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ABSTRACT 

 

Unmanned aerial vehicles (UAVs) offer exciting new potentials within the field of 

precision agriculture. However, the technology remains in an experimental setting 

because of questions concerning data quality and quantity. To address these concerns, 

field research was conducted within a cotton cropping system, with particular 

applications focused on management zone delineation and evapotranspiration (ET) 

mapping. The overall objective of this proposal is to evaluate the suitability of UAV 

imagery (i.e. thermal, near-infrared, visible) as decision-making tools for precisions 

agriculture or site-specific management. UAVs were analyzed in terms of their ability to: 

1) define MZs at various points before, during, and at the end of, a growing season, and 

2) estimate ET using energy balance models. Results from Chapter 2 indicate that 

multispectral, thermal, and RGB imagery were significant predictors of in-season yield 

indicators such as canopy height and yield itself. In addition, MZs showed significant 

separation during flowering and boll filling, respectively. Results from Chapter 3 

indicate that non-contextual energy balance models outperformed those of contextual 

models using eddy covariance data. Furthermore, LE model performance varied by soil 

type. Results from Chapter 4 indicate that upscaling UAV data is an important 

component towards practical management operations. In particular, it was better to 

evaluate UAV imagery at initial resolutions (here ~1.3 m) before aggregating to coarser 

resolutions. 
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NOMENCLATURE 

Abbreviation Description Units 

LAI leaf area index m2 m-2 

ECa 

apparent electrical 

conductivity mS m-1 

MZ management zone - 

UAV unmanned aerial vehicle - 

MAV manned aerial vehicle - 

SAT satellite - 

AICc 

Akaike Information 

Criterion "corrected" - 

GPS global positioning system - 

NDVI 

normalized difference 

vegetation index unitless 

RGB red + green + blue - 

AGL above ground level - 

DAP days after planting - 

NAWF nodes above white flower - 

ICI Infrared Cameras Inc. - 

GCP ground control point - 

SFM structure from motion - 

RMSE root mean squared error - 

NIR near-infrared - 

ρNIR near infra-red reflectance unitless 

ρRed red reflectance unitless 

Tr 

radiometric surface 

temperature K 

IRT infra-red thermography - 

MAE mean absolute error - 

OLS ordinary least squares - 

ANOVA analysis of variance - 

ET evapotranspiration mm time-1 

DATTUTDUT 

Deriving Atmospheric 

Turbulence Transport 

Useful to Dummies Using 

Temperature - 

TSEB 

Two-source Energy 

Balance Model - 
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LE latent heat flux W m-2 

Rn net radiation W m-2 

G soil heat flux W m-2 

H sensible heat flux W m-2 

SEB surface energy balance - 

λ latent heat of vaporization J kg-1 

LEc canopy latent heat flux W m-2 

Rn,c canopy net radiation W m-2 

Hc canopy sensible heat flux W m-2 

LEs soil latent heat flux W m-2 

Rn,s soil net radiation W m-2 

Hs soil sensible heat flux W m-2 

Tc 

canopy radiometric surface 

temperature K 

Ts 

soil radiometric surface 

temperature K 

fc vegetation fraction cover - 

TSEB-PT 

Two-source Energy 

Balance Model Priestley-

Taylor - 

TSEB-DTD 

Two-source Energy 

Balance Model Dual-Time 

Difference - 

TSEB-2T 

Two-source Energy 

Balance Model two-

component temperature - 

GDD growing degree days - 

IOP intense observation period - 

CMOS 

complementary metal-

oxide-semiconductor - 

UFPA uncooled focal plane array - 

DN digital number - 

Tbr brightness temperature K 

Tbg Background temperature K 

ε overall emissivity unitless 
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θv volumetric water content unitless 

AWD available water depleted unitless 

θFC 

volumetric water content at 

field capacity unitless 

θWP 

volumetric water content at 

wilting point unitless 

ρ air density kg m-3 

w vertical wind speed m s-1 

q vapor flux mass fraction kg kg-1 

Cp specific heat capacity kJ kg-1 K-1 

ρCp volumetric heat capacity J m-3 K-1 

αPT 

Priestley–Taylor 

coefficient unitless 

Δ 

the slope of the saturation 

vapor pressure-temperature 

curve Pa K-1 

γ psychrometric constant Pa K-1 

ra 

aerodynamic resistance to 

momentum and heat 

transfer  s m-1 

Ta air temperature K 

Ω(θ) 

vegetation clumping factor 

at given θ viewing angle unitless 

rs 

soil resistance to 

momentum and heat 

transfer  s m-1 

Tr,0 

Surface radiometric 

temperature in the AM K 

NDVIsoil 

soil normalized difference 

vegetation index unitless 

NDVIveg 

vegetation normalized 

difference vegetation index unitless 

ρ0  surface albedo unitless 

EF evaporative fraction unitless 

Rs, Swin 

incoming shortwave 

radiation W m-2 

ε0 surface emissivity unitless 
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εa atmospheric emissivity unitless 

Tr,max  hottest pixel within scene K 

Tr,min coldest pixel within scene K 

NDVI∞ 

maximum or infinite 

NDVI unitless 

ea actual vapor pressure kPa? 

f(xi,yi,zm) weight for footprint - 

MBE mean bias error - 

MBPE mean bias percent error - 

MSEu 

unsystematic mean 

squared error - 

NMM neutron moisture meter - 

TIR thermal infrared - 

MODTRAN 

Moderate Resolution 

Atmospheric Transmission - 

In-SA 

Input aggregation, simple 

average - 

In-BC 

Input aggregation, boxcox 

average - 

Out-SA 

Output aggregation, simple 

average - 

Out-BC 

Output aggregation, 

boxcox average - 

zoh 

roughness length for heat 

transfer - 

zom 

roughness length for 

momentum transfer - 

METRIC 

Mapping 

EvapoTranspiration at high 

Resolution with 

Internalized Calibration - 

ASTER 

Advanced Spaceborne 

Thermal Emission and 

Reflection Radiometer - 

OLI Operational Land Imager - 

TIRS Thermal Infrared Sensor - 

τ transmissivity unitless 
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LEDAPS 

Landsat Ecosystem 

Disturbance Adaptive 

Processing System  - 

hc canopy height m 

wc canopy width m 

pyTSEB 

A Python Two Source 

Energy Balance Model - 

Er relative error - 

μ 

spatial mean of fine 

resolution pixels - 

u* friction velocity m s-1 

Ln,c 

canopy net longwave 

radiation W m-2 

Ln,s soil net longwave radiation W m-2 

Sn,c 

canopy net shortwave 

radiation W m-2 

Sn,s 

soil net shortwave 

radiation W m-2 

rx 

resistance between canopy 

and canopy boundary layer s m-1 
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1. INTRODUCTION  

 

 General context 

Within production farming, there exists a global and persistent challenge to sustain 

the inhabitants of this world, both in the present and in the future. These inhabitants 

include not only humans and animals but crops as well. While crop growth is affected by 

parameters (e.g. temperature, humidity, rain, wind, etc.) that cannot be controlled, crops 

can still be managed through inputs such as water, fertilizer, pesticides, and herbicides. 

The question then becomes how to optimize these management inputs, often expressed 

in terms of the five R’s: how do we select the right input, in the right amount, to the right 

place, at the right time, and in the right manner? These input questions are weighed 

against two additional objectives. First, profitability and input efficiency should be 

maximized, meaning that the total costs of production (i.e. labor, machinery, seed, water 

use, etc.) should be far less than the total revenue obtained from yields; second, adverse 

environmental impacts such as soil erosion and nutrient leaching should be minimized 

(Shannon et al., 2018).  

Farmers have sought to achieve these goals by considering the abiotic and biotic 

environment within a given field. Average environmental conditions are often assumed, 

and inputs are applied uniformly across the entire field (Babcock and Pautsch, 1998). 

This approach can become problematic within fields that exhibit large degrees of spatial 

and temporal variability. Spatial variability within this context refers to “changes in soil, 

crop, landscape, and environmental attributes that occur across a certain area”, while 



2 

 

temporal variability refers to these same sources of variability, only “within a certain 

area at different measurement times” (Whelan and Taylor, 2013). Parameters that vary in 

space and time include: 1) soil texture, 2) soil structure, 3) soil depth, 4) soil organic 

matter, 5) soil water, 6) soil pH, 7) soil nutrients, 8) weeds, 9) insects, 10) diseases, 11) 

terrain, 12) past crop management, and 13) crop growth parameters such as vegetation 

fraction cover and leaf area index (LAI) (Whelan and Taylor, 2013).  

The presence of spatial and temporal variability for both soils and crops has 

implications for management. In irrigation management, water that is uniformly applied 

across a variable field can result in soils becoming over-/under-irrigated; in such a 

situation, crops can become stressed to the point of premature death, resulting in 

potential yield reductions (King et al., 2006). In weed management, uniform application 

of herbicides across a heterogeneous field can result in greater weed resilience (Shannon 

et al., 2018). Therefore, fields with spatial and/or temporal variability may benefit from 

strategies beyond uniform management, so that agronomic, environmental, and 

economic losses can be minimized, a term referred to as precision agriculture or site-

specific management (Nawar et al., 2017). Site-specific management is also defined as a 

“management strategy that uses information technology to bring data from multiple 

sources to bear on decisions associated with crop production” (National Research 

Council, 1997). 

One tool that has been used to depict field variability, and thus facilitate site-specific 

management, is through an imaging sensor. Imaging sensors non-invasively collect 

radiation from several portions of the electromagnetic spectrum, including the shortwave 
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visible/near infrared (400-1400 nm) and longwave thermal infrared (7-14 µm) regions. 

The radiation signal received by these instruments is then then tied back with physical 

characteristics of objects on the ground, such as soils and crops - reviews on remote 

sensing applications within agriculture are well documented (Bastiaanssen et al., 2000; 

Pinter Jr. et al., 2003; Liaghat and Balasundram, 2010; Khanal et al., 2017). The wealth 

of literature regarding remote sensing and agriculture has focused on sensors equipped 

aboard platforms such as satellites and manned aircraft. Satellites, while generally 

extensive and free, remain infeasible for site-specific management, as they are inflexible 

and provide inadequate (i.e. 30 m or greater) resolutions. This problem is partially offset 

with manned aircraft, but its imagery can be burdened by high acquisition costs.  

Alternative to satellites and manned aircraft, images can be obtained from lower 

flying unmanned aerial vehicles (UAVs). UAVs offer improved spatial and temporal 

resolutions relative to satellites, and at a fraction of the cost relative to manned aircraft. 

Despite these technical improvements, UAVs have not been integrated within the site-

specific management framework for agriculture applications - this is because 

technological developments in UAVs have often outpaced the rate at which research can 

be performed (McCabe et al., 2017). While recent review papers have indicated UAVs 

have plenty of applications for crop monitoring (Manfreda et al., 2018), such 

demonstrations have not been provided for more complex applications, such as variable 

rate technology, where spatially accurate orthomosaics (with < 1 day turnaround times) 

are currently required (Hunt Jr and Daughtry, 2017). Thus, there is a need to first 

evaluate UAVs within the context of relatively simple agriculture applications before 
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proceeding to more complex questions. Subsequent discussion will focus on motivations 

for the three research articles presented in this dissertation, specifically regarding UAVs. 

 Literature review 

 Chapter 2 literature review 

Site-specific farming allows decision-making strategies to vary within fields where 

large spatial and temporal variability is observed. Site-specific farming has recently 

become enhanced using variable rate technologies (VRT). VRT constitutes the use of 

global positioning systems (GPS), decision support systems, and machinery that can 

change the rate of planting or application of an input (e.g. agrochemical, water etc.) as 

the tractor moves along the field (Schimmelpfennig, 2016). Since the late 1990s, VRT 

has been applied to fertilizers, seeds and water, citing economic and environmental 

benefits, although this will depend to some extent on the temporal variance of the 

specific management parameter (Pierce and Novak, 1999; Balafoutis et al., 2017; Sui 

and Yan, 2017).  

VRT is aided by defining management zones (MZs), which are broad and unbroken 

areas where a specific management or treatment is applied (Doerge, 1999). MZs are 

categorized by the scale where data is collected, and the category of VRT equipment 

(Whelan and Taylor, 2013). In grain crops, such as corn and soybeans, MZs are often 

made at the end of a season using yield maps via yield monitors (Brock et al., 2005). 

However, in non-food crops, such as cotton, yield monitors can be difficult to obtain, 

especially with older field equipment (Gaylon Morgan, personal communication, 2018). 

MZs can alternatively be created using soil grid sampling, but such an approach is not 
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particularly time- and cost-effective (Viscarra-Rossel et al., 2011). Farmer knowledge-

based MZs, while a cheaper alternative than soil sampling, maybe unreliable because 

variability can change within a growing season, and this may not be consistent from year 

to year (Whelan and McBratney, 2000). Alternatively, bulk soil apparent electrical 

conductivity (ECa) sensors have been successful in mapping soil properties such as soil 

available water holding capacity and even making MZs (Sudduth et al., 2005; Hedley 

and Yule, 2009; Stanislav, 2010). However, ECa MZs, like farmer knowledge MZs, are 

limited because the plant environment changes with weather within a giving growing 

season (Stoorvogel et al., 2015). While initial MZ approaches have had some success in 

defining MZs between growing seasons, they are not particularly useful for delineating 

MZs within a particular growing season.  

Within this context, UAVs have potential for delineating MZs because they can 

adequately respond to temporally dynamic conditions. UAVs can be categorized in 

terms of rotocopters and fixed-wing platforms (Sankaran et al., 2015). Sensors that have 

been equipped on UAVs include visible (red, green, blue or RGB) sensors (Bendig et al., 

2014), multispectral sensors (Candiago et al., 2015), hyperspectral sensors (Ishida et al., 

2018), thermal sensors (Gómez-Candón et al., 2016), and LIDAR sensors (Khan et al., 

2017). The holistic framework for UAV-based remote sensing includes: 1) identifying 

the problem, 2) data acquisition planning, 3) the flight itself, 4) orthorectification, 5) 

radiometric calibration and 6) analytics – this process then operates within a feedback 

loop back to farm managers (McKee, 2017). Recent demonstrations of UAV-based MZs 

have been performed within sugarcane (Magalhães et al., 2013), olives (Gertsis et al., 
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2015) and maize (Sona et al., 2016). However, such capabilities have not been 

performed within row crops such as cotton.  

MZ studies with row crops may be sparse because its value has not been shown to 

farmers. A recent survey by Erickson (2017) indicates that, in 2017, only 6 % of farmers 

were using UAVs, and only 22 % are expected to use UAVs by 2020. Low adoption 

rates maybe occurring because there is a wide variety of sensors available on the market, 

as optical, multispectral, thermal, hyperspectral and laser sensors have all positively 

contributed to site-specific management (Hunt Jr and Daughtry, 2017; Manfreda et al., 

2018). However, there is no indication as to which sensor is most appropriate, especially 

within MZ delineation. Initial results from Rouze et al. (2018) suggest that, during a 

growing season, UAV thermal imagery can be favorable over multispectral imagery, 

because the former exhibits greater spatial structure. At the end of the growing season, 

visible (i.e. RGB) imagery may serve as an alternative tool for delineating MZs 

compared with soil mapping. One motivation for favoring UAV RGB imagery, in 

addition to an increased spatial resolution, is price. Sensors for RGB cost an average of 

$1500 USD (Manfreda et al., 2018). Recent literature (Martineli Sanches et al., 2018) 

indicates that UAV RGB shows promise in modeling sugarcane yield (R2 = 0.79), but no 

such conclusions have been demonstrated within cotton. 

 Chapter 3 literature review 

Quantifying evapotranspiration (ET) is important because it controls ecosystem 

functioning, carbon and climate feedbacks, agricultural management and water resources 

(Fisher et al., 2017). The concept of ET has thus been utilized by scientists and 
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stakeholders alike for developing decision-making strategies, such as water rights 

allocation and monitoring, provisioning and regulating ecosystem services, and 

rangeland management (Anderson et al., 2012). Within the precision agriculture 

industry, farmers have applied knowledge of ET toward crop water management 

(Hunsaker et al., 2005; Davis and Dukes, 2010). However, recent water management 

practices have resulted in problems for farmers, particularly within semiarid 

environments, such as water scarcity (Qadir et al., 2003). Responsible crop water 

management means applying only enough water so that actual crop requirements can be 

met (Calera et al., 2017).  

Water management is conducted through irrigation scheduling. Irrigation scheduling 

is based on estimating actual water crop requirements. Initial formulations of crop water 

requirements were obtained from the FAO-56 Penman Monteith method (Allen et al., 

1998). In this method, ET is calculated based on assumptions of root zone depth and soil 

moisture (Allen et al., 1998). This method, however, is problematic because the 

parameter values may not be precise because root zone depths can vary in space due to 

differences in the local environment, such as soil moisture and nutrient availability 

(Calera et al., 2017). Crop ET has also been obtained directly using the water balance 

equation (Hunsaker et al., 2003). Estimating ET using the soil water balance method has 

been critiqued for several reasons. Measurements, while direct, are collected over very 

small areas (up to 100 m2, World Meteorological Organization, 2014) and may not be 

representative over the area of interest - implementing an experimental design to account 

for this limitation is costly (Jones et al., 2004). Experimental designs become even more 



8 

 

costly if the area of interest exhibits soil spatial variability. In addition, changes in soil 

water storage are not directly tied with changes in plant response or physiology (Jones et 

al., 2004). In particular, the leaf water potential is controlled by not only soil moisture, 

but also on the rate of water movement throughout the plant (Jones et al., 2004). 

The energy balance method has been presented as an alternative to previous 

methods. The energy balance method is advantageous over FAO-56 because 

measurements are direct, and it is advantageous over the water balance because 

measurements are obtained across larger areas (larger than 100 m2). A generalized 

energy balance equation is defined as: 

 𝐿𝐸 = 𝑅𝑛 − 𝐺 − 𝐻, (Eq. 1.1) 

where LE is latent energy flux (conceptually analogous to ET), Rn is net radiation, G 

is soil heat flux, H is sensible heat flux, all in W m-2. ET is then calculated from LE by 

dividing the latent heat of vaporization or λ (units of J kg-1) and the density of water 

(1000 kg m-3 at 20° C, Allen et al., 1998). 

Latent heat fluxes are estimated with one-source and two-source energy balance 

models (OSEB and TSEB, respectively) that use thermal and multispectral imagery as 

inputs (Anderson et al., 1997; Bastiaanssen et al., 1998). Unlike one-source models, two-

source models estimate the fluxes for canopies and soils separately (Liou et al., 2014). 

One-source energy balance models include Mapping Evapotranspiration at High 

Resolution and with Internalized Calibration (METRIC) and Deriving Atmosphere 

Turbulent Transport Useful to Dummies (DATTUTDUT). DATTUTDUT only requires 

surface temperature measurements, whereas METRIC additionally requires multispectral 
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imagery and weather station data (Xia et al., 2016). TSEB models include TSEB-

Priestley Taylor (or TSEB-PT), TSEB-Penman Monteith (or TSEB-PM), and Dual 

Temperature Difference (TSEB-DTD) (Anderson et al., 1997; Norman et al., 2000). 

Gowda et al. (2008) found that the errors of these energy balance models ranged from 

2.7-35% across all land surface types. 

Given the plethora of energy balance models, it is important to quantify the 

uncertainty of LE (and ET) estimates through model comparisons. Colaizzi et al. (2014), 

for example, quantified differences in accuracy between TSEB-PT and TSEB-PM for 

evaporation and transpiration separately using eddy flux measurements. In their results, 

Colaizzi et al. (2014) obtained an evaporation root-mean squared error of 273 and 76 %, 

respectively; for transpiration, a root-mean squared error (RMSE) of 13 and 55 % for PT 

and PM, respectively. However, their modeling results used ground infrared 

thermometers over small areas. French et al. (2015) conducted an energy balance model 

comparison between TSEB-PT and METRIC models within cotton using satellite (i.e. 

Landsat) remote sensing data. In their results, French et al. (2015) showed similar 

agreement in estimating ET between the two models but suggested that METRIC and 

TSEB-PT should be preferred in data sparse and data-plentiful situations, respectively. 

Xia et al. (2016) compared DATTUTDUT with TSEB-PT using manned aircraft and 

found that the former was unsatisfactory in situations where a scene did not contain 

pixels with extreme ET conditions.  

Energy balance modeling have recently been performed for UAVs. There are a few 

examples of UAV-based data being used in energy balance modeling and comparisons, 
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such as grasslands (Brenner et al., 2017), barley (Hoffmann et al., 2016), olives (Ortega-

Farias et al., 2016) and wine grapes (Kustas et al., 2018). Within cotton, energy balance 

model comparisons using UAVs are non-existent. Identifying the appropriate model 

within a cotton crop growing season would benefit future irrigation management 

strategies.  

 Chapter 4 literature review 

Evaluating ET using remote sensing has been established since the early 1990s 

(Price, 1990; Moran and Jackson, 1991; Kustas et al., 1994). ET estimates are important 

towards improving crop water management across various spatial scales (Khanal et al., 

2017). To obtain ET, remote sensing platforms such as satellites and manned aircraft are 

equipped with sensors that capture thermal and multispectral imagery; these images 

along with ground-truth data are used as inputs, and LE fluxes are estimated with one- 

and two-source energy balance models (Anderson et al., 1997; Bastiaanssen et al., 1998). 

ET fluxes are then validated using independent measurement sources such as a lysimeter 

(water balance) or an eddy covariance flux tower (energy balance) (Verstraeten et al., 

2008).  

The accuracy of modeled ET fluxes can be expressed as a function of remote sensing 

platform. Satellite ET fluxes are on the order of hundreds of meters, while manned aerial 

vehicle fluxes on the order of meters. However, satellite-based imagery is usually free, 

while manned aerial vehicle imagery costs based on the amount of land surveyed. UAVs 

have been touted with providing data with higher spatial resolutions on the order of 

centimeters (Matese et al., 2015; Xia et al., 2016; Khanal et al., 2017). UAVs, however, 
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present their own unique set of challenges. Unlike satellite data processing, UAV 

processing is left to the user, requiring highly specialized expertise (Manfreda et al., 

2018). Additionally, considerable time is needed to handle and post process all the 

relevant data needed for energy balance modeling. Finally, sensors equipped aboard 

UAVs are more limited in terms of geometric and radiometric quality (Manfreda et al., 

2018). For example, UAV payloads for thermal imagery are restricted to uncooled 

microbolometers, and these sensors exhibit lower precision and accuracy relative to 

cooled microbolometers (Ribero-Gomes et al., 2016). Thus, tradeoffs exist between 

these different platforms, and one universal solution does not currently exist. 

Identifying the most appropriate platform for given a given application has initially 

been conducted using cost-benefit analyses (Matese et al., 2015). Value within an ET 

context can also be assessed in terms of water savings. An appropriate water savings 

strategy will first require comparing the accuracy in modeled ET fluxes as a function of 

spatial scale or pixel resolution. Li et al. (2008), for example, modeled ET using original 

and resampled Landsat 5 imagery at three different pixel sizes: 30, 120 and 960 meters. 

These comparisons were performed within a semi-arid watershed that consisted of 

shrublands and riparian areas. Poor agreement with ground-truth EC fluxes were found 

with the 960 m imagery, which was caused by sub-pixel heterogeneity. In other words, a 

single pixel can contain multiple land uses, surface roughness and moisture content 

values (Kustas et al., 2004). Within a predominantly row-crop (i.e. maize/soybean) 

dominated watershed, McCabe and Wood (2006) found similar results for satellite 

imagery at 60, 90 and 1000 m, with prediction errors of 2, 5 and 15 % respectively.  
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Across smaller spatial scales relevant to production agriculture, there are a lack of 

studies comparing ET fluxes, both within across remote sensing platforms. For 

management applications, UAV imagery needs to be aggregated to a coarser spatial 

resolution, as the pixel resolutions from UAVs are often too fine (i.e. cm-scale). Within 

this context, there is a need to evaluate the effect of aggregation on UAV estimated ET. 

 Objectives of dissertation 

The overall objective of this proposal is to evaluate the suitability of UAV imagery 

(i.e. thermal, near-infrared, visible) as decision-making tools for precisions agriculture or 

site-specific management. Additionally, ground-truth information will serve to 

complement the data collected by the UAVs. UAVs will be analyzed in terms of their 

ability to: 1) define MZs at various points before, during, and at the end of, a growing 

season, and 2) estimate ET using energy balance models. 

 Objectives for chapter 2 

The overall objective of the first chapter of the dissertation is to evaluate UAV 

imagery as a tool for creating MZs that can be used for site-specific decision making, 

before during, and at the end of, a single growing season. UAV collected data and a soil 

ECa map will be used to create MZs. The UAV data include thermal, multispectral (red, 

green, blue or RGB, near infrared or NIR) and visible imagery. A yield map will be 

created with ECa and compared with a yield map from the UAV visible imagery. Both 

UAV and ECa will be compared in terms of how well they predict agronomic 

characteristics, both within and at the end of a season. Finally, UAV and ECa -based 

MZs will be tested and compared in terms of significant differences between individual 
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zones – an MZ map is valid if the individual zones are unique from one another. MZs 

will be delineated using the k-means algorithm. This chapter provides a basic MZ-

oriented example of using UAV data in production-agriculture fields.  

 Objectives for chapter 3 

The overall objective of the second chapter of the dissertation is to evaluate the 

accuracy and spatial responsiveness of energy balance models created from multispectral 

and thermal UAV imagery. The energy balance models include are one-source models, 

such as DATTUTDUT, and two-source models, such as TSEB-PT, TSEB-PM and 

TSEB-DTD. These models will be used to estimate ET at a cm-scale on a 16-ha cotton 

field. These models will be compared to ET eddy covariance flux towers that collect flux 

data. To compare flux tower ET measurements with the fine-scale UAV-based modeling 

ET estimates, a footprint model will be used to create a spatially averaging scheme. The 

value of such a study will provide some guidance on how UAV-based models of ET can 

best be created, with the goal of water savings and/or yield improvements. 

 Objectives for chapter 4 

The overall objective of the third chapter of the dissertation is to evaluate a single 

energy balance model (i.e. TSEB-PT) across multiple platforms (i.e. UAVs, manned 

aircraft, satellite) using eddy covariance flux tower measurements. Landsat 8 will be 

selected as the satellite for this study. Outcomes from this chapter will be that readers 

would consider the usefulness of UAVs as a function of plot size – unless the areas 

surveyed are very large, every effort should attempt to utilize UAVs for real-time 

management. 
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 Dissertation outline 

The dissertation is divided into five chapters. The first chapter has provided a broad 

overview of the motivations for the dissertation through a literature review. Chapters 2, 

3, and 4 are original research articles, while Chapter 5 summarizes the findings from 

Chapters 2-4, while providing an outlook detailing future research that is needed. 
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2. EVALUATING UNMANNED AERIAL VEHICLE (UAV) IMAGERY AS AN 

ALTERNATIVE TOOL TOWARDS COTTON SITE-SPECIFIC MANAGEMENT 

 

 Introduction 

Achieving longevity for future generations requires sustainable farming decisions be 

made in the present. Such goals have been addressed with precision agriculture 

equipment, beginning around the 1990s. For example, chlorophyll/greenness sensors 

were designed to monitor crop conditions within a growing season, which can help save 

money and produce less environmental waste (Blackmer, 1995). This technology has 

continued to show usefulness in part because its data is georeferenced GPS (Ahmad et 

al., 1999; Taskos et al., 2015). Transitioning into the twenty-first century, GPS has also 

been integrated with sensors that use concepts of electromagnetic induction (EMI) to 

measure ECa (e.g. Veris®, EM-38®). A recent survey by Erickson et al. (2017) indicates 

that ECa sensors, relatively speaking, remain popular within industry. For example, 22 % 

of central USA precision agriculture dealers (as of 2017) are using soil ECa mapping in 

some capacity, while less than 10 % of dealers are using chlorophyll/greenness sensors. 

ECa also remains popular within academia, as evidenced by the steady production of 

literature reviews on the topic (Rhoades et al., 1989; McNeill, 1992; Corwin and Lesch, 

2005; Corwin and Scudiero, 2016). One reason why ECa sensors remain popular across 

both industry and academia is because it can map soil properties across space and time, 

such as clay content and water holding capacity (Adamchuk et al., 2004).  
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One proposed application of ECa beyond soil mapping includes MZ delineation 

(Lund et al., 1999). A MZ is a sub-region within a field that exhibits a relatively 

homogenous set of factors directly or indirectly related with yield, such as biomass and 

plant height (Schepers et al., 2004; Marino and Alvino, 2018). However, ECa-based MZs 

have been critiqued for several reasons. First, interpreting ECa signals within low-

medium saline environments (0-200 mS m-1) can be challenging, as several soil 

properties are likely to influence ECa signals (Corwin and Scudiero, 2016). Second, ECa 

signals are not directly tied with crop behavior within a growing season (Corwin and 

Lesch, 2003). Lastly, ECa measurements can be inconsistent predictors of yield because 

of confounding influences beyond the soil medium, such as the weather (Guo et al., 

2018).  

UAVs may serve as a potential alternative to ECa for MZ delineation. This is 

because its measurements can characterize yield-related factors, and its data collection is 

relatively flexible and cheap (Shi et al., 2016). UAVs have three application areas: 1) 

crop scouting, 2) monitoring to prevent yield losses, and 3) planning crop management 

operations, such variable rate fertilization (Hunt Jr. and Daughtry, 2017). UAVs are 

equipped with sensors or cameras that visually depict object behavior within a 

production field. For example, multispectral sensors generate images containing 

information on soil and crop reflectance, using visible (red, green, blue bands or RGB) 

and near-infrared (or NIR) regions of the electromagnetic spectrum (~400-1000 nm) 

(Zhou et al., 2017; Manfreda et al., 2018). Crop growth indicators, such as the 

Normalized Difference Vegetative Index (NDVI) (Rouse et al., 1974), for example, are 
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then created by combining several (e.g. red + NIR) bands that exhibit sharply contrasting 

vegetation reflectance patterns. 

Studies have only recently addressed UAVs and their associated indicators towards 

MZ applications. NDVI and RGB imagery, for example, have been used to create MZs 

within a wine grape vineyard (Matese et al., 2017; Padua et al., 2018). Thermal cameras 

(7–14 μm), using radiometric surface temperature (or Tr), have also been used to model 

MZs based on water stress signatures within date-palm orchards (Cohen et al., 2017). 

While UAV MZs have shown favor within these high value crops, few studies have 

addressed the suitability of UAV-based MZs within row crops. Cotton, for example, is 

an important row crop because it has many uses - one cotton bale (227 kg) can make up 

to 215 pairs of jeans, 1,200 t-shirts, and 680,000 cotton balls (Cotton Australia, 2018). 

Recent estimates suggest global cotton consumption to be 120.5 million bales in 

2017/2018, its highest since 2007/2008 (Johnson et al., 2018). Cotton is an economic 

staple in many regions of the United States, such as Texas, contributing about $3.3 

billion to the state in 2018 (U.S. Census Bureau Trade Data, 2018). Recent UAV-based 

cotton studies have focused on applications such as: 1) ground cover estimation (Duan et 

al., 2017), 2) plant protection (Lou et al., 2018), and 3) germination monitoring (Chen et 

al., 2018). To the authors’ knowledge, however, UAVs have not been used to model 

cotton based MZs, particularly at different points before and during a growing season. 

The purpose of this study was to evaluate UAVs, relative to ECa, in terms of their 

ability to generate cotton based MZs. The study was conducted within a field where past 

yields were affected by soil texture and, thus, water holding capacity. MZs were 
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delineated using various UAV sensors (i.e. multispectral, thermal, RGB) at different 

points before and within a growing season. In-season MZ traits such as canopy height 

were modelled using information from all three sensors via ordinary least squares 

regression. Height and yield were also used to address the distinctness of two sub-

regions created within the field. UAV MZs were then compared with MZs previously 

established by soil ECa using analysis of variance (ANOVA) tests. The question that 

drives the ANOVA models is the relative importance of each layer - to what extent is the 

other layer needed to create MZs? 

 Methods 

 Field location and crop management 

The study site (17-ha cotton field) is located on the Texas A&M Experimental Farm, 

located near central-eastern Texas (30.531° N, 96.430° W) (Fig. 2.1a). The soils are 

currently forming under alluvial parent materials. Soil surface textures sampled in the 

area include silt loam, silty clay loam and silty clay (Fig. 2.1b). The range in clay 

content is from 210-530 g kg-1, a difference of 320 g kg-1 (Fig. 2.1b). Clay content 

distribution is positively skewed (0.25), with a median clay content of 335 g kg-1. 

Elevations are relatively constant, with an average elevation of 67.7 ± 0.3 m above 

ground level or AGL (based on 2017 UAV digital surface models, Sect. 2.2.3.3). 

Growing season precipitation was 1248 mm. A heavy rain event (65.8 mm) occurred 

during cotton planting and emergence, resulting in soil crusting (Fig. 2.1a) and some 

poor stands. The cotton plants experienced some particularly hot days – about a third of 



25 

 

the time, the daily maximum temperatures were greater than the upper threshold for 

optimal growth (37.8 °C).  

 

 

 

 

  

Fig. 2.1 (a) Site location, along with locations of ground control points (black) and 

field measurements (yellow, red, pink) taken throughout the 2017 field season. In-

season canopy height measurements were collected at the red circles on July 1, July 

13, and July 28 (Table 2.1). Temperature measurements were collected at pink 

diamonds during the UAV thermal surveys on July 13 and July 28. End-of-season 

yield and height measurements were collected at the yellow and red circles around 

September 26. The field photograph (blue screwdriver for scale, top) shows soil 

cracks that emerged from an early rain event (six days after planting or DAP). (b) 

Particle-size distribution data collected from near-surface samples (0–0.3 m depth, 

left), as well as their spatial distribution (right). The soil texture classes are defined 

using the USDA classification system.  
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The field was actively managed with conventional tillage practices with a crop 

rotation of corn (Zea mays L.) and cotton (Gossypium hirsutum L.). In 2017, a cotton 

variety (PHY 444 WRF) was planted at a rate of 111,200 seeds ha-1 and 1.02 m row 

spacing on April 5, 2017 (DOY 95). Pre-emerge and post-emergence herbicides (Prowl 

H2O, Cotoran 4L, Cornerstone Plus) were applied to ensure uniform stand 

establishment. In-season management of cotton included fertilization, plant growth 

regulation, and weed control. Cotton was irrigated using a center-pivot sprinkler system 

(Lindsay Corporation, Omaha, NE, USA1), and each irrigation event applied water at a 

depth of 21.5 mm. Irrigation water was applied on May 4 (29 days after planting or 

DAP), June 28 (84 DAP), July 19 (105 DAP), and July 21 (107 DAP). Due to the large 

field size, each irrigation event lasted about 2.5 days. Cotton harvest was slightly 

delayed due to regrowth caused by adequate water resources via Hurricane Harvey (513 

mm, August 26-28, 2017); as a result, harvesting commenced on October 14, 2017 (192 

DAP). Based on field observations, first flowering was observed on June 8 (64 DAP), 

with cutout (i.e. five nodes above white flower or NAWF) observed on July 1, 2017. 

Boll filling occurred approximately between June 29 and July 28 (85-112 DAP). Open 

bolls for about 90 % of the field occurred around September 1 (210 DAP). 

 Soil and agronomic sampling 

Agronomic data collected on each UAV survey date included canopy height and 

yield. Height and yield sampling locations were established using ECa raw sampling 

points (see Sect. 2.2.3.1. below), under a stratified random sampling design. On the day 

of a given UAV survey (Table 2.1), plant height measurements, due to limited resources, 
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were collected at select locations (Fig. 2.1a, red dots, n = 23). At the end of the season, 

yield and height measurements were obtained from additional sampling locations 

between September 18-19, 2017 (Fig. 2.1a, red and yellow dots, n = 55). Yield 

measurements were collected within a 3 x 3 (9 m2) sampling area around each point. 

Samples were then brought back to the laboratory and seed cotton yield measurements 

were obtained. Canopy height was used as an in-season yield trait because it was a 

significant predictor of yield (Fig. 2.2). The height of a cotton plant affects yield by the 

addition of branching sites via nodes and internodes at the top of the plant (Hake, 1989).  

 

 

 

Table 2.1 List of UAV surveys, along with physiological stage and field average LAI 

values during the 2017 field season. Field average LAI values were obtained at 

select points (Fig. 2.1a, red) using an LAI-2200C sensor (LI-COR, Lincoln, USA), 

with details described elsewhere (Rouze et al., in preparation). Abbreviations: DAP 

– Days After Planting; GDD – Growing Degree Days; NAWF – Nodes Above White 

Flower; RGB – Visible Sony A6000 camera; MS – Multispectral MicaSense 

RedEdge sensor; TH – Thermal ICI 8640-P sensor.  

Growth Stage Date DAP Sensor Variable Survey Time 

Pixel 

resoluti

on (m) 

LAI 

(m2 

m-2) 

GDD NAWF 

Pre-planting March 22 N/A RGB Soil color 9:56-10:10 0.03 N/A 0 N/A 

Flowering July 1 87 MS NDVI 12:05-12:27 0.08 1.72 1545 5 

Boll filling 
July 13 99 TH Tr 14:54-15:06 0.15 2.21 1875 3 

July 28 114 TH Tr 14:46-15:00 0.15 2.37 2305 2 

Open boll September 26 174 RGB Open bolls 11:21-11:39 0.03 N/A 3742 0 
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Fig. 2.2 End-of-season seed-cotton yield plotted against canopy height (Fig. 2.1a, 

red + yellow circles).  

 

 

 

 Sensor data collection and preparation 

 ECa data 

An EMI survey was conducted over a bare soil field on December 31, 2007 using an 

EM38DD sensor (Geonics Limited, Ontario, Canada). In EMI, primary electromagnetic 

currents generated by a transmitter coil are induced into the soil, and the soil produces 

secondary magnetic currents that are recognized by a receiver coil; the ratio between the 

primary and secondary currents collected at the receiving coil is a linear function of ECa 

(McNeil, 1980). Temperature drift of ECa readings was minimized by placing a 

sunshield over the instrument (Robinson et al., 2004). Transects were spaced 

approximately ten meters apart, and each measurement was tagged with spatial 

coordinates using an integrated Trimble AG 114 GPS system (Trimble Inc., Sunnydale, 
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CA, USA). Coordinates were defined using a projected coordinate system (WGS 

84/UTM Zone 14 N or EPSG: 32614). ECa measurements from vertical and horizontal 

dipole modes were logged every second, corresponding with effective measurement 

depths of 1.50 and 0.75 m, respectively (McNeill, 1992). The vertical dipole mode was 

chosen for this study because its measurement depth corresponds with commonly 

reported cotton root zone depths (Allen et al., 1998). While ECa is a function of several 

soil properties such as salinity, water content, organic matter, and cation exchange 

capacity (Corwin and Scudiero, 2016), the ECa data collected in this field has previously 

shown strong correlations with clay content (R2 = 0.86, p < 0.01) and, thus, soil water 

holding capacity (Stanislav, 2010). Interpolated soil ECa values (Sect. 2.2.3.1.) were 

extracted at each sampling location (Fig. 2.1a) for later height and yield modeling. 

Raw ECa survey data were then processed into field MZs. ECa post-processing began 

by first discarding raw ECa sampling points located five meters from the boundary edge. 

The protocol outlined by Cordoba et al. (2016) was then adopted, which includes the 

following steps: 1) removal of outliers and inliers, 2) spatial interpolation, 3) 

classification, and 4) smoothing of classification values. All MZ delineation was 

performed by adapting R scripts (R Core Development Team, 2018) supplied by 

Cordoba et al. (2016). A Gaussian model (effective range = 293 m; nugget to sill ratio = 

2.9 %) was fit to an empirical semi-variogram, and predictions were block kriged onto a 

three-meter grid. To reduce computation time, only samples located within 30 m at each 

prediction node were considered. A three-meter grid was selected based on the inter-

measurement sample distance, as well as previous recommendations for reliable yield 
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estimation (Mulla et al., 2013). Two MZs were used to classify the interpolated data ECa 

using an unsupervised k-means algorithm. Two zones were selected using expert 

knowledge of the field, as well as recommendations from a host of Euclidean distance-

based clustering algorithms (Charrad et al., 2014). 

 UAV system and flights 

Table 2.1 shows dates when UAV surveys (and their respective sensors) were flown 

over the field throughout the 2017 cotton season. Table 2.2 describes the technical 

details of the individual cameras. The main stages selected for this study include pre-

planting, flowering, boll filling, and open bolls. A pre-planting RGB survey was 

conducted from previous findings that bare-soil aerial imagery could be used to create 

pre-season MZs (Fleming et al., 2004). RGB images were collected from a Sony A6000 

camera (Minato, Tokyo, Japan), and multispectral images were collected from a 

MicaSense RedEdge camera (Seattle, WA, USA). Unlike the A6000, which measures 

spectral luminance (units of Lumens sr-1 m-2), the RedEdge measures spectral brightness 

or radiance (W sr-1 m-2). Thermal images were collected using an ICI 8640-P sensor 

(Infrared Cameras Inc., Beaumont, TX, USA).  

A6000, RedEdge and ICI 8640-P sensors were integrated were mounted and flown 

individually on a fixed wing UAV platform (Tuffwing, Boerne, Texas, USA). The fixed 

wing communicated with a ground control station at a frequency of 915 MHz. All 

images were instantaneously geotagged using a u-blox M8N GPS module aboard the 

UAV platform. Flight plans were created within Mission Planner software (ArduPilot 

Dev Team). The multispectral camera was set under manual settings, with exposure 
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times ranging between 0.44-1 seconds depending on band. Exposure time for the A6000 

was constant at 0.01 seconds. In order to achieve full field coverage in a reasonable time, 

while minimizing cloud presence, multispectral and visual surveys were flown at 65 % 

sidelap and overlap, while thermal surveys were flown 60 % sidelap and overlap. All 

flights (except for pre-planting) were conducted within plus or minus two hours of solar 

noon, which is defined here as 13:30 (Table 2.1). The average flight time for the thermal, 

multispectral and RGB imagery was 13, 22, and 16 minutes, respectively. All flights 

were carried out under clear skies, with a flight altitude of about 120 m AGL, and 

average winds below 4 m s-1.  

 

 

 

Table 2.2 Technical description of UAV sensors utilized in this study. 

Characteristics Visible (RGB) 

Multispectral 

(RGB+NIR) Thermal 

Sensor name Sony A6000 
MicaSense 

RedEdge 
ICI 8640-P 

Sensor CMOS APS-C CMOS 
Uncooled 

Microbolometer 

Resolution (px) 4000x6000 1280x960 640x512 

Spectral bands RGB RGB/NIR Long Wave Infrared 

Spectral range (nm) 400-700 

Blue: 455-

495; Green: 

540-580; 

Red-659-

678; 

NIR:800-880 

7000
-1

4000 

Focal length (mm) 16 5.5 12.5 

 

 

 

In order to orient and relate UAV image coordinates to the ground position, ground 

control points (GCPs) were deployed across the perimeter of the field (Fig. 2.1a, black 
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points). A GCP consisted of a two-level deck whose spatial coordinates were measured 

using a Trimble R7/R8 GPS system (Trimble Inc., Sunnydale, CA, USA). Each deck on 

a given GCP securely housed three radiometric calibration tiles (six tiles per GCP) with 

known albedo values of 4, 20 and 45 % obtained from a Spectral Evolution PSR+ 3500 

spectral radiometer (Haverhill, MA, USA). The radiometric calibration tiles served to 

later calibrate the UAV multispectral imagery (Sect. 2.2.3.4.). Additional information 

regarding the GCPs can be found in Han et al. (2018). 

 UAV orthorectification 

All imagery was orthomosaiced using Agisoft PhotoScan Pro (St. Petersburg, RU). 

Orthomosaic generation is based on the structure from motion (SFM) method, which is 

based on the generation of a digital surface model, given camera positions and 

calibration parameters. For brevity’s sake, the reader is referred to Westoby et al. (2012) 

for detailed information on the technique. Thermal orthomosaics were aided by 

aluminized polyester located on the top level of each GCP. Orthomosaics were exported 

as GeoTIFFs when the RMSE values were less than or equal to 1.5 times the pixel 

resolution. 

 Multispectral radiometric calibration 

Radiometric calibration was performed on multispectral orthomosaics using the 

empirical line method (Smith and Milton, 1999). In this approach, digital numbers (DNs) 

acquired from the red and NIR bands were converted into percent reflectance using the 

three calibration tiles. For the red band, it was observed that crop DNs were lower than 

that of the four percent albedo target, resulting in erroneously negative reflectance 
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values. To get around this issue, a new low-end reflectance point within the red band 

was established within nearby tree shadows at two percent reflectance (Pristolas et al., 

2016). Similar problems were encountered for the NIR band, where crop DNs were 

higher than the 45 % albedo target. Therefore, a new high-end reflectance point was 

established using the GCP plywood material, measured at 79 % reflectance.  

Quality control on this approach was performed by comparing the estimated red and 

NIR reflectance values with those from other calibration tiles. In this comparison, 

reflectance values agreed well with independent ground-truth measurements, with a bias 

of 0.5 % and RMSE of 2.5 %. This accuracy is similar, if not lower, reported errors by 

Berni et al. (2009) and Xia et al. (2016). The calibrated red and NIR bands were then 

used to estimate the NDVI. NDVI uses red (ρRed) and NIR (ρNIR) reflectance using Eq. 

2.1:  

 
𝑁𝐷𝑉𝐼 =

𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 (Eq. 2.1) 

 Thermal radiometric correction 

Thermal images collected by the ICI 8640-P were first processed from 8-bit DNs or 

radiance to 16-bit camera calibrated brightness temperature (Tbr) using the provided 

software (IRFlash 2.16.4.21). Tbr is not the same as Tr, the variable of interest, as the 

former contain sources of uncertainty such as atmospheric attenuation and differences in 

land surface emissivity (ε) (Torres Rua et al., 2017). Tr can be estimated from Tbr at each 

ith pixel, given ε and the background air temperature (Tbg) (Maes and Steppe, 2012): 
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𝑇𝑟,𝑖 = √
𝑇𝑏𝑟,𝑖

4 − (1 − 𝜀)𝑇𝑏𝑔
4

𝜀𝑖

4

 (Eq. 2.2) 

Because soil and vegetation pixels were visible from thermal images at all points in 

time, and because these two objects were found to exhibit different emissivity values 

from field measurements, spatially distributed ε was needed to derive accurate Tr (Eq. 

2.2). ε was calculated at each ith pixel, therefore, by weighting soil and vegetation 

emissivity values (εs and εv, respectively) by the vegetation fraction cover (fc) (Jimenez-

Munoz et al., 2006):  

 𝜀𝑖 = 𝜀𝑠(1 − 𝑓𝑐,𝑖) + 𝜀𝑣𝑓𝑐.𝑖 (Eq. 2.3) 

where εs was 0.96 as obtained from a box method (Fuchs and Tanner, 1966), and εv 

was set to 0.99, per recommendations from Maes and Steppe (2012). fc,i was derived 

from NDVI imagery by scaling between ‘infinite’ NDVI (NDVI∞) and soil NDVI 

(NDVIs) (Carlson and Ripley, 1997): 

 
𝑓𝑐 = (

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼∞ − 𝑁𝐷𝑉𝐼𝑠
)2 

(Eq. 2.4) 

NDVI∞ was taken to be the maximum NDVI observed from the original spatial 

resolution (0.976). NDVIs was based off an average bare soil NDVI using UAV imagery 

collected before cotton squaring (0.2). Tbg (Eq. 2.2) was found using air temperature data 

from an HC2S3 temperature probe (Campbell Scientific, Logan, UT, USA).   

Validation for the thermal correction approach above was assessed by comparing 

predicted and measured Tr obtained from vegetated and bare soil surfaces during thermal 

image collection (Fig. 2.1a, pink diamonds). Predicted temperatures were computed by 

first aggregating up to the field-of-view of the infrared thermography (IRT) sensor 
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(around 0.08 m2). Predicted canopy and soil temperatures were obtained by extracting 

the minimum and maximum temperatures within the approximate measurement area (3 

m radius). MAE values of 2.9 and 4.4 °C and mean biases (predicted-measured) of -0.2 

and -3.4 °C were found for plants and soils, respectively. One possible source of error 

using this validation approach lies within the different spectral ranges between the 

ground thermal sensor (i.e. MI-220) and the aerial thermal sensor (i.e. ICI-8640 P) (8-14 

μm and 7-14 μm, respectively). 

 Open boll generation 

In addition to NDVI and Tr, an additional variable or indicator was developed for 

MZ delineation, this time using RGB imagery around open boll growth stage (Sep. 26, 

Table 2.1). The primary objective of the algorithm was to create a yield-like map based 

on open boll detection, with the objective to discriminate open bolls against the 

background (i.e. soil, defoliated leaves, stem branches). To do this, a red/blue ratio map 

was developed, with a threshold less than 1.13 identified as an open boll. The hypothesis 

here is that open cotton bolls, being white, will have similar luminance values across all 

RGB bands, while background components will not. Therefore, there should exist some 

threshold that can be used to extract the signal (i.e. bolls) from the noise (i.e. non-bolls). 

This approach is like the Otsu algorithm, except threshold values are automatically 

determined within each band (Yeom et al., 2018). However, a manual threshold 

approach was selected in this study because the luminance distributions across all bands 

were not bimodal, a key assumption of the Otsu algorithm. After boll detection, the 

red/blue ratio map was reclassified to a binary image (open/absent boll) based on the 
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established threshold (1.13) - Fig. 2.3 shows the result of this technique applied over a 

portion of the field. 

 

 

 

  

 

Fig. 2.3 (a) Geographical subset of RGB UAV survey conducted on September 26, 

2017; (b) result of open boll methodology, with open bolls (in blue) overlaying the 

image from Fig. 2.3a.  

 

 

 

 UAV management zone creation 

NDVI, Tr and open boll orthomosaics were used to delineate MZs from the selected 

survey dates from Table 2.1. UAV pixels located five meters from the boundary edges 

were first removed. NDVI and Tr imagery were aggregated to the nearest multiple of 

three meters (i.e. the ECa pixel resolution) using an arithmetic mean. NDVI and Tr 

aggregated pixels represent, therefore, a mixture of soil and canopy pixels depending on 

vegetation fraction cover. Open boll count imagery was also aggregated to the nearest 
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multiple spatial resolution to three meters, but a summation (instead of mean) operation 

was performed. Thus, each pixel represents the number of counted open bolls within a 

square area of 9 m2. Two zones or classes were defined for consistent comparison with 

ECa MZs. For the pre-planting orthomosaic (Fig. 2.1a), a maximum likelihood 

supervised classification scheme was performed across all bands within ArcGIS 10.6.1 

(ESRI, Redlands, USA). For all other UAV layers, unsupervised k-means algorithm was 

applied on the pixel values using the k-means base function within R. All UAV raster 

maps were reclassified based on the two pixel clusters, and a three meter smoothing 

filter was similarly applied as with the ECa MZs. 

 Statistical analysis 

To facilitate regression modeling, aggregated UAV values (i.e. NDVI, Tr) and zone 

clusters were extracted at each sampling location (Fig. 2.1a, red and yellow circles). A 

different procedure was performed for the open boll count map, as yield samples were 

unfortunately collected before the UAV RGB survey (Table 2.1). At each sample 

location an erase operation was performed, whereby a spatial polygon was created from 

an outer buffer (4 meters) and an inner buffer (3 meters) - all pixels that fell within this 

outer ring were extracted and used in the boll counting process. 

UAV MZs were first assessed by predicting canopy height from in-season UAV 

layers (i.e. July 1 NDVI, July 13 Tr, July 28 Tr) using ordinary least squares (OLS) 

regression. Similarly, yield was also predicted using the bolls counted within each of the 

outer rings as described above. Regression validation was performed for all models, 

including checks for heteroskedasticity (residual plots, Bresuch-Pagan tests) and spatial 
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autocorrelation. Linear models were then assessed for quality of fit in terms of R2, 

RMSE, MAE and p-values.  

Validation of delineated regions within each MZ was determined using 

randomization methods. The purpose of MZ validation is to determine if the two 

delineated MZs present significant statistical differences with respect to yield related 

attributes. Randomization tests were preferred over more commonly used ANOVA tests, 

as significant spatial autocorrelation was observed from height and yield samples (p = 

0.048 and p = 0.006, respectively) - such spatial autocorrelation, if present, will violate 

spatial independence assumptions from ANOVA tests (Tisseyre and Leroux, 2017). 

Randomization approaches are most appropriate when sample sizes are too small (i.e. 

less than 100) to conduct a reliable semivariogram (Webster and Oliver, 1992) - the 

sample size for height was 23 on July 1 and July 13, and 55 on July 28. The sample size 

for yield was 55 on September 26. The following paragraph provides details on the 

randomization test used in this study.  

The general premise of the randomization approach is to test whether it is better to 

classify the field into random MZs, or to use the k-mean based UAV MZs. To perform 

this test, an observed F-statistic (Fobs) was first calculated from an ANOVA model, with 

the y-variable being the agronomic variable of interest (i.e. canopy height/yield), and the 

x-variable being the set of UAV MZ classes extracted at each site (Fig. 2.1a). Fobs was 

then compared with a random set of F-statistic values (Frand). Frand was determined by 

first randomly assigning zones to all aggregated raster pixels, followed by extraction of 

these zones at the same sampling locations. After class extraction, an ANOVA was 
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performed, with the y-variable again being the agronomic variable of interest (i.e. 

canopy height/yield), but the x-variable now being the random MZ extracted at each site. 

The result of this ANOVA model is Frand, and this procedure was repeated for a total of 

1500 iterations. A randomization p-value was then calculated as: : 
(the # of times 𝐹𝑟𝑎𝑛𝑑 > 𝐹𝑜𝑏𝑠)

1500 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
. 

Statistical tests were deemed significant if the p-value was less than 0.05. 

In addition to regression and randomization techniques, ANOVA tests were 

conducted to address the value of adding ECa to UAV data, or vice-versa. In other 

words, how important is it to include both ECa and UAV layers in MZ delineation? Four 

models were constructed: 

• Yield was predicted from ECa only (model 1); 

• Yield was predicted from an optimal set of UAV layers (Table 2.1) using 

stepwise backwards regression (model 2); 

• Yield was predicted from both ECa and an interaction term between the 

optimal set of UAV layers and ECa (model 3); 

• Yield was predicted from both UAV and the same interaction term from 

model 3 (model 4).  

An interaction term was added to models 3 and 4 based on the theory that crop yields 

are a function of interactions between soil (i.e. ECa) and crop (i.e. UAV) information. 

The ANOVA models were constructed to test the significance of this interaction term 

(i.e. model 1 vs. model 3, model 2 vs. model 4). ANOVA models were deemed adequate 

here because spatial autocorrelation was not present from model residuals (p > 0.05).  

In addition to ANOVA, the second order Akaike Information Criterion or AICc 

(Hurvich and Tsai, 1989) was used to evaluate the relative quality of fit from the four 

models above in predicting seed cotton yield. AICc was deemed useful here because 

ANOVA models cannot address model performance, only model difference. AICc is 
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most appropriate when n/k < 40 as was the case here (Burnham and Anderson, 2002). 

AICc aims to balance the fit of a model (or accuracy), model complexity, and sample 

size using concepts of log-likelihood. AICc is defined as: 

 
𝐴𝐼𝐶𝑐 =  

−2𝑙𝑜𝑔𝐿(𝜃̂) + 2𝑘 + (2𝑘 + 1)

𝑛 − 𝑘 − 1
 

(Eq. 2.5) 

where 𝐿(𝜃̂) is the log-likelihood estimate, k is the number of parameters, and n is the 

number of observations. Log-likelihood refers to the probability of obtaining the data, 

given the candidate model. The relatively best model within this context refers to the 

model with the lowest AICc value. 

 Results 

 Agronomic data 

Summary statistics for canopy height and yield are given in Table 2.3, along with 

yield spatial patterns in Fig. 2.4c. As expected, median canopy heights increased over 

time due to continued vegetative growth in the month of July (Table 2.3). The skewness 

of canopy height measurements were negative or left-skewed to some extent. Yield 

exhibited positive amounts of skew (0.31), and a coefficient of variation (CV) of 24.7 %. 

The non-normal distributions for canopy height and yield (Table 2.3) are the reason why 

non-linear regression modeling was needed in this study (ref. ‘Statistical Analysis’). 

Yield values ranged from 1708-4687 kg ha-1, with a median value of 2928 kg ha-1. Many 

of the high yields (blue circles) are located within zone 2, or the high ECa region (Fig. 

2.4b-2.4c). 
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Table 2.3 Summary statistics of agronomic (canopy height, yield), ECa, and UAV 

layers such as NDVI and Tr. Note that ECa data and the UAV imagery statistics are 

from the 3 m aggregated images.  

Property Unit n 
Minimu

m 

Maximu

m 

Mea

n 

Media

n 
Std. Dev. 

Skewnes

s 

Height-July 1 

m 

23 0.48 0.73 0.61 0.61 0.07 -0.15 

Height-July 

13 
23 0.56 0.78 0.70 0.71 0.06 -0.46 

Height-July 

28 
23 0.64 0.95 0.80 0.80 0.08 -0.04 

Yield kg ha
-1

 55 1708 4687 2970 2928 733 0.31 

ECa mS m
-1

 3875 17 100 57 57 17 0.11 

NDVI-July 1  17141 0.22 0.95 0.69 0.7 0.09 -0.75 

Tr-July 13 
Kelvin 

17367 305 325 312 312 3.2 0.52 

Tr-July 28 17507 305 330 315 315 4.1 0.01 

 

 

 

 ECa regression modeling and management zone delineation 

Regression and MZ results are first presented in terms of ECa (Table 2.3, Fig. 2.4). 

ECa values in Table 2.3 represent the raw survey data after screening for outliers and 

inliers (about seven percent of data in total). The mean ECa was 57 ± 18 mS m-1 (CV = 

0.30), and its distribution was approximately normal, with a skewness of 0.11 (Fig. 2.4a, 

Table 2.3). The interpolated ECa map obtained through ordinary block kriging (Fig. 

2.4b) indicates soils with relatively high and low ECa values located on the western and 

eastern halves of the field, respectively. A once active fluvial channel could explain the 

observed ECa spatial distribution (Fig. 2.4b), as clay-sized particles (i.e. relatively high 

ECa values), being relatively small, are deposited relatively further from the stream - this 

hypothesis was partially confirmed with the soil texture data (Fig. 2.1b). Subsequent 

delineation into two MZs using k-means (Fig. 2.4c) shows that the first zone (white) 

contains ECa values between 19.8-57.8 mS m-1, while the second (black) contains ECa 
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values between 57.9-96.4 mS m-1 (black). About 56 % of the total areas classified into 

zone 1 (i.e. low ECa), while 44 % of the field into zone 2 (i.e. high ECa). 

 

 

 

 

 

Fig. 2.4 (a) Histogram of ECa values, along with its density curve in blue (with 

outliers and inliers removed); (b) ordinary kriged ECa map, with a continuous 

color scheme. An abandoned fluvial channel is outlined in blue on the right side of 

the field; (c) results of k-means classification for the ECa image in Fig. 2.4b, with 

low ECa zones in white and high ECa zones in black. Seed-cotton yield 

measurements overlay the ECa MZ, with low yield areas colored in red, and high 

yield areas in blue. 
 

 

 

Yield modeling was conducted first with ECa data. The scatterplot between seed 

cotton yield and ECa is shown in Fig. 2.5. The addition of other covariates such as 

elevation via UAV digital surface models did not significantly improve model prediction 
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and was, therefore, not included in this analysis. The trend between yield and ECa was 

positive, but non-linear. The R2 was low (0.21), but the relationship was statistically 

significant (p < 0.001), based on a log-normal fit. The mean absolute percent error (or 

MAPE, MAE/μyield) from the log-normal fit was 18.3 %. The OLS model accounted for 

the spatial autocorrelation that originally existed within the dataset (residual p-value = 

0.47). Previous research in this field (Stanislav, 2010) has shown ECa to be a significant 

predictor of yield in past seasons (R2 = 0.36, p < 0.001) because it represents yield-

limiting factors such as soil water holding capacity.  

 

 

 

 

Fig. 2.5 Scatterplot of seed cotton yield (kg ha-1) versus ECa (mS m-1) for the 2017 

field season.  

 

 

 

The strength in relationship between ECa and yield may have been poor for several 

reasons. Yields may have been affected by poor crop emergence from extreme weather 

early in the season (Fig. 2.1a). Sampling errors could have also contributed to the low R2 
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value, as some of the extreme ECa values were not sampled (Table 2.3). The ECa values 

from collected samples ranged from 26-93 mS m-1, but the range in ECa across the entire 

field was between 14-98 mS m-1 (Table 2.3, Fig. 2.4a, Fig. 2.5). However, these extreme 

ECa values only account for about four percent of the entire dataset (Fig. 2.4a). 

Considering that a significant relationship was already established between yield and 

ECa (Fig. 2.5), therefore, any sampling errors should not significantly change the results 

above. Therefore, it can be concluded that soil ECa was a weak predictor of end-of-

season cotton yield.  

The comparison of end-of-season height and seed cotton yield means (n = 55) within 

each MZ is shown in Fig. 2.6. Zone 1 refers to the low ECa zone (Fig. 2.4c, white), while 

Zone 2 refers to the high ECa zone (Fig. 2.4c, black). Statistically significant mean 

differences in canopy height were observed between the two ECa MZs using the 

randomization test approach (p = 0.003) (Fig. 2.6a). Using ECa clustering, the mean 

height values within zones 1 and 2 were 0.86 and 0.93, respectively. In addition to 

height, seed cotton yield values were significantly different between ECa MZs using 

randomization tests (p < 0.001, Fig. 2.6b). Using ECa clustering, the mean yield values 

within zones 1 and 2 were 2600 and 3382 kg ha-1, respectively. While the regression 

results (Fig. 2.5) indicate that, while ECa alone may not be entirely useful in predicting 

seed cotton yield, it was still able to produce statistically significant MZs in terms of 

height and yield. 
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Fig. 2.6 (a) End-of-season canopy height differences based on ECa zones delineated 

in Fig. 2.4c; (b) Cotton seed yield differences based on zones delineated in Fig. 2.4c. 

Different lowercase letters indicate significant differences using randomization tests 

(p < 0.05). The sample size is 55. 

 

 

 

 UAV regression modeling and management zone delineation 

Regression and MZ results are now given in terms of aggregated UAV layers, 

including NDVI (July 1), Tr (July 13, July 28), and open bolls (September 26). Summary 

statistics for NDVI and Tr are first given in Table 2.3. The distribution for NDVI and Tr 

indicates canopy-dominated pixels. For example, the skewness is negative for NDVI on 

July 1 (-0.75), while Tr is positively skewed on July 13 (0.47). Full vegetation coverage 

was not entirely reached within the field, so the summary statistics for NDVI and Tr 

reflect a composite of both soil and vegetation information. 

Fig. 2.7 shows scatterplots between in-season canopy height against both NDVI (Fig. 

2.7a) and Tr (Fig. 2.7b-2.7c) at various points throughout the growing season. All UAV 

layers were significant predictors (p < 0.01) of canopy height between July 1 to July 28 
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(Table 2.1). The R2 values range from 0.53 (July 1) to 0.60 (July 28), and MAE values 

were between 0.03-0.04 m, with an average MAPE of 5.1 %. NDVI and canopy height 

were positively correlated and the relationship was quadratic (Fig. 2.7a). On the other 

hand, Tr trended negatively with canopy height, and the relationship was either linear or 

cubic (Fig. 2.7b-2.7c) - a cubic model was necessary to ensure homoscedastic residuals.  

 

 

 

 

Fig. 2.7 Scatterplots between canopy height and a) NDVI on July 1, b) Tr  on July 

13, and c) Tr  on July 28 (n = 23).  

 

 

 

While previous findings have confirmed the utility of the RedEdge camera towards 

predicting cotton height (Ballester at al., 2017), to our knowledge such findings have not 
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been extended towards UAV thermal imagery. Canopy height has been shown to affect 

soil temperatures via shading effects for various vegetation types (Green et al., 1984; Yu 

et al., 2018). Canopy height can also affect canopy temperatures via plant growth in 

terms of three potential stress factors, namely nutrients, temperature, and moisture (Hake 

et al., 1989). While the main stress factor driving this relationship could not be identified 

in this study, the takeaway message here is that multispectral and thermal sensors were 

good predictors of yield-related factors such as canopy height (Fig. 2.2), which is a 

prerequisite for delineating in-season MZs.  

The scatterplot between cotton seed yield and RGB open boll count imagery is 

shown in Fig. 2.8. Note that the open boll count metric used here is only possible after 

aggregating the RGB imagery up to the target pixel resolution (here 3 m). The 

relationship was logarithmic and the model was a significant predictor of seed cotton 

yield (Fig. 2.8). The MAE was 442 kg ha-1, which was 101 kg ha-1 lower than the ECa 

model (Fig. 2.5). Similarly, the MAPE for the relationship in Fig. 2.8 was 14.9 %, which 

was 3.4 % lower than that from the ECa-yield model (Fig. 2.5). While aggregated NDVI 

and Tr measurements reflect temperatures from canopies and soils, RGB measurements 

characterize canopies only, specifically the open bolls. The relationship between seed 

cotton yield and open boll counts may have been degraded because harvest sampling 

was conducted before the September 26 survey – in other words, the areas selected for 

boll counting may not be entirely representative of the yield harvested at each sample 

location. Despite this experimental design error, however, the relationship between the 

two variables was still significant and even more accurate than ECa. While Yeom et al. 
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(2018) recommend RGB spatial resolutions less than one centimeter are required for 

open boll detection, the results presented here suggest the pixel resolution here (2.80 cm) 

was adequate, relative to pre-existing techniques. 

 

 

 

   

Fig. 2.8 Scatterplots of seed cotton yield versus open boll count from RGB imagery 

(September 26, n = 55). 

 

 

 

The MZs delineated from multispectral (July 1 NDVI), thermal (July 13/July 28 Tr) 

and RGB (March 22 soil color, September 26 open bolls) sensors are shown in Fig. 2.9. 

Blue zones in Fig. 2.9 represent relatively high growing areas (Zone 2, Fig. 2.4c), while 

orange zones the low growing areas (Zone 1). The pre-planting MZ based on soil color 

(Fig. 2.9a) has similar spatial patterns as the ECa MZ (Fig. 2.4c). On July 1 (Fig. 2.9b), a 

large amount of zone 1 (Fig. 2.9b arrow) is located within the clayey soils or the high 

ECa region (Fig. 2.4c). The relatively low NDVI response in this region may be 
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attributed to poor crop emergence due to early season rain events (Fig. 2.1a). On July 13, 

the areas of low crop productivity have shifted from the high ECa to areas around the 

perimeter of the field (arrow in Fig. 2.9b). On July 28, or maximum LAI (Table 2.1), the 

low zones located around the perimeter of the field have expanded inwards within the 

field (Fig. 2.9d). The September 26 MZ (Fig. 2.9e) obtained from the open boll map 

looks very similar to the July 28 Tr MZ, although the former has a greater proportion of 

Zone 2. In summary, UAV MZ spatial patterns varied from pre-planting to mid- and 

late-season, with mid-season low zones located within the Zone 2 areas, while late-

season shifting towards Zone 1. Fig. 2.9 illustrates the intangible advantages provided by 

UAVs over ECa in terms of in-season management. For example, farmers could field 

scout the areas classified as zone 1 for problems and determine whether such problems 

can be remedied with management practices.  
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Fig. 2.9 MZs created for a) March 22 bare earth, b) July 1 NDVI, c) July 13 Tr, d) 

July 28 Tr and e) September 26 open boll count. Fig. 2.9a was made using 

supervised classification, while Figs. 2.9b-2.9e using unsupervised k-means 

classification. Black arrows are discussed in the text. 
 

 

 

The MZs shown in Fig. 2.9 were furtherly evaluated using AICc and randomization 

tests, and these results are initially presented in Table 2.4. AICc values are not reported 

for in-season canopy height because height varies throughout the season, so model 

comparisons across dates are not meaningful. With regards to in-season canopy height, 

the two delineated zones were significantly different from each other using both NDVI 

and Tr (p ≤ 0.001). With regards to yield, RGB imagery at pre-planting (i.e. bare soil 

image) showed significant differences between the two zones (p = 0.01). Similarly, the 

open boll MZs showed significant mean differences in yield (p < 0.001), with the mean 

yields in zones 1 and 2 being 2342 kg ha-1 and 3361 kg ha-1, respectively. Furthermore, 
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the p-value from open boll MZ delineation (p < 0.001) was much lower than that from 

ECa (0.003).  

 

 

 

Table 2.4 Results of randomization p-values, as well as AICc values after modeling 

height or yield as a function of assigned zones. 

Date Layer P-value AICc 

Height 

July 1 2017 NDVI 0.001 

N/A July 13 2017 Tr 0.001 

July 28 2017 Tr < 0.001 

Yield 

March 22 2017 Soil color 0.01 878.5 

July 28 2017 Tr < 0.001 867.5 

September 26 

2017 
Open bolls < 0.001 866.0 

ECa 0.003 868.5 

 

 

 

Table 2.4 shows the AICc values in terms of UAV and ECa MZs. The two delineated 

ECa regions were statistically different from each other, thus reiterating the results 

presented in Fig. 2.6b. A comparison of AICc values from the different UAV yield 

models indicates the best models (in decreasing performance or increasing AICc): 1) 

September 26 and 2) March 22 (866.0 and 878.5, respectively). While the pre-planting 

UAV RGB orthomosaic performed worse (i.e. higher AICc) than the ECa image (Table 

2.4), it still showed significant (p = 0.01) differences in separating the field into two sub-

regions or MZs, and even produce similar spatial patterns as with ECa (Fig. 2.4c, Fig. 

2.9). Thus, in terms of individual UAV performance, the open boll count image was the 

best in terms of producing yield-based MZs. The ECa AICc value was lower than the pre-
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planting image (868.5). These results indicate that the pre-planting MZ delineation was 

inadequate relative to ECa, while the opposite was true for the open boll imagery. 

However, AICc values are only relative and do not address whether these differences 

(and thus the MZ patterns) are statistically meaningful.  

In order to address this question, yield models are using various combinations of 

UAV and ECa layers as shown in Table 2.5. Table 2.5 presents two different scenarios: 

one where UAV information is added to pre-existing ECa information (i.e. models 1 vs. 

2), and one where ECa information is added to pre-existing UAV information (model 3 

vs. model 4). Note that models 2-4 only contain the UAV RGB open boll map, based on 

the results from Table 2.4. The model with the lowest AICc value was model 3, which 

only uses the UAV layer or open boll count information alone (-27.8, Table 2.5). The 

model with the highest AICc was model 1, which uses ECa only (-4.4). Table 2.5 also 

shows the effect of adding UAV:ECa interaction terms. For example, when the 

UAV:ECa term was added to the ECa term (model 2), the AICc decreased from -4.4 to -

24.2. In contrast, when the UAV:ECa term was added to the UAV term (model 4), the 

AICc increased from -27.8 to -26.0. Thus, the addition of ECa to UAV via an interaction 

term resulted in a relatively worse yield model.  

Table 2.5 also gives the ANOVA p-values comparing the significance of the 

interaction term (i.e. model 1 vs. model 2, model 3 vs. model 4). The p-value in 

comparing model 1 with model 2 is less than 0.001, indicating that the inclusion of the 

UAV boll count layer significant changes the model interpretation. The p-value in 

comparing model 3 with model 4 is 0.69, indicating no significant differences in yield 
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models when ECa information is added alongside UAV data. The results from Table 2.5 

indicate two main points. First, the addition of UAV information to an ECa model results 

in a significantly better yield model. Second, the addition of ECa information to a UAV 

model does not result in a significantly better yield model. 

 

 

 

Table 2.5 Modeling results that predict yield using various combinations of ECa 

and/or UAV terms. The UAV term refers to the open boll created from visible 

imagery only (Fig. 2.3). ANOVA p-values refer to two cases: comparisons of models 

1 and 3, as well as models 2 and 4. 

Model AICc ANOVA p-value 

1) ECa only -4.4 - 

2) ECa + UAV:ECa -24.2 < 0.001 

3) UAV (Sep. 26) only -27.8 - 

4) UAV + UAV:ECa -26.0 0.69 

 

 

 

 Discussion 

The purpose of this paper was to evaluate the performance of UAV-based MZs at 

various points before and within a single growing season. The motivation for UAV MZs 

stems from the need to monitor crop health, so that farmers can be proactive in achieving 

their management goals (i.e. maximize yield outputs, minimize management input 

costs). Current tools such as proximal ECa sensing have only been partially helpful in 

this regard because its data is not timely, and it remains an inconsistent predictor of yield 

depending on climatic condition (Guo et al., 2012). While other papers have suggested 

that MZs are best created by fusing remotely sensed imagery and ECa (Triantafilis et al., 

2009; Cordoba et al., 2016; Scudiero et al., 2018), it is not always practical or possible to 
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combine such layers, especially if soil calibration is needed for ECa signals (ECa less 

than 200 mS m-1, Corwin and Scudiero, 2016).  

Despite its infancy, UAVs are expected to be increasingly used in the future (Maes 

and Steppe, 2018). A recent precision agriculture dealership survey (Erickson, 2017) 

projects that, by 2020, 22 % of central USA dealers will offer UAV imagery services, 

while ECa mapping only at 17 %. While their survey does not indicate what proportion 

of these dealers will use UAVs towards MZ delineation, they are expected to have some 

role in this application space, at the very least for crop scouting purposes (Hunt and 

Daughtry, 2017; Nawar et al., 2017). Remote sensing and ECa tools are meant to 

compliment, not replace, farmer knowledge towards MZ delineation (Martínez-

Casasnovas et al., 2018). MZs can theoretically be used beyond simple crop scouting 

applications to more complex applications such as variable rate input (e.g. water, 

fertilizer etc.) management (Hunt and Daughtry, 2017). However, the costs of switching 

from uniform to variable-rate management are high, and value needs to first be 

demonstrated. The work presented here is meant to demonstrate this value as a proof-of-

concept approach. 

While the results presented here only span a single growing season, the value of such 

results can be contextualized in terms of beginning approaches in MZ delineation. Many 

farmers define MZs using traditional soil survey maps and/or Google Earth maps. 

Second, traditional soil survey maps lack consistency and have not been extensively 

validated (Brevik et al., 2016). Finally, Google Earth has its own set of disadvantages, 

including: 1) requirements of internet access and 2) requirements of high bandwidth 
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(Patterson, 2007). While farmer-based MZs offer a starting point towards MZ 

delineation (Heijting et al., 2011), the results presented here suggest it may be worth 

exploring complementary tools such as UAVs. UAV MZs, however, cannot diagnose a 

problem (e.g. water/nutrient deficiencies) - field scouting should always be used to 

follow up the trends presented by the UAV data. 

Considering that RGB sensors are considerably cheaper than multispectral/thermal 

sensors (Manfreda et al., 2018), or ECa sensors ($25000 USD, Geonics, personal 

communication), UAV RGB surveys may serve as a first step in developing MZ 

strategies. This recommendation has additional weight within cotton production fields, 

as sensors can generate MZs at the beginning, during and end of a growing season 

(Table 2.4). While in-season MZ delineation did not include RGB sensors, there is 

evidence to suggest they can be used in that capacity, for example site-specific weed 

management (de Castro et al., 2018; Maes and Steppe, 2018). While pre-/post-season 

MZs cannot be used as proactive tools, per se, they can be used to determine if 

significant spatial yield variability exists within a field, and whether that variability is 

consistent from year to year. If this condition is determined to be true, and the cause of 

the variability is reliably known, UAVs can help a farmer decide if site-specific field 

management is profitable, and therefore, justifiable. A key component of UAV MZ 

adoption, in addition to profits, will be delivery time. UAV processing, including 

geometric and radiometric corrections, can be challenging, especially if large areas are to 

be monitored (Zhang and Kovacs, 2012). Such processing challenges have been 

particularly noted for thermal imagery because it can exhibit low contrast within a scene 
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(Ribeiro-Gomes et al., 2017). Thus, it is imperative that a proper processing pipeline, 

regardless of the sensor, be established for (near) real-time delivery (Maes and Steppe, 

2018). 

 Conclusions 

The purpose of this study was to evaluate UAV imagery in terms of modeling MZ 

traits (e.g. height, seed-cotton yield), as well as MZ delineation, relative to previously 

approaches such as soil ECa. Regression results indicate that both multispectral imagery 

(via NDVI) and thermal imagery (Tr) were significant predictors of in-season yield 

indicators such as canopy height. In addition, their respective MZs showed significant 

separation during flowering and boll filling, respectively. An RGB sensor could also be 

used to create MZs at the beginning and end of a season. The paper then addressed how 

UAV imagery compared with ECa information in terms of modeling seed cotton yield. 

While the ECa survey was also able to separate the field into two distinct zones, AICc 

results indicate that it was outperformed by UAV imagery, even with the high amounts 

of soil variability encountered within the field (Fig. 2.1b). Furthermore, the addition of 

UAV imagery via open boll imagery significantly affected the previous ECa-yield 

model, suggesting the former may complement ECa if desired. 

Future studies should address the suitability of UAV-based MZs across multiple 

years, as compared with ECa sensing. If financial resources permit the use of variable 

rate technologies, an additional objective would be to conduct a cost-benefit analysis 

(Nawar et al., 2017). A cost-benefit analysis aims to compare, within a designated test 

strip, the net returns provided by variable rate strategies versus uniform rate strategies. 
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The effectiveness of these management strategies will depend on the scale where 

decisions are implemented. For example, a 10 m block is a reasonable pixel resolution 

for boom sprayers because it represents the approximate distance between individual 

spray nozzles (Maes and Steppe, 2018). Of course, this resolution will change depending 

on the application. For example, Mulla (2013) suggest variable rate of spraying of 

herbicides operates at a pixel resolution between 0.5-1.0 m, while variable rate of water 

between 5-10 m. The important point to make here, regardless of selected pixel size, is 

that UAV MZs need to be defined at the spatial scale at which the information will be 

used. Thus, in the case of variable rate input scenarios described above, UAV imagery 

should be aggregated or upscaled to a coarser resolution that falls in line with the needs 

of the user. 

It would also be interesting to compare the efficacy of the open boll detection 

method presented here against previous yield mapping approaches such as yield 

monitors. While yield monitors have been successful in mapping cotton yield variability 

(Thomasson and Sui, 2003; Zarco-Tejada et al., 2005), they can be complicated in terms 

of installation, calibration and extended maintenance (Fulton et al., 2018). Furthermore, 

the availability of commercial cotton yield monitors is relatively low compared with 

grain monitors (Dr. Gaylon Morgan, personal communication), indicating additional 

motivations to explore the UAV RGB boll mapping approach here. Within this context, 

RGB-based UAVs may provide a more optimal approach in defining yield-based MZs, 

given a UAV workflow is in order to produce deliverable results in a timely manner. The 
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adoption of UAV-based MZs may be aided through deliverables via smart phone/tablet 

integration (Araus and Kefauver, 2018).  
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3. EVALUATION OF CONTEXTUAL AND NON-CONTEXTUAL UNMANNED 

AERIAL VEHICLE (UAV) EVAPOTRANSPIRATION ACROSS PIXEL 

RESOLUTIONS AND SOIL TYPES 

 

 Introduction 

Farmers who utilize irrigation water face pressures in terms of competition across 

different sectors (e.g. oil/gas, municipal etc.) (Vanham, 2016). These farmers also face 

competition amongst other farmers within so-called hotspots, which refer to stresses 

where water is distributed unequally within the food, energy and water ecosystem 

(Mohtar and Daher, 2016). Thus, any water that is available to farmers should be applied 

towards crops in the most efficient way possible. The goals of any irrigation strategy are 

to minimize water use, maximize yield, and minimize agrochemical leaching or runoff 

(Evans and Sadler, 2008). Previous best management practices for irrigation scheduling 

have been conducted with soil moisture sensors, such as time-/frequency-domain 

reflectometers and neutron moisture meters (NMMs) (Campbell and Campbell, 1982). 

However, the use of soil moisture sensors for irrigation scheduling can be problematic 

for several reasons. First, sensor installation and upkeep can be costly, particularly 

within fields that exhibit soil heterogeneity (Jones, 2004). Second, selecting a uniform 

depth for sensor placement can be difficult, as the root zone depth varies as a function of 

crop development stage, soil moisture and nutrient availability (Zotarelli et al., 2009). 

Lastly, and perhaps most importantly, soil moisture changes are not directly tied with 

changes in plant response or physiology (Jones, 2007).  
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Alternative strategies towards irrigation management have been proposed through 

ET scheduling (Penman, 1952; Jensen et al., 1969). ET refers to the loss of water to the 

atmosphere, both from surface (i.e. leaf/soil) evaporation and from leaf transpiration. ET 

is a complex parameter controlled by multiple factors such as solar radiation, humidity, 

air temperature (Ta), wind speed, soil moisture, rooting depth, LAI, and stomatal 

conductance (Verstraeten et al., 2008; Fisher et al., 2017). Initial approaches towards 

estimating ET, such as eddy flux towers and lysimeters, while reliable, are effectively 

point measurements and cannot capture spatial variability within a field (Verstraeten, 

2008). One alternative approach towards estimating ET has been made with remotely 

sensed imagery (Rajan et al., 2010). Unlike soil moisture sensors and previous ET 

techniques, remote sensing can characterize plant responses in a direct manner beyond 

point measurements. Recent reviews by Alvino and Marino (2017) and Calera et al. 

(2017) demonstrate positive contributions of the technology towards irrigation 

scheduling. Remote sensing within this context can focus on two distinct regions of the 

electromagnetic spectrum. First, visible and near-infrared wavelengths, or the optical 

region (~0.4-1.4 μm), are used to model plant reflectance properties and, therefore, 

growth parameters such as LAI and vegetation fraction cover (or fc) (Rouse et al., 1974; 

Maas and Rajan, 2008). Second, emittance properties within the long-wave thermal-

infrared radiation (~7-14 μm) are used to monitor crop stress through established 

relationships with stomatal conductance (Farquhar and Sharkey, 1982). Remotely sensed 

imagery can be obtained from a host of airborne platforms, with recent technological 

advancements such as UAVs providing enhanced flexibility relative to pre-existing 
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platforms (i.e. satellites, manned aerial vehicles), as well as finer pixel resolutions (Shi et 

al., 2016).  

Remote sensing does not directly measure ET - instead, it is estimated using a model. 

One ET modelling group combines empirical relationships and physical equations under 

the surface energy balance (or SEB) equation (Courault et al., 2005). The SEB equation 

estimates ET based on the SEB equation using latent heat (or LE) as a proxy: 

 𝐿𝐸 = 𝑅𝑛 − 𝐺 − 𝐻, (Eq. 3.1) 

where Rn is net radiation, G is soil heat flux, and H is sensible heat flux (all terms in 

units of W m-2). Additional terms such as photosynthetic and heat storage within canopy 

layers are omitted from Eq. 3.1, as these terms are less than five percent of Rn within 

most agricultural crops (Meyers and Hollinger, 2004). ET can then be calculated from 

LE by dividing the latent heat of vaporization or λ (units of J kg-1) and the density of 

water (1000 kg m-3 at 20° C). Within the context of SEB modelling, remotely sensed 

imagery is useful because it provides spatial coverage of input parameters needed in 

estimating surface flux components for Eq. 3.1 (Liou et al., 2014).  

SEB models can be decomposed into non-contextual or contextual models. Non-

contextual methods solve Eq. 3.1 using absolute measurements of Tr, as well as ground 

input data (e.g. Ta, wind speed, relative humidity). One example of a non-contextual 

model is a two-source energy balance (TSEB) model. TSEB models treat Eq. 3.1 

separately with respect to canopy and soil, resulting in two separate energy balance 

equations (Norman et al., 1995): 

 𝐿𝐸𝑐 = 𝑅𝑛,𝑐 − 𝐻𝑐 (Eq. 3.2a) 
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 𝐿𝐸𝑠 = 𝑅𝑛,𝑠 − 𝐻𝑠 − 𝐺, (Eq. 3.2b) 

where ‘c’ and ‘s’ refer to the canopy and soil components, respectively. In order to 

estimate all components of Eq. 3.2, multispectral and thermal imagery are needed. TSEB 

models decompose Tr into canopy (Tc) and soil (Ts) temperatures using a mixing model 

(Norman et al., 1995): 

 𝑇𝑟 = [𝑓𝑐 ∗ 𝑇𝑐
4 + (1 − 𝑓𝑐) ∗ 𝑇𝑠

4]1/4, (Eq. 3.3) 

fc is given from multispectral imagery collected alongside thermal imagery or Tr. Tc 

and Ts are then used to find Hc/LEc and Hs/LEs, respectively (Eq. 3.2). Variants of the 

TSEB model differ in how to extract Tc and Ts (and thus Hc and Hs, respectively). Three 

popular TSEB sub-models include the Priestley-Taylor iterative retrieval (TSEB-PT) 

model (Norman et al., 1995), dual-time-difference (TSEB-DTD) model (Norman et al., 

2000), and, more recently, a hybrid (i.e. contextual + non-contextual) two-component 

temperature (TSEB-2T) model (Nieto et al., 2018b).  

Contextual methods, in contrast, solve the SEB equation based on observations of 

hot and cold endmembers located within a given thermal image; therefore, fluxes are 

driven by relative (rather than absolute) Tr measurements. Furthermore, contextual 

models estimate LE by combining soil and canopy systems together, as opposed to 

treating them separately as in Eq. 3.2. Contextual models are especially attractive in 

situations where collecting thermal imagery, multispectral imagery and field data is not 

possible. One recent contextual ET model, called DATTUTDUT, only requires one 

input, namely thermal imagery (Timmermans et al., 2015). Although recent studies have 

additionally supplied local incoming shortwave radiation (SWin) data. For example by 
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Brenner et al. (2018), have shown that DATTUTDUT, when supplied with SWin, was 

slightly more accurate (14 W m-2, mean not reported) than TSEB-PT within simple 

vegetation structures such as grasslands (Brenner et al., 2018). However, such 

observations have not always been extended towards other crops with more complex 

architectures. For example, Xia et al. (2016) found that the accuracy of DATTUTDUT 

within vineyards was degraded relative to TSEB-PT because the former could not 

account for differing heat sources (i.e. vines vs. bare soil/senescent cover crop). 

DATTUTDUT modelling errors also arise when dry soil and/or dense vegetation pixels 

are not found, particularly within extreme (i.e. arid/humid) environments (Timmermans 

et al., 2015). It would be interesting to determine how these conflicting reports are 

resolved within other unexplored crops such as cotton (Gossypium hirsutum L.). 

DATTUTUDUT modelling studies have also not addressed the importance of local 

weather data (e.g. SWin) in its estimations of LE, as such data is used inconsistently (Xia 

et al., 2016; Brenner et al., 2018). 

Given the plethora of SEB models available, model selection remains a challenging 

task. While some research suggests non-contextual models outperform contextual 

models using satellites (Choi et al., 2009), the opposite has been reported with UAVs 

(Brenner et al., 2017). Thus, there is still debate on which SEB model is most applicable 

under particular environmental conditions, especially when considering parameters that 

regulate ET within a field such as soil moisture (Alfieri et al., 2007). Model comparisons 

using accepted validation techniques such as eddy covariance could help guide model 

selection for future applications with similar crops and environmental conditions. Eddy 
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covariance towers have been previously used to validate UAV fluxes, for example, 

within grasslands (Brenner et al., 2017), barley (Hoffmann et al., 2016), olives (Ortega-

Farias et al., 2016), and vineyards (Kustas et al., 2018). Most of these validation studies 

have been designed over uniform soils and have not addressed the effects of soil 

variability on ET variability. In addition, some of these studies model ET at sub-meter 

resolutions, which can present problems with respect to TSEB modelling (Nieto et al., 

2017; Aboutalebi et al., 2019). In such situations, UAV ET should be aggregated 

towards coarser pixel resolutions that align with management operation scales (i.e. 1-10 

m). However, studies have not currently addressed the effect of UAV-based image 

aggregation on model comparison and performance.  

The purpose of this study is to evaluate non-contextual (TSEB-PT, TSEB-2T, TSEB-

DTD) and contextual (i.e. DATTUTDUT) model estimates of Rn, G, H, and LE (or ET) 

within a single field and single cotton growing season. The value of ancillary weather 

inputs (i.e. SWin, Ta, actual vapor pressure or ea) within DATTUTDUT modelling is 

included. The second main objective is to quantify how differences in soil properties 

affect non-contextual and contextual ET model estimates. To address both objectives, 

surface energy balance components are generated from UAV imagery at two different 

pixel resolutions, mainly those at soil-plant mixed (1.05 m) and sharpened satellite 

(10.05 m) pixel scales. These pixel resolutions are associated with Sentinel-3 thermal 

imagery sharpened to Sentinel-2 multispectral imagery (Guzinski and Nieto, 2019). The 

estimated fluxes obtained with these different models and resolutions are then validated 

with independent eddy covariance flux tower measurements across two soil types 
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identified within the field. Effects of soil differences are also addressed in terms of LE, 

Tc, and Ts model output across the entire field. DATTUDUT model performance is 

finally explored further in terms of LE to environmental conditions such as soil 

variability via temperature endmember selection. 

 Methods 

 Study area and management 

The study site (17-ha cotton field) is located on the Texas A&M Experimental Farm 

located in central-eastern Texas (Fig. 3.1a). Surface soil color varies within the field, 

with darker and lighter soils on the left and right sides of the field, respectively (Fig. 

3.1a). The spatial distribution of the soils can be explained in terms of its geological 

history, as clay-sized particles were deposited relatively further from the once active 

fluvial channel (Fig. 3.1a). Elevations are relatively constant, with an average elevation 

of 67.7 ± 0.3 m AGL (based on 2017 UAV digital surface models, Sect. 3.2.3). Soil 

surface textures include silt loam, silty clay loam, and silty clay (Stanislav, 2010), and 

the soils are classified as Hapluderts, Haplusteps, and Ustifluvents. Previous research by 

Rouze et al. (in preparation) has shown that these soils can be grouped into two disparate 

zones, or soil types, based on ECa values from an electromagnetic induction survey (Fig. 

3.1b). The mean of the high and low ECa zones in Fig. 3.1b are 72 ± 20 mS m-1 and 43 ± 

18 mS m-1, respectively (± 2σ). The corresponding mean clay content within each zone, 

based on these ECa values, is 391 ± 20 g kg-1 and 253 ± 18 g kg-1 (± 2σ) (Stanislav, 

2010). These two regions will respectively be referred to as ‘high ECa’ and ‘low ECa’ 
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zones in all further analysis. A previous study by Stanislav (2010) determined that ECa 

was a significant predictor of clay content and soil water holding capacity. 

 

 

 

 

Fig. 3.1 (a) Location of study area within the United States and the state of Texas. 

Visual image was collected by a consumer grade digital camera aboard a UAV 

about two weeks before planting. The light blue line to the right of the field 

indicates an abandoned fluvial channel. (b) Locations of various field equipment 

and agronomic sites established throughout the 2017 growing season. Light and 

dark grey areas correspond with low and high ECa zones, respectively (Rouze et al., 

in preparation). Agronomic collection sites include measured variables such as leaf 

area index, soil moisture, canopy height, and canopy width. Additional infrared 

thermography (IRT) measurements were consistently collected at the time of each 

UAV overpass or intense observation period (IOP) (yellow, Table 3.1). 

 

 

 

In past seasons, the field was actively managed with conventional tillage practices 

and kept in a continuous crop rotation of corn (Zea mays L.) and cotton. In 2017, cotton 

(PHY 444 WRF variety) was planted at a rate of 111,200 seeds ha-1 and 1.02 m row 
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spacing on April 5, 2017 (day of year or DOY 95). Pre-emerge and post-emergence 

herbicides (Prowl H2O, Cotoran 4L, Cornerstone Plus) were applied to ensure uniform 

stand establishment. In-season management of cotton included fertilization, plant growth 

regulation, and weed control based on best management practices. First flowering was 

observed on June 8 (64 DAP), with cutout (i.e. five NAWF) observed on July 1, 2017. 

Boll filling occurred approximately between June 29 and July 28 (85-112 DAP, defined 

here as 2 NAWF). Open bolls for about 90 % of the field occurred around September 1 

(210 DAP). Defoliation occurred on September 9, 2017 (157 days after planting or 

DAP). Cotton harvest was conducted on October 10, 2017 (188 DAP). 

Fig. 3.1b (red) shows the locations of two 1.25 m mounted tipping buckets that 

collected precipitation and Ta data every fifteen minutes (HOBO-RG3, Onset, Bourne, 

USA). Fig. 3.2a displays daily temperatures averaged across both rain gauges during 

vegetative growth (0-2305 growing degree days or GDD). The mean daily minimum, 

maximum and average temperatures during this time period were 19.0° C, 34.5° C and 

26.0° C, respectively. The cotton experienced some particularly cold days during the 

early season, as daily minimum temperatures exceeded below the threshold for optimal 

growth (16° C) (0-649 GDD, Fig. 3.2a). Similarly, cotton experienced hot days during 

late growth (1545-2338 GDD), as daily maximum temperatures exceeded above the 

threshold for optimal growth (38° C).  
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Fig. 3.2 (a) Daily temperature plotted against cotton growing degree days in 2017 

based on averages from nearby rain gauges (Fig. 3.1b, red). The two horizontal 

lines at 16° C and 38° C refer to the thresholds beyond which cotton plants 

experience little to no development. (b) Daily precipitation and irrigation (black 

and red, respectively) also plotted by growing degree days. 

 

 

 

Fig. 3.2b shows daily precipitation averaged across both rain gauges. The cotton 

field received 1248 mm of precipitation during the growing season, but only 40 % of 

that (491 mm) was supplied during vegetative growth. A heavy rain event (65.8 mm) 

occurred during cotton planting and emergence (around 51 GDD), resulting in soil 

crusting and some poor stands. The field operates under a central pivot irrigation system 
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that is about 513 m long with 10 spans, each 48 meters long. Due to the field size, each 

irrigation event lasted about 2.5 days. Approximately 21.5 mm of water was applied on 

May 4 (339 GDD), June 28 (1462 GDD), July 19 (2041 GDD), and July 21 (2100 

GDD). Fig. 3.2b shows daily irrigation data provided by the company (FieldNET 

Lindsay Corporation, Omaha, USA). 

 UAV field campaign 

Table 3.1 shows the dates, or intense observation periods (IOP), on which UAV 

surveys were conducted. The main growth stages selected for this study include cotton 

flowering and boll filling. Multispectral images were collected from a RedEdge camera 

(MicaSense, Seattle, USA). The RedEdge camera is a complementary metal–oxide–

semiconductor (CMOS) 16-bit sensor that detects electromagnetic radiation in the blue 

(0.455-0.495 μm), green (0.540-0.580 μm), red (0.659-0.678 μm), near-infrared (0.800-

0.880 μm), and red-edge (0.707-0.727 μm) bands. The focal length used for the 

Micasense camera was six mm. Thermal images were collected using a 14-bit ICI 8640-

P sensor (7.0-14.0 μm), which is an uncooled focal plane array microbolometer with 

Vanadium Oxide film (Infrared Cameras Inc., Beaumont, USA). Thermal sensors 

measure brightness directional temperature by inverting Planck’s blackbody equation 

over a specified wavelength range (Norman and Becker, 1995). The ICI camera has a 

reported accuracy of ± 1o C based on blackbody laboratory calibration, although such 

reported accuracies have been shown to degrade under field conditions (Torres-Rua et 

al., 2017). The focal length used for the ICI 8640-P was 12.5 mm. 
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Table 3.1 Agronomic data, flight times, and pixel sizes for all Intense Observation 

Periods (IOP) dates. Agronomic information includes average nodes above white 

flower (or NAWF), along with growing stage and corresponding growing degree 

days (GDD). GDDs refer to heat accumulation units that are used to predict cotton 

phenology. The local times associated with each multispectral and thermal surveys 

are also listed, with the latter decomposed into AM and PM flights. 

Date 
Growing 

Stage 

Average 

NAWF 
GDD 

PM Flight 

Time - 

Multispectra

l 

Early 

AM 
Flight 

Time - 

Thermal 

PM 

Flight 

Time - 

Thermal 

Native Pixel Size (m) 

Multispectral 
AM 

Thermal 

PM 

Thermal 

June 16, 

2017 
Flowering 

7 1161 13:48-14:10 
7:57-

8:15 

13:00-

13:15 
0.07 0.23 0.15 

July 1, 
2017 

5 1545 12:05-12:27 
7:53-
8:07 

14:36-
14:50 

0.08 0.16 0.15 

July 18, 

2017 Boll 
filling 

2 

2013 11:05-11:23 
8:15-

8:28 

12:29-

12:42 
0.08 0.16 0.15 

July 26, 

2017 
2246 11:27-11:48 

7:54-

8:10 

12:00-

12:11 
0.08 0.22 0.15 

 

 

 

Due to platform limitations, RedEdge and 8640-P cameras were flown separately 

and thus at different times (Table 3.1). Both cameras were equipped aboard on a fixed 

wing UAV platform (Tuffwing UAV Mapper, Boerne, USA). The UAV communicated 

with a ground control station at a frequency of 915 MHz. Flight plans were created on 

auto-pilot mode within the Mission Planner software (ArduPilot Dev Team). The 

multispectral camera was set under manual settings, with exposure times ranging 

between 0.44-1 seconds depending on band. Flight control was maintained using a 

Pixhawk controller, which operates under the NuttX real-time operating system. In order 

to achieve full field coverage while minimizing cloud variability and thermal drift, 

multispectral and thermal surveys were flown at 65 and 60 % sidelap and overlap, 

respectively. Most flights were carried out under clear skies, with average winds below 4 
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m s-1. However, on July 1, thin (but uniform) cloud cover was present. In addition to 

cloud cover, July 1 differed from other dates in that its survey was conducted relatively 

late (Table 3.1). The average flight time for the thermal and multispectral imagery was 

13 and 20 minutes, respectively. All multispectral and thermal afternoon flights were 

conducted within ± two hours of local solar noon (13:30) (Table 3.1). However, 

additional morning flights were conducted to facilitate TSEB-DTD modelling (Sect. 

3.2.6.2). The timing of these early morning surveys was no later than 1.5 hours after 

sunrise, per the recommendations by Anderson et al. (1997). The altitude at which all 

surveys was conducted was 120 m AGL, resulting in multispectral and thermal pixel 

resolutions of about 0.07 and 0.15 m, respectively (Table 3.1). All images were 

instantaneously geotagged using a u-blox M8N GPS module aboard the UAV platform. 

The reported geometric accuracy of the u-blox M8N GPS is two meters.  

In order to create orthorectified maps with high positional accuracies (cm), GCPs 

were deployed across the perimeter of the field (black circles, Fig. 3.1b). A GCP was 

designed from plywood and consisted of a two-level deck, whose spatial coordinates 

were measured using a real time kinematic (RTK) Trimble R7/R8 GPS system (Trimble 

Inc., Sunnydale, CA, USA). Thermal orthomosaics were later aided by attaching 

aluminized polyester located on the upper level of each GCP. Each deck level on a given 

GCP securely housed three radiometric calibration tiles (six tiles per GCP) with known 

albedo values of 4, 20 and 45 % obtained from a spectral radiometer (Spectral Evolution 

PSR+ 3500). The size of each calibration tile was 0.61 x 0.61 m. These radiometric 



78 

 

calibration tiles served to later calibrate the UAV multispectral imagery. Additional 

information regarding these GCPs can be found in Han et al. (2018). 

 Image processing 

After image collection, both multispectral and thermal images were transferred to a 

computer for further processing. AM and PM thermal images were first processed from 

8-bit digital numbers (DNs) or radiance to 16-bit camera calibrated brightness 

temperature (Tbr) using the provided software (IRFlash 2.16.4.21). Tbr is not the same as 

Tr, the variable of interest, as the former contain sources of uncertainty such as 

atmospheric attenuation and differences in land surface emissivity (ε) within a scene 

(Torres Rua et al., 2017). Tr can be estimated from Tbr at each ith pixel, given ε and the 

background air temperature (Tbg) (Maes and Steppe, 2012): 

 

𝑇𝑟,𝑖 = √
𝑇𝑏𝑟,𝑖

4 − (1 − 𝜀)𝑇𝑏𝑔
4

𝜀𝑖

4

 (Eq. 3.4) 

Because soil and vegetation pixels were visible from thermal images at all points in 

time, and because these two objects were found to exhibit different ε values from field 

measurements, spatially distributed ε was needed to derive accurate Tr (Eq. 3.4). ε was 

calculated at each ith pixel, therefore, by weighting soil and vegetation ε values (εs and εv, 

respectively) by fc (Jimenez-Munoz et al., 2006): 

 𝜀𝑖 = 𝜀𝑠(1 − 𝑓𝑐,𝑖) + 𝜀𝑣𝑓𝑐.𝑖 (Eq. 3.5) 

where εs was 0.96 as obtained from a box method (Fuchs and Tanner, 1966), and εv 

was set to 0.99, per recommendations from Maes and Steppe (2012). fc,i was derived 
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from NDVI imagery by scaling between maximum NDVI (NDVImax) and soil NDVI 

(NDVIs) (Carlson and Ripley, 1997): 

 
𝑓𝑐,𝑖 = (

𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑠
)2 

(Eq. 3.6) 

NDVImax was taken to be the maximum NDVI observed from the original spatial 

resolution (0.976). NDVIs was based off an average bare soil NDVI using UAV imagery 

collected before cotton squaring (0.2). Tbg (Eq. 3.4) was found using Ta data from an 

HC2S3 temperature probe (Campbell Scientific, Logan, USA).   

Validation for the thermal correction approach above was assessed by comparing 

predicted and measured Tr obtained using a handheld sensor (MI-220, Apogee 

Instruments, Logan, USA). Measured Tr values refer to vegetated and bare soil surfaces 

during thermal image collection (Fig. 3.1a, yellow circles). Predicted temperatures were 

computed by first aggregating up to the field-of-view of the IRT (around 0.08 m2).  

Predicted canopy and soil temperatures were obtained by extracting the minimum 

and maximum temperatures within the approximate measurement area (3 m radius). 

Mean absolute error (MAE) values of 2.6 and 4.6 °C and mean biases (predicted-

measured) of 1.9 and -2.6 °C were found for plants and soils, respectively. One possible 

source of error lies within the different spectral ranges between a ground thermal sensor 

(i.e. MI-220, Apogee Instruments, Logan, USA) and the aerial thermal sensor (i.e. ICI-

8640 P) (8-14 μm and 7-14 μm, respectively). 

All multispectral and afternoon PM thermal images (Tr, Eq. 3.4) collected from each 

survey (Table 3.1) were then used to generate orthomosaics using the commercial 

software Agisoft PhotoScan Pro (St. Petersburg, RU). Orthomosaic generation is based 
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on the structure from motion method, which is based on steps such as: 1) image 

alignment, 2) 3D geometry creation, 3) ortho-photo generation, and 4) digital surface 

model generation (Westoby et al., 2012). Orthomosaic generation was aided by GCPs 

(Fig. 3.1a, black) and their known locations using the RTK GPS described earlier. 

Thermal orthomosaic generation was additionally aided by attaching (and subsequently 

identifying) aluminized polyester located on the upper level of each GCP. For AM Tr 

images, however, a different procedure was performed, as orthomosaic generation was 

difficult due to a low number of matching features. Instead, a partial orthomosaic was 

generated within ArcGIS by orthorectifying select images using multispectral imagery as 

a visual guide (ESRI, Redlands, USA). The images were selected based on their location 

within the eddy covariance footprint (Sect. 3.2.7.4.). Because AM surveys are generally 

characterized by relatively lower Tr variability, an average Tr was calculated within each 

partial orthomosaic – this approach has precedence within literature (Hoffmann et al., 

2016). Exported orthomosaics were deemed acceptable and exported as GeoTIFFs when 

the positional RMSE values were less than or equal to 1.5 times the pixel resolution. 

Radiometric calibration was performed on multispectral orthomosaics using the 

empirical line method (Smith and Milton, 1999). A previous study by Iqbal et al. (2018) 

demonstrated that the empirical line method can be used to calibrate UAV multispectral 

sensors, assuming the size of the calibration targets are sufficiently large (here, 9 x 9 

pixels). In this method, DNs acquired from the red and NIR bands were converted into 

percent reflectance using various objects located within the field. The interest in 

calibrating red and NIR bands was so that NDVI (NDVI = 
𝑁𝐼𝑅+𝑅𝑒𝑑

𝑁𝐼𝑅−𝑅𝑒𝑑
) orthomosaics could 
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be derived for later use in the modelling phase. For the red band, it was observed that 

crop DNs were much lower than that of the five percent albedo target, resulting in 

artificially negative reflectance values. To get around this, a new low-end reflectance 

point within the red band was established within nearby tree shadows at two percent 

(Pristolas et al., 2016). Similar problems were encountered for the NIR band, where crop 

DNs were higher than the 45 % albedo target. Therefore, a new high-end reflectance 

point was established using the GCP plywood material, measured at 79 %. Quality 

control on this approach was performed by comparing the predicted red/NIR reflectance 

values with ground reflectance data collected at the calibration tiles. In this comparison, 

reflectance values agreed well independent ground-truth measurements, with a bias (bias 

= predicted – observed) of 0.5 % and an RMSE of 2.5 %. This accuracy is similar, if not 

lower, than similar analyses conducted by Berni et al. (2009) and Xia et al. (2016). 

 Agronomic data collection 

Agronomic field data collected on each IOP include: 1) root zone soil moisture, 2) 

LAI, 3) plant width, 4) plant height, and 5) leaf width (Fig. 3.1b). Soil moisture was 

collected to quantify soil watser variability by ECa zone (Fig. 3.1b), while LAI, plant 

width/height and leaf width were needed for later modelling of surface energy fluxes. 

Root zone soil moisture was measured using a CPN 503 DR NMM and sampled in 5.1-

cm diameter access tubes at various depths (0.2, 0.4, 0.6, 0.8, and 1.0 m) below the soil 

surface (Campbell Pacific Nuclear, Concord, USA). Soil moisture properties of interest 

include: 1) average depth of water (mm), found by averaging volumetric water content 
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(θv) across the entire root zone depth (here 1 m based on inspection of NMM data), and 

2) percentage of available water depleted (AWD) from field capacity: 

 
𝐴𝑊𝐷 =

(𝜃𝐹𝐶,𝑖 − 𝜃𝑖,𝑡)

(𝜃𝐹𝐶,𝑖 − 𝜃𝑃𝑊𝑃,𝑖)
∗ 100, 

(Eq. 3.7) 

where i is a given sampling location, t is the sampling date, θFC is volumetric water 

content at field capacity (i.e. first sampling date), and θPWP is volumetric water content at 

permanent wilting point established through clay content calibrations with ECa 

(Stanislav, 2010). LAI measurements were taken with a LAI-2200C sensor (LI-COR, 

Lincoln, NE, USA), either one hour before sunrise or one hour before sunset. All LAI 

campaigns were collected in a two-day span from a UAV thermal overpass (Table 3.1). 

LAI measurements were taken approximately in an area spanning three meters by three 

rows (~1.02 x 1.02 m). All LAI observations were collected directly underneath cotton 

plants along a row, and one-fourth, one-half, and three-fourths distance from the cotton 

row using a 270° lens cap, in accordance with LICOR recommendations. All height and 

width measurements were visually observed across ten different plants each site using 

measuring tape. Plant height was visually observed from the cotyledon to the apical 

meristem using a tape measurer. Leaf width was measured as the from the widest point 

on select leaves on each plant. 

 Eddy covariance data 

Ground fluxes were quantified by installing one eddy covariance flux tower in each 

ECa zone (pink and blue circles, Fig. 3.1b). The ECa values immediately around the high 

ECa and low ECa flux towers are 88 and 52 mS m-1, respectively, resulting in clay 

content values of 466 and 296 g kg-1, a difference of 170 g kg-1 or 17 % (Stanislav, 
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2010). All equipment installed on the eddy towers were the same at both locations, and 

sensor details are given in Table 3.2. High frequency data includes a three dimensional 

sonic anemometer to measure 3D wind velocity components, and an infrared gas 

analyser to measure water concentrations. LE (in W m-2) from the eddy flux towers are 

calculated over a given sampling interval using the following equation: 

 𝐿𝐸 = 𝜆(𝜌𝑤′𝑐′̅̅ ̅̅ ̅̅ ) (Eq. 3.8) 

where ρ is the density of air (kg m-3), and 𝑤′𝑞′̅̅ ̅̅ ̅̅  is the covariance between vertical 

wind speed (w, m s-1) and the mass fraction of vapor flux (c, kg water kg-1 air). H (in W 

m-2) is similar to Eq. 3.8 except it calculates the covariance between w and sonic 

temperature (T), the latter of which is a proxy for Ta (in Kelvin or K): 

 𝐻 = 𝜌𝐶𝑝𝑤′𝑇′̅̅ ̅̅ ̅̅  (Eq. 3.9) 

where ρCp is the volumetric heat capacity of air (J m-3 K-1). Note from Table 3.2 that 

the heights of the net radiometer and gas analyzer/anemometer shifted on June 30, 2017 

because the latter sensors at the high ECa zone were interfering with the irrigation 

system. The direction of the anemometer at both ECa sites was 160 degrees from true 

North, which reflects the prevailing wind direction based on previous weather station 

data (data not shown). Soil moisture values were calculated from a custom calibration 

developed within each ECa zone (Leo Rivera, METER Group, personal communication, 

2017). Surface G flux was calculated by correcting the subsurface heat flux for storage 

in the soil layer above the plates using nearby temperature and moisture sensors (Evett et 

al., 2012). 

 



84 

 

 

 

Table 3.2 Measurands from the eddy covariance systems, along with their 

associated manufacturers. 

Observed variable 

Height/depth of 

measurand 

Logging 

interval Instrument 
 Height (m)   

Wind speed and 

direction 

High ECa: 2.84 

(before 6/30); 

2.77 (after 7/1) ; 

Low ECa 2.77 

20 Hz 

CSAT-3; Campbell 

Scientific, Logan, UT 

Water vapor 

concentration 

LI-7500; LI-COR, 

Lincoln, NE 

Net radiation 

High ECa: 2.52 

(before 6/30); 

2.37  (after 7/1) ; 

Low ECa: 2.35 

15 

minutes 

NR01, Hukseflux, The 

Netherlands 

Air temperature and 

relative humidity 
2.26 

HC2S3, Campbell 

Scientific 
 Depth (cm)  

Soil temperature 2, 6 105E; Campbell Scientific 

Soil heat flux 8 
HFT3-L; Campbell 

Scientific 

Soil moisture 4, 5 
GS1, METER Group Inc., 

Pullman, WA 

 

 

 

High frequency raw data collected by the eddy covariance towers were then post-

processed within eddyPro software version 6.2.1 (LI-COR). Processing was performed 

using eddyPro basic settings to quality check raw data, remove potential outliers, and 

apply corrections (Sharma et al., 2019). After eddyPro processing, turbulent fluxes were 

corrected by an additional 10 %, based on recent findings of underestimates in vertical 

velocity using a non-orthogonal CSAT-3 anemometer such as the case here 

(Kochendorfer et al., 2012; Frank et al., 2013). The average energy balance closure for 

each tower before and after correction is shown in Table 3.3. The average closure across 

all dates and towers after the correction methods above was 0.90. Across all dates and 
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towers, energy closure after correction was above 80 %, and this falls in line with 

closures reported from previous studies (Chávez et al., 2005; Xia et al., 2016). 

 

 

 

Table 3.3 Closure ratio (i.e. 
𝑳𝑬+𝑯

𝑹𝒏−𝑮
) before and after applying corrections (i.e. LE * 

1.1, H * 1.1) to EddyPro fluxes. July 18 fluxes at the high ECa site are omitted here, 

as the anemeometer within the high ECa zone was “looking at” a poorly vegetated 

part of the field. 

Date 

Closure Ratio - unclosed 
Closure Ratio - 

closed with 1.1 

High ECa Low ECa High ECa Low ECa 

June 16, 2017 0.86 0.85 0.94 0.93 

July 1, 2017 0.80 0.94 0.88 0.98 

July 18, 2017 N/A 0.78 N/A 0.85 

July 26, 2017 0.82 0.77 0.91 0.94 

 

 

 

 Model formulations 

 TSEB-PT 

TSEB-PT models were developed out of a need to estimate Tc from coarse (i.e. > 60 

m) satellite pixel resolutions (Kustas et al., 2004). Primary equations used in TSEB-PT 

include Eq. 3.3, along with an initial approximation of LEc based on the Priestley and 

Taylor (1972) transpiration equation:  

 
𝐿𝐸𝑐 = 𝛼𝑃𝑇𝑓𝑔

𝛥

𝛥 + 𝛾
𝑅𝑛,𝑐, 

(Eq. 3.10) 

where αPT is Priestley–Taylor parameter with an initial value of 1.26, Δ is the slope 

of the saturation vapor pressure-temperature curve (Pa K-1) and γ is the psychrometric 

constant (Pa K-1). A more detailed description of this model can be found from Norman 
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et al. (1995) and Kustas and Norman (1999). After LEc is initialized using Eq. 3.10, Hc is 

then found by rearranging Eq. 3.2a (assuming Rn,c is calculated via ground truth info). 

With an initial Hc estimate obtained, Tc is found by rearranging the initial formulation 

for Hc (Norman et al., 1995): 

 
𝐻𝑐 = 𝜌𝐶𝑝

𝑇𝑐 − 𝑇𝑎

𝑟𝑎
 ⇾  𝑇𝑐 =  

𝐻𝑐𝑟𝑎

𝜌𝐶𝑝
+ 𝑇𝑎, 

(Eq. 3.11) 

where ra is the aerodynamic resistance to momentum and heat transfer (s m-1), ρCp is 

the volumetric heat capacity of air (J m-3 K-1). With an initial Tc from Eq. 3.11, Ts is then 

obtained by rearranging Eq. 3.3. Note that, in order to obtain an initial Tc value, fc (Eq. 

3.3) is calculated from Campbell and Norman (1998): 

 
𝑓𝑐(𝜃) = 1 − exp [

−0.5𝛺(𝜃)𝐿𝐴𝐼

cos(𝜃)
], 

(Eq. 3.12) 

where Ω is a vegetative clumping factor calculated at a given sensor viewing angle θ 

(Kustas and Norman, 1999), and LAI is calculated from multispectral imagery (Sect. 

3.2.7.1). 

A check on these Tc (Eq. 3.11) and Ts (Eq. 3.3) values is then performed by applying 

the newly found Ts values towards Hs: 

 
𝐻𝑠 = 𝜌𝐶𝑝

𝑇𝑠 − 𝑇𝑎

𝑟𝑠 + 𝑟𝑎
, 

(Eq. 3.13) 

where rs is the soil resistance to momentum and heat transfer (s m-1). Finally, LEs is 

found from Eq. 3.2b, given Hs (Eq. 3.13). A valid solution is reached when LEs is 

positive – this is because, during the daytime (i.e. when a flight occurs), moisture is 

expected to move from the soil/canopy to the atmosphere. If LEs is not positive, αPT is 
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iteratively reduced until LEs is zero or positive. If a valid solution is found, LE and H 

fluxes from both canopy and soil sources are respectively added together to compute the 

LE and H terms shown in Eq. 3.1.  

 TSEB-DTD 

One documented issue with TSEB-PT is that Tr measurements can be negatively 

affected by sources of error such as radiometric calibration, the influence of sensor 

temperature, vignetting, non-uniformity noise, correction for atmospheric effects, target 

ε, and distance from the target (Kelley et al., 2019). The TSEB-DTD model, developed 

by Anderson et al. (1997), and refined by Norman et al. (2000), was formulated to 

eliminate dependence on absolute Tr measurements. TSEB-DTD is similar to the TSEB-

PT formulation in that Hc is calculated similar to the steps in Sect. 3.2.6.1. However, 

instead of finding Hs using single measurements of Ts (Eq. 3.13), Hs is instead found by 

rearranging the H equation: 

 𝐻𝑠 = 𝐻 − 𝐻𝑐, (Eq. 3.14) 

H is calculated by utilizing relative temperature difference between an AM thermal 

survey and mid-day time thermal survey collected on the same day (Norman et al., 

2000): 

 
𝐻𝑖 = 𝜌𝑐𝑝 [

(𝑇𝑟,𝑖(𝜃) − 𝑇𝑟,0(𝜃)) − (𝑇𝑎,𝑖 − 𝑇𝑎,0)

(1 − 𝑓𝑐(𝜃))(𝑟𝑎,𝑖 + 𝑟𝑠,𝑖)
]

+ 𝐻𝑐,𝑖 [1 −
𝑓𝑐(𝜃)

1 − 𝑓𝑐(𝜃)

𝑟𝑎,𝑖

𝑟𝑎,𝑖 + 𝑟𝑠,𝑖
], 

(Eq. 3.15) 

where the subscripts ‘i’ and ‘0’ refer to the surveys collected at the daytime and 

morning, respectively. Thus, Ta and Tr are needed shortly after sunrise in order calculate 
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Hs to complete the two-component energy balance equations (Eq. 3.2). The standard 

time to collect AM surveys is about 1.5 hours after sunrise, while mid-day surveys 

should be collected about 5.5 hours after sunrise; however, the selection of these two 

times is not a steadfast rule and can be seasonally dependent (Anderson et al., 1997). 

 TSEB-2T 

A recent model developed within the TSEB suite is the hybrid TSEB for component 

temperature estimation model (or TSEB-2T, Nieto et al., 2018b). The motivation for 

TSEB-2T was made possible through developments in UAV technology, as Tc and Ts 

could be directly extracted, as opposed to estimated via the assumptions from TSEB-PT. 

TSEB-2T, unlike TSEB-PT, uses no initial assumptions of LEc, and, unlike TSEB-DTD, 

uses absolute (instead of relative) temperatures. However, running the model under the 

TSEB scheme requires knowledge of both Tc and Ts for each pixel, and such 

temperatures are not likely to exist within a single pixel. In this case, canopy and soil 

temperatures are obtained by searching for pure vegetation and soil pixels in a contextual 

spatial domain - that is, within a specified search window, pixels identified as canopy 

and soil are respectively averaged to find Tc and Ts. Pixels are classified as soil and 

canopy based on thresholds associated with NDVIs or NDVImax. NDVIs was obtained by 

performing a supervised classification on the NDVI image obtained shortly after 

planting (May 15) – then, all NDVI pixels classified as soil were averaged. However, 

because the field contains soil variability (Fig. 3.1b), the mean plus two standard 

deviations was used to obtain an upper threshold for NDVIs (0.310). The NDVImax 

threshold value was the mean value of pixels classified as pure vegetation using a 
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supervised classification of the NDVI imagery obtained around the peak vegetation 

growth (July 18, 0.916). Further discussion regarding derivation and implementation of 

TSEB-2T can be found from Nieto et al. (2018b). 

 DATTUTDUT 

The DATTUTDUT is an energy balance model created by Timmermans et al. (2015) 

that primarily estimates Eq. 3.1 using Tr, and thus thermal imagery, as input. Model 

formulation for each component of Eq. 3.1 will be provided here. Rn is the difference 

between all incoming and outgoing radiation: 

 𝑅𝑛 = (1 − 𝜌0) ∗ 𝑅𝑠𝑑 +  𝜀0 ∗ 𝜀𝑎 ∗ 𝜎 ∗ 𝑇𝑎
4 − 𝜀0 ∗ 𝜎 ∗ 𝑇𝑟

4, (Eq. 3.16) 

where ρ0 is the surface albedo (unitless), ε0 is the surface emissivity (unitless), εa is 

the atmospheric emissivity (unitless), and σ is the Stefan–Boltzmann constant (5.67 × 

10–8 W m–2 K–4). SWin is modelled within DATTUTDUT using sun-earth geometry 

relationships, although recent formulations have also used local net radiometer (i.e. 

SWin) data (Brenner et al., 2018). ε0 in the model is assumed to equal unity or one. Ta is 

usually assumed to be the minimum temperature value unless local data are supplied. εa 

is estimated differently depending on whether direct Ta measurements are supplied 

(Brutsaert et al., 1982; Timmermans et al., 2015). G is a fraction of Rn and is linearly 

related with Tr, based on scaling between its minimum (0.05 within full vegetated areas) 

and maximum (0.45 for bare soils): 

 
𝐺 = 𝑅𝑛 ∗ [0.05 + 0.4 ∗ (

𝑇𝑟 − 𝑇𝑟,𝑚𝑖𝑛

𝑇𝑟,𝑚𝑎𝑥 − 𝑇𝑟,𝑚𝑖𝑛
)], 

(Eq. 3.17) 
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Tr,max refers to the hottest pixel (defined here as 100th percentile), and Tr,min to the 

temperature at the 0.5th percentile (Timmermans et al., 2015). LE is found through the 

evaporative fraction (EF) or Tr,max and Tr,min  ̧with the assumption that the energy 

balance equation is properly conserved: 

 
𝐸𝐹 =

𝐿𝐸

𝐿𝐸 + 𝐻
=

𝐿𝐸

𝑅𝑛 − 𝐺
=

𝑇𝑟,𝑚𝑎𝑥 − 𝑇𝑟

𝑇𝑟,𝑚𝑎𝑥 − 𝑇𝑟,𝑚𝑖𝑛
, 

(Eq. 3.18a) 

 LE is then found by rearranging Eq. 3.18a as  

 
𝐿𝐸 = (

𝑇𝑟,𝑚𝑎𝑥 − 𝑇𝑟

𝑇𝑟,𝑚𝑎𝑥 − 𝑇𝑟,𝑚𝑖𝑛
) ∗ (𝑅𝑛 − 𝐺), 

(Eq. 3.18b) 

Assuming Rn, G, and LE have been found using Eq. 3.16, 3.17, and 3.18b, 

respectively, H is then obtained as a residual by rearranging Eq. 3.1. 

 Model inputs and processing 

Model outputs were generated at 1.05 m, and 10.05 m. The 1.05 m scale refers to the 

minimum pixel resolution that permits the use of TSEB modelling, while the 10.05 pixel 

resolution corresponds with the spatial scale of management operations such as central 

pivot irrigation (Smith et al., 2009). Ancillary image inputs (described below) are 

assumed to be aggregated from the original UAV resolutions (Table 3.1) using simple 

linear averaging. Agronomic and weather inputs at the times of each overpass are listed 

in Table 3.4.  
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Table 3.4 Agronomic and weather data collected at the IOPs listed in Table 3.1. fg, 

or green fraction, was assumed to be equal to 1 for all dates of interest. The view 

zenith angle was also to be equal to 0 in all cases. Ta – air temperature; u – wind 

speed; Sdn – downward incoming solar radiation; VPD – vapor pressure deficit; RH 

– relative humidity. 

Date 

Field 

Average 
LAI 

Canopy 

height 

Canopy 

width 

Thermal 

AM Ta 

Thermal 

PM Ta 
u 

Wind 

direction 
Sdn VPD RH 

m2 m-2 (m) (m) K K m/s ° W m-2 hPa   

June 16, 2017 1.03 0.44 0.43 298.9 306.1 3.88 205 1014 24.0 0.49 

July 1, 2017 1.72 0.61 0.66 300.4 306.4 3.50 162 801 22.9 0.50 

July 18, 2017 
2.37 

0.78 0.92 301.1 305.9 1.00 256 1053 20.5 0.50 

July 26, 2017 0.80 0.93 299.3 306.0 2.75 176 963 21.5 0.49 

 

 

 

 Image inputs 

Image inputs refer to spatially variable inputs beyond Tr, such as fc and LAI. fc and 

LAI were needed for TSEB modelling. fc was derived from NDVI imagery by scaling 

between maximum NDVI (NDVImax) and soil NDVI (NDVIs) (Carlson and Ripley, 

1997): 

 
𝑓𝑐 = (

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑠
)2 

(Eq. 3.19) 

NDVImax was taken to be the maximum NDVI observed from the native pixel 

resolution (0.976). NDVIs was based off average NDVI values at a time before squaring 

occurred (0.2). LAI maps were then generated by regressing in situ LAI (Fig. 3.1b) 

against these newly generated fc maps. UAV-based LAI maps were then compared with 

hand measured LAI values from a select holdout sample (n = 5) across all IOPs. These 

five samples were located nearby the two eddy flux towers. The average percent error 

between predicted and measured LAI was 7.3 %. Field canopy height and width values 
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were obtained by averaging spatially distributed field measurements (Fig. 3.1b) at each 

IOP. Green vegetation fraction was set to one for all model runs. 

 Non-image inputs 

Weather data was collected using 15-minute averaged data obtained across both eddy 

flux towers. Weather parameters include: 1) Ta (K), 2) wind speed (m s-1), 3) barometric 

pressure (mbar), 4) ea (mbar), 5) SWin (W m-2) and 6) incoming longwave radiation 

(LWin) (W m-2). Leaf spectral properties were obtained using local ground-truth 

reflectance data. Leaf angle distribution was calculated from leaf tip angle measurements 

collected alongside LAI data (Wang et al., 2007). Modelled G flux was assumed to be a 

constant ratio between G and soil net radiation (Rn,s), the latter of which was calculated 

using formulations provided by Kustas and Norman (1999). The use of a constant G/Rn,s 

was based on the observation that that most PM thermal UAV surveys were collected 

around solar noon - Kustas and Daughtry (1990) suggest that the use of a constant ratio 

is appropriate for several hours around solar noon, after which a time lag exists between 

Rn and G. 

 Model runs 

All non-contextual or hybrid models (i.e. TSEB-PT, TSEB-DTD, TSEB-2T) were 

run within the Python package pyTSEB, version 2.0 (Nieto et al., 2019). The 

DATTUTDUT model was coded and run using a custom-made function within the R 

software program (R Core Team, 2018), given the formulations from Timmermans et al. 

(2015). Because previous studies have used varying degrees of weather inputs for 

DATTUTDUT modelling (Brenner et al., 2018), DATTUTDUT model versions were 
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separated into those without inputs and those with all inputs, where inputs are defined in 

terms of SWin, ea and Ta – ea and Ta were also included because these parameters are 

collected concurrently with SWin. 

 Footprints 

The footprint of the fluxes measured by the eddy covariance tower describes the 

source area of the fluxes depending on parameters such as wind direction, wind speed, 

and atmospheric stability (Burba and Anderson, 2010). In order to effectively compare 

the UAV and eddy tower fluxes, footprints need to be generated in two-dimensional 

coordinate space. In this study, footprints were calculated using the 2-D footprint models 

developed by Detto et al. (2006). UAV predicted fluxes were averaged within each 

footprint using the source weighted scheme proposed by Li et al. (2008): 

 
𝑈𝐴𝑉 𝐹𝑙𝑢𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

∑ 𝑓(𝑥𝑖, 𝑦𝑖, 𝑧𝑚)𝐹𝐿𝑈𝑋(𝑥𝑖𝑦𝑖)𝑛
𝑖=1

∑ 𝑓(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑚)𝑛
1

, 
(Eq. 3.20) 

where i is a given pixel with location xi, yi, given the flux tower height zm. Note that 

each ith pixel has an associated weight (i.e. f(xi,yi,zm)) dependent on lateral diffusion 

characteristics (Schmid, 1994) and the original 1-D footprint model from Hsieh et al. 

(2000).  

 Model evaluation 

Agreement between modelled and measured Rn, G, H and LE were compared in 

terms of MAE, mean absolute percent error (MAPE), mean bias error (MBE) and mean 

bias percent error (MBPE): 
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𝑀𝐴𝐸 =

1

𝑛
∑|𝑦̂ − 𝑦|

𝑛

𝑗=1

 (Eq. 3.21a) 

 
𝑀𝐴𝑃𝐸 =

100

𝑛
∑ |

𝑦̂ − 𝑦

𝑦
|

𝑛

𝑗=1

 (Eq. 3.21b) 

 
𝑀𝐵𝐸 =

1

𝑛
∑ 𝑦̂ − 𝑦

𝑛

𝑗=1

 (Eq. 3.21c) 

 
𝑀𝐵𝑃𝐸 = 100

∑ 𝑦̂ − 𝑦𝑛
𝑗=1

∑ 𝑦𝑛
𝑗=1

 (Eq. 3.21d) 

  

where 𝑦̂ and y are the UAV modelled and eddy covariance fluxes, respectively. In 

the case of MBE, positive and negative values mean overestimation and 

underestimation, respectively. 

In addition to the above performance statistics, UAV flux estimates were evaluated 

with respect to soil type (i.e. ECa zone). The question that is being addressed is as 

follows: does modelled LE (either using TSEB or DATTUTDUT) significantly differ by 

soil type? An ANOVA was conducted comparing two specific models: 

 𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 𝐿𝐸 ~ 𝐿𝐴𝐼: 𝑊𝑎𝑡𝑒𝑟 𝐷𝑒𝑝𝑡ℎ, (Eq. 3.22a) 

 𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝐿𝐸 ~ 𝐿𝐴𝐼: 𝑊𝑎𝑡𝑒𝑟 𝐷𝑒𝑝𝑡ℎ: 𝐸𝐶𝑎 𝑍𝑜𝑛𝑒, (Eq. 3.22b) 

These two models were generated at all pixel resolutions using an independent set of 

sample observations (select green circles, Fig. 3.1b) consisting of LAI and water depth 

measurements collected throughout the growing season. Differences between models 

were deemed significant when the ANOVA p-values were less than 0.05. 
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 Results and discussion 

 Agronomic, soil moisture, and remotely sensed data 

Figs 3.3 is a plot from data collected at the agronomic collection sites throughout the 

growing season. Fig. 3.3 shows biomass variations by IOP and ECa flux tower. The 

maximum LAI observed within source footprints was 2.87 m2 m-2 on July 26. During 

flowering (i.e. June 16), the mean LAI near the low ECa flux tower was slightly higher 

than within the high ECa tower (1.13 and 1.05 m2 m-2, respectively). During cutout (i.e. 

July 1), the mean LAI values were similar across both ECa zones. The mean LAI values 

on 18 to July 26 were relatively large within the high ECa zone, indicating canopy 

growth in this zone lagged slightly behind that of low ECa. High ECa LAI zone 

measurements were consistently characterized by larger standard deviations throughout 

the growing season. 
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Fig. 3.3 Source area LAI (m2 m-2) by date. Source area refers to the footprint 

defined by the flux towers on each intense observation period. 

 

 

 

Fig. 3.4 shows the depths of soil water averaged within each ECa zone. NMM soil 

moisture measurements are based on all point samples located within each ECa zone 

(Fig. 3.1b). The initial depths of water within the high and low ECa zones were 324 and 

267 mm per 100 cm soil depth, respectively. The differences in water depth between ECa 

zones were most pronounced at the end of the growing season, notably on July 26. 

Overall, the difference in depth of soil water at both high and low ECa sites was 49 mm 

and 80 mm, respectively over the entire season. A two-sample t-test found that the depth 

of soil water was significantly different between both ECa groups (p < 0.001). 
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Fig. 3.4 Depth of soil water (in mm, left y-axis) and percent available water 

depletion (in %, right y-axis, Eq. 3.3) averaged within different ECa zones (Fig. 

3.1b) by growing degree days. Vertical black lines correspond to the Intense 

Observation Period (IOP) dates listed in Table 3.1. 

 

 

 

Fig. 3.4 also shows estimates of AWD (Eq. 3.7). AWD begins at zero percent on the 

first of measurements (786 GDD, May 31) and ends at 32 or 53 % on the last set of 

measurements (2246 GDD, July 26). During June 16 to July 1 (1161-1545 GDD), AWD 

was similar across both ECa zones, most likely because of lower vegetative demand for 

water. After July 1, or cutout, a divergence in the AWD curves can be observed. In 

particular, the amount of soil water (i.e. high AWD) within low ECa was lower than that 

from high ECa, even though its absolute amount (i.e. depth of water) was relatively low. 

The reason for these results may stem from differences in clay content (and thus water 

holding capacities) observed between both ECa zones (Sect. 3.2.1). 
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 Eddy covariance data 

Before investigating the modelled outputs, it was deemed important to first inspect 

the quality of the eddy covariance data. Most winds were sourced around the 

anemometer orientation (160 degrees), and almost half of the winds were at two spokes 

centered either at 135 (112.5-157.5) or at 180 (157.5-202.5) degrees. Within these two 

spokes, around half of the winds had speeds were sourced between 2-4 m s-1, which 

suggests the fluxes are sufficiently turbulent, one key assumption of the method (i.e. > 1 

m s-1, Monin and Obukhov, 1954; Burba and Anderson, 2010). Based on observations of 

turbulent fluxes, as well as previously reported closure results (Table 3.3), the eddy 

covariance towers used in this study can be used as a reliable source for validating UAV-

based fluxes. 

Fig. 3.5 shows diurnal fluxes as measured from the eddy covariance towers on the 

given IOP dates from Table 3.1. On the left column, the available energy (plus SWin) is 

presented, and on the right column the turbulent fluxes (LE, H) plus the evaporative 

fraction (𝐸𝐹 =
𝐿𝐸

𝐿𝐸+𝐻
) are presented. The July 18 fluxes within the low ECa site are not 

included in Fig. 3.5 because its source area was located within sparsely covered 

vegetation – a low EC closure ratio supports this finding (0.64). The maximum SWin 

observed across these four IOP dates was 1100 W m-2 on July 18. The jaggedness of 

both SWin and Rn diurnal curves can be observed on most IOP dates, indicating partly 

cloudy conditions (Fig. 3.5a, 5c, 5e, 5f). This variability in cloud cover, therefore, 

influenced the decision to validate UAV fluxes at 15 minutes instead of the more 

commonly used 30 minutes (Foken et al., 2008). UAV surveys were conducted under 
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sunny skies except on July 1, and a dip in SWin supports this observation (Fig. 3.5c). The 

clouds were thin, but consistent, throughout the UAV thermal survey on this date. 

However, the presence of these clouds did not significantly affect the energy closure 

compared with other IOPs, as the energy closure ratio was still above 0.80 for both flux 

towers even before the correction was applied (Table 3.3).  

 

 

 

 

Fig. 3.5 Diurnal fluxes obtained from eddy covariance towers across all intense 

observation periods. Left and right y-axis values express fluxes in terms flux 

density (W m-2) and evaporative fraction (EF, unitless). Vertical black lines 

correspond to the Intense Observation Period (IOP) dates listed in Table 3.1. The 

available energy plots (first column) are displayed on a different scale than the 

turbulent fluxes (second column). July 18 fluxes at the high ECa zone are omitted, 

as the eddy towers were “looking at” a poorly vegetated part of the field. Some of 

the soil heat flux data was unavailable in the early morning due to sensor 

malfunction. 
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In comparing the diurnal fluxes by ECa flux tower, several patterns emerge. Across 

all dates, the daytime Rn was slightly higher within the high ECa tower. These 

differences were prominent, for example, during flowering (June 16), as the peak Rn 

values within the low and high ECa towers were 716 W m-2 and 759 W m-2, respectively 

(Fig. 3.5a). The reason for this result can be explained by differences in albedo, where 

peak albedo measured within high and low ECa sites were 0.17 and 0.22, respectively. 

With time in the growing season, however, the difference in Rn magnitude by towers 

diminished, most likely due to increased vegetation growth and lessening influence of 

the soil background Fig. 3.3, Fig. 3.5c, 3.5e, 3.5g). The overall magnitude of G was 

relatively low and do not appear to significantly lag behind that of the Rn diurnal curves. 

Median G/Rn shifted from 0.17 (June 16) to 0.05 (July 18) at the low ECa site, while 

median G/Rn only changed from 0.12 (June 16) to 0.11 (July 18) at the high ECa. 

As expected, the partitioning of diurnal turbulent fluxes shifted in time due to 

changes in the vegetation cycle (Fig. 3.5b, 3.6d, 3.6f, 3.6h). Relative to other dates, H 

during early flowering stages (i.e. June 16) were close with LE in magnitude, 

corresponding with EF values as low as 0.6 (Fig. 3.5b). The maximum LE recorded from 

these four IOP dates was ~ 600 W m-2 on July 26 (Fig. 3.5h). This period was 

characterized by relative drought (1161-1425 GDD, Fig. 3.2b), a time probably driven 

more by availability of soil moisture than energy (Gevaert et al., 2018). During boll 

filling and initial boll opening stages (July 18 and July 26), the EF was at a maximum 

across all dates (0.90 or greater) (Fig. 3.5f, 3.6h). Diurnal H was greater within high than 
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low ECa on June 16 and July 1 (Fig. 3.5b, 3.6d), and this trend was flipped on July 26. A 

similar set of patterns emerge with respect to EF, although this time high ECa EF would 

eventually surpass that of low ECa (Fig. 3.5b, 3.6d, 3.6h). However, the differences in 

EF by ECa flux tower are lower on July 26 than those on June 16 or July 1 (Fig. 3.5b, 

3.6d, 3.6h). 

 Comparison of model estimates and tower data 

 UAV vs. flux towers, across ECa zones 

The purpose of this section is to: 1) compare non-contextual and contextual model 

estimates with respect to eddy flux towers, 2) address the effect of increasingly coarse 

pixel resolutions on flux estimations, and 3) quantify the effect of adding local weather 

inputs to DATTUTDUT models. Table 3.5 shows the MAE and bias errors for Rn, G, 

and H across all TSEB and DATTUTDUT models, both at 1.05 and 10.05 m pixel 

resolution. Fig. 3.6 shows plots of UAV (at 1.05 m) versus eddy covariance for Rn 

(triangles), G (squares), and H fluxes (diamonds) fluxes, either by pooling (i.e. high 

ECa/low ECa, left column) or separating (right column) analysis points by ECa zone. The 

July 18 results are only from the low ECa tower and are only included, therefore, in Fig. 

3.6a, 3.6c, 3.6e, 3.6g, and 3.6i – July 18 high ECa fluxes are not shown in this study 

because of poor flux closure at that flux tower. Turbulent eddy flux measurements (i.e. 

H, LE) are assumed to be closed using the 1.1 correction factor described earlier (Sect. 

3.3.2.5.). 
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Fig. 3.6 UAV modeled latent heat (LE) fluxes (y-axis) at 1.05 m pixel resolution 

against eddy covariance LE fluxes (x-axis) across all intense observation periods.  
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Table 3.5 Rn, G, and H flux error assessment between eddy covariance and UAV 

modeled fluxes, either from non-contextual or contextual models (in W m-2). Values 

in parentheses are MAE and bias, respectively, as percentage (%) of measured 

fluxes. Metrics are reported from pooling analysis from low and high ECa zones 

and measurement days (n = 7).  All metrics except for percent error, and 

MSEu/MSE are assumed to be in units of W m-2.   

Resolution (m) Rn - MAE Rn - Bias G - MAE G - Bias H -MAE H -Bias 

TSEB-PT 

1.05 26 (4) 22 (3) 25 (52) -16 (-22) 50 (> 100) 45 (53) 

10.05 26 (4) 23 (3) 25 (52) -16 (-22) 47 (> 100) 42 (49) 

TSEB-DTD 

1.05 26 (4) 22 (3) 24 (52) -15 (-22) 65 (> 100) 58 (69) 

10.05 27 (4) 23 (3) 25 (52) -16 (-22) 60 (> 100) 52 (61) 

TSEB-2T 

1.05 23 (3) 2 (0) 22 (55) -10 (-14) 79 (> 100) 69 (81) 

10.05 24 (4) 8 (1) 23 (58) -9 (-13) 105 (> 100) 81 (96) 

DATTUTDUT - No Inputs 

1.05 59 (9) 46 (7) 50 (> 100) 50 (71) 83 (> 100) 83 (97) 

10.05 74 (11) -10 (-2) 63 (> 100) 63 (89) 80 (> 100) 80 (74) 

DATTUTDUT - All Inputs 

1.05 71 (11) 4 (1) 43 (> 100) 43 (60) 72 (> 100) 72 (85) 

10.05 71 (11) 0 (0) 58 (> 100) 58 (82) 97 (> 100) 97 (> 100) 

 

 

 

In terms of Rn, TSEB-PT, TSEB-DTD, and TSEB-2T Rn MAE errors were very 

similar and between 2-27 W m-2 or 0-4 % (Table 3.5). DATTUTDUT models, on the 

other hand, had higher Rn errors (between 59-74 W m-2 or between 9-11 %, Table 3.5). 

The model that produced the highest amount of Rn bias was DATTUTDUT without 

inputs at 1.05 m (46 W m-2 or 7 % bias, Table 3.5, Fig. 3.6i-3.6.j). Errors in 

DATTUTDUT Rn have previously been attributed to simplifications, for example, of 

surface albedo and ε (Xia et al., 2016). MAPE values were similar between 

DATUTTDUT models when adding or removing weather inputs, for both pixel 

resolutions (9-11 %, Table 3.5). Adding weather inputs to DATTUTDUT, however, did 
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reduce Rn bias at 1.05 m (from 46-4 W m-2). Outside of individual models, Rn MAPE 

and MBPE values were generally under 10 % across all pixel resolutions and did not 

change very much with increased pixel size (outside of the DATTUTDUT – No Inputs 

model, Table 3.5). Relative to G and H, Rn produced the lowest MAPE and MBPE 

values across all models and resolutions. This result may have occurred because Rn is 

more sensitive to solar radiation than vegetation and soil objects (Sridhar et al., 2003). 

As a result, most of the UAV Rn estimates were close to the 1:1 line for all models (Fig. 

3.6, triangles). 

Out of all the components estimated from Eq. 3.2, H had the highest MAE and 

highest biases (Table 3.5). Other studies have also observed H to be a difficult energy 

balance component to estimate as well (Ortega-Farias et al., 2016; Brenner et al., 2017). 

H errors often result from inequalities between radiometric (i.e. sensor) and aerodynamic 

(i.e. model) temperatures, especially when soils are much warmer than canopies (up to 

42 °C difference from field data here) (Norman and Becker, 1995; Chehbouni et al., 

1996; Kustas et al, 2004). While Rn errors were fairly similar between non-contextual 

and contextual models, such was not the case for H. For example, at 1.05 m, the models 

in terms of H MAE errors were (from smallest to largest): TSEB-PT (50 W m-2), TSEB-

DTD (65 W m-2), DATTUTDUT with inputs (72 W m-2), and TSEB-2T (79 W m-2), and 

DATTUTDUT without inputs (83 W m-2). In general, TSEB models were better 

predictors of H than both DATTUTDUT models, although all models had MAPE values 

over 100 %.  
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G flux errors generally lie in between that of Rn and H, and TSEB G errors, like H, 

were lower than that from both DATTUTDUT models (Table 3.5). G fluxes were 

consistently underestimated and overestimated for TSEB and DATTUTDUT models, 

respectively (-9 to -16 W m-2, 43-58 W m-2 Table 3.5). The most likely source of G error 

is from differences in measurement areas and, therefore, soil physical properties between 

the UAV and eddy covariance methods (Foken et al., 2008). Another source of error in 

G could be from differences in heat conduction between the soil and air in G response, 

relative to instantaneous UAV measurements (Gentine et al., 2012; Hoffmann et al., 

2016).  

Fig. 3.6 shows also plots of UAV versus eddy covariance LE fluxes at 1.05 m 

(circles). Table 3.6, like Table 3.5, quantifies the pooled results from Fig. 3.6, except this 

time for LE. The reported MAE errors across all models and pixel resolutions range 

from 40-150 W m-2, or 8-37 % (Table 3.6). The reported bias values range from -107-52 

W m-2 or -24-11 %. TSEB-PT and TSEB-DTD models overestimated LE, while 

DATTUTDUT models underestimated LE (Fig. 3.6, Table 3.6). TSEB and 

DATTUTDUT models performed better in modelling LE than H and G, based on 

comparison of MAPE values from Tables 3.5 and 3.6. In the case of TSEB models, this 

may have occurred because G and H behave in an inverse manner before estimating LE 

(Eq. 3.2), where G and H were underestimated and overestimated, respectively (Table 

3.5). The G and H errors within the DATTUDUT model, however, do not necessarily 

cancel out, as the model instead estimates H last (instead of LE, Sect. 3.2.6.4.).  
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Table 3.6 LE flux error assessment between eddy covariance and UAV modeled 

fluxes, either from non-contextual or contextual models. Metrics are reported from 

pooling analysis from low and high ECa zones (n = 7). All metrics except for 

percent error, and MSEu/MSE are assumed to be in units of W m-2. TSEB-2T 

model results at native resolution are not available because the model requires 

aggregated imagery. 

Resolution (m) MAE Bias 

TSEB-PT 

1.05 49 (9) 49 (10) 

10.05 53 (10) 53 (11) 

TSEB-DTD 

1.05 46 (10) 35 (7) 

10.05 53 (11) 43 (9) 

TSEB-2T 

1.05 40 (8) -2 (0) 

10.05 81 (18) -9 (-2) 

DATTUTDUT - No Inputs 

1.05 54 (14) -54 (-12) 

10.05 99 (24) -99 (-21) 

DATTUTDUT - All Inputs 

1.05 78 (18) -31 (-7) 

10.05 150 (37) -107 (-24) 

 

 

 

The average MAPE values across all models were 12 and 20 % at 1.05 m and 10.05 

m pixel resolutions, respectively. These average errors are just as accurate as those 

reported with the eddy covariance technique (5-20 %, Foken, 2008), and are in line with 

results reported from previous studies (Neale et al., 2012; Ortega-Farias et al., 2016; Xia 

et al., 2016). Model results also suggest that LE modelled fluxes were robust to 

uniformly cloudy conditions from the July 1 thermal survey (Table 3.1), as little scatter 

was observed on that date (Fig. 3.6b, 3.6d, 3.6f, 3.6h, 3.6j). One reason why these 
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positive results may have occurred across all models is because UAV thermal surveys 

were collected under a relatively short acquisition period (~13 minutes), implying 

generally constant radiative conditions. In fact, most models had MAPE values less than 

20 % (Table 3.6). One exception to this generalization, however, was observed from 

DATTUTDUT models at 10.05 m, which most likely occurred from uncertainty in 

endmember selection (Section 3.3.4.). 

The most accurate model(s) towards estimating LE depended on the pixel resolution 

in question. For example, at 1.05 m the most accurate models were TSEB-PT, TSEB-

DTD, and TSEB-2T models (around 40-49 W m-2 or 8-10 %), followed by the 

DATTUTDUT models (54-78 W m-2 or 14-18 %, Table 3.6). At 10.05 m, the model 

accurate models were TSEB-PT and TSEB-DTD (53 W m-2 or 10-11 %), TSEB-2T (81 

W m-2 or 18 %), DATTUTDUT without inputs (99 W m-2 or 24 %), and finally 

DATTUTDUT with inputs (150 W m-2 or 37 %). Relative scatter for LE flux estimation 

across both DATTUTDUT models can be observed (Fig. 3.6). The LE bias for TSEB 

models were greatest and smallest within TSEB-PT and TSEB-2T models, respectively. 

For example, at 10.05 m the percent bias error for TSEB-PT and TSEB-2T was ten and 

zero percent, respectively (Table 3.6). Despite some biases within TSEB models, 

however, they generally outperformed DATTUTDUT in terms of estimating LE. This 

result likely occurred because TSEB models (relative to DATTUTDUT) provide a better 

physical depiction of energy and radiative exchange for crops and soils (Xia et al., 

2016). 
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 UAV vs. flux towers, by ECa zones 

One additional objective in this study was evaluate how differences in spatially 

variable soil properties affect UAV-based ET flux estimates. The main soil property of 

interest here is soil moisture, which is moisture that can potentially evaporate within the 

root zone (Verstraeten et al., 2008). Soil moisture is characterized in terms of soil water 

depth from NMM data, expressed by ECa zone and IOP (Fig. 3.4, Table 3.7). 

Differences in soil water depth by ECa zone across IOP dates range from 60-88 mm 

(Table 3.7), and more water was used within the low ECa zone than the high ECa zone 

throughout the growing season (Fig. 3.4, dashed lines). 

 

 

 

Table 3.7 Soil moisture differences expressed by depth of water and difference 

between ECa zones using the data shown in Fig. 3.4. 

Date 

Depth of 

water 

(mm) 

Water depth 

difference 

(mm) 

ECa 

Group 

6/16/2017 

262 

60 

Low 

322 High 

7/1/2017 

228 

68 

Low 

296 High 

7/18/2017 

199 

80 

Low 

279 High 

7/26/2017 

187 

88 

Low 

275 High 

 

 

 

UAV modelled LE at each ECa flux tower increased throughout the growing season 

and reached a peak on July 26 (Fig. 3.6, open/filled circles), which is due to increasing 

growth or LAI up to that point (Table 3.4). High ECa modelled LE fluxes (open circles) 
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were only greater than low ECa fluxes (closed circles) on July 26 (Fig. 3.6, right 

column). Both DATTUTDUT and TSEB models were not biased by soil type, given the 

limited sample size. For example, on June 16 and July 1 DATTUTDUT models 

underestimate LE similarly at both ECa flux towers (Fig. 3.6h, 3.6j, open/filled circles).  

In order to compare the modelling errors by soil type, LE results (Fig. 3.6) were 

combined to estimate MAPE by ECa zone, as shown in Fig. 3.7. Note that the results 

from Fig. 3.7 refer to TSEB models only because these models were shown to 

outperform DATTUTDUT across both pixel resolutions (Table 3.6) – DATTUTDUT LE 

results will be separately discussed in Section 3.3.4. For both pixel resolutions, the 

MAPE values were lower within the high ECa tower than the low ECa tower, and this 

was particularly noticeable at 10.05 m (Fig. 3.7). While Fig. 3.7 indicates differences in 

accuracies between the two ECa zones, it does not address whether these differences are 

statistically different. Therefore, ANOVA models were constructed to test this 

hypothesis (Sect. 3.2.8), and these results are provided in Table 3.8. At 1.05 m and 10.05 

m, the p-values for all models are less than 0.05, indicating significant different models 

based on the soil type (or the ECa zone) parameter. Therefore, there is initial evidence to 

suggest that TSEB LE model estimates (and thus ET) vary by soil ECa zone, which 

could be due to differences in soil moisture use across time (Fig. 3.4, Table 3.7). This 

hypothesis would certainly support previous notions that spatial heterogeneity of soils, in 

particular soil water holding capacity, can affect the spatial pattern of LE within a given 

production field (Hatfield and Preuger, 2011). 
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Fig. 3.7 MAPE values of TSEB UAV LE estimates at various pixel sizes. Different 

colors represent the high ECa and low ECa zones (Fig. 3.1b). Values were obtained 

by averaging TSEB-PT, TSEB-DTD, and TSEB-2T model results within each ECa 

zone (Table 3.5). 

 

 

 

Table 3.8 p-values from ANOVA models testing the significance of ECa 

information, and thus soil type, in predicting LE. ANOVA models were applied 

across different models and pixel resolutions. 

Model Resolution (m) p-value 

PT 
1.05 < 0.01 

10.05 < 0.01 

DTD 
1.05 < 0.01 

10.05 < 0.01 

2T 
1.05 0.02 

10.05 0.02 

DATTUTDUT - with inputs 
1.05 < 0.01 

10.05 0.01 

DATTUTDUT - without inputs 
1.05 < 0.01 

10.05 0.01 
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In addition to model comparisons relative to eddy flux towers (Fig. 3.6-3.7), soil 

variability was also examined by comparison of spatial patterns in UAV LE fluxes 

across the entire field. Fig. 3.8 shows LE frequency histograms at 1.05 m, both within 

the low ECa zone (first row) and the high ECa zone (second row), at the beginning and 

ending dates of vegetation growth (June 16 and July 26, respectively). The median 

values (i.e. vertical lines) presented in Fig. 3.8 are given in Table 3.9 for further 

discussion. Results are first provided for June 16 or partial vegetation cover. Across both 

ECa zones, the median LE of DATTUTDUT with inputs (black lines, Fig. 3.8) was 

greater than DATTUTDUT without inputs (red lines, Fig. 3.8) (Table 3.9). On June 16, 

the DATTUTDUT distributions within the low ECa zone and the high ECa zone both 

have a lower median (186-288 W m-2) relative to the TSEB models (around 350-404 W 

m-2) (Table 3.9). On June 16, TSEB model distributions were pretty similar to each other 

across both ECa zones, although the average median values were greater within low ECa 

than high ECa (347 vs. 298 W m-2, respectively, Table 3.9).  

On July 26 (Fig. 3.8b, 3.8d), differences between DATTUTDUT and TSEB spatial 

patterns decreased across both ECa zones (Fig. 3.8b, 3.8d). Unlike June 16, the median 

values of TSEB models were greater within high ECa than low ECa zones (651 vs. 568 

W m-2, respectively, Table 3.9). These trends appear to match those at the eddy flux 

towers (Fig. 3.6) – in other words, LE at the low ECa site was initially greater than the 

high ECa site on June 16, but these trends were reversed on July 26 (Fig. 3.6). These 

trends are also similar to those observed with the LAI data over time (Fig. 3.3), 

suggesting likely soil moisture and vegetation interactions. These results collectively 
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indicate that soil type or variability result in different LE spatial patterns values with 

respect to DATTUTDUT and TSEB models. 

 

 

  

Table 3.9 Median LE values from the entire field histograms plotted in Fig. 3.8. 

Date Soil Type Model Median LE (W m-2) 

June 16, 2017 

Low ECa 

TSEB-PT 399 

TSEB-2T 390 

TSEB-DTD 404 

DATTUTDUT-All Inputs 288 

DATTUTDUT-No Inputs 253 

High ECa 

TSEB-PT 350 

TSEB-2T 378 

TSEB-DTD 363 

DATTUTDUT-All Inputs 213 

DATTUTDUT-No Inputs 186 

July 26, 2017 

Low ECa 

TSEB-PT 630 

TSEB-2T 578 

TSEB-DTD 575 

DATTUTDUT-All Inputs 553 

DATTUTDUT-No Inputs 504 

High ECa 

TSEB-PT 696 

TSEB-2T 684 

TSEB-DTD 620 

DATTUTDUT-All Inputs 657 

DATTUTDUT-No Inputs 600 
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Fig. 3.8 Full field model output at 1.05 m for TSEB-PT (orange), TSEB-2T (light 

blue), TSEB-DTD (dark blue), DATTUTDUT with inputs (black), and 

DATTUTDUT without inputs (red). (a) and (b) refer to the low ECa area on June 

16 and July 26, respectively, while (c) and (d) refer to the high ECa area on June 16 

and July 26, respectively. Vertical bars represent the median values obtained from 

each date-model-ECa zone combination. Values are expressed in terms of percent 

frequency within a given ECa zone. 

 

 

 

 Behavior of DATTUTDUT 

The mechanics of the DATTUDUT model were explored further to address why it 

did not estimate LE as well as TSEB (Table 3.6). DATTUTDUT model results appear to 

be affected by pixel resolution (Table 3.6), and Fig. 3.9 reinforces this idea. Fig. 3.9 

shows that the bias and accuracy increases and decreases with pixel resolution, 

respectively. The observation that DATTUTDUT results vary as a function of pixel 

resolution has been previously reported by Brenner et al. (2018) and Xia et al. (2016). At 

1.05 m, adding weather inputs decreased the absolute bias from 12-7 %. While the 

nature of this bias is not entirely addressed in this paper, Timmermans et al. (2015) 
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suggest that DATTUTDUT underestimates of LE can be caused by underestimation of 

Rn (based on Ta, εa and SWin). While DATTUTDUT without weather inputs was slightly 

more accurate than DATTUTDUT with weather inputs, it was more negatively biased 

across all pixel resolutions. These results suggest that adding local weather information 

to DATTUTDUT modelling schemes may not entirely be necessary, especially if one is 

only interested in LE spatial patterns alone (and not magnitudes, Xia et al., 2016). 

 

 

 

 

Fig. 3.9 UAV predicted fluxes using DATTUTDUT either with or without ancillary 

inputs at 1.05 m, and 10.05 m resolutions. Similar to Fig. 3.7, each point represents 

LE fluxes modelled from both ECa towers. 

 

 

 

Image aggregation likely affected DATTUTDUT modelling results (Fig. 3.9) in 

terms of the hot and cold temperature endmembers (Eq. 3.18b). Fig. 3.10 shows the 



115 

 

locations of these cold (i.e. Tr,min) and hot (i.e. Tr,max) pixels from various DATTUTDUT 

model runs (with inputs) laid over IOP-specific Tr imagery. Hot pixels (Tr,max light blue) 

were generally associated with bare soil, located within poorly vegetated areas (Fig. 

3.10a) or from exposed soil via the irrigation wheel tracks (Fig. 3.10b-3.10.d). On June 

16, cold objects (Tr,min, dark blue) were located under bare soil in the high ECa zone (Fig. 

3.10a). On July 1, cold pixels were located at various edges of the field – within these 

particular regions, dense vegetation was observed from inspection of multispectral 

imagery (Fig. 3.10b). On July 18 and July 26, the locations of these cold pixels generally 

shift from the field edges into various densely vegetated areas within the field.  

 

 

 

 
Fig. 3.10 UAV 1.05 m orthomosaics of Tr on the following dates: (a) June 16, (b) 

July 1, (c) July 18, (d) July 26. Also plotted are the locations of cold (i.e. Tr,min, dark 

blue) and hot (i.e. Tr,max, light blue) pixels on their respective dates at 1.05 m 

(squares) and 10.05 m (diamonds). 
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In addition to time, the locations of these cold and hot endmembers shifted by pixel 

resolution. This can be observed with cold pixels, for example, on July 1, as 

endmembers shift to different regions associated with high canopy cover (Fig. 3.11b, 

dark blue diamond and square). Except for June 16, Tr,max pixels similarly shifted to 

different areas associated with patches of bare soil. The reason for this may be explained 

as follows - if endmembers have features with sharply contrasting temperatures, image 

aggregation will result in endmembers that are likely a mixture of hot and cold 

temperatures. This probably explains why endmembers shifted, for example, from field 

edges, as objects of contrasting temperatures were present near each other at 1.05 m (e.g. 

bare soil, cotton plants). The spatial distribution of cold endmembers appears to be 

relatively more stable than hot endmembers, and the latter are located within patchy 

vegetated areas, especially on June 16 (Fig. 3.10a). Therefore, Tmax and Tmin selection 

are likely affected by the degree of local homogeneity within the Tr imagery. 

Because many of the Tr,max endmembers were located within the high ECa zone, it 

was hypothesized that DATTUTUT model output would be affected by soil type or Tmax. 

Therefore, a simple sensitivity analysis was conducted to test the effects of Tr,max on the 

LE scaling parameter (i.e. 
𝑇𝑟,𝑚𝑎𝑥−𝑇𝑟

𝑇𝑟,𝑚𝑎𝑥−𝑇𝑟,𝑚𝑖𝑛
, Eq. 3.18b) across various Tc values (Fig. 3.11). 

Fig. 3.11 plots the scaling parameter as a function of various Tr,max representative of soils 

(310-340 K) and various Tr values representative of cotton canopies (300-310 K) 

(Wanjura et al., 2004). When Tr = 300 K, 
𝑇𝑟,𝑚𝑎𝑥−𝑇𝑟

𝑇𝑟,𝑚𝑎𝑥−𝑇𝑟,𝑚𝑖𝑛
 stays constant at one because Tr = 

Tr,min (Fig. 3.11). With increasing Tr, however, 
𝑇𝑟,𝑚𝑎𝑥−𝑇𝑟

𝑇𝑟,𝑚𝑎𝑥−𝑇𝑟,𝑚𝑖𝑛
 changes, showing larger 
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sensitivity as Tr increases and as Tr,max decreases. This simple analysis suggests that 

DATTUTDUT is less sensitive towards modelling LE when Tmax values are relatively 

high. This finding has implications especially within the context of soil variability - 

lighter soils (or relatively low Tr,max) may show greater sensitivity to model output than 

darker colored soils (or higher Tr,max), depending upon canopy Tr. Future studies may 

want to keep this point in mind when interpreting DATTUTUDUT output where soil 

variability exists within a single production field, as it will likely determine Tmax and, 

therefore, EF and L (Eq. 3.18). 

 

 

 

 

Fig. 3.11 Sensitivity analysis of the DATTUTDUT LE scaling factor (i.e. 
𝑻𝒓,𝒎𝒂𝒙−𝑻𝒓

𝑻𝒓,𝒎𝒂𝒙−𝑻𝒓,𝒎𝒊𝒏
, Eq. 3.18b) to changes in the Tr,max endmember as well as typical T0 

values measured from crop canopies. 

 

 

 

 Conclusions 

In this study, flux components from the energy balance equation were modelled 

using multispectral and thermal imagery collected from a UAV throughout a single 
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cotton growing season. The energy balance models evaluated included various non-

contextual (TSEB) and contextual (DATTUTDUT) models. These models were applied 

at various aggregated pixel resolutions (1.05 m and 10.05 m) and evaluated against eddy 

covariance data across two soil types using apparent electrical conductivity data. Non-

contextual (i.e. TSEB) models were more accurate in estimating all energy balance 

components relative to contextual models (i.e. DATTUTDUT). At 1.05 m, TSEB 

models behaved similarly in estimating LE relative to eddy flux towers. At 10.05 m, 

however, TSEB-PT and TSEB-DTD were the most accurate models, with the latter 

producing lower biases presumably due to reduction of Tr biases. TSEB-PT models 

overestimated LE the most within the TSEB suite, and this could be due to violated 

assumptions of full water availability throughout the season. When local weather data 

was added to DATTUTDUT, the bias in LE estimates was reduced. However, the 

accuracies were similar, if not worse, than when DATTTUDUT models were run with 

only thermal information. Finally, DATTUTDUT model performance degraded with 

coarsening pixel resolutions. It is hypothesized that these results occurred because the 

range in temperature endmembers, and thus sensitivity, decreased with coarsening pixel 

resolutions.  

With respect to soil type, LE model performance within the high clay content soil (~ 

30 %) was slightly better than that from the higher clay content soil (~ 47%), both at 

1.05 and 10.05 m. A comparison of spatial LE patterns across the entire field showed 

that low and high ECa zones behaved differently with respect to the individual energy 

balance models. These results were consistent both at cotton flowering and boll 
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production. Across both soil ECa zones, DATTUTDUT LE fluxes were most dissimilar 

with TSEB during cotton flowering. 

A discussion on the performance of TSEB relative to DATTUTDUT is in order. 

Model results for LE were generally more accurate when using TSEB (i.e. TSEB-PT, 

TSEB-DTD, TSEB-2T) than DATTUTDUT models. Previous UAV-based SEB studies 

have confirmed these findings (Xia et al., 2016). TSEB-DTD models, in contrast, 

performed the best, especially on the operational scale (10.05 m). Kelly et al. (2019) 

provide recommendations for main sources of error in TIR cameras such as radiometric 

calibration, the influence of sensor temperature, non-uniformity noise, target ε and 

distance from target. Correction of absolute temperature can be particularly challenging. 

Furthermore, the sources discussed by Kelly et al. (2019) often conflict with one 

another. For example, there is a trade-off between flying slowly (i.e. to minimize image 

blurring) while minimizing temperature drift and limiting cloud variability, and such 

tradeoffs are affected by the field size. Within this context, therefore, TSEB-DTD 

models show favor from an accuracy standpoint because absolute Tr measurements are 

not needed. It is hypothesized that TSEB-PT and TSEB-2T results could be improved by 

refining the method for deriving absolute Tr measurements. One example of such an 

improvement could be made by considering an ambient temperature blackbody before 

each flight, as well the use of rigorous atmospheric models (e.g. MODTRAN) (Torres-

Rua et al., 2017). However, these approaches are relatively new and have not been 

addressed beyond that study. Furthermore, these tools were not available for this study 

due to limited resources.  
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While UAV survey quality affects both DATTUTDUT and TSEB models, TSEB 

present additional challenges in terms of needed inputs, especially if they are image-

based. NDVI, in particular, requires considerable effort in terms of equipment costs and 

the manpower needed towards radiometric calibration. Furthermore, TSEB-DTD models 

require the design and implementation of UAV surveys both in the morning and in the 

afternoon. Within this study, therefore, three different surveys were needed for TSEB-

DTD models, two with the thermal camera and one with the multispectral camera. The 

number of flights needed in this scenario provides more financial resources and logistics 

than say with DATTUTDUT, whereby only one flight would be needed. There are only 

two main operational challenges for DATTUTDUT modelling: 1) to generate a 

positionally accurate and seamless orthomosaic, and 2) an approach to convert Tbr into 

Tr. If spatial patterns alone are required, DATTUTDUT may serve as a viable alternative 

to TSEB, although the results here suggest that it may not be the most accurate model. 

It is recommended that future studies explore intercomparisons between TSEB and 

DATTUTDUT further for cotton, particularly within other climatic regions presented 

here. These studies should provide UAV imagery at spatial and temporal resolutions 

required by users. For example, a recent survey found that that about 40 % of users of 

ET maps prefer spatial resolutions between 1-10 m, while 60 % prefer ET maps greater 

than 10 meters (Nieto et al., 2018b). Additionally, about 45 % of users would request 

daily ET maps, while 55 % would request hourly, monthly or weekly ET maps. In 

addition to user requirements, the performance of DATTUTDUT within different 

environments, particularly arid landscapes, warrants further examination. Allen et al. 
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(2007) suggest that contextual models that estimate LE using the EF fraction can behave 

poorly in these areas, primarily when instantaneous fluxes are upscaled to daily fluxes. 

Furthermore, future DATTUTDUT development needs to incorporate estimates of LEc 

instead of LE, assuming pixel resolutions are fine enough to capture such information. 

This approach was not adopted here because validation tools for soil evaporation (e.g. 

micro-lysimeters) and plant transpiration (e.g. sap flow sensors) were not available 

(Kool et al. 2014). Based on a recent user survey report (Nieto et al., 2018a), future 

models should aim to achieve an ET uncertainty no worse than 10 W m-2 or 0.35 mm 

day-1. Thus, from a modelling perspective it is important to perform model 

intercomparisons to fully quantify the uncertainty associated with ET estimations. 
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4. EVALUATING UP-SCALING TECHNIQUES OF UAV-BASED COTTON 

LATENT HEAT FLUX MAPS WITHIN AN IRRIGATED PRODUCTION FIELD  

 

 Introduction 

Global populations are expected to rise by 2.4 billion people by the year 2050 

(United Nations Department of Economic and Social Affairs Population Division, 2015). 

Therefore, the demand for food resources is only set to increase for future generations. 

This existential challenge has been partially alleviated with irrigated agriculture 

(Carruthers et al., 1997; Ozdogan et al., 2010). However, water use is not strictly limited 

to agriculture, as competition exists between other sectors (e.g. oil/gas) across spatial 

(and sometimes political) scales (e.g. field, farm, state, national etc.) (Strzepek and 

Boehlert, 2010; Flörke et al., 2018). In order for farmers to secure their claim on pre-

existing water resources, irrigation management will need to produce ‘more crop per 

drop’ for future food production (Morison et al., 2008).  

One way to optimize irrigation practices is to monitor crop water status via plant 

physiological responses (Jones, 2004). Plants that experience extreme drought stress, for 

example, will keep their stomata closed to prevent water loss, resulting in reduced 

transpiration rates and increased leaf temperatures (Jarvis, 1976). Irrigation management 

is also affected by soil evaporation, which occurs into atmosphere controlled and soil 

moisture controlled stages (Brutsaert, 2014). These insights have towards the use of 

thermal infrared data to estimate evapotranspiration (ET, in mm per unit time) or, the 

energy equivalent term latent energy flux (LE, in W m-2) (Jackson, 1977). ET and LE 
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refer to water vapor transferred to the atmosphere, by surface evaporation and/or plant 

transpiration (Verstraeten et al., 2008). Because of these processes described above, ET 

plays a primary role in linking ecosystem functioning, as well as carbon/hydrologic 

cycle feedbacks (Fisher et al., 2017).  

ET has been estimated using thermal and multispectral imagery located from sensors 

located aboard non-commercial geostationary and polar-orbiting satellites (or SATs) 

(Courault et al., 2005). SAT remote sensing, unlike other previous point methods (e.g. 

eddy covariance), can characterize ET across multiple spatial scales (Verstraeten et al., 

2008). While SAT-based ET estimates have proven useful towards irrigation 

applications focused on the long-term (e.g. water rights negotiations, Allen et al., 2005), 

there are mixed perspectives regarding their utility towards applications on the short 

term, such as in-season crop monitoring. Knipper et al. (2019), for example, 

demonstrated that daily SAT ET estimates at 30 m can be very useful in many 

operational water management applications. From a practical perspective, however, SAT 

LE retrievals are problematic because images are collected only twice a month (at best) 

and even then are not guaranteed to be cloud-free (Hunt and Daughtry, 2018). 

Furthermore, even ET at the highest SAT pixel resolution (currently 30 m) may not be 

sufficient to detect crop and soil variability within a single production field. New studies 

by Vanino et al. (2018) and Guzinksi and Nieto (2019) suggest that 5-day ET maps at 

10-meter pixel resolution maybe possible with Sentinel SATs, but its imagery has not 

been collected long enough to test this hypothesis. While alternative platforms such as 

commercial SATs and manned aerial vehicles (MAVs) can provide enhanced spatial and 
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temporal information within a single production field, both can have high acquisition 

costs, as companies require a minimum area for coverage in order to at least break-even 

(Matese et al., 2015). 

Unmanned aerial vehicles (UAVs) have been proposed as an alternative to monitor 

ET, and thus improve irrigation efficiencies, within a given production field (Hoffmann 

et al., 2016). This is because, relative to MAVs and commercial/non-commercial SATs, 

users have the most control over image collection (Matese et al., 2015). UAV flights are 

even expected to become even cheaper soon and fly longer with continual improvements 

in sensors and UAV platforms (Manfreda et al., 2018). UAVs can offer additional 

advantages in terms of spatial detail, with imagery as fine as 0.05 m (pixel area = 0.0025 

m2) having been reported (Brenner et al., 2018). The value of such high pixel resolutions 

can be appreciated within certain applications, such as crop scouting (Hunt Jr. and 

Daughtry, 2018). In other applications, such as irrigation management, however, this 

extra spatial detail can become unnecessary or even unwise (Jones and Sirault, 2014). 

Mismatches can exist between the observation scale at which UAV images are collected, 

and the application scale where decisions are implemented. Drip irrigation systems, for 

example, operate on a spatial scale from 1-10 m2, central pivots on 100 m2, and furrow 

irrigation on 1000 m2 (Smith et al., 2009). If UAV imagery is more detailed than is 

necessary, prolonged processing times can even delay the delivery of the end product. A 

recent customer survey report by Nieto (2017) indicates that most users require ET maps 

less than a day after image acquisition, a demand that can be met with UAV systems, 

given the proper data.  
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In addition to the application scale, UAV images can also present discrepancies with 

respect to the ET modeling scale. In particular, mismatches may result between the 

defined modelling scale and processes that define these models such as shear-driven 

turbulence (Raupach and Finnegan, 1995). These discrepancies are most apparent within 

LE algorithms such as the two-source energy balance (TSEB) model. TSEB models 

were initially developed and applied at pixel resolutions associated with non-commercial 

SATs (e.g. 60-120 m pixel resolution) (Kustas et al., 2003; Kustas et al., 2004; Li et al., 

2005). Under TSEB, canopy and soil temperatures (Tc and Ts, respectively) are 

estimated at each pixel, which are then used to find LE as a residual from the energy 

balance equation (LE = Rn - G - H). The assumption behind TSEB models, therefore, is 

that each pixel contains both vegetation and soil components. However, such 

assumptions are not always met with UAV imagery, where pixel resolutions can be fine 

enough to capture only one of these components. Under these conditions, TSEB models, 

therefore, may not provide reliable estimates of LE, since the model algorithms were not 

designed to operate at that particular scale.    

Discussion from previous paragraphs suggest that the scale at which UAV images 

are collected (or observation scale) are often at odds with the management (or 

application) and/or modelling scales, and this issue is actually quite common within 

remote sensing studies (Wu and Li, 2009). Discrepancies between observation, 

management, and modelling scales can be mitigated by transferring information using 

scaling techniques (Woodcock and Strahler, 1997). In the case of UAVs, one such 
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scaling technique can be performed through up-scaling, or aggregating, images to a 

coarser pixel resolution (Hassan-Esfahani et al., 2017).  

Initial studies quantifying the effects of aggregation on ET (or LE) modeling have 

been primarily confined to pixel resolutions associated with SAT imagery (Su et al., 

1999; McCabe and Wood, 2006). Sharma et al. (2016), for example, aggregated Landsat 

5/7 thermal/optical imagery from their original resolutions to various pixel resolutions 

(60, 90, 120, 150, 240, 360, 480, 600, 750, 900, 990 m), and then ran contextual Surface 

Energy Balance System (SEBS) ET models at each resolution, a process called input 

aggregation. In their results, they reported relative canopy ET (or ETc) pixel scale errors 

ranging from 25-60 %, which they attributed to changes in sensible heat (H), specifically 

roughness length for heat and momentum (zoh and zom, respectively). Hong et al. (2009) 

suggest that input aggregation is detrimental when model parameters (such as zoh and 

zom) behave in a non-linear fashion. Sharma et al. (2016) also found that pixel scale ETc 

errors were reduced when the fluxes were modeled at the initial Landsat resolution, and 

then aggregated, an alternative process called output aggregation.  

Bahir et al. (2017) recently suggested that errors from input-aggregated SEBS fluxes 

could be reduced by applying alternative aggregation rules (e.g. for linear, harmonic, 

geometric roughness length averaging). For example, Ershadi et al. (2013) tested various 

LE average schemes (simple averaging, nearest neighbor, bilinear, cubic convolution) 

from SEBS and found that simple averaging was the best choice for aggregating or 

upscaling Landsat 5 imagery. However, the optimal averaging rule has rarely been 

analyzed in terms of non-contextual ET models such as TSEB. TSEB can be favorable 
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over SEBS and contextual models in general because it eliminates the need for empirical 

corrections of excess resistance (i.e. zom, zoh) (Liou et al., 2014). In one of the few papers 

on the topic, Bahir et al. (2017) showed that, at least with ASTER SAT imagery, ET 

fluxes using TSEB models were more conservative across spatial scales (i.e. 0.1-1 km) 

than contextual models such as SEBS.  

While the topic of image aggregation has been primarily limited to SAT platforms, a 

recent study by Ramírez-Cuesta et al. (2019) extended this analysis towards high 

resolution manned airborne imagery (~0.5 m). In their methodology, a contextual model 

called the Mapping EvapoTranspiration at high Resolution with Internalized Calibration 

(or METRIC) was applied at various resolutions (5-1000 m) using input aggregation. In 

their results, they found that the turbulent fluxes (i.e. latent and sensible heat), behaved 

in a non-linear manner at resolutions higher than 30 m, with substantial aggregation 

errors (up to 23 %). However, such studies have not been extended towards UAV 

imagery, where image quality can vary depending on weather conditions (e.g. wind, rain, 

temperature etc.) and/or sensor quality (Manfreda et al., 2018). 

While Sharma et al. (2016) previously discovered SAT imagery was affected by 

surface roughness length, it is by no means the only source of aggregation errors for LE 

aggregation. Moran et al. (1997) suggest that additional sources of error from both SAT 

and manned aircraft imagery include surface heterogeneity and atmospheric stability. 

Surface heterogeneity, or vegetation patchiness, was cited as the main driver of TSEB-

based ET estimates when aggregating high resolution (i.e. 90 m) ASTER imagery (Bahir 

et al., 2017). If a landscape is relatively homogenous, less errors are expected when 
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aggregating UAV fluxes to coarser resolutions, and this will determined by crop 

phenology or growth stage (McCabe and Wood, 2006). Site heterogeneity is also a 

function of time of day, time of year, sensor spatial resolution, wind speed, and surface 

roughness properties (Moran et al., 1997; Kustas and Norman, 2000). The effects of such 

errors are often found within the sensible heat (H) component of the energy flux 

equation (Ramirez-Cuesta et al., 2019).  

Even if UAV images were collected or aggregated to the proper application scale, it 

is not quite clear how such imagery compares with that collected from other platforms 

(i.e. UAVs vs. MAVs, UAVs vs. SATs). Within this context, platform selection towards 

ET modeling remains an open question, as UAVs, MAVs, and SATs each have their set 

of pros and cons (Matese et al., 2015). While some have argued that UAVs, MAVs, and 

SATs can work in a complementary manner 

(https://www.expouav.com/news/latest/drones-vs-SATs-competitive-complimentary/; 

https://www.expouav.com/news/latest/drones-vs-manned-aircraft/), it will not always be 

possible, or even necessary, to acquire imagery across all three platforms. This is 

especially true in situations where UAV processing times are too cumbersome, MAV 

costs are too high, and/or SAT images are unavailable or of poor quality. Therefore, it is 

worth investigating how UAV ET maps compare with MAV and SAT ET maps, in terms 

of aggregation and accuracy relative to established LE techniques whenever possible 

(Kustas et al., 2004). 

The purpose of this study is to investigate the scaling properties of UAV-based LE 

estimates from a TSEB model. In particular, the interest is in comparing the different 
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modes of UAV aggregation (i.e. input vs. output, linear vs. non-linear averaging) at 

partial and full canopy cover conditions from a cotton row crop. There is additional 

interest in determining the contributing sources of error that result from these different 

aggregation modes. Finally, UAV maps are compared with those obtained from manned 

aircraft vehicles and SATs. 

 Materials and Methods 

 Study area and management 

The study site (17-ha, 30.531° N, -96.431° W) is located on the Texas A&M 

Experimental Farm in central-eastern Texas (Fig. 4.1). The region has a humid 

subtropical climate according to the Köppen climate classification system (Cfa code). 

Soil color varies within the field, with darker and lighter soils on the left and right sides 

of the field, respectively. Soil surface textures include silt loam, silty clay loam and silty 

clay (Stanislav, 2010) and are classified as Vertisols, Inceptisols and Entisols (Jurena, 

2005). The soils are actively forming on floodplains from primarily eolian parent 

materials once sourced from the Texas High Plains region (Sidwell, 1940). Elevations 

are relatively constant, with an average elevation of 67.7 ± 0.3 m above ground level. 

Total in-season precipitation and average daily air temperatures based on local rain 

gauges (red circles, Fig. 4.1), was 495 mm and 26.0 °C, respectively. 
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Fig. 4.1 Location of study area within the United States and the state of Texas. The 

letters ‘A’ and ‘B’ refer to two different eddy covariance towers installed during 

the 2017 field season (ref. Section 4.2.5.). Visual image was obtained by a consumer 

grade digital camera aboard a UAV about two weeks before planting (April 5, 

2017). Also shown are locations of various field equipment and agronomic data 

deployed throughout the 2017 growing season. Agronomic collection sites include 

measured variables such as leaf area index (LAI), canopy height, and canopy width. 

Additional infrared thermography (IRT) measurements were consistently collected 

at the time of each UAV overpass or intense observation period (IOP) (yellow) for 

UAV temperature validation. 

 

 

 

In past seasons, the field was actively managed with conventional tillage practices 

and kept in a continuous crop rotation with alternate years of corn (Zea mays L.) and 

cotton (Gossypium hirsutum L.). On April 5, 2017, cotton (variety PHY 444 WRF) was 

planted at a rate of 111,200 seeds ha-1, and at 1.02 m row spacing (DOY 95). Pre-emerge 

and post-emergence herbicides (Prowl H2O, Cotoran 4L, Cornerstone Plus) were applied 
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to ensure uniform stand establishment. In-season management of cotton included 

fertilization, plant growth regulation, and weed control. Based on field measurements, 

first flowering was observed on June 8 (64 days after planting or DAP), with cutout (i.e. 

5 nodes above white flower or NAWF) observed on July 1, 2017. Boll filling occurred 

approximately between June 29 and July 28 (85-112 DAP, defined here as 2 NAWF). 

Open bolls for about 90 % of the field occurred around September 1 (210 DAP). 

Defoliation occurred on September 9, 2017 (157 days after planting or DAP), and 

harvest was conducted on October 10, 2017 (188 DAP). 

 Image acquisition 

One of the objectives of this study was to compared UAV aggregated LE imagery 

with those from MAV and SAT platforms. Table 4.1 shows the dates of intense 

observation periods (IOP) when UAV, MAV and SAT surveys were conducted over the 

field in the 2017 growing season. The images collected at these dates and times form the 

basis of images for this study. SAT in this study refers to Landsat 8, a satellite that 

operates in sun-synchronous, near-polar orbit. SAT thermal images are initially collected 

at 100 m but resampled to 30 m resolution via cubic convolution immediately after 

image acquisition (Roy et al., 2014). SAT multispectral bands are defined at 30 m 

resolution. The main growth stages selected for this study include cotton flowering and 

boll filling. Note that UAV multispectral and thermal surveys were conducted separately 

due to platform limitations. Survey altitudes for UAVs, MAVs, and SATs were 

approximately 0.12, 1.37, and 705 km, respectively (Table 4.1). 
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Table 4.1 Fight times and pixel resolutions for all Intense Observation Periods 

(IOP) dates. The local times associated with each multispectral and thermal surveys 

are also described by survey platform (i.e. UAV – Unmanned Aerial Vehicle; MAV 

– Manned Aerial Vehicle; SAT – Landsat 8), along with its reported altitudes and 

native or original pixel resolutions for each sensor. 

Growing 

Stage 
Platform 

Altitude 

(km) 

PM Flight 

Time - 

Multispectral 

PM 

Flight 

Time - 

Thermal 

Native Pixel 

Resolution (m) 

MS Thermal 

 June 16, 2017 

Flowering 

UAV 0.12 13:48-14:10 
13:00-

13:15 
0.07 0.15 

MAV 1.37 13:58-14:10 0.48 1.32 

SAT 705 11:57 30 100 

Boll 

filling 

July 26, 2017 

UAV 0.12 11:27-11:48 N/A 0.08 N/A 

July 28, 2017 

UAV 0.12 No flight 
14:46-

15:00 
N/A 0.15 

MAV 1.37 15:17-15:31 0.48 1.31 

 

 

 

The lag time between the UAV and SAT surveys on June 16, 2017 was about one 

hour. Previous attempts were made to conduct a UAV thermal survey at the time of the 

SAT overpass (i.e. 11:57, Table 4.1) to ensure similar radiative conditions between 

platforms. However, cloud variability was present during the survey, and partial cloud 

cover was observed from the SAT imagery (Fig. A1). SAT images were not available on 

July 26 or July 28 (i.e. UAV thermal and multispectral surveys, Table 4.1) because the 

next overpass date was not until August 3, 2017. Both multispectral and thermal images 

were necessary to facilitate TSEB-PT modeling (Sect. 4.2.5.). 
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Relative to SAT, MAV surveys were conducted much closer in time to UAV thermal 

surveys. The average flight time for MAV surveys at 1.37 km was 13 minutes. All 

multispectral and thermal afternoon flights were conducted within ± two hours of solar 

noon, which is defined here as 13:30 (Table 4.1). The pixel resolutions from the 

multispectral camera was 0.48 m, while those from the thermal camera was 1.31 m 

(Table 4.1). Both multispectral and thermal sensors equipped on the MAV platform were 

flown at the same time. On July 26, 2017, only a UAV multispectral survey was 

conducted so that the TSEB-PT model could be run from UAV thermal surveys on July 

28 (ref. Sect. 4.2.5.) – no UAV multispectral survey was conducted on July 28. 

 UAV sensors 

Previous discussion of UAV flight preparation and execution can be found from 

Rouze et al. (in preparation). However, some additional details for sensors equipped 

aboard the Tuffwing UAV platform (Boerne, USA) are given in Table 4.2. The 

multispectral camera used in this study was the Micasense RedEdge  (MicaSense, 

Seattle, USA). The RedEdge camera is a complementary metal–oxide–semiconductor 

sensor that detects visible and near-infrared radiation. Thermal images were collected 

using an ICI 8640-P sensor (Infrared Cameras Inc., Beaumont, USA, 

https://infraredcameras.com/). The 8640-P is an uncooled focal plane array 

microbolometer with Vanadium Oxide film. Previous use of the RedEdge and the ICI 

8640-P sensors towards vegetation monitoring and plant phenotyping have been 

documented (Duan et al., 2017; Sagan et al., 2019). 
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Table 4.2 Remote sensing platform and sensor characteristics used in the study. 

Characteristic 

Multispectral Sensors Thermal sensors 

UAV 
Manned 

Aircraft 
Satellite UAV 

Manned 

Aircraft 
Satellite 

Platform 
Tuffwing UAV 

Mapper 
Cessna 206 Landsat 8 

Tuffwing 

UAV 

Mapper 

Cessna 206 Landsat 8 

Sensor 
Micasense 

Rededge 
Nikon D810 

Operational 

Land Image 

(OLI) 

ICI 8640-

P 

FLIR 

SC660 

Thermal 

Infrared 

Sensor 

(TIRS) 

Number of 

channels 

5 (RGB + NIR + 

Red Edge) 
4 (RGB + NIR) 

9 (RGB, NIR, 

SWIR) 
1 1 2 

Notable 

spectral 

wavebands 

(μm) 

0.46-0.50 (Blue) 
0.40-0.50 

(Blue) 

0.45-0.51 

(Blue) 

7.0-14.0 7.50-13.00 

10.6-

11.19 

(used) 

0.54-0.58 (Green) 
0.51-0.59 

(Green) 

0.53-0.59 

(Green) 

0.66-0.68 (Red) 0.60-0.70 (Red) 
0.64-0.67 

(Red) 

0.80-0.88 (NIR) 
0.83-1.00 

(NIR) 

0.85-0.88 

(NIR) 
   

Resolution (px) 1280 x 960 7360 x 4912 7541 x 7691 640 x 512 640 x 480 
7541 x 

7691 

Pixel pitch 

(μm) 
3.8 4.9 ? 

17 25? ? 

Focal length 

(mm) 
5.5 20 886 12.5 37.6 178 

FOV (°) 47.9 83.9 15 78 24 15 

Output data 16-bit 16-bit 12-bit 14-bit 16-bit 12-bit 

Ground image 

dimension (m) 
106 x 79 

1204 x 805 185000 x 

180000 
84 x 104 

285 x 213 185000 x 

180000 2462 x 1646 584 x 437 

 

 

 

 MAV sensors 

MAV multispectral images were collected with a Nikon D810 camera (Melville, 

USA, http://www.nikonusa.com). Thermal images were collected using a FLIR SC660 

sensor, which, like the ICI 8640-P, is an uncooled focal plane array microbolometer 
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(Wilsonville, USA, https://www.flir.com/). The FLIR SC660 has a slightly smaller range 

for detecting thermal radiation (7.5-13 μm) than the ICI 8640-P (7.0-14.0 μm, Table 

4.2). The D810 multispectral sensor was set under manual settings, with an exposure 

time of 0.001 seconds. The D810 and SC660 also have previous applications in 

monitoring crop water status (Garcia-Tejero et al., 2018; Wu et al., 2018). 

 SAT sensors 

Landsat 8 SAT imagery was obtained on June 16, 2017 from multispectral and 

thermal sensors aboard the platform, namely the Operational Land Imager (OLI) and the 

Thermal Infrared Sensor (TIRS), respectively. The OLI was manufactured by Ball 

Aerospace & Technologies Corporation, while the TIRS was built by the NASA 

Goddard Space Flight Center. More detailed information on the characteristics of these 

two sensors beyond Table 4.2 can be found elsewhere in literature (Knight and Kvaran, 

2014; Reuter et al., 2015). While Landsat has two thermal bands, only band 10 (i.e. 10.6-

11.19 μm) was used, as band 11 (11.5-12.51 μm) has stray light issues (Wang and 

Ientilucci, 2018). 

 Image post-processing 

Previous discussion of UAV post-processing, including geometric/radiometric 

corrections, can be found from Rouze et al. (in preparation) and is omitted for the sake 

of brevity. 

 MAV 

The goal of orthomosaicking MAV imagery was to only analyze images that cover 

the area spanned by the eddy covariance tower footprints for LE flux comparisons. 
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While the entire field was captured in a single shot with MAV multispectral imagery, 

such was not the case with the thermal imagery. Because thermal images define the ET 

modeling domain (Sect. 4.2.5.), and to simplify processing times, therefore, all MAV 

analysis was only conducted over these smaller portions of the field (Fig. A2). 

After data acquisition, multispectral images were first corrected from RAW to 16-bit 

tiff files using the provided software (Capture NX-D 1.2.1). Because the multispectral 

sensor captured the entire field in one shot, mosaicking was not needed. Instead, only 

geo-referencing was needed using known coordinates of objects identified within the 

image. RGB and NIR images were first geo-referenced separately and then stacked 

together within ArcGIS (ESRI, Redlands, USA). 

Multispectral radiometric calibrations were conducted using the empirical line 

calibration in order to obtain surface reflectance (Smith and Milton, 1999). The main 

interest was in estimating red and NIR reflectance (ρRed, ρNIR) only so that Normalized 

Difference Vegetation Index (NDVI =
ρNIR−ρ,Red

ρNIR+ρRed
) could be calculated for later use in the 

LE modelling phase (Section 4.2.5). Ground-truth reflectance measurements were 

obtained with a Handheld 2 spectroradiometer instrument, which has a spectral range 

325-1075 nm, a spectral resolution of < 3 nm, and a 25° FOV (ASD Inc., Boulder, 

USA). Four 8 x 8 m tarpaulins were used for radiometric calibration, with reported 

nominal reflectance values of 4, 16, 32, and 48 % (Zhang et al., 2017). The Handheld 2 

collected reflectance data from these tarps during each MAV IOP, as well as 

measurements of soil and cotton reflectance for validation. In addition to measured 
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reflectance values, raw sensor information (i.e. digital numbers or DNs) were extracted 

from a 9 x 9-pixel box within each tarp in order to perform empirical line calibration. 

All images collected by the thermal FLIR SC660 sensor were first processed to 

generate camera calibrated temperatures using the provided software (ExaminIR, FLIR). 

The settings supplied in ExaminIR were the same as those from the UAV processing 

software, mainly: 1) emissivity or ε = 1.00, 2) transmissivity or τ = 1.00, and 3) air 

temperatures or Ta. At 1.37 km altitude, most of the field was captured in one shot (Fig. 

A2); therefore, like the multispectral imagery, image registration was only required, and 

this was done using the geo-referenced multispectral imagery as a visual aid. MAV 

thermal radiometric corrections, like UAV corrections from previous work (Rouze et al., 

in preparation), were performed at each pixel by calculating emissivity values weighted 

bed vegetation fraction cover (ε, Jimenez-Muñoz et al., 2006), followed by estimation of 

Tr from brightness temperature (Tbr) and background air temperature (or Tbg, via local 

weather data) (Maes and Steppe, 2012). 

 SAT 

Surface reflectance data from the visible/near-infrared wavelengths was obtained 

through the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). 

Raw thermal DNs was first obtained from the level 1 product using the United States 

Geological Survey (USGS) Global Visualization Viewer (GLOVIS, 

https://glovis.usgs.gov/). Raw DNs, along the surface reflectance data, were used to 

estimate Tr - detailed information regarding conversion of SAT DN to Tr can be found in 

Appendix A. 
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 Model formulation 

The purpose of this study is to evaluate how UAV LE fluxes change as a function of 

coarsening pixel resolution, and how such information compares with those from MAVs 

and SATs. Within this context, LE fluxes need to be obtained across the entire 

production field. To do this, LE fluxes were estimated using a combination of remote 

sensing and energy balance modeling techniques. The energy balance model used here 

was the TSEB model (Norman et al., 1995). Contextual energy balance models, while 

popular (Allen et al., 2007; Brenner et al., 2018; Ramirez-Cuesta et al., 2019), were 

hypothesized as unfavorable in this study because satellites were not expected to 

properly identify hot/cold temperature endmembers within the small study area (17-ha or 

0.17 km2).  

The general approach to TSEB models estimate LE as a residual of the energy 

balance equation, which is based on the difference between available energy (Rn-G) and 

sensible heat (H). H is expressed from both soil and vegetation components as follows: 

 
𝐻 = 𝜌𝐶𝑝

𝑇0 − 𝑇𝑎

𝑟𝑎
 

(Eq. 4.1) 

where ρCp is the volumetric capacity of air (J m-3 K-1), T0 is the aerodynamic 

temperature (K), Ta is the air temperature (K), and ra is the resistance to heat transport or 

aerodynamic resistance (s m-1). In practice, T0 is unknown and replaced with Tr, 

although this approach can result in an overestimation of H fluxes (Kustas and Norman, 

2000). In this study, the sub-model used to estimate LE was the TSEB Priestley Taylor 

approximation model (TSEB-PT). Unlike other TSEB sub models (e.g. TSEB-DTD), the 

TSEB-PT model allows for comparisons between UAV, MAV and SAT LE fluxes 
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because it requires instantaneous thermal imagery at one point in time (Table 4.1). The 

model begins with an initial approximation of LEc based on the Priestley and Taylor 

(1972) transpiration equation:  

 
𝐿𝐸𝑐 = 𝛼𝑃𝑇𝑓𝑔

𝛥

𝛥 + 𝛾
𝑅𝑛,𝑐, 

(Eq. 4.2) 

where αPT is Priestley–Taylor parameter with an initial value of 1.26, Δ is the slope 

of the saturation vapor pressure-temperature curve (Pa K-1) and γ is the psychrometric 

constant (Pa K-1). After LEc is initialized using Equation 1, Hc is then found, which then 

allows for Tc to be found as follows: 

𝐻𝑐 = 𝜌𝐶𝑝

𝑇𝑐 − 𝑇𝑎

𝑟𝑎
 ⇾  𝑇𝑐 =  

𝐻𝑐 ∗ 𝑟𝑎

𝜌𝐶𝑝
+ 𝑇𝑎, 

(Eq. 4.3) 

Where ra is the aerodynamic resistance to momentum and heat transfer (s m-1), ρ is 

the air density (kg m-3), Cp is the specific heat of air (J kg-1 K-1), and Ta is the air 

temperature at the time of overpass (K). With an initial Tc from Equation 3, Ts is found 

from a mixing model weighted by the vegetation fraction cover (fc), and Tr values 

obtained from the sensor (Norman et al., 1995): 

 𝑇𝑟 = [𝑓𝑐 ∗ 𝑇𝑐
4 + (1 − 𝑓𝑐) ∗ 𝑇𝑠

4]1/4, (Eq. 4.4) 

Note that, in order to obtain an initial Tc value, the fractional vegetation cover (fc, 

Eq. 5) is calculated from Campbell and Norman (1998): 

𝑓𝑐(𝜃) = 1 − exp [
−0.5𝛺(𝜃)𝐿𝐴𝐼

cos(𝜃)
], 

(Eq. 4.5) 

where Ω is a vegetative clumping factor calculated at a given sensor viewing angle θ 

(Kustas and Norman, 1999), and LAI is calculated from multispectral imagery (see 
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Section 4.2.5.). A check on these Tc and Ts values is then performed by applying these 

newly found Ts values to find Hs: 

𝐻𝑠 = 𝜌𝐶𝑝

𝑇𝑠 − 𝑇𝑎

𝑟𝑠 + 𝑟𝑎
, 

(Eq. 4.6) 

where rs is the soil resistance to momentum and heat transfer (s m-1). Finally, LEs is 

found from the energy balance of the soil (LEs = Rn,s – G – Hs). A valid solution is 

reached when LEs is positive. If a valid solution is found, the latent and sensible fluxes 

from both canopy (i.e. LEc = Rn,c – Hc) and soil sources are respectively added together 

to compute the LE and H terms. A more detailed description of this model can be found 

from Norman et al. (1995) and Kustas and Norman (1999). 

 Model inputs and processing 

In order to run TSEB-PT models for UAV MAV, and SAT imagery, both image and 

non-inputs need to be generated. Image inputs refer to spatially varying parameters such 

as Tr (ref. Sect. 4.2.3.), fc, and LAI. Non-image inputs refer to constant parameters such 

as weather data and agronomic data such as canopy height (hc) and canopy width (wc). 

The following sections detail the derivation of this information separately. 

 Image inputs 

All further discussion of input derivation applies to UAV, MAV, and SAT platforms. 

fc was derived from NDVI imagery by scaling between the ‘infinite’ NDVI (NDVI∞) and 

soil NDVI (NDVIs) (Carlson and Ripley, 1997): 

 𝑓𝑐 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼∞ − 𝑁𝐷𝑉𝐼𝑠

)2 (Eq. 4.7) 
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NDVI∞ was taken to be the maximum NDVI observed from the native pixel size (0.976). 

NDVIs was based off average NDVI values at a time before squaring occurred (0.2).  

LAI maps were then generated by regressing in situ LAI (Fig. 4.1) against the fc maps 

generated from above. LAI measurements were taken with a LAI-2200C sensor (LI-

COR, Lincoln, USA), either one hour before sunrise or one hour before sunset. All LAI 

campaigns were collected in a two-day span from a UAV thermal overpass (Table 4.1). 

LAI measurements were taken approximately in an area spanning three meters by three 

rows. All LAI observations were collected directly underneath cotton plants along a row, 

and one-fourth, one-half, and three-fourths distance from the cotton row in accordance 

with LICOR recommendations. Table 4.3 shows field average characteristics of 

agronomic data collected at site locations shown in Fig. 4.1 (dark blue circles). The field 

average LAI values on June 16 and July 28 were 1.03 ± 0.22 and 2.37 ± 0.34 m2 m-2, 

respectively. 

 

 

 

Table 4.3 Agronomic and weather data collected at the IOPs listed in Table 4.1, 

along with their units. Abbreviations are as follows: 1) LAI – leaf area index; 2) 

hc – canopy height; 3) wc – canopy width; 4) Ta – air temperature; 5) u – wind 

speed; 6) Sdn – downward incoming solar radiation; 7) VPD – vapor pressure 

deficit 

Date Time 
Associated 

Platform 

LAI hc wc Ta u 
Wind 

direction 
Sdn VPD 

m2 

m-2 
m m K m/s ° W m-2 kPa 

June 16, 

2017 
11:57 SAT 

1.03 0.44 0.14 

304.3 3.78 213 878 1.79 

June 16, 

2017 

13:00-

13:15 
UAV 306.1 3.88 205 1014 2.40 
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Table 4.3 Agronomic and weather data collected at the IOPs listed in Table 4.1, 

along with their units. Abbreviations are as follows: 1) LAI – leaf area index; 2) 

hc – canopy height; 3) wc – canopy width; 4) Ta – air temperature; 5) u – wind 

speed; 6) Sdn – downward incoming solar radiation; 7) VPD – vapor pressure 

deficit 

Date Time 
Associated 

Platform 

LAI hc wc Ta u 
Wind 

direction 
Sdn VPD 

m2 

m-2 
m m K m/s ° W m-2 kPa 

June 16, 

2017 

13:21-

13:47 
MAV 306.3 3.32 197 1015 2.48 

June 16, 

2017 

13:58-

14:10 
MAV 306.7 3.11 191 998 2.58 

July 28 

2017 

14:46-

15:00 
UAV 

2.37 0.8 0.92 

309.6 1.84 166 945 3.55 

July 28 

2017 

14:45-

15:09 
MAV 309.7 1.52 163 924 3.64 

July 28 

2017 

15:17-

15:31 
MAV 310.1 1.77 189 898 3.73 

 

 

 

 Non-image inputs 

Weather data was collected using 15-minute averaged sensor data obtained across 

both eddy flux towers. Weather parameters include (but are not limited to): 1) air 

temperature (Ta, K), 2) wind speed (u, m s-1), 3) vapor pressure deficit (VPD, kPa), 4) 

incoming shortwave radiation (Sdn, W m-2) and 5) longwave radiation (Ldn, W m-2). 

Specific weather data on June 16 and July 28 (Table 4.1) are shown in Table 4.3.  

Field agronomic information was obtained by averaging spatially distributed field 

measurements at each IOP (Fig. 4.1). Relevant information includes canopy height, 

canopy width, leaf width, leaf spectral properties, and leaf angle distribution. All canopy 

height and width measurements were visually observed across ten different plants each 

site using measuring tape. Leaf width was visually observed from the widest points 

between select leaves on each plant. Leaf spectral properties were obtained using local 

Table 4.3 Continued 
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ground-truth reflectance data. Leaf angle distribution was calculated from leaf tip angle 

measurements collected alongside LAI data (Wang et al., 2007).  

Soil heat flux was calculated assuming a constant ratio between G and Rn,s, the latter 

of which was calculated using formulations provided by Kustas and Norman (1999). The 

use of a constant G/Rn,s was based on the observation that that most PM thermal UAV 

surveys were collected around solar noon - Kustas and Daughtry (1990) suggest that the 

use of a constant ratio is appropriate for several hours around solar noon, after which a 

time lag exists between net radiation and soil heat flux. Green vegetation fraction was set 

to one for all model runs. View zenith angle was set to nadir or zero degrees. 

 General design of the experiments 

The purpose of this study was to address the effect of UAV aggregation on LE flux 

estimations. The overall methodology used to address this question is shown in Fig. 4.2. 

Two basic aggregation rules, either from the input imagery or output fluxes, were 

applied to UAV imagery. Before these aggregation rules were applied, however, all 

image inputs (e.g. Tr, LAI, fc) were first aggregated to a pixel resolution of 1.33 m – this 

step was performed so that assumptions of TSEB modeling (i.e. > 1 m) were satisfied. 

The choice of 1.33 m, in particular, was based on the nearest multiple of UAV thermal 

imagery relative to MAV (Table 4.1). Next, an input aggregation scheme was applied, 

whereby the initially aggregated imagery (at 1.33 m) were aggregated again to a coarser 

pixel resolution (5 m, 10 m, 30 m, 90 m), followed by a TSEB-PT model run at each 

resolution. To address the effect of different input image aggregation schemes, only one 

set of image inputs can be modified at a time. Therefore, initial analyses focused on 
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identifying the most sensitive image input parameter (i.e. Tr, fc) via field histograms. The 

two candidate inputs variables were Tr and fc. The 30 m resolution reflects satellite Tr 

disaggregation approaches using concurrent multispectral imagery (Kustas et al., 2003). 

The 90 m resolution reflects Landsat 8 thermal imagery satellite images aggregated to 

the closest multiple of its original resolution (i.e. 100 m) – this approach has precedence 

within literature (Cho et al., 2018).  

The other aggregation scheme tested in this study was output flux aggregation, 

whereby the fluxes were first modeled at 1.33 m, followed by flux aggregation to the 

desired pixel resolution. The output aggregated flux resolution was aggregated to the 

same values as those from input aggregated approaches. This experimental design is like 

other studies addressing aggregation properties from satellite sensors (Su et al., 1999; 

Hong et al., 2009; Sharma et al., 2016).  

Within a given aggregation scheme (i.e. input/output), additional sub-schemes were 

used to address the effect of field statistical distributions on aggregation. First, a simple 

mean or arithmetic average was calculated, with the assumption that image inputs or 

outputs behave linearly (labelled as SA in Fig. 4.2a). Second, a non-linear scheme was 

addressed by using a Box-Cox approach, whereby values where transformed to an 

optimal transformation power, arithmetically averaged, and subsequently 

backtransformed to obtain values in the original units (labelled as BC in Fig. 4.2a) – 

further description of the BC approach is given in Appendix B. Collectively, four 

individual aggregation schemes were tested for a given IOP date (hereafter referred to as 

In-SA, In-BC, Out-SA, and Out-BC in Fig. 4.2a). All TSEB-PT models were run within 
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the Python package pyTSEB, version 2.0 (https://github.com/hectornieto/pyTSEB, 

Source: Hector Nieto). Examples of UAV Out-SA LE images across both IOP dates are 

shown in Fig. 4.3. 

 

 

 

 

Fig. 4.2 Workflow for this study. Different processing steps applied to unmanned 

aerial vehicle (UAV) imagery (Fig. 4.2a-4.2b), manned aerial vehicle (MAV) 

imagery (Fig. 4.2c), satellite (SAT) imagery (Fig. 4.2d), and d) eddy covariance flux 

towers (Fig. 4.2e). The steps outlined in Fig. 4.2a apply to the different processing 

routes from a single set of multispectral and thermal IOP images. Within Fig. 4.2a, 

two different aggregation methods referred to as input aggregation (Fig. 4.2a) or 

output aggregation (Fig. 4.2b). Image inputs refer to fc, LAI, and Tr (e.g. 0.15, 1.33 

m, 30.0 m, 90 m from Fig. 4.2a). Output fluxes refer to Rn, G, H and LE modeled 

using TSEB-PT. SA – simple (arithmetic) average; BC – Box-Cox averaging. In-

SA: Input aggregation using arithmetic mean; In-BC: Input aggregation using Box-

Cox transformation; Out-SA: Output aggregation using arithmetic mean; Out-BC: 

Output aggregation using Box-Cox transformation. Boxes designated with figure 

numbers (in red) should be used to interpret figures presented in the paper. 
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1.33 m 

  

5 m 

  

10 m 

  

30 m 

  

90 m 

  

 

Fig. 4.3 Output flux aggregation (Out-BC, Fig. 4.2) for latent heat fluxes on June 16 

(left side), and July 28 (right side). 
 

 

 

One of the primary goals of this study was to address which aggregation scheme (i.e. 

In-SA, In-BC, Out-SA, Out-BC) produced the lowest: 1) pixel-scale errors, and 2) 

prediction errors (with respect to eddy flux towers). First, pixel scale relative errors were 

Latent Heat Flux, W m
-2

0 - 475 475.1 - 900
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calculated, which compare the value at the selected aggregated resolution against the 

individual pixels from which it is comprised. Relative error (Re) is calculated as 

Re=RMSE/μ (Kalma et al., 2008), where RMSE is the root-mean-square error difference 

between the coarse resolution pixel and its constituent fine resolution pixels, and μ is the 

spatial mean value of all the fine resolution pixels. Second, the modelled fluxes (i.e. In-

SA, In-BC, Out-SA, Out-BC) were compared eddy covariance towers installed within 

the field during each IOP (Fig. 4.1). Quality of fit was assessed in terms of mean 

absolute percentage error (MAPE): 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦̂ − 𝑦

𝑦
|

𝑛

𝑗=1

 (Eq. 4.8) 

where 𝑦̂ and y are the UAV/MAV modelled and eddy covariance LE fluxes, 

respectively. Description of flux tower data is given in Rouze et al. (in preparation). 

Appendix C provides the method used to obtained remotely sensed weighted fluxes 

within the footprint of each eddy tower, as well as the extraction of energy balance 

components from the flux towers. 

 Results 

 Comparing UAV aggregation approaches 

The purpose of this study is to evaluate the different aggregation approaches (In-SA, 

Out-SA, In-BC and Out-BC, Fig. 4.2), in terms of: 1) Re on the pixel-scale, and 2) 

absolute errors with respect to eddy flux towers. Analysis begins by first presenting 

histograms for Tr and fc on different dates and resolutions as shown in Fig. 4.4. Because 

LAI is derived from fc (Section 4.2.5.1.), it is omitted here for the sake of brevity. The 
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purpose here is to determine the relative sensitivity of these parameters to aggregation, 

as this will determine which parameter will then be tested in terms of averaging rules 

(e.g. In-SA, In-BC, Fig. 4.2). Each panel in Fig. 4.4 has the distribution of fc and Tr at 

the native resolution as black lines (i.e. 0.07 and 0.15 m, respectively, Table 4.1), as well 

as the aggregated resolution, either using SA (green lines) or BC (pink lines) averaging 

approaches.  

 

 

 

   

Fig. 4.4 Line histograms for fc and Tr imagery on June 16 (Fig. 4.4a-4b), and July 

28 (Fig. 4.4c-4.4d), expressed in terms of percent frequency. The histograms are 

calculated over pixels across the entire field. For the sake of brevity, the line 

histograms at 5, 10, 30 meters and 90 meters are not provided here. 
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One observation that can be made from Fig. 4.4 is that the distribution of the fc and 

Tr curves for the native and aggregated images shift in time. For example, on June 16 the 

fc curves are primarily right-skewed (Fig. 4.4a), while on July 28 these fc curves shift to 

left-skewed distributions (Fig. 4.4c). On June 16, Tr curves were approximately normal 

(Fig. 4.4b), while on July 28 these distributions shifted towards right-skewed 

distributions (Fig. 4.4d). These shifts in fc and Tr correspond with the increased 

vegetative cover (and decreased soil exposure) during the two sampling dates (Table 

4.3). On July 28, the distributions from fc and Tr behave in a somewhat inverse manner, 

as both show left- and right-skewed distributions, respectively (Fig. 4.4c, 4.4d), most 

likely because of changes in crop phenology. 

In comparing distributions within and across aggregation methods, several 

observations can be made. On June 16, and to a lesser degree July 28, fc-SA (green line) 

and fc-BC (pink line) field distributions are visually different from each other, 

particularly for the low-medium values of fc (0-0.5, Fig. 4.4a). In particular, the fc-SA 

distribution on June 16 contains a greater amount of fc pixels between 0.1-0.5 than the fc-

BC or fc-native imagery (Fig. 4.4a). Moving from June 16 to July 28, fc differences 

between SA/BC and native resolution (0.15 m) become less noticeable, although both 

aggregated distributions are shifted slightly to the left from the native distribution (Fig. 

4.4c). In particular, fc-SA shows a greater proportion of pixels associated with vegetation 

than that of fc-BC (Fig. 4.4c). This result may have occurred because In-SA effectively 

mixes high and low end values (from vegetation and soil, respectively), while In-BC 
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weights values more towards high values (based on the greater proportion of vegetation 

via the transformation power, Appendix B). 

Unlike fc, differences in Tr distributions by aggregation rule were not observed. On 

June 16, for example, the Tr distributions for both SA and BC aggregation were almost 

identical (Fig. 4.4b), and this was also observed on July 28 (Fig. 4.4d). From these 

observations, two main points can be made. First, the sensitivity of fc to aggregation rule 

(i.e. SA vs. BC) was greater during partial than full vegetation coverage. Second, fc was 

more sensitive to the selected aggregation rule than Tr, and this may have occurred 

because fc is expressed on a much smaller scale relative to Tr (i.e. 0-1). For this reason, 

all further results for input aggregation will be discussed in terms of fc (and LAI) input 

aggregation only. In other words, In-SA and In-BC refer to aggregation techniques from 

fc (and LAI) imagery only (Fig. 4.2). 

Fig. 4.5 shows histograms from LE fluxes across the field at two different pixel 

resolutions (5 m, 10 m) and IOP dates. Within each panel, field distributions at initial 

aggregation level (1.33 m, black) are plotted alongside input (i.e. fc) aggregated images 

(blue) and output flux aggregated images (orange). Note that the Tr arithmetic averaging 

was consistently used for all aggregation schemes. The peak LE flux encountered on 

June 16 and July 28 was around 400 W m-2 and 500 W m-2, respectively. On June 16, LE 

histograms become generally narrower as the pixel resolution is aggregated from its 

native counterpart (Fig. 4.5a, 4.5b). The most likely reason for this result is that soil and 

vegetation pixels are being increasingly averaged when pixel resolutions become greater 

than the width of the soil row (~0.5 m), resulting in less variation relative to the finer 
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resolution imagery. When moving from June 16 to July 28, the LE field histograms 

across native and aggregation types shift from approximately normal to left-skewed, 

indicating greater vegetation coverage (Fig. 4.5a vs. 4.5c, Fig. 4.5b vs. 4.5d). A general 

trend that persists across all aggregation distributions on July 28, relative to the native 

distribution, is that the former has a larger proportion of pixels in the mid-range (i.e. 

400-600 W m-2), presumably due to averaging of vegetation and soil pixels, regardless of 

aggregation/averaging approach.  

 

 

 

 

Fig. 4.5 Line histograms of latent energy (LE) fluxes using TSEB-PT across 

different IOP dates and times: a) June 16 at 0.74 m; b) June 15 at 1.33 m; c) July 28 

at 0.74 m; d) July 28 at 1.33 m. Different colors and line types are assigned to In-

BC (bold blue), In-SA (dashed blue), Out-BC (bold orange), and Out-SA (dashed 

orange) fluxes at various pixel resolutions. Native fluxes (~0.15 m, black) are also 

plotted as reference. Refer to red arrows for discussion in-text. 
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Unlike the fc field distributions (Fig. 4.4a, 4.4c), the LE field distributions by 

aggregation and averaging methods (In-BC, Out-BC, In-SA, Out-SA) are pretty similar 

to each other on both sampling dates (Fig. 4.5). While this may suggest that the selection 

of correct aggregation and averaging approach is diminished, high differences (as much 

as 100 W m-2) were visually observed between the approaches on a per-pixel basis (not 

shown here). Further visual inspection revealed that these differences were more 

prevalent within less densely vegetated areas. In other words, the selection of 

aggregation and averaging approach is mostly relevant to heterogenous surfaces, and this 

observation is in line with previous findings (Moran et al., 1997).  

Based on these observations, as well as Fig. 4.5, further insights into LE aggregation 

behavior were quantified by calculating Re for each of the scenarios shown in Fig. 4.2. In 

particular, LE pixel scale errors (Re=RMSE/μ, Sect. 4.2.6) are plotted as a function of 

four different pixel resolutions (5 m, 10 m, 30 m, 90 m) in Fig. 4.6, and these errors are 

given in Table 4.4. As expected, the magnitude of relative error, regardless of 

aggregation method, increased with increasing pixel resolution - this is because the 

signal/noise ratio is diminished as the pixel size increases relative to the sensed objects 

(i.e. crops/soils) (Jones and Sirault, 2014). Re values for all aggregation methods were 

lower on July 28 (Fig. 4.6b) than on June 16 (Fig. 4.6a), as the median Re from Table 4.4 

was 0.16 and 0.20, respectively. Differences between the 25th and 75th percentiles of 

different aggregation methods are more noticeable on June 16 than on July 28 as well 

(Fig. 4.6). These results most likely occurred because of the relatively high Re errors on 

June 16 from both In-BC and Out-BC (Fig. 4.6a).  
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Fig. 4.6 Pixel-scale latent energy (LE) relative errors (Re=RMSE/μ) plotted as a 

function of pixel resolution on a) June 16, 2017, and b) July 28, 2017. Plots are 

divided into In-SA (red), Out-SA (blue), In-BC (light blue), and Out-BC (orange). 

Within each aggregation configuration, mean relative errors (circle + bold line) are 

plotted as well as the 25th and 75th relative error percentiles (lower and upper 

dashed lines, respectively). 

 

 

 

Table 4.3 Mean pixel scale relative errors from plots shown in Fig. 4.6 (scaled 

between 0-1). 

Resolution 
June 16, 2017 July 28, 2017 

In-SA In-BC Out-SA Out-BC In-SA In-BC Out-SA Out-BC 

5 0.10 0.20 0.10 0.19 0.13 0.15 0.12 0.14 

10 0.11 0.22 0.11 0.20 0.14 0.16 0.14 0.16 

30 0.13 0.24 0.13 0.23 0.16 0.19 0.16 0.19 

90 0.21 0.30 0.17 0.25 0.24 0.27 0.21 0.24 

Average 0.14 0.24 0.13 0.22 0.17 0.19 0.16 0.18 
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Re differences were exhibited not only across dates, but within dates as well. For a 

given sampling date, differences in relative errors between SA vs. BC transformation 

were smaller than those between input vs. output aggregation (Table 4.4). In order 

words, aggregated LE fluxes were more sensitive to selection of averaging rule than 

selection of aggregation method. In terms of comparison, relative errors from simple 

averaging (i.e. Out-SA, In-SA) were generally lower than BC (i.e. Out-BC, In-BC). For 

example, the median relative error for SA on June 16 was 0.14, while for BC it was 0.20. 

Within respect to the individual models, the magnitude of Re were (from lowest to 

highest): Out-SA < In-SA < In-BC < Out-BC (Fig. 4.6, Table 4.4). Thus, output flux 

aggregation produced lower pixel-scale errors than using input aggregation with respect 

to SA. These trends are particularly apparent on June 16 (Fig. 4.6a), although differences 

are diminished on July 28 (Fig. 4.6b), presumably because of more homogenous 

(vegetated) surfaces. Therefore, it can be concluded that SA averaging (preferably with 

output flux aggregation) was the best aggregation approach towards upscaling UAV 

imagery, despite the apparent non-normal distributions presented in the inputs (Fig. 4.4c, 

4.4d) and output fluxes (Fig. 4.5c, 4.5d).  

The second criteria used to determine which aggregation method was optimal was 

through comparisons with from eddy flux towers. Fig. 4.7 shows plots of UAV 

aggregated LE fluxes (i.e. In-SA, In-BC, Out-SA, Out-BC) against the LE flux measured 

by the eddy covariance based LE fluxes, across both towers and dates (n = 4). Table 4.5 

provides the MAPE values from each configuration and is expressed as error from the 

mean LE flux (467 W m-2). One consistent result that appeared across all resolutions was 
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that the errors from output flux aggregation (i.e. Out-SA, Out-BC) were lower than that 

from input LAI aggregation (i.e. In-SA, In-BC). For example, at 5 meters the MAPE for 

In-SA was 7.2 %, while for Out-SA it was 6.0 % (Table 4.5). When comparing SA vs. 

BC averaging, the former were more accurate relative to eddy fluxes - the average BC 

MAPE for input aggregation was 8.2 %, while for SA it was 6.8 % (Table 4.5). In fact, 

the trends in MAPE are the same as the relative errors from Table 4.4: MAPE (Out-SA) 

< MAPE (In-SA) < MAPE (In-BC) < MAPE (Out-BC). Output aggregation approaches 

had slightly lower median MAPE values than input approaches (7.2 vs. 7.8 %, 

respectively).  

 

 

 

 

Fig. 4.7 UAV-based LE fluxes (y-axis) plotted against eddy covariance-based LE 

fluxes. Panels are then subdivided by aggregation method at various pixel 

resolutions. Note that each point represents a tower (Fig. 4.1) and IOP date 

combination. In-SA and In-BC are plotted in Figs. 4.7a-4.7b, while Out-SA and 

Out-BC are plotted in Figs. 4.7c-4.7d.  
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Table 4.4 Mean absolute percent errorsof different LE aggregated flux 

configurations between UAV and eddy flux towers.  

Resolution (m) In-SA In-BC Out-SA Out-BC 

5 7.2 8.0 6.0 7.9 

10 7.8 8.1 6.2 8.6 

 

 

 

Therefore, it was concluded that aggregating using SA (with output aggregation) was 

the best approach to upscale LE from 1.33 m, and this is in agreement with the pixel-

scale results reported earlier (Fig. 4.6, Table 4.4). Input image aggregation can be 

dangerous if all inputs do not present similar statistical distributions, as was shown here 

(Fig. 4.4). Considering that many previous papers have opted for the input aggregation 

approach (Xia et al., 2016, Brenner et al., 2018), the use of output aggregation may need 

to be considered for future UAV aggregation studies. 

 Aggregation properties of UAV In-SA 

Because input aggregation schemes, on average, underperformed relative to output 

aggregation schemes (Sect 4.3.1.), possible sources of aggregation errors were explored, 

with respect to both fluxes and model parameters. Input image parameters (Tr, fc) and 

output ancillary parameters (ra, u
*) were investigated by plotting Re values as a function 

of pixel resolution (i.e. 5 m, 10 m, 30 m, 90 m). ra and u* were included in this study 

because they have been cited as contributing sources in regard to aggregation (Moran et 

al., 1997).  
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Re values from the same set of inputs and outputs are provided in Fig. 4.8. The data 

presented in Fig. 4.8 are parameters obtained from arithmetic averaging (i.e. In-SA). Rn-

G errors were less than 10 % across resolutions and were very low relative to the 

turbulent fluxes (i.e. LE/H, Fig. 4.8a, 4.8b). This finding has been observed across both 

non-contextual and contextual models, as Rn is affected more by solar properties than 

vegetation/soil properties (Bahir et al., 2017; Ramirez-Cuesta et al., 2019). The LE 

relative error values were similar on June 16 (partial vegetation cover) and July 28 (full 

vegetation cover) (Fig. 4.8c-4.8d). Because LE is calculated as a residual from Rn-G and 

H, it stands to reason that H errors are contributing to LE aggregation errors, and this 

was in fact observed from the data, particularly on July 28 (Fig. 4.8f). The effect of this 

H error on July 28 resulted in greater LE Re values ranging from 2-5 %.  
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Fig. 4.8 Relative errors (scaled from 0-1) for the same variables as Fig. 4.8, plotted 

by pixel resolution on June 16 (left column) and July 28 (right column). Note that 

Rn, G, H and LE refer to images obtained via the In-SA aggregation method. 

 

 

 

With respect to model parameters, ra errors were relatively low, ranging from 1-5 % 

(Fig. 4.8i, 4.8j). fc relative errors were much higher than ra, although these errors 

decreased from June 16 to July 28 (Fig. 4.8k, 4.8l). u* relative errors were lower than 

both ra and LAI, although its errors similarly decreased in time (Fig. 4.8m, 4.8n). Tr 

relative errors were low and constantly close to zero across both dates (Fig. 4.8g, 4.8h). 

Thus, fc appears to the main source of aggregation error during partial canopy and full 

canopy stages, as was the case in previous studies (Bahir et al., 2017). These findings 



167 

 

reaffirm the importance of fc as stated by the original model creators (Norman et al., 

1995). However, given that input image aggregation was not the best approach in this 

study (Fig. 4.6, 4.7), fc (and LAI) errors can be avoided through the use of output flux 

aggregation, preferably by first choosing a pixel resolution suitable for TSEB-PT 

modeling (> 1 m, Raupach and Finnegan, 1995). 

 UAV aggregation as compared with MAV and SAT imagery 

Next, the interest is in comparing one UAV aggregated technique (In-SA, Fig. 4.2)  

with those from MAV and SAT. This is first shown in Fig. 4.9, where UAV In-SA and 

MAV LE fluxes (at its resolution, Table 4.1) are plotted against eddy covariance LE 

fluxes. Fig. 4.9 shows that, across both sampled MAV altitudes, UAV Out-BC more 

accurately replicates eddy LE fluxes. For example, the MAPE values from UAV LE 

fluxes is 7.0 % at the 1.33 m pixel resolution. In contrast, the MAPE value from MAV 

was at 19.6 %. The scatterplot between UAV Out-BC and eddy LE fluxes are not 

outwardly biased (Fig. 4.9). Therefore, aggregated UAV LE fluxes, given the limited 

number of sampling points, are a more suitable approach towards accurately estimating 

ET than using MAV remote sensing.  

 

 

 



168 

 

 

Fig. 4.9 UAV (purple)/MAV (orange) modeled LE flux (y-axis) vs. eddy covariance 

LE flux (x-axis). Fluxes obtained around the resolution of the MAV survey at 1.37 

km altitude.  

 

 

 

Trends observed at the flux towers (Fig. 4.9) were also observed across the whole 

field (Fig. 4.10), whereby modeled LE fluxes were greater from MAV than UAV 

imagery. One reason why this trend might be occurring is because Tr decreases as the 

survey altitude increases from UAV (purple) to MAV (orange) surveys (Fig. 4.11). All 

things being equal, lower Tr signatures result in higher LE fluxes due to evaporative 

cooling mechanisms. Fig. 4.11 also shows that the UAV aggregated Tr encompasses a 

greater range than that encountered by the MAV Tr. In this situation, therefore, the MAV 

uncooled microbolometer may be unsuitable for accurately capturing or estimating LE, 

especially when UAV aggregated solutions offer particular promise. 
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Fig. 4.10 Line histograms from aggregated UAV LE fluxes (purple) and from non-

aggregated MAV LE fluxes (orange) across the entire field, on (a) June 16 and (b) 

July 28. Bold lines refer to the resolution closely resembling MAV surveys at 0.66 

km altitude, while dashed lines refer to MAV surveys at 1.37 km. 

 

 

 

 

 

 

   

Fig. 4.11 Whole-field Tr histograms from UAV (1.33 m, purple) MAV (1.3 m, 

orange) surveys on (a) June 16 and (b) July 28. 
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In addition to MAV, UAV aggregated LE fluxes via Out-SA were compared with 

SAT LE fluxes, both across the field and the eddy tower. Fig. 4.12 shows the spatial 

correlation between UAV LE (y-axis) and SAT LE (x-axis) fluxes on June 16, 2017, 

from the limited sample area (Fig. A1). Whole-field comparisons between UAV and 

SAT LE reveal large differences in modeled LE, with UAVs ranging from 315-506 W 

m-2, while SAT only range from 430-472 W m-2. Note that this data is coming from 

areas that do not fall under cloud shadow (Fig. A1). While the LE fluxes between 

platforms are not entirely comparable due to differences in thermal acquisition times 

(Table 4.1), Fig. 4.12 does indicate that UAV aggregated LE fluxes, at the same 

resolution, are more variable than SAT LE fluxes. Therefore, any errors induced in the 

aggregation process may be acceptable because it may capture intra-row variability and 

its patterns (Matese et al., 2015).   

 

 

 

 

Fig. 4.12 Pixel-wise comparisons between UAV (y-axis) and SAT (x-axis) LE fluxes 

on June 16, 2017. Note that UAV LE fluxes were aggregated using Out-BC up to 

the SAT resolution (i.e. 90 m). 
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Flux comparisons between UAV and SAT platforms at the tower were performed like 

that from Fig. 4.11, except here fluxes were extracted from single pixels encompassing 

eddy tower B (Fig. 4.1, A1). Given the one tower data point on June 16, the residual 

error between UAV and eddy flux LE was -52 W m-2, while between SAT and eddy flux 

it was 126 W m-2. Therefore, while the number of data points are very limited, there is 

initial evidence to suggest that aggregated UAV fluxes (via Out-SA) are more accurate 

than SAT approaches – such a study should aim to collect imagery beyond the single 

year of data presented here. 

 Discussion 

Given the rapid developments of UAV technology and the diversity of its 

applications, UAVs are expected to provide value to farmers. For example, UAVs can be 

used monitor agricultural and natural ecosystems and its state variables such as 

vegetation status, soil moisture content, and stream flow (Manfreda et al., 2018). 

However, certain applications, such as irrigation management, have not been performed 

with UAVs, as its information is often too detailed for practical applications (Jones and 

Sirault, 2014). Therefore, the purpose of this study was to evaluate ultra-high (cm-scale) 

UAV aggregated imagery within the context of ET modeling.  

Out of the parameters selected in this study, the largest aggregation errors were 

predominantly attributed to fc across both IOP dates (Fig. 4.6, 4.7). Here, it was assumed 

that fc could be used as a proxy for LAI, based on the methodology described in this 

paper (Section 4.2.5.1.). This study reinforces previous observations that, even with 
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high-resolution UAV imagery, the surface heterogeneity of the site is a major factor that 

controls remotely sensed ET aggregation properties (Moran et al., 1997). These findings 

agree with other TSEB aggregation studies such as Bahir et al. (2017), although their 

study was restricted to SAT imagery. fc affects several components of the TSEB-PT 

model, including: 1) aerodynamic roughness length (or zom), 2) zero-plane displacement 

height (or d), 3) shortwave canopy/soil net radiation (Sn,c/Sn,s), 4) longwave canopy/soil 

net radiation (Ln,c/Ln,s), 5) clumping index (Ω0), and 6) canopy layer boundary resistance 

(or rx) (Norman et al., 1995; Kustas and Norman, 1999).  

Because Rn-G aggregation errors were relatively low (Fig. 4.8), fc aggregation errors 

were most likely not manifested through the components of Rn (i.e. Sn,c/Sn,s, Ln,c/Ln,s). 

Other parameters of Rn that could potentially contribute to aggregation errors, such as 

shortwave albedo and emissivity, relative to other parameters (such as H), are minimal 

(Fig. 4.8a, 4.8b). Other papers have reported substantial error (greater than 50 %) due to 

differences in surface roughness alone (Moran et al., 1997). Therefore, it is likely that 

LAI aggregation errors are manifested in zom, d, Ω0, and rx. All of these parameters, 

either directly or indirectly, affect the estimation of sensible heat (H), and this could 

explain its relatively large pixel scale errors (Fig. 4.8e, 4.8f). rx, in particular, is used to 

calculate Hc (𝐻𝑐 = 𝜌𝑐𝑝
𝑇𝑐−𝑇𝑎𝑐

𝑟𝑥
) and is calculated from LAI based on formulations from 

Norman et al. (1995) and Kustas and Norman (1999). It would be interesting to analyze 

alternative rx models (Choudhury and Monteith, 1988; McNaughton and Van den Hurk 

1995) and their effects on aggregated LE within the TSEB modeling suite.  
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The topic of effects of aggregation also have relevance within crops other than 

cotton. For example, olive orchards present additional modeling challenges, as the latter 

exhibited vertically non-uniform leaf area distribution. This problem was addressed from 

a recent study by Yi et al. (2018), where different soil resistance (rs) schemes were 

modified and evaluated within orchard systems. However, their study designed their 

experiment around data collected from eddy flux towers and not from remotely sensed 

fluxes. Norman et al. (1995) suggest that, under partial canopy conditions, ra may also be 

several times smaller than other resistance terms beyond ra and rx, such rs. Future studies, 

therefore, might consider the potential influence of rx and rs on input aggregated 

schemes. Given that the output flux aggregation was a better approach here, however, 

the question may not be of utmost importance.  

Another significant finding in this study was that the fc aggregation properties (Fig. 

4.4), as well as the LE aggregation errors in general (Fig. 4.5), were most prominent 

during partial vegetation cover than full vegetation cover. Note that spatially variability 

in fc can occur due to changes in soil moisture, soil type, management practice etc. Such 

challenges could be addressed by collecting at a finer scale and then aggregating the flux 

output, via output aggregation as shown in this study. Furthermore, the statistical 

distribution of the native LE flux output should be addressed before aggregating LE 

fluxes. Output flux aggregation is expected to play a role in the validation of coarser 

scale flux products provided by satellites such as Landsat and Sentinel. The finding here 

that calculating LE or ET at the original resolution, rather than an aggregated resolution, 

has been found elsewhere, at least with satellite imagery (Bresnahan et al., 1997; Su et 
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al., 1999). The downside from these findings, however, is that greater resources (i.e. 

time, money, etc.) will need to be spent towards post-processing operations, such as 

GCP deployment, high-grade GPS collection, and orthomosaicking. UAVs also present 

LE challenges in terms of finer resolution amplifies sources of noise such as shadows, 

canopy glint, and blurriness from wind (Aboutalebi et al., 2018). 

Beyond the model parameterization, it is possible that fc errors are exaggerated due 

to UAV data collection process. Multispectral surveys were conducted at different times 

than the thermal survey, indicating potential differences in illumination conditions 

between multispectral and thermal surveys (Table 4.1). These temporal differences can 

result in image misregistration and, therefore, LE estimation errors. However, given that 

the model results were less than 10 % on these two dates (Table 4.5), and that UAVs 

were more accurate than MAVs (Fig. 4.9), this potential error does not appear to be 

substantial. Recent technological improvements have allowed for multispectral and 

thermal cameras to collect data at the same time, and preliminary results in literature 

(Maes et al., 2017) suggest this platform setup maybe useful for future UAV studies that 

aim to model LE via TSEB models. 

Aggregated UAV was more accurate in replicating eddy flux towers relative to MAV 

systems (Fig. 4.9). One hypothesis for this result may be because the differences in 

altitude between UAV and MAV. As the survey altitude gets further from the ground, 

outgoing longwave radiation can be attenuated through interaction with water vapor and 

gasses in the atmospheric column (Torres-Rua et al. 2017). While the thermal correction 

approach described here has been successful for UAV systems (Rouze et al., in 
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preparation), for MAV systems the approach is more uncertain due to relatively large 

pixel resolutions. It is hypothesized that there is more uncertainty in estimations of MAV 

Tr because the size of the cold object (i.e. polystyrene blocks), was at or slightly smaller 

than the MAV thermal pixel resolution. Therefore, an average of polystyrene predicted 

Tr could not be extracted with MAV thermal images. While other approaches that have 

converted brightness to surface temperature via atmospheric radiative transfer models 

(Torres-Rua et al., 2017), such approaches could not be applied towards the data here. 

Another reason why UAV may have outperformed the MAV sensor could be the thermal 

sensor. Both cameras in this study were uncooled microbolometers and are notorious for 

producing image blur while the sensor is in motion (Ribiero-Gomes et al., 2017). Given 

that the MAV was travelling much faster than the UAV (data not shown), the resulting 

blur could increasingly degrade the former’s image quality. Thermal image blur can be 

reduced using cooled thermal infrared sensors, but these systems cannot be currently 

equipped aboard UAV platforms, nor are they cost effective (Riberio-Gomes et al., 

2017). If funds are available, future studies might consider comparing UAV LE 

aggregation properties using output aggregation against that of MAV cooled sensors.   

In this study, the land use type was mainly uniform, as a uniform seed variety was 

growing under a uniformly watered landscape. It would be interesting to evaluate UAV 

LE aggregation properties under production fields with multiple land use types. Kustas 

et al. (2004), for example, found that LE discrimination between corn and soybean fields 

was diminished beyond a pixel resolution of 960 m. The effects of these studies will be 

determined by the nature of the objects themselves, as well as their spatial pattern. 
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Erhasdi et al. (2013), for example, found that high pixel-scale relative errors were linked 

with areas that show highly contrasting surface roughness properties such as irrigation 

canals and production field boundaries. If there is interest beyond the single field scale, 

the approach described in this study could be used as a means to validate platform 

sensors, such as satellites. While this study was limited to Landsat 8, future satellite 

sensors such as Landsat 9 are in the preparation phases. Validation could also be applied 

for fused satellite products, such as Sentinel-2 and Sentinel-3 as proposed by Guzinski 

and Nieto et al. (2019). 

 Conclusions 

The purpose of this study was to evaluate various ET aggregation schemes, both 

against itself and against pre-existing platforms using energy balance modeling. In 2017, 

UAV multispectral and thermal imagery, along with field data, were collected over 

various cotton growth stages. These data sources were combined to model instantaneous 

latent heat flux using a Priestley-Taylor Two-Source Energy Balance (TSEB-PT) model. 

Several UAV aggregation schemes were tested, including the initial mode of aggregation 

(i.e. input image and output flux), as well as the averaging scheme (i.e. simple 

aggregation vs. Box-Cox). Results indicate that output flux aggregation with Box-Cox 

averaging (termed Out-BC) produced the lowest relative pixel-scale errors and lowest 

absolute prediction errors (relative to eddy covariance towers). Out-BC was also more 

accurate in reproducing latent heat fluxes from manned and satellite imagery, relative to 

eddy towers. Therefore, UAV ET estimates, despite its data complexity, can be reliably 

aggregated to coarser pixel resolutions. 
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5. CONCLUSIONS 

 

UAVs are a newly formed technology that offers promise within the realm of 

agriculture. This is because UAVs offers a wide array of advantages over satellite and 

manned aircraft, including image detail, flexible data collection, and can even be used in 

places that would otherwise be difficult to access (such as ponded fields). Because of 

this advantages, hype has surrounded UAVs, and will continue to do so in the future. As 

a result, the developments in the technology have outpaced developments in the 

research, leaving its potential users with an unclear direction regarding its intended uses. 

The work presented here, therefore, aims to evaluate the suitability of UAV imagery (i.e. 

thermal, near-infrared, visible) as decision-making tools for precisions agriculture or 

site-specific management. The two main areas of focus in this regard relate to 

management zone delineation and ET mapping. While it is currently more common to 

use UAVs operationally towards crop scouting (because it is simpler), UAVs can offer 

the greatest economic and environmental benefits through integration with management 

operations, such as input placement. However, such uses have not been widely adopoted 

because they are expensive, and studies have not demonstrated a return on investment. 

While we did not have the resources to conduct a cost benefit analysis, other topics here 

(i.e. management zones and ET mapping) were selected to demonstrate that such 

operations are worth exploring. 

The purpose of Chapter 2 was to evaluate UAV imagery in terms of modeling MZ 

traits (e.g. height, seed-cotton yield), as well as management zone delineation, relative to 
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previously approaches such as soil ECa. This comparative approach was performed 

before, during, and at the end of, a single growing season. Regression results indicated 

that both multispectral imagery (via NDVI) and thermal imagery (Tr) were significant 

predictors of in-season yield indicators such as canopy height. In addition, their 

respective MZs showed significant separation during flowering and boll filling, 

respectively. An RGB sensor could also be used to create MZs at the beginning and end 

of a season. The paper then addressed how UAV imagery compared with ECa 

information in terms of modeling seed cotton yield. While the ECa survey was also able 

to separate the field into two distinct zones, AICc results indicate that it was 

outperformed by UAV imagery, even with the high amounts of soil variability 

encountered within the field. Furthermore, the addition of UAV imagery via open boll 

imagery significantly affected the previous ECa-yield model, suggesting the former may 

complement ECa if desired. 

The purpose of Chapter 3 was to evaluate fluxes estimated from various energy 

balance models from a UAV throughout a single cotton growing season. The energy 

balance models evaluated included various non-contextual (TSEB) and contextual 

(DATTUTDUT) models. These models were applied at various aggregated pixel 

resolutions (1.05 m and 10.05 m) and evaluated against eddy covariance data across two 

soil types using apparent electrical conductivity data. Non-contextual (i.e. TSEB) models 

were more accurate in estimating all energy balance components relative to contextual 

models (i.e. DATTUTDUT). At 1.05 m, TSEB models behaved similarly in estimating 

LE relative to eddy flux towers. At 10.05 m, however, TSEB-PT and TSEB-DTD were 
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the most accurate models, with the latter producing lower biases presumably due to 

reduction of Tr biases. With respect to soil type, LE model performance within the high 

clay content soil (~30 %) was slightly better than that from the higher clay content soil 

(~ 47%), both at 1.05 and 10.05 m. A comparison of spatial LE patterns across the entire 

field showed that low and high ECa zones behaved differently with respect to the 

individual energy balance models. These results were consistent both at cotton flowering 

and boll production. Across both soil ECa zones, DATTUTDUT LE fluxes were most 

dissimilar with TSEB during cotton flowering. 

The purpose of Chapter 4 was to evaluate various ET aggregation schemes, both 

against itself and against pre-existing platforms using energy balance modeling. In 2017, 

UAV multispectral and thermal imagery, along with field data, were collected over 

various cotton growth stages. These data sources were combined to model instantaneous 

latent heat flux using a Priestley-Taylor Two-Source Energy Balance (TSEB-PT) model. 

Several UAV aggregation schemes were tested, including the initial mode of aggregation 

(i.e. input image and output flux), as well as the averaging scheme (i.e. simple 

aggregation vs. Box-Cox). Results indicate that output flux aggregation with Box-Cox 

averaging (termed Out-BC) produced the lowest relative pixel-scale errors and lowest 

absolute prediction errors (relative to eddy covariance towers). Out-BC was also more 

accurate in reproducing latent heat fluxes from manned and satellite imagery, relative to 

eddy towers. Therefore, UAV ET estimates, despite its data complexity, can be reliably 

aggregated to coarser pixel resolutions. 
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Future studies that are interested in researching UAVs should aim to conduct an 

experimental design over multiple growing seasons. While such an approach was 

attempted in the year 2016, quality UAV data could not be collected. Furthermore, the 

multispectral and thermal sensors used in 2016 were different from the ones described in 

this dissertation. Thus, results would not have been entirely comparable, even if good 

UAV data were obtained. Continuity in results are a important component of 

demonstrating value to potential users, such as farmers and other land managers.  If 

resources are available, future studies should conduct a cost benefit analysis to address 

the monetary value provided by UAVs. Such value could be assessed in terms of input 

savings and/or output (i.e. yield) increases based on the results presented in this paper. 

Such resources were not available to the Texas A&M Experimental Farm during the 

field campaigns. Such endeavors will need to have access to precision agriculture 

equipment that can spatially modify inputs based on prescriptions via UAVs. To do this, 

image processing will need to occur in near real time, so that recommendations can be 

implemented without too much lag time. Such a task, while monumentous, can be aided 

by designing an automated processing chain for standardizing purposes. 

 



APPENDIX A 

PRESENTATION OF SUPPLEMENTARY FIGURES 

 

 

Fig. A1. Landsat 8 near-infrared (NIR) image (30 m pixel resolution) over study 

area (red outline) on June 16, 2017. The two yellow circles refer to the eddy 

covariance flux towers (Tower A and Tower B) shown in Figure 1. Note that the 

upper flux tower (Tower A, Fig. 1) is located within cloud shadows from a scattered 

cloud located east of the field. Therefore, all SAT analysis was focused over pixels 

that do not contain clouds and/or cloud shadows. 
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Fig. A2 Boundary of MAV thermal images collected at different altitudes, as well as 

the field boundary (same as that from Fig. A1). 
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APPENDIX B 

ESTIMATION OF LANDSAT TR 

 

In this study, Tr was estimated at each ith pixel from an IOP date using the single-

channel method by Jimenez-Munoz et al. (2014). The main equation used to estimate Tr 

is as follows: 

 𝑇𝑟,𝑖 = 𝛾[𝜀𝑖
−1(𝛹1𝐿𝑠𝑒𝑛𝑠𝑜𝑟,𝑖 + 𝛹2) + 𝛹3] + 𝛿 (Eq. B1) 

With 

 
𝛾𝑖 =

𝑇𝑠𝑒𝑛𝑠𝑜𝑟,𝑖
2

𝑏𝛾𝐿𝑠𝑒𝑛𝑠𝑜𝑟,𝑖
 

(Eq. B2) 

Where Lsensor,i is the at-sensor radiance (W m-2 sr-1 μm-1), Tsensor,i is the at-sensor 

brightness temperature (K), and bγ is a constant (1324).  

Lsensor,i (used in Eq. A1-A2) is found by: 

 𝐿𝑠𝑒𝑛𝑠𝑜𝑟,𝑖 = 𝑀𝐿𝑄𝑐𝑎𝑙,𝑖 + 𝐴𝐿 (Eq. B3) 

Where ML and AL are constants (3.342*10-4 and 0.1, respectively) provided in the 

Landsat 8 metadata, and Qcal,i are the digital number (DN) values extracted from the 

level 1 product.  

Tsensor,i or TOA brightness temperature, is found as follows: 

 
𝑇𝑠𝑒𝑛𝑠𝑜𝑟,𝑖 =

𝐾2

ln (
𝐾1

𝐿𝑠𝑒𝑛𝑠𝑜𝑟,𝑖
+ 1)

 
(Eq. B4) 

Where K1 and K2 are constants (774.8853 and 1321.0789, respectively) from the 

Landsat 8 metadata, and Lsensor is from Equation A3. 
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εi (Eq. B1) is the land surface emissivity which was calculated according to Equation 

25 from Yu et al. (2014): 

 𝑎𝑖𝜌𝑟𝑒𝑑 + 𝑏𝑖 𝑁𝐷𝑉𝐼𝑖 < 0.2  

𝜀𝑖 = 𝜀𝑣,𝑖𝑃𝑣,𝑖 + 𝜀𝑠,𝑖(1 − 𝑃𝑣,𝑖) + 𝐶𝑖 0.2 ≤ 𝑁𝐷𝑉𝐼𝑖 ≤ 0.5 (Eq. B5) 

 𝜀𝑣,𝑖 + 𝐶𝑖 𝑁𝐷𝑉𝐼𝑖 > 0.5  

Where NDVI is defined as (Rouse et al., 1973): 

 𝑁𝐷𝑉𝐼𝑖 =
𝜌𝑖,𝑁𝐼𝑅 − 𝜌𝑖,𝑅𝑒𝑑

𝜌𝑖,𝑁𝐼𝑅 + 𝜌𝑖,𝑅𝑒𝑑
 

(Eq. B6) 

Where ρi,NIR and ρi,Red are the surface reflectance values from the near-infrared and 

red bands, respectively using the LEDAPS system; ai and bi are the linear coefficients at 

each ith pixel, εv,i and εs,i are the vegetation and soil emissivity values, Pv,i is the 

vegetation fraction, and Ci is the surface roughness. εv,i and εs,i are defined as 0.9863 and 

0.9668 by Yu et al. (2014) using a MODIS UCSB (University of California, Santa 

Barbara) emissivity library. Pv,i is defined as (Yu et al., 2014): 

 
𝑃𝑣,𝑖 = [

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼 + 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
]2 

(Eq. B7) 

NDVImin is calculated as a field average of NDVI pixels collected from a cloud-free 

Landsat scene collected around cotton squaring, where soils are the dominant component 

in the scene (May 15, 2017). NDVImax is calculated as a field average of NDVI pixels 

collected from a different cloud-free Landsat scene collected around high vegetative 

growth (July 2, 2017).  

Ci is calculated as (Yu et al., 2014): 
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 𝐶𝑖 = (1 − 𝜀𝑠,𝑖)𝜀𝑣,𝑖𝐹
′(1 − 𝑃𝑣) (Eq. B8) 

Where F’ is a geometrical factor usually equal to 0.55 (Sanchez et al., 2008). 

The atmospheric functions (i.e. Ψ1, Ψ2, Ψ3, Eq. A1) are found by solving the matrix  

 

[
𝛹1

𝛹2

𝛹3

] = [

𝑐11

𝑐21

𝑐31

𝑐12

𝑐22

𝑐32

𝑐13

𝑐23

𝑐33

] [
𝑤2

𝑤
1

] 

(Eq. B9) 

Where the cij coefficients are given as (Jimenez-Munoz et al., 2014):  

 
[

𝑐11

𝑐21

𝑐31

𝑐12

𝑐22

𝑐32

𝑐13

𝑐23

𝑐33

] = [
0.0419

−0.3833
0.00918

0.02916
−1.50294
1.36072

1.01523
0.20324

−0.27514
] 

(Eq. B10) 

W refers to the total vapor water content (in g cm-2) estimated using local 

measurements of near-surface air humidity and density (ref. Equations 14-15 from Wang 

et al., 2015). Once w is known, Equations B9-B10 are used to find Ψ1, Ψ2, Ψ3 using 

matrix algebra. 

δ (Eq. B1) uses Tsensor,i (Eq. B4) and bγ (Eq. B2) as follows: 

 
𝛿 = 𝑇𝑠𝑒𝑛𝑠𝑜𝑟,𝑖 −

𝑇𝑠𝑒𝑛𝑠𝑜𝑟,𝑖
2

𝑏𝛾
 

(Eq. B11) 

γ (Eq. B2), εi (Eq. B5), Ψ1, Ψ2, Ψ3 (Eq. A9-A10), Lsensor,i (Eq. B3), and δ (Eq. B11) 

are used to find Tr at each ith pixel (Eq. B1). 
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APPENDIX C 

BOX-COX AVERAGING 

 

This section describes the Box-Cox transformation approach used in this study. The 

assumption of the Box-Cox method is that the variable(s) of interest (i.e. fc, LAI, Tr) are 

distributed in a non-normal manner. The extent to which these variables behave in a non-

normal fashion will depend on many variables such, as growth stage, soil moisture etc. 

(Moran et al., 1997). The purpose of this approach, therefore, is to achieve data 

normality, so that aggregation is less likely to be affected by sub pixel heterogeneity.  

The Box Cox transformation aims to find an “optimal” power value (or λ) with which to 

transform the data (in this case UAV native pixel resolutions) (Box and Cox, 1964). The 

transformation of the variables (𝑖. 𝑒. 𝑦(𝜆)) has the following form, given the original y 

dataset: 

 

{𝑦(𝜆) =
𝑦𝜆 − 1

𝜆
𝑙𝑜𝑔 𝑦

 , 𝑖𝑓 𝜆1 ≠ 0

, 𝑖𝑓 𝜆1 = 0
 

(Eq. C1) 

λ or the optimal power is found using the Maximum Likelihood or log-likelihood 

method. This is first expressed mathematically as follows (μ=Xβ): 

 

𝑓(𝑦(𝜆)) =
𝑒𝑥𝑝(−

1
2𝜎2 (𝑦(𝜆) − 𝑋𝛽)′(𝑦(𝜆) − 𝑋𝛽)

(2𝜋𝜎2)
𝑛
2

 

(Eq. C2) 

Eq. B2 is then transformed into a proability distribution function (or pdf) by 

introducing the Jacobian (∏ 𝑦𝑖
𝜆−1𝑛

𝑖=1 ): 
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𝑓(𝑦(𝜆)) =
𝑒𝑥𝑝(−

1
2𝜎2 (𝑦(𝜆) − 𝑋𝛽)′(𝑦(𝜆) − 𝑋𝛽)

(2𝜋𝜎2)
𝑛
2

∏ 𝑦𝑖
𝜆−1

𝑛

𝑖=1

 

(Eq. C3) 

Which then results in the log likelihood function: 

 ln 𝐿(𝛽, 𝜎2, 𝜆|𝑦)

= −
1

2𝜎2
(𝑧 − 𝑋𝛽)′(𝑧 − 𝑋𝛽) −

𝑛

2
ln(2𝜋𝜎2) + (𝜆

− 1) ∑ ln (𝑦𝑖)

𝑛

𝑖=1

 

(Eq. C4) 

Optimal β, σ2 and λ (the latter which is of interest) values are found by maximizing 

the log likelihood equation or Eq. B4. The λ has the largest log-likelihood value across a 

range of λ values (usually -5 to 5) is considered the transformation power necessary for 

the dataset Beyond this point, it is worth pointing the reader to the full computation for 

Box-Cox elsewhere (Hyde, 1999), as the mathematical details are too cumbersome for 

this research article.  

Once λ was found, the UAV variables were transformed using this value. Next, 

aggregation was performed on the transformed dataset. Finally, these values were 

backtransformed to retrieve the values in their original units. The procedure described 

here was performed using several built-in functions and custom functions developed 

within the R programming language, including powerTransform() for the Box-Cox 

transformation (Fox, 2019) and raster() for image aggregation (Hijmans et al., 2019). 
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APPENDIX C 

FOOTPRINTS 

Appendix C.1. Tower locations, processing and results 

Two eddy covariance flux towers were installed within the field (Fig. 1). The clay 

content at the Towers A and B are 296 and 466 g kg-1 respectively. Details of the sensors 

and general data collection are previously provided by Rouze et al. (in preparation). 

High frequency raw data collected by the eddy covariance towers were then post-

processed within EddyPro software version 6.2.1 (LI-COR) to quality check raw data 

and remove potential outliers. After EddyPro processing, turbulent fluxes were corrected 

by an additional 10 %, based on recent findings of underestimates in vertical velocity 

using a non-orthogonal CSAT-3 anemometer (Kochendorfer et al., 2012; Frank et al., 

2013). The average energy balance closure for each tower before and after correction is 

shown in Table B.1. The average closure across all dates and towers after the correction 

methods above was 0.90. Across all dates and towers, energy closure after correction 

was at least above 80 %, and this falls in line with closures reported from previous 

studies (Chavez et al., 2005; Xia et al., 2016). 
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Table C.1. Closure ratio (i.e. 
𝑳𝑬+𝑯

𝑹𝒏−𝑮
) before and after applying corrections (i.e. LE * 

1.1, H * 1.1) to EddyPro fluxes. July 18 fluxes at the high ECa site are omitted here, 

as the anemometer within the high ECa zone was “looking at” a poorly vegetated 

part of the field. 

Date Time 

Associated 

Platform 

Closure Ratio - 

unclosed 

Closure Ratio - 

closed with 1.1 

High 

ECa 

Low ECa 

High 

ECa 

Low 

ECa 

June 16, 

2017 

11:57 SAT 0.91 

1.00 

1.00 

1.10 

June 16, 

2017 

13:00-

13:15 

UAV 0.86 

0.85 

0.94 0.93 

June 16, 

2017 

13:21-

13:47 MAV 0.89 0.93 0.98 1.02 

June 16, 

2017 

13:58-

14:10 MAV 0.91 0.86 1.00 0.95 

July 28 

2017 

14:46-

15:00 UAV 0.95 1.02 1.05 1.12 

July 28 

2017 

14:45-

15:09 MAV 0.90 0.96 0.98 1.06 

July 28 

2017 

15:17-

15:31 MAV 0.93 1.15 1.02 1.26 
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Appendix C.2. Footprints 

The footprint of the fluxes measured by the eddy covariance tower describes the 

source area of the fluxes depending on parameters such as wind direction, wind speed, 

and atmospheric stability (Burba and Anderson, 2010). In order to effectively compare 

the UAV and eddy tower fluxes, footprints need to be generated in two-dimensional 

coordinate space. In this study, footprints were calculated using the footprint models by 

Hsieh et al. (2000) and Detto et al. (2006). UAV predicted fluxes were averaged within 

each footprint using the source weighted scheme proposed by Li et al. (2008): 

 
𝑈𝐴𝑉 𝐹𝑙𝑢𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

∑ 𝑓(𝑥𝑖, 𝑦𝑖, 𝑧𝑚)𝐹𝐿𝑈𝑋(𝑥𝑖𝑦𝑖)𝑛
𝑖=1

∑ 𝑓(𝑥𝑖 , 𝑦𝑖, 𝑧𝑚)𝑛
1

, 
(Eq. C1) 

where i is a given pixel with location xi, yi, given the flux tower height zm. Note that each 

ith pixel has an associated weight (i.e. f(xi,yi,zm)) based on its corresponding location to 

the anemometer. 
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