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ABSTRACT 

 

With the rapid development of chemical process plants, the safe storage of 

hazardous chemicals become an essential topic. Several chemical warehouse incidents 

related to fire and explosion have been reported recently. Therefore, an accurate hazard 

identification method for the logistic warehouse is needed not only for the facility to 

develop a proper emergency response plan but also for the residents who live near the 

facility to have an effective hazard communication. Furthermore, the government can 

better allocate the resources for first responders to make fire protection strategies, and the 

stakeholders can lead to improved risk management. 

The storage of hazardous chemicals in a warehouse is a complex problem. The 

potential hazards include flammability, reactivity, and interaction among different types 

of hazardous chemicals. Hazard index is a helpful tool to identify and quantify the hazard 

in a facility or a process unit. Various hazard indices are developed in history. However, 

the challenge for this research is to improve the current method with the novel technique 

to implement our purpose. 

The first objective of this research is to develop a “Storage Hazard Factor” (SHF) 

to evaluate and rank the inherent hazards of chemicals stored in logistic warehouses. In 

the factor calculation, the inherent hazard of chemicals is determined by various 

parameters (e.g., the NFPA rating, the flammability limit, and the protective action criteria 

values, etc.) and validated by the comparison with other indices. The current criteria for 

flammable hazard ratings are based on flash point, which is proved to be insufficient. Two 
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machine learning based methods will be used for the classification of liquid flammability 

considering aerosolization based on DIPPR 801 database. Subsequently, SHF and other 

warehouse safety penalty factors (e.g., the quantity of the chemicals, the distance to the 

nearest fire department, etc.) are utilized to identify the Logistic Warehouse Hazard Index 

(LWHI) of the facilities. In the last chapter, LWHI is applied to an actual case from 

Houston Chronicle, and several statistical analyses are used to prove that the LWHI is 

helpful for hazard identification to emergency responders and hazard communication to 

the public. 
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1. INTRODUCTION  

  

1.1. Motivation 

Since entering the 21st century, people enjoy the benefits of the rapid development 

of the industry. With the innovations of the new chemical process, process safety must 

also be up to date and accommodate the new chemical process. 

Many industrial cities around the world are facing a dilemma between economic 

growth and population growth. With the blooming development of chemical process 

plants, the safe storage of hazardous chemicals becomes an essential topic. People should 

understand that some inherent properties of a chemical which makes it profitable to our 

society may be hazardous in the meantime. The researcher lived in Tianjin for five years, 

which is one of the economic centers in northern China. Tianjin has developed a sub-

provincial district named Binhai New Area, which is near the largest port in northern 

China, where more than 1800 facilities are related to the storage of hazardous chemicals 

[1]. This thesis is focused on hazard identification for chemical logistics warehouses, 

which is inspired by the Tianjin explosion that happened on August 12, 2015 [2]. 

 

1.1.1. Tianjin explosion 

On the night of August 12, 2015, a series of devastating explosions happened in 

the Binhai New Area near Tianjin Port. This explosion caused a total of 173 fatalities, 

including 110 firefighters, and about 800 non-fatal injuries. Total direct economic losses 

in this incident were over 1 billion dollars. The first two explosions were the most serious 



 

 

2 

ones. It involved the detonation of about 800 tonnes of ammonium nitrate and left with a 

crater of 60 meters in diameter. [2] 

Based on the final government investigation report [3], there are more than 40 

kinds of hazardous chemicals (a total of 3000 tonnes) stored onsite. Some of the substances 

(e.g., sodium cyanide) are highly toxic via inhalation, ingestion, and skin absorption. Other 

chemicals (i.e., potassium nitrate and ammonium nitrate) may be highly flammable or 

highly explosive. The explosion happened in a warehouse owned by Ruihai International 

Logistics, which is in charge of handling various hazardous materials within the Tianjin 

Port. 

Based on the incident anatomy by Yan et al. [2], the direct causes of the two major 

fire and explosion are spontaneously burning nitrocellulose and the subsequent detonation 

of the ammonium nitrate. However, a catastrophic incident typically occurs because of a 

series of unexpected events among multiple failures. The government report classified this 

event as an ‘accountability accident,’ and Yan et al. also point out the root causes may 

include the lack of safety knowledge and insufficient hazard identification. 

 

1.1.2. Similar incidents in the history 

In addition to the Tianjin explosion, several similar incidents happened in the 

chemical warehouse that motivates this research. On April 17, 2013, a fire and explosion 

occurred at the West Fertilizer Company (WFC) in West, Texas. The violent detonation 

fatally injured 15 people, and the local hospitals treated more than 200 injured victims. 

After almost three years of investigation, the U.S. Chemical Safety and Hazard 
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Investigation Board (CSB) released the final investigation report, which reveals several 

details and concludes various possible causes [4]. Ammonium nitrate, which is principally 

used in manufacturing fertilizer, had been confirmed as the primary material that 

exploded. Babrauskas [5] pointed out that this incident is a failure of regulation, where the 

storage facilities may lack awareness for the potential hazard. 

Another related incident happened on March 17, 2019, where a storage tank caught 

fire at the Intercontinental Terminals Company (ITC) Deer Park facility near Houston. 

ITC handles and stores the petrochemical product as well as the raw materials. Although 

this incident did not cause casualties, the releasing benzene, toluene, and xylene may cause 

harm to the public by contaminating the drinking water. For the safety of the residents, the 

City of Deer Park collaborated with Envirodyne Laboratories to monitor the presence of 

volatile organic carbons (VOCs) and semi-volatile organic carbons (SVOCs) [6]. 

Those three examples show that the logistic warehouse is a weak point in process 

safety — it usually stores numerous hazardous chemicals in a considerable amount. 

 

1.2. Improper storage hazards 

The hazards presented by storage depend on the inherent material characteristics 

and the storage condition. Both unawareness of the material inherent hazard and the 

incompatible storage situation may lead to chemical incidents like as mentioned in the 

previous section. Statistics show that chemical incidents caused by improper storage make 

up almost 25% of all chemical incidents [7, 8]. Thus, well-established hazard 

identification is essential for any laboratory or large-scale storage facility. 
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Material inherent hazard includes flammability, toxicity, reactivity, and interaction 

among different types of hazardous chemicals. Several characterization techniques have 

been invented to represent the relevant hazardous level of chemicals. Many popular 

classification techniques have been known over the years, including the National Fire 

Protection Association (NFPA) 704, and Globally Harmonized System (GHS). Details 

will be discussed in the next chapter. 

Apart from the material inherent hazard, storage condition is another critical factor 

that requires extra attention. For liquids stored in a vessel or tank, a leak may happen on 

rare occasions, such as overpressured vessels due to overfilling. If the material is toxic, 

the leaking vapor cloud can potentially result in health problems. If the material is 

flammable, a fire or explosion could be a catastrophic consequence. When considering the 

interaction between chemicals, which is common in a logistic warehouse with various 

chemicals stored onsite, the segregation and separation of materials within the storage area 

[9] is the key to prevent and mitigate the possible incident. Also, the facility siting is a 

primary consideration for public safety. The population density near the facility and the 

distance to the nearest fire station will be considered as a penalty factor in this thesis. 
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1.3. Hazard identification 

Hazard identification is a part of risk assessment. In other words, hazard 

identification should be the starting point of a full process of risk assessment. The scope 

of hazard identification is to identify hazards and risk factors that have the potential to 

cause harm. Hazard identification should have been done at the design phase of a project, 

and repeated multiple times before the project starts, during the routine inspections, and 

after the incident happens. A common way is to classify the hazard in the workplace as 

biological, chemical, ergonomic, physical, etc. [10] This thesis is mainly focused on 

inherent chemical hazards as well as considering key factors that may affect the public. 

 

1.4. Research objectives 

Based on the investigation reports of the storage facilities related to safety 

incidents, some hazardous chemicals are mentioned more than one time, such as 

ammonium nitrate. Former researchers in Mary Kay O’Connor Process Safety Center 

(MKOPSC) have investigated the thermal decomposition and runaway reaction 

characteristics of some hazardous chemicals [11-13] while few studies have explored the 

hazard identification applications. 

The first objective of this research is to develop a “Storage Hazard Factor” (SHF) 

to evaluate and rank the inherent hazards of chemicals stored in logistic warehouses. In 

the factor calculation, the inherent hazard of chemicals is determined by various 

parameters (e.g., the NFPA rating, the flammability limit, and the protective action criteria 

values, etc.) and validated by the comparison with other indices. Two machine learning 
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based methods will be used for the classification of flammability. Subsequently, SHF and 

other warehouse safety penalty factors (e.g., the quantity of the chemicals, the distance to 

the nearest fire department, etc.) are utilized to identify the hazard index of the facilities. 

The index can be used not only for the facility to develop a proper emergency 

response plan but also for the residents who live near the facility to have an effective 

hazard communication. Furthermore, the government can better allocate the resources for 

first responders to make fire protection strategies, and the stakeholders can achieve 

improved risk management for the facility. 
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2. LITERATURE REVIEW 

 

2.1. Hazard versus Risk 

Hazard and risk are not interchangeable concepts in many ways [14], not only the 

definition in the dictionary but also the interpretation by a chemical engineer. Specifically, 

it is common to use the definitions given by the Center for Chemical Process Safety 

(CCPS) from the American Institute of Chemical Engineers (AIChE) in chemical 

engineering study and research: 

 

Hazard: An inherent chemical or physical characteristic that has the potential for 

causing damage to people, property, or the environment. 

Risk: A measure of human injury, environmental damage, or economic loss in 

terms of both the incident likelihood and the magnitude of the loss or injury. 

 

Briefly, the hazard is an inherent chemical characteristic that may cause potential 

harm, whereas risk is considering both consequences and the likelihood of an incident. In 

other words, any chemical represents some hazards due to their inherent properties. For 

example, propane is a highly flammable substance, and this inherent property cannot be 

interfered with by human action. However, this inherent hazard characteristic does not 

represent risk or imminent harm. Different mitigative methods can be applied to lower the 

likelihood of the potential consequence, which is fire and explosion in this case. 
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2.2. Hazard identification methods 

As discussed in the last chapter, hazard identification should be the first step to 

develop a chemical process. In the past century, several methods have been invented to 

identify the hidden hazards in the workplace. This section will introduce some successful 

and widely used methods. 

 

2.2.1. Process hazard checklists  

A checklist might be the most simple tool of hazard identification. Even today, it 

is widely used all over the world. It is the fastest way to get a concept of the whole 

chemical process. However, the checklist cannot give more details about the potential 

hazard with the simple ‘yes’ or ‘no’ answers. It will be more effective if the answers 

include more details, but it may also become trivial at the same time. Therefore, the 

checklist is not a useful method for interpretation. 

 

2.2.2. NFPA 704 

NFPA 704 is a standard developed by the National Fire Protection Association 

(NFPA), which is also known as ‘hazard diamond,’ and it provides hazard information for 

degrees of reactivity, toxicity, and flammability. [15] The subtitle of NFPA 704 is 

‘standard system for the identification of the hazards of materials for emergency response.’ 

As the full name refers, the NFPA 704 is designed to provide hazard information for 

emergency responders to take proper action for different emergency cases. Figure 1 shows 

an example of the NFPA hazard diamond. 
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Figure 1. Example of NFPA hazard diamond [16] 

 

As shown in Figure 1, the NFPA diamond [16] includes four divisions with 

different colors. Red, blue, and yellow divisions represent the degree of flammability (NF), 

health hazard (NH), and reactivity/instability (NR). Each colored division has a scale from 

0 to 4, which 0 indicates a minimal hazard, and 4 indicates a severe hazard. The last white 

division is used for special hazards like W (unusual reactivity with water), OX (oxidizer), 

and SA (asphyxiant gas). 

 Overall, the NFPA diamond is a useful rating system, which provides sufficient 

hazard information for emergency responders. However, the NFPA diamond only 

represents the inherent hazard of a chemical without taking into account the quantity, 

which is also an important factor for storage. Moreover, this standard is intended to be 

used by emergency responders, in which the applicability to the public is limited. 
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2.2.3. Quantitative methods 

Quantitative methods use mathematical techniques to develop a precise and easy-

to-understand hazard identification method. It requires a large base of input data, but the 

feedback is more reasonable than the simple checklist. An excellent example of 

quantitative methods is the hazard index, and it will be discussed in detail in the next 

section. 

 

2.3. Hazard indices 

The storage of hazardous chemicals in a warehouse is a complex problem. The 

potential hazards include flammability, reactivity, and interaction among different types 

of hazardous chemicals. Hazard index is a helpful tool to identify and quantify the hazard 

in a facility or a process unit. Various hazard indices were developed in history. Dow’s 

Fire and Explosion Index is the most famous and widely used one, and others such as 

Mond Index, Dow’s Chemical Exposure Index, IFAL Index, Weighted Average Risk 

Rating Index, etc. are developed or modified based on different scopes and purposes [17]. 

 

2.3.1. Dow’s Fire and Explosion Index (F&EI)  

The first edition of Dow’s F&EI was issued in 1964 and used within Dow 

Chemical Company. [18] After the development over half a century, F&EI has been 

widely used in Dow and outside Dow and became the leading hazard index recognized by 

the chemical industries. The purpose of the F&EI system is to: 
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1. Quantify the hazards of potential fire, explosion, and reactive chemicals incidents 

in pertinent process unit; 

2. Identify which process or equipment would create or escalate the incident by 

comparing the different F&EI for separate process unit; 

3. Achieve effective risk communication to process management team. 

 

The procedure for calculating the F&EI is described in the following flowchart 

(Figure 2). Moreover, the detailed steps should be: 

 

Figure 2. Procedure for calculating Dow’s F&EI  

 

1. The Pertinent Process Unit selection should consider the critical importance of the 

process, which would have the most significant impact on the magnitude of a 

potential fire or explosion. 
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2. The Material Factor (MF) should be determined for each process unit, and Dow 

Chemical Company develops its MF values. 

3. The General Process Hazards Factor should be calculated by applying the 

appropriate penalties according to the F&EI Form. (Appendix A)  

4. The Special Process Hazards Factor should be calculated by applying the 

appropriate penalties according to the F&EI Form. (Appendix A) 

5. The F&EI should be calculated based on multiple Process Hazards Factors and 

MF. 

 

2.3.2. MKOPSC’s Potential to Cause Harm to the Public (PCHP)  

In 2016, MKOPSC developed a hazard index called PCHP [19]. The objective of 

PCHP is to develop a methodology to assess chemical process facilities based on their 

potential to cause harm to the public. The PCHP index is a function of four factors: 

material hazards, quantities of chemicals, population densities, and accident history. Thus, 

the function is represented as follows in Equation 1. 

 

𝑃𝐶𝐻𝑃 𝐼𝑛𝑑𝑒𝑥 = 𝑀𝐻𝐼 ∗ ∏ 𝐹𝑖                                     (𝐸𝑞𝑛. 1) 

where material hazard index (MHI) represents the inherent hazard of the chemicals, and 

𝐹𝑖 represents the penalty value for i = quantity, population density, accident history. 
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2.3.3. Other hazard indices  

The Mond fire, explosion, and toxicity index (Mond FETI) was developed as an 

extension to the Dow index [20] in 1985. As mentioned in the previous section, Dow’s 

index considered mainly flammability and reactivity properties. However, Mond index 

also took toxicity into account and became a comprehensive safety index for process 

development. 

 The instantaneous fractional annual loss (IFAL) index was developed separately 

by the Insurance Technical Bureau for insurance assessment purposes. The main hazards 

accounted for this index are fires and explosions. However, in contrast to the Dow’s F&EI 

and Mond FETI, the IFAL index is too complicated for manual calculation [17]. 

 Other than mainly focusing on flammability properties, the Reactivity Risk Index 

(RRI) [21] was designed to recognize the hazards of reactive chemicals. Previous 

MKOPSC researchers measured chemical incompatibility data using Differential 

Scanning Calorimeter (DSC) and the Reactive System Screening Tool (RSST). The 

reactive risk can be expressed quantitatively by defining an RRI, as follows in Equation 

2. 

 

𝑅𝑅𝐼 = 𝜏 × 𝛽 = (
𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑇𝑜𝑛𝑠𝑒𝑡
) × (−

∆𝐻

350
)                              (𝐸𝑞𝑛. 2) 

where 𝛽 is a thermodynamic quantity and is measured by the energy release potential of a 

substance, 𝜏 represents the probability of reaction occurrence. 
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2.4. Machine learning based method in process safety 

Machine learning attracts much attention in recent years and has been applied in 

process safety in several aspects. Numerous works applied supervised learning to predict 

lower flammable limit (LFL), upper flammable limit (UFL), minimum ignition energy 

(MIE), and autoignition temperature [22-27]. Mage et al. utilized unsupervised learning 

to cluster the thermal stability of organic compounds into seven groups [28]. With the lack 

of study in liquid flammability considering aerosolization and the tendency of the machine 

learning approach, it is worthful to implement machine learning algorithms to liquid 

flammability rating. 

 

2.4.1. K-Mean Clustering (KC) 

The objective of KC [29] is to minimize the total within-cluster variation, which 

is shown in Equation 3. In the beginning, each of the observations is randomly assigned a 

number from 1 to K, which is called initial cluster assignments. The second step is to 

calculate the cluster centroid for each of the K clusters. The third step is to reassign each 

observation to the cluster whose centroid is the closest (defined using Euclidean distance). 

The second and third steps are repeated until the cluster assignments stop changing, which 

means the Equation 3 is satisfied. 

 

minimize𝐶1 ,…, 𝐶𝑘
{∑

1

|𝐶𝑘|
∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)

2

𝑝

𝑗=1𝑖,𝑖′∈𝐶𝑘

𝐾

𝑘=1

}                     (𝐸𝑞𝑛. 3) 
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where 𝐶1, … , 𝐶𝑘 represent cluster 1 to k, |𝐶𝑘| denotes the number of observations in the kth 

cluster, p is the number of features, and ∑ (𝑥𝑖𝑗 − 𝑥𝑖′𝑗)
2𝑝

𝑗=1   is the Euclidean distance between 

two observations in the kth cluster. 

 

Another graphical explanation (Figure 3) is easier to understand. In the following 

plot, six data points were chosen between (0 < x < 6) and (0 < y < 4). Firstly, each data 

point is assigned to a class number (red color refers to class I, and green color refers to 

class II), as shown in Figure 3(b). The number of data points in each cluster is decided by 

N (total number of data points) divided by K (number of clusters). In this example, N is 

six, K is two, and each cluster contains three data points. Then, the centroid of each class 

is calculated based on Euclidean distance between two observations in the kth cluster and 

is labeled as ‘X’ in each theme color in the plot. The next step is to calculate the distance 

from each data point to the centroid of each class. By comparing the result, each data point 

is reassigned to a class where the distance to the centroid is the closest, as shown in Figure 

3(c). Finally, the local optimal result could be obtained after several iterations. 
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Figure 3. K-Mean clustering explanation: (a) Unclassified raw data; 

(b) Random classified data points and centroids; 

(c) Local optimal classification 
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2.4.2. Hierarchical Clustering (HC) 

Hierarchical clustering [29] is an agglomerative clustering method that builds a 

dendrogram, starting from the leaves and combining clusters up to the trunk. In this 

method, it is necessary to specify the linkage in order to calculate the distance between 

two clusters. The common linkages are complete linkage, single linkage, average linkage, 

centroid linkage, and Ward linkage. The single linkage method calculates the distance 

between the closest elements in different clusters. Similarly, the complete method 

calculates the distance between the farthest clusters, and the average method finds the 

mean value for all pairwise distances. However, unlike the previous methods, Ward [30] 

suggested that for a large-scale (n > 100) dataset, the error sum of squares (ESS) should 

be calculated for each cluster, and the results should be compared by considering merging 

of the two clusters. This process should be repeated until the optimized solution is found. 

In this study, Ward linkage is applied. Equation 4 calculates the Euclidean distance 

between two clusters using Ward linkage. 

 

dis(A, B) =  ∑ ‖𝑥𝑖 − 𝑚⃗⃗⃗𝐴⋃𝐵‖2

𝑖∈𝐴⋃𝐵

− ∑‖𝑥𝑖 − 𝑚⃗⃗⃗𝐴‖2

𝑖∈𝐴

− ∑‖𝑥𝑖 − 𝑚⃗⃗⃗𝐵‖2

𝑖∈𝐵

      (𝐸𝑞𝑛. 4) 

where dis(A, B) is the Euclidean distance between cluster A and cluster B, and 𝑚⃗⃗⃗𝑗 is the 

center of cluster j. 

 

Unlike the KC algorithm, the number of clusters is not required before conducting 

the clustering using the HC algorithm. As an example, Figure 4(a) shows the dendrogram 
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without truncation, and the dendrogram can be truncated with six leaves, as displayed in 

Figure 4(b). 

 

 

Figure 4. The dendrogram (a) without truncation, (b) with truncation. 
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2.4.3. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) [29] is a widely used method to reduce the 

dimension of features in a database. Before conducting PCA, the features should be 

normalized in the feature space, as shown in Equation 5. 

 

𝜙̃(𝑥𝑖) = 𝜙(𝑥𝑖) −
1

𝑚
∑ 𝜙(𝑥𝑘)

𝑚

𝑘=1

                                     (𝐸𝑞𝑛. 5) 

where 𝜙(𝑥𝑖) is the feature, and 𝜙̃(𝑥𝑖) is the normalized feature. 

 

The covariance matrix is displayed in Equation 6, and the derivation of the 

projection of a new point onto the principal components is shown below. 

 

𝑪 =
1

𝑝
∑ 𝜙̃(𝑥𝑖)𝜙̃(𝑥𝑖)

𝑇                                           (𝐸𝑞𝑛. 6)

𝑝

𝑖=1

 

 

The eigenvectors are: 

𝑪𝐯j = 𝜆𝑗𝐯j , 𝑗 = 1, … , 𝑁                                        (𝐸𝑞𝑛. 7) 

 

Using the kernel function: 

𝐾(𝑥𝑖 , 𝑥𝑘) = 𝜙̃(𝑥𝑖)𝜙̃(𝑥𝑖)
𝑇                                        (𝐸𝑞𝑛. 8) 
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The eigenvectors can be written as a linear combination of normalized features: 

𝐯j = ∑ 𝑎𝑗𝑖𝜙̃(𝑥𝑖)                                             (𝐸𝑞𝑛. 9)

𝑝

𝑖=1

 

 

Substituting Equation 6, 8 and 9 into Equation 7 results in: 

1

𝑝
∑ 𝜙̃(𝑥𝑖)𝜙̃(𝑥𝑖)

𝑇

𝑝

𝑖=1

(∑ 𝑎𝑗𝑙𝜙̃(𝑥𝑙)

𝑝

𝑙=1

) =
1

𝑝
∑ 𝜙̃(𝑥𝑖) (∑ 𝑎𝑗𝑙𝐾(𝑥𝑖 , 𝑥𝑙)

𝑝

𝑙=1

)

𝑝

𝑖=1

= 𝜆𝑗 ∑ 𝑎𝑗𝑙𝜙̃(𝑥𝑙)

𝑝

𝑖=1

  

(𝐸𝑞𝑛. 10) 

 

Multiplying both sides of Equation 10 by 𝜙̃(𝑥𝑘)𝑇: 

1

𝑝
∑ 𝜙̃(𝑥𝑘)𝑇𝜙̃(𝑥𝑖) (∑ 𝑎𝑗𝑙𝐾(𝑥𝑖, 𝑥𝑙)

𝑝

𝑙=1

)

𝑝

𝑖=1

= 𝜆𝑗 ∑ 𝑎𝑗𝑙𝜙̃(𝑥𝑘)𝑇𝜙̃(𝑥𝑙)       (𝐸𝑞𝑛. 11)

𝑝

𝑖=1

 

 

Simplifying: 

1

𝑝
∑ 𝐾(𝑥𝑘, 𝑥𝑖) (∑ 𝑎𝑗𝑙𝐾(𝑥𝑖 , 𝑥𝑙)

𝑝

𝑙=1

)

𝑝

𝑖=1

= 𝜆𝑗 ∑ 𝑎𝑗𝑙𝐾(𝑥𝑘, 𝑥𝑙)             (𝐸𝑞𝑛. 12)

𝑝

𝑖=1

 

 

The projection of a new point onto the principal components is: 

𝜙̃(𝐱)𝑇𝐯j = ∑ 𝑎𝑗𝑖𝜙̃(𝐱)𝑇𝜙̃(𝑥𝑖)

𝑝

𝑖=1

= ∑ 𝑎𝑗𝑖𝐾(𝐱, 𝑥𝑖)                    (𝐸𝑞𝑛. 13)

𝑝

𝑖=1
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In this study, a radial basis function (RBF) kernel is utilized which provides a 

similarity measurement between two normalized feature vectors for use in the PCA, since 

RBF is a stable, isotropic, and infinitely smooth kernel. RBF kernel is widely used in 

classification and clustering studies. [31] 

 

2.5. Aerosolization and flammability 

The flammable and explosive hazards have been well studied. However, extra 

attention should be paid to the flammable and explosive hazards associated with aerosols, 

also known as mists or sprays, in a logistic warehouse and other storage facilities. In 1955, 

Eichhorn [32] reported that a liquid could not be ignited below its flash point, which means 

the flammable limit of the gas phase is clear. A clear UFL and LFL for vapor can be found 

in Figure 5, but the limit for aerosol (mist) is vague. Moreover, there are hundreds of 

liquids with the potential to aerosolize in the logistic warehouse and other storage 

facilities. [33, 34] Also, the consequences of an aerosol explosion have a so-called ‘fuel-

air bomb’ effect. The unburnt droplets dispersed by the initial explosion will mix with air 

and cause a series of explosions. [35] Santon et al. conducted a survey and identified 33 

incidents involve flammable aerosol, including lube oil, crude oil, kerosene, and naphtha. 

[36] Furthermore, the 2015 Buncefield fire and explosion is another evidence of 

detonation during an aerosol explosion. [37] 
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Figure 5. Schematic flammability diagram at constant pressure [32] 

 

2.5.1. Probability of aerosolization 

The probability of aerosolization can be determined as a function of viscosity and 

surface tension. Lefebvre et al. and Jasuja et al. reported that the Sauter Mean Diameter 

(SMD) of the droplet is proportional to viscosity and surface tension, as shown in Equation 

14. [38, 39] 

SMD = A𝜎0.25𝜇𝐿
0.25𝜌𝐿

0.125𝑑0
0.5𝜌𝐴

−0.25∆𝑃𝐿
−0.375                       (𝐸𝑞𝑛. 14) 

where A is the coefficient, σ is the surface tension, 𝜇𝐿 is the liquid dynamic viscosity, 𝜌𝐿 

is the liquid density, 𝑑0  is the orifice diameter, 𝜌𝐴  is the air density, and ∆𝑃𝐿  is the 

pressure differential across the orifice. 
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Similarly, Elkotb et al. and Ingebo et al. also found the relationship between SMD 

and the liquid properties, as shown in Equation 15 and Equation 16. [40, 41] These three 

relationships support the methodology to estimate the tendency of a liquid to aerosolize 

based on viscosity and surface tension of the liquid. 

 

SMD = 3.08𝜐𝐿
0.385(𝜎𝜌𝐿)0.737𝜌𝐴

0.06∆𝑃𝐿
−0.135                     (𝐸𝑞𝑛. 15) 

SMD = 5.0 (
𝜎𝜇𝐿𝑑0

2

𝜌𝐴𝑈𝑅
3𝜌𝐿

)

0.25

                                     (𝐸𝑞𝑛. 16) 

where 𝜐𝐿 is the kinematic viscosity of the liquid, σ is the surface tension, 𝜌𝐿 is the liquid 

density, 𝜌𝐴 is the air density, ∆𝑃𝐿 is the pressure differential across the orifice, 𝜇𝐿 is the 

liquid dynamic viscosity, 𝑑0 is the orifice diameter, and 𝑈𝑅  is the air velocity relative to 

liquid. 

 

2.5.2. Physical properties related to aerosolization and flammability 

2.5.2.1 Flash point 

Flash point is the primary and most common physical property to measure the 

flammability. The flash point refers to the temperature where the liquid will generate 

enough vapor mixture with air and be ignited. However, the vapor mixture is inadequate 

to maintain constant combustion. Therefore, the ignition is temporary at its flash point. 

Generally, the flash point will increase with the increasing pressure. 
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Flash points may alter a few degrees based on different determination methods. 

The two commonly used methods are the open cup and closed cup. [42] Currently, the 

flash point is a commonly used criterion when classifying the degree of flammability. 

In this thesis, the values of the flash point were obtained from the DIPPR 801 

database with the unit of K. 

 

2.5.2.2 Autoignition temperature 

Autoignition temperature is another physical property related to flammability. 

Compared to the flash point determined from experimental data, which is a common 

standard for liquids and vapors, autoignition temperature can serve as a flammable 

parameter for solids. 

Autoignition temperature is defined as a minimum temperature at which a 

flammable liquid or solid is capable of being ignited without any heat source from the 

surrounding environment. [43] The lower the autoignition temperature, the higher the 

probability of the substance can ignite itself. 

In this thesis, the values of autoignition temperature were obtained from the DIPPR 

801 database with the unit of K. 

 

2.5.2.3 Flammable range 

The flammable range represents a special range of compositions within which the 

fire or explosion will take place. To calculate this range, more knowledge about 

flammability limits is needed. 
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As shown in the fire triangle in Figure 6, three requirements are needed for a fire 

to occur. UFL is the upper flammable limit for a flammable mixture in air. Beyond this 

limit, the percent of oxygen is insufficient for a fire or explosion. In other words, the 

mixture is too rich for combustion. In contrast, LFL is the lower flammable limit. The 

mixture is also not combustible when there is not enough fuel; that is when the 

composition is lower than the LFL. Therefore, the mixture is combustible only within this 

flammable range. 

In this thesis, the values of UFL/LFL were obtained from the DIPPR 801 database 

with no unit. 

 

 

Figure 6. Fire triangle [42] 

 

2.5.2.4 Viscosity 

In the previous sections, the SMD is proportional to viscosity and surface tension. 

Viscosity reflects the resistance of a fluid to the flow and can be calculated by the ratio of 

the shearing stress to the velocity gradient in a fluid. 
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The SI unit of viscosity is the pascal second (Pa·s). However, this unit is rarely 

used in scientific and technical writing today. The centimeter–gram–second system of 

units (CGS) has defined poise (P) as dyne seconds per square centimeter (dyne·s/cm2), 

which is named after the French physiologist Jean Poiseuille. [44] The relation between 

the SI unit and CGS unit is: 1 Pa·s = 10 P, 1 mPa·s = 1 cP. 

In this thesis, the values of viscosity were obtained from the DIPPR 801 database 

with the unit of Pa·s and can be converted to cP for calculation. 

 

2.5.2.5 Surface Tension 

Surface tension is typically used to describe a phenomenon that happens on a 

liquid/gas interface. Unlike the liquid molecule inside the fluid, a molecule on the surface 

will not receive equal cohesive forces from the neighboring molecule. The fluid surface 

tends to shrink into the minimum surface area.  

In this thesis, the values of surface tension were obtained from the DIPPR 801 

database with the unit of mN/m. 
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3. METHODOLOGY 

 

This chapter develops the methodology used in this thesis. Based on the literature 

review in Chapter 2, previous studies have developed several well-known indices in the 

past century. In general, every index is a function of the combination of inherent chemical 

properties and other factors that meets its purpose. In this chapter, we will develop the 

overall function for our index based on F&EI and then focus on the details about each 

parameter. For the degree of flammability, two machine learning based methods will be 

addressed. 

 

3.1. Data collection 

The Design Institute for Physical Properties (DIPPR) 801 is a project sponsored 

by AIChE, which provides more than 30 constant properties and nearly 50 thermophysical 

properties as well as molecular structures, hazard properties, and physical constants for 

more than 2000 compounds. This database is widely used in chemical property 

classification and prediction [22, 23]. After data cleaning, 823 organic compounds will be 

used in this research. The parameters used in this thesis are CAS No., flash point, 

autoignition temperature, UFL, LFL, viscosity, and surface tension. 

 

 

3.2. Storage Hazard Factor (SHF) 

Based on the literature reviews, various hazard indices are developed or modified 

based on different scopes and purposes. Considering that the index will be applied to the 
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chemical logistic warehouse, the overall index function can be represented as follows in 

Equation 17. 

 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝐻𝑎𝑧𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 (𝐿𝑊𝐻𝐼) =  ∑ 𝐹𝑖 × 𝑆𝐻𝐹             (𝐸𝑞𝑛. 17) 

where 𝐹𝑖 represents different penalty factors such as quantity, population density, SHF 

represent the inherent hazard of the chemicals stored in the warehouse. 

 

Based on the MKOPSC’s PCHP project, the formula for calculating the SHF can 

be modified as follows in Equation 18. 

 

𝑆𝐻𝐹 = 2𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑁𝐹 + 2𝑁𝑅 + 2𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑁𝐻                           (𝐸𝑞𝑛. 18) 

where NR represents the degree of reactivity, which will be determined by the original 

NFPA rating; NH represents the degree of the health hazard, which will be modified by 

PAC-3 value; NF represents the degree of flammability, which will be modified by two 

machine learning methods using DIPPR 801 database. 

 

3.2.1. Modified NH 

Protective Action Criteria (PAC) value is an exposure limit system, and this system 

is commonly used as the guideline for an emergency response to the concentration of the 

accidental release of the hazardous chemicals.  

NH represents the degree of health hazard. The original NFPA rating criteria are 

based on LC50 and LD50, which is more focused on the emergency conditions for the 
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working area. Since PAC-3 is the maximum airborne exposure resulting in the most severe 

consequence, which is life-threatening effects, PAC-3 is suitable for the modification of 

the NH value for our purpose. 

The Department of Energy 's (DOE) current PAC dataset is Revision 29, which is 

published in May 2016 [45]. It provides chemical exposure limit values for 3146 

chemicals. Table 1 provides the criteria used to modify the NH value. 

 

Table 1. Modified NH determination guide 

 

Min PAC-3 value (mg/m3) Max PAC-3 value (mg/m3) Modified NH 

0 100 4 

101 1000 3 

1001 10000 2 

10001 100000 1 

100001 … or NA 0 
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3.2.2. Modified NF 

As mentioned in Chapter 2, the most widely used chemical classification method 

is NFPA 704, GHS, and OSHA (29 CFR 1910.106). However, both of these criteria (Table 

2) are based on flash points only [42]. Evidence shows that liquid can be ignited below its 

flash point if it is in some particular condition, such as aerosol form [36, 37]. In this 

research, flash point, autoignition temperature, surface tension, and viscosity are selected 

to modify the classification using KC and HC algorithm with PCA. 

 

Table 2. Current standards for liquid flammability rating and classification 

 

Standard Flammability rating 

and classification 

Criteria 

NFPA 704 

0 Materials will not burn in air when exposed to a 

temperature of 1500°F for a period of 5 minutes 

1 Flash point at or above 200°F 

2 Flash point between 100 and 200 °F 

3 Flash point between 73 and 100°F 

4 Flash point below 73°F 

 

GHS classification 

and labeling of 

chemicals 

1 Flash point < 23°C and boiling point ≤ 35°C 

2 Flash point < 23°C and boiling point > 35°C 

3 Flash point ≥ 23°C and ≤ 60°C 

4 Flash point > 60°C and ≤ 93°C 
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Table 2. Continued 

Standard Flammability rating 

and classification 

Criteria 

 

OSHA (29 CFR 

1910.106) 

1 Flash point < 73.4°F and boiling point ≤ 95°F 

2 Flash point < 73.4°F and boiling point > 95°F 

3 Flash point ≥ 73.4°F and ≤ 140°F. When a 

category 3 liquid with a flash point ≥ 100°F is 

heated for use to within 30°F of its flash point, it 

shall be handled in accordance with the 

requirements for a Category 3 liquid with a flash 

point < 100°F. 

4 Flash point > 140°F and ≤ 199.4°F. When a 

category 4 liquid is heated for use to within 30°F 

of its flash point, it shall be handled in 

accordance with the requirements for a Category 

3 liquid with a flash point < 100°F. 

5 When a liquid with a flash point > 199.4°F is 

heated for use to within 30°F of its flash point, it 

shall be handled in accordance with the 

requirements for a Category 4 flammable liquid. 

 

 

In this study, the KC and HC algorithm is implemented through the Python 

package, Scikit-Learn [46]. The number of clusters is determined by the elbow method, 

which plots the within-cluster sum of square (WCSS) with respect to the number of 
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clusters [47]. Figure 7 shows the example of the elbow plot when implementing the KC 

algorithm on liquid flammability clustering based on flash point and autoignition 

temperature. The number of clusters is five in this thesis. 

 

 

Figure 7. Within-cluster sum of square (WCSS) and the number of clusters 

 

This modification method is reliant on the availability of the data. Despite the lack 

of data, the original NFPA rating with simple update (if UFL – LFL > 10%, then NF + 1 

with a maximum of 4) can be used for SHF calculations. 
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3.3. Penalty factors 

The other important part of Equation 17 is ∑ 𝐹𝑖, which represents different penalty 

factors. In this study, quantity, population density, and distance to the nearest fire station 

are selected to be the penalty factors. The determination guides for each factor are 

described in this section. 

 

3.3.1. Quantity 

Quantity is an important factor that should be considered first when designing a 

hazard index. Besides the inherent hazard of a hazardous chemical, the amount of 

chemicals stored in the facility also reveals the level of hazard. 

For example, facility A has a chemical X stored onsite with a high SHF and a small 

amount. However, facility B has a chemical Y stored onsite with a moderate SHF, but the 

quantity is enormous. When considering the hazard index, we should balance the inherent 

hazard and quantity. In this simple case, facility B is also dangerous, although chemical Y 

is inherently safer than chemical X. 

The following table shows the determination guide of the quantity penalty value 

(Table 3). 
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Table 3. Penalty value of quantity determination guide 

 

Original code Min (Pounds) Max (Pounds) Penalty value 

1 0 99 1.2 

2 100 499 1.4 

3 500 999 1.4 

4 1,000 4,999 1.6 

5 5,000 9,999 1.6 

6 10,000 24,999 1.8 

7 25,000 49,999 1.8 

8 50,000 74,999 1.8 

9 75,000 99,999 1.8 

10 100,000 499,999 2 

11 500,000 999,999 2 

12 1,000,000 9,999,999 2 

13 10,000,000 … 2 

 

3.3.2. Population density 

Besides the inherent hazard of a chemical and the quantity stored in the facility, 

another important factor is the safety impact to the public. Given the coordinate of a 

facility, we defined the population in a radius of two miles near the facility that can be 

used to represent the population density factor in Equation 17. 
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Population density information is retrieved on LandView 6.0 [48], a geographic 

information system software. The following table shows the determination guide of 

population density penalty value (Table 4). 

 

Table 4. Penalty value of population density determination guide 

(in a radius of two miles near the facility) 

 

Min Max Penalty value 

10 100 1.2 

101 1000 1.4 

1001 10000 1.6 

10001 100000 1.8 

100001 … 2 

 

 

3.3.3. Distance to the nearest fire station 

The last factor we choose in this study is ‘distance to the nearest fire station.’ In 

the previous sections, we considered the inherent hazard, quantity, and the potential 

impact to the public. Furthermore, last but not least, we choose a factor that can reflect the 

mitigation process, which is an essential point for a storage facility. 

Distance to the nearest fire station (FS) is retrieved from HazardHub, a provider 

of property-level hazard risk database [49]. The following table shows the determination 

guide of distance to the FS penalty value (Table 5). 
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Table 5. Penalty value of distance to FS determination guide 

 

Min (Miles) Max (Miles) Penalty value 

0 1 1.2 

1.01 2 1.4 

2.01 3 1.6 

3.01 4 1.8 

4.01 … 2 

 

 

3.3.4. Accident history 

The accident history of a facility is another indicator of the performance of 

chemical safety. This information can reflect part of the safety management of the facility 

and how well it will perform in the potential chemical incidents. Since the accident history 

is not available so far, this thesis does not consider this factor in the LWHI calculations.  



 

 

37 

4. RESULTS AND DISCUSSION 

 

This chapter provides the results obtained with the application of the proposed 

methodology. The analysis is based on calculations of database DIPPR 801 from AIChE. 

This chapter discussed mainly the calculation of SHF and the modification of parameters. 

The first section discussed a novel classification method based on the machine learning 

approach. In the following sections, some statistical techniques are used to test the 

behavior of SHF mathematically. The calculation of LWHI contains other factors that are 

related to real data, and it will be addressed and discussed in the next chapter. 

 

4.1. NF modification 

4.1.1. Database visualization 

Before conducting the liquid flammability rating with the inclusion of 

aerosolization, we would like to investigate the distribution of observations for each liquid 

property, and the scatter plots of each pair of liquid properties. Appendix B shows the 

aggregated scatter plots, distribution plots, and heatmap of liquid properties. The diagonal 

of Appendix B shows the distribution of observations for each liquid property. For 

example, Figure 8 from Appendix B shows that the distributions of flash point and surface 

tension are normally distributed. However, the distributions of autoignition temperature 

and viscosity are right-skewed. 
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Figure 8. Distributions of liquid properties: (a) flash points; (b) surface tension;  

(c) autoignition temperature; (d) viscosity 

 

 

The left part of Appendix B is the scatter plot of each pair of liquid properties. For 

example, a positive slope is plotted for the relationship between flash point and molecular 

weight, shown in the 5th plot from the top in the first column on the left part of Appendix 

B, and the magnified plot in Figure 9. 

 

 

Figure 9. Scatter plot of flash point and molecular weight 
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The right part of Appendix B shows the statistical correlation between each pair of 

liquid properties, including Pearson coefficient (ρ), Kendal coefficient (τ), Spearman 

coefficient (r), and the P-value for Pearson coefficient (p). For example, the statistical 

correlation between flash point and vapor pressure is found in the upper rightmost 

location. The Pearson coefficient between flash point and vapor pressure is -0.99, which 

means an entirely negative correlation. 

 

 

4.1.2. KC and HC algorithm 

As discussed before, the number of clusters determined by the elbow method is 

five in this thesis. Thus, the 823 organic compounds from DIPPR 801 were split into five 

groups and rated from 0 to 4 as in the NFPA rating. The KC clustering is based on flash 

point and autoignition temperature, which is different from the NFPA rating. The 

compounds in the group with a rating of 4 are the compounds with the highest 

flammability. On the other hand, compounds with a rating of 0 have the lowest 

flammability. Figure 10 shows the data distribution. 
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Figure 10. Clusters of liquid flammability using KC algorithm 

 

 

In Figure 10,  some data points labeled black have a medium flash point, and 

medium autoignition temperature comparing to the neighbor points labeled red and cyan. 

Those points either have a high flash point and low autoignition temperature, or have a 

low flash point and high autoignition temperature. However, the black label means NF = 

4, which is higher than the red (NF = 3) and cyan (NF = 2) label. Similar results and doubts 

show at the boundary of different clusters in the circled area. 
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Similarly, Figure 11 displays the dendrogram of clustering through the HC 

algorithm. Also, 823 organic compounds from DIPPR 801 are split into five groups and 

rated from 0 to 4 as the same criteria with the HC algorithm. 

 

 

Figure 11. Truncated dendrogram of liquid flammability using HC algorithm 
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The agglomerative clustering results will be assigned to each data point. Figure 12 

shows the visualized plot in Cartesian coordinates. 

 

 

Figure 12. Clusters of liquid flammability using HC algorithm 

 

In Figure 12, the results located in the controversial boundary between the black 

(NF = 4) and the red (NF = 3) regions are more reasonable. However, this time, a 

misclassification may happen in the circled area. With a similar flash point, the black 

labeled data points have the medium autoignition temperature comparing to the red and 

magenta labeled data points. However, these data points were classified as NF = 4, which 

is the most hazardous material among all. On the other hand, some points with the lower 
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autoignition temperature were classified as NF = 3, which is less dangerous than black 

labeled points. 

Comparing the KC and HC algorithms, there are 653 out of 823 compounds with 

the same rating for liquid flammability in both algorithms. Table 6 shows the liquids with 

significantly different ratings between the two algorithms. Those liquids in Table 6 require 

more attention when conducting a risk assessment with inherent flammability. 

 

Table 6. Liquids with significant different ratings between KC and HC algorithm 

 

Substance name Flammability rating (KC) Flammability rating (HC) 

o-ethylaniline 2 0 

hexylene glycol 0 4 

cetyl methacrylate 3 0 

3-methyl-1-pentene 4 2 

1-dodecanol 3 4 

4-methyl-1-octanol 0 4 

 

As a result, the KC algorithm has a more reasonable rating for the clustering of 

liquid flammability since the circled area is smaller in Figure 10 compared to Figure 12. 

Another reason is that the misclassification in the KC algorithm is more likely to happen 

on the boundary of two clusters, whereas the misclassification in the HC algorithm is more 

likely to happen in an area. Both results with KC and HC algorithm are considering the 
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flash point and autoignition temperature in two dimensions. Therefore, the results are 

highly interpretable since the X and Y axis both have physical meaning. 

However, to consider liquid aerosolization probability at the same time, it is 

necessary to reduce the features for visualization and more straightforward calculation. 

The PCA method will be applied in the next section. 

 

 

4.1.3. PCA with KC and HC algorithm 

The main purpose of NF modification is to consider aerosolization. In the previous 

chapter, we conclude that viscosity and surface tension can be used as two indicators of 

aerosolization. To reduce the flash point, autoignition temperature, viscosity, and surface 

tension into two principal components (PCA1 and PCA2), the RBF kernel function was 

applied when reducing four features. Another advantage is that PCA does not need to 

specify the weight of contributions of liquid aerosolization and flammability. Figure 13 

shows the clustering results by the KC and HC algorithm based on PCA1 and PCA2. 

Figure 14 shows the dendrogram of the HC algorithm. Besides the advantages of PCA, 

one thing that needs to keep in mind is that both X and Y axes in Figure 13 have no 

physical meaning. This is the main disadvantage of the PCA method. 
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Figure 13. Principal component (PCA1 and PCA2) clusters using 

(a) KC algorithm (b) HC algorithm. 

(a) 

(b) 
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Figure 14. Truncated dendrogram of liquid flammability using HC algorithm with PCA 
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4.2. Sample SHF calculations 

After updating each parameter, three SHF sample calculations of different 

chemicals are shown below. 

 

4.2.1. Diisobutyl ketone 

Table 7 is the sample hazard review for diisobutyl ketone from DIPPR 801, DOE’s 

PAC, and NFPA database. 

 

Table 7. Hazard review: Diisobutyl ketone 

 

Parameter Data 

CAS No. 108-83-8 

NFPA NR 0 

NFPA NH 1 

PAC-3 12000 mg/m3 

NFPA NF 2 

Flash point 322.15 K 

Autoignition temperature 669.15 K 

LFL/UFL 0.8% / 6.2% 

Viscosity 0.896 cP at 25 °C 

Surface tension 23.9 mN/m at 25 °C 
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Based on the data above, the SHF should be: 

1. The original NFPA NR rating is 0 and kept the same in our calculation. 

2. The original NFPA NH rating is 1, and the PAC-3 value is 12000 mg/m3. Based 

on Table 1 in the last chapter, the modified NH value is still 1. 

3. The original NFPA NF rating is 2, the flash point is 322.15 K, autoignition 

temperature is 669.15 K, LFL / UFL are 0.8% / 6.2%, viscosity is 0.896 cP, and 

surface tension is 23.9 mN/m. The results of the machine learning method with 

both KC and HC algorithms are both 2. So the NF remains unchanged. 

4. For this chemical, the original NFPA rating does not change. 

5. 𝑆𝐻𝐹 = 22 + 20 + 21 = 7 

 

4.2.2. 2-Butoxyethanol 

Table 8 is the sample hazard review for 2-Butoxyethanol from DIPPR 801, DOE’s 

PAC, and NFPA database. 

 

Table 8. Hazard review: 2-Butoxyethanol 

 

Parameter Data 

CAS No. 111-76-2 

NFPA NR 0 

NFPA NH 2 

PAC-3 3400 mg/m3 
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Table 8. Continued 

Parameter Data 

NFPA NF 2 

Flash point 334.15 K 

Autoignition temperature 511.15 K 

LFL/UFL 1.1% / 12.7% 

Viscosity 2.9 cP at 25 °C 

Surface tension 26.1 mN/m at 25 °C 

 

Based on the data above, the SHF should be: 

1. The original NFPA NR rating is 0 and kept the same in our calculation. 

2. The original NFPA NH rating is 2, and the PAC-3 value is 3400 mg/m3. Based on 

Table 1 in the last chapter, the modified NH value is still 2. 

3. The original NFPA NF rating is 2, the flash point is 334.15 K, autoignition 

temperature is 511.15 K, LFL / UFL are 1.1% / 12.7%, viscosity is 2.9 cP, and 

surface tension is 26.1 mN/m. The result of the machine learning method using 

KC algorithm is 3, but the result becomes 4 when using HC algorithm. As we 

discussed in the previous section, the result with KC algorithm is more reasonable. 

So the modified NF value is 3. 

4. 𝑆𝐻𝐹 = 23 + 20 + 22 = 13 
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4.2.3. N, N-Dimethylcyclohexylamine 

Table 9 is the sample hazard review for N, N-Dimethylcyclohexylamine from 

DIPPR 801, DOE’s PAC, and NFPA database. 

 

Table 9. Hazard review: N, N-Dimethylcyclohexylamine 

 

Parameter Data 

CAS No. 98-94-2 

NFPA NR 0 

NFPA NH 3 

PAC-3 66 mg/m3 

NFPA NF 2 

Flash point 312.15 K 

Autoignition temperature NA 

LFL/UFL 3.6% / 19% 

Viscosity NA 

Surface tension NA 

 

Based on the data above, the SHF should be: 

1. The original NFPA NR rating is 0 and kept the same in our calculation. 

2. The original NFPA NH rating is 3, and the PAC-3 value is 66 mg/m3. Based on 

Table 1 in the last chapter, the modified NH value is 4. 
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3. The original NFPA NF rating is 2, the flash point is 312.15 K, LFL / UFL are 3.6% 

/ 19%, but the autoignition temperature, viscosity, and surface tension data are not 

available for DIPPR 801 database. The machine learning methods with both KC 

and HC algorithms can not be applied to this chemical. In alternative, the 

flammable rage is 19% - 3.6% = 15.4% > 10%. So the modified NF is 2 + 1 = 3. 

4. For this chemical, both NH and NF change with our method. Especially for NH, 

the PAC-3 value of 66 mg/m3 is a potential hazard to public. 

5. 𝑆𝐻𝐹 = 23 + 20 + 24 = 25 

 

Those three examples show SHF calculation under different conditions. With the 

method mentioned above, there are 170 SHFs for different chemicals that can be 

calculated from the original database and used for the case study in the next chapter. The 

full list of 170 chemicals SHF is in Appendix C. 

 

 

4.3. Statistical analyses 

In this section, statistical techniques are used to test the behavior of SHF 

mathematically. Some significant statistical results are selected to prove that the SHF 

method is applicable to the hazard index. The following three subsections will describe 

the descriptive statistics, the histogram of 170 chemicals, and the percentile analysis. The 

purpose of this section is to validate the SHF for a broader application. 

 



 

 

52 

4.3.1. Descriptive statistics 

With the proposed SHF methodology, 170 different chemicals were calculated to 

obtain the SHF value. Table 10 shows the a summary of the descriptive statistics for this 

sample. 

 

Table 10. Summary of descriptive statistics for SHF 

 

Statistical parameter Value 

Mean 13.75 

Median 12 

Mode 11 

Standard Deviation (SD) 5.90 

Standard Error of Mean (SEM) 0.45 

Range 45 

Minimum 3 

Maximum 48 

Counts 170 

 

 

From the statistics above, the mean value of this dataset is 13.75, the median is 12, 

and the mode is 11. Compared with the range from 3 to 48, the results indicate that the 

distribution of the dataset is right-skewed since mode < mean. However, the mean and 
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median are close to each other, which indicates the dataset is nearly normal distribution 

shaped. The visualization of a histogram will further verify this conclusion.  

Moreover, the standard deviation of this dataset is 5.90, which is not small 

comparing to the total range. But the standard error is only 0.45, which means the sample 

statistics can precisely approximate the population. 

 

4.3.2. Generation of frequency histogram 

As mentioned before, Figure 15 is the histogram of 170 SHF values for different 

chemicals. 

 

Figure 15. Sample SHF histogram 

 

This histogram shows that the majority of chemicals in this sample have a SHF 

value around 12, which is 22 + 22 + 22, indicating most chemicals have the intermediate 
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hazard level. The second peak of SHF value is located in the range of  18 to 21. Those 

chemicals may need extra attention to storage. 

 

4.3.3. Percentile analysis 

For this dataset, the percentile analysis results can be used to determine what 

percentage of data lies within a particular value of the SHF. This is another way to show 

the distribution of the dataset. The percentile analysis is conducted and summarized in 

Table 11.  

 

Table 11. Percentile analysis of the sample SHF 

 

Percentiles SHF range 

25% [3, 11] 

50% [3, 13] 

75% [3, 19] 

90% [3, 21] 

100% [3, 48] 

 

The above analysis indicates that the majority of the data (over 50%) falls in the range of 

3 to 13, which is the same as the result we got from the histogram. Both histogram and 

percentile analysis suggest that the majority of chemicals used for SHF have the value in 

the range of 3 to 13. 
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5. CASE STUDY 

 

5.1. Data collection 

Houston Chronicle has published a series of articles [50], aiming at exploring fatal 

mistakes that could have the most significant consequences and probes that put the citizen 

in jeopardy. Houston Chronicle has collected 2581 facilities and over 18000 chemical 

records in the greater Houston area. The raw data is in EPA Tier II standard and shared 

with MKOPSC. After data cleaning, at least 33 warehouses that have more than 400 

records and over 170 kinds of hazardous chemicals will be used in this research. The raw 

database (Figure 16, and all company names is blacked out for privacy) includes company 

information, location information, chemical information, and storage quantity. 

 

 

Figure 16. Example of raw data from the Houston Chronicle 

 

5.2. Sample LWHI calculation 

With the chemical information, SHF value can be obtained by using the method discussed 

above, and the storage quantity information can be converted into units in pounds. 

Furthermore, population density and distance to the nearest fire station can be extracted 
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from the location information. The 2-butoxyethanol example from the last chapter will be 

expanded with other information to help calculate the LWHI. (Table 12) 

 

Table 12. Tier II information for 2-butoxyethanol in facility #33 

 

Parameter Data 

CAS No. 111-76-2 

SHF 13 

Quantity 4 (original code) 

Population density 4154 (in a radius of two miles) 

Distance to FS  1.62 miles 

 

Based on the data above, the LWHI should be: 

1. SHF for 2-butoxyethanol is 13 based on the calculation from the last chapter. 

2. For facility #33, the quantity indicator of 2-butoxyethanol is 4 (1000 to 5000 

pounds range), and the penalty value is 1.6 based on Table 3. 

3. For facility #33, the population density in a radius of two miles is 4154, and the 

penalty value is also 1.6 based on Table 4. 

4. For facility #33, the distance to the nearest fire station is 1.62 miles, and the penalty 

value is 1.4 based on Table 5. 

5. Therefore, the LWHI for 2-butoxyethanol in facility #33 is:  

13 × 1.6 × 1.6 × 1.4 = 46.592. 
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5.3. Statistical analyses 

Following the previously mentioned methodology, the LWHI is calculated for 

each facility. Since a facility can have multiple chemicals with variable quantities, the 

LWHI is first calculated for each record. Figure 17 shows the distribution of LWHI for 

each record. 

 

Figure 17. LWHI histogram (for each record) 

 

In the figure above, the dataset of LWHI for each record is near to normal 

distribution, suggesting that the majority of the chemicals have a LHWI for the 

intermediate level. The findings in SHF distribution can prove this similar conclusion. 

With this histogram, the manager can pay more attention to the chemicals which have a 

higher value in LWHI. 

If we average out all records for each facility, another histogram (Figure 18) shows 

a similar trend. Most facilities have the medium level LWHI, and regulatory authorities 
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can focus more on those facilities that have higher LWHI values. For example, the 

government can make more effective hazard communication with the surrounding public, 

and the manager can arrange more resources (i.e., fire brigades, specialty clinics, etc.) near 

the facility when developing the emergency response plan. 

 

 

Figure 18. LWHI histogram (for each facility) 
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6. CONCLUSIONS AND FUTURE WORK 

 

In this thesis, a hazard index for the hazard identification of chemical logistic 

warehouses was created and named LWHI. This index aims to to calculate the potential 

hazards in a logistic facility numerically. These results can be utilized by the manager or 

the emergency responder to develop their hazard chemicals management plan. 

To reach the goal mentioned above, the SHF was introduced to the index. First, 

two machine learning based methods for liquid flammability rating with the consideration 

of aerosolization have been proposed. The first method applies KC and HC algorithms in 

machine learning to chemical classification for their high interpretability. The 823 organic 

compounds in DIPPR 801 are clustered into five groups based on their flash point and 

autoignition temperature. The five groups regarding liquid flammability are then rated 

from 0 to 4, where 4 is the most hazardous rating. With the analysis mentioned in Chapter 

4, the KC algorithm has a more reasonable rating on liquid flammability clustering.  

The second method presented uses PCA to reduce the four features (i.e., flash 

point, autoignition temperature, viscosity, and surface tension) into two principal 

components (PCA1 and PCA2). The advantage of the PCA rating method is that the 

weight of the contribution of the four features is automatically considered. Admittedly, 

the lack of interpretability is a disadvantage of the PCA method as the principal 

components do not have physical significance but only statistical significance. However, 

compared with traditional flammability classification methods, which only rely on flash 

point and boiling point, the two proposed methods have shown a statistical correlation 
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with liquid flammability. Additionally, one distinct disadvantage of traditional 

flammability classification methods is that the threshold values are determined by human, 

which invariably has a bias, while machine learning based methods partly eliminate this 

bias. Also, the boundary of traditional flammability classification methods is linear, while 

the boundary of the proposed machine learning based methods can be nonlinear to 

eliminate some misclassification caused by the linear boundary. 

After the modified classification methods and the SHF were developed, LWHI can 

be calculated with the proposed equation. In Chapter 5, we applied real data from the 

Houston Chronicle to test and verify LWHI. The results showed a high level of reliability, 

and the distribution of LWHI is a right-skewed normal distribution. With this reliable 

result, the LWHI can serve as a simple and effective hazard identification method that can 

be included in the overall PHA (Process Hazard Analysis) process of the facility. 

In the future, this study has several scopes for improvement. The machine learning 

methods still have room for improvement, although it fits the scope of this thesis. For 

example, ‘how to assign the initial clustering numbers?’ is a popular question in a 

statistical study. In order to make the clustering result more persuasive and applicable to 

more chemicals, more statistical questions need to be answered. 

NR values, which is another factor that may affect process safety, were not 

modified when calculating SHF in this study. Some incident reports mentioned that [2, 4] 

the interaction between different chemicals due to the storage space limitation might be a 

root cause for fire and explosion. Moreover, if the chemical reacts with water, like 



 

 

61 

ammonium nitrate [11], it also affects the design of an emergency response plan. Possible 

ways to modify NR may include: 

1. Consider the special hazard; 

2. Consider the interactions between different chemicals; 

3. Consider the scale effect of the storage facility, which means different chemicals 

store together may amplify its hazards.  

Other than SHF modification, penalty value selection could be another aspect to 

improve. The LWHI can expand to other scopes with different factors, such as the incident 

history of the facility, etc. By incorporating different aspects of the chemical facility, the 

LWHI can be further enhanced and become a more comprehensive index. 
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APPENDIX A 

DOW’S FIRE & EXPLOSION INDEX FORM 
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APPENDIX B 

SCATTER PLOTS, DISTRIBUTION PLOTS, AND HEATMAP OF LIQUID PROPERTIES 
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APPENDIX C 

FULL LIST OF 170 SHF VALUES 

Chemical Name CAS NH NF NR SHF 

Gel 1302-78-9 4 1 0 19 

Barite-barium sulfate 7727-43-7 2 0 0 6 

Diesel 68334-30-5 2 2 0 9 

Calcium chloride water 10043-52-4 3 0 1 11 

Toluene 2,6 diisocyanate 91-08-7 4 1 0 19 

Silica talc non asbesto 14807-96-6 4 0 0 18 

Diethanolamine 111-42-2 3 2 0 13 

Phosphoric acid 7664-38-2 3 0 0 10 

Aminoethyl 140-31-8 3 3 0 17 

Ethyl benzene 100-41-4 2 3 0 13 

Cristobalite 14464-46-1 4 0 0 18 

3.3,-dimethylnethylenedi (cyclohexylamine) 6864-37-5 4 1 0 19 

Sodium hydroxide 1310-73-2 4 0 1 19 

Potassium hydroxide 1310-58-3 4 0 1 19 

Phenylenediamine 1,3 108-45-2 4 1 0 19 

Zinc 7440-66-6 3 3 2 20 

Potassium nitrate 7757-79-1 3 0 3 17 

N,N-dimethylcyclohexylamine 98-94-2 4 3 0 25 
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Hydroquinone 123-31-9 4 1 0 19 

Phenol 108-95-2 3 2 0 13 

Cyclohexylamine 108-91-8 3 3 0 17 

Tributyl tetradecyl phosphoniumchlordie 81741-28-8 2 3 0 13 

Fatty acid polyamides 68410-23-1 2 1 0 7 

Mineral spirits 8052-41-3 0 2 0 6 

Sodium slat of trolyltriazole 64665-57-2 3 1 0 11 

Phosphonic acid 6419-19-8 3 0 0 10 

Carbon black 1333-86-4 3 0 0 10 

Bisphenol epoxy resin 28064-14-4 3 0 0 10 

Magnesium oxide 1309-48-4 3 0 1 11 

Benzyl alcohol 100-51-6 3 2 0 13 

1,4-butanediol digycidyl ethyer 2425-79-8 3 1 0 11 

Tris-2,4,6-dimethylaminomethyl 90-72-2 3 1 0 11 

Polyamine/ethyleneamines 112-24-3 3 1 0 11 

Trimer of hexamethylene diisocyanatehexane 

1,6-diisocyanato - homopolymer 28182-81-2 3 1 0 11 

Sodium sulfate 7757-82-6 3 1 1 12 

Tetraethylenepentamine 112-57-2 3 1 0 11 

Xylene 1330-20-7 1 3 0 11 

Methyl ethyl ketone 78-93-3 1 3 0 11 



 

 

72 

N-butyl acetate 123-86-4 1 3 0 11 

Methyl propyl ketone 107-87-9 1 3 0 11 

Morpholine 110-91-8 1 4 0 19 

Battery acid 7664-93-9 3 0 2 13 

Anhydrous ammonia 7664-41-7 3 2 0 13 

Lead 7439-92-1 3 0 0 10 

Acetic acid 60% 64-19-7 3 3 0 17 

Benzyl chloride 100-44-7 3 2 1 14 

Ammonium persulfate 7727-54-0 4 0 1 19 

Maleic anhydride 108-31-6 4 2 1 22 

Frac sand 14808-60-7 4 0 0 18 

Sodium metasilicate 6834-92-0 3 0 0 10 

Dichloroethyl ether 111-44-4 2 3 1 14 

Sodium acid pyrophosphate 7758-16-9 3 0 0 10 

Ammonium chloride 12125-02-9 3 0 0 10 

Ammonium bifluoride 1341-49-7 3 0 0 10 

Citric acid anhydrous 77-92-9 3 1 0 11 

Fumaric acid 110-17-8 2 1 0 7 

Nonylphenol ethoxylate 15 mole (sulfonic 150) 9016-45-9 3 1 0 11 

Lubricating oil base stock automatic 

transmission fluid 64742-54-7 2 1 0 7 
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Ethylene glycol 107-21-1 3 2 0 13 

Calcium hypochlorite, dry 7778-54-3 3 0 1 11 

Ammonium hydroxide 1336-21-6 2 0 0 6 

Cuprous oxide 1317-39-1 4 0 0 18 

White spirit 64742-88-7 4 2 0 21 

1-methoxy-2-propanol 107-98-2 2 4 0 21 

Aromatic 100 fluid 64742-95-6 2 2 0 9 

Butyl alcohol 71-36-3 1 3 0 11 

Napthalene 91-20-3 2 2 0 9 

Ethylene glycol  monbutyl ether 111-76-2 2 3 0 13 

2-methyl-2-butene 513-35-9 4 4 0 33 

Polymeric diphenylmethane 9016-87-9 4 0 0 18 

1,1-dioxide therahydrothiophen 126-33-0 4 1 0 19 

4,4-diphenylmethane 101-68-8 4 1 0 19 

Methylene bis (4-cyclohexylisocyanate) 5124-30-1 4 1 0 19 

2, 6-xyphenol 576-26-1 4 2 0 21 

Aniline 62-53-3 4 2 0 21 

Methyl isobutyl ketone 108-10-1 1 3 1 12 

Ehtyl 3-ethyoxypropionate 763-69-9 3 2 0 13 

Trans 1,2 dichloroethylene 156-60-5 2 3 2 16 

P-xylene 106-42-3 2 3 0 13 
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Styrene monomer 100-42-5 2 3 2 16 

Isophorone diisocyanate 4098-71-9 4 1 1 20 

N propylbenzene 103-65-1 1 2 0 7 

M-cresol 108-39-4 2 2 0 9 

2-propenal,3-phenyl 104-55-2 3 2 0 13 

Isooctane 540-84-1 1 3 0 11 

1,1,1,3,3-pentafluoropropane 460-73-1 1 0 0 4 

Diisobutyl ketone, 2,6-dimethyl-4-hepton 108-83-8 1 2 0 7 

Propylene glycol monomethyl ether aceta 108-65-6 1 3 0 11 

1,2,4-trimethylbenzene 95-63-6 2 2 0 9 

N-decane 124-18-5 2 2 0 9 

Propylene carbonate 108-32-7 3 2 0 13 

Phenol, 2,4-dimethyl 105-67-9 3 1 0 11 

N-octane 111-65-9 1 3 0 11 

Methylcyclohexane 108-87-2 1 3 0 11 

N-amyl acetate 628-63-7 1 2 0 7 

Fiberglass 65997-17-3 3 0 0 10 

Vinyl acetate 108-88-3 1 3 0 11 

Bebezene,diethenyl-,polymer with ethe 69011-20-7 2 0 0 6 

O-cresol 95-48-7 2 2 0 9 

P-cresol 106-44-5 2 2 0 9 
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Heptane 142-82-5 1 3 0 11 

Kerosene 8008-20-6 2 2 0 9 

Ethanolamine 141-43-5 2 3 0 13 

Chromium oxide 1308-38-9 4 0 0 18 

Butyl acrylate 141-32-2 2 3 0 13 

Iron oxide 1309-37-1 2 0 0 6 

Methyl acrylate 96-33-3 2 4 2 24 

Methanol 67-56-1 2 4 0 21 

Manganese 7439-96-5 2 0 2 9 

Tetrasodium pyrophosphate 7722-88-5 3 0 0 10 

Polyethylene 9002-88-4 3 0 0 10 

Iron oxide 1317-61-9 2 0 0 6 

Monosodium phosphate anhydrous 7558-80-7 2 0 0 6 

Copper 7440-50-8 4 3 0 25 

Hydrochloric acid 7647-01-0 3 0 2 13 

Paraquat dichloride 1910-42-5 4 0 0 18 

Silica, amorphous hydrated 7631-86-9 4 0 0 18 

Methane, difluoro 75-10-5 1 4 1 20 

Activated carbon 7440-44-0 4 0 0 18 

Methomyl 16752-77-5 4 1 0 19 

Calcium oxide 1305-78-8 3 0 2 13 
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Sodium oxide 1313-59-3 4 0 0 18 

Oxamyl 23135-22-0 4 1 0 19 

Polytetrafluoroethylene 9002-84-0 4 0 0 18 

Chlorothalonil 1897-45-6 4 1 0 19 

Benzenesulfonic acid, 4-methyl-,methyl e 80-48-8 4 1 0 19 

Alumina 1344-28-1 4 0 0 18 

Titanium dioxide 13463-67-7 4 0 0 18 

Silica gel, amorphous 7699-41-4 4 0 0 18 

Acrylic acid 79-10-7 3 3 2 20 

Coal tar pitch 65996-93-2 3 3 0 17 

Rosin 8050-09-7 4 1 0 19 

Polyoxy propylene diamine 9046-10-0 4 1 0 19 

1,1,2 tetrafluorothethane 811-97-2 0 0 0 3 

Chlorodifluoromethane 75-45-6 2 0 0 6 

Copper hydroxide 20427-59-2 3 1 0 11 

Dodecylbenzene sulfonate 27176-87-0 3 1 0 11 

Magnesite 546-93-0 2 0 0 6 

Vinylidene fluoride hexafluropropene 9011-17-0 2 0 0 6 

Propylene glycol 57-55-6 2 1 0 7 

Heptan-2-one 110-43-0 1 2 0 7 

Ethylene glycol 2807-30-9 2 3 0 13 
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2,4-d acetic acid 94-75-7 3 0 0 10 

4,4'-methylene-bis (2-chloroaniline) 101-14-4 3 1 0 11 

4-nonylphenol,branched 84852-15-3 3 1 0 11 

Zinc oxide 1314-13-2 2 0 0 6 

Dimethyl acetamide 127-19-5 2 2 0 9 

Cyclohexanone 108-94-1 1 3 0 11 

Ethanol 64-17-5 1 4 0 19 

Isopropyl alcohol 67-63-0 1 4 0 19 

Calcium carbonate 1317-65-3 2 0 0 6 

Nonylphenol 25154-52-3 3 1 0 11 

Mancozeb 8018-01-7 3 1 0 11 

Isobutyl alcohol 78-83-1 1 3 0 11 

Ammonium acetate 631-61-8 3 1 0 11 

Ammonium sulfate 7783-20-2 3 0 0 10 

Momoammonium 7722-76-1 3 0 1 11 

Aluminum 7429-90-5 3 3 3 24 

Paraformalydehyde * 400412 50-00-0 4 4 4 48 

Sodium * 400148 7440-23-5 3 3 3 24 

Acetone  * 400411126645, 34471 67-64-1 1 4 2 22 

Methyl methacrylate * 

monomer4000096/dammma 25 80-62-6 2 4 2 24 
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Benzyldimethylamine/400191* 3602000 103-83-3 4 2 0 21 

Ethylenediamine * - 400149 - 1W 107-15-3 4 2 0 21 

Flammable Liquid, n.o.s.*  Kerosene, 

petroleum, 0-xylene, 400090/000963,000964 95-47-6 2 3 0 13 

Pyridine * 400191-1851000 110-86-1 1 4 0 19 

Tetrachloroethylene * 400149- 1S 127-18-4 2 0 0 6 

Vanadium pentoxide * 400146-

40716,40717,40714 1314-62-1 3 0 0 10 

Diesel fuel 68476-30-2 2 2 0 9 

Sodium carbonate (soda ash dense) 497-19-8 3 0 1 11 
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