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ABSTRACT

We develop a Bayesian framework for the analysis of high-throughput sequencing count data

under a variety of settings, removing sophisticated ad-hoc pre-processing steps commonly required

in existing algorithms. Specifically, we start by exploiting Bayesian nonparametric priors, in-

cluding the gamma-Poisson, gamma-negative binomial, and beta-negative binomial processes, to

model RNA sequencing (RNA-seq) count matrices. We then develop a novel Bayesian negative

binomial regression (BNB-R) method for the analysis of RNA-seq count data. In particular, the

natural model parameterization removes the needs for the normalization step, while the method is

capable of tackling complex experimental design involving multivariate dependence structures.

In addition to studying genes individually, investigating coordinated expression variations of

genes may help reveal the underlying cellular mechanisms to derive better understanding and more

effective prognosis and intervention strategies. In chapter 4, We develop a fully Bayesian covariate-

dependent negative binomial factor analysis method—dNBFA—for RNA-seq count data, to cap-

ture coordinated gene expression changes, while considering effects from covariates reflecting

different influencing factors.

Finally, in the last chapter, we propose a fully generative hierarchical gamma-negative bino-

mial (hGNB) model of single-cell RNA-seq (scRNA-seq) data, obviating the need for explicitly

modeling zero inflation. hGNB can naturally account for covariate effects at both the gene and

cell levels to identify complex latent representations of scRNA-seq data, without the need for com-

monly adopted pre-processing steps such as normalization.
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1. INTRODUCTION

1.1 Background

Measuring gene expression is vital in studying many aspects of life systems including tissue

differentiation, and genomic landscape of diseases, drugs, or other perturbations. There exists

several molecular biology techniques to measure gene expression. In particular, advent of next

generation sequencing (NGS) technologies such as RNA sequencing (RNA-seq) has revolutionized

the field of molecular biology (2).

In a typical RNA-seq experiment (Figure 1.1), first long RNAs are fragmented into a library

of cDNA. Subsequently, sequencing adaptors are added to each cDNA fragment and using the

high-throughput sequencing technology a short sequence is obtained from each cDNA (1). The

reads are then aligned to the reference genome corresponding to the species of interest. Aligned

reads are assigned to genes in order to determine gene expression. Methods such as HTSeq (3)

and featureCounts (4) aggregate the reads aligning to genomic intervals defined by an annotation,

to produce gene counts.

1.2 Problem Statement: RNA Sequencing Data Analysis

There has been significant recent interest in analyzing RNA sequencing (RNA-seq) count data

for studying life systems (1; 5). It is challenging to model RNA-seq data, not only because it is

typically a large-p-small-n problem (6) where the data dimension is high while the sample size is

small, but also because the sequencing counts are non-negative, skewed, having large dynamical

ranges, and highly over-dispersed (7; 8). A key task in RNA-seq analysis is to identify the genes

that are differentially expressed between different groups of samples (e.g., samples measured under

different medical conditions) (9; 10; 7; 11; 12; 13). The expression level of each RNA locus, here

the gene, is determined by the number of sequenced reads to the transcript (14). Unlike a gene

probe based method such as microarrays (15), the abundance of genes in RNA-seq is restricted

by the sequencing depth and there often exist dependencies between the expressions of different
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Figure 1.1: A typical RNA-seq experiment. Figure reprinted with permission from (1).

transcripts (16).

Modeling the sequencing counts using an over-dispersed count distribution, such as the neg-

ative binomial (NB) distribution (17; 18), is one of the most popular approaches for differential

expression analysis (19; 7). In the null hypothesis that a gene is not differently expressed, it is

common to assume that the expectations of the counts of that gene are the same across different

groups, after making adjustments to account for both technical and biological variations. In par-
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ticular, almost all existing comparative analysis algorithms, before downstream analyses, require

normalizing the sequencing counts to compensate the variations of sequencing depths across sam-

ples (20; 21; 22). For instance, edgeR and DESeq, two widely used differential expression analysis

R software packages adopt different ad-hoc normalization procedures: edgeR either calculates a

trimmed mean of M-values (10) between each pair of samples or uses an upper quantile of sam-

ples (23) for normalization (19), while DESeq takes the median of the ratios of observed sample’s

counts to the geometric mean across samples as a scaling factor for that specific sample (7; 24).

Normalizing the sequencing counts, however, inevitably destroys the discrete nature of the raw

data and makes the performance clearly depend on whether the introduced normalization is suitable

for the structure of the RNA-seq data under study (20; 21; 22). If the normalization procedure

extracts normalization constants from the data under study to parameterize the distributions of

the gene counts, the discrete nature of the raw data is preserved, but the model can no longer be

considered as a generative model. In addition, almost all existing normalization procedures assume

that most of the genes are not differentially expressed, and the differentially expressed genes are

equally likely to be up- and down-regulated (25; 26; 27; 28). The violation of the assumption may

potentially be addressed by using external RNA control consortium (ERCC) spike-in sequences for

controls; however, it is shown in (27; 28) that the read counts for ERCC spike-ins alone are usually

not stable enough to be used for normalization. Moreover, despite that a wide array of methods

have been proposed to adjust the counts to account for technical and biological variations, there is

not a single one that clearly outperforms the others under various scenarios (20; 29; 21; 27; 22; 30).

1.2.1 Differential expression analysis

For J RNA-seq samples organized into the same group, let us denote njk as the number of

reads in sequencing sample j ∈ {1, . . . , J} that are assigned to gene k ∈ {1, . . . , K}, where K

is the number of genes in the genome. Since the counts of a gene across samples are often over-

dispersed, it is natural to model them using a NB distribution, where its variance σ2 is related to

its mean µ as σ2 = µ+ φµ2, where φ is the dispersion parameter. As it is also common to refer to

r = φ−1 as the dispersion parameter, to avoid ambiguity, we will refer to r = φ−1 as the NB shape

3



parameter.

Methods such as edgeR and DESeq propose different ways to estimate φ. EdgeR models the

gene count njk as a NB distribution with mean njλjk and dispersion φk, where nj is the observed

total count (or the sum of adjusted counts) for sample j, λjk represents the abundance of gene

k in sample j, and φk is considered as the coefficient of biological variation that is estimated by

conditional maximum likelihood (31). Furthermore, an empirical Bayes procedure is applied to

shrink the dispersion parameters φk towards a common value (32).

DESeq also models the gene counts with the NB distribution. It considers two terms to estimate

the variance σ2
jk for gene k in sample j, where the first term (shot noise) is associated with the

mean expression of the gene, and the second one (raw variance) takes into account the biological

variations between replicates. More specifically, it lets σ2
jk = µjk + n2

jvk,ρ(j). Here, ρ(j) is the

group to which sample j belongs, and vk,ρ(j) is the per-gene raw variance, which is a smooth

function of λ and ρ, an assumption that allows pooling data from different genes to estimate their

variances.

Another widely used tool, baySeq (33), takes an empirical Bayesian approach to estimate the

posterior probabilities of a set of models that define different patterns of differential expression

for each gene. For instance, in the simplest case of a pairwise comparison between conditions A

and B, with two biological replicates for each condition, the model for no differential expression is

defined by the set of samples {A1, A2, B1, B2}, while differential expression between conditions

A and B is defined by the sets {A1, A2} and {B1, B2}. The method then assumes that the counts

follow the NB distribution and derives an empirically determined prior distribution from the data.

The final component of these methods is the test for gene differential expression. Both edgeR

and DESeq use variations of Fisher’s exact test, adjusted for the NB distribution, to compute exact

p-values for the null hypothesis that the mean expressions of the genes are equal in both condi-

tions under comparison. EdgeR also considers the generalized linear model approach to identify

differentially expressed genes in its later versions; nevertheless, it has been shown to have similar

performance to the method based on Fisher’s exact test (34). Different from edgeR and DESeq,
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baySeq ranks the genes based on the inferred posterior probabilities of differential expression.

1.2.2 Module Identification

Another class of approaches for the analysis of RNA-seq data, aim to detect genes with similar

expression patterns as potential functional modules. The majority of these methods are inspired

by tools developed for microarray technology, which construct networks from pairwise similari-

ties between gene expressions and after normalizing the count data usually include (35; 36) the

following steps:

• Build an adjacency matrix based on the correlation between gene expressions.

• Perform a network clustering to identify modules of genes with similar expression patterns.

• Apply dimensionality reduction techniques to extract eigengenes (35), which are representa-

tive of modules.

• Regress external covariates such as clinical factors on the eigengenes expressions.

This pipeline, however, requires heuristic tuning and careful choice of methods at each step.

For instance, different choices of correlation measure, clustering methods and dimensionality re-

duction techniques can change the derived gene modules substantially.

There remains a lack of tools for gene module detection specifically designed for RNA-seq

count data. Furthermore, the existing methods for RNA-seq often require prior knowledge from

either manual annotations or other module identification methods. Specifically, they need to be

supplied with prepared lists of genes as candidate functional modules. For example, (37) have

proposed a network module-based generalized linear model for identifying differentially expressed

pre-defined gene sets.

1.2.3 Single-Cell RNA-seq Analysis

Single-cell RNA-seq (scRNA-seq) is a technique that was developed in the last decade and

has been quickly growing in popularity. In contrast with bulk RNA-seq technology, scRNA-seq
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allows one to identify the messenger RNA corresponding to individual cells, making it the method

of choice to assay gene expression of heterogeneous biological systems, such as cancer, develop-

mental biology and differentiation, and complex tissues.

Many of Statistical tools developed for scRNA-seq data analysis include a dimensionality re-

duction step. This leads to the reduction of noise in the data, while retaining the often intrinsically

low-dimensional signal of interest. Dimensionality reduction of scRNA-seq data is challenging.

In addition to high gene expression variability due to cell heterogeneity, the excessive amount of

zeros in scRNA-seq hinders the application of classical dimensionality reduction techniques such

as principal component analysis (PCA).

Several existing computational tools adopt explicit zero-inflation modeling to infer the latent

representation of scRNA-seq data. Despite its popularity, using an explicit zero-inflation term may

place unnecessary emphasis on the zero counts, leading to complication in discovering the latent

representation of scRNA-seq data.

1.3 Our Contributions

Bayesian modeling is an ideal choice for high-dimensional, small-sample size data prevalent

in high-throughput genomics measurements, as it provides a rigorous mechanism to incorporate

prior scientific knowledge, and also is capable of quantifying the uncertainty about the statistical

discoveries. In this dissertation, we propose a fully Bayesian framework to address the challenges

encountered in the statistical analysis of RNA-seq data. Core properties of our proposed methods

include obviating the need for ad-hoc preprocessing of the RNA-seq data due to fully probabilistic

nature of our models, and efficient inference of model parameters by taking advantage of novel data

augmentation techniques. In what follows, we describe in more details how the aforementioned

challenges in the analysis of RNA-seq count data are addressed under our proposed models.

1.3.1 DE Analysis

First, in chapter 2, we exploit Bayesian nonparametric priors, including the gamma-Poisson,

gamma-negative binomial, and beta-negative binomial processes, to model RNA sequencing count
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matrices. With different sequencing depths captured by sample-specific model parameters, the

posterior distributions of certain gene-specific model parameters are used to detect the genes that

are differentially expressed between different conditions. With the model parameters inferred by

borrowing statistical strength across both the genes and samples, there is no need to adjust the raw

counts using heuristics before downstream analyses, an important preprocessing step that is of-

ten required in previously proposed algorithms. Example results on both synthetic and real-world

RNA-Seq data demonstrate the stateof-the-art performance of both the gamma- and beta-negative

binomial processes based differential expression analysis algorithms. Given the success of the pro-

posed randomprocess-based algorithms in differential expression analysis, it is of interest to inves-

tigate Bayesian nonparametric algorithms for many other real-world applications in biomedicine

that require analyzing next-generation sequencing data.

Moving to more complicated experimental settings, in chapter 3, We propose a Bayesian NB

regression (BNB-R) method for DE analysis of sequencing count data. On one hand, BNB-R is

capable of handling complex experiments involving multiple factors. On the other hand, it does

not require an ad-hoc normalization preprocessing step. By taking advantage of novel data aug-

mentation techniques, BNB-R possesses efficient closed-form Gibbs sampling update equations

and ranks differentially expressed genes based on a symmetric KL-divergence measure, exploiting

the full posterior distributions of the model parameters. Experimental results on both synthetic and

real-world RNA-seq data demonstrate the state-of-the-art performance of BNB-R in DE analysis

of RNA-seq data.

1.3.2 Covariate-Dependent Module Identification

In chapter 4 of this dissertation, we develop a novel covariate-dependent NB factorization

model for identifying gene modules in RNA-seq experiments. The proposed method, directly

applied to gene counts from RNA-seq, obviates the need for multiple ad-hoc steps as required

in above co-expression network based analyses. Additionally, by employing a flexible regression

model in a fully Bayesian framework, our model is capable of tackling RNA-seq experiments with

complex confounding factors, and quantifies the impact of these factors on the identified modules.

7



Finally, this new approach does not require an ad-hoc normalization step, as the model accounts

for the sequencing-depth heterogeneity of different samples automatically.

1.3.3 scRNA-seq Data Analysis

In chapter 5 of this dissertation, we propose a hierarchical gamma-negative binomial (hGNB)

model to both perform dimensionality reduction and adjust for the effects of the gene- and cell-level

confounding factors simultaneously. Exploiting the hierarchical structure, the proposed hGNB

model is capable of capturing the high over-dispersion present in the scRNA-seq data. More pre-

cisely, we factorize the logit of the negative-binomial (NB) distribution probability parameter to

identify latent representation of the data. In addition to factorization, linear regression terms are

also included in that logit function to adjust for the impact of covariates.
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2. BAYESIAN NONPARAMETRIC DIFFERENTIAL EXPRESSION ANALYSIS 1

In this chapter, we introduce a generative model to analyze differential expression directly on

the raw sequencing counts, without the need to preprocess the data by normalization. Instead of

using parametric count distributions to describe the counts, we use a stochastic process to model

the observed sample-gene random count matrix in each group, whose model parameters are esti-

mated by sharing statistical strength across both the genes and samples. The stochastic process can

be used to explain not only the counts and the total number of expressed genes in the observed ran-

dom count matrix, but also the number of newly expressed genes and the counts on both existing

and newly expressed genes to be brought by a new sample. Such flexible random-process-based

models lift the need of ad-hoc data normalization and strict parametric assumptions, allowing het-

erogeneity across samples and gene expression variations across different conditions to be well

captured.

More specifically, moving beyond existing algorithms that model over-dispersed counts with

the NB distribution, our Bayesian nonparametric (BNP) algorithms model the gene counts using

the gamma-negative binomial process (GNBP) (38), which mixes the NB shape parameter for each

gene with the distribution of the weight of an atom of a gamma process (39), or beta-negative bi-

nomial process (BNBP) (40; 41; 42), which mixes the NB probability parameter of each gene with

the distribution of the weight of an atom of a beta process (43). In addition to the GNBP and

BNBP, for comparison, we have extended the negative binomial process (NBP) of (38) by multi-

plying the gene-specific Poisson rates with gamma distributed sample-specific scaling parameters,

and refer to it as the scaled NBP. While the NBP of (38) is not expected to work well since it does

not explicitly model the variation of a sample’s total count, the scaled NBP, even with a scaling pa-

rameter for each sample to capture that variation, is found to provide poor performance, indicating

a clear limitation of the Poisson distribution assumption. We will show that while the variations of

1Reprinted with permission from S. Zamani Dadaneh, X. Qian, and M. Zhou, “BNP-Seq: Bayesian nonparametric
differential expression analysis of sequencing count data,” Journal of the American Statistical Association, vol. 113,
no. 521, pp. 81–94, 2018. Copyright 2018 Taylor & Francis.
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the gene counts across samples are well captured by neither the Poisson rates of the scaled NBP

nor the normalized Poisson rates of the NBP, they are well modeled by both the GNBP and BNBP,

using the NB shape and probability parameters, respectively.

Unlike previous algorithms for differential expression analysis, the proposed BNP algorithms

require no normalization pre-processing steps and they infer the posterior distributions, instead of

point estimates, of their model parameters, using Gibbs sampling with closed-form update equa-

tions, achieving state-of-the-art performance in detecting truly differentially expressed genes for

both synthetic and real data.

2.1 Bayesian Nonparametric Differential Expression Analysis for RNA-seq

We consider a family of NB processes, each of which can be used to describe the row-by-row

sequential construction of a sample-gene sequencing count matrix, where the addition of a new

sample (row) brings counts at not only previously expressed genes (columns), but also previously

unexpressed ones. We also describe the equivalent construction that draws a Poisson random

number of independent, and identically distributed (i.i.d.) columns simultaneously, where each

column corresponds to the counts of a gene that is expressed at least once across all the observed

samples of a group. Showing these two equivalent constructions helps clearly understand the

underlying statistical assumption made on the RNA-seq data by a BNP prior, and how the statistical

strength is shared across both the genes and samples to estimate both the sample-specific model

parameters, which account for the variations in sequencing depths, and the gene-specific model

parameters, whose posterior distributions are used to detect differentially expressed genes.

Below we show how a stochastic process can be used to model the counts in each group,

where the group index is omitted for brevity. We represent the counts of all expressed genes in

a group as a random count matrix NJ ∈ ZJ×KJ , where Z = {0, 1, . . .} represents the set of

nonnegative integers, KJ denotes the random number of genes that are expressed at least once in

the J samples of the group, and the element njk represents the number of reads in sequencing

sample j ∈ {1, . . . , J} that are assigned to gene k ∈ {1, . . . , KJ}. Note that KJ , the number of

expressed genes among the J samples, is smaller or equal to K, the total number of genes in the
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genome, and KJ can potentially increase without bound as J increases.

2.1.1 NBP-Seq: Negative binomial process for RNA-seq

Let us denote G0 as a finite and continuous base measure over a complete and separable metric

space Ω, c ∈ R+ as a scale parameter, and qj ∈ R+ as sample-specific scaling parameters, where

R+ := {x : x > 0}. We define the scaled negative binomial process (NBP) that has sample-specific

scaling parameters as

(X1, . . . , XJ) | c,G0, {qj}1,J ∼ NBP(G0, c0, q1, . . . , qJ),

which is obtained by marginalizing out a gamma process (39) G ∼ ΓP(G0, 1/c) from J condi-

tionally independent Poisson processes (44) Xj | qj, G ∼ PP(qjG), where for disjoint Borel sets

Aj ⊂ Ω, the gamma processG is defined such thatG(Ai) ∼ Gamma[G0(Ai), 1/c] are independent

gamma random variables, and the Poisson processXj is defined such thatXj(Ai) ∼ Pois[qjG(Ai)]

are independent Poisson random variables. With a draw from the gamma process expressed as

G =
∑∞

k=1 rkδωk , where ωk and rk are the atoms and their weights, respectively, a draw from Xj

can be expressed as

Xj =
∞∑
k=1

njkδωk , njk ∼ Pois(qjrk). (2.1)

Note that if we fix qj = 1 for all j, then the proposed NBP with sample-specific scaling parameters

reduces to the NBP in (41) and (38).

The conditional likelihood of the observed J samples of a group can be written as

p({Xj}Jj=1 |G) = e−q·G(Ω\DJ )

[
KJ∏
k=1

rn·k
k e−q·rk∏J
j=1 njk!

][
J∏
j=1

q
nj
j

]
, (2.2)

where DJ = {ωk}k:n·k>0 is the set of points of discontinuity, KJ = |DJ | =
∑

k δ(n·k > 0) is the

number of genes that are expressed at least once, q· =
∑J

j=1 qj , and n·k =
∑J

j=1 njk. We map the

counts associated with the elements of DJ to the random count matrix NJ . While the labelings of

the atoms in DJ are arbitrary, they are mapped in one of the KJ ! possible ways to the columns of
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NJ . Similar to the derivation in (38), using a marginalization procedure shown in (45), one may

marginalize out the gamma process G, leading to the distribution of the random count matrix as

f(NJ | γ0, c, q1, . . . , qJ) =
p({Xj}1,J | γ0, c, q1, . . . , qJ)

KJ !

=
γKJ0 exp

[
−γ0 ln( q·+c

c
)
]

KJ !

[
KJ∏
k=1

Γ(n·k)
(q·+c)n·k∏J
j=1 njk!

][
J∏
j=1

q
nj
j

]
. (2.3)

One may verify by straightforward calculation that a scaled NBP random count matrix with

the probability mass function (PMF) shown in (2.3) can be generated column by column as i.i.d.

count vectors:

n:k ∼ Multinomial(n·k, q1/q·, . . . , qJ/q·),

n·k ∼ Logarithmic[q·/(c+ q·)],

KJ ∼ Pois {γ0 [ln(c+ q·)− ln(c)]} . (2.4)

It is clear from (2.4) that the columns of NJ are i.i.d. multivariate count vectors, which all follow

the same logarithmic-multinomial (mixture) distribution. Thus the scaled NBP random count ma-

trix NJ is column exchangeable. It is also row exchangeable if and only if the qj are the same for

all j ∈ {1, . . . , J}.

Now consider the row-wise sequential construction of the scaled NBP random matrix. With

the prior on NJ ∈ ZJ×KJ well defined, straightforward calculations using (2.4) yield the following

form for this prediction rule, expressed in terms of familiar PMFs:

f(NJ+1 |θ)
f(NJ |θ)

=
KJ !K+

J+1!

KJ+1!

KJ∏
k=1

NB
(
n(J+1)k;n·k,

qJ+1

c+ q· + qJ+1

)

×
KJ+1∏

k=KJ+1

Logarithmic
(
n(J+1)k;

qJ+1

c+ q· + qJ+1

)
× Pois

{
K+
J+1; γ0 [ln(c+ q· + qJ+1)− ln(c+ q·)]

}
, (2.5)
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where θ := {γ0, c, q1, . . . , qJ}. This formula indicates that, to add a new row to NJ ∈ ZJ×KJ ,

we first draw count NB[n·k, qJ+1/(c + q· + qJ+1)] at each existing column. We then draw K+
J+1

new columns as K+
J+1 ∼ Pois{γ0 [ln(c+ q· + qJ+1)− ln(c+ q·)]}. Finally, each entry in the new

columns has a Logarithmic
[
n(J+1)k; qJ+1/(c+ q· + qJ+1)

]
distributed random count. It is clear in

the sequential construction of the scaled NBP random count matrix, for a point of discontinuity

ωk ∈ DJ , the variance and mean are related as

var[n(J+1)k] = E[n(J+1)k] +
E2[n(J+1)k]

n·k
. (2.6)

Since n·k, the total count of gene k of all the J samples of the group, is fixed, the above equation

indicates a variance and mean relationship that does not change.

2.1.1.1 Inference for the scaled NBP

The parameters of the scaled NBP can be inferred using Gibbs sampling with closed-form up-

date equations. Using likelihoods (2.2) and (2.3), with γ0 ∼ Gamma(e0, 1/f0), c ∼ Gamma(c0, 1/d0),

and qj ∼ Gamma(a0, 1/b0) in the prior, each Gibbs sampling iteration proceeds as

(γ0 | −) ∼ Gamma
(
e0 +KJ ,

1

f0 − ln( c
c+q·

)

)
,

(rk | −) ∼ Gamma[n·k, 1/(c+ q·)],

[G(Ω \ DJ) | −] ∼ Gamma[γ0, 1/(c+ q·)],

(qj | −) ∼ Gamma{a0 + nj, 1/[b0 +G(Ω)]},

(c | −) ∼ Gamma{c0 + γ0, 1/[d0 +G(Ω)]}, (2.7)

where G(Ω) := G(Ω\DJ) +
∑KJ

k=1 rk, given which the total gene count for sample j follows

Poisson[qjG(Ω)]. Note that a gene that has at least one nonzero count among the J samples will

be attached to a discrete atom (point of discontinuity) of the gamma process with weight rk, while

all the other countably infinite unexpressed genes are associated with the atoms in the absolute

continuous space Ω\DJ , whose total weight is G(Ω\DJ).
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2.1.1.2 NBP-Seq differential expression analysis

To detect differentially expressed genes using the scaled NBP, we notice in the prior that

E[njk | qj, G] = var[njk | qj, G] = qjrk

and in the conditional posterior shown in (2.7) that

E[rk | −] = n·k/(c+ q·), E[qj | −] = (a0 + nj)/[b0 +G(Ω)]. (2.8)

Thus one may consider rk as a gene-specific Poisson rate parameter that indicates the expression

level of gene k, whose conditional posterior is related to both n·k, the total count of gene k across

all the J samples of the group, and q·, the total sum of the sample-specific gamma distributed

scaling parameters; one may consider qj as a scaling factor to be inferred from the data, whose

conditional posterior is determined not only by nj , the total count of all genes in sample j that

indicates the sequencing depth of sample j, but also byG(Ω), the total sum of all countably infinite

gene-specific Poisson rate parameters; and the conditional posterior of γ0 is clearly related to KJ ,

the total number of expressed genes in the group. Therefore, the scaled NBP borrows statistical

strength across both the genes and samples to infer the conditional posterior of rk.

To assess whether the difference between the expressions of the same gene at different sample

groups is statistically significant, we collect posterior Markov chain Monte Carlo (MCMC) sam-

ples for each rk in each group, and use these MCMC samples to measure the distance between

the posterior distributions of the rk of the same gene across different groups. Note that for a gene

whose total count across all samples in a group is zero, the posterior values of its rk would be fixed

at 0.

Instead of using the scaled NBP that introduces qj to model sample-specific sequencing depths,

we also consider the original NBP of (38) with all qj fixed at one. To compensate for the variations

of sequencing depths between samples, for the original NBP, we normalize the inferred Poisson
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rates rk and use them to evaluate the significance of differential gene expressions.

2.1.2 GNBP-Seq: Gamma-negative binomial process for RNA-seq

To generate the random count matrix NJ in a group, we construct a gamma-negative binomial

process (GNBP) (38) as

Xj |G ∼ NBP(G, pj), G ∼ ΓP(G0, 1/c), (2.9)

where j ∈ {1, .., J} andXj |G ∼ NBP(G, pj) is defined as a NBP such thatXj(A) ∼ NB[G(A), pj]

for each Borel subset A ⊂ Ω. Note that Xj |G ∼ NBP(G, pj) can also be augmented as a gamma

process mixed sum-logarithmic process (SumLogP) as

Xj |Lj ∼ SumLogP(Lj, pj), Lj |G ∼ PP(qjG), (2.10)

where qj := − ln(1 − pj), i.e., pj = 1 − e−qj , and the SumLogP is defined in (38) such that

Xj(A) =
∑Lj(A)

t=1 ut, ut ∼ Logarithmic(pj) for each Borel subset A ⊂ Ω. Thus the GNBP also

can be expressed as a NBP mixed SumLogP as

Xj |Lj ∼ SumLogP(Lj, pj), (L1, . . . , LJ) ∼ NBP(G0, c, q1, . . . , qJ). (2.11)

With a draw from the gamma process G expressed as G =
∑∞

k=1 rkδωk , a draw from Xj can be

expressed as

Xj =
∞∑
k=1

njkδωk , njk ∼ NB(rk, pj). (2.12)

The GNBP employs sample-specific NB probability parameters pj to model row heterogeneity. In

the context of RNA-seq data, the variations of pj can be used to account for those of sequencing

depths.

Both the row-wise and column-wise constructions of the GNBP random count matrix mimic

these of the NBP random count matrix. They are described in detail in (38) and hence omitted
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here for brevity. We mention that the two key differences in their row-wise sequential construc-

tions are that the GNBP uses the gamma-NB instead of NB distributions to model the counts at

previously expressed genes brought by a new sample, and the GNBP uses the logarithmic mixed

sum-logarithmic instead of logarithmic distributions to model the counts at newly expressed genes

brought by a new sample.

As shown in (38), in the sequential construction of the GNBP random count matrix, for a point

of discontinuity ωk ∈ DJ , the variance and mean are related as

var[n(J+1)k] =
E[n(J+1)k]

1− pJ+1

+
E2[n(J+1)k]

l·k
, (2.13)

which depends on both pJ+1 and l·k that are random, where l·k :=
∑J

j=1 ljk, and ljk ∼ CRT(njk, rk)

is the Chinese Restaurant Table (CRT) distribution. Comparing (2.6) and (2.13), it is clear that

since pJ+1 < 1 and l·k ≤ n·k, the GNBP can model much more over-dispersed counts than the

NBP.

2.1.2.1 Inference for the GNBP

Letting γ0 ∼ Gamma(e0, 1/f0), pj ∼ Beta(a0, b0), and c ∼ Gamma(c0, 1/d0) in the prior, as

in (38), a Gibbs sampling iteration for the GNBP proceeds as

(γ0 | −) ∼ Gamma
(
e0 +KJ ,

1

f0 − ln( c
c+q·

)

)
,

(ljk | −) ∼ CRT(njk, rk), (rk | −) ∼ Gamma
[
l·k, 1/(c+ q·)

]
,

{G(Ω\DJ) | −} ∼ Gamma
[
γ0, 1/(c+ q·)

]
,

(pj | −) ∼ Beta
[
a0 + nj, b0 +G(Ω)

]
,

(c | −) ∼ Gamma
{
c0 + γ0, 1/[d0 +G(Ω)]

}
. (2.14)

Note that given G(Ω), the total gene count for sample j follows NB[G(Ω), pj].
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2.1.2.2 GNBP-Seq differential expression analysis

In the GNBP, since in the prior we have

E[njk |G, pj] = rk
pj

1− pj
,

var[njk |G, pj] = rk
pj

(1− pj)2
= E[njk |G, pj] + r−1

k E2[njk |G, pj],

and in the conditional posterior, if b0 +G(Ω) > 1, we have

E[rk | −] = l·k/(c+ q·), E[pj/(1− pj) | −] = (a0 + nj)/[b0 +G(Ω)− 1]. (2.15)

Thus one may interpret pj/(1 − pj) as a term that accounts for the sequencing depth of sample

j, and may compare the posterior distributions of the NB shape parameter rk of the same gene

at different groups to assess differential expression of that gene. The conditional posterior of the

scaling factor pj/(1 − pj) is determined by not only nj , the total counts of genes in sample j,

but also G(Ω), the total sum of all countably infinite gene-specific NB shape parameters; and

the conditional expectation of rk is related to both l· and q·, which aggregate their corresponding

sample-specific values across all the J samples. Therefore, the GNBP borrows statistical strength

across both the genes and samples to infer the conditional posterior of rk. For an unexpressed gene,

whose total count across all samples in a group is 0, the posterior values of its rk would be fixed at

0.

Comparing (2.8) and (2.15) shows that both the GNBP and scaled NBP have similar sample-

specific scaling parameters, but, as in (2.14), since E[ljk | −] =
∑njk

t=1 rk/(rk + t− 1) and hence

E[ljk | −] ≈ rk ln(njk + rk) for large njk, the posteriors of the gene-specific parameters rk in the

GNBP would be impacted much less by some genes whose expressions njk are significantly larger

than their mean expression levels, which are commonly observed in genomic studies.
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2.1.3 BNBP-Seq: Beta-negative binomial process for RNA-seq

Similar to the GNBP, the BNBP can be used to model RNA-seq samples. The BNBP can be

constructed by sharing the NB probability parameters across the J sequencing samples of the same

group as

Xj | rj, B ∼ NBP(rj, B), B ∼ BP(c, B0), (2.16)

where j ∈ {1, . . . , J} and B ∼ BP(c, B0) is a beta process with a finite and continuous base

measure B0 over Ω and a concentration parameter c, with Lévy measure

ν(dpdω) = p−1(1− p)c−1dpB0(dω). (2.17)

With a draw from the beta process B expressed as B =
∑∞

k=1 pkδωk , where ωk and pk are atoms

and their associated probability weights, respectively, a draw from Xj given B can be expressed

as

Xj =
∞∑
k=1

njkδωk , njk ∼ NB(rj, pk). (2.18)

In the BNBP, different rj’s are used to model the sequencing depth variations.

Both the row-wise and column-wise constructions of the BNBP random count matrix, as de-

scribed in detail in (38) and hence omitted here for brevity, mimic these of the scaled NBP random

count matrix. We mention that the two key differences in their row-wise sequential constructions

are that the BNBP uses the beta-NB instead of NB distributions to model the counts at previously

expressed genes brought by a new sample, and the BNBP uses the digamma instead of logarithmic

distributions to model the counts at newly expressed genes brought by a new sample.

As shown in (38), in the sequential construction of the BNBP random count matrix, for a point

of discontinuity ωk, the variance and mean are related as

var[n(J+1)k] =
E[n(J+1)k]
c+r·−2

n·k+c+r·−1

+
E2[n(J+1)k]
n·k(c+r·−2)
n·k+c+r·−1

, (2.19)
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which depends on both c and r· that are random. Comparing (2.6) and (2.19), it is clear that since

c+r·−2
n·k+c+r·−1

≤ 1 and n·k(c+r·−2)
n·k+c+r·−1

< n·k for c+r· > 2, similar to the GNBP, the BNBP can also model

much more over-dispersed counts than the scaled NBP.

The variance-mean relationships expressed by (2.6), (2.13), and (2.19) show that the GNBP

and BNBP can model much more over-dispersed counts than the (scaled) NBP, and as shown in

Figure 1 of (38), given the same expected total count, while the counts in NBP random count

matrices usually have small dynamic ranges, the counts in both the GNBP and BNBP matrices can

contain values that are significantly above the average. In RNA-seq, it is common to have large

dynamical range for highly over-dispersed gene counts, which are likely to be better modeled by

both the GNBP and BNBP than by the (scaled) NBP, as confirmed by our experiments in Section

2.2.

2.1.3.1 Inference for the BNBP

Letting γ0 ∼ Gamma(e0, 1/f0), pj ∼ Beta(a0, b0), and c ∼ Gamma(c0, 1/d0), as in (38), a

Gibbs sampling iteration for the BNBP proceeds as

(γ0 | −) ∼ Gamma
(
e0 +KJ ,

1

f0 + ψ(c+ r·)− ψ(c)

)
,

(pk | −) ∼ Beta(n·k, c+ r·), (p∗ | −) ∼ logBeta(γ0, c+ r·),

(ljk|−) ∼ CRT(njk, rj),

(rj | −) ∼ Gamma
(
a0 + lj·,

1

b0 + p∗ −
∑KJ

k=1 ln(1− pk)

)
. (2.20)

Inside each Gibbs sampling iteration, as in (38), an independence chain Metropolis-Hastings sam-

pling step can be used to update the concentration parameter c.

2.1.3.2 BNBP-Seq differential expression analysis

In the BNBP, since in the prior we have

E[njk | rj, B] = rj
pk

1− pk
, var[njk | rj, B] = rj

pk
(1− pk)2

= (1− pk)−1E[njk | rj, B], (2.21)
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and in the conditional posterior, if c+ r· > 1, we have

E[pk/(1− pk) | −] = n·k/(c+ r· − 1), E[rj | −] =
a0 + lj·

b0 + p∗ −
∑KJ

k=1 ln(1− pk)
. (2.22)

Thus one may consider that the NB sample-specific shape parameter rj accounts for the sequenc-

ing depth of sample j, and may compare the posterior distributions of pk/(1 − pk) to evaluate

differential expression of gene k between different groups. The posterior expectation of rj in the

BNBP is related to the NB probability parameters of all genes, which themselves are related to

r·, the aggregation of the sample-specific scaling factors across all J samples. Thus the BNBP

borrows statistical strength across all the genes and samples to infer the posterior distribution of

pk/(1− pk). Note that for an unexpressed gene, whose total count across all samples in a group is

0, the posterior values of its pk would be fixed at 0.

Comparing (2.8) and (2.22) shows that the BNBP and scaled NBP have similar gene-specific

parameters, but, as in (2.20), since E[ljk | −] ≈ rj ln(njk + rj) for large njk, for some genes

whose expressions njk are significantly larger than the mean expression levels, the posteriors of

the sample-specific parameters rj in the BNBP also would be impacted much less than these of the

sample-specific parameters qj in the scaled NBP.

2.1.4 Distance between posterior distributions

In order to compare the posterior distributions, we use the symmetric Kullback-Leibler (KL)

divergence defined between two discrete distributions P and Q as

KL(P,Q) =
∑

x

[
p(x)− q(x)

]
log
[
p(x)/q(x)

]
.

Supposing r is the parameter to be compared between two different groups, we estimate the

symmetric KL-divergence between the posterior distributions of r(1) and r(2), the values of r of

the first and second groups, respectively, using collected MCMC samples. We first find both the

minimum and maximum values of the MCMC samples of r across both groups to define an interval
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for r. After adjusting the lower- and upper-limits of the interval as [max(0, Q1− 1.5 ∗Q4), Q3 +

1.5 ∗ Q4], where Q1 and Q3 are 25% and 75% quantiles and Q4 = Q3 − Q1, we equally divide

the adjusted interval into N = 100 bins. For each group, we count the number of MCMC samples

falling into each bin, and then normalize these bin counts to a 100 dimensional discrete probability

vector, referred to as π(1) and π(2) for the first and second groups, respectively. Finally, with a

small constant set as ε = 10−10, we calculate the symmetric KL-divergence as

KL(π(1),π(2)) =
N∑
i=1

(
π

(1)
i − π

(2)
i

)
log
(π(1)

i + ε

π
(2)
i + ε

)
. (2.23)

2.2 Experimental Results

To evaluate the proposed BNP differential expression analysis algorithms, we compare their

performance on both synthetic and real-world benchmark RNA-seq data with those of edgeR (19),

DESeq (7), and baySeq (33), three widely used algorithms in biomedical studies. We also present

a case study on clear cell renal cell carcinoma (ccRCC) (46), explaining the biomedical impli-

cations obtained by differential expression analysis using both our GNBP and BNBP methods.

We first consider synthetic RNA-seq data generated under different models, and we show that the

proposed GNBP and BNBP differential expression analysis algorithms consistently provide out-

standing performance. We then consider the real-world benchmark RNA-seq data extracted from

the SEquencing Quality Control (SEQC) project (47; 48) and the ccRCC case study extracted from

The Cancer Genome Atlas (TCGA) (49). We consider the RNA-seq data from both Beijing Ge-

nomics Institute (BGI) and the Pennsylvania State University (PSU) provided in the SEQC project

(47; 48), available in the R package SEQC on Bioconductor (50). Both the BGI and PSU datasets,

which are the transcriptomic expression measurements of the RNA samples prepared at the same

biological conditions but sequenced at different sequencing sites, contain the counts for approxi-

mately 26,000 genes. In our experiments, we employ sample groups A and B, which are derived

from Agilent’s Universal Human Reference RNA and Life Technologies’ Human Brain Reference

RNA cell lines, respectively. We collect the counts from the first flow cells of the sequencing
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machines on five replicates for each group (condition).

On both synthetic and real-world RNA-seq count data, comparison of both the area under

the receiver operating characteristic (ROC) curve (AUC-ROC) and area under the precision-recall

(PR) curve (AUC-PR) shows that the proposed GNBP and BNBP algorithms clearly outperform

the (scaled) NBP and previously proposed differential expression analysis algorithms, as described

below in detail.

2.2.1 Synthetic data

We first generate synthetic RNA-seq data with the GNBP generative model, the BNBP gener-

ative model, or the NB distribution based procedure adopted in baySeq (33). For each setting, to

make the synthetic data closely resemble real-world RNA-seq data, we first infer the parameters

of the corresponding model on the BGI or PSU datasets from SEQC, and then generate synthetic

sequencing counts using these inferred model parameters. To simulate samples from two different

groups (conditions), each of which has 10,000 genes in five replicates, we randomly select 10%

of the genes and set them to be differentially expressed between the two groups, with the fold

change of differentially expressed genes chosen as an adjustable parameter. For quality control,

we discard the bottom 10% of genes with low expressions across groups in data generation. In

order to produce both up- and down-regulated differentially expressed genes, each differentially

expressed gene is randomly set to be either up- or down-regulated. Below we denote b > 1 as

the fold change to be set. We use the PSU dataset for the baySeq setting and the BGI dataset for

both the GNBP and BNBP settings. Using different datasets to infer model parameters and differ-

ent models to generate synthetic datasets allows us to assess the robustness of various methods in

different practical settings.

In the GNBP setting, if gene k is up-regulated, then we generate its counts using NB(rk, pj)

and NB(b rk, pj) for the samples in the first and second groups, respectively; whereas if gene k is

down-regulated, then we generate its counts using NB(rk, pj) and NB(rk/b, pj) for the five samples

in the first and second groups, respectively.

In the BNBP setting, if gene k is up-regulated, then we generate its counts using NB(rj, pk)
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and NB(rj, p
′
k), where p′k is selected to satisfy bpk/(1 − pk) = p′k/(1 − p′k), for the samples in

the first and second groups, respectively; whereas if gene k is down-regulated, then we generate its

counts using NB(rj, p̃k) and NB(rj, pk), where p̃k is selected to satisfy pk/(1−pk) = bp̃k/(1− p̃k),

for the five samples in the first and second groups, respectively.

In the baySeq setting of (33) that generates a count from a NB distribution given its mean and

dispersion parameters, if gene k is up-regulated, then we generate its counts using µk and bµk as

the means for the first and second groups, respectively; whereas if gene k is down-regulated, then

we generate its counts using µk and µk/b as the means for the first and second groups, respectively.

We infer the model parameters via Gibbs sampling for the proposed BNP differential expres-

sion analysis algorithms. For each algorithm, we collect 1,000 MCMC samples after 1,000 burn-in

iterations. The example MCMC sample trace plots in Figure 2.1 suggest that the Markov chains

for both the GNBP and BNBP methods converge fast and mix well, supporting the practice of

performing downstream analysis with 2,000 MCMC iterations. For the analysis of the real-world

dataset BGI on a single cluster node with Intel Xeon 2.5GHz E5-2670 v2 processor, it took around

two hours for both the GNBP and BNBP methods with 2,000 MCMC iterations, about ten min-

utes for the other methods, including the NBP. Note that parallelization could further speed up the

inference. We use the collected MCMC samples to calculate the symmetric KL divergence, as in

(3.11), between two groups for each gene, and rank the genes according to these values. For edgeR

and DESeq, we follow the standard analysis pipelines and rank the genes using the computed p-

values; and for baySeq, we rank the genes using model likelihoods. We set the fold change b as

1.4, 1.6, 1.8, or 2 in simulating synthetic data to assess how sensitive the algorithms under study

are to different levels of differential expression. For each fold change, we report the results of each

algorithm based on ten independent random trials.

For these three different types of synthetic data, as shown in Figure 2.2, measured by both

AUC-ROC and AUC-PR, baySeq has the worst overall performance even when the synthetic data

are generated based on its model assumption, followed by the scaled NBP; the NBP, DESeq, and

edgeR all have similar performance; and the GNBP and BNBP clearly outperform all the other
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Figure 2.1: Trace plots of 2000 MCMC samples for example parameters of the BNBP (left column)
and GNBP (right column) methods, applied to the BGI dataset.

differential expression analysis algorithms. To further compare the operating characteristics of

different algorithms, we show in Figure 2.3 the full ROC and PR curves for the fold change of

b = 1.8.

More carefully examining Figures 2.2 and 2.3, it is interesting to notice that for the synthetic

data generated with either the GNBP or BNBP, the scaled NBP, which extends the original NBP

with sample-specific scaling parameters qj to model sample sequencing depth variations, in fact

clearly underperforms the original NBP. Suggesting that explicitly modeling the sample sequenc-

ing depths, using the gamma-Poisson construction of the scaled NBP, is insufficient to model the

over-dispersed gene counts generated using the gamma- or beta-NB constructions.

While the original NBP fixes qj = 1 and hence does not explicitly model the sample sequencing

depth variations, it performs as well as both DESeq and edgeR in all three settings, which may be

explained by the fact that it normalizes the posterior Poisson rates before applying them to compare

the gene expression levels between two groups, a post-processing step that plays a similar role as

the pre-processing normalization steps used in both DESeq and edgeR to account for different

sequencing depths.

It is also interesting to notice that while the GNBP consistently ranks the best or very close to
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the best, in terms of both AUC-ROC and AUC-PR, the BNBP does so only in terms of AUC-ROC.

For synthetic data generated using the GNBP and baySeq, the performance of the BNBP in terms

of AUC-PR quickly deteriorates as the fold change reduces from 1.8 to 1.4, suggesting a large

number of false positives among the top ranked genes of the BNBP when the fold change is not

sufficiently large for the GNBP synthetic data. The disparity between the performance measured

by AUC-ROC and that measured by AUC-PR, which only happens for the BNBP, indicates that

the BNBP employs a distinct mechanism to detect differentially expressed genes, as carefully

discussed below.

To compare the expression levels of the kth gene between two groups, the GNBP compares the

posterior NB shape parameters rk, whereas the BNBP compares the posterior NB probability pa-

rameters pk. One may consider that the expression level of gene k is assumed to roughly follow a

smooth function of the shape parameter rk in the GNBP, and a smooth function of pk/(1 − pk)

in the BNBP. The difference between the posterior NB shape parameters rk explains the dif-

ferences between both the means and dispersions, but does not explain that of the variance-to-

mean ratios (VMR), of the counts of gene k at different groups, since if njk ∼ NB(rk, pj), then

E[njk] = rkpj/(1−pj), var[njk] = E[njk]+(E[njk])
2/rk, and VMR[njk] = 1+E[njk]/rk; whereas

the difference between the posterior NB probability parameters pk explains the differences between

both the means and VMRs of the counts of gene k at different groups, since if njk ∼ NB(rj, pk),

then E[njk] = rjpk/(1 − pk), var[njk] = E[njk] + (E[njk])
2/rj , and VMR[njk] = 1/(1 − pk).

Therefore, for the counts of a gene generated with the GNBP, if the rk is small, a small change

in its value may lead to a significant change of VMR[njk] = 1 + (E[njk])/rk, which implies that

a large difference in a gene’s VMRs between two groups may not be taken by the GNBP as a

strong evidence for differential expression. By contrast, since the gene-specific parameter pk in

the BNBP is explicitly responsible for the VMR, a large difference in a gene’s VMRs between two

groups may encourage the BNBP to rank that gene as strongly differentially expressed, which may

be used to explain why the BNBP has good AUC-ROC but poor AUC-PR if the fold change is

small for the GNBP synthetic data. In practice, however, it is often unclear whether it is the change
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of the quadratic relationship between the variance and mean, as captured by the NB dispersion

parameter, or the VMR, as captured by the NB probability parameter, that is responsible for the

change of a gene’s expression level. Thus it is often unclear whether the GNBP or BNBP would

be a better choice for a real dataset, and it seems promising to combine the advantages of both for

differential expression analysis, an attractive research topic beyond the scope of the paper that is

to be investigated in our future study.

To more comprehensively evaluate the proposed methods, we consider several additional appli-

cation scenarios. The performance comparisons with baySeq synthetic data under these different

scenarios are shown in Figure 2.4. We first assess the sensitivity of different methods to the ratio

of up- and down-regulated genes among the set of truly differentially expressed genes, which, the

same as before, take 10% of the total number of genes. We assume a fold change of 2 for these

truly differently expressed genes, and vary the percentage of up-regulated (down-regulated) genes

among them from 20% (80%) to 40% (60%), 60% (40%), and 80% (20%). As shown in Fig-

ure 2.4(a), while the GNBP, BNBP, edgeR, and DESeq all show robustness to the change of that

percentage, the performance of both the NBP based and baySeq methods significantly deteriorates

as one increases the imbalance between the numbers of up- and down-regulated genes. We also

note that both the GNBP and BNBP successfully preserve their out-performance margins under

various ratios of up- to down-regulated genes.

To examine how the performance changes with the sample size, we consider increasing the

number of samples for each group from 4, to 8, 12, and 16. This is a sensible choice, since in

practice the number of samples per condition is often smaller than 16. In this experiment, 10%

of genes are equally likely to be up- or down-regulated with a fold change of 2. Figure 2.4(b)

illustrates the error bar plots for both the AUC of ROC curve and that of PR curve, under different

sample sizes over 10 random trials. All methods show consistent improvements as the number of

replicates in each group increases, which agrees with the expectation that more samples provide

more information to assist parameter inference. In addition, we consider 100 genes with different

sample sizes to investigate the performance of the proposed methods in the setting with a large
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sample size but a small number of genes. Similar to previous simulations, 10% of the genes are

assumed to be differentially expressed with a fold change of 2, and the number of replicates in

each group is increased from 4 to 6, 8, 10, 20, 40, 60, 80, and 100. Figure 2.5 shows the error

bar plots for both the AUC of ROC curve and that of PR curve, under different sample sizes over

10 random trials. As expected, adding more samples consistently enhances the recovery of true

differential expression state of the genes for all methods, and when the number of samples reaches

100, almost all methods perform perfectly.

Last but not least, Figure 2.4(c) shows the box plots of the AUCs of ROC and PR curves when

the true fold change of differentially expressed genes is uniformly distributed within the interval

[1.4, 2]. The BNBP stands out as the best performing method followed by the GNBP, suggesting

that the superior results of the proposed methods in previous simulations do not rely on setting the

fold change to a fixed constant.

2.2.2 SEQC benchmark RNA-seq data and case study

In order to characterize various RNA-seq technologies and quantification pipelines in the SEQC

project (47; 48), the same RNA samples for a comprehensive group of control genes are analyzed

based on quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) using TaqMan

assays (51), which is referred as the TaqMan benchmark data (52; 53). For sample groups A and

B, the expression intensity values of 955 selected control genes have been derived in the TaqMan

qPT-PCR analysis for sequencing benchmarking. Without knowing in practice which genes are

truly differentially expressed between different conditions, we consider thresholding the qRT-PCR

expression ratios between different conditions at a certain value to define the ground-truth set

of differentially expressed genes. Based on these 955 genes in the TaqMan data, we evaluate

the performance of different differential expression analysis pipelines. Note that although the

replicates in SEQC are technical, they show notable amount of over-dispersion and have been used

in the literature as a standard benchmark for assessing differential expression analysis tools (29).

While it is unknown which genes are truly differentially expressed for both the BGI and PSU

RNA-seq data, we rely on the qRT-PCR expression intensity of the 955 genes in the TaqMan data
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and set different cut-offs for the binary logarithm (log2) of the qRT-PCR expression ratio to define

“truly” differentially expressed genes. We increase this log2 cut-off value gradually from 0.5 to

2, and calculate both AUC-ROC and AUC-PR. The symmetric KL divergence is used to assess

differential expression. As shown in Figure 2.6 for both the BGI and PSU datasets, the GNBP and

BNBP outperform all the other methods in both ROC and PR analyses with significant margins.

Note that the performance gains of the GNBP and BNBP over the other methods become more

significant as one increases the log2 cut-off for the qRT-PCR expression ratio, which reduces the

number of genes that are considered as truly differentially expressed.

Comparing Figure 2.2 for synthetic data with Figure 2.6 for real-world data, one may notice

that while both the AUC-ROC and AUC-PR curves in Figure 2.2 seem to monotonically increase

as the fold change increases, the AUC-ROC and AUC-PR curves in Figure 2.6 do not necessar-

ily share similar trends. It is not surprising to observe these seemingly distinct behaviors, since

for the synthetic data in Figure 2.2, the set of truly differentially expressed genes are fixed and

known exactly, remaining unchanged regardless of how one sets the fold change that is used to

detect differentially expressed genes, whereas for the real-world data in Figure 2.6, the number of

genes considered as truly expressed reduces as the cut-off value of the qRT-PCR expression ratio

increases. In addition, we note that the results of edgeR, DESeq, and baySeq on both the BGI and

PSU real datasets reported in this paper are similar to those reported in (29).

To investigate the experimental results more thoroughly, we fix the true positives and negatives

at the log2 cut-off value of 2 and illustrate the ROC and PR curves for BGI dataset in Figure 2.7.

In addition, we show in Table 2.1 the area under the ROC curve for the range with FPR ≤ 0.1

and area under the PR curve for the range with Recall ≤ 0.1 for various algorithms. It is clear that

both the GNBP and BNBP not only have higher AUC-ROC and AUC-PR, but also outperform all

the other methods in almost all regions of the ROC and PR curves.

In addition to showing the ROC and PR curves, we also plot the number of false discoveries

to highlight the performance on the top ranked genes. Since there are 400 truly differentially

expressed genes based on the log2 cut-off value of 2, the top 400 genes detected by each approach
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are selected and the number of false discoveries are plotted. It is clear from Figure 2.8 that both

the GNBP and BNBP return much smaller number of false positives in comparison to all the other

differential expression analysis algorithms.

Table 2.1: Area under the ROC curve for the range with FPR ≤ 0.1 and area under the PR curve
for the range with Recall ≤ 0.1 for both the PSU and BGI datasets, with the log2 cut-off value
fixed at 2.

PSU BGI
Method AUCroc AUCpr AUCroc AUCpr
GNBP 0.0627 0.0980 0.0716 0.0995
BNBP 0.0628 0.0980 0.0685 0.0986
edgeR 0.0587 0.0980 0.0527 0.0995
DESeq 0.0514 0.0980 0.0521 0.0995
baySeq 0.0533 0.0980 0.0258 0.0757
NBP 0.0356 0.0921 0.0390 0.0968
NBPscaled 0.0404 0.0911 0.0369 0.0957
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(a) GNBP synthetic data
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(b) BNBP synthetic data
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(c) baySeq synthetic data

Figure 2.2: left column: AUC-ROC values, right column: AUC-PR values. Performance comparison of
different methods in detecting differentially expressed genes under various fold changes, using synthetic
data generated under three different negative binomial distribution based models.
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(a) GNBP setup
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(c) baySeq setup

Figure 2.3: left column: ROC curve, right column: PR curve. Performance of different methods in
detecting the differential expression of simulated data generated from different setups with a fold change of
1.8 for truly differentially expressed genes.
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Figure 2.4: left column: AUC-ROC values, right column: AUC-PR values. Performance comparison of
different methods in detecting differentially expressed genes under various scenarios using synthetic data
generated with baySeq. (a) The proportion of up-regulated genes in true differentially expressed genes
increases from 20% to 80% with 20% increments. (b) The sample size in each group is increased from 4 to
16 with increments of size 4. (c) The true fold change of differentially expressed genes is sampled from a
uniform distribution in the interval [1.4, 2].
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Figure 2.5: (a) AUC-ROC and (b) AUC-PR in the baySeq simulation setup with 100 genes and different
sample sizes, where 10 genes are equally likely to be up- or down-regulated with a fold change of 2.
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Figure 2.6: left column: AUC-ROC values, right column: AUC-PR values. Performance com-
parison of different methods in detecting differentially expressed genes on real-world benchmark
RNA-seq data from the SEQC project.
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Figure 2.7: left: ROC curves, right: Precision-Recall (PR) curves. Performance comparison of
different methods with the log2 cut-off value fixed at 2 for the BGI dataset from the SEQC project.
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Figure 2.8: False discovery plots for different methods on the BGI dataset from the SEQC project,
with the log2 cut-off value fixed at 2. The x-axis shows the number of genes selected, in order of
their detected differential expression levels, while the y-axis shows the number of selected genes
that are false positives.
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3. BAYESIAN NEGATIVE BINOMIAL REGRESSION FOR DIFFERENTIAL

EXPRESSION 1

While the majority of differential expression analyses are conducted with respect to a main

treatment factor, the presence of potential confounding factors in real-world experiments makes it

desirable to take them into account in the developed tools to derive unbiased genotype-phenotype

association results. There exists a rich set of methods on addressing this problem in microarray

data analysis, such as the ones developed based on linear models (54; 55).

Several differential expression analysis methods have employed generalized linear models

(GLMs) to adapt the NB distribution to experiments with complex design. For example, two

widely used methods, edgeR (56) and DESeq2 (57), both use GLMs to model the mean of the NB

distribution as a log-linear function of the covariates. The gene-wise dispersion parameters are

then estimated using adjusted profile likelihood and GLM coefficients are estimated using Fisher

scoring iterations.

We propose a fully Bayesian NB regression (BNB-R) method for differential expression analy-

sis of RNA-seq data from experiments with complex multiple-factor design. Unlike all the existing

differential expression methods based on the NB distribution, our method does not rely on ad-hoc

approximations of various kinds, such as the fact that many statistical tests are only asymptot-

ically valid (58). BNB-R quantifies the uncertainty of the estimations, and also allows for the

incorporation of prior information. BNB-R directly model the influence from covariates of interest

for differential expression analysis and therefore it does not need the surrogate variable analysis

pre-processing step.

Moreover, this new approach does not require the ad-hoc normalization step either, as the

model accounts for the sequencing-depth heterogeneity of different samples automatically, similar

to the mechanisms employed in the BNP-Seq algorithms. By exploiting two novel data augmen-

1Reprinted with permission from S. Zamani Dadaneh, M. Zhou, and X. Qian, “Bayesian negative binomial regres-
sion for differential expression with confounding factors,” Bioinformatics, vol. 34, no. 19, pp. 3349–3356, 2018.
Copyright 2018 Oxford University Press.

36



tation techniques (59), closed-form posterior inference of BNB-R model parameters is derived in

a Gibbs sampling procedure. Specifically, the dispersion parameter of NB distribution is inferred

using the augmentation technique of (60), and regression coefficients are inferred in closed-forms

by utilizing the Polya-Gamma distributed auxiliary variable technique of (61), removing the need

for non-trivial Metropolis-Hastings correction steps (62).

3.1 BNB-R: NB regression differential expression analysis

We denote the number of sequencing reads mapped to gene k ∈ {1, . . . , K} in sequencing

sample j ∈ {1, . . . , J} by nkj , and model this count as a negative binomial random variable

nkj ∼ NB(rj, pkj). The dispersion parameter rj , which only depends on the sample index, can

be considered as a parameter reflecting the heterogeneity of counts, due to the variation of the

sequencing depths across different samples. This can be justified by the gene count expectation

E[nkj] = rj
pkj

1−pkj
, which is directly proportional to rj . To establish the dependence between the

gene expression and covariates (e.g., phenotypes, treatments, and other potential confounding fac-

tors) in different experimental setups, we impose a linear relationship between the logit function

of the probability and covariates as logit(pkj) = xTj βk, where xj = [1, xj1, ..., xjV ]T is the covari-

ate vector for sample j and βk = [βk0, βk1, ..., βkV ]T is the regression coefficient vector for gene

k. In our proposed model, the covariate variables can be numerical or categorical. Consequently,

the expected gene expression can be expressed as E[nkj] = rj exp(xTj βk), which resembles the

familiar form of negative binomial generalized linear model (63). Thereby, the effects of different

experimental factors on gene expression are captured through the regression coefficients βk. In

particular, by utilizing the Bayesian framework, the posterior distributions of different combina-

tions of the regression coefficients can be estimated via a Markov chain Monte Carlo (MCMC)

(64) inference procedure to assess how the covariates impact the expression changes.

To complete the hierarchal model, we place a gamma prior on each sequencing scaling param-

eter rj and independent zero-mean normal priors on the regression coefficients βk. The full model
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is expressed as:

nkj ∼ NB(rj, pkj), ψkj := logit(pkj) = xTj βk

βk ∼
V∏
v=0

N(0, α−1
v ), αv ∼ Gamma(c0, 1/d0)

rj ∼ Gamma(a0, 1/h), h ∼ Gamma(b0, 1/g0). (3.1)

In addition to controlling the effects of multiple experimental factors via the regression coeffi-

cients βk, in BNB-R, the precision parameters of the normal distributions over these coefficients

are shared between all genes to borrow signal strengths, a desirable property of the model that

makes it robust especially in RNA-seq data analysis with a small sample size. In the following, we

present our efficient MCMC inference of model parameters, which takes advantage of two novel

data augmentation techniques, leading to closed-form parameter updates.

3.1.0.1 Parameter inference

We start by the inference of the dispersion parameter rj , by using the data augmentation tech-

nique introduced in (60). In the first step of MCMC inference, we draw latent counts corresponding

to gene expression as

(`kj | −) ∼ CRT(nkj, rj). (3.2)

It can be shown that the `kj can be considered as the Poisson random count, expressed as `kj ∼

Pois(−rj ln(1− pkj)), used in the compound Poisson representation of the NB distribution njk ∼

NB(rj, pkj). Hence, by taking advantage of the gamma-Poisson conjugacy, in each Gibbs sampling

iteration, the parameter rj can be updated as

(rj|−) ∼ Gamma

(∑
k

`kj + a0,
1

h−
∑

k ln(1− pkj)

)
. (3.3)

The second challenge is the inference of the regression coefficients, for which the lack of

conditional conjugacy precludes immediate closed-form inference. Resorting to the methods such
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as Metropolis-Hastings (62), however, requires a careful choice of the proposal distributions to

avoid suffering from high rejection rates and subsequently slow convergence. To address these

issues, we adopt an augmentation technique to infer the regression coefficients βk, relying on the

Polya-Gamma (PG) data augmentation of (61). Denote ωkj as a random variable drawn from the

PG distribution as ωkj ∼ PG(nkj + rj, 0). We have Eωkj [exp(−ωkjψ2
kj/2)] = cosh(nkj+rj)(ψ2

kj/2).

Thus the likelihood of ψkj in (4.6) can be expressed as

L(ψkj) ∝
(eψkj)nkj

(1 + eψkj)nkj+rj

∝ exp
(nkj − rj

2
ψkj

)
Eωkj [exp(−ωkjψ2

kj/2)]. (3.4)

Exploiting the exponential tilting of the PG distribution in (61), we draw ωkj as

(ωkj|−) ∼ PG(nkj + rj, ψkj). (3.5)

Given the values of the auxiliary variables ωkj for j = 1, ..., J and the prior in (4.6), the

conditional posterior of βk can be expressed as

p(βk|−) ∝ N(0, A−1)
J∏
j=1

e
−
ωkj
2

(
ψkj−

nkj−rj
2ωkj

)2
, (3.6)

where A = diag(α1, ..., αP ). Thus in each Gibbs sampling iteration, we update the gene-wise

regression coefficients βk as

(βk|−) ∼ N(µk,Σk), (3.7)

where the covariance and mean of this multivariate normal distribution are defined as Σk =(∑J
j=1 ωkjxjx

T
j + A

)−1 and µk = Σk

(∑J
j=1(

nkj−rj
2

)xj
)
, respectively.
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Algorithm 1 Gibbs sampling inference for BNB-R
Inputs: gene expression counts, design matrix, N
Outputs: KL-divergence based ranking of DE genes

Initialize model parameters Please add the iteration loop
for j = 1 to N do

Sample `kj using CRT
Update rj using the gamma-Poisson conjugacy
Sample auxiliary variables ωkj , using the PG distribution

end for
Update regression coefficients
Update αp and h

Using the gamma-gamma conjugacy with respect to the gamma scale parameter, we have

(αv|−) ∼ Gamma
(
K/2 + c0,

1

d0 +
∑

k β
2
kv/2

)
, v = 0, ..., V.

(h|−) ∼ Gamma
(
b0 + Ja0,

1

g0 +
∑

j rj

)
. (3.8)

The Gibbs sampling steps in equations (3.2) to (3.8) are summarized in Algorithm 1.

3.1.0.2 Differential expression (DE) analysis

To detect differentially expressed genes using the inferred NB regression model, we notice in

the prior that

E[nkj] = rj exp(xTj βk) (3.9)

and in the conditional posterior shown in (5.2)

E[rj|−] =

∑
k `kj + a0

h+
∑

k ln
(
1 + exp(xTj βk)

) . (3.10)

Thus one may consider that the NB sample-specific dispersion parameter rj , which depends on all

the gene counts of sample j through latent counts `kj , accounts for the sequencing depth of sample

j, and the quantity exp(xTj βk) represents the expression of gene k in sample j after removing the

sequencing-depth effect. To assess whether a certain experimental factor v causes significant ex-
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pression differences across samples for gene k, we collect posterior MCMC samples for regression

coefficients βk, and use these MCMC samples to measure the distance between the posterior dis-

tributions of exp(βk0) and exp(βk0 +βkv). More precisely, we use the symmetric Kullback-Leibler

(KL) divergence defined between two discrete distributions P and Q as

KL(P,Q) =
∑

x

[
p(x)− q(x)

]
log
[
p(x)/q(x)

]
.

To calculate this distance, we follow the same steps as in (65), and construct a discrete probability

vector for each group of collected MCMC samples, referred to as π(1) and π(2) for the first and

second groups under comparison, respectively. Finally, with a small constant set as ε = 10−10, we

calculate the symmetric KL-divergence as

KL(π(1),π(2)) =
N∑
i=1

(
π

(1)
i − π

(2)
i

)
log
(π(1)

i + ε

π
(2)
i + ε

)
. (3.11)

3.2 Results

To evaluate our Bayesian negative binomial regression differential expression analysis algo-

rithm, referred to as BNB-R, we compare its performance on both synthetic and real-world bench-

mark data with those of edgeR (56), DESeq2 (57), and voom included in the package limma

(58), three widely used methods capable of handling biomedical studies with complex experimen-

tal design. As it is common in practice, before applying these methods to real-world RNA-seq

data, we first perform a surrogate variable analysis (SVA) to introduce surrogate variables as ad-

ditional covariates to model potential unwanted batch effects (66), and then use them to adjust for

these artifacts for unbiased differential expression analysis. We first consider synthetic RNA-seq

data in simulated experiments with multiple factors, and we demonstrate that the proposed BNB-R

consistently outperforms the other approaches. We then consider the real-world benchmark RNA-

seq data extracted from the SEquencing Quality Control (SEQC) project (67). While this dataset

does not possess explicit confounding factors, the results support the outstanding performance of
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BNB-R for differential expression analysis method in general. On both synthetic and real-world

RNA-seq count data, different methods are compared in terms of both the receiver operating char-

acteristic (ROC) and precision-recall (PR) curves, and the area under these curves (AUC). Finally,

we test BNB-R on a RNA-seq dataset of Th17 cell differentiation to study how incorporating the

temporal information can lead to more meaningful biological discoveries.

3.2.1 Synthetic data

3.2.1.1 Incorporating covariates improves DE detection

We generate synthetic RNA-seq data with the NB regression generative model. To make the

synthetic data closely resemble real-world RNA-seq data, the parameters of the NB regression

model are first inferred from the SEQC dataset, and then synthetic sequencing counts are gen-

erated using these inferred model parameters. Throughout the simulations, we consider three

experimental factors as condition, gender, and dosage, where condition and gender are categor-

ical covariates with labels {treated, untreated} and {male, female}, respectively, and dosage is a

numeric covariate in the interval [0, 1], generated uniformly at random for each sample.

In the first simulation setting, the expression of gene k in sample j is simulated according to

the distribution NB(rj,
1

1+exp(−xTj βk)
), where for sample j ∈ {1, 2, . . . , J}, the covariate vector

is xj = [xj0, xj1, xj2, xj3]. The variable xjv represents the value of covariate v for sample j. In

the first simulation setup, v = 0 corresponds to the intercept term, and v = 1, 2, 3 correspond

to condition, gender, and dosage covariates respectively. We use a binary scheme for coding the

categorical covariates xj1 and xj2. More precisely, xj1 = 0 if no treatment has been applied to

sample j, and xj1 = 1 if this sample is under treatment. Also, xj2 = 0 if sample j belongs to a

female individual and xj2 = 1 if it belongs to a male.

The effect of covariate v on the expression level of gene k is adjusted through the regres-

sion coefficient βkv. We simulate this coefficient according to a zero-mean normal distribution

with precision parameter αv. For the condition covariate, we draw the precision parameter as

α1 ∼ Gamma(1.7e5, 1/1e4). Under this setting, the absolute value of βk1 is larger than 0.4 with
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Figure 3.1: Left panel: ROC curve, Right panel: PR curve. Performance comparison of different meth-
ods in detecting differentially expressed genes generated under a negative binomial regression model with
covariates: condition, gender and dosage. Panels in the top row correspond to the case that full covariate
information is used in differential expression analysis. Panels in the bottom row correspond to the case that
only condition covariate is used in differential expression analysis.

probability 10%. Thus on average, 10% of the genes exhibit an expression fold-change of at

least exp(βk1) = 1.5 between two different conditions. In subsequent ROC and PR analyses, we

consider gene k as true differentially expressed if |βk1| ≥ 0.4 and not differentially expressed

otherwise. The other three precision parameters are simulated as follows:

α0 ∼ Gamma(2.7e6, 1/1e4)

α2 ∼ Gamma(3e3, 1/1e4)

α3 ∼ Gamma(3e5, 1/1e4), (3.12)

where α0 determines the baseline gene expression independent of experimental factors, and α2 and
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α3 adjust the heterogeneity of gene expressions due to the gender and dosage factors, respectively.

Finally, to simulate the effect of different sequencing depths for different samples, the dispersion

parameters rj are independently drawn from Gamma(50, 1/5), which is close to the posterior dis-

tribution of rj inferred from the Beijing Genomics Institute (BGI) dataset of the SEQC benchmark.

In the first simulation setting, the gene-expression counts for a total of K =5,000 genes and

J =12 samples, with three males and three females in each of the two conditions, are generated.

We evaluate the performance of BNB-R based on this synthetic data, and compare it to edgeR,

DESeq2, and voom. For BNB-R, model parameters are inferred via Gibbs sampling, where in

each run of the algorithm, we collect 1,000 MCMC samples after 1,000 burn-in iterations, and

then rank the genes using the symmetric KL-divergence measure developed in Section 3.1.0.2. For

edgeR, DESeq2, and voom, we follow the standard analysis pipelines and rank the genes using the

computed p-values.

Panels in the top row of Figure 3.1 illustrate the ROC and PR curves of BNB-R, edgeR, DE-

Seq2, and voom under the first simulation setting, when all covariates are employed. The AUCs

of these curves are presented in Table 3.1. The panels in the bottom row of Figure 3.1 repre-

sent the performance of BNB-R, edgeR, DESeq2, and voom on the synthetic data when using the

condition covariate as the single experimental factor, while neglecting all the other covariates. Ta-

ble 3.2 provides the AUCs of the curves in the latter scenario. Methods that exploit covariates’

information clearly outperform the ones that only rely on the condition factor to identify differen-

tially expressed genes, in terms of both the ROC and PR curves. This observation demonstrates

the benefit of incorporating available experimental design information to better capture the hetero-

geneity of gene expression counts. In particular, BNB-R with covariates has the best performance

with a significant margin over all the other algorithms. This may be explained by the hierarchical

structure of BNB-R, where borrowing information from all genes to estimate precision parameters

makes it robust in modeling overdispersed count data. In addition, we have also applied the BNBP

and GNBP methods (65), which use only the condition factor to determine differential expression,

to the synthetic data in this simulation. These two methods also perform closely to the algorithms
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Table 3.1: AUC of ROC and PR curves presented in the panels, in the top row of Figure 3.1.

Method AUC-ROC AUC-PR
BNB-R 0.7952 0.3922

edgeR-GLM 0.7563 0.3622
DESeq2 0.7533 0.3587

voom 0.7450 0.3499

Table 3.2: AUC of ROC and PR curves presented in the panels, in the bottom row of Figure 3.1.

Method AUC-ROC AUC-PR
BNB-R 0.7343 0.3188

edgeR-GLM 0.7302 0.3087
DESeq2 0.7193 0.2999

voom 0.6832 0.2617

exploiting only the condition factor, confirming the observation that integrating additional covari-

ates into a differential expression model can achieve more accurate and robust DE analysis for

genotype-phenotype association.

3.2.1.2 Sensitivity to experimental design

To assess the sensitivity of BNB-R to the experimental design assumption employed in the

differential expression analysis model, we consider a simulation setting with a more complex

combination of experimental factors, including an interaction term between the gender and con-

dition covariates. Similar to the previous simulation, the expression of gene k in sample j is

drawn from NB(rj,
1

1+exp(−xTj βk)
), where for sample j = 1, 2, ..., J , the covariate vector is xj =

[xj0, xj1, ..., xj4]T . In this simulation setup, the elements xjv in the covariate vector for v =

0, 1, .., 4 correspond to intercept, gender, condition, dosage, and the interaction between gender

and condition, respectively. We employ the same binary coding scheme for the categorical covari-

ates as those used in the previous simulation setting. Thus, for example, xj4 = 1 if sample j has

been under treatment and belongs to a male individual, and xj4 = 0 otherwise. We also generate

the dosage covariates xj3 from a uniform distribution in interval [0, 1].
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The presence of the interaction term in the regression model leads to the dependence of gene

differential expression on both the condition and gender covariates. More precisely, in this simu-

lation setting, the expected expression fold-change of gene k across two treatment conditions, for

a female is exp(βk2), and for a male is exp(βk2 + βk4). Hence in ROC and PR analyses, gene

k with |βk2| > 0.4 is considered as truly differentially expressed across conditions for females,

and when |βk2 + βk4| > 0.4, it is considered as truly differentially expressed across conditions for

males. We simulate the regression coefficient βkv according to a zero-mean normal distribution

with the precision parameter αv, and we place the following Gamma distributions on the precision

parameters:

α0 ∼ Gamma(2.7e6, 1/1e4)

α1 ∼ Gamma(1e6, 1/1e4)

α2 ∼ Gamma(1.8e5, 1/1e4)

α3 ∼ Gamma(3e5, 1/1e4)

α4 ∼ Gamma(1.2e6, 1/1e4). (3.13)

RNA-seq counts for a total of K =5,000 genes and J =12 samples, with three males and

three females in each treatment condition, are generated. In this synthetic dataset, 516 genes are

differentially expressed across treatment conditions for females and 653 genes are differentially

expressed for males. First, we evaluate the performance of BNB-R, edgeR, DESeq2, and voom on

this synthetic data, assuming that the true design matrix used for data generation is provided for

all algorithms. Differentially expressed genes are identified using the same protocol as described

in the previous subsection. The top and middle panels of Figure 3.2 illustrate the ROC and PR

curves for the detection of differentially expressed genes across conditions in males and females,

respectively. BNB-R clearly outperforms the other methods in terms of both ROC and PR, for

gender-specific DE analyses.

Next, instead of assuming knowing the true underlying data generation mechanism, we exclude
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the interaction term used for data generation for differential expression analysis with different

methods, and use the covariate vector xj = [xj0, xj1, xj2, xj3] for sample j, where the elements

xjv for v = 0, 1, 2, 3 represent the same covariates as in the data generation procedure. As a

consequence of using this design, detected differentially expressed genes are not specific to a

gender. Hence to evaluate the performance of BNB-R, edgeR, DESeq2, and voom when using

this design matrix, we need to compare the detected genes to those that are truly differentially

expressed across conditions independent of gender. In this simulation, there are 400 genes that

are differentially expressed across the treatment conditions for both male and female groups. We

consider these genes as truly differentially expressed independent of gender, and the rest of the

genes as not differentially expressed. The ROC and PR curves plotted based on this setting are

shown in the bottom row of Figure 3.2. In this case, BNB-R again exhibit the best performance in

terms of the ROC and PR curves, confirming its superior performance even if the true mechanism

of data generation is not fully known.

3.2.2 SEQC benchmark

In this section, we evaluate the performance of the proposed BNB-R method using SEQC

benchmark (67). Specifically, we use the RNA-seq data from BGI provided in the R package

SEQC on Bioconductor (68), containing the counts for about 26,000 genes. In our experiments, we

employ sample groups A and B, which are derived from the Agilent’s Universal Human Reference

RNA and Life Technologies’ Human Brain Reference RNA cell lines, respectively. We collect the

counts from the first flow cells of the sequencing machines on five replicates for each group.

To evaluate the differential expression analysis methods, we note that in the SEQC project, the

same RNA samples for a comprehensive group of control genes are analyzed based on quantitative

Reverse Transcription Polymerase Chain Reaction (qRT-PCR) using TaqMan assays (51), which

is referred as the TaqMan benchmark data (69; 67). More precisely, for sample groups A and B,

the expression intensity values of 955 selected control genes have been derived in the TaqMan

qPT-PCR analysis for sequencing benchmarking. In the absence of the knowledge on the genes

that are truly differentially expressed across different conditions, we follow the approach in (70) to
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threshold the qRT-PCR expression ratios across different conditions at a certain value to define the

ground-truth set of differentially expressed genes. Based on these 955 genes in the TaqMan data,

we evaluate the performance of different differential expression analysis pipelines.

Before applying edgeR, DESeq2, and voom to this dataset, we first perform a surrogate variable

analysis (SVA) to adjust for un-modeled artifacts such as batch effects (66). More precisely, we use

svaseq function of R package sva (71) with two introduced surrogate variables (SVs). In the

downstream differential expression analysis, we use these two SVs as extra confounding factors for

edgeR, DESeq2, and voom. Our experiment shows that incorporation of the SVs slightly improves

the performance of these methods. Note that although for BNB-R no explicit experimental factor

other than a sample’s group is used in this experiment, our results suggest the performance of

the proposed BNB-R differential expression analysis method is superior to those of stochastic

processes inspired models in BNP-Seq, all of which achieve better ROC and PR curves than edgeR,

DESeq2, and voom in conjunction with SVA, as described in detail below.

While truly differentially expressed genes are unknown for the SEQC RNA-seq data, we rely

on the qRT-PCR expression intensity of the 955 genes in the TaqMan data and set different cut-

offs for the binary logarithm (log2) of the qRT-PCR expression ratio to define “truly” differentially

expressed genes. We increase this log2 cut-off value gradually from 0.5 to 2, and calculate both

AUC-ROC and AUC-PR. For the analysis of the dataset BGI on a single cluster node with Intel

Xeon 2.5GHz E5-2670 v2 processor, it took around two hours for BNB-R method with 2,000

MCMC iterations. The posterior distributions of the regression coefficients are used to assess

differential expression. In addition to the methods used for synthetic data, we also include BNBP

and GNBP (65), both of which are generative models designed specifically for a single factor

setting. As shown in the bottom panels of Figure 3.3, the BNB-R method outperforms all the other

methods in both ROC and PR analyses, followed very closely by BNBP and GNBP. Note that the

performance gains of the three generative models over the other methods become more significant

as one increases the log2 cut-off for the qRT-PCR expression ratio, which reduces the number of

genes that are considered as truly differentially expressed.
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To further investigate the experimental results, we fix the log2 cut-off value at 2 for the qRT-

PCR expression intensity of the 955 genes in the TaqMan data, and illustrate the ROC and PR

curves for the BGI dataset in the top panels of Figure 3.3. It is clear the BNB-R method along

with GNBP and BNBP not only have higher AUC-ROC and AUC-PR, but also outperform edgeR,

DESeq2, and voom used together with SVA in almost all regions of the ROC and PR curves.

3.2.3 Case study: Th17 cell differentiation

To further illustrate its potential biological significance when integrating other covariates in

BNB-R for biomarker identification applications, we provide a case study with our BNB-R method

on a RNA-seq dataset of early human T helper 17 (Th17) cell differentiation and T-cell activation

(Th0). Th17 cells play an essential role in the pathogenesis of autoimmune and inflammatory

diseases, and have been the focus of many recent research efforts (72). In particular, the knowledge

of the early phase of Th17 differentiation helps to gain insight into the process of signal propagation

through various pathways and gene regulatory networks (73). We use the RNA-seq dataset of (74)

and (75), which contains gene expression profiling of Th0 and Th17 cells at the following five

time points: 0, 12, 24, 48, and 72 hours after cell activation and stimulation, with three biological

replicates at each time point. The data is obtained from Gene Expression Omnibus, with accession

GSE52260.

The design matrix of the analysis is formed from an additive model formula as in our simulation

studies, accounting for condition and time point factors. More precisely, for sample j = 1, 2, ..., 15

the covariate vector is xj = [xj0, xj1, xj2]T , where xj0 is the intercept, xj1 is the cell category

(i.e., Th0 vs Th17), and xj2 is the sample time point. We apply BNB-R to identify differen-

tially expressed genes, where after 1,000 burn-in iterations, 1,000 posterior samples are collected

to calculate the symmetric KL-divergence between the posterior distributions of exp(βk0) and

exp(βk0 + βk1) to rank the genes. The run-time of BNB-R with 2,000 MCMC sampling iterations

for the Th17 dataset on the cluster node with configuration provided in Section 3.2.2 is around 6

hours.

We consider the top 100 genes ranked by the symmetric KL-divergence and perform Gene On-
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tology (GO) analysis using LAGO (76) software2, focusing on the ontology of biological processes.

The top five significantly enriched GO terms discovered by LAGO, with their corresponding ad-

justed p-values shown in Table 3.3, illustrating the association between the differentially expressed

genes and immune system activation and response to stimulus.

Table 3.3: Top five enriched GO terms associated with top 100 differentially expressed genes in
TH17 dataset detected by BNB-R.

GO-ID Term P-value
GO:0002376 immune system process 4.74695e-13
GO:0046649 lymphocyte activation 3.33415e-11
GO:0006955 immune response 3.90728e-11
GO:0045321 leukocyte activation 1.6007e-10
GO:0050896 response to stimulus 1.89798e-10

In a closer look at the results, the top differentially expressed gene identified by BNB-R is gene

COL6A3, an important organizer of the extracellular matrix proteins, contributing to adipose tissue

inflammation (77). Also, the up-regulation of COL6A3 gene in Th17-polarizing cells is confirmed

by microarray and RT-PCR assays in (72). The third ranked gene, Leukemia Inhibitory Factor

(LIF), belongs to the IL-6 family of cytokines and resides within the core regulatory circuitry of

T cells (78). The fourth gene, RORC, is a Th17 lineage-specific transcription factor (79), whose

differential expression is also verified in the microarray study in (72). In addition, Western blotting

results in (72) show that genes BATF, CTSL1, VDR, KDSR, ATP1B1, and BASP1 were highly

expressed in Th17 cells compared with their expression in Th0 cells at various time points during

the first three days of polarization. The rankings of these genes obtained by our BNB-R are 11,

13, 15, 20, 24, and 41, respectively, which confirms the significance of their expression changes.

Moreover, microarray studies of (72) found out the up-regulation of CXCR5 and LMNA in CD4+

T cells cultured under Th17-polarizing conditions compared with Th0 cells, and flow cytometric

detection of CD52 at 48 and 72 hours showed down-regulation of this protein in CD4+ T cells

2available at http://go.princeton.edu/cgi-bin/LAGO
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cultured under Th17-polarizing conditions. These genes are ranked 14, 44, and 60, respectively,

in our differential expression analysis, supporting their potential roles in Th17 cells differentiation

process.

Next, to examine how incorporating the time course information changes the differential ex-

pression analysis results, we apply BNB-R on the Th17 dataset, considering only the condition

factor but ignoring the temporal information of different samples. Although out of the top 100

differentially expressed genes, there are 84 genes common between these two differential analysis

results, the GO analysis, when the time factor is neglected, results in a total of 36 significantly

enriched terms with known annotations, which is less than 40 annotated enriched terms when

including the time factor. Some of the GO terms missed include cytokine-mediated signaling path-

way, positive regulation of JAK-STAT, STAT cascades, and T cell activation involved in immune

response, which are all related to the immune system and can potentially lead to new hypotheses.

In addition, BNB-R considering the time factor leads to smaller p-values overall in comparison to

the analysis without time information, and hence more significantly enriched GO terms. For in-

stance, the adjusted p-value obtained for T cell differentiation by the former analysis is 1.910e− 4,

while the latter returns 2.554e− 3.
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Figure 3.2: Left panels: ROC curve, Right panels: PR curve. Performance comparison of different
methods in detecting differentially expressed genes generated under the negative binomial regression model
with covariates: condition, gender, dosage, and interaction of condition and gender. The panels in the
top and middle rows correspond to differentially expressed genes across conditions for males and females,
respectively. The panels in the bottom row correspond to differentially expressed genes for the case that
full covariate information is not employed, with the interaction term excluded from differential expression
analyses by all the methods.
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Figure 3.3: Top row: ROC and PR curves for a fixed cut-off, Bottom row: AUC of ROC and
PR curves for different cut-off values. Performance comparison of different methods in detecting
differentially expressed genes on real-world benchmark RNA-seq data from the SEQC project.
edgeR, DESeq2, and voom are applied in conjunction with SVA with two surrogate variables.
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4. COVARIATE-DEPENDENT NEGATIVE BINOMIAL FACTOR ANALYSIS OF RNA

SEQUENCING DATA 1

Living systems are complex and their behavior is coordinated by multiple components. Es-

pecially, when studying complex disease, phenotypic changes have been shown to be associated

with coordinated regulation in functional modules of interacting genes (pathways or subnetworks)

rather than statistically significant changes in individual genes (80). Therefore, a class of ap-

proaches have been developed to detect genes with similar expression patterns as potential func-

tional modules. Weighted Gene Co-Expression Network Analysis (WGCNA) (35), a popular tool

for gene co-expression network analysis, first constructs an adjacency matrix based on the pairwise

co-expression measures, for example, based on the correlation between gene expressions across

samples; then it assigns genes to different modules using the hierarchical clustering algorithm.

DiffCoEx (36) builds on WGCNA, and by computing the matrix of adjacency differences between

different experiment conditions, aims at identifying differentially co-expressed genes. Several

targeted methods also have been proposed for studying co-expression changes across conditions,

relying on pre-defined gene modules (81; 82; 83). For instance, (83) focuses on the analysis of

modules based on known gene annotations, such as gene ontology categories.

All of the aforementioned methods were proposed for data generated from microarray based

experiments; and thus there remains a lack of tools for gene module detection specifically designed

for RNA-seq count data. Furthermore, the existing methods often require prior knowledge from

either manual annotations or other module identification methods. They need to be supplied with

prepared lists of genes as candidate functional modules. For example, (37) have proposed a net-

work module-based generalized linear model for identifying differentially expressed pre-defined

gene sets.

A suitable method for gene module identification based on RNA-seq data should explicitly

1Reprinted with permission from S. Zamani Dadaneh, M. Zhou, and X. Qian, “Covariate-dependent negative
binomial factor analysis of RNA sequencing data,” Bioinformatics, vol. 34, no. 13, pp. i61–i69, 2018. Copyright 2018
Oxford University Press.
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model highly over-dispersed count data that are often skewed (8) to avoid potential bias introduced

by inappropriate modeling. One of the most popular solutions to account for over-dispersion due to

biological variability is using the negative binomial (NB) distribution, which possesses a quadratic

variance-mean relationship. More importantly, the number of ad-hoc choices in modeling and

data analytics should be minimized. Many existing methods, which often take two stages to first

construct co-expression networks based on expression profile data and then identify co-expressed

modules based on different clustering methods, may lead to uncertain results sensitive to different

choices. Last but not least, when dealing with RNA-seq data, the variability of the sequencing

depths across samples needs to be taken into account.

In this chapter, we propose a novel covariate-dependent NB factorization model for identifying

gene modules in RNA-seq experiments. The proposed method, directly applied to gene counts

from RNA-seq, obviates the need for multiple ad-hoc steps as required in co-expression network

analyses of WGCNA (35) and DiffCoEx (36). In addition, by employing a flexible regression

model for the scale parameter of the gamma distribution in our fully Bayesian NB factor analysis

model, dNBFA is capable of tackling RNA-seq experiments with complex confounding factors,

and quantifies the impact of these factors on the identified modules. Finally, similar to the mecha-

nisms employed in (65), this new approach does not require an ad-hoc normalization step, as the

model accounts for the sequencing-depth heterogeneity of different samples automatically.

4.1 Methods

4.1.1 NB factor analysis

In this section we first present the Negative Binomial Factor Analysis (NBFA) method for count

data (84), and demonstrate how it can be applied in the context of RNA-seq data analysis for the

identification of gene modules. Let nvj denote the number of sequencing reads mapped to gene

v ∈ {1, ..., V } in sequencing sample j ∈ {1, ..., J}, and let the V × 1 vector nj contain all the

gene counts for sample j. The negative binomial (NB) distribution is a popular choice to model

RNA-seq count data, allowing one to account for over-dispersion due to technical and biological
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variations (65; 85; 56). Under the NBFA model (84), the sample counts are factorized as

nj ∼ NB(Φθj, pj), (4.1)

where n ∼ NB(r, p) denotes the NB distribution with the probability mass function (PMF) fN(n) =

Γ(n+r)
n!Γ(r)

pn(1 − p)r, where Γ(·) is the gamma function and n ∈ {0, 1, 2, ...}. Φ = (φ1, ...,φK) ∈

RV×K
+ represents the factor loading matrix, Θ = (θ1, ...,θJ) ∈ RK×J

+ represents the factor score

matrix, and R+ = {x : x ≤ 0}. For each latent factor, φk = (φ1k, ..., φV k)
T encodes the weights

of the V genes associated with factor k and θj encodes the popularity of K factors in sample j.

The NBFA can be augmented as

nvj =
K∑
k=1

nvjk, nvjk ∼ NB(φvkθkj, pj). (4.2)

From biological perspectives, K factors can correspond to the underlying biological processes

or functional modules related to genotypic, phenotypic, or treatment condition changes. The cor-

responding sub-counts nvjk can be viewed as the result of the contribution of underlying biological

process k to the expression of gene v in sample j. The probability parameter pj , which only de-

pends on the sample index, can be considered as a parameter reflecting the potential heterogeneity

of counts, due to the variation of the sequencing depths across different samples.

More precisely, using (4.2) and the formula for the mean of the NB distribution, the expected

expression of gene v in sample j can be expressed as E[nvj] = (
∑K

k=1 φvkθkj)
pj

1−pj . The term
pj

1−pj can be interpreted as the effect of the sequencing-depth heterogeneity of sample j on the

corresponding gene expression in this sample. This approach removes the need for an ad-hoc nor-

malization step, as the model accounts for the sequencing-depth heterogeneity of different samples

automatically, similar to the mechanisms employed in (65). The remaining term in this expectation,∑K
k=1 φvkθkj , can represent the true abundance of gene v in sample j. Specifically, it comprises of

contributions from all latent factors, where each contribution is encoded as the product of the gene

association with latent factors as modules and the contribution of those modules to sample j.
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NBFA proceeds by placing the Dirichlet and gamma prior distributions on φvk and θkj , respec-

tively, and appropriate prior distributions on the other model parameters. A Gibbs sampling algo-

rithm that exploits novel data augmentation techniques has been derived for inferring the model

parameters (84).

4.1.2 Covariate-dependent NBFA

In real-world RNA-seq experiments, it is often desirable to identify the functional modules

corresponding to critical biological processes specific to the behavior of interest by the design of

experiments. Often, the presence of potential confounding factors also requires that the developed

factor analysis method based on RNA-seq data can take them into account (when the correspond-

ing conditions are given) to derive correct functional module results. The aforementioned NBFA

model neglects such information about sequencing samples from designed experiments. In order

to empower the NBFA model in tackling the setups with complex experiment design, we extend

its framework to make it capable of incorporating the external covariate information (e.g., pheno-

types, treatments, and other confounding factors) into the factor analysis model to derive the new

covariate-dependent NBFA (dNBFA) model.

The graphical representation of dNBFA is illustrated as a hierarchical model in Figure 4.1.

In the first layer of dNBFA, similar to NBFA, the gene counts are modeled using the same NB

distribution as in (4.2). Then, in the next layer we place a gamma prior distribution on θkj as

θkj ∼ Gamma(rk, e
βTk xj), (4.3)

where xj is the P × 1 vector of covariates for sample j, reflecting the corresponding experiment

design. In this model, both numerical and categorical covariates can be used.

Employing the law of total expectation, and removing the sequencing depth effect by the related

terms containing pj , we have E[nvjk] ∝ φvkrke
βTk xj . This new layer of model, splits the effect of

the latent factor k on sample j into two parts; rk, which can be considered as representing the

baseline expression of the factor k across all samples, and the exponential term eβ
T
k xj , which
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adjusts the effect of the latent factor on the sample according to its traits. We note that including

an intercept in βTk xj may weaken the identifiably of rk, as in the expectation of the count nvjk a

product term rke
βk0 depending only on latent factor k appears. Thus in all subsequent experiments

a separate intercept term is not used when considering covariate effects. The parameters of the

dNBFA model with their interpretations in the context of RNA-seq experiments are presented in

Table 5.1.

We place independent zero-mean normal distributions on the components of the regression

coefficient parameters as

βk ∼
P∏
p=1

N(0, α−1
p ), (4.4)

where αp is the precision parameter of the normal distribution. By assuming identical precisions

for components of the regression coefficients across all latent factors, dNBFA burrows statistical

strengths to infer these precision parameters.

Similar to NBFA, a Dirichlet prior distribution with the smoothing parameter η is imposed on

the gene-module association parameters φvk:

(φ1k, ..., φV k) ∼ Dir(η, ..., η). (4.5)

The Dirichlet smoothing parameter η controls the sparsity of the inferred latent factors. Generally

speaking, the smaller η is, the more sparse and specific the inferred factors are encouraged to be.

A challenge in NB factorization is how to determine the number of latent factorsK. To address

this issue, one can employ a reasonably large K, and then according to the inference step for rk

(refer to (4.12) below), the baseline expression inferred for non-important latent factors vanishes

as the number of assigned gene sub-counts to it decreases.

We complete the model by placing conjugate priors on hyperparameters. Specifically, we ex-

ploit the gamma-Poisson conjugacy, beta-negative binomial conjugacy with respect to the proba-

bility parameter, and gamma-gamma conjugacy with respect to the scale parameter of the gamma

58



nvj pj

φk

θkj

xj

rk

βk

γ0

c0

αp

v = 1, ..., VK

K

j = 1, ..., J

KP

Figure 4.1: Graphical representation of covariate-dependent negative binomial factor analysis
(dNBFA).

distribution. The complete dNBFA model is presented below:

nvj =
K∑
k=1

nvjk, nvjk ∼ NB(φvkθkj, pj),

θkj ∼ Gamma(rk, e
βTk xj), rk ∼ Gamma(γ0/K, 1/c0),

(φ1k, ..., φV k) ∼ Dir(η, ..., η), βk ∼
P∏
p=1

N(0, α−1
p ),

γ0, c0, α, η ∼ Gamma(e0, 1/f0), pj ∼ Beta(a0, b0). (4.6)

Throughout the experiments in this paper, we set the hyperparameters as e0 = f0 = 0.01 and

a0 = b0 = 1. In the following section, we provide an efficient inference algorithm that adopts

novel data augmentation techniques tailored to our dNBFA model.

4.1.3 Inference via Gibbs sampling

By utilizing a few data augmentation techniques (86; 60; 87), we derive an efficient Gibbs

sampling algorithm for inferring the model parameters in (4.6), as described below. Algorithm 1

summarizes all the steps in the Gibbs sampling algorithm.
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Table 4.1: Parameters of covariate-dependent negative binomial factor analysis (dNBFA) and their
interpretations in the context of RNA-seq data. The inputs of dNBFA are gene counts nvj and
vector of covariates xj .

Parameter Constraint Interpretation
rk rk > 0 module baseline expression
pj 0 < pj < 1 sequencing depth
φvk

∑V
v=1 φvk = 1, φvk > 0 gene-module association

θkj θkj > 0 popularity of factor k in sample j
βkp βkp ∈ R impact of covariate p on expressionof factor k

Sample φvk and θkj . We start with the data augmentation technique developed for inferring

the NB dispersion parameter (60). More precisely, the negative binomial random variable n ∼

NB(r, p) can be generated from a compound Poisson distribution as

n =
∑̀
t=1

ut, ut ∼ Log(p), ` ∼ Pois(−r ln(1− p)),

where u ∼ Log(p) corresponds to the logarithmic random variable (88), with the PMF fU(u) =

− pu

u ln(1−p) , u ∈ {1, 2, ...}. As shown in (60), given n and r, the distribution of ` is a Chinese Restau-

rant Table (CRT) distribution, (`|n, r) ∼ CRT(n, r), which can be generated as ` =
∑n

t=1 bt, bt ∼

Bernoulli( r
r+t−1

).

Utilizing the above data augmentation technique, for each observed count nvj , a latent count is

sampled as

(`vj|−) ∼ CRT(nvj,
K∑
k=1

φvkθkj). (4.7)

These counts are then further split into latent sub-counts (Proposition 3 of (84)) using a multinomial

distribution:

(`vj1, ..., `vjK |−) ∼ Mult
(
`vj ; (

φv1θ1j∑K
k=1 φvkθkj

, ...,
φvKθKj∑K
k=1 φvkθkj

)
)
. (4.8)

These latent counts can be considered as being generated as `vjk ∼ Pois(qjφvkθkj), where
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qj := − ln(1− pj). Hence, using gamma-Poisson conjugacy, φvk and θkj are updated as

(φ1k, ..., φV k|−) ∼ Dir(η + `1·k, ..., η + `V ·k)

(θkj|−) ∼ Gamma
(
rk + `·kj,

1

qj + e−β
T
k xj

)
, (4.9)

where `v·k =
∑J

j=1 `vjk and `·kj =
∑V

v=1 `vjk.

Sample rk and γ0. Let us denote ψkj := βTk xj + ln qj . Starting with `·jk ∼ Pois(qjθkj),

marginalizing out θkj leads to

`·jk ∼ NB
(
rk,

1

1 + e−ψkj

)
. (4.10)

Employing the CRT augmentation technique as

(˜̀
jk|−) ∼ CRT(`·jk, rk), (4.11)

the Gibbs sampling update for rk can be written as

(rk|−) ∼ Gamma
(
γ0/K + ˜̀·k,

1

c0 +
∑

j ln(1 + eψkj)

)
. (4.12)

Following a similar procedure for γ0, first we draw

(˜̀̃
k|−) ∼ CRT(˜̀·k, γ0/K), (4.13)

and then we update the conditional posterior of γ0 as

(γ0|−) ∼ Gamma
(
e0 +

∑
k

˜̀̃
k,

1

f0 −
∑

k ln(1− p̃k)/K
)
, (4.14)

where p̃k :=
∑
j ln(1+e

ψkj )

c0+
∑
j ln(1+e

ψkj )
.

Sample βk. For the regression coefficients modeling potential covariate effects, the lack of
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conditional conjugacy precludes immediate closed-form inference. Therefore we adopt another

data augmentation technique, specifically designed for dNBFA, to infer the regression coefficients

βk, relying on the Polya-Gamma (PG) data augmentation of (86; 87). Denote ωkj as a random

variable drawn from the PG distribution as ωkj ∼ PG(`·jk + rk, 0).

Since Eωkj [exp(−ωkjψ2
kj/2)] = cosh(`·jk+rk)(ψ2

kj/2), the likelihood of ψkj in (4.10) can be

expressed as

L(ψkj) ∝
(eψkj)`·jk

(1 + eψkj)`·jk+rk

∝ exp
(`·jk − rk

2
ψkj

)
Eωkj [exp(−ωkjψ2

kj/2)]. (4.15)

Exploiting the exponential tilting of the PG distribution in (87), we draw ωkj as

(ωkj|−) ∼ PG(`·jk + rk, ψkj). (4.16)

Given the values of the auxiliary variables ωkj for j = 1, ..., J and the prior in (4.6), the conditional

posterior of βk can be updated as

(βk|−) ∼ N(µk,Σk), (4.17)

where Σk =
(

diag(α1, ..., αP ) +
∑

j ωkjxjx
T
j

)−1

and µk = Σk

[∑
j(
`·jk−rk

2
− ωkj ln(qj))xj

]
.

Sample η. To derive the update steps for Dirichlet hyperparameters, we note that the likelihood

for {φk} is

L({φk}) ∝
∏
k=1

Mult(`1·k, ..., `V ·k; `··k,φk). (4.18)

Marginalizing out {φk} from (4.18), the likelihood for η can be expressed as

L(η) ∝
∏
k=1

DirMult(`1·k, ..., `V ·k; `··k, η, ..., η), (4.19)
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where DirMult denotes the Dirichlet-Multinomial distribution (84). Since the product of L(η) and∏
k Beta(qk; `··k, ηV ) can be written as

L(η)
∏
k

Beta(qk; `··k, ηV ) ∝
∏
k

∏
v

NB(`v·k; η, qk), (4.20)

we can further apply the data augmentation technique for the NB distribution of (60) to derive

closed-form update equations for η as

(qk|−) ∼ Beta(`··k, ηV ), (uvk|−) ∼ CRT(`v·k, η)

(η|−) ∼ Gamma
(
e0 +

∑
v,k

uvk,
1

f0 − V
∑

k ln(1− qk)
)
. (4.21)

Sample αp, pj and c0. Using appropriate conditional conjugacies, we can sample the remaining

parameters as

(αp|−) ∼ Gamma(e0 +K/2,
1

f0 +
∑

k β
2
kp/2

)

(pj|−) ∼ Beta(a0 +
V∑
v=1

nvj, b0 +
K∑
k=1

θkj)

(c0|−) ∼ Gamma(e0 + γ0,
1

f0 +
∑

k rk
). (4.22)

The Gibbs sampling steps in equations (5.6) to (5.14) are summarized in Algorithm 2.

4.2 Results

We evaluate our dNBFA for covariate-dependent factor analysis based on two sets of real-world

RNA-seq data studying complex diseases, and compare its performance with those of WGCNA

(35) and DiffCoEx (36), two commonly adopted two-stage co-expression network based methods.

The first set of RNA-seq data was extracted from The Cancer Genome Atlas (TCGA) (89),

including three datasets on breast invasive carcinoma (BRCA), lung squamous cell carcinoma

(LUSC), and kidney renal clear cell carcinoma (KIRC). These data were retrieved using the TCGA2STAT
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Algorithm 2 dNBFA model inference
Inputs: RNA-seq counts, design matrix of covariate effects, N
Outputs: gene module membership matrix

Initialize model parameters
# Do Gibbs sampling:
for iter = 1 to N do

Sample `vjk using the CRT distribution (eq. (5.6))
Update φvk and θkj using the gamma-Poisson conjugacy (eq. (4.9))
Sample ˜̀

jk using the CRT distribution (eq. (4.11))
Update rk and γ0 using the gamma-Poisson conjugacy (eq. (4.12),(4.14))
Sample auxiliary variables ωkj , using the PG distribution (eq. (5.9))
Update regression coefficients (eq. (5.10))
Update η using auxiliary beta distributed random variables (eq. (4.21))
Update αp, pj and c0 (eq. (5.14))

end for

R package (90). Using TCGA data we expect to illustrate the higher differential expression sig-

nificance of gene modules identified by dNBFA with respect to the disease factor compared to the

results from WGCNA and DiffCoEx.

The second experiment was performed on a RNA-seq dataset of the Autism study in (91),

where samples were obtained from three brain regions: the cerebral cortex Brodmann area (BA)

19, anterior prefrontal cortex (BA10), and a part of the frontal cortex (BA44). For this dataset

we demonstrate how incorporating covariate information may enhance the chance of achieving

meaningful biological discoveries.

For both TCGA and Autism experiments, dNBFA was run using 3,000 MCMC iterations,

where after the first 1,000 burn-in iterations, the posterior samples with the highest likelihood

were collected as the point estimates of model parameters. The total number of latent factors for

both TCGA and Autism were initially set as K = 250, and after the parameter inference, only

the top 100 factors with non-negligible baseline expressions were kept for further analyses. In

addition, to determine module membership, for each latent factor k, only the top 20 genes with

highest φvk were considered as members of module k. It should be noted that when an evaluation

metric that can take advantage of the whole association matrix Φ exists, this ad-hoc step of using
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a cut-off for the gene-association parameter can be avoided.

For WGCNA, the adjacency matrix was built by first computing the pairwise Pearson correla-

tion coefficients between gene expression profiles and then applying the soft threshold β = 6, 9

for TCGA and Autism data, respectively. The gene modules were identified by applying a hierar-

chical clustering algorithm to the derived topological overlap dissimilarity matrix (92). A similar

procedure was followed for DiffCoEx, except that the topological overlap matrix was built upon

the matrix of adjacency difference (36). Our experiments show that the discovered modules by

WGCNA and DiffCoEx comprise of large lists of genes, where no further modeling capability is

provided to narrow down the gene sets for more consequent exploratory analysis.
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Figure 4.2: Significance of differential expression for eigengenes associated with gene modules
identified by dNBFA, WGCNA, and DiffCoEx applied to three TCGA datasets. The panels show
the sorted negative logarithm of P-values of the derived modules. P-values are calculated using the
student’s t-test on association between module eigengene expression and the samples’ condition
factor (cancerous vs. normal).

4.2.1 TCGA data

For all TCGA datasets, we have filtered out the genes whose total read counts across all samples

are less than 50, resulting in roughly 20,000 genes in each dataset. The total numbers of samples

for BRCA, LUSC, and KIRC datasets are, respectively, 40, 34, and 40, where in each case the

number of primary tumor and normal samples are equal.
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Figure 4.3: Per-sample eigengene expression of modules with the 10th lowest P-values discovered
by dNBFA, WGCNA, and DiffCoEx, across cancerous and normal samples for the three TCGA
datasets. In each figure the y-axis is the eigengene expression, and the x-axis is the sample number.
Red and blue bars correspond to the normal and cancer groups respectively. Figures in top, middle,
and bottom row are the results of dNBFA, DiffCoEx, and WGCNA, respectively. Figures in left,
middle, and right columns correspond to BRCA, LUSC, and KIRC datasets, respectively.

Based on the resulting RNA-seq count data, dNBFA, WGCNA, and DiffCoEx have been ap-

plied to derive functional gene modules using the aforementioned settings. To assess the signifi-

cance of differential expression of identified modules with respect to the disease status of samples,

we follow the framework of (35). More precisely, for each detected module, first the eigengene

(35) is computed via the first principal component of the expression matrix of the corresponding

derived module. The module eigengene is used to summarize and represent the expression profiles

of the module genes (93). Then, the association of the eigengene expression with the disease status

is evaluated and finally the significance of the association is assessed based on the student’s t-test.

We calculate the P-values for gene modules identified by dNBFA, WGCNA, and DiffCoEx,

applied to the three TCGA datasets. The sorted P-values (based on -log(P-value)) are illustrated in

Figure 4.2. The eigengenes of the modules detected by dNBFA are remarkably more differentially

expressed than those detected by WGCNA and DiffCoEx in all three TCGA datasets. To further

investigate the results, we present the per-sample eigengenes of the module ranked 10th for differ-
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ential expression, which was identified by dNBFA, WGCNA, and DiffCoEx for the three TCGA

datasets in Figure 4.3. The per-sample eigengenes of dNBFA modules are more consistently dif-

ferentially expressed with respect to the disease status covariate for all three TCGA datasets, while

per-sample eigengenes of WGCNA and DiffCoEx demonstrate higher variations within each group

of samples with the same disease status. To ensure that the gene modules detected by dNBFA are

not redundant, we also have examined the modules for significant overlap. Except a minor over-

lap between two modules, the rest of the modules identified by dNBFA are completely disjoint.

These results suggest that dNBFA can be a powerful untargeted module identification tool, with-

out pre-defined gene lists, for genomic experiments that study coordinated gene expression pattern

changes across multiple groups.

To further verify the advantages of dNBFA that it avoids overfitting when the initial number

of modules K is set high, we present in Figure 4.4 the learned rk’s, representing the baseline

expression associated with the derived modules, for three TCGA datasets. Only the top 40 rk’s are

included in this figure. For all datasets, only a fraction of modules have significantly large baseline

expression; and thus in practice, a threshold can be used to extract the modules that contribute

significantly to coordinated gene expression changes specific to the experiment design factors of

interest.

For the analysis of the real-world TCGA dataset on a single cluster node with Intel Xeon

2.5GHz E5-2670 v2 processor, on average it took around eight hours for both the dNBFA and

NBFA methods with 3,000 MCMC iterations, and about one hour for both WGCNA and DiffCoEx.

4.2.2 Autism data

Autism is a neuro-developmental disorder, in which the affected individuals are characterized

by impairments in social and communicative developments (91). To apply dNBFA to the RNA-seq

dataset of the Autism study in (91), we first discard the samples with low sequencing depths, re-

sulting in a dataset with 36 samples from the control group and 23 Autism samples. The following

analyses are performed using a subset of 12,010 genes that have a count of at least three per sample

across 90% of the samples. In this experiment, site of sample collection, age, sex, and brain region
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Figure 4.4: Inferred baseline expression rk for modules detected by dNBFA in the three TCGA
datasets. Only the top 40 rk’s are included in this figure.

are available as the covariate information in factor analysis. To examine how these information can

alter the NB factor analysis results, in the first set of experiments we use the covariates to apply

dNBFA; and in the second set of experiments, we neglect all covariate information and run the

naive NBFA on the dataset.

We perform gene set enrichment analysis (GSEA) on the discovered modules by applying

dNBFA and NBFA respectively to the Autism data, covering molecular function (MF), cellular

component (CC), and biological process (BP) ontology domains. We calculate the significance of

GO terms using Fisher’s exact test and depict the sorted negative logarithm of P-values for both

dNBFA and NBFA in Figure 4.5. The modules detected by dNBFA have, in general, lower P-

values than those identified by NBFA without covariates, suggesting that incorporating covariate

information may increase the chance of discovering biologically meaningful modules.

To investigate the gene ontology results more thoroughly, the top 10 GO terms with the low-

est P-values are presented in Tables 4.2 and 4.3 for dNBFA and NBFA methods, respectively. In

these tables, each row is the most significant GO term corresponding to one module identified by

dNBFA or NBFA. The top modules discovered by dNBFA provide more explicit connections to

neural system. Especially, the top module identified by dNBFA, which was not detected by NBFA,

is associated with GO term ‘type I interferon signaling pathway’, where type I Interferon responses

in the brain are classically attributed to viral infections (94), which in turn are connected to Autism

(95). Another important module detected only by dNBFA, the third module in Table 4.2, is related
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to adaptive immune response which is closely correlated to the development of Autism spectrum

disorders (96; 97). More precisely, this module includes the human leukocyte antigen (HLA) genes

that play an instrumental role in many innate and adaptive immune responses (98). Many reports

have provided the evidence on associations between Autism and HLA genes/haplotypes, suggest-

ing an underlying dysregulation of the immune system mediated by HLA genes (98; 99; 100).

A third important module identified only by dNBFA is associated with GO term ‘neuron differ-

entiation (GO:0030182, P-value = 1.4 × 10−08). Specifically, this module includes calmodulin

1 (CALM1) gene. Significant defects in CALM1 interaction modules, which regulate voltage-

independent calcium-activated action potentials at the neuronal synapse, are reported in autistic

patients (101).

Table 4.2: Top enriched GO terms identified by dNBFA algorithm applied to Autism RNA-seq
data.

GO-ID Aspect Term P-value
GO:0060337 BP type I interferon signaling pathway 4.377782e-15
GO:0043209 CC myelin sheath 1.522628e-14
GO:0002460 BP * see blow 9.487407e-13
GO:0061024 BP membrane organization 2.250911e-11
GO:0044456 CC synapse part 4.010908e-10
GO:0005575 CC cellular component 4.950009e-10
GO:0033693 BP neurofilament bundle assembly 3.982179e-09
GO:0031720 MF haptoglobin binding 3.982179e-09
GO:0000982 MF ** see blow 6.267732e-09
GO:0001504 BP neurotransmitter uptake 1.015843e-08

* adaptive immune response based on somatic recombination of immune receptors built from
immunoglobulin superfamily domains

** transcription factor activity, RNA polymerase II core promoter proximal region sequence-specific
binding

Other GO terms directly related to the nervous system associated with the top modules dis-

covered by dNBFA include ‘Myelin sheath’, ‘synapse part’, ‘neurofilament bundle assembl’, and

‘neurotransmitter uptake’. Specifically, The decreased thickness of myelin in the orbitofrontal

cortex region is closely related to Autism disorders (102). In addition, the module detected by
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Table 4.3: Top enriched GO terms identified by NBFA algorithm applied to Autism RNA-seq data.

GO-ID Aspect Term P-value
GO:0022625 CC cytosolic large ribosomal subunit 6.175728e-17
GO:0097458 CC neuron part 1.134089e-10
GO:0006735 BP NADH regeneration 1.153145e-10
GO:0005575 CC cellular component 4.950009e-10
GO:0051050 BP positive regulation of transport 7.042487e-08
GO:0007399 BP nervous system development 1.841155e-07
GO:0065010 CC extracellular membrane-bounded organelle 5.614232e-07
GO:0017111 MF nucleoside-triphosphatase activity 1.144582e-06
GO:0048630 BP skeletal muscle tissue growth 1.586369e-05
GO:0071208 MF histone pre-mRNA DCP binding 1.586369e-05

dNBFA corresponding to GO term ‘synapse part’ has the highest association with the gene SNAP-

25, whose reduced expression level is responsible for the cognitive deficits in children affected by

Autism spectrum disorders (103).

Examining the detected modules by both dNBFA and NBFA, we observe that multiple GO

terms relevant to Autism, such as ‘myelin sheath’, ‘NADH regeneration’, and ‘nervous system

development’, are revealed by both algorithms. NADH is mainly involved in catabolic reactions

(energy metabolism and mitochondrial function), whose decreased level has been reported in some

children with Autism (104). On the other hand, defects in Autism appear closely tied to late

developmental steps of nervous system that depend on synaptic activity and activity-dependent

transcriptional changes (105). Hence the relevance of the discovered GO terms by both dNBFA

and NBFA to Autism is confirmed.

Finally, by examining the trace plots of model parameters, such as c0 and rk, we find that

the Markov chains for the dNBFA method converge fast and mix well, supporting the practice of

performing downstream analysis with 3,000 MCMC iterations.

In summary, both NBFA and dNBFA methods emerge as useful module identification tools

in RNA-seq data analysis, as in comparison to other available methods for gene module detec-

tion, they require minimum user adjustments. Specifically, the experimental results on the Autism

dataset show that the incorporation of covariate information by dNBFA may lead to the discovery
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Figure 4.5: Negative logarithm of P-values for GO term enrichment analysis of modules detected
by dNBFA and NBFA, applied to Autism RNA-seq data. For dNBFA, site of sample collection,
age, sex and brain region are used as covariate information, while no such information is incorpo-
rated for NBFA.

of more significant Autism-relevant modules, which otherwise would be missed by NBFA.
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5. BAYESIAN GAMMA-NEGATIVE BINOMIAL MODELING OF SINGLE-CELL RNA

SEQUENCING DATA

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for unbiased iden-

tification of previously uncharacterized molecular heterogeneity at the cellular level (106). This

is in contrast to standard bulk RNA-seq techniques (2), which measures average gene expression

levels within a cell population, and thus ignore tissue heterogeneity. Consideration of cell-level

variability of gene expressions is essential for extracting signals from complex heterogeneous tis-

sues (107), and also for understanding dynamic biological processes, such as embryo development

(108) and cancer (109).

A large body of statistical tools developed for scRNA-seq data analysis include a dimensional-

ity reduction step. This leads to more tractable data, from both statistical and computational point

of views. Moreover, the noise in the data can be decreased, while retaining the often intrinsically

low-dimensional signal of interest. Dimensionality reduction of scRNA-seq data is challenging.

In addition to high gene expression variability due to cell heterogeneity, the excessive amount of

zeros in scRNA-seq hinders the application of classical dimensionality reduction techniques such

as principal component analysis (PCA). For instance, in real datasets, it has been reported that the

first or second principal components often depend more on the proportion of detected genes per

cell (i.e., genes with at least one read) than on the actual biological signal (110).

Several existing computational tools adopt explicit zero-inflation modeling to infer the latent

representation of scRNA-seq data. Zero-inflated factor analysis (ZIFA) (111) extends the frame-

work of probabilistic PCA (112) to the zero-inflated setting, by modeling the excessive zeros using

Bernoulli distributed random variables which indicate the dropout event. Zero-inflated negative

binomial-based wanted variation extraction (ZINB-WaVE) (113) directly models the scRNA-seq

counts using a zero-inflated negative binomial distribution, while accounting for both gene- and

cell-level covariates. It infers the model parameters using a penalized maximum likelihood proce-

dure.
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Despite its popularity, using an explicit zero-inflation term may place unnecessary emphasis

on the zero counts, leading to complication in discovering the latent representation of scRNA-seq

data. In this chapter, we propose a hierarchical gamma-negative binomial (hGNB) to both perform

dimensionality reduction and adjust for the effects of the gene- and cell-level confounding factors

simultaneously. Exploiting the hierarchical structure, the proposed hGNB model is capable of cap-

turing the high over-dispersion present in the scRNA-seq data. More precisely, we factorize the

logit of the negative-binomial (NB) distribution probability parameter to identify latent represen-

tation of the data. In addition to factorization, linear regression terms are also included in that logit

function to adjust for the impact of covariates.

In hGNB, a gamma distribution with varying rate parameter is used to model the cell depen-

dent dispersion parameter of the NB distribution. The cell-level dispersion serves as a means of

representing the prevalence of the dropout events. For instance, cells that are sequenced deeply

will naturally include less dropped-out genes with zero counts, and thus this will be reflected in the

cell specific dispersion parameter of NB distribution.

5.1 hGNB Model

In this section we present the hierarchical gamma-negative binomial (hGNB) model for factor

analysis of scRNA-seq data. The graphical representation of hGNB is shown in Figure 5.1. The

parameters of the hGNB model with their interpretations in the context of scRNA-seq experiments

are presented in Table 5.1. Let nvj denote the number of sequencing reads mapped to gene v ∈

{1, ..., V } in the cell j ∈ {1, ..., J}. Under the hGNB model, gene counts are distributed according

to a negative binomial (NB) distribution:

nvj ∼ NB(rj, pvj), (5.1)

where rj and pvj are dispersion and probability parameters of NB distribution, respectively. The

probability mass function (PMF) of this distribution can be expressed as fN(nvj) =
Γ(nvj+rj)

nvj !Γ(rj)
p
nvj
vj (1−

pvj)
rj , where Γ(·) is the gamma function.
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Data from scRNA-seq experiments exhibit high variability between different cells, even for

genes with medium or high levels of expression. To capture this variability, we impose a gamma

prior on the cell-level dispersion parameters as

rj ∼ Gamma(e0, 1/h), (5.2)

where for simplification, the hyper-parameter e0 is set to 0.01 in our experiments, and the rate h is

learned during the Gibbs sampling inference, presented in the following section. This hierarchical

prior on the dispersion parameter, enhances the flexibility of NB distribution to capture the high

over-dispersion of scRNA-seq counts, without the need for explicit zero-inflation modeling.

To account for various technical and biological effects common in scRNA-seq technologies,

we impose a regression model on the logit of NB probability parameter as

ψvj = logit(pvj) = βTv xj + δTj zv + φTv θj. (5.3)

The three terms in the summation are described below.

In the first term, xj is a known vector of P covariates for cell j and βv is the regression-

coefficient vector adjusting the effect of covariates on gene v. The covariate vector xj can represent

variations of interest, such as cell types, or unwanted variations, such as batch effects or quality

control measures. An intercept term can also be included in these cell-level covariates to account

for gene dependent baseline expressions.

In the second term, zv is a vector of Q covariates for gene v, representing gene length or GC-

content for example (114), and δj is its associated regression-coefficient vector. We also include

a fixed intercept element in zv to account for cell-specific expressions, such as the size factors

representing differences in sequencing depth.

In the third term, φTv θj corresponds to the latent factor representation of the count nvj , after

accounting for the effects of gene- and cell-level covariates. More precisely, the unknown K × 1

vector φv contains the factor loading parameters which determine the association between genes
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Figure 5.1: Graphical representation of the hierarchical gamma-negative binomial (hGNB) model.

and latent factors. Moreover, the unknownK×1 vector θj encodes the popularity of theK factors

in the expression of cell j.

We place independent zero-mean normal distributions on the components of the regression

coefficient parameters βv and δj as

βv ∼
P∏
p=1

N(βvp; 0, α−1
p ),

δj ∼
Q∏
q=1

N(δjq; 0, η−1
q ), (5.4)

where αp and ηq are precision parameters of the normal distributions and gamma priors are imposed

on them. These priors are known as automatic relevance determination (ARD), which are effective

tools for pruning large numbers of irrelevant covariates (115; 116). In addition, by assuming

identical precision for components of the regression coefficients across all genes or samples, hGNB

borrows statistical strengths to infer these precision parameters.
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We impose independent normal priors on latent factor loading and score parameters φv and θj:

φv ∼ N(φv; 0, IK),

θj ∼
K∏
k=1

N(θjk; 0, γ−1
k ). (5.5)

Note that the posterior for these terms is not generally independent or normal, but accounts for the

statistical dependence as reflected in the data.

We complete the model by imposing a gamma prior on the precision parameters of normal

distributions, and also the rate parameter of gamma distributions. Specifically, throughout the

experiments, we set both the shape and rate of these gamma priors to 0.01.

Table 5.1: Parameters of the hierarchical gamma-negative binomial (hGNB) model and their inter-
pretations in the context of scRNA-seq data. The inputs of hGNB are gene counts nvj and vector
of cell- and gene-level covariates xj and zv.

Parameter Constraint Interpretation
rj rj > 0 expression heterogeneity of genes in sample j
φvk

∑V
v=1 φvk = 1, φvk > 0 gene-latent factor association

θjk θkj > 0 popularity of factor k in sample j
βvp βvp ∈ R impact of cell covariate p on expression of gene v
δjq βvp ∈ R impact of gene covariate q on expression of cell j

5.1.1 Inference via Gibbs Sampling

In this section, we provide an efficient inference algorithm that adopts data augmentation tech-

niques tailored to our hGNB model. Algorithm 3 summarizes all the steps in the Gibbs sampling

algorithm.

Sample dispersion parameter. We start with the data augmentation technique developed for

inferring the NB dispersion parameter (60). More precisely, the negative binomial random variable

76



n ∼ NB(r, p) can be generated from a compound Poisson distribution as

n =
∑̀
t=1

ut, ut ∼ Log(p), ` ∼ Pois(−r ln(1− p)),

where u ∼ Log(p) corresponds to the logarithmic random variable (88), with the PMF fU(u) =

− pu

u ln(1−p) , u ∈ {1, 2, ...}. As shown in (author?), given n and r, the distribution of ` is a

Chinese Restaurant Table (CRT) distribution, (`|n, r) ∼ CRT(n, r), which can be generated as

` =
∑n

t=1 bt, bt ∼ Bernoulli( r
r+t−1

).

Utilizing this augmentation technique, for each observed count nvj , an auxiliary count is sam-

pled as

(`vj|−) ∼ CRT(nvj, rj). (5.6)

Using gamma-Poisson conjugacy, the cell-dependent dispersion parameters are updated as

(rj|−) ∼ Gamma
(
e0 +

∑
v

`vj,
1

h−
∑

v ln(1− pvj)

)
. (5.7)

Sample regression coefficients. For the regression coefficients modeling potential covariate

effects, the lack of conditional conjugacy precludes immediate closed-form inference. Therefore

we adopt another data augmentation technique, specifically designed for hGNB, to infer the re-

gression coefficients βv and δj , relying on the Polya-Gamma (PG) data augmentation (86; 87).

Denote ωvj as a random variable drawn from the PG distribution as ωvj ∼ PG(nvj+rj, 0). Since

Eωvj [exp(−ωvjψ2
vj/2)] = cosh(nvj+rj)(ψ2

vj/2), the likelihood of ψvj in (5.3) can be expressed as

L(ψvj) ∝
(eψvj)nvj

(1 + eψvj)nvj+rj

∝ exp
(nvj − rj

2
ψvj

)
Eωvj [exp(−ωvjψ2

vj/2)]. (5.8)

77



Exploiting the exponential tilting of the PG distribution in (author?), we draw ωvj as

(ωvj|−) ∼ PG(nvj + rj, ψvj). (5.9)

Given the values of the auxiliary variables ωvj for j = 1, ..., J and the prior in (5.4), the conditional

posterior of βv can be updated as

(βv|−) ∼ N(µ(β)
v ,Σ(β)

v ), (5.10)

where Σ
(β)
v =

(
diag(α1, ..., αP ) +

∑
j ωvjxjx

T
j

)−1

and µ(β)
v = Σ

(β)
v

[∑
j

(nvj−rj
2
− ωvj(δTj zv +

φTv θj)
)
xj

]
.

A similar procedure can be followed to derive the conditional updates for cell-level regression

coefficients as

(δj|−) ∼ N(µ
(δ)
j ,Σ

(δ)
j ), (5.11)

where Σ
(δ)
j =

(
diag(η1, ..., ηQ) +

∑
v ωvjzvz

T
v

)−1

and µ(δ)
j = Σ

(δ)
j

[∑
v

(nvj−rj
2
− ωvj(β

T
v xj +

φTv θj)
)
zv

]
.

Sample latent factor parameters. Using the likelihood function in (5.8) and the priors in

(5.5), we can derive closed-form update steps for factor loading and score parameters. More specif-

ically, the full conditional for factor loading φv is a normal distribution:

(φv|−) ∼ N(µ(φ)
v ,Σ(φ)

v ), (5.12)

where Σ
(φ)
v =

(
IK +

∑
j ωvjθjθ

T
j

)−1

and µ(φ)
v = Σ

(φ)
v

[∑
j

(nvj−rj
2
− ωvj(βTv xj + δTj zv)

)
θj

]
.

The full conditional for factor score θj is also a normal distribution:

(θj|−) ∼ N(µ
(θ)
j ,Σ

(θ)
j ), (5.13)
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Algorithm 3 hGNB model inference
Inputs: scRNA-seq counts, design matrix of covariate effects, N
Outputs: gene module membership matrix

Initialize model parameters
# Do Gibbs sampling:
for iter = 1 to N do

Sample `vj using the CRT distribution (eq. (5.6))
Update rj using the gamma-Poisson conjugacy (eq. (5.7))
Sample auxiliary variables ωvj , using the PG distribution (eq. (5.9))
Update cell- and gene-level regression coefficients (eq. (5.11),(5.10))
Update factor loadings and scores (eq. (5.12),(5.13))
Update αp, ηq and γk (eq. (5.14))

end for

where Σ
(θ)
j =

(
diag(γ1, ..., γK) +

∑
v ωvjφvφ

T
v

)−1

and µ(θ)
j = Σ

(θ)
j

[∑
v

(nvj−rj
2
− ωvj(βTv xj +

δTj zv)
)
φv

]
.

Sample precision and rate. The precision parameters of normal distributions in (5.4) and (5.5)

can be updated using the normal-gamma conjugacy:

αp ∼ Gamma
(
e0 + V/2,

1

f0 +
∑V

v=1 βvp/2

)
,

ηq ∼ Gamma
(
e0 + J/2,

1

f0 +
∑V

v=1 δjq/2

)
,

γk ∼ Gamma
(
e0 + J/2,

1

f0 +
∑V

v=1 θjk/2

)
. (5.14)

Finally, the rate of gamma distribution in (5.2) can be updated using the gamma-gamma con-

jugacy with respect to the rate parameter:

h ∼ Gamma
(
e0(1 + J),

1

f0 +
∑J

j=1 rj

)
. (5.15)
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5.2 Results

We evaluate our hGNB model on four different sets of real-world scRNA-seq data from differ-

ent platforms, and compare its performance to those of principal component analysis (PCA), ZIFA

(111), and ZINB-WaVE (113). In the following, We briefly describe these scRNA-seq datasets. To

pre-process these datasets when needed, we followed the same procedures as in (author?).

V1 dataset. This dataset characterizes more than 1600 cells from the primary visual cortex

(V1) in adult male mice, using a set of established Cre lines (117). A subset of three Cre lines,

including Ntsr1-Cre, Rbp4-Cre, and Scnn1a-Tg3-Cre, that respectively label layer 4, layer 5, and

layer 6 excitatory neurons were selected. We only retained 285 cells that passed the authors’

quality control (QC) filters. The dimensionality reduction methods were only applied to the 1000

most variable genes.

S1/CA1 dataset. This dataset characterizes 3005 cells from the primary somatosensory cortex

(S1) and the hippocampal CA1 region, using the Fluidigm C1 microfluidics cell capture platform

followed by Illumina sequencing (118). Gene expression is quantified by UMI counts.

mESC dataset. This dataset includes the transcriptome measurement of 704 mouse embry-

onic stem cells (mESCs), across three culture conditions (serum, 2i, and a2i), using the Fluidigm

C1 microfluidics cell capture platform followed by Illumina sequencing (119). We excluded the

samples that did not pass the authors’s QC filters, resulting in a total of 169 serum cells, 141 2i

cells, and 159 a2i cells. The dimensionality reduction methods were only applied to the 1000 most

variable genes.

OE dataset. This data characterizes 849 FACS-purified cells from the mouse OE, using the

Fluidigm C1 microfluidics cell capture platform followed by Illumina sequencing (120). We fol-

lowed the filtering procedure of (121), and filtered the cells that exhibited poor sample quality,

retaining a total of 747 cells.

For all datasets, hGNB was run using 2000 MCMC iterations, where after the first 1000 burn-in

iterations, the posterior samples with the highest likelihood were collected as the point estimates of

model parameters corresponding to latent factors. In the dimensionality reduction analysis below,
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Figure 5.2: Mean-difference (MD) plot for S1/CA1 dataset. The solid red line represents the local
regression fit to the data

following (113), for S1/CA1 dataset we set the number of latent factors K = 3, and for V1 and

mESC we set K = 2.

5.2.1 Goodness-of-fit of hGNB Model

We have examined the goodness-of-fit of hGNB model on V1, S1/CA1 and mESC datasets,

using the mean-difference (MD) plots. Figure 5.2 shows the MD plot for the S1/CA1 dataset,

where the y-axis is the difference between observed counts and the expected counts under hGNB,

and x-axis is the average of these two sets of counts. The solid red line in this figure, which

represents the local regression fit (122) to the data, resides near zero for various average levels.

This supports the good fit of hGNB model to the highly over-dispersed scRNA-seq data. Similar

trends are observed for V1 and mESC datasets.

5.2.2 Capturing Zero-Inflation

Next we evaluate the performance of hGNB on simulated data based on the zero-inflated NB

distribution of (113) to show that hGNB faithfully captures zero inflation without the need of

explicit zero-inflation modeling. Specifically, the capability of hGNB to recover true clustering

structure of cells under three zero-count prevalence levels with two different total numbers of cells.

The parameters of the simulating zero-inflated model were learned based on the S1/CA1 dataset.
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Genes that did not have at least five reads in at least five cells were filtered out and 1000 genes

were then sampled at random for each dataset. The number of latent factors was set to K = 2.

To simulate cell clustering, a K-variate Gaussian mixture distribution with three components was

fitted to the inferred factor score parameters, and then for each simulated dataset, factor scores were

generated from K-variate Gaussian distributions. By adjusting the value of regression coefficients

in the zero-inflation term of ZINB-WaVE model, we generated synthetic datasets with three levels

of zero-count percentages as 40%, 60% and 80% (for details refer to (113)). The number of cells

were set to J = 100 and J = 1000. For each scenario, including cell numbers and zero-count

prevalence (sparsity) levels, we simulated 10 datasets.

We evaluate the performance of our method for the clustering task based on the average silhou-

ette width measure. The silhouette width sj of sample j is defined as

sj =
bj − aj

max{aj, bj}
,

where aj is the average distance between sample j and all samples in the cluster that it belongs to,

and bj is the minimum average distance between sample j and samples in other clusters.

Figure 5.3 shows the clustering average silhouette width based on the above simulation setup,

for different zero-count prevalence levels and cell numbers. In the setting with small sample size,

for 40% and 60% zero fractions, hGNB has the best clustering silhouette width, and for the 80%

zero fraction its performance is identical to that of ZINB-WaVE. In the setting with moderate

sample size, hGNB has the best clustering silhouette width for 40% zero fraction, and for 60%

and 80% zero fractions it closely follows the performance of ZINB-WaVE. This suggests that the

hierarchical structure of hGNB equips it with the capacity to capture highly over-dispersed count

data, even though an explicit zero-inflation term is not included in its model. Also, ZINB-WaVE

requires large enough samples to have robust inference results due to the introduction of zero-

inflation terms in its model. Finally, ZIFA and PCA have the worst performance, as they normalize

the data before learning its latent representation.
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Figure 5.3: (a)J = 100, (b)J = 1000. Performance of different methods based on recovering the
true cell clusters in synthetic data based on S1/CA1 dataset. Zero-inflated NB model of ZINB-
WaVE is used to simulate scRNA-seq data.

5.2.3 Dimensionality Reduction

We applied hGNB to the three scRNA-seq datasets, V1, S1/CA1 and mESC, to assess its

power to separate cell clusters in the low dimensional space, and compared it to PCA, ZIFA,

and ZINB-WaVE methods. Figure 5.4 illustrates the projected scRNA-seq expression of pro-

filed cells in the two-dimensional space for S1/CA1 dataset. The proposed hGNB model provides

more biologically meaningful latent representations of scRNA-seq gene expressions for S1/CA1

cells, especially compared to PCA and ZIFA that do not model the counts directly. Furthermore,

hGNB leads to more separated clusters of cells in the two-dimensional space, compared to ZINB-

WaVE. Specifically, hGNB distinguishes microglia from endothelialấLŠmural cells,
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Figure 5.4: Low-dimensional representations of the S1/CA1 dataset. Panels correspond to (a) PCA
(on total-count normalized data), (b) ZIFA (on total-count normalized data), (c) ZINB-WaVE, and
(d) hGNB.

while ZINB-WaVE fails to accomplish this task.

To examine the dimensionality reduction results more carefully, we used the average silhouette

width as a measure of goodness for clustering.
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Figure 5.5: Average silhouette width in scRNA-seq datasets (a) S1/CA1, (b) mESC, and (c) V1.
Silhouette widths were computed in the low-dimensional space, using the groupings provided by
the authors of the original publications. PCA and ZIFA were applied with both unnormalized
(RAW) data and after total count (TC) normalization.

Figure 5.5 shows the average silhouette width of different methods on V1, S1/CA1, and mESC

datasets. For PCA and ZIFA, the results on both raw counts and normalized counts are included

in this figure. For S1/CA1 dataset, which has the highest number of clusters, the proposed hGNB

method outperforms all other methods in terms of clustering average silhouette. For mESC dataset,

performance of hGNB is comparable to ZINB-WaVE, and it is significantly better than PCA and

ZIFA. For V1 dataset, however, we observe that hGNB, besides PCA applied to raw counts, possess
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Table 5.2: Correspondence between identified clusters and cell types in OE dataset.

Cell Type Clusters
GBC cl4,cl9

mSUS cl2,cl3,cl5,cl11
mOSN cl8,cl12,cl3

Immature Neurons cl10
MV cl14

the lowest average silhouette. By further examination of the latent representations of cells for this

dataset, we observe that all methods split the Rbp4-Cre_KL100 cells into two clusters, one of

them located near Scnn1a-Tg3-Cre cells, suggesting the presence of batch effects, which have led

to confounding of latent representations (113).

5.2.4 Identification of Developmental Lineages

In addition to characterization of cell types, we further demonstrate the capability of hGNB to

derive novel biological insights, by analyzing a set of cells from the mouse olfactory epithelium

(OE). The samples were collected to identify the developmental trajectories that generate olfactory

neurons (mOSN), sustentacular cells (mSUS), and microvillous cells (MV) (120).

We first performed dimensionality reduction on the OE dataset by applying hGNB with K =

50. Next, we clustered the cells using the low-dimensional factor score parameters θkj . More

specifically, the resampling-based sequential ensemble clustering (RSEC) framework implemented

in the RSEC function from the Bioconductor R package clusterExperiment (123) was ap-

plied to factor scores, leading to identification of 14 cell clusters. The correspondence between the

detected clusters and the underlying biological cell types is presented in Table 5.2. In addition to

these already known cell clusters in OE, hGNB is able to detect new clusters, potentially offering

novel biological insights.

We further investigated the potential benefit of using the learned latent representation by our

proposed hGNB model to infer branching cell lineages and order cells by developmental progres-

sion along each lineage. To infer the global lineage structure (i.e., the number of lineages and
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Figure 5.6: Lineage inference on the OE dataset. The low dimensional data representation derived
by hGNB were used to cluster cells by RSEC. The minimum spanning tree (MST) of the derived
clusters constructed by slingshot is also displayed.

where they branch), a minimum spanning tree (MST) was constructed on the clusters identified

above by RSEC. We used the R package slingshot (124). Figure 5.6 illustrates the inferred

lineages for the OE dataset, in a two-dimensional space obtained by applying multi-dimensional

scaling (MDS) algorithm to the factor scores learned by hGNB. There are three branches in the

inferred lineages, with endpoints located in microvillous (MV), mature olfactory sensory neurons

(mOSN), and mature sustentacular (mSUS) cells.
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6. CONCLUSION

In this thesis, we considered the problem of modeling count data from high-throughput RNA

sequencing technologies in a fully Bayesian framework. In the begining, we exploited Bayesian

nonparametric priors, including the gamma-Poisson, gamma-negative binomial, and beta-negative

binomial processes, to model RNA sequencing count matrices. With different sequencing depths

captured by sample-specific model parameters, the posterior distributions of certain gene-specific

model parameters were used to detect the genes that are differentially expressed between different

conditions. With the model parameters inferred by borrowing statistical strength across both the

genes and samples, the need to adjust the raw counts using heuristics before downstream analyses,

an important pre-processing step that is often required in previously proposed algorithms, was

removed.

We then proposed a Bayesian negative binomial regression (BNB-R) method for differential

expression analysis of sequencing count data. On one hand, BNB-R is capable of handling com-

plex experiments involving multiple factors. On the other hand, it does not require an ad-hoc

normalization preprocessing step. By taking advantage of novel data augmentation techniques,

BNB-R possesses efficient closed-form Gibbs sampling update equations and ranks differentially

expressed genes based on a symmetric KL-divergence measure, exploiting the full posterior distri-

butions of the model parameters.

In the third section, we proposed a novel Bayesian covariate-dependent negative binomial fac-

tor analysis (dNBFA) method for analyzing RNA-seq count data. Our experimental results on

real-world RNA-seq data demonstrate that dNBFA is capable of handling complex experiments

involving multiple factors. What’s more, dNBFA does not require any ad-hoc data normalization,

data preprocessing, or co-expression network construction steps. By taking advantage of novel data

augmentation techniques, dNBFA possesses efficient closed-form Gibbs sampling update equa-

tions. Experimental results on multiple RNA-seq data studying complex diseases, both cancer and

Autism, demonstrate that our dNBFA can be directly applied to RNA-seq data to derive meaningful
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functional modules and it has potential advantages over existing two-stage co-expression network

based methods.

Finally, in section 5, we proposed a hierarchical Bayesian gamma-negative binomial (hGNB)

model for extracting low dimensional representations from single-cell RNA sequencing (scRNA-

seq) data. hGNB obviates the need for explicit modeling of the zero-inflation prevalent in scRNA-

seq count data. Our hGNB can naturally account for covariate effects at both the gene and cell

levels, and does not require the commonly adopted preprocessing steps such as normalization. By

taking advantage of sophisticated data augmentation techniques, hGNB possesses efficient closed-

form Gibbs sampling update equations. Our experimental results on real-world scRNA-seq data

demonstrates that hGNB is capable of identifying insightful cell clusters, especially in complex

settings.
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APPENDIX A

ADDITIONAL TABLES

Table A.1: AUC-ROC in the GNBP simulation setup for different true fold changes.

Fold change
Method 1.4 1.6 1.8 2
GNBP 0.9226 ± 0.006 0.9625 ± 0.003 0.9777 ± 0.003 0.9864 ± 0.002
BNBP 0.9156 ± 0.005 0.9610 ± 0.003 0.9783 ± 0.002 0.9875 ± 0.002
edgeR 0.9004 ± 0.007 0.9463 ± 0.004 0.9653 ± 0.003 0.9778 ± 0.003
DESeq 0.8986 ± 0.008 0.9444 ± 0.004 0.9634 ± 0.003 0.9764 ± 0.003
baySeq 0.7542 ± 0.008 0.8247 ± 0.012 0.8752 ± 0.003 0.9114 ± 0.008
NBP 0.9035 ± 0.007 0.9476 ± 0.004 0.9665 ± 0.003 0.9786 ± 0.003
NBPscaled 0.8596 ± 0.014 0.8990 ± 0.017 0.9366 ± 0.009 0.9506 ± 0.0053

Table A.2: AUC-PR in the GNBP simulation setup for different true fold changes.

Fold change
Method 1.4 1.6 1.8 2
GNBP 0.7873 ± 0.011 0.8998 ± 0.006 0.9382 ± 0.003 0.9607 ± 0.003
BNBP 0.5660 ± 0.011 0.8189 ± 0.008 0.9213 ± 0.005 0.9563 ± 0.002
edgeR 0.7857 ± 0.015 0.8742 ± 0.007 0.9136 ± 0.003 0.9403 ± 0.003
DESeq 0.7848 ± 0.014 0.8714 ± 0.007 0.9107 ± 0.002 0.9369 ± 0.004
baySeq 0.6517 ± 0.012 0.7655 ± 0.015 0.8329 ± 0.003 0.8756 ± 0.004
NBP 0.7934 ± 0.014 0.8770 ± 0.007 0.9156 ± 0.003 0.9399 ± 0.003
NBPscaled 0.6822 ± 0.035 0.7515 ± 0.036 0.8298 ± 0.028 0.8533 ± 0.012
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Table A.3: AUC-ROC in the BNBP simulation setup for different true fold changes.

Fold change
Method 1.4 1.6 1.8 2
GNBP 0.9648 ± 0.001 0.9847 ± 0.001 0.9914 ± 0.0014 0.9968 ± 0.001
BNBP 0.9635 ± 0.001 0.9848 ± 0.002 0.9922 ± 0.0009 0.9971 ± 0.0009
edgeR 0.9399 ± 0.001 0.9706 ± 0.003 0.9829 ± 0.0017 0.9929 ± 0.00189
DESeq 0.9383 ± 0.002 0.9694 ± 0.003 0.9818 ± 0.0016 0.9920 ± 0.0018
baySeq 0.7919 ± 0.007 0.8699 ± 0.07 0.9167 ± 0.007 0.9590 ± 0.0041
NBP 0.9438 ± 0.001 0.9729 ± 0.003 0.9844 ± 0.002 0.9935 ± 0.0016
NBPscaled 0.8939 ± 0.0107 0.9499 ± 0.0092 0.9606 ± 0.0094 0.9811 ± 0.008

Table A.4: AUC-PR in the BNBP simulation setup for different true fold changes.

Fold change
Method 1.4 1.6 1.8 2
GNBP 0.8632 ± 0.011 0.9431 ± 0.005 0.9703 ± 0.003 0.9881 ± 0.002
BNBP 0.8356 ± 0.012 0.9432 ± 0.003 0.9725 ± 0.002 0.9889 ± 0.003
edgeR 0.8674 ± 0.006 0.9275 ± 0.005 0.9557 ± 0.003 0.9783 ± 0.004
DESeq 0.8634 ± 0.004 0.9240 ± 0.005 0.9523 ± 0.003 0.9759 ± 0.003
baySeq 0.7413 ± 0.015 0.8408 ± 0.01 0.8963 ± 0.007 0.9434 ± 0.003
NBP 0.8708 ± 0.006 0.9302 ± 0.005 0.9577 ± 0.003 0.9798 ± 0.003
NBPscaled 0.7450 ± 0.03 0.8648 ± 0.019 0.8846 ± 0.028 0.9318 ± 0.025

Table A.5: AUC-ROC in the baySeq simulation setup for different true fold changes.

Fold change
Method 1.4 1.6 1.8 2
GNBP 0.8772 ± 0.009 0.9286 ± 0.005 0.9585 ± 0.004 0.9738 ± 0.001
BNBP 0.8823 ± 0.005 0.9382 ± 0.004 0.9674 ± 0.003 0.9812 ± 0.0015
edgeR 0.8702 ± 0.008 0.9216 ± 0.0042 0.9518 ± 0.004 0.9687 ± 0.003
DESeq 0.8705 ± 0.0083 0.9220 ± 0.004 0.9520 ± 0.0036 0.9688 ± 0.003
baySeq 0.7222 ± 0.0089 0.7887 ± 0.0067 0.8489 ± 0.012 0.8911 ± 0.0099
NBP 0.8769 ± 0.0075 0.9270 ± 0.0045 0.9567 ± 0.0031 0.9725 ± 0.0026
NBPscaled 0.8752 ± 0.009 0.9248 ± 0.0044 0.9571 ± 0.0071 0.9719 ± 0.0031

Table A.6: AUC-PR in the baySeq simulation setup for different true fold changes.

Fold change
Method 1.4 1.6 1.8 2
GNBP 0.7194 ± 0.015 0.8372 0.0095 ± 0.8984 ± 0.0074 0.9332 ± 0.0041
BNBP 0.5733 ± 0.012 0.7448 ± 0.014 0.8826 ± 0.0055 0.9337 ± 0.0058
edgeR 0.7004 ± 0.013 0.8152 ± 0.008 0.8787 ± 0.0066 0.9173 ± 0.0054
DESeq 0.7042 ± 0.013 0.8180 ± 0.0082 0.8813 ± 0.0058 0.9194 ± 0.005
baySeq 0.5806 ± 0.0096 0.7034 ± 0.0057 0.7877 ± 0.0104 0.8482 ± 0.0106
NBP 0.7223 ± 0.0129 0.8312 ± 0.0075 0.8913 ± 0.0058 0.9248 ± 0.0055
NBPscaled 0.7203 ± 0.0155 0.8333 ± 0.006 0.8940 ± 0.012 0.9256 ± 0.0047
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APPENDIX B

CHINESE RESTAURANT TABLE (CRT) DISTRIBUTION

The negative binomial distribution m ∼ NB(r, p) with the probability mass function

fM(m) =
Γ(m+ r)

m!Γ(r)
(1− p)rpm, m ∈ {0, 1, . . .}

can be augmented as a gamma mixed Poisson distribution as

m ∼ Pois(λ), λ ∼ Gamma(r, p/(1− p)),

where the gamma distribution is parametrized by its shape r and scale p/(1 − p). It can be aug-

mented under a compound Poisson representation as

m =
∑̀
t=1

ut, ut ∼ Log(p), ` ∼ Pois(−r ln(1− p)),

where u ∼ Log(p) is the logarithmic distribution with probability generation function CU(z) =

ln(1 − pz)/ ln(1 − p), |z| < p−1. As in (41), we denote the conditional posterior distribution

of ` given m and r by (` |m, r) ∼ CRT(m, r) and sample it with the summation of independent

Bernoulli random variables as ` =
∑m

n=1 bn, bn ∼ Bernoulli[r/(n− 1 + r)].
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