimilate 

information from different participating sources, which include laboratory creep tests, 

constitutive model simulations, and the prior knowledge about model parameters. A key 

aspect of the present research structure grounded on the basis of probability theory, to 

quantify the level of uncertainty inherent in each participating source, and thereby reveal 

the state of evidence that one can integrate into his/her understanding of process of 

interest. In this work, the rheological model parameters are treated as random rather than 

unknown-such rendering representing one of main characteristics separating 

Bayesianism from frequentism-to assimilate evidence uncertainty stemmed from each 

participating source through Bayesian paradigm. Under this framework, the state of 

knowledge about rheological parameters (i.e., prior distribution), and the knowledge 

denoting the tradeoff between creep tests observations and model predictions (i.e., 

likelihood distribution) were numerically integrated, and signified by the updated 

variation range and modes of model governing parameters in the probability space (i.e., 

posterior distribution). This scheme is often referred as the probabilistic calibration of 

inverse problem, and has gained increasing relevance in geotechnical community 

evidenced by a variety of applications (Medina-Cetina, 2006; Medina-Cetina et al., 

2013; Medina-Cetina and Arson, 2014; Ranalli et al., 2014; Esmailzadeh et al., 2015; 

Zhu et al., 2017). However, far too little attention has paid to applications regarding the 
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characterization of rock rheological behavior, the research area that we believe exhibited 

with great uncertainty no matter in current theoretical or experimental endeavors.  

One major impact that can be generated by probabilistic calibration lies in its 

ability to explore the entire probability domain for model parameters, which promotes 

the inference level from point estimation to full description of probability distribution. 

The Metropolis-Hastings (MH) algorithm was used for this study to ensure the sampling 

of parametric space satisfying the detailed balance criterion, and the computational 

simulation of different combination of parameter samples was implemented via the 

Monte-Carlo (MC) approach (Metropolis et al., 1953; Hastings, 1970; Gelman et al., 

2013). Once the numerical integration reaches the stationary level, results are expected 

to show the complete joint probability distribution of model parameters (i.e. posterior 

distribution), which in this case are composed of constitutive parameters defined in each 

model component. The aforementioned ill-posed problem, can be resolved by showing 

multiple modes of posterior distribution concentrated at different values simultaneously. 

The degree of uncertainty, as well as the correlation structure of each potential mode, 

can be directly observed from the posterior distribution. Additionally, through the 

transparent definition of the posterior, we can draw parameter samples to populate model 

simulations that will further inform us expected outcomes and confidence levels of 

model predictions, and consequently, offer us a comprehensive insight pertaining to 

rheological behavior of sandstone sampled from the site of interest. 

The paper is organized in four parts: at the beginning, we provide a brief 

description of laboratory tests conducted, including triaxial compression test and triaxial 
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creep test, to inform the experimental evidence in our probabilistic calibration 

framework. The proposed constitutive creep model, representing the model evidence, is 

following introduced. Then we will present the details of the probabilistic approach to 

inverse problem, also the experimental design of the present problem. Finally, the paper 

is concluded based on obtained calibration results and the corresponding physical 

interpretation that can be used to further our understanding of rock creep phenomenon. 

5.2. Laboratory tests  

5.2.1. Triaxial compression test 

The experimental study was carried out at China University of Geosciences, 

comprising triaxial compression tests and creep tests that were lasted totally four 

months. Details report of this study are presented in Cong Lu and Hu Xinli (Cong and 

Hu, 2017), herein only main processes and results are introduced for completeness. 

The testing Jurassic sandstone samples were collected from the bedrock of 

Majiagou landslide, 20 miles upstream from Three Gorges Dam, and 40m underneath of 

ground surface. To circumvent sample variation, we conducted acoustic-wave test and 

only those results fell in a narrow range (2500m/s~3000m/s) were selected to proceed to 

testing phase. The confining pressure are chosen as 3MPa, 5MPa, and 7MPa, to 

correspond the in-situ sliding depth range from 15 to 70m. The Laboratory tests was 

started from the characterization of short-term strength c , by performing the triaxial 

compression test, these were obtained under different confining pressures. As shown in 

Figure 5.1, the short-term strengths c  under three different confining pressures are 

85.6, 110, and 160MPa, respectively. Also, the short-term yield stresses s  were 
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measured as 62, 74, and 114MPa, respectively. Next step, a series of creep loading 

stresses are determined by multiplying different coefficients to sandstone's short-time 

strength, such that 0.5 c , 0.55 C , 0.6 c , …, and this set of deviatoric stresses were 

then applied in the creep test. Since the variation of sample's initial defects can exert 

great influence on sandstone's time-dependent behaviour (Heap et al., 2009), stress-

stepping loading strategy was adopted in which multiple brittle creep experiments were 

performed on one single sample. Specifically, in this research, ascending loading 

stresses were applied to sandstone sample in a stepwise manner. During each loading 

step, the deviatoric stress was hold as invariant when sample undergoing creep 

deformation. Keeping this stress-static condition until strain rate is seen stabilized, the 

next level loading stress was then ready to apply. This process was iterated until a clear 

failure was observed on testing sample. The specific loading sequences are presented in 

Table 5.1. 

 

Figure 5.1 Short-term stress-strain curves (adapted from Cong and Hu, 2017) 
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Table 5.1 Loading steps in triaxial creep test (adapted from Cong and Hu, 2017) 

Confining 

Pressure (MPa) 
c

(MPa) 

Triaxial creep loading stresses (MPa) 

0.50

c  

0.55

c  

0.60

c  

0.65

c  

0.70

c  

0.75

c  

3 85.6 42.8 47.1 51.4 55.6 59.9 64.2 

5 110 55.0 60.5 66.0 71.5 77.0 ---- 

7 160 80.0 88.0 96.0 104.0 112.0 120.0 

 

5.2.2. Triaxial creep test 

Figure 5.2 shows the triaxial creep test result under the confining pressure of 

3MPa. In Figure 5.2 (a), during each loading step, an apparent elastic strain is seen 

immediately emerged after deviatoric stress applied to the sandstone sample. These 

instantaneous material responses were processed according to Boltzmann superposition 

principle (Boltzmann, 1874; Henderson, 1951), and multi-step creep curves were 

consequently obtained as shown in Figure 5.2 (b).  Figure 5.3 presents the processed 

axial strain against time curves while confining pressures are 5 and 7MPa, respectively. 

It is clearly shown that under high confining pressure, sample would be failed at higher 

values of deviatoric stress. Nonetheless, these obtained failure stresses (64.2, 77.0 and 

120.0MPa), as presented in Figure 5.2 and 5.3, are seen about 25% less than the 

magnitude of sandstone's short-term strength (85.6, 110.0 and 160.0MPa), suggesting 

that creep deformation can cause considerable strength reduction to the testing sample. 

Further, the creep deformation pattern also show dependency on applied loading 

stresses. When deviatoric stresses is less than sample's short-term yield stress (62.0, 74.0 

and 114.0MPa), only transient and steady-state creeps are presented (also referred as 

first and second stages of creep behavior in literatures). The complete three stages creep 
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behavior-consisting of transient, steady-state and accelerating deformation trend 

(Boukharov, Chanda and Boukharov, 1995; Heap et al., 2009)-occurred only when 

deviatoric stress beyond sample's short-term yield stress as indicated in the last loading 

step in each plot. Note that this conclusion drawn herein is under the experimental time 

of months, not years or decades. In other words, we cannot preclude the case that steady-

state creep could potentially progressed into accelerating phase if test could be 

conducted as long as latter scenarios, given the applied deviatoric stress is small (Ito and 

Sasajima, 1987; Boukharov, Chanda and Boukharov, 1995; Cong and Hu, 2017). 

 

 

Figure 5.2 Tiaxial creep test result under confining pressure of 3MPa (a) axial 

strain vs. time and deviatoric stress vs. time response; (b) axial strain vs. time 

responses after applying Boltzmann superposition (adapted from Cong and Hu, 

2017) 
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Figure 5.3 Creep tests results with confining pressures of (a) 5MPa and (b) 7MPa, 

respectively (adapted from Cong and Hu, 2017) 

 

5.3. Visco-elastoplastic model representation 

In this section, we introduce model development aiming to describe the non-

linear rheological behavior of sandstone. Classic component models, such as Maxwell, 

Kelvin-Voigt, Van der Poel or Burger's model, have been thoroughly discussed in 

previous research and showed their ability to model visco-elastic behavior of rock 

(Boukharov, Chanda and Boukharov, 1995; Xu, Yang and Chu, 2006; Zhao, Liu and 

Dong, 2011; Jiang and Zhou, 2013). However, they are not designed for properly 

representing of visco-plastic behavior which is evident in accelerating creep phase. Thus, 

herein we propose a modified Van der Poel model by introducing a non-linear visco-

plastic component to capture the accelerating deformation when sample approaches the 

creep failure. 

The typical Van der Poel model is expressed as Equation 5.1, comprising the 

combination of Hooke spring and Kelvin-Voigt component: 
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Where   is the total strain, 1E  is the elastic modulus responsible for 

instantaneous strain, 2E  and 1  are elastic modulus and viscosity coefficient used to 

describe material visco-elastic deformation. Since the elastic modulus is reported 

exhibiting a positive linear relationship with the applied stress level (Cong and Hu, 

2017), hence the model can be modified as: 
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(5.2) 

Where a and b  are constants during one creep test and should be calibrated 

through the relationship between 1E  and  . 

When loading stress exceeds the yield stress of sandstone ( s  ), plastic strain 

would be involved in the deformation process. Therefore, a stress triggered visco-plastic 

string is invoked to complement the above model. The graphic representation of this 

component is shown in Figure 5.4, and the corresponding constitutive equation is: 

 2 ( )s t     (5.3) 

Where 0
2 2

A

At Bt C


 

 
, 0C   and 2 4 0B AC  , 0  is a positive initial 

viscosity coefficient. Solving the differential equation, Equation 5.3 is processed as: 
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Figure 5.4 Non-linear visco-plastic model component 

 

And it can be further simplified as: 
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Where 1

B

A
   and 2

C

A
  . Therefore, the proposed visco-elastoplastic model is 

a summation of elastic, visco-elastic and visco-plastic model components, as depicted in 

Figure 5.5, and the functional expression is given in Equation 5.6. 

 

 

Figure 5.5 Visco-elastoplastic creep model 
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5.4. Probabilistic calibration of inverse problem 

The characterization of model parameters can be generalized as the process of 

estimating causal factors or parameters that produced system responses (observations) 

(Tarantola, 2005). The conventional model predictions (forward problem), is a 

mathematical mapping from a vector of model parameters θ  to a set of obtained 

observations obsd , through a model definition ( )g   reflecting one's theoretical belief 

towards the physical process of interest. The simulated model responses, would 

inevitably present with some deviations from the observed data, which can be denoted 

as: 

 ( )g obs θ εd  (5.7) 

Where ε represents the tradeoff term that quantify the difference between 

experimental observations and model predictions. It is noted that one should not confuse 

this quantity with errors between experimental observation and 'true process' (

  obs obsd d d  ), or assuming it solely stems from modeling error (  pred predd d d ). 

Instead, it is the metric signifying how much the model error is deviate from observation 

error (   obs pred pred obsd d d d  ). Due to the true physical process is usually unknown, 

the independent characterization of   predd  and  obsd is practically difficult (Medina-

Cetina, 2006). However, when probabilistic expectation ( ) 0E   pred obsd d , as 

assumed in this paper, the bias error would be vanished in the definition of ε , and the 

participating sources of uncertainty would merely rely on the state of evidence, obsd  and 

predd , respectively. 
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The probabilistic calibration presented in this paper consisting in the inverse 

mapping (contrary to forward problem) of experimental creep observations obsd  onto the 

vector of rheological model parameters θ , while accounting the uncertainty across all 

participating sources both from obsd  and ( )g θ . The Bayesian paradigm provides a 

suitable framework to address this inversion by treating model parameters θ  as random 

variables and through a functional approach to integrate each participating evidence, 

such that: 

 
)[ ] ( )| ( ,

| (
( | )

[ )), ] (

g

g

f

f d








obs

obs

obs

d θ θ θ
θ d

d θ θ θ θ
 

(5.8) 

Where the factor ( ) θ is called prior distribution, summarizing the information is 

available on θ prior to the coming of observations obsd ; [ ]| ( ),gf obsd θ θ  is called 

likelihood, used to assess the probability of observed data obsd  produced by the model 

( )g   with parameters θ ; ( | ) obsθ d is called posterior, representing the inference of 

probability distribution of θ conditioned on obsd . 

The solving of above function is often facing difficulties in integration of 

denominator analytically ( ] | ([ [ ] ( )),obsf f gd d  obsd θ θ θ θ ). Alternatively, one can 

turn to numerical approximation for the calculation of posterior. In this paper, we sample 

the posterior distribution by combining Markov-chain Monte-Carlo method (MCMC) 

with Metropolis-Hastings criteria, which essentially perform intelligent search in 

parametric space and Bayesian models in high dimensions become tractable (Robert and 

Casella, 2013). The total integration of posterior in present research took several 
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millions of parameter samples, in which the initial fluctuation part was discarded as 

burn-in session, and the rest was used to calculate the statistics providing both 

uncertainty and correlation quantifications as discussed in the following. 

5.5. Application to visco-elastoplastic model 

5.5.1. Experimental design and convergence diagnosis 

Based on laboratory creep test results, we conducted totally 18 probabilistic 

calibrations with proposed constitutive model. As illustrated in Figure 5.6, when s  , 

model is composed of elastic and visco-elastic components, which applied to 15 creep 

test results. The rest three testing groups, involving accelerating creep behavior, were 

modeled by constitutive relationship including additional visco-plastic component. 

With regard to the element definition in Equation 8, we choose non-information 

prior for all model parameters, meaning that no initial knowledge imposed on governing 

parameters while the calibration outcomes solely depend on the tradeoff between 

experimental observation and model predictions. A univariate Gaussian distribution was 

selected for defining the likelihood function, as shown below: 

 
2
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1 1
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f g g
  

 
  

 
obs obsd θ θ d θ  

(5.9) 

Where   equals to the residuals between observations and model predictions, 

computed during each iteration. Note that by choosing univariate Gaussian likelihood, 

we implicitly assume data points are independent with each other and uncertainty is 

homoscedastic along the domain of interest. 
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Due to different cases may require different computational efforts to achieve 

stationary status, we over-sampled parametric space (10 million iterations) to ensure all 

calibrations can be converged and all probability modes were explored. Figure 5.7 to 

5.10 showcase the convergence diagnose based on one test result where 3 3MPa   and 

42.8MPa  . Figure 5.7 present sample sequence of each parameter after 10 million 

iterations. The cumulative mean and standard deviation of sequences were calculated 

and as shown in Figure 5.8 and 5.9, in which a stationary state can be observed after 4 

million iterations. Thus, the previously described burn-in point was set as 4 million and 

only samples afterwards were used for posterior evaluation. 
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Figure 5.6 Experimental design of probabilistic calibration 
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Figure 5.7 Sample sequences of model parameters (a) a, (b) b, (c) 2E , (d) 1  
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Figure 5.8 Cumulative mean of sample sequence for each parameter (a) a, (b) b, (c) 

2E , (d) 1  
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Figure 5.9 Cumulative standard deviation of sample sequence for each parameter 

(a) a, (b) b, (c) 2E , (d) 1  

 

5.5.2. Results 

5.5.2.1. Marginal statistics of posterior ( s  ) 

The probabilistic calibration offers full probability distribution of model 

parameters in light of experimental observations and model predictions, thus it allows us 

to assess probability modes and uncertainty levels of each model parameter for each 

calculation case. In this section, we present the results related to the cases when s  , 
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and model is defined as the combination of elastic and visco-elastic components. The 

calibration results related to accelerating creep behavior ( s  ) will be discussed in a 

separate section since that model function is different because of the import of visco-

plastic component. Figures 5.10 to 5.12 offer the probabilistically calibrated model 

parameters under varying confining pressures. In Figure 5.10, amidst five loading levels, 

parameters a  and b  are seen varying within narrow ranges in comparison with 

parameters 2E  and 1 . This is due to a  and b are in fact derived from the relationship 

1E ba  , and further suggests the variation range of 1E  is small. In PDF plots of 2E  

and 1 (Figure 5.10), the uncertainty levels are showing less in the first loading step 

( 42.8MPa  ) than other loading phases. This behavior needs to be interpreted 

combined with time dependent behavior as previously presented in Figure 5.2, that the 

strain-time response is seen more flat for the first loading case, indicating viscosity is not 

obvious for sandstone subjected to such low loading pressure. As a consequence, it ease 

the difficulty of modeling visco-elastic response of sandstone and constitutive 

parameters are solved with higher confidence. 

It is worth noting that visco-elastic component is also called as "delayed 

elasticity" in rock rheology literature (Ito and Sasajima, 1987; Boukharov, Chanda and 

Boukharov, 1995; Sterpi and Gioda, 2009). When t  , such component will equals to 

2E


. Thus, 2E  is the modulus of delayed elasticity, and 1  is so called "elastic 

viscosity". In Figures 5.10 to 5.12, it can be seen the varying ranges of 2E  are 
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approximate from 0.8 to 1.7 when 3 3MPa  , 2.5 to 5 when 3 5MPa   , and 3.4 to 9 

when 3 7MPa  , revealing a steady increase of 2E with the rise of confining pressure. 

On the other hand, the trend of 1  does not show an obvious pattern with the change of 

confinement conditions. However, under a constant confining pressure, 1  seems 

gradually increase with the growth of axial loading stress, indicating the delayed effect is 

less significant when sandstone is subjected to a high loading pressure. 

 

 

Figure 5.10 Posterior PDFs of constitutive model parameters ( 3 3MPa  ) 
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Figure 5.11 Posterior PDFs of constitutive model parameters ( 3 5MPa  ) 
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Figure 5.12 Posterior PDFs of constitutive model parameters ( 3 7MPa  ) 

 

5.5.2.2. Correlation statistics of posterior ( s  ) 

One of the benefits of probabilistic calibration is that it offers full probability 

description of parameters, thus correlations of model parameters are explicit in the 

posterior distribution. For instance, in the case where 3 3MPa   and 42.8MPa  , 

after simulation attained stationary status, samples in terms of 2E  and 1  extracted from 

posterior distribution are presented with negative correlation as illustrated in Figure 5.13, 

indicating elastic modulus 2E  and elastic viscosity 1  are negatively associated in 
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simulating visco-elastic response. Tables 5.2 to 5.4 present correlation matrices of model 

parameters obtained from probabilistic calibrations across all experimental data 

scenarios, which show that the distinct correlation exists when two parameters are come 

from same model component (i.e., a  and b , 2E  and 1 ). This can be explained through 

the basic assumption of component model, which assumes each model component can 

work independently, thus correlation should be obvious only when parameters are 

defined in the same model component. It is also noticed that such description may not 

strictly account for all calibration results. For instance, in Table 5.2, when confining 

pressure is 3MPa, we see moderate cross-correlation between parameters 2b  and 1 . 

However, such association is not showing with a clear, characteristic pattern, in contrast 

to those of a  and b , 2E  and 1 . 

 

 

Figure 5.13 Parameter samples of 2E  and 1  from the posterior distribution 
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Table 5.2 Correlation matrix of model parameters calibrated when 3 3MPa   

Parameters Loading stress  

(MPa) 

Parameters 

a   b   
2E   1   

a   42.8 1.000 -0.997 0.038 0.192 

 47.1 1.000 -0.998 -0.075 0.194 

 51.4 1.000 -0.998 0.001 0.098 

 55.6 1.000 -0.999 0.033 -0.093 

 59.9 1.000 -0.998 0.108 -0.224 

b  42.8  1.000 -0.051 -0.255 

 47.1  1.000 0.093 -0.245 

 51.4  1.000 -0.001 -0.151 

 55.6  1.000 -0.021 0.05 

 59.9  1.000 -0.078 0.167 

2E  42.8   1.000 -0.22 

 47.1   1.000 -0.673 

 51.4   1.000 -0.415 

 55.6   1.000 -0.633 

 59.9   1.000 -0.799 

1  42.8    1.000 

 47.1    1.000 

 51.4    1.000 

 55.6    1.000 

 59.9    1.000 

 

Table 5.3 Correlation matrix of model parameters calibrated when 3 5MPa   

Parameters Loading stress  

(MPa) 

Parameters 

a   b   
2E   1   

a   55.0 1.000 -0.997 0.17 0.164 

 60.5 1.000 -0.998 0.032 0.056 

 66.0 1.000 -0.997 0.015 0.033 

 71.5 1.000 -0.999 -0.008 -0.2 

b  55.0  1.000 -0.218 -0.211 

 60.5  1.000 -0.036 -0.064 

 66.0  1.000 -0.021 -0.042 

 71.5  1.000 0.003 0.157 

2E  55.0   1.000 0.683 

 60.5   1.000 0.043 

 66.0   1.000 0.263 

 71.5   1.000 -0.319 

1  55.0    1.000 
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Table 5.3 Continued 

Parameters Loading stress  

(MPa) 

Parameters 

a   b   
2E   1   

1  60.5    1.000 

 66.0    1.000 

 71.5    1.000 

 

Table 5.4 Correlation matrix of model parameters calibrated when 3 7MPa   

Parameters Loading stress  

(MPa) 

Parameters 

a   b   
2E   1   

a   80.0 1.000 -0.999 0.100 0.092 

 88.0 1.000 -0.998 -0.035 0.091 

 96.0 1.000 -0.999 0.005 0.038 

 104.0 1.000 -0.997 0.032 -0.055 

 112.0 1.000 -0.998 0.034 -0.113 

b  80.0  1.000 -0.137 -0.138 

 88.0  1.000 0.036 -0.107 

 96.0  1.000 -0.01 -0.058 

 104.0  1.000 -0.024 0.037 

 112.0  1.000 -0.028 0.085 

2E  80.0   1.000 0.414 

 88.0   1.000 -0.452 

 96.0   1.000 -0.202 

 104.0   1.000 -0.772 

 112.0   1.000 -0.581 

1  80.0    1.000 

 88.0    1.000 

 96.0    1.000 

 104.0    1.000 

 112.0    1.000 

 

5.5.2.3. Assessment of model predictions ( s  ) 

Because model parameters are updated probabilistically through present 

approach, it allows us to run random sampling towards posterior distribution and 

calculate statistics of model predictions. 10,000 combinations of model parameters were 
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randomly selected from posterior distribution and substituted into constitutive model 

expression, which consequently yielded 10,000 model realizations. Figure 14 shows all 

model realizations and standard deviation of these model realizations against 

experimental time t, under confining pressures are 3, 5, and 7MPa, respectively. The 

comparison with observations indicates that the proposed model captures sandstone's 

creep deformation with good accuracy and precision, whereas errors can be observed 

arising mainly at the initial part. Sub-plots (b), (d), and (f) show variability of model 

predictions in which a persistent "w" shape SD pattern with respect to time is seen across 

all calibration cases, suggesting the proposed model has a systematic uncertainty in 

simulating the initial elastic and the end viscosity behaviors during each loading step. 

Meanwhile, the general uncertainty of model prediction tends to increase with the rise of 

the loading stress as shown in each sub-plot. A higher order polynomial term, for 

instance, could possibly improve the model performance by producing more flexible fits 

and stable estimates. However, the order of magnitude of variability can be observed 

very small (10-6), which may imply such advancing effort is trivial. 
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Figure 5.14 10,000 model realizations and standard deviation of model realizations, 

(a) and (b), (c) and (d), (e) and (f) are results related to 3 = 3, 5, and 7MPa, 

respectively (modeling results are denoted by solid lines, and experimental data are 

expressed by markers). 
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To further evaluate the model performance, we conducted residual analysis 

towards all calculation cases. Figure 5.15 presents full variabilities of residuals between 

model predictions and experimental observations, and empirical CDF of residuals 

obtained from all calibration results. Similarly, it is shown that the significant residuals 

occurred at the initial stage of loading, with the model tends to over-predict the sample's 

creep deformation. The CDF plots in Figure 5.15 also corroborate this observation, 

despite the cumulative probability median is around zero, a long tail is seen on positive 

residual side happened to all loading phases. It also follows the tendency that variability 

would increase with the progress of loading stress, suggesting that the proposed model 

agree better with experimental observations when loading stress is low. 
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Figure 5.15 Residual analysis, (a), (c), and (e) are full variabilities of residuals 

between model predictions and experimental observations, (b), (d), and (f) are 

empirical CDF of residuals, under the confining pressures are 3, 5, and 7MPa 
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5.5.2.4. Probabilistic calibration of full visco-elastoplastic model ( s  ) 

Results of probabilistic calibration of visco-elastic model, relating to cases where 

loading stresses are less than yield stress, were described in preceding sections. Herein, 

we introduce calibration results regarding visco-plastic string has been triggered in the 

definition of constitutive model, meaning that acceleration creep is of consideration and 

aimed to be captured. Figures 5.16 to 5.18 present posterior distributions of model 

parameters after probabilistic calibration. The plots along diagonal direction are 

independent PDFs of model parameters, while the off-diagonal terms are representing 

joint relative frequency histograms (JRFHs) of each two parameters. It is worth noting 

that JRFH is not only showing joint mode of the pair of parameters, the shape of 

intensity map is also indicative of correlation relationship. For instance, a strong 

negative association between parameters a  and b  can be seen denoted by negative 

inclination angle of their joint probability mode in the parametric space. Apart from this 

distinct relationship between a  and b , significant correlation are also found among 

other parameters, for instance, a positive correlation between 0  and 1 , and a negative 

correlation between 0  and 2 are seen in Figure 5.16, meaning that these parameters 

are essentially correlated within visco-plastic string. It is further found that correlation 

patterns presented in JRFHs appear consistent from Figure 5.16 to 5.18, indicating 

model parameters are following the same association mechanism to simulate the 

constitutive properties even under different confining pressures. 
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Figure 5.16 Posterior distributions of parameters when 3 3MPa   and 

64.2MPa   
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Figure 5.17 Posterior distributions of parameters when 3 5MPa   and 

77.0MPa   
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Figure 5.18 Posterior distributions of parameters when 3 7MPa   and 

120.0MPa   

 

Similar to previous section, once posterior distribution was obtained, it allows us 

to randomly sample combinations of parameters and therefore evaluate model 

performance. Figure 5.19 (a) shows 10,000 model realizations compared to experimental 

observations of last loading stages when confining pressures are 3, 5, and 7MPa, 
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respectively. The total variation of model predictions is seen very small and unbiased to 

experimental observations, validated the full model is capable of simulating visco-

elastoplastic behavior of sandstone with satisfying accuracy and precision. Figure 5.19 

(b) presents the corresponding standard deviations versus experimental time. Again, the 

higher uncertainty takes place close to the initial and end moments of the tests, whereas 

the middle portion is observed more stable than previous cases (as in Figure 5.14), 

indicating model has gained the flexibility to capture the creep deformation due to the 

introduce of non-linear visco-plastic component. 

 

 

Figure 5.19 (a) 10,000 model realizations and experimental observations when 3 = 

3, 5, and 7MPa, respectively (modeling results are denoted by solid lines, and 

experimental data are expressed by markers); (b) standard deviations of model 

realizations 

 

One important feature of probabilistic calibration lies in its fundamental concept 

that a belief, or probability of a hypothesis, can be updated in light of newly emerged 

evidence or information. Hence, the knowledge yielded from the calibration of the 
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tradeoff between the present laboratory results and the proposed model can be translated 

as a-prior information in future model assessment on similar scenarios, by following a 

probability intersecting formulation (Esmailzadeh et al., 2011). Such effort is anticipated 

to aid the substantial reduction of uncertainty level in model inferences. Considering that 

the significant resources and time cost of carrying out such time-dependent experiments 

in regards to one of the most critical hydroelectric reservoirs on the earth, the advantage 

of systematically updating of existing knowledge can shed much lights on improved 

decision-making and optimize the use of resources in practical activities.   

5.6. Conclusion 

A Bayesian probabilistic calibration was conducted to assess the uncertainty of a 

proposed visco-elastoplastic model when presented to experimental observations 

comprised of a series of creep tests performed on sandstone specimen sampled from 

Three Gorges Reservoir. Results validated the proposed model can represent the 

rheological behavior of sandstone with great accuracy and precision. Main conclusions 

are drawn as follows: 

(a) The calibrated parameter marginal distributions show that in visco-elastic 

model component, the modulus of delayed elasticity will increase with the 

rise of confining pressure, and delayed effect is less significant when 

sandstone is subjected to a high loading pressure. 

(b) The correlation analysis show the strong association between parameters 

defined in the same model component, whereas cross-correlation among 

different model components is insignificant.  
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(c) The proposed model tend to over-predict the sample's creep deformation at 

the initial stage of loading. However, the errors analysis demonstrates the 

order of magnitude is very small. 

(d) When the acceleration creep is of consideration and visco-plastic string is 

triggered in simulation, the model presents with higher flexibility to capture 

the non-linear creep deformation. The variation of model predictions is 

regarded as trivial and the uncertainty mainly takes place close to the initial 

and end moments of the tests. 
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APPENDIX A 

GRADIENT, DIVERGENCE AND CURL IN CYLINDRICAL COORDINATES 

 

A.1. The del operator    

The gradient, the divergence, and the curl are first-order kinematic operators 

acting on fields. The conventional way to express them is via a vector called del or 

nabla, whose components are partial derivatives with respect to certain coordinates 

system. For instance, in Cartesian coordinates, the del operator   is defined as: 

 ˆˆ ˆi j k
x y z


 
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(A.1) 

Given the del operator is a vector, we can conduct some vector operations such 

as dot product and cross product which leads to the concept of divergence and curl in 

Cartesian coordinates as shown in Equations A.2 and A.3: 
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(A.3) 

A.2. Coordinate Transformation 

The transformations between Cylindrical and Cartesian coordinates are: 

 

2 2

: arctan( , )

x y

C l y x

z z

artesian Cylindrica





 
  

  
 
 






   

(A.4) 



 

147 

 

 

cos

sin:

x

Cylindrical Carte n

z

sia y

z

 

 

 
 

 
 






  

(A.5) 

The unit vector in the Cylindrical coordinates are the functions of position. They 

are point to radius, tangential, and vertical directions, respectively. The forward and 

inverse transformations of unit vectors between Cartesian and Cylindrical coordinates 

are: 
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(A.7) 

If we calculate the derivatives of ̂ ,̂ , and ẑ  with respect to  ,  , and z , the 

only non-zeros terms are: 
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And, 
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(A.9) 

These are useful relationships can greatly simplify the derivation of Divergence 

and Curl in Cylindrical coordinates. 
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A.3. The del operator in Cylindrical coordinates 

To express del operator   in Cylindrical coordinates, we have to map the terms 

î
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y




, and k̂

z




 onto the terms r̂

r




, ̂






, and ẑ

z
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
in accordance with vector 

field is defined in Cylindrical coordinates ( ),,U r z . A direct approach is to use the 

chain rule and transformation relationships introduced above, namely, 
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And, 
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Compare to Equation A.A.1, an intuitive attempt is to divide Equation A.A.11 by

 , and add it to Equations A.A.10 and A.A.12, then, 
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Therefore, we have, 
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A.4. Divergence in Cylindrical coordinates 

Similar to analyzing divergence in Cartesian coordinates, the divergence in 

Cartesian coordinates is carried out by computing dot product of del operator   and 

vector field )( , ,U z  . That is, 
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Since ̂ , ̂ , and ẑ  are orthogonal unit vectors, the inner product between each 

two are 0 (self-inner product equals to 1). Together with Equations A.A.8 and A.A.9, we 

have 
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A.5. Curl in Cylindrical coordinates 

The calculation of curl follows the same fashion as divergence calculated in 

Cylindrical coordinates. The cross product is calculated between del operator   and 

vector field )( , ,U z  . 
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A.6. Gradient in Cylindrical coordinates 

The gradient of a smooth vector field )( , ,U z  in Cylindrical coordinates is 

defined to be a second order tensor field, 
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(A.18) 

Or, in matrix form, 
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