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 ABSTRACT 

Over the past few decades, there have been increasing concerns over the impacts of 

agricultural practices on global carbon and water dynamics. Understanding these 

dynamics in agroecosystems will help efforts to reduce carbon emissions and improve 

water use efficiency in agriculture. Carbon and water vapor exchange from a continuous 

conventionally-tilled cotton (Gossypium hirsutum) field and a continuous 

conventionally-tilled corn (Zea mays) field in College Station, Texas were evaluated 

using two eddy covariance (EC) systems that were installed in early 2017.  

Satellite imagery data from PlanetScope was incorporated to develop and validate gross 

primary productivity (GPP) models for both crops. Data from 2017 was used to develop 

the models and data from 2018 and 2019 was used to validate the models. The Decision 

Support System for Agrotechnology Transfer (DSSAT) software system was used to 

model crop growth and evapotranspiration (ET). In cotton, there were substantial 

differences in carbon fluxes between the years, which were driven by differences in 

meteorological conditions. A wet post-harvest season in 2018 spurred the growth of 

weeds, primarily volunteer cotton, morning glory (Ipomoea cordatoriloba), and Texas 

panicum (Uruchloa texana), resulting in substantial off-season carbon uptake in 2018 

(374.2 g C m-2 in 2018 compared to 100.1 g C m-2 in 2017).  The SAVI-based model 

was able to simulate GPP in corn production successfully; with a standard error for the 

model’s validation of 1.74 g C m-2 in 2018 and 1.50 g C m-2 in 2019. The cotton GPP 

models performed adequately during the 2018 validation with an average standard error 

of 1.78 g C m-2; however, there was significantly more error in the 2019 validation effort 
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(2.36 g C m-2). The DSSAT system was able to estimate ET in dryland corn; however, 

the models had a tendency to underestimate ET, which was more pronounced in the 

Priestly-Taylor models. The average nRMSE was 0.36 mm for the Priestly-Taylor 

models and 0.35 mm for the FAO-56 models. There was mixed success in the ability of 

the DSSAT system to simulate ET in cotton. The model agreement with observed ET 

was low for 2019, with an average r2 of 0.14.  
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INTRODUCTION  

 

1.1. About Carbon and Water Fluxes 

The overarching goal of this dissertation is to improve our understanding of 

carbon and water fluxes in agroecosystems in East-Central Texas in order to improve the 

sustainability of cropping systems. Agroecosystems are unique from natural ecosystems 

due to the inputs and management that they receive (Foley et al., 2005; Tscharntke et al., 

2005; Tian et al., 2010; Han et al., 2014). An agroecosystem is an agricultural system 

viewed from the perspective of ecosystem sciences. An agroecosystem includes the crop 

or livestock being produced plus the soil, water, microorganisms, weeds, insects, and the 

local environment (Tscharntke et al., 2005; Bennett et al., 2009). 

The processes that occur in native ecosystems occur in agroecosystems and these 

processes are vital for the ability of the land to support agricultural production. 

Ecosystem services, like nutrient cycling, control of pests, and water infiltration and 

storage, are essential for agricultural production (Altieri, 1999; Foley et al., 2005; 

Tscharntke et al., 2005). Developing an understanding of agricultural lands as 

ecosystems can allow for better management practices that preserve ecosystem services 

and limit potential environmental harms associated with agricultural production. This 

can extend to a better ability to understand and manage carbon and water vapor fluxes, 

two extremely important components of ecosystem processes (Tscharntke et al., 2005; 

Bennett et al., 2009; Tian et al., 2010; Han et al., 2014). 
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Net ecosystem CO2 exchange (NEE) and evapotranspiration (ET) are major 

components of ecosystem processes and global carbon and hydrologic cycles. Measuring 

and estimating NEE and ET can improve agricultural productivity and our ability to 

mitigate and adapt to climate change (Yuan et al., 2010; Mu et al., 2011).  The 

development of the eddy covariance technique (EC) has allowed for large-scale 

measurements of NEE and ET, thus it has become widely used in ecosystem sciences. 

However, EC is less common agricultural sciences (Suyker et al., 2004a; Verma et al., 

2005; Jans et al., 2010; Vitale et al., 2016).  Eddy covariance calculates fluxes by taking 

the covariance of the wind velocity and the concentration of the gas of interest (i.e. CO2) 

as follows: 

𝐶𝑂2 𝐹𝑙𝑢𝑥 = 𝜌𝑎 ∗ 𝑤′ ∗ 𝑠′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Where ρa is the air density, w’ is the deviation of the vertical wind speed, and s’ 

is the deviation of the concentration of the gas of interest (Burba, 2013). The same 

applies to water vapor or any other gas of interest, such as methane. It is crucial to take 

these measurements from agroecosystems to further our understanding of the impact of 

climate change and management activities on agriculture. A greater understanding of 

NEE and ET from agriculture can also improve the ability of modeling efforts to predict 

changes and make management recommendations.  

Evapotranspiration (ET) is the combined loss of water through soil evaporation 

and plant transpiration. This process is an important component of the hydrologic cycle 

and energy budget. Approximately 24% of incoming solar radiation is dissipated as 

latent heat flux (LE), which is the energy that is used to evaporate water. Over terrestrial 
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areas, LE is the energy equivalent of ET, where LE can be converted to ET given the 

known energetics of water evaporation (Lindsey, 2009; L’Ecuyer et al., 2015). 

Evapotranspiration is calculated from LE as follows: 

𝐸𝑇 =  
𝐿𝐸 ∗ 0.0018

2.5
 

Land management practices alter both the energy dynamics and the amount of 

water available for evaporation, thus altering ET compared to natural ecosystems (Li et 

al., 2008; Tian et al., 2010).  Replacing deep-rooted forest vegetation with access to 

large amounts of groundwater with shallow-rooted crops that only access the surface soil 

reduces the amount of available water for ET. Applying irrigation water from aquifers in 

arid regions decreases the amount of water available for ET. Tillage and other soil 

management practices alter surface characteristics that in turn alters how energy is 

distributed (Oki and Shinjiro, 2006; Rost et al., 2008). For all these reasons, it is 

important to study agricultural ET to understand how our management practices affect 

this crucial natural process.  

Directly measuring ET in agroecosystems can be applied to crop modeling 

efforts by allowing models to be validated with in-situ measurements. Modeling can 

allow for estimation of ET in areas where EC is not possible or practical (i.e. over areas 

too large or too small for EC, on slopes, and where EC equipment is too costly). 

Modeling can also predict how ET patterns will respond to hypothetical climate change 

scenarios or changes in crop management. However, having models backed up by actual 

ET measurements is essential for validating the accuracy of the models. Many 

agricultural ET models are backed with phenological (crop growth) data alone, 
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indicating a need for increased ET measurement efforts in agricultural settings (Collatz 

et al., 1991).  

Similarly, to ET, agroecosystem carbon dynamics differ from their natural 

ecosystem counterparts (Lal, 2004; King et al., 2007; Kaplan et al., 2010). Net 

ecosystem exchange (NEE) is the sum of all positive and negative carbon fluxes from an 

ecosystem and represents the net balance of the carbon cycle. The most common sign 

convention is for positive numbers to indicate fluxes away from the ecosystem and for 

negative numbers to indicate fluxes toward the ecosystem. Negative NEE, thus 

represents net carbon sequestration and positive NEE represents net carbon emission. 

Gross primary productivity (GPP) is the total amount of carbon captured during 

photosynthesis in an ecosystem. Ecosystem respiration, Reco, is the total amount of 

carbon released into the atmosphere by cellular respiration by all organisms in the 

ecosystem (plants, animals, and microbes). NEE thus is the sum of GPP and Reco. 

𝑁𝐸𝐸 = 𝐺𝑃𝑃 +  𝑅𝑒𝑐𝑜 

As with ET, a variety of management practices can alter NEE in agroecosystems 

compared to their natural counterparts (Stoate et al., 2009). Possibly the largest impact 

on agricultural carbon dynamics is the introduction of tillage practices. Tillage 

incorporates plant residue, reduces the surface area of the residue, and aerates the soil, 

all of which increases the rate of Reco (Murty et al., 2002; West and Post, 2002; Lal, 

2004; Smith et al., 2014).  In many cases, the increase in Reco from tillage is not fully 

compensated by GPP and the ecosystem becomes a net carbon source as stored soil 

carbon is being used for microbial metabolism at a rate that exceeds carbon inputs. A 
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meta-analysis by Murty et al (2002) found that soil organic carbon (SOC) stocks had 

decreased by 22% (after correction for bulk density changes) over ten years following 

the conversion of native ecosystems to an agricultural system. This loss exacerbated in 

agricultural systems with residue harvest for fuel or animal feed, and/or intensive tillage 

practices. Similarly, Guo and Gifford (2002) found that conversion of forest or pasture to 

cropland resulted in a loss of 50% of topsoil (60 cm) SOC over 50 years.  Most of this 

lost carbon was emitted to the atmosphere as CO2, contributing to climate change. 

Despite this, better management practices can allow croplands to become net carbon 

sinks. Some improved management practices, like no-till, function by reducing Reco, 

whereas others, such as cover cropping, function by increasing GPP  (West and Post, 

2002; Lal, 2004). Measuring carbon fluxes using EC can allow for the quantification of a 

net carbon balance from a cropping system. It can also be used to assist in predicting 

changes in soil carbon stocks due to management practices.  

 

1.2.  About The Region 

In East-Central Texas, most of the agricultural land was converted from native 

ecosystems in the past century. Agricultural survey data shows that cropland in the 

South-Central USA (which includes this region of Texas) increased from 8.6% of total 

land area in 1860 to 30% in 2003 (Chen et al., 2006b). This change in land management 

has resulted in a loss of soil carbon and an increase in soil CO2 emissions (Chen et al., 

2006b; Woodbury et al., 2006). This decline in soil organic matter can reduce crop 

productivity and increase soil vulnerability to climate change (Brejda, 2000; Bronson et 
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al., 2004). The Southern US is an agriculturally important region and the study of 

ecosystem processes in agricultural systems in this region has been limited. Improving 

our knowledge of carbon dynamics in the Southern US is an important goal.  

This study takes place in Burleson County, Texas, near College Station, Texas. 

The native ecosystem of this region is the Post-Oak Savannah. This is a sub-tropical 

mixed ecosystem consisting of post oak woodlands and tallgrass meadows (Texas Parks 

and Wildlife, 2019). The majority of land in this region is currently in pasture for 

grazing livestock. The most common row crops in Burleson County are corn (Zea mays), 

cotton (Gossypium hirsutum), soy (Glycine max), and sorghum (Sorghum bicolor) 

(USDA-NASS, 2017). This study will focus on corn and cotton, as they are two of the 

most common crops grown in this region.  

Corn is a C4 monocot with a determinate vegetative growth pattern. After 

planting corn plants undergo rapid vegetative growth until around stage V6. At stage V6 

reproductive growth typically begins as ear and tassel buds form. The tassel (male 

flower) matures before the ear (female flower). Once tasseling occurs, vegetative growth 

ceases and all of the plant’s biomass accumulation is then allocated to reproductive 

growth. After the ear reaches maturity, the plant senesces (Bell, 2017). In Burleson 

County, corn is typically planted in early March and harvested in late July or early 

August. Corn is the 2nd largest crop in Burleson County by acreage, with 8,618 acres 

planted in 2017 (USDA-NASS, 2017).  

 Cotton is a C3 dicot with an indeterminate vegetative growth pattern. After 

planting, cotton grows very slowly, putting most of its energy into developing a root 
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system. Once the seedling is established with a sufficient root system, it begins 

vegetative growth. Pure vegetative growth continues until the plant accumulates 550 

growing degree-days (GDD) or around the sixth vegetative node. At this point, the plant 

begins producing squares, which are the buds that will become flowers. Full bloom 

typically occurs after 950 GDD. After pollination, the bolls form and begin to develop. 

Throughout flowering and boll development, vegetative growth continues. Bolls mature 

850 GDD after flowering (Ritchie et al., 2007; Main, 2012). Once the majority of the 

bolls are mature, the crop will typically be sprayed with a defoliant to halt vegetative 

growth and allow for an easier harvest. The defoliant is typically an herbicide that kills 

all photosynthetic structures. In Burleson County, cotton is typically planted in early to 

mid-April, defoliated in late August to mid-September and then harvested two to three 

weeks after defoliation. Cotton is the largest row crop in Burleson County by acreage 

and income, with 9,262 acres planted and worth $6,358,000 in sales (USDA-NASS, 

2017).  

1.3.  Crop Modeling Systems 

Crop growth and the environmental conditions associated with it can be modeled 

with crop modeling software systems. These systems can combine multiple individual 

mathematical models (i.e. growing degree-days, water infiltration, potential ET) into one 

system and compute them all simultaneously to simulate crop growth. Many of the 

modern crop modeling software platforms got their start in the 1980s when the USDA 

encouraged the development of such models for improved yield forecasting. Since then, 

crop modeling systems have expanded to a wide range of uses and crops (Jones et al., 
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2017). This dissertation will utilize the Decision Support System for Agrotechnology 

Transfer (DSSAT) system to model corn and cotton. DSSAT was developed in the 

1980s with the support of the USDA. DSSAT uses a modular approach that combines 

multiple modeling systems into one software platform. In this dissertation, we will use 

the CERES model within DSSAT for corn, and the CROPGRO model for cotton. 

CERES is a model that works with grass crops, such as corn, wheat, and rice. 

CROPGRO is a broadleaf model that was originally developed for soybean but has since 

been adapted for other broadleaf crops, including cotton (Hoogenboom et al., 2003; 

Jones et al., 2003, 2017).  

1.4. Remote Sensing 

The development of multispectral areal and satellite images has allowed plant 

scientists to take advantage of the unique spectral properties of plants. Chlorophyll in 

leaf tissue strongly absorbs visible light, particularly red, and reflects near-infrared 

(Asrar et al., 1984; Daughtry, 2000; Verlag et al., 2003). As such, it is possible to 

estimate plant productivity by comparing near-infrared reflectance to other wavelength 

bands of light. Vegetation indices (VI’s) are indices that are typically a ratio of near-

infrared to another band of light, often red. These VI’s are commonly used in 

agricultural and ecosystem sciences for a wide range of purposes particularly yield 

forecasting (Gonzalez-Dugo et al., 2009; Peng et al., 2011; Shafian et al., 2018).  

In 1977, Monteith developed a GPP model based on light use efficiency. In this 

model, GPP is the product of light use efficiency, photosynthetically active radiation, 

and the fraction of absorbed available radiation (Monteith, 1977). This model has been 
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commonly used with remote sensing data by replacing the LUE term with a VI. This 

method has been applied to native ecosystems and crops, particularly corn, wheat, and 

soy (Gonzalez-Dugo et al., 2009; Yan et al., 2009; Sakamoto et al., 2011; Gitelson, 

2019). However, studies in cotton are limited compared to other crops. For that reason, it 

is important to include more studies involving cotton (Alganci et al., 2014; Ballester et 

al., 2019).  

1.5. Overarching Goals 

The overarching goal of this dissertation is to improve the understanding of carbon 

and water fluxes in corn and cotton production in East-Central Texas. This goal will be 

achieved through several sub-objectives.  

1. To monitor carbon and water vapor fluxes in corn and cotton production fields 

using the eddy covariance method. Fluxes were monitored for three growing 

seasons and two full off-seasons. Fluxes in the cotton field are described and 

discussed in Chapter One: Carbon Exchange of a Dryland Cotton Field and its 

Relationship with PlanetScope Remote Sensing Data. 

2. To model gross primary productivity in corn and cotton production using high-

resolution satellite imagery. PlanetScope satellite data was used to develop and 

validate GPP models that were compared to observed fluxes from the eddy 

covariance system. The results of the modeling effort in corn are shown in 

Chapter Two: Modeling gross primary production of dryland corn using 

PlanetScope satellite imagery and eddy covariance data. The results of the same 

modeling effort in cotton are shown in Chapter Three: A comparison of modeled 
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primary production using PlanetScope satellite imagery to eddy covariance data 

in East-Central Texas cotton production. 

3. To model evapotranspiration in corn and cotton production using the Decision 

Support System for Agrotechnology Transfer (DSSAT) crop modeling software 

platform. The DSSAT system was used to model evapotranspiration and the 

results were statistically compared to those from the eddy covariance flux-tower. 

The results of the modeling effort in corn are discussed in Chapter Four: 

Comparison of simulated ET using the DSSAT-CERES-MAIZE modeling 

system to measured ET using the eddy covariance method for a corn crop in East 

Texas. The results of the modeling efforts in cotton are discussed in Chapter 

Five: Comparison of simulated ET using DSSAT-CROPGRO-Cotton and 

measured ET using the eddy covariance method. 

These goals will be addressed in the following chapters.  
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2. CARBON EXCHANGE OF A DRYLAND COTTON FIELD AND ITS 

RELATIONSHIP WITH PLANETSCOPE REMOTE SENSING DATA 

 

2.1. Introduction 

Understanding the dynamics of carbon sequestration and release in agricultural 

landscapes is pivotal as modern production practices have contributed substantially to 

rising greenhouse gas (GHG) emissions around the globe.  The magnitude of carbon 

sequestration or release at a site depends upon a number of factors, including vegetation 

type, tillage practices, and meteorological conditions. The type of vegetation and its net 

primary production (NPP) can determine the amount of atmospheric carbon that can be 

converted into biomass carbon (Cao and Woodward, 1998; Prince et al., 2019). For 

perennial plant communities, such as forests, large amounts of carbon can be temporarily 

sequestered in standing plant biomass. This is not effective for agronomic cropping 

systems because the lifespan of the plants is short and significant amounts of 

aboveground biomass are removed during harvest. The remaining crop biomass is 

usually incorporated into the soil via tillage. Once in the soil, environmental factors such 

as temperature and soil moisture can have a large impact on the rates of decay and 

transformation of biomass carbon through regulation of microbial respiration (Davidson 

and Janssens, 2006; Valentini et al., 2019; Zapata et al., 2017). Tillage practices and soil 

disturbance increases the rate of soil respiration, which, when coupled with biomass 

removal via harvest leads to the decline in soil carbon stocks.  



 

40 

 

Measuring carbon fluxes from agricultural fields and estimating the seasonal and 

annual carbon budgets can provide important clues regarding how management practices 

are affecting crop development, carbon uptake, and release. After harvest, many 

producers in the southern U.S. states leave their fields fallow, leading to the growth of 

weeds, which can influence the off-season carbon dynamics. Collins et al (1999) studied 

carbon inputs from all sources, including weeds, at eight long-term continuous corn sites 

in the Great Lakes, central, and the south-central U.S. and found that weeds accounted 

for 20% of soil carbon inputs (Collins et al., 1999). Ibell et al (2010) found that complete 

weed removal (via high-frequency herbicide applications) in a pine plantation reduced 

soil carbon accumulation and negatively impacted nitrogen cycling.  Further, eddy 

covariance (EC) measurement of a pepperweed (Lepidium latifolium) infestation in 

grass pasture found that weeds were a significant source of carbon flux (Sonnentag et al., 

2011). Given that weeds can be an important part of carbon flux in crop fields, off-

season measurements should be included for fully understanding the carbon dynamics of 

agricultural lands.   

Eddy covariance is a commonly used micrometeorological method for measuring 

gas fluxes, particularly CO2, water vapor, and methane. Eddy covariance has been 

widely used around the world for studying ecosystem carbon and water dynamics 

(Baldocchi, 2003; Dolman et al., 2006; Saigusa et al., 2002; Yu et al., 2006; Rajan et al., 

2010). However, EC measurements from agricultural lands in the southern U.S. states 

are rare.  Net ecosystem exchange (NEE) measured using this method is the balance 

between CO2 uptake via photosynthesis (gross primary production or GPP) and CO2 
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release via ecosystem respiration (Reco). Both heterotrophic soil respiration (i.e. soil 

microorganisms) and autotrophic respiration (i.e. plant roots) are components of Reco. 

Since daily NEE represents the balance between carbon uptake and release, it can 

effectively be used to study the source-sink dynamics of an ecosystem and its variation 

across both short-term and long-term time scales (Rajan et al., 2013; Wharton et al., 

2012).  Although this technique is one of the most accurate and direct methods for 

measuring turbulent fluxes, EC instruments are expensive, often limiting the number of 

locations that can be monitored. This method also assumes that the area within the 

instrument fetch is uniform and atmospheric conditions are stable, which requires large 

areas with uniform vegetation and minimal to no slope (Baldocchi, 2003; Burba, 2013).  

The use of remote sensing technology can help alleviate some of the limitations 

of the eddy covariance method for estimating NEE and GPP. Combining EC with 

remote sensing can allow carbon dynamics to be upscaled from a single field to multiple 

fields in the landscape. Actively photosynthesizing plants strongly absorb red and blue 

lights and reflect near-infrared light, which can be measured using satellite, air, and 

ground-based remote sensing instruments (Asrar et al., 1984; Baret and Guyot, 1991; 

Yoder and Pettigrew-Crosby, 1995). This assessment of photosynthetic activity can help 

with estimating carbon fluxes in areas where EC measurements are impractical and over 

areas too large for EC measurements (Frankenberg et al., 2011; Yuan et al., 2010; Zhou 

et al., 2017).  Advances in imaging and satellite technology have made high-resolution 

satellite data more readily available from both public and private sources.  The recently 

launched PlanetScope satellite system is a network of 120 high-resolution Dove satellites 
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(spatial resolution of 3 meters) owned and managed by Planet Labs Inc. PlanetScope 

satellites take daily multi-spectral images from a 400 km sun-synchronous orbit (Planet 

Team, 2017). The use of high-resolution satellite data has the potential to expand the 

applications of remote sensing in agriculture. Currently, the majority of the large-scale 

agricultural remote sensing applications use low and medium-resolution satellite data, 

such as LANDSAT (30-meter) and MODIS (250-meter) (Chen et al., 2018; Cui et al., 

2014; Padilla et al., 2012). 

In this study, we investigated the effect of weeds and off-season fluxes on the 

annual carbon budget of conventionally managed cotton (Gossypium hirsutum), a major 

crop in South Central Texas. We examined the environmental and phenological driving 

factors of daily, seasonal and annual carbon fluxes. We also investigated the correlation 

between vegetation indices estimated from high-resolution PlanetScope satellite data and 

carbon fluxes measured using eddy covariance for broader scale applications. 

2.2. Materials and Methods 

2.2.1. Site Information 

The study was conducted in a 12 ha conventionally managed dryland continuous 

cotton field located at the Texas A&M Agrilife Research Farm in Burleson County, 

Texas (30°32’46.2” N, 96°25’19.7” W), which is shown in Figure 2. An eddy covariance 

flux tower was established in this field on 28 February 2017 (DOY 59). Meteorological 

data prior to tower establishment was obtained from a weather station located at the 

Texas A&M Agrilife Research Farm (Conlee, 2019). Cotton (cultivar Phytogen 

333WRF) was planted on 6 April (DOY 96) in 2017 and 18 April (DOY 108) in 2018 
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following conventional tillage in raised seedbeds. Nitrogen fertilizer was applied after 

planting at a rate of 95 kg ha-1 of N as urea ammonium nitrate (32-0-0). Glyphosate was 

applied for weed control after fertilization. The average plant population was 6.24 plants 

m-2 in 2017 and 6.22 plants m-2 in 2018. Cotton was harvested on 11 September in 2017 

(DOY 254) and 17 September in 2018 (DOY 260) following defoliation. In cotton 

production, the plants are chemically defoliated to allow for easier harvest. The cotton 

crop was sprayed with Ginstar (Bayer CropScience, Monheim, Germany), a mixture of 

Thidiazuron and Diuron, which blocked photosynthesis. The cotton crop was defoliated 

on Aug 21 (DOY 233) in both years.  

The dominant soil types in the field are the Weswood silt loam (Udifluventic 

Haplustepts, 38% clay in the surface horizon) and the Ships clay (Chromic Halpludert, 

42% clay in the surface horizon), both of which are high in shrink-swell clay minerals. 

The climate of the location is humid subtropical (Köppen Cfa) with an average (30-year) 

annual temperature of 20.6°C and an average annual precipitation of 1018 mm (Zapata 

et al., 2019). Monthly 30-year averages for precipitation and temperature are shown in 

Figure 1. Summer months (June-September) regularly have temperatures above 35°C 

with a mild winter having only occasional freezing events. Precipitation follows a 

bimodal pattern with the highest precipitation in the months of May, June, and October 

(National Oceanic and Atmospheric Administration, 2011). Prominent weeds in this 

location include henbit (Lamium amplexicaule), morning glory (Ipomoea 

cordatotriloba), Palmer amaranth (Amaranthus palmeri), and grasses like Texas 

panicum (Uruchloa texana). 
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Figure 1: Monthly temperature and precipitation averages for Burleson County, 

Texas. 

Data was obtained from the National Oceanic and Atmospheric Administration's current 

30-year average (1981 – 210) from their weather station approximately 11-km from the 

study location.  Precipitation has a bimodal average pattern with higher precipitation in 

fall and spring and lower precipitation in summer and winter. While average low 

temperatures do not drop below freezing, there are occasional freezing events, typically 

from November to February. 
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Figure 2: Image of the study site and location. 

The image on the left is a Google Earth image of the study location with the green line 

highlighting the cotton field and the red triangle showing the location of the eddy 

covariance tower within the field. The blue line is the Brazos River. The upper right 

image is the location of the site within Texas, indicated by the red star. The image on the 

lower right is an image of the eddy covariance instrumentation (Google Earth, 2018).  

 

2.2.2. Instrumentation 

Carbon dioxide flux measurements were made continuously using an eddy 

covariance system at high frequency (10 Hz). The EC system consisted of a C-SAT3 

Sonic Anemometer (Campbell Scientific, Logan, UT, USA) and an LI-7500 infrared gas 

analyzer (LI-COR, Lincoln, NE, USA). Both instruments were attached to a tripod and 

the height of the tripod mast was adjusted periodically to maintain the instruments at 2 m 
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above the plant canopy and thus maintain a constant fetch with a 200-meter radius. The 

instruments were installed facing south, in the direction of the prevailing winds.  The gas 

analyzer was calibrated annually as recommended by the manufacturer and the internal 

chemicals were replaced annually.   

Additional meteorological data was collected at the same location.  Air 

temperature (Tair) and relative humidity (RH) were collected with a temperature and 

relative humidity probe (Model HMP155A; Vaisala, Vantaa, Finland). Precipitation was 

collected using a tipping bucket rain gauge (Model TE525; Texas Electronics, Dallas, 

TX, USA). Photosynthetically active radiation (PAR) was measured using a quantum 

sensor (Model LI-190R; LI-COR, Lincoln, NE, USA). Solar irradiance (Rs) was 

measured using a pyranometer (Model LI-200R; LI-COR, Lincoln, NE, USA) and net 

radiation (Rn) was measured using a net radiometer (Model NR-LITE2; Kipp and 

Zonen, Delft, The Netherlands). There was a gap in the Rn data during the late growing 

season of 2017 due to an instrument malfunction. Soil volumetric water content (VWC) 

and soil temperature (Tsoil) was collected using seven soil moisture sensors (Model 

CS655; Campbell Scientific, Logan, UT, USA). Of the seven soil moisture sensors, three 

were placed horizontally at a depth of 4 cm; two were placed vertically between 10 and 

20 cm, and the remaining two were placed vertically between 20 and 30 cm in the soil 

profile. All meteorological and soil instruments were connected to a Campbell Scientific 

CR3000 datalogger. Data was collected every 2 seconds and averaged at half-hourly 

intervals. 
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2.2.3. Eddy Covariance Data Processing 

The sonic anemometer and gas analyzer were connected to LI-COR’s SmartFlux 

system, which used EddyPro software (Version 6.2.2, LI-COR, Lincoln, NE, USA) to 

process 10 Hz data into 30-minute fluxes.  EddyPro performs a number of corrections 

before computing NEE fluxes. This includes coordinate rotation, frequency response 

corrections, corrections for air density fluctuations and sensor separation delays (Burba, 

2013; Carmelita et al., 2014; Finnigan et al., 2003; LI-COR, 2015; Paw et al., 2000; Qin 

et al., 2016; Webb et al., 1980). SmartFlux saved 30-minute flux calculations as .csv 

files onto a USB drive along with raw data (unprocessed) data files. The sign convention 

used was one where positive numbers indicated fluxes away from the canopy (net 

emission) and negative numbers indicated fluxes toward the canopy (net sequestration). 

The EddyPro software flagged NEE data for quality based on internal turbulence tests. 

High-quality data was marked with a ‘0’, moderate quality with a ‘1’ and low quality 

with a ‘2’ (Burba, 2013; LI-COR, 2017).  Gap filling was used to fill in low-quality data 

(flag ‘2’) and data lost during rain events, calibration, power issues, and scheduled 

maintenance (i.e. instrument calibration) as well as manually removed low-quality data. 

Gap filling was done using the Max Plank Institute for Biogeochemistry’s online R-

based program using the default settings (Fritz et al., 2018). This program fills data gaps 

based on an algorithm that uses meteorological data to calculate missing data. If full 

meteorological data (temperature, humidity, and radiation) is available, then the missing 

value will be filled using a data point with similar conditions (temperature, humidity, 
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solar radiation) within a 14-day window of the missing point. If meteorological data is 

partial or missing, the program will use linear interpolation based on time of day to gap-

fill, although this was uncommon (Fritz et al., 2018; Reichstein et al., 2005). The same 

gap-filling program also separates NEE fluxes into its component fluxes, assimilatory 

flux (GPP) and respiratory flux (Reco).  In the absence of photosynthesis assimilation of 

CO2, nighttime NEE data represents ecosystem respiration (Reco). A reference 

temperature-based method based on nighttime Reco is used to estimate daytime Reco 

fluxes. The GPP flux is then calculated by subtracting Reco from NEE (GPP = NEE – 

Reco). The estimates of GPP and Reco are essential for understanding the processes that 

contribute to NEE (Aubinet et al., 2012; Reichstein et al., 2005). 

2.2.4. Phenology 

Phenology data was collected at biweekly intervals during the growing season. 

Plant height was measured at six locations in the field, with three from each soil type; 

locations were selected to form a circle around the EC tower. Fifteen plants were 

randomly selected at each location. Height was determined from the soil surface to the 

top of the apical bud. Leaf area and biomass were determined using destructive sampling 

(15 plants) at the same locations used for height measurements. Flowers, bolls, leaves, 

and stems were manually separated for subsequent measurements. Leaf area was 

measured using an LI-3100 Leaf Area Meter (LI-COR, Lincoln, NE, USA) immediately 

after destructive harvest. All plant samples were then placed in brown paper bags and 

dried in an oven at 40℃ until constant weight. Samples were then weighed and dry 

weight was recorded. 
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2.2.5. Vegetation Indices 

Cloud-free multispectral PlanetScope satellite imagery was downloaded during 

the growing season. PlanetScope data has a spatial resolution of 3 m and a 16-bit 

radiometric resolution. Red and near-infrared (NIR) band values were extracted for the 

study site using ENVI image analysis software (Version 5.3; Harris Geospatial; 

Broomfield, Colorado, USA). An atmospheric correction was performed manually using 

the metadata file. Normalized Difference Vegetation Index (NDVI) was then calculated 

using the corrected band values, NDVI was selected, as it is very commonly used by 

most agricultural producers. NDV was calculated using the following equation.   

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

Daily NDVI was calculated by interpolating linearly between measurements. 

2.2.6. Statistical Analysis  

Regression analysis of GPP was performed using Sigmaplot (Version 14.0). GPP 

was statistically compared to PAR, precipitation, Tair, and NDVI using Sigmaplot’s 

curve-fit capabilities. 

2.3. Results and Discussion 

2.3.1. Meteorological Conditions 

Substantial differences in growing season (planting to defoliation; April – 

August) precipitation was recorded between 2017 and 2018 (Figure 3A).  On average, 

approximately 40% of annual precipitation is generally received during the growing 

season. In 2017, after cotton defoliation, 590 mm of rainfall was received during a short 
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span of 4 days (DOY 239-243) from Hurricane Harvey.  In 2017, about 30% of the 

annual average was received during the growing season (510 mm). However, in the 2018 

growing season, only 15% of annual precipitation (184 mm) was received.  While the 

growing season of 2018 was mostly dry, the post-harvest season was unusually wet. 

Nearly 68% of the annual precipitation for 2018 fell after cotton defoliation (848 mm). 

This heavy precipitation in September and October prevented the usual post-harvest 

tillage and spurred the growth of weeds in the field. 

Precipitation variability between growing seasons influenced soil VWC, vapor 

pressure deficit (VPD), and Tsoil (Figures 3A, 3B, and 3D).  Average soil VWC at 4 cm 

during the 2018 growing season (0.19 ±  0.01) was lower than the average soil moisture 

in the 2017 growing season (0.35 ± 0.01), a similar trend was seen with the other depths.  

Drier conditions in the 2018 growing season resulted in high VPD compared to 2017.  

Although precipitation was well below average, 2018 was slightly cooler (19.66 ± 

0.44℃) than 2017 (21.92 ± 0.37℃) due to lower temperatures in the winter months 

(January - February).  However, the average growing season Tair in 2018 (26.73 ± 

0.31℃) was higher than the growing season temperature in 2017 (25.77 ± 0.32℃).  

Average annual and seasonal Tsoil at 4 cm followed similar trends. The average annual 

Tsoil was 23.63 ± 0.35℃ in 2017 and 21.10 ± 0.44℃ in 2018. Similar to Tair, the average 

growing season Tsoil in 2017 (27.12 ± 0.30℃) was slightly lower compared to 2018 

(28.55 ± 0.30℃).  During both growing seasons, there was no significant difference in 

incoming PAR.  However, PAR during the post-harvest period was reduced in 2018 

compared to 2017 due to the prevalence of cloudy conditions. There was no significant 
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difference in Rn during the growing season between 2017 and 2018. However, as with 

PAR, autumn (September - November), Rn was lower in 2018 compared to 2017. 

 

 

Figure 3: Auxiliary meteorological data for both 2017 and 2018 are presented in 

this figure. 

Black lines refer to 2017 and red lines to 2018. Shaded areas highlight the growing 

season (planting to defoliation). Image “A” is daily precipitation and soil water content. 
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Image “B” is weekly average VPD. Images “C” and “D” are weekly averages for Tair and 

Tsoil, respectively. Images “E” and “F” are weekly averages for Rn and PAR, 

respectively. Bars represent standard error of the mean. 

 

2.3.2. Crop Phenological Development 

In 2018, cotton plants developed faster in the early growing season likely due to 

dry and warm conditions. During the early growing season of 2018 (DOY 108 - 194), 

stored soil water and the limited rainfall was enough for plant establishment and growth. 

During July and August (boll filling stage), the dry conditions were most at their intense 

and caused reduced growth and wilting. The maximum growing season green LAI 

(Figure 4A) occurred earlier in 2018 than in 2017. The maximum LAI in 2017 was 2.55 

(DOY 203) compared to in 2018 was 2.79 (DOY 194). While the 2018 crop reached 

maximum LAI earlier, LAI quickly declined due to dry conditions in the latter part of 

the growing season. Immediately prior to defoliation, LAI was 1.52 in 2017 and 0.66 in 

2018. Drought conditions have been found to reduce leaf area by first a reduction of leaf 

expansion and second by the termination of established leaves (Pettigrew, 2004; 

Bozorov et al., 2018). 

Plant height throughout the growing season was lower in 2018 compared to 2017 

(Figure 4C).  Mature plant height in 2017 was 90 cm (DOY 203) compared to 87 cm 

(DOY 194) in 2018. Dry conditions prior to squaring have been previously found to 

reduce mature plant height (Snowden et al., 2014).  Total biomass was greater in 2017 

compared to 2018 (Figure 4B). Lower growing season precipitation likely contributed to 
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the observed differences in biomass. The cotton lint yield was 2120.54  129.7 kg ha-1 in 

2017 and was 1081.97  60.63 kg ha-1 in 2018. Reduced photosynthesis from dry 

conditions in the boll-filling stage of 2018 led to a significantly lower yield, which has 

been observed in other studies (Snowden et al., 2014; Wu et al., 2018). Studies of the 

effects of drought in cotton have found that earlier maturing verities (like Phytogen 

333WRF) are more prone to yield loss from drought than later maturing varieties due to 

a lack of a growing window to recover from drought stress (Pace et al., 1999; Bednarz 

and Nichols, 2005). 
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Figure 4: Cotton Phenological Development 
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Cotton plant phenological development during the 2017 (black lines) and 2018 (red 

lines) growing seasons is presented in this figure. Image “A” represents the leaf area 

index (LAI). Image “B” represents aboveground biomass. Image “C” represents plant 

height. Error bars associated with each point refer to the standard error of the mean. 

Sampling times were roughly biweekly with some variability due to weather conditions 

and ability to access the location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

56 

 

2.3.3. Carbon Fluxes 

 

 

Figure 5: Daily Carbon Fluxes 

Daily carbon flux for cotton for 2017 (above) and 2018 (below), the section highlighted 

in blue is the growing season (planting to harvest). A second defoliation was needed in 

2017 due to regreening after Harvey. Freezing conditions occurred in December of 2017, 

but as carbon fluxes were already low, they did not result in a sudden change of fluxes.  
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Carbon fluxes (NEE, GPP, and Reco) for 2017 and 2018 are shown in Figure 5. 

Precipitation variability between the years had a significant effect on determining carbon 

fluxes.  In both years, maximum carbon uptake occurred in July, coinciding with the late 

flowering and boll filling stage. Net ecosystem CO2 exchange was negative for most 

days during both growing seasons. During 2017, the highest daily net uptake was -6.38 g 

C m-2, which occurred on July 6 (DOY 187). This was during the flowering and early 

boll-filling period of the growing season.  There was little net uptake outside of the 

growing season in 2017. During 2018, the highest daily net uptake was -6.55 g C m-2, 

which occurred on July 15 (DOY 196) during the boll-filling period, which is similar to 

what was observed in 2017. There was an additional period of net uptake from late-

September to early-November due to weeds (primarily volunteer cotton, morning glories 

[Ipomoea spp], and Texas Panicum, [Uruchloa texana]) with daily net uptake as high as 

4.1 g C m-2 (DOY 287). The weed-related carbon fluxes were greatly reduced in mid-

November when the nighttime temperature fell below freezing. After the frost, carbon 

fluxes remained low for the remainder of 2018. Weed carbon uptake can be a significant 

contributor to carbon dynamics in agricultural settings, contributing as much as 25% of 

annual carbon uptake (Collins et al., 1999; Ibell et al., 2010).  

There were a few days in the growing season where daily NEE was positive. 

Positive NEE values were common after rain events, especially when the soil was 

previously dry as the moisture enhances microbial activity (Zapata et al., 2017). The 

highest daily net emission in 2017 was 7.05 g C m-2, which occurred on October 1 (DOY 

283), which was shortly after harvest and residue shredding. There was another period of 
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high net emissions after Hurricane Harvey in 2017 with daily emissions around 5.0 g C 

m-2. The highest daily net emission in 2018 was 7.52 g C m-2, which occurred on 

September 5 (DOY 248). This was during the short window between defoliation and 

harvest and was the most prominent period of net emission during 2018.  In dry soils, 

microbial activity is limited which in turn slows down carbon mineralization. When the 

soil becomes wet, it stimulates microbial activity and increases the rate of organic matter 

decomposition leading to emissions of CO2  (Zapata et al., 2017, 2019). Since NEE is 

the balance of plant uptake and soil respiration (microbial and root), even when 

photosynthesis is high, enhanced soil respiration due to rainfall can still cause daily NEE 

to be positive (carbon source).  

In 2017, Reco was above 5 g C m-2 during most of the mid- and late- growing 

season.   Following the extreme rain event associated with Hurricane Harvey (590 mm), 

Reco increased to 12 g C m-2 for a brief period. There was a slight increase in Reco 

following post-harvest tillage in 2017 (DOY 263), but it declined quickly afterward and 

remained low throughout the remainder of the 2017 post-harvest season, until planting in 

2018.  In 2018, Reco was considerably higher during the growing season with many days 

above 10 g C m-2. During the post-harvest season of 2018, Reco remained between 4 and 

5 g C m-2 for most days, although there were a few spikes due to weather events. On 

Nov 13 2018, (DOY 317) nighttime temperatures dropped below freezing and Reco 

declined rapidly and remained around 1 g C m-2 for the rest of 2018.  

Cumulative NEE, GPP, and Reco by growing period are shown in Figure 6. 

Growing season cumulative NEE and GPP were both higher in 2017 than in 2018. In 
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Figure 6, growth periods 1 – 6 show different phases in the growth cycle of cotton. The 

first period shows the carbon fluxes from planting to seedling emergence with carbon 

uptake (if any) coming from weeds, Reco exceeded GPP. The carbon balance in this 

period was a net emission of 19.6 g C m-2 in 2017 and 5.5 g C m-2 in 2018. The planting 

period of 2018 had weed growth (Predominantly henbit; Lamium amplexicaule) 

resulting in greater GPP, 1.4 g C m-2 in 2017 compared to 16.9 g C m-2 in 2018. The 

second period is the time between emergence and the development of the first square 

(cotton flower bud). During the beginning of this period, the cotton plant initially grows 

slowly, putting most of its energy into developing a root system, and then begins to grow 

quickly once established. During this period, GPP and Reco are approximately equivalent 

to each other, resulting in a slight net emission of 1.6 g C m-2 in 2017 and 5.0 g C m-2 in 

2018. The third period is the time between the first square and the first flower. During 

this time, rapid vegetative growth continues, but a small fraction of photosynthetic 

output is allocated to reproduction. There is a net uptake as the cotton plants accumulate 

more biomass and GPP exceeds Reco. The fourth period is between flowering and the 

open boll phase (maturity). During this period, vegetative growth slows and the rate of 

photosynthesis remains high as the majority of the captured carbon is allocated to the 

growing reproductive structures. There is a net uptake as photosynthesis exceeds 

respiration; this period has the greatest cumulative GPP, with a fixation of 319.2 g C m-2 

in 2017 and 469.3 in 2018. The fifth period is between open boll and defoliation. During 

this period, photosynthesis begins to decline as the plants begin to senesce. Once again, 

GPP and Reco are similar to each other. During this phase, there was a net uptake of 25.4 
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g C m-2 in 2017 and a net uptake of 2.9 g C m-2 in 2018. The sixth period is between 

defoliation and harvest, at defoliation, all photosynthetic structures (leaves) are 

terminated with the application of the defoliant, an herbicide. As a result, GPP is greatly 

reduced while Reco is largely unchanged, making the balance a net release of CO2 to the 

atmosphere. Between defoliation and harvest, there was a net emission of 63.7 g C m-2 in 

2017 and 75.5 g C m-2 in 2018.  

Cumulative growing season, off-season and annual fluxes are presented as 

periods 7, 8 and 9 in Figure 6, respectively. The cumulative growing season GPP was 

947.1 g C m-2 in 2017 and 882.7 g C m-2 in 2018. There was a net carbon uptake during 

both growing seasons; however, the net uptake was greater in 2017 as cumulative Reco 

was similar between the two years and 2017 had a greater GPP.  During the off-season 

(non-crop period), there was a net carbon emission in both years, however, the 

magnitude was different; the net emission during the off-season as 260.11 g C m-2 in 

2017 and 48.79 g C m-2 in 2018. It is at this time where the differences between the two 

years were the greatest.  In 2018, the post-harvest ecosystem respiration exceeded that of 

2017 by 62.74 g C m-2; however, the photosynthesis rate in the 2018 post-harvest season 

was considerably greater (GPP of  374.2 g C m-2 in 2018 compared to 100.1 g C m-2 in 

2017) and more than compensated for the increased respiration. The annual carbon 

balance at the site shows a slight carbon sequestration of 5.1 g C m-2 in 2018 compared 

to a net emission of 175.4 g C m-2 in 2017, which is a striking difference in the span of 

two years.  While there is little information on fluxes with cotton specifically, studies of 

other crop covers have found that differences in year-to-year weather patterns can 
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strongly affect the carbon balance and cause some years to be carbon sinks and other 

years to be carbon sources (Kessavalou et al., 1998; Meyers, 2001; Wharton et al., 

2012). The prevalence of post-harvest weeds due to less tillage effectively acted as a 

cover crop, reducing the negative carbon impacts of fallow (Altieri, 1999; Kessavalou et 

al., 1998; Lal, 2004). Though, seed rain and seedbank replenishment from the post-

harvest weed recruits is a valid concern (Bagavathiannan and Norsworthy, 2012). 
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Figure 6: Cumulative Carbon Fluxes by Growth Period 

NEE, GPP, and Reco by the growth period are shown above. The blue line divides the 

growth stage fluxes from the annual fluxes.  Growth period 1 is planting to seedling 

emergence, period 2 is emergence to the first square, period 3 is squaring to the first 

flower, period 4 is flowering to open boll, period 5 is open boll to defoliation, period 6 is 

defoliation to harvest, period 7 is total growing season, period 8 is off-season, and period 
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9 is full year. Negative numbers of NEE indicate net carbon uptake while positive 

numbers indicate net carbon release. 

 

2.3.4. Effect of Cotton Lint Removal on Net Carbon Balance 

Cotton lint is the largest natural fiber source in the textile industry.  As cotton is a 

fiber crop, unlike bioenergy or food crops, it is not immediately consumed (by humans, 

animals, or as fuel) and could be thought of as a means of temporary sequestration. 

While the cotton seeds are typically used quickly via animal consumption or oil 

production, the fiber can remain for years. Well-cared-for and high-quality cotton fabrics 

can last for ten years or more. Most fabrics, however typically last between 2 and 5 years 

(Laitala and Klepp, 2015). Given the approximation that biomass is 50% carbon, the 

carbon removed as lint fiber was 1060.27 g C m-2 in 2017 and 540.99 g C m-2 in 2018. 

While this could be considered temporary carbon sequestration, overtime biomass 

removal can lead to depletion of soil carbon stocks, as carbon lost to microbial 

respiration is not replaced with new plant matter (Lal, 2004; Tubiello et al., 2014). A 

meta-analysis of 134 studies of change in soil carbon stocks in cropland found that soil 

carbon declines between 40% and 60% following the conversion of forest or pasture to 

cropland, mostly due to reduced inputs from biomass removal and increased respiration 

due to tillage practices (Guo and Gifford, 2002). An 8-year eddy covariance study of a 

hayfield in Pennsylvania found that once emissions from biomass removal via harvest 

was included, the field was a net carbon source (Skinner, 2007). The practice of tillage 

and other field operations increases soil respiration, which when coupled reduced 
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biomass inputs due to harvest, leads to a net emission of carbon from the site. This is 

particularly a problem for mono-cropping systems with heavy tillage (Chen et al., 

2006b; Kaplan et al., 2010; Tubiello et al., 2014).  

2.3.5. Meteorological Influences of GPP 

Significant non-linear relationships were found between GPP and PAR, Tair, and 

precipitation.  The relationship between weekly average GPP and Tair is shown in Figure 

7a. The relationship between GPP and Tair was not different between the seasons and 

was non-linear. The best fit for the data with Sigmaplot was a 2-parameter power 

equation (r2 = 0.55). As the temperature increased, GPP increased gradually until around 

25C. A substantial increase in GPP was observed between 25-30oC.  As the optimal 

temperature for cotton growth is between 26C and 30C, this increase pattern is 

expected as cotton grows very slowly at lower temperatures and then dramatically grows 

faster when temperature conditions are optimal (Suyker et al., 2004b; Boman and 

Lemon, 2005; Contay et al., 2012).  

The relationship between weekly average daily GPP and daily PAR is shown in 

Figure 7b. The relationship between GPP and PAR was non-linear, the best fit for the 

data was found using Sigmaplot was a 2-parameter power model (r2 = 0.32). There was 

no significant difference in the relationship between the two seasons. Most studies 

comparing GPP to PAR found a linear relationship (Suyker et al., 2004b; Sakamoto et 

al., 2011).  However, in this study, we found a curvilinear relationship. This could be 

because of the unique growth pattern of cotton as these studies were in other crops, such 

as maize (Zea mays). During the early establishment period, aboveground biomass 
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development is slow as cotton is establishing its root system, even if PAR is high. 

Additionally, daily PAR is often still high at defoliation when the crop is chemically 

terminated and photosynthesis is halted.  

The relationship between cumulative GPP and cumulative precipitation is shown 

in Figure 8.  There was a significant difference in the relationship between the two 

seasons, with the correlation in 2017 being weaker than that of 2018. The low 

precipitation in 2018 likely contributed to the stronger correlation between GPP and 

precipitation. The overall curve for both years was non-linear, the best-fit using 

Sigmaplot was the polynomial quadratic model for both years (r2 = 0.89 in 2017 and r2 = 

0.98 in 2018). The correlation between GPP and precipitation was stronger than any 

other meteorological variable. This relationship highlights the importance of 

precipitation in determining GPP in dryland systems.  Garbulsky et al (2010) analyzed 

GPP and meteorological conditions from 35 sites in the Ameriflux and CarboEurope 

networks and found a similar trend with GPP and precipitation (Garbulsky et al., 2010; 

Xiao et al., 2013).  
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Figure 7: Correlation between GPP and Meteorological Conditions 

The figure above shows the correlation between GPP and meteorological conditions. 

Image “A” shows weekly average daily GPP plotted against weekly average air 
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temperature. Image “B” shows weekly average daily GPP plotted against daily PAR. 

The images contain data for both years combined, as there was no significant difference 

between the years.  

 

 

Figure 8: Correlation Between GPP and Precipitation 

The correlation between cumulative GPP and cumulative precipitation is shown above. 

The curve fit was significantly different between the two growing seasons. The 2017 

season is shown with black circles and a blue line. The 2018 season is shown with red 

triangles and a black line. 
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Relationship between PlanetScope NDVI and Carbon Fluxes 

2.3.6. Relationship between PlanetScope NDVI and Carbon Fluxes 

A time-series comparison of NDVI and GPP is shown in Figure 9.  During 2017, 

NDVI increased between May and July, while carbon uptake was also increasing. 

Maximum NDVI in 2017 was 0.53 and occurred on DOY 189, following this date, 

NDVI remained around 0.50 until defoliation. NDVI decreased to 0.28 (DOY 255) 

following defoliation (DOY 231) and the senesce of leaves. Maximum NDVI in 2018 

was 0.51 and occurred on DOY 199; following this date, NDVI quickly declined as dry 

conditions led to plant stress. Prior to defoliation in 2018 (DOY 230), NDVI was 0.39, 

and then following defoliation NDVI was 0.33 (DOY 243). During 2018, NDVI 

remained low during May, as did carbon uptake. In June and early July, carbon uptake 

increased rapidly as did NDVI. While NDVI reached the same peak in 2018 as it did in 

2017, it did not remain high for as long. In late-July and August, as drought conditions 

prevailed, carbon uptake and NDVI greatly decreased. By defoliation in 2018, NDVI 

was already greatly reduced and a post-defoliation decline in NDVI was not as 

prominent.  

Linear regression between NDVI and GPP is shown in Figure 10, which was 

performed using Sigmaplot’s linear model. The correlation between GPP and NDVI was 

statistically significant in both years (p < 0.001). The r2 value was higher in 2017 (r2 = 

0.78) compared to 2018 (r2 = 0.72). The correlation between NDVI and GPP was 

weakest at high NDVI values, indicated by the greater spread in the data points. This 

effect was more notably prominent in 2018 compared to 2017. Satellite data has a lower 
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temporal resolution than EC data, and this might be partly responsible for the trend 

observed here. Thus, short-term fluxes associated with weather events are often not 

captured in satellite data. NDVI has additionally been found to correlate well with leaf 

area and the fraction of absorbed PAR, both of which are also important predictors of 

GPP (Asrar et al., 1984; Baret and Guyot, 1991). 

 

 

Figure 9: GPP and NDVI Time-series 

The time-series of GPP and NDVI during the growing seasons is shown in the image 

above. Image “A” refers to 2017. Image “B” refers to 2018. 
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Figure 10: Linear Regression Between GPP and NDVI 

Linear regression analysis of daily GPP and daily NDVI is shown in the image above. 

Image “A” refers to 2017. Image “B” refers to 2018.  

 

2.4. Conclusions 

In this study of carbon dynamics in cotton production, there were substantial 

differences in the carbon balance between the two years (2017 and 2018). Differences in 

precipitation between the two years were a major driving factor in the year-to-year 

variation in carbon balance. Precipitation during the growing season of 2017 was typical 

allowing for adequate crop growth. The carbon balance during the growing season was a 

net uptake of 947.1 g C m-2.  There was a brief period of high respiration following 

Hurricane Harvey, which occurred shortly after defoliation. Following harvest in 2017, 

respiration exceeded precipitation. The off-season net respiration exceeded the growing 

season’s net photosynthesis, resulting in a net carbon emission of 175.4 g C m-2 for the 

entire year. Precipitation during the growing season of 2018 was unusually low, 
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resulting in reduced growing season carbon uptake compared to 2017 (882.7 g C m-2 vs 

947.1 g C m-2). While the growing season was dry, unusually wet conditions arrived in 

September of 2018 and carried through the rest of the year. The wet conditions following 

harvest prevented post-harvest tillage and fueled a growth of weeds, including re-

greened cotton. This growth resulted in increased off-season carbon uptake. Despite the 

lower growing season carbon uptake, the increased off-season carbon uptake resulted in 

a slight net sequestration of 5.1 g C m-2 for the year as a whole. Carbon flux during the 

growing seasons followed the growth stages of the cotton crop, in both years; the 

greatest carbon uptake was during the boll-filling growth stage.  

Of the meteorological variables, precipitation had the strongest correlation with 

GPP. The relationship between GPP and precipitation was strongest in 2018. There were 

also significant correlations between GPP and PAR and between GPP and air 

temperature. There was a significant correlation between GPP and NDVI from the 

satellite imagery data in both years. This correlation illustrated the potential value in 

including satellite imagery in studies of carbon dynamics. Given the high correlation 

between GPP and NDVI, satellite imagery data can be potentially used to estimate 

carbon uptake (Glenn et al., 2008; Yan et al., 2009; Yuan et al., 2010; Zheng et al., 

2018). This study has allowed for a greater understanding of carbon dynamics in cotton 

production. The results of this study draw upon the importance of having carbon flux 

measurements for multiple years as different precipitation and temperature patterns can 

affect carbon balance. 
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3. MODELING GROSS PRIMARY PRODUCTION OF DRYLAND CORN USING 

PLANETSCOPE SATELLITE IMAGERY 

3.1. Introduction 

Remote sensing technology has improved our ability to study the impact of 

human activities on ecosystem processes, including carbon cycling. Analysis of satellite 

and aerial images has greatly improved over the past few decades and has now become 

quite common in ecosystem and agricultural sciences. Remote sensing has improved our 

ability to understand global, regional, and local carbon fluxes by allowing for enhanced 

estimation over large areas of land.  The main component of the carbon cycle that can be 

captured using remote sensing is gross primary productivity (GPP), which is the total 

amount of carbon uptake via photosynthesis. Gross primary production is the largest 

terrestrial carbon sink and is an important driver of ecosystem functions as it represents 

the carbon and energy available to the ecosystem. Understanding GPP is important for 

understanding carbon dynamics and ecosystem processes in both natural and managed 

ecosystems, such as croplands (Gitelson et al., 2012; Zheng et al., 2018).  As human 

activities have increased the amount of carbon released into the atmosphere, satellite 

GPP estimations have assisted in determining the fate of this carbon. This better 

understanding of plant carbon uptake has allowed the “missing carbon sink” to be 

accounted for  (Schindler, 1999; Houghton, 2007; King et al., 2007; Houghton et al., 

2018). In agricultural settings, understanding carbon uptake can have additional benefits 

in improving crop productivity. Remote carbon uptake estimate can improve yield 

forecasts as carbon uptake via photosynthesis is tightly linked to the yield of the 
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agricultural product, such as grain or fiber (Alganci et al., 2014; He et al., 2018).  

One of the more common methods of estimating GPP with imagery data is to use 

a light use efficiency (LUE) based model. This model was proposed by Monteith in 1977 

and has since been widely used and modified to suit the needs of GPP modeling efforts. 

The most common modification is to replace LUE with a vegetation index (VI) from 

remote sensing. Vegetation Indices are ratios that utilize the spectral properties of 

growing vegetation to get a measure of plant productivity. They are typically a ratio of 

near-infrared (NIR) to another wavelength of light. Photosynthesizing plants reflect NIR 

more strongly than other wavelengths, which is how VI’s are able to measure plant 

productivity. Multiple studies have shown that LUE and VI are well correlated and that 

VI can replace LUE in GPP models of agroecosystems (Glenn et al., 2008; Gitelson et 

al., 2012; Peng and Gitelson, 2012; Alganci et al., 2014; He et al., 2018; Zheng et al., 

2018). Peng and Gitelson (2012) compared Ameriflux Eddy Covariance derived GPP to 

GPP modeled using vegetation indices at 16 sites. The corn models using the Green 

Chlorophyll Index was the most successful.  

 While satellite images can cover wider areas than possible with ground-based 

measurements, there is still a need for ground-based measurements of carbon dynamics. 

Ground-based measurements offer greater precision and when combined with satellite 

data they can act as a ground-truth to improve the accuracy of the satellite imagery-

based model. One of the most common and effective methods to measure carbon 

dynamics in-situ is eddy covariance (EC). Eddy covariance measures trace gas flux, 

including CO2, the gas of interest in photosynthesis, by taking the covariance of the gas 



 

101 

 

concentration and the vertical wind speed. Eddy covariance has been used worldwide for 

studying carbon dynamics, water use, and methane emissions, however, use in 

agricultural settings in the southern U.S. is still uncommon (Saigusa et al., 2002; 

Baldocchi, 2003; Dolman et al., 2006; Yu et al., 2006).  

The primary objective of this study is to model GPP in conventional corn production 

using satellite remote sensing. This will be achieved by directly measuring carbon fluxes 

using an EC system and then using satellite data to model GPP with multiple vegetation 

indices as well as ground-based data. Modeled GPP will then be compared to observed 

GPP and the model with the best fit will be determined.  

3.2. Materials and Methods 

3.2.1. Site Information 

The study was conducted in a 34 ha conventionally managed dryland production 

corn (Zea mays) field, located at the Texas A&M Agrilife Research Farm in Burleson 

County, Texas (3032’46.2” N, 9625’19.7” W), which is shown in Figure 11. The 

climate of the location is humid subtropical (Köppen Cfa) with an average annual 

temperature of 20.58C and an average annual precipitation of 1018 mm. The rainfall 

pattern in this region is bimodal, with the highest rainfall in May, June, and October. The 

dominant soil types in the field are the Weswood silt loam (Udifluventic Haplustepts, 

38% clay in surface horizon, floodplain) and Ships clay (Chromic Halpludert, 42% clay 

in the surface horizon), both of which contain predominantly shrink-swell clay minerals.  

The corn crop was planted on March 10 in 2017, on March 6 in 2018, and on 

March 7 in 2019. Disc-tillage was performed prior to planting in 2017 and 2018. Due to 
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unusually wet soil conditions and a short planting window, pre-plant tillage was not 

performed in 2019. The variety planted was B-H 8845 VTB in 2017, Pioneer P1602 AM 

in 2018, and DeKalb 67-42 in 2019.  Nitrogen fertilizer was broadcast at a rate of 135 kg 

N ha-1 as urea ammonium nitrate (32-0-0) after planting in all three years. Corn was 

harvested on July 25 in 2017, on July 19 in 2018, and on August 12 in 2019. Residues 

were shredded post-harvest and incorporated into the soil using disc tillage.  

 

 

Figure 11: Image of Corn Field Location 

Images of the site and location are shown above. The image on the left is a satellite 

image of the field. The field is outlined in green with the location of the EC tower 

indicated by a red triangle. The Brazos River is highlighted with a blue line. The image 
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on the upper right shows a map of Texas with the location of Burleson County marked 

with a star. The image on the lower right is a photograph of the EC tower.  

 

3.2.2. Satellite Imagery Data 

Satellite imagery from cloud-free days with full area coverage were downloaded 

from Planet Labs Inc. (San Francisco, CA, USA), 20 images were downloaded for 2017, 

19 images for 2018, and 14 images for 2019. Selected images were captured using the 

PlanetScope Dove network of 120 multispectral imagery satellites. The satellites 

captured four wavelength bands: Red (590 – 670 nm), Green (500 – 590 nm), Blue (455 

– 515 nm), and NIR (780 – 860 nm). They have an analytic radiometric resolution of 16 

bit and a spatial resolution of 3 meters (Planet Team, 2017). Downloaded images were 

analyzed using ENVI (Version 5.3). The top of atmosphere correction was performed 

using the metadata included with the image. The band values were then extracted for 

calculated vegetation indices.  

Vegetation indices (VI’s) were manually calculated from the extracted band 

values. The following vegetation indices were calculated: Normalized Difference 

Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Weighted Difference 

Vegetation Index (WDVI), and Simplified Enhanced Vegetation Index (EVI). The 

equations for these indices are as follows: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 



 

104 

 

𝑆𝐴𝑉𝐼 =
(1 + 0.5)(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5)
 

𝑊𝐷𝑉𝐼 =  𝑁𝐼𝑅 − (1.06 ∗ 𝑅𝐸𝐷) 

𝐸𝑉𝐼 = 2.5 ∗  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(1 + 𝑁𝐼𝑅 + 2.4 ∗ 𝑅𝐸𝐷)
 

 Daily values for each VI were calculated by linearly interpolating between the 

known points using a manual calculation.  

3.2.3. Eddy Covariance Data Processing 

Continuous 10 Hz measurements of CO2 flux were collected using an eddy 

covariance system (EC). The EC system consisted of a C-SAT3 Sonic Anemometer 

(Campbell Scientific, Logan, UT, USA) and an LI-7500 Infrared Gas Analyzer (IRGA; 

LI-COR, Lincoln, NE, USA). The Sonic Anemometer and IRGA were connected to LI-

COR’s SmartFlux system, which used EddyPro software (Version 6.2.2) to process the 

data collected at 10 Hz and compiled it into 30-minute summary files. The 30-minute 

summary files, along with the raw data, were saved to a USB drive for manual data 

collection. Eddy covariance instruments were installed facing south (the direction of the 

prevailing winds) on a tripod alongside additional meteorological instruments and 

maintained at 2 meters above the plant canopy. The IRGA was calibrated and had its 

internal chemicals (CO2 and H2O scrubbers) replaced annually, as recommended by the 

manufacturer.  

Additional meteorological instrumentation consisted of a Temperature and 

Relative Humidity Probe (HMP155A, Vaisala, Vantaa, Finland), a Quantum Sensor 

(Plant Available Radiation (PAR); LI-190R, Li-COR, Lincoln, NE, USA), a 
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Pyranometer (LI-200R, LI-COR, Lincoln, NE, USA), a Net Radiometer (NR-LITE2, 

Kipp and Zonen, Delft, Netherlands), and a Rain Gauge (TE525, Texas Electronics, 

Dallas, TX, USA). Soil instruments consisted of seven soil moisture sensors (CS655, 

Campbell Scientific, Logan, UT, USA), four soil thermocouples (TCAV, Campbell 

Scientific, Logan, UT, USA), and four soil heat flux plates (HPF01SC Hukseflux, Delft, 

Netherlands). Three soil moisture sensors were placed horizontally at a depth of 4 cm; 

two were placed vertically between 10 and 20 cm, and the last two were placed 

vertically between 20 and 30 cm. Soil thermocouples were buried at 2 and 6 cm above 

the soil heat-flux plates. Soil heat-flux plates were placed in pairs, 1 meter apart, and 

buried at eight cm. Additional meteorological instruments and soil instruments were 

connected to a CR3000 datalogger (Campbell Scientific, Logan, UT, USA). Readings 

from the instruments were collected every 2 seconds and compiled into 30-minute 

summaries. 

EddyPro (edition 6.2.2) computed the fluxes directly in the SmartFlux system, 

using a sign convention where positive numbers indicate fluxes away from the canopy 

(emission) and negative numbers indicate fluxes toward the canopy (sequestration). 

EddyPro performed a number of corrections before computing NEE fluxes. This 

includes coordinate rotation, frequency response corrections, corrections for air density 

fluctuations and sensor separation delays (Webb et al., 1980; Paw et al., 2000; Finnigan 

et al., 2003; Burba, 2013; Carmelita et al., 2014; LI-COR, 2015; Qin et al., 2016). 

EddyPro also flagged data quality based on internal turbulence tests. High-

quality data was marked with a “0”, moderate quality with a “1” and low quality with a 
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“2”. Low-quality points were manually removed during data inspection for gap filling. 

Gap filling was used to fill in missing and removed data points. Gap filling and flux 

partitioning (partitioning CO2 uptake {GPP} and respiration {Reco}) were done 

simultaneously using the Max Plank Institute for Biogeochemistry’s R program (R Gui 

3.4.1) using their nighttime-based flux partitioning method (Reichstein et al., 2005; Fritz 

et al., 2018). This program fills data gaps based on an algorithm that uses meteorological 

conditions to calculate the missing data. If full meteorological data (temperature, 

humidity, and radiation) is available, then the missing value was filled using a data point 

with similar conditions within a 14-day window of the missing point. If meteorological 

data is partial or missing, then the program used linear interpolation based on time of 

day to gap-fill (Fritz et al., 2018; Reichstein et al., 2005). The same program also 

separates NEE fluxes into its component fluxes, assimilatory fluxes (GPP) and 

respiratory fluxes (Reco). A reference temperature-based method based is used to 

estimate Reco. The GPP flux is then calculated by subtracting Reco from NEE (Aubinet et 

al., 2012; Reichstein et al., 2005). 

3.2.4. Phenology Data Collection 

Plant samples were collected every other week from six randomly selected areas 

within the field, three from each soil type. At each location, 15 plants were randomly 

selected and measured for height, growth stage, leaf area, and aboveground biomass. 

Plant height was measured from the top of the soil to the whorl and the plant stage was 

determined via manual inspection. Leaf area and biomass were measured via destructive 

sampling. Leaves, stems, and reproductive structures were separated manually. Leaf area 
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was measured by passing sampled leaves through an LI-3100 leaf area meter (LI-COR, 

Lincoln, NE, USA). The plant matter was then placed in brown paper bags and was 

oven-dried at 40℃ and until sample weight was stable.  

3.2.5. Model Development and Validation 

Previous modeling work has established that GPP is proportional to light use 

efficiency (LUE) multiplied by the fraction of absorbed PAR (fPAR) and PAR 

(Monteith, 1977). In order to make this model more user-friendly, a few changes have 

been proposed by multiple authors. Primary productivity has been shown to be 

proportional to VI * PAR in a similar manner to LUE * PAR for a wide variety of crops, 

including corn (Gitelson et al., 2012; Peng and Gitelson, 2012; Alganci et al., 2014; He 

et al., 2018; Zheng et al., 2018).  Additionally, Leaf Area Index (LAI) has been shown to 

correlate well with fPAR in grasslands and croplands where LAI < 4, which is typical of 

row crops including corn (Asrar et al., 1984; Glenn et al., 2008; Gitelson, 2019).  As 

such, the model we are proposing is as follows: 

𝐺𝑃𝑃 ∝ 𝑉𝐼 ∗ 𝐿𝐴𝐼 ∗ 𝑃𝐴𝑅 

Where VI is obtained from the PlanetScope imagery data, LAI is obtained from 

destructive plant sampling, and PAR is obtained from the Quantum Sensor. The model 

was developed using the 2017 data and validated using the 2018 and 2019 data. For the 

2017 data, VI * LAI * PAR was regressed against EC GPP using the linear model in 

Sigmaplot (Version 14.0). The equation of the regression curve was then applied to 2018 

and 2019 data for model validation as follows: 

𝐺𝑃𝑃 = 𝑠𝑙𝑜𝑝𝑒 ∗ (𝑉𝐼 ∗ 𝐿𝐴𝐼 ∗ 𝑃𝐴𝑅) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
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Where the slope and intercept are from the linear regression using the 2017 data. 

Modeled GPP was then compared to measured GPP statically using Sigmaplot (Version 

14.0) and R Gui (Version 3.4.1). 

3.2.6. Statistical Analysis 

The regression analysis was performed using Sigmaplot (Version 14.0). Root 

mean square error and standard error of the estimate were calculated manually. The 

index of agreement (d-index) was calculated manually using the following equation: 

𝑑 = 1 − [
∑(𝑥 − �̅�)2

∑(|𝑥 − �̅�| + |𝑦 −  �̅�|)2
 

Where x is the modeled value and y is the observed value. The d-index shows the degree 

of agreement between the modeled data and the measured data. A perfect 1:1 fit between 

the modeled and measured data will give a d-index of 1 and no correlation will give a d-

index of 0 (Adhikari et al., 2016; Basso et al., 2016; Sharma et al., 2017). The slope of 

the linear regression between the modeled GPP and the measured GPP was compared to 

1.0 using a t-test in R Gui (Version 3.4.1).  

3.3. Results and Discussion 

3.3.1. Vegetation Indices 

There were some differences in the pattern of vegetation indices between the 

three seasons, which are shown in Figure 12. In 2017, NDVI increased more slowly over 

the course of the season and then declined more slowly during the senescence period 

when compared to 2018 and 2019. In 2018 and 2019, NDVI increased rapidly during the 

early vegetative growth season. However, the post-maturity senesce period in 2019 was 
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slower and followed a similar pattern to that of 2017. The maximum NDVI was 0.58 in 

2017, 0.64 in 2018, and 0.57 in 2019. During the early growing season, SAVI was very 

similar between all three years. After approximately DOY 120, SAVI for 2018 

continued to increase and remained above 2017 SAVI for the rest of the season.  SAVI 

for 2019 did not continue to increase after DOY 120; however, the senescence period 

was more gradual compared to the previous two years. WDVI and EVI followed similar 

seasonal patterns. In both, the VI was higher in 2017 for the majority of the growing 

seasons compared to 2018 and 2019.  The 2018 maximum WDVI and EVI was higher 

than that of 2019, however, both VI’s dropped off quickly after maturity in 2018 but 

declined slowly during the senescence phase of 2019. 
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Figure 12: Vegetation Indices Over Corn Growing Season 

Vegetation indices over the growing seasons are shown above. Image “A” refers to 

NDVI. Image “B” refers to SAVI. Image “C” refers to WDVI. Image “D” refers to EVI. 

Black lines with circles refer to 2017, red lines with triangles refer to 2018, and blue 

lines with squares refer to 2019. 

 

3.3.2. Observed Gross Primary Productivity 

There were some differences in measured GPP between the three seasons. Daily growing 

season GPP is shown in Figure 13. There was greater daily carbon uptake in the early 

part of the 2017 season compared to the 2018 and 2019 seasons. There was more carbon 

uptake in the senescence phase of the 2019 growing season compared to that of 2017 and 
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2018. The 2018 growing season had a larger daily maximum GPP (26.8 g C m-2) than 

that of 2017 (20.9 g C m-2) and 2019 (20.0 g C m-2). These differences are likely 

explained by differences in soil temperature and moisture content between the years. 

March 2017 was warmer than 2018 and 2019 (Monthly average temperature of 19.1C 

compared to 18.0C in 2018 and 14.7C in 2019), likely leading to more rapid seedling 

growth after planting. May and June of 2018 (25.6C and 28.2C, respectively) were 

warmer than that of 2017 (23.3C 26.8C) and 2019 (24.2C 26.7C). Higher 

temperatures increase the rate of metabolism, causing greater respiration and 

photosynthesis, which accounts for some of the differences in daily GPP between the 

three years  (Wharton et al., 2012; Rajan et al., 2013a; Vitale et al., 2016; Zapata et al., 

2017). Total growing season precipitation was 451.6 mm in 2017, 330.0 mm in 2018, 

and 618.5 mm in 2019. Greater precipitation in 2019 led to a slower decline in GPP 

following crop maturity. There was a small increase in GPP prior to harvest in 2019 due 

to the growth of warm-season weeds, particularly Bermuda grass (Cynodon dactylon) 

and Palmer amaranth (Amaranthus palmeri), greater soil moisture likely fueled this 

growth of weeds. Previous studies have found that weed growth can contribute 

significantly to GPP (Collins et al., 1999; Ibell et al., 2010; Sonnentag et al., 2011).  

 Despite some differences in the seasonal pattern of GPP, total carbon uptake 

between the three years was similar. Cumulative growing season GPP was 1360.8 g C 

m-2 in 2017, 1407.9 g C m-2 in 2018, and 1373.8 g C m-2 in 2019. The higher 

temperatures during the late vegetative and early reproductive stages in 2018 likely 

contributed to the greater cumulative GPP in 2018. Despite the higher cumulative and 
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daily maximum GPP in 2018, the aboveground crop biomass was less than that of 2017 

and 2019. The maximum crop biomass was 12,800 kg ha-1 in 2017, 10,333 kg ha-1 in 

2018, and 11,350 kg ha-1 in 2019. Warm and dry conditions can lead to a greater portion 

of GPP being allocated to respiration rather than biomass accumulation (Rajan et al., 

2013b; Zapata et al., 2017). 

 

 

Figure 13: Daily Gross Primary Productivity for Corn 

Daily gross primary productivity (GPP) for the three growing seasons is shown above.  

The period shown is from planting until harvest. Black circles represent 2017, red 

triangles represent 2018, and blue squares represent 2019. 
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3.3.3. Model Development 

The models were developed by using the 2017 data to create a linear regression 

model of weekly averages of VI*PAR*LAI versus observed GPP. The sign of GPP was 

reversed for the purpose of model development and validation so that GPP is shown as a 

positive number. The linear models are shown in Figure 14 and their ANOVA tables are 

shown in Table 1. A separate linear model was created for each of the four selected 

vegetation indices using Sigmaplot’s polynomial linear model. The models were all 

significant to p < 0.0001. The NDVI-based model had a slightly worse correlation with 

GPP (r2 = 0.92) compared to those with the other VI’s (r = 0.95). The RMSE for the fit 

between GPP and VI*PAR*LAI was 1.94 g C m-2 for NDVI, 1.49 g C m-2 for SAVI, 

1.56 g C m-2 for WDVI, and 1.48 g C m-2 for EVI. The linear models were then used to 

estimate GPP for the 2018 and 2019 data. The linear model for NDVI is as follows: 

NDVI: 𝐺𝑃𝑃 = 1.25 ∗ (𝑁𝐷𝑉𝐼 ∗ 𝐿𝐴𝐼 ∗ 𝑃𝐴𝑅) + 1.90 

SAVI: 𝐺𝑃𝑃 = 2.22 ∗ (𝑆𝐴𝑉𝐼 ∗ 𝐿𝐴𝐼 ∗ 𝑃𝐴𝑅) + 2.66  

WDVI: 𝐺𝑃𝑃 = 2.58 ∗ (𝑊𝐷𝑉𝐼 ∗ 𝐿𝐴𝐼 ∗ 𝑃𝐴𝑅) + 2.87  

EVI: 𝐺𝑃𝑃 = 1.54 ∗ (𝐸𝑉𝐼 ∗ 𝐿𝐴𝐼 ∗ 𝑃𝐴𝑅) + 2.77 
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Figure 14: Corn VI based Models 

The linear models for 2017 are shown above. The red line in each image refers to the 

best-fit model. Image “A” refers to NDVI. Image “B” refers to SAVI. Image “C” refers 

to WDVI. Image “D” refers to EVI. R-square and the best-fit equation are shown on the 

graphs. 
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Table 1: ANOVA for GPP versus VI*LAI*PAR 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4. Model Validation  

The models developed were validated using data from 2018 and 2019. The 

validation using 2018 data is shown in Figure 15 and the validation using 2019 data is 

shown in Figure 16; with statistical analysis for both shown in Table 2. For the 2018 

data, the NDVI, WDVI, and EVI-based models all underestimated the actual GPP, while 

the SAVI-based model came close to observed GPP. The SAVI-based model had a 

lower standard error (1.74 g C m-2) than the other models (2.89 g C m-2 for NDVI, 3.62 g 

C m-2 for WDVI, and 3.72 g C m-2 for EVI).  The t-test of the slope of the regression 

between modeled and observed data found that the NDVI, WDVI, and EVI models all 

had regression slopes that were significantly different from one. Conversely, the 

ANOVA for GPP versus VI * LAI * PAR  

NDVI 

 SS MS t p r2 

Regression 2738.2 1369.1 13.6 <0.0001 0.92 

Residual 64.0 3.8    

Total 2802.2 147.5    

SAVI 

Regression 2764.4 1382.2 18.0 <0.0001 0.95 

Residual 37.9 2.2    

Total 2802.2 147.5    

WDVI 

Regression 2761.6 1380.8 17.4 <0.0001 0.95 

Residual 40.6 2.4    

Total 2802.2 147.5    

EVI 

Regression 2764.9 1382.4 18.2 <0.0001 0.95 

Residual 37.4 2.2    

Total 2802.2 147.5    
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regression slope for the SAVI-based model was not significantly different from 1.0, 

indicating an ideal fit between the modeled and measured GPP. All 2018 model 

validations had d-index values above 0.90, with the SAVI-based model having a d-index 

the closest to one (d-index 0.99).  

For the 2019 data, the NDVI-based model significantly overestimated the actual 

GPP, while the WDVI and EVI-based models both underestimated the actual GPP. As 

with 2018, modeled GPP using the SAVI-based model was most similar to the observed 

GPP. The NDVI-based model produced a much higher error in 2019 than it did in 2018, 

8.50 g C m-2 compared to 2.89 g C m-2. The remaining three models from 2019 had a 

standard error similar to that of 2018, with the SAVI-based model having the lowest 

error (1.50 g C m-2 for SAVI, 3.21 g C m-2 for WDVI, and 3.10 g C m-2 for EVI). The t-

test of the slope of the regression between modeled and observed GPP found that the 

slopes of the NDVI, WDVI, and EVI-based models all significantly differed from 1.0, 

while the SAVI-based model did not. The NDVI-based model had a low d-index, 0.79, 

compared to the other models, indicating less agreement between the modeled and 

observed GPP. The SAVI-based model had the d-index that was closest to 1.0 at 0.98. In 

both years, the SAVI-based model performed better than the other models.  

While SAVI, WDVI, and EVI all preformed similarly for 2018 and 2019, there 

was a dramatic difference in the results of the NDVI-based model between the years. 

Differences in growing season weather conditions possibly affected model performance, 

possibly accounting for the dramatic difference in results with the NDVI-based model 

between 2018 and 2019. Weather conditions in the 2017 growing season (March – July) 
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were typical for the region with an average temperature of 23.84C compared to the 30-

year average of 23.67C.  Likewise, precipitation in 2017 was fairly typical with 451.6 

mm of rain during the growing season compared to the 30-year average of 425.7 mm 

(National Oceanic and Atmospheric Administration, 2011). Compared to 2017 and the 

30-year average, 2018 was unusually dry with only 330.0 mm of rain, and 2019 was 

unusually wet with 527.6 mm of rain. Average growing season temperatures were 

similar across 2018 and 2019 (23.65C and 23.18C, respectively).  It is possible that the 

differences in weather conditions, particularly precipitation, were partly responsible for 

the differences in model success between the years, as similar trends have been observed 

in other studies. A large scale study of GPP modeling using the LUE method with 

satellite data at FLUXNET sites in Northeast China found that adding scalars for 

temperature and water stress improved the model success with the water stress scalar 

being particularly effective in croplands (Zheng et al., 2018). Plant water content has 

been found to affect reflectance across all wavelengths, which would alter vegetation 

indices (Ahlrichs and Bauer, 1983; Asrar et al., 1984). Additionally, changes in soil 

moisture and plant water stress can cause short-term changes in GPP that are not picked 

up by satellite-based methods because they have lower temporal resolution than EC 

measurements (Zhao et al., 2005; Yuan et al., 2010; Gitelson et al., 2012).  
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Figure 15: 2018 Corn GPP Model Validation  

Model Validation with 2018 data is shown in the figure above. Image “A” refers to the 

model using NDVI. Image “B” refers to the model using SAVI. Image “C” refers to the 

model using WDVI. Image “D” refers to the model using EVI.  The solid red line refers 

to the best-fit linear equation. The black dashed line refers to an ideal 1:1 line with a 

slope of one. 
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Figure 16: 2019 Corn GPP Model Validation 

Model Validation with 2019 data is shown in the figure above. Image “A” refers to the 

model using NDVI. Image “B” refers to the model using SAVI. Image “C” refers to the 

model using WDVI. Image “D” refers to the model using EVI. The solid red line refers 

to the best-fit linear equation. The black dashed line refers to an ideal 1:1 line with a 

slope of one. 
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Table 2: Statistical Results for Model Validation 

Statistical Results for Model Validation  

2018 

 RMSE D-index Standard Error of 

Estimate 

Does the slope of the 

model equal 1? 

NDVI 7.47 0.96 2.89 NO (>0.01) 

SAVI 1.44 0.99 1.74 YES 

WDVI 8.17 0.93 3.62 NO (>0.0001) 

EVI 8.76 0.93 3.72 NO (>0.0001) 

2019 

NDVI 30.73 0.79 8.50 NO (>0.0001) 

SAVI 0.17 0.98 1.50 YES 

WDVI 9.07 0.90 3.21 NO (>0.0001) 

EVI 8.84 0.91 3.10 NO (>0.0001) 

 

 

3.3.5. Implications for Producers 

The model was able to simulate GPP, particularly the SAVI-based model.  Other 

studies have found similarly successful results on efforts to model GPP using satellite-

based methods (Zhao et al., 2005; Yan et al., 2009; Gitelson et al., 2012; Peng and 

Gitelson, 2012; Zhou et al., 2017). Tracking carbon dynamics from agricultural settings 

is important for determining the impacts of agricultural practices on the global carbon 

balance. Using models that have been validated with ground-truth observations such as 

this one, can improve estimates of carbon uptake. Given current proposals for regulating 

carbon in various industries, understanding carbon could become more important for 

producers.  Keeping track of GPP in agricultural settings is beneficial beyond carbon 

monitoring. GPP correlates well with plant productivity and crop yield, and such models 

can be useful in precision agricultural by identifying highly productive zones (Gutierrez 

et al., 2012; Padilla et al., 2012; Johnson, 2016; He et al., 2018). Our research shows that 
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selection of vegetation index can make a difference in the success of the model. While 

NDVI may be the most commonly used vegetation index in agricultural settings, it may 

not always be the most appropriate.  Producers may benefit from determining the best fit 

index for their cropping system (Ahlrichs and Bauer, 1983; Huete et al., 1997; Glenn et 

al., 2008).  

3.4. Conclusions 

There was a significant relationship between VI*LAI*PAR such that regression 

model of GPP was feasible. Given the good correlation values (r2 above 0.9) for the 

2017 regression of VI*LAI*PAR, that year’s data was used as training data for model 

development. The models for each VI were validated using data from 2018 and 2019. 

The model using NDVI as the input vegetation index underestimated GPP in 2018 and 

overestimated GPP in 2019. The slope of the best fit between NDVI-modeled GPP and 

observed GPP was different from one in both years. The models using WDVI and EVI 

as inputs underestimated GPP in both validation years. The slope of the best fit between 

modeled and observed GPP was different from one for both EVI and WDVI for both 

years. The model using SAVI as the input slightly underestimated GPP in 2018 and 

slightly overestimated GPP in 2019; however, these differences were not statistically 

significant. The slope of the best fit between GPP modeled using SAVI and observed 

GPP was not different from one in both years, indicating and ideal fit between modeled 

and observed GPP. Differences in soil and weather conditions between the years likely 

affected the performance of the models, most significantly influencing the NDVI-based 
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model. The SAVI based model provided as more ideal fit likely because it better 

accounts for the effects of soil surface characteristics on reflectance values.  

 Overall, the variability of model results based on input vegetation index highlight 

the importance of selecting the ideal VI for a given situation. The model using SAVI as 

an input is likely to effective in other corn production systems in east-central Texas. The 

use of this modeling technique and new higher-resolution satellite data has the potential 

to improve estimates of carbon uptake from agricultural systems. While this study used 

ground-based inputs in the model (destructive LAI and PAR from the eddy covariance 

tower), all inputs can be obtained remotely. Future work on this would be to replace 

ground-based LAI and PAR terms with remote terms. 
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4. A COMPARISON OF MODELED PRIMARY PRODUCTION USING 

PLANETSCOPE SATELLITE IMAGERY TO EDDY COVARIANCE DATA IN 

EAST-CENTRAL TEXAS COTTON PRODUCTION 

4.1. Introduction 

With concerns over climate change and the need for increased food and fiber 

production, understanding the impact of agricultural lands on the global carbon cycle is 

more important than ever. Annual row cropland (i.e. corn, soy, cotton) currently makes 

up approximately 11% of the Earth’s land area and is a significant contributor to the 

global carbon cycle (Bruinsma, 2003; Food and Agriculture Organization, 2016; Liu, 

2017). Understanding carbon dynamics from cropping systems can help improve efforts 

to quantify the impacts of agricultural practices on the global carbon budget. 

Additionally, crop carbon uptake is strongly associated with crop yield, making 

understating these dynamics important for producers (Peng et al., 2011; Gitelson et al., 

2012; He et al., 2018). In recent years, there have been efforts to improve our 

understanding of carbon fluxes from agricultural lands with the use of remote-sensing 

based estimates of gross primary productivity (GPP), the total carbon uptake via 

photosynthesis. Satellite remote sensing can allow for the carbon estimation in areas 

where ground-based measurements (i.e. eddy covariance) are not practical or possible 

(Kerr and Ostrovsky, 2003; Frankenberg et al., 2011). 

Remote sensing-based GPP estimates generally function by utilizing vegetation 

indices (VI’s). Vegetation indices are ratios of light reflectance wavelength bands that 

correlate well with plant growth and productivity, many compare the reflectance of near-
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infrared (NIR) light to other types of light, often red. The mesophyll of plants reflects 

NIR, influenced by chlorophyll content, water, and nutrient status, making NIR ratios a 

good indicator of plant productivity (Yoder and Pettigrew-Crosby, 1995; Daughtry, 

2000). Vegetation indices have been shown to correlate well with leaf area index (LAI), 

absorbed radiation and crop yield (Ahlrichs and Bauer, 1983; Asrar et al., 1984; Baret 

and Guyot, 1991; Alganci et al., 2014).  Previous work in modeling GPP with remote 

sensing data has been successful with a variety of different VI’s. The normalized 

difference vegetation index (NDVI) is probably one of the most widely used VI’s, 

especially agricultural work, however others such as green chlorophyll index (CIGreen), 

and enhanced vegetation index (EVI) are also fairly common (Yan et al., 2009; Gitelson 

et al., 2012; Zheng et al., 2018).  

Much of the work in modeling carbon dynamics with satellite remote sensing 

been with lower spatial resolution satellites, such as LANDSAT (30-meter) and MODIS 

(250-meter). Lower spatial resolution increases the risk of uncertainty due to mixed 

pixels, where an image pixel contains multiple land cover types (i.e. crop and bare soil 

or crop and pasture). With low spatial resolution, each image pixel corresponds to a 

larger ground area (i.e. 250 square meters for MODIS). Ideally, utilizing a finer spatial 

resolution could improve model success by reducing problems caused by mixed pixels 

(Zhou et al., 2017; Zheng et al., 2018). Recent developments in satellite technology have 

greatly increased the spatial resolution of satellite image data, allowing analysis that is 

more precise. The improvements in image resolution have the potential to improve the 

precision of satellite-based GPP models. Many of the high-resolution satellites are 
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privately owned, one such company is Planet Inc., a private satellite company that 

operates a network of 130+ imaging satellites, including 120 PlanetScope satellites. 

PlanetScope satellites have a spatial resolution of 3 meters compared to MODIS Terra’s 

250 meters and LANDSAT’s 30 meters (Planet Team, 2017, 2018).  

Most of the remote GPP models are based on a light use efficiency model that 

was first described by John L. Monteith in 1977. This method correlates GPP to the light 

use efficiency (LUE) of the plant multiplied by the photosynthetically available radiation 

(PAR), and the fraction of absorbed PAR (fPAR) (Monteith, 1977). This model is 

commonly modified for use with remote sensing data by replacing LUE and/or fPAR 

with vegetation indices or other more easily obtained data. In this study, the LUE term is 

replaced with a remote sensing VI, and fPAR is replaced with leaf area index (LAI). 

Multiple studies have previously found that LUE correlates well with a variety of 

vegetation indices – especially those that are related to or also correlate well with 

chlorophyll content (Peng and Gitelson, 2011; Peng et al., 2011; Huemmrich et al., 

2019). Additionally, LAI has been successfully used to estimate fPAR (Myneni et al., 

1997; Wang et al., 2004; Chen et al., 2006a; Shafian et al., 2018). The LAI calculation 

used by the MODIS Terra satellite is based on fPAR (Wang et al., 2004; Sakamoto et al., 

2011). This study aims to do the reverse, estimate fPAR from LAI.   

While the LUE-based methods have been used widely and successfully in corn, 

soy, and wheat, studies focusing on modeling GPP using remote sensing in cotton are 

limited (Gitelson et al., 2012; Alganci et al., 2014; Zheng et al., 2018). Cotton has a 

unique growth pattern that is different from other crops, which could affect the ability of 
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these models to work well with cotton. Cotton has a complex canopy structure and 

indeterminate vegetative growth, which could complicate modeling efforts (Bednarz and 

Nichols, 2005; Bozorov et al., 2018). Gross primary productivity modeled using the 

LUE method has been shown to correlate well with cotton yield in multiple studies, 

which is similar to findings in other crops. However, these studies do not include a 

ground truth for GPP from eddy covariance or another carbon monitoring method. 

(Alganci et al., 2014; Jaafar and Ahmad, 2015; Johnson, 2016). Including a ground truth 

allows for better validation, which greatly improves the modeling effort (Yuan et al., 

2010; Frankenberg et al., 2011).  This study aims to improve current efforts to model 

GPP in cotton production by validating a high-resolution satellite-based model using 

eddy covariance data. Three growing seasons of eddy covariance carbon flux and 

PlanetScope imagery data from a conventional, dryland cotton field in East-Central 

Texas is used to develop and validate a satellite remote sensing-based GPP model.  

4.2. Materials and Methods 

4.2.1. Site Information 

The study was conducted in a 12.14 ha conventionally managed, dryland 

continuous cotton (Gossypium hirsutum) field, shown in Figure 17. The field was 

located at the Texas A&M Agrilife Research Farm in Burleson County, Texas 

(3032’46.2” N, 9625’19.7”W). An eddy covariance flux-tower was established in the 

center of the field in February 2017, and fluxes were monitored for three growing 

seasons. The cotton crop was planted on April 6 (DOY 96) in 2017, April 18 (DOY 108) 

in 2018, and April 30 (DOY 120) in 2019 following conventional tillage and the 
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formation of raised seedbeds. The delayed planting in 2019 was due to unusually wet 

conditions during planting. The cultivar, Phytogen 333WRF was used in 2017 and 2018, 

while the cultivar, Phytogen 350 was used in 2019.  Nitrogen fertilizer was applied at a 

rate of 95 kg ha-1 as urea ammonium nitrogen (32-0-0) shortly after planting. Glyphosate 

was used for weed control as needed. The average plant population was 6.24 plants m-2 

in 2017, 6.22 plants m-2 in 2018, and 6.11 plants m-2 in 2019. The cotton crop was 

chemically defoliated to allow for easier harvest with GinStar (Bayer CropScience, 

Monheim, Germany), a mixture of Thidiazuron and Diuron, which blocked 

photosynthesis. Defoliation occurred on Aug 21 (DOY 233) in 2017, Aug 21 (DOY 233) 

in 2018, and Sept 3 (DOY 246) in 2019. The cotton crop was harvested following 

defoliation on September 11 (DOY 254) in 2017, September 17 (DOY 260) in 2018, and 

September 16 (DOY 259) in 2019. 

The climate of the location is humid subtropical (Köppen Cfa) with an average 

(30-year) annual temperature of 20.58C and an average annual precipitation of 1018 

mm. For the typical cotton growing season (April – September), the average (30-year) 

temperature was 26.38C and precipitation was 413 mm (National Oceanic and 

Atmospheric Administration, 2011). The dominant soil types in the field are the 

Weswood silt loam (Udifluventic Haplustepts, 38% clay in surface horizon, floodplain) 

and Ships clay (Chromic Halpludert, 42% clay in the surface horizon). Both soils have a 

high content of shrink-swell minerals that cause the soil to form large cracks in dry 

weather.  
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Figure 17: Image of Cotton Field Site 

Image of the field site is shown above. Image on the left is a satellite photo of the field 

location with the field highlighted in green. The red triangle refers to the location of the 

eddy covariance tower, which is shown in the lower right image. The upper right image 

shows the location of the site in Texas (Google Earth, 2018).  

 

4.2.2. Satellite Imagery Data 

Satellite imagery was obtained from Planet, a private satellite imaging company. 

Selected images were captured using the PlanetScope (Dove) Satellite Network. The 

PlanetScope satellites are a network of 120 satellites. They collected four bands of data; 

Red (590 – 670 nm), Green (500 – 590 nm), Blue (455 – 515 nm), and NIR (780 – 860 

nm). They have an analytic radiometric resolution of 16 bit and a spatial resolution of 3 

meters (Planet Team, 2017, 2018). Downloaded images were analyzed using ENVI 5.3. 
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Vegetation indices (VI’s) were calculated from the band values. The following 

vegetation indices were calculated: Normalized Difference Vegetation Index (NDVI), 

Soil Adjusted Vegetation Index (SAVI), Green Chlorophyll Index (CIGreen), and 

Simplified Enhanced Vegetation Index (EVI2). 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

𝑆𝐴𝑉𝐼 =
(1 + 0.5)(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5)
 

𝐶𝐼𝐺𝑟𝑒𝑒𝑛 =  
𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
− 1 

𝐸𝑉𝐼2 = 2.5 ∗  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(1 + 𝑁𝐼𝑅 + 2.4 ∗ 𝑅𝐸𝐷)
 

 

4.2.3.  Eddy Covariance Data and Processing 

Continuous (10 Hz) measurements of CO2 and water vapor flux were made using 

an eddy covariance system (EC). The eddy covariance system consisted of a Campbell 

Scientific C-SAT3 Sonic Anemometer (Campbell Scientific, Logan, UT, USA) and an 

LI-7500 Infrared Gas Analyzer (IRGA; LI-COR, Lincoln, NE, USA). The Sonic 

Anemometer and IRGA were connected to a SmartFlux system (LI-COR, Lincoln, NE, 

USA), which used EddyPro software (version 6.2.2) to process data collected at 10 Hz 

and compiled it into 30 min summary files. Eddy covariance instruments were installed 

on a tripod with an adjustable mast to maintain instruments at a height of 2 meters above 

the plant canopy. Instruments were installed facing south, the direction of the prevailing 
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winds.  The instruments were calibrated and had the internal chemicals changed 

annually, as recommended by the manufacturer.  

Additional meteorological instruments were installed to supplement the EC data. 

The additional instruments consisted of the following: a temperature and relative 

humidity probe (HMP155A, Vaisala, Vantaa, Finland), a quantum (PAR) sensor (LI-

190R, LI-COR, Lincoln, NE, 2019), a pyranometer (LI-200R, LI-COR, Lincoln, NE 

2019), a net radiometer (NR-LITE2 Kipp and Zonen, Delft, The Netherlands), and a 

tipping bucket style rain gauge (TE525, Texas Electronics, Dallas, TX, USA). Soil 

instruments consisted of seven soil moisture sensors (CS655, Campbell Scientific, 

Logan, UT, USA), four soil thermocouples (TCAV, Campbell Scientific, Logan, UT, 

USA), and four soil heat-flux plates (HPF01SC, Hukseflux, Delft, The Netherlands). 

Three soil moisture sensors were placed horizontally at a depth of 4 cm; two were placed 

vertically between 10 and 20 cm; the last two were placed vertically between 20 and 30 

cm.  Soil heat-flux plates were placed in pairs, 1 meter apart, and buried at 8 cm.  Soil 

thermocouples were buried at 2 and 6 cm above the soil heat-flux plates. Additional 

meteorological instruments and soil instruments were all connected to a datalogger 

(CR3000, Campbell Scientific, Logan, UT, USA). Readings were collected every 2 

seconds and compiled into 30-minute summaries. 

Eddy covariance fluxes were processed using a SmartFlux system, which was 

directly connected to the instruments. The SmartFlux system used embedded EddyPro 

(version 6.2.2) software to compute the fluxes and perform corrections. EddyPro 

performs a number of corrections before computing NEE fluxes. This includes 
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coordinate rotation, frequency response corrections, corrections for air density 

fluctuations and sensor separation delays (Webb et al., 1980; Paw et al., 2000; Finnigan 

et al., 2003; Burba, 2013; Carmelita et al., 2014; LI-COR, 2015; Qin et al., 2016). 

SmartFlux saved 30-minute flux calculations as .csv files onto a USB drive along with 

raw data (unprocessed) data files. The fluxes were calculated using a sign convention 

where positive numbers indicate fluxes away from the canopy and negative numbers 

indicate fluxes toward the canopy. 

 The EddyPro software flagged data for quality based on internal turbulence tests. 

High-quality data was marked with a “0”, moderate quality with a “1” and low quality 

with a “2”. Low-quality points were manually removed during data inspection for gap 

filling. Gap filling was used to fill in missing and removed data points. Gap filling and 

flux partitioning (partitioning CO2 uptake {GPP} and respiration {Reco}) were done 

using the Max Plank Institute for Biogeochemistry’s online R-based (R Gui 3.4.1) 

program using the default settings. The program used a 14-day window and linear 

interpolation to points with similar meteorological conditions to gap-fill missing and 

removed points. Fluxes were separated using a reference temperature and nighttime 

fluxes to estimate daytime Reco (Reichstein et al., 2005; Aubinet et al., 2012; Fritz et al., 

2018).  Gross Primary Productivity (GPP) was calculated from Net Ecosystem Exchange 

(NEE) and Reco during the gap-filling process as follows:  

𝐺𝑃𝑃 = 𝑁𝐸𝐸 +  𝑅𝑒𝑐𝑜 
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4.2.4. Phenology Data Collection 

Destructive plant samples were collected every other week from six locations 

within the field, three from each soil type, forming a ring around the tower. At each 

location, 15 plants were randomly selected and measured for height, growth stage, leaf 

area, and above-ground biomass. After sampling, the leaves and flowers/bolls were 

removed from the stems. Leaves were put through a leaf area meter (LI-3100, LI-COR, 

Lincoln, NE, USA) to measure LAI. Leaves, stems, and flowers/bolls were dried in 

separate paper bags at 40C and weighed to get above-ground biomass, leaf biomass, 

stem biomass, and reproductive biomass.  

4.2.5. GPP Modelling 

The model we are proposing is as follows: 

𝐺𝑃𝑃 ∝ 𝑉𝐼 ∗ 𝐿𝐴𝐼 ∗ 𝑃𝐴𝑅 

Where VI is obtained from the PlanetScope imagery data, LAI is obtained from 

destructive plant sampling, and PAR is obtained from the Quantum Sensor at the EC 

tower. For the 2017 data, VI * LAI * PAR was regressed against the actual GPP 

obtained from the EC tower. Regression was performed using SigmaPlot (Version 14.0) 

and the best-fit equation was found. The equation of the regression curve was then 

applied to the data for 2018 and 2019 for model validation as follows: 

𝐺𝑃𝑃 = 𝑠𝑙𝑜𝑝𝑒 ∗ (𝑉𝐼 ∗ 𝐿𝐴𝐼 ∗ 𝑃𝐴𝑅) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

4.2.6. Statistical Analysis 

Statistical analysis was performed using R Gui (version 3.4.1) and SigmaPlot (version 

14.0). The slope of the regression for modeled GPP versus measured GPP was compared 
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to one with a t-test using R Gui. An ideal model will have a 1:1 relationship with the 

measured data. A slope less than one will indicate underestimation and a slope greater 

than one will indicate overestimation. The following model performance indices were 

calculated manually: root mean square error (RMSE), standard error of the estimate 

(SE), and the index of agreement (d-index). The d-index was calculated using the 

following equation: 

𝑑 = 1 − [
∑(𝑥 − �̅�)2

∑(|𝑥 − �̅�| + |𝑦 −  �̅�|)2
 

Where x is the modeled value and y is the observed value. The d-index shows the degree 

of agreement between the modeled data and the measured data. A perfect 1:1 fit between 

the modeled and measured data will give a d-index of 1 and no correlation will give a d-

index of 0 (Adhikari et al., 2016; Basso et al., 2016; Sharma et al., 2017). 

 

4.3. Results and Discussion 

4.3.1. Vegetation Indices 

The vegetation indices are shown in Figure 18. During the early growing season, NDVI 

(Figure 18A) was greater in 2017 compared to 2018 and 2019. Maximum NDVI was 

0.68 in 2017 (DOY 189), 0.58 in 2018 (DOY 192), and 0.67 in 2019 (DOY 191). These 

maximum values are lower than reported in other studies, however most studies of 

vegetation indices in cotton focus on irrigated cotton, which is generally more 

productive. Lower VI values more similar to the ones seen here are found in dryland and 

limited irrigation cotton (Gwathmey et al., 2010; Gutierrez et al., 2012; Raper et al., 
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2013). In 2018, NDVI quickly declined after its maximum due to drought conditions. 

There was a brief increase in NDVI late in the 2019 season due to a rain event (31.24 

mm, DOY 237) causing leaf expansion. Immediately prior to defoliation NDVI was 0.58 

in 2017 (DOY 231), 0.42 in 2018 (DOY 229), and 0.53 in 2019 (DOY 244). Total 

growing season precipitation was 510 mm in 2017, 184 mm in 2018, and 461 mm in 

2019. The significantly lower precipitation in 2018 caused early senescence prior to 

defoliation, which was reflected in NDVI.  

 During the early growing season of 2019, SAVI (Figure 18B) was lower than 

that of 2017 and 2018. This is likely due to delayed planting in 2019, causing the cotton 

plants to be smaller than they were on the same date in previous years. Maximum SAVI 

was 0.47 in 2017 (DOY 189), 0.43 in 2018 (DOY 192), and 0.49 in 2019 (DOY 191). 

There was an increase in SAVI seen in the late 2019 growing season following the same 

rain event that affected NDVI. Prior to defoliation SAVI was 0.40 in 2017 (DOY 231), 

0.28 in 2018 (DOY 229), and 0.36 in 2019 (DOY 244).  During the early growing 

season, CIGreen followed a similar pattern to that of the other indices with higher values 

in 2017 compared to 2018 and 2019. Maximum CIGreen was 3.14 in 2017 (DOY 189), 

2.24 in 2018 (DOY 192), and 3.00 in 2019 (DOY 191). Following the maximum, CIGreen 

declined rapidly in all years with brief increases following rain events. Prior to 

defoliation CIGreen was 2.20 in 2017 (DOY 231), 1.37 in 2018 (DOY 229), and 1.64 in 

2019 (DOY 244). EVI followed a very similar trend to SAVI. Maximum EVI was 0.48 

in 2017 (DOY 189), 0.43 in 2018 (DOY 192), and 0.50 in 2019 (DOY 191). 

Immediately prior to defoliation EVI was 0.40 in 2017 (DOY 231), 0.27 in 2018 (DOY 
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229), and 0.35 in 2019 (DOY 244). The reduction of multiple VI’s seen in 2018 is 

typical for a season with limited water availability. Irrigation treatment studies in cotton 

have found that all VI’s are reduced in deficit treatments, a similar trend between dry 

and wet years is expected (Ritchie et al., 2010; Ballester et al., 2019).  

 

 

Figure 18: Cotton Vegetation Indices 

Vegetation Indices over time are shown above. Image “A” refers to NDVI. Image “B” 

refers to SAVI. Image “C” refers to CIGreen. Image “D” refers to EVI. Black circles refer 

to 2017, red triangles to 2018, and blue squares to 2019.  
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4.3.2. Gross Primary Productivity 

Growing season (planting to defoliation) gross primary productivity (GPP) is 

shown in Figure 19. The early growing season (DOY 90 – DOY 160) was characterized 

by similar fluxes between all three years. Following that, daily GPP for 2017 exceeds 

that of 2018 and 2019 until DOY 180. After that, daily GPP from 2018 exceeds daily 

GPP from 2017 and 2018 until approximately DOY 210. During the latter part of the 

growing seasons (DOY 220 – defoliation) daily GPP for 2017 and 2019 exceeded that of 

2018. Maximum daily GPP was 14.70 gC m-2 day-1 for 2017 (DOY 187), 18.28 gC m-2 

day-1 for 2018 (DOY 196), and 15.54 gC m-2 day-1 for 2019 (DOY 190).  Cumulative 

growing season GPP was 947.1 gC m-2 for 2017, 882.7 gC m-2 for 2018, and 861.33 gC 

m-2 for 2019.  The lowest cumulative GPP was in 2019, while daily fluxes were similar 

to that of 2017, delayed planting resulted in delayed early-season carbon uptake. The 

2017 growing season was longer (138 days) than that of the subsequent years (126 and 

127 days for 2018 and 2019 respectively). The cumulative GPP at this site is within the 

range reported by other studies. One study of irrigated cotton found an average (4 years) 

growing season GPP of 816.2 gC m-2, which is similar to what was observed at this 

location (Bai et al., 2015; Li et al., 2018).   
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Figure 19: Cotton GPP Over Three Years 

Growing season daily GPP is shown above with GPP on the Y-axis and Day of Year on 

the X-axis. Black circles show fluxes from 2017, red triangles show fluxes from 2018, 

and blue squares show fluxes from 2019. 

 

4.3.3. Model Development 

The model development phase using 2017 data is shown in Figure 20. The best-

fit equation for NDVI*LAI*PAR versus inverse GPP was found to be linear using 

Sigmaplot. Inverse GPP is GPP shown with the inverse (positive) sign. The best-fit 

equations for the remaining three models were found to be quadratic using Sigmaplot. A 
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quadratic fit between GPP and VI*PAR*LAI has been found in previous studies 

(Gitelson et al., 2012; Peng and Gitelson, 2012).  All relationships between GPP and 

VI*LAI*PAR were significant to p < 0.001. The relationship between NDVI*LAI*PAR 

and GPP had a slightly worse correlation (r2 = 0.87) than the other VI’s (r2 = 0.92, 0.92, 

and 0.93 for SAVI, CIGreen, and EVI, respectively). Similar correlations have been found 

in a variety of crops such as corn, soy, wheat, and alfalfa, however little work in 

comparing GPP to vegetation indices has been performed in cotton specifically (Yan et 

al., 2009; Gitelson et al., 2012; He et al., 2018).  
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Figure 20: Regression Analysis Between GPP and VI*LAI*PAR 

Regression analysis between VI*LAI*PAR and GPP is shown above. The Y-axis is 

observed GPP and the X-axis is VI*LAI*PAR. Image “A” refers to the graph where the 

VI is NDVI. Image “B” refers to the graph where the VI is SAVI. Image “C” refers to 

the graph where the VI is CIGreen. Image “D” refers to the graph where the VI is EVI.  

 

4.3.4. Model Validation 

The model validation using the 2018 data is shown in Figure 21 and the model 

validation using the 2019 data is shown in Figure 22, with statistical analysis for both 
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models shown in Table 3. Overall, the model validation using the 2018 data had a 

greater correlation with observed GPP (average r2 = 0.89) than the model validation 

using the 2019 data (average r2 = 0.73).  The slope of the fit between NDVI-modeled 

GPP and observed GPP for 2018 was 1.05 and it was not statistically different (p < 0.05) 

from 1.0. The slope of the same model regression for 2019 was 0.68 and it was 

statistically different (p <0.05) from 1.0. Despite being the best-fit model in 2018, the 

NDVI-based model was the worst fit in 2019. The lack of fit between the modeled GPP 

and observed GPP in 2019 suggests inadequacies in the model. Similar results were seen 

for the other vegetation indices.  

The slope of the fit between SAVI-modeled GPP and observed GPP was 1.08 for 

2018 and 0.81 for 2019. The slope was not statistically different (p < 0.05) from 1.0 in 

either year. While both years were not different from one, the correlation in 2019 (r2 = 

0.76) was weaker than that of 2018 (r2 = 0.85). While still performing more poorly than 

any of the 2018 models, the 2019 SAVI-based model was the best fit for the 2019 

models. The slope between CIGreen-modeled GPP and observed GPP was 1.14 for 2018 

and 0.78 for 2019 and was not statistically different (p < 0.05) from 1.0 in either year. 

The correlation in 2019 (r2 = 0.75) was substantially weaker than that of 2018 (r2 = 

0.91). The slope between CIGreen-modeled GPP and observed GPP was 1.08 for 2018 and 

0.80 for 2019 and was not statistically different (p < 0.05) from 1.0 in either year. The 

correlation in 2019 (r2 = 0.76) was substantially weaker than that of 2018 (r2 = 0.86).  

While the model performance for 2019 was weaker than for 2018, similar results have 
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been seen in other studies of GPP modeling (Yan et al., 2009; He et al., 2018; Zheng et 

al., 2018).  

In 2018, the SAVI-, CIGreen-, and EVI- based models all had a tendency to 

underestimate GPP in the latter part of the growing season. Since all four models used 

the same LAI and PAR data, yet this problem was not observed in the NDVI-based 

model, it is likely an issue with the vegetation index itself. Cotton has a more complex 

canopy structure than most of the crops are used in similar GPP modeling studies. 

Satellite images do not capture shaded leaves, which contribute (albeit less) to GPP. 

Differences in crop vegetative growth structure have been shown to alter the 

effectiveness of Satellite-based GPP models (Glenn et al., 2008; Yan et al., 2009; Zheng 

et al., 2018). A study on GPP modeling in a wheat/corn rotation found that the model 

had the greatest variability in the wheat crop compared to the corn crop. While both 

wheat and corn are grasses, wheat is C3 and has indeterminate vegetative growth (like 

cotton), whereas corn is C4 and has determinate vegetative growth (Yan et al., 2009). 

Even within a species, there can be differences in vegetative structure. The Phytogen 350 

cultivar (2019) had smooth leaves compared to the Phytogen 333WRF cultivar (2017 

and 2018), which was a hairy leaved variety (PhytoGen, 2019). Leaf-type in cotton 

plants has been shown to influence the CO2 exchange rate, early vegetative growth rate, 

and radiation use efficiency (Pegelow et al., 1977; Ibrahim and Buxton, 1981; Gonias et 

al., 2011). 

In 2019, all models had a tendency to underestimate GPP early in the season. 

Slow seedling growth in 2019 due to cold, wet soils may have resulted in issues with 
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mixed pixels (soil and plant) in the satellite data. During this period, the plants are only a 

few centimeters, yet the resolution of the satellite images is 3-meters meaning that the 

plants may not be properly captured by the imagery data. Mixed pixels have been shown 

to be a major source of uncertainty in other efforts of modeling GPP using satellite data 

(Zhao et al., 2005; He et al., 2018; Zheng et al., 2018).  This is more likely for 

uncertainty in the early growing season when plants are considerably smaller than the 

image resolution causing mixed soil/plant pixels. Part of the differences in success 

between the years may also be influenced by the use of a different cultivar in 2019. The 

Phytogen 350 cultivar (2019) is slightly slower maturing than the Phytogen 333WRF 

cultivar (2017 and 2018), possibly causing uncertainty (PhytoGen, 2019).  

Uncertainty in the observed GPP is another possible factor in the model 

uncertainty. Even with well-maintained towers, uncertainty in EC carbon flux data can 

be as high as 20% (Anthoni et al., 1999; Baldocchi, 2003; Baker and Griffis, 2005; 

Glenn et al., 2008; Burba, 2013). Errors in the carbon flux measurements come from a 

variety of sources, including calibration errors and sensor-time delays (Anthoni et al., 

1999; Baldocchi, 2003; Burba, 2013). In addition to uncertainty from the direct 

measurements, there is uncertainty from the flux calculation, flux partitioning, and gap-

filling processes. The method used and the assumptions it makes (i.e. the curve of the fit 

between Reco and air temperature) can make a difference in outcomes.  It is possible that 

uncertainty in the observed GPP measurements is affecting model success.  
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Figure 21: 2018 Cotton GPP Model Validation 

Validation of 2018 GPP models is shown above. Image “A” refers to the validation of 

the NDVI-based GPP model. Image “B” refers to the validation of the SAVI-based GPP 

model. Image “C” refers to the validation of the CIGreen-based GPP model. Image “D” 

refers to the validation of the EVI-based GPP model. Y-axis on all graphs refers to 

observed (tower) GPP and x-axis refer to modeled GPP. The solid red line refers to the 

best fit between the measured and modeled GPP. The dashed black line shows the ideal 

1:1 fit between measured and modeled GPP.  
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Figure 22: 2019 Cotton GPP Model Validation 

Model validation for the 2019 GPP models. Image “A” refers to the validation of the 

NDVI-based GPP model. Image “B” refers to the validation of the SAVI-based GPP 

model. Image “C” refers to the validation of the CIGreen-based GPP model. Image “D” 

refers to the validation of the EVI-based GPP model. Y-axis on all graphs refers to 

observed (tower) GPP and x-axis refer to modeled GPP. The solid red line refers to the 

best fit between the measured and modeled GPP. The dashed black line shows the ideal 

1:1 fit between measured and modeled GPP. 
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Table 3: Statistical Analysis of Cotton GPP Model Validation 

Statistical Analysis  

2018 D-Index r2 

Standard 

Error of the 

Mean 

nRMSE 
Different 

from 1? 

NDVI 0.98 0.93  1.38 0.39 NO 

SAVI 0.95 0.85 1.99 0.44 NO 

CIGreen 0.95 0.91  1.84 0.62 NO 

EVI 0.95 0.86 1.92 0.45 NO 

2019 D-Index r2 

Standard 

Error of the 

Mean 

nRMSE 
Different 

from 1? 

NDVI 0.92 0.65 2.77 0.18 YES 

SAVI 0.95 0.76 2.20 0.44 NO 

CIGreen 0.95 0.75 2.26 0.37 NO 

EVI 0.95 0.76 2.19 0.43 NO 

 

4.4. Conclusions 

There was some difficulty in modeling GPP in cotton using the modification of 

the LUE based method. While there has been success modeling GPP using this type of 

method in other crops, such as corn, little work has been done in cotton. Cotton has a 

more complex growth pattern, which proved tricky to model. There were several times 

during the growing seasons where PAR would be high yet GPP would be low, likely 

throwing off the accuracy of the model. During the early growing season, when 

temperatures are cool, the cotton plants grow slowly and uptake little carbon even if 
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there is sufficient incoming PAR. During the late growing season when the plants are 

senescing, they may once again uptake little carbon despite sufficient PAR.  

The model validation using 2018 data was considerably more successful than the 

model validation effort in 2019. The average standard error was 1.78 gC m-2 for 2018 

and 2.36 gC m-2 for 2019. In 2018, the best performing model was the NDVI-based 

model with an r2 of 0.93 and nRMSE of 0.39 gC m-2 day-1. In 2019, the best performing 

model was the EVI-based model with an r2 of 0.76 and nRMSE of 0.43 gC m-2 day-1.  

The delayed planting in 2019 likely increased severity of high incoming PAR values and 

low GPP found in the early growing season. The results from this study indicate that 

considerable uncertainty still exists in satellite-based GPP modeling for cotton and 

further work is likely needed to address this uncertainty. Cotton growth is more complex 

than other row crops and modeling cotton GPP successfully will need more work. 
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5. COMPARISON OF SIMULATED ET USING THE DSSAT-CERES-MAIZE 

MODELING SYSTEM TO MEASURED ET USING THE EDDY COVARIANCE 

METHOD FOR A CORN CROP IN EAST TEXAS 

 

5.1. Introduction 

Quantifying the impacts of agriculture on regional and global hydrologic cycles 

is a pressing scientific issue given concerns over the effects of anthropogenic climate 

change on water availability. Agricultural production disturbs soils and plant 

communities, which alters surface characteristics, energy balance, and thus 

evapotranspiration (ET) patterns compared to natural ecosystems. Agricultural 

production contributes significantly to ET with global ET estimates suggesting that 

approximately 11.6% of terrestrial ET is from croplands (Oki and Shinjiro, 2006). 

However, it is important to note that large-scale, i.e. global, ET estimates are difficult to 

achieve due to the highly variable nature of ET processes and the lack of ground truth 

data in many regions (Rodell et al., 2015). Expanding ET measurement and modeling 

efforts can improve these large-scale ET monitoring efforts and assist in predicting how 

ecosystems will respond to a changing climate. In addition to contributing to regional 

and global hydrologic cycles, ET associated with crop production makes up the majority 

(85 – 90%) of human water use (Foley et al., 2005; Oki and Shinjiro, 2006; Ramankutty 

et al., 2008; Rost et al., 2008). Agricultural ET is a strong predictor of crop productivity 

and thus economic yield due to the role of ET in the process of CO2 assimilation 

(Sinclair and Muchow, 2001).  Increased use of irrigation, the introduction of higher-
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yielding cultivars, and the expansion of agricultural lands have caused ET associated 

with crop production to increase over the past few decades (Rost et al., 2008; Spera et 

al., 2016). A better understanding of crop ET can lead to better crop water management, 

which can improve the sustainability of agricultural systems.  

Crop modeling is the practice of simulating crop growth and relevant processes, 

such as ET and soil water balance. Crop modeling uses known agronomic principals, 

weather data, soil properties, and, information about the crop’s physiology to simulate 

the agronomic system.  Modeling efforts can expand on our ability to understand ET 

dynamics by expanding observed trends and applying them to areas where direct 

measurement is too costly or impractical. Direct measurement from the eddy covariance 

system requires specific equipment and large areas with uniform terrain and vegetation.  

Modeling is also useful in predicting how changes in management or climate will affect 

crop performance and water dynamics (Soler et al., 2007; Pathak et al., 2012; Jones et 

al., 2017).  Incorporating modeling with ground measurements has the potential to 

improve our understanding of crop water use by validating models with ground truth 

data.  

Modeling efforts often utilize software systems to perform the complex 

calculations needed to simulate crop growth and environmental impacts. There are a 

variety of crop modeling software platforms available, such as DSSAT, APSIM, and 

CropSyst. The Decision Support System for Agrotechnology Transfer, DSSAT, is a 

modular-style modeling software platform with ET modeling capabilities.  The DSSAT 

system incorporates multiple modules and mathematical models into one system. 
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DSSAT models ET by first calculating potential ET and modifying it to using the crop 

model to calculate crop ET. Potential ET is calculated by one of two internal methods; 

Priestly-Taylor/Ritchie (default), and FAO-56. The default method in the DSSAT 

system is the Priestly-Taylor/Ritchie method, which was developed in 1972 as a 

simplified version of the Penman-Monteith ET equation. This method uses solar 

radiation and temperature to calculate potential ET (Agam et al., 2010; Priestly and 

Taylor, 1972; Ritchie, 1972; Xu and Chen, 2005). DSSAT has more recently 

incorporated an additional ET modeling method, FAO-56, the method described Paper 

No. 56 from the Food and Agriculture Organization. This method is a more complete 

variation on the Penman-Monteith ET equation, which uses wind speed and humidity in 

addition to temperature and radiation (Agam et al., 2010; Dejonge and Thorp, 2017; 

Doorenbos and Pruitt, 1977; Monteith, 1986). The DSSAT software manual 

recommends using the FAO-56 method for arid and windy climates and the Priestly-

Taylor/Ritchie for humid environments (Hoogenboom et al., 2003; Jones et al., 2003).  

Once potential ET is calculated it is then modified by the crop model to 

determine crop ET. In corn, this is achieved by one of two modeling systems, IXIM, and 

CERES, this paper focuses on the CERES method. The Crop Environment Resource 

Synthesis (CERES) is a crop model that was developed in the 1980s to simulate yield 

from grass crops (corn, wheat, rice). The CERES model was incorporated into DSSAT 

very early in the creation of DSSAT (Hoogenboom et al., 2003; Jones et al., 2003, 2017; 

Basso et al., 2016). The CERES model simulates growth as distinct growth phases that 

are determined by growing degree-day accumulation (Hoogenboom et al., 2003). 
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While DSSAT has been widely used to model corn ET, it has been less 

successful in dryland systems, indicating a need for further study. A meta-analysis  (111 

studies) ET modeling in corn using DSSAT’s CERES-Maize model found that it often 

performs well in highly irrigated systems (error less than 10%), but that model 

performance in dryland systems was typically poorer with an error greater than 12% 

(Basso et al., 2016). The DSSAT system’s ET modeling efforts often underestimate 

measured ET, particularly in dryland and deficit irrigation systems (Dokoohaki et al., 

2016). Given the concerns over the success of modeling ET in dryland systems, it is 

important to expand efforts to model ET in such systems. This study aims to model ET 

in dryland, conventionally tilled corn in East-Central Texas. Our objective is to model 

ET using the CERES model and both of DSSAT’s internal potential ET methods. 

Modeled ET will be compared to ET measured with an eddy covariance system.  

 

5.2. Methods 

5.2.1. Field Information 

The study was conducted at the Agrilife Research Farm in Burleson County, TX 

(30.549749, -96.423949), which is shown in Figure 23.  An eddy covariance (EC) 

system was installed in the center of a dryland, conventionally tilled cornfield field in 

February 2017. The field is 33.67 ha in area and is located adjacent to the Brazos River.  

Corn was planted on March 10 in 2017, on March 6 in 2018, and on March 7 in 2019. 

Corn was harvested on July 25 in 2017, on July 19 in 2018 and on August 12 in 2019. A 

longer senescence period delayed harvest in 2019. Disc tillage was performed prior to 
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planting in 2017 and 2018; however, wet soil conditions prevented it in 2019. Disc 

tillage was performed after harvest in all three years. The varieties planted were B-H 

8845 VTB in 2017, Pioneer P1602 AM in 2018, and DeKalb 67-42 in 2019. Nitrogen 

fertilizer was applied at a rate of 125 kg  ha-1 each year.   

The local climate is humid subtropical (Köppen Classification: Cfa) with an 

average (30-year) annual temperature of 20.6C and annual precipitation of 1000 mm. 

Precipitation is bi-modal with the majority of precipitation occurring in May, June, and 

October. Monthly 30-year averages for the typical corn growing season (March – July) 

are shown in Figure 24.  All 30-year averages are from NOAA’s 30-year climatic 

average (1980 - 2010) from a weather station approximately 11 km from the field site 

(National Oceanic and Atmospheric Administration, 2011). There are two dominant soil 

types in the field, the Weswood silt loam (Udifluventic Haplustepts, 38% clay in the 

surface horizon) and the Ships clay (Chromic Halpludert, 42% clay in the surface 

horizon), both of which contain predominantly shrink-swell clay minerals that cause the 

soil to heavily crack during dry weather. 
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Figure 23: Image of corn site and eddy covariance tower 

Images of the site and location are shown above. The image on the left is a satellite 

image of the field. The field is outlined in green with the location of the EC tower 

indicated by a red triangle. The Brazos River is highlighted with a blue line. The image 

on the upper right shows a map of Texas with the location of Burleson County marked 

with a star. The image on the lower right is a photograph of the EC tower.  
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Figure 24: Monthly Average Weather for Location 

Monthly temperature and precipitation averages for the typical growing season for corn 

in Burleson County, Texas are shown above. Averages are the 30-year average from the 

National Oceanic and Atmospheric Administration. 

 

5.2.2. Instrumentation 

The EC system is an open path system and consisted of an LI-7500 Infrared Gas 

Analyzer (IRGA; LI-COR, Lincoln, NE, USA) and a CSAT-3 Sonic Anemometer 

(Campbell Scientific, Logan, UT, USA). The EC instruments were connected to a 

SmartFlux system with embedded EddyPro (Version 6.2.2; L-COR, Lincoln, NE, USA) 

software. Data was collected at 10 Hz and then compiled into 30-minute summaries by 

the SmartFlux system. The EC instruments were installed on a tripod, facing due south 

(the direction of the prevailing winds), the height of the tower was maintained at 2 

meters above the plant canopy. The instruments were calibrated and had their internal 

chemicals changed annually as recommended by the manufacturer.  
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 Additional meteorological and soil instruments were installed at the site to 

augment the flux data and to allow for an energy balance calculation. Air temperature 

and relative humidity were collected using a temperature and relative humidity probe 

(HMP155A; Vaisala, Vantaa, Finland). Several aspects of solar radiation, incoming solar 

radiation, photosynthetically available radiation (PAR), and net radiation, were measured 

with the a pyranometer (LI-200R; LI-COR, Lincoln, NE, USA), a quantum sensor (LI-

190R; LI-COR, Lincoln, NE, USA), and a net radiometer (NR-LITE2; Kipp & Zonen, 

Delft, Netherlands), respectively. Precipitation was measured with a tipping-bucket style 

rain-gauge (TE-525; Texas Electronics, Dallas, TX, USA). Soil instruments consisted of 

the following: seven soil moisture sensors (CS655; Campbell Scientific, Logan, UT, 

USA), four soil heat-flux plates (HPF01SC Hukseflux, Delft, Netherlands), and four soil 

thermocouples (TCAV; Campbell Scientific, Logan, UT, USA). Three of the soil 

moisture sensors were installed horizontally at 4 cm. Two soil moisture sensors were 

installed vertically between 10 and 20 cm. The remaining two soil moisture sensors were 

installed vertically between 10 and 20 cm. The soil heat-flux plates were buried at 8 cm 

and placed in pairs, 1 meter apart. The soil thermocouples were installed above the heat-

flux plates with one probe at 2 cm and the other at 6 cm. All meteorological and soil 

instruments were connected to a datalogger (CR3000; Campbell Scientific, Logan, UT, 

USA) that was to collect measurements every 2 seconds and then compile the 

measurements into 30-minute summaries.  
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5.2.3. Eddy Covariance Data Processing and Analysis 

The EddyPro software flagged data points that were likely to be erroneous based 

on internal turbulence tests; good quality data was marked with a “0”, fair quality data 

was marked with a “1”, and poor-quality data was marked with “2”. Poor quality data 

was then manually removed.  Gap filling was used to fill in missing (due to power loss 

and instrument malfunction) and removed data points. Gap filling was performed using 

the Max Plank Institute for Biogeochemistry’s R-based program (R Gui 3.4.1) (Fritz et 

al., 2018). The EC data was also used to calculate an energy balance, a common method 

of correcting for any additional uncertainties in the EC data (Twine et al., 2000; Cook et 

al., 2004; Li et al., 2008; Hirschi et al., 2017). The energy balance formula is as follows:  

Rn – G = LE + H. 

Where: 

 G = (((1.02 + (VWC*4.19))*(T * 8) * (50/9))/G8 cm 

Where Rn corresponds to the Net Radiation. LE and H correspond to the Latent 

and Sensible Heat, respectively, from the EC system. VWC corresponds to the 

Volumetric Water Content at four cm. T was calculated as the difference in soil 

temperature from one thirty-minute time to the next.  Soil heat at 8 cm (G8 cm) was the 

average of the 4-soil heat flux plates buried at 8 cm.  Linear regression between Rn – G 

and LE + H was performed with the slope the regression line indicating the energy 

accounted for by the EC system. The unaccounted energy was redistributed to LE and H 

based on the Bowen ration.  
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5.2.4. DSSAT Model 

The Decision Support System for Agrotechnology Transfer (DSSAT) software 

system (DSSAT Foundation, Gainsville, FL, USA) modeled crop growth and ET.  Daily 

weather data from the meteorological instruments were added to the DSSAT system as a 

weather file. Separate soil files were created for each soil type found in the field (Ships 

clay and Weswood silt loam). Models were run using each soils file, models using the 

Ships clay as the input soils file will be referred to as Ships and models using the 

Weswood silt loam will be referred to as Weswood. The collected phenological data was 

added to DSSAT as a T-file to be used in calibrating the cultivar parameters. The 

Generalized Likelihood Uncertainty Estimation (GLUE) tool used the T-file to calibrate 

the cultivar file parameters used for the model, which are shown in Table 4. The GLUE 

tool creates many successive models and compares them to the actual recorded 

phenological information using a likelihood function and determines the best fit, this 

process has been shown to minimize uncertainty in parameter estimation (DSSAT, 2017, 

Pathak et al 2012). Since different cultivars were planted each year, calibration was done 

using each year’s data alone. The species and ecotype files for corn were not modified. 

Following the creation of weather, soil, and cultivar files, the models themselves were 

set up using an experiment file.  
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Table 4: Optimized Corn Cultivars 

Corn Cultivar Parameters 

Parameter Description 2017 2018 2019 

-  Cultivar B-H 8845 

VTB 

Pioneer 

P1602 AM 

DeKalb 

67-42 

P1 Growing Degree Days 

from emergence to end of 

vegetative growth 

334.0 230.1 227.1 

P2 Delay in development 

associated with day length 

longer than 12.5 hours 

0.999 0.995 1.006 

P5 Growing Degree Days 

from silk to maturity 

842.0 793.2 791.2 

G2 Kernels per plant 618.0 618.3 615.2 

G3 Kernel growth rate 10.67 10.77 10.68 

PHINT Growing Degree Days 

between leaf appearances 

38.90 45.00 38.90 

 

The CERES-Maize model was used to simulate corn growth and development, 

CERES is one of two corn models available in DSSAT, the other being IXIM. CERES is 

primarily used for grass crops such as wheat, corn, and sorghum that uses a growing 

degree-day-based formula to model crop growth and development. The DSSAT system 

used a number of different sub-models to simulate environmental conditions (i.e. ET and 

soil moisture) that interact with the CERES model (Hoogenboom et al., 2003).  Soil 

evaporation was modeled using the method developed by Suleiman and Ritchie in 1972. 

This method uses a two-step process, the first step occurs under high soil moisture and 

evaporation is limited only by available radiation energy. The second step occurs under 
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lower soil moisture and is limited by radiation, water availability, and soil properties  

(Hoogenboom et al., 2003; Suleiman and Ritchie, 2003; Ritchie et al., 2009).  Soil 

organic matter was modeled the default DSSAT method, which is based on a 

modification of the PAPRAN model  (Seligman and Van Keulen, 1981; Godwin and 

Jones, 1991; Godwin and Singh, 1998; Hoogenboom et al., 2003; Dejonge and Thorp, 

2017). Soil water movement was modeled using the method developed for CERES; 

which is the default method. This model calculates water content in each soil layer on a 

daily time-scale using rainfall, ET, drainage, irrigation, and unsaturated water flow 

(Ritchie and Otter, 1985; Jones and Ritchie, 1991; Jones, 1993; Ritchie, 1998; 

Hoogenboom et al., 2003). The CERES-Maize model predicts daily canopy 

photosynthesis based on solar radiation, temperature, water availability, nitrogen 

availability, leaf biomass, row spacing, crop genetics, and atmospheric CO2 

concentration (Jones et al., 1989; Hoogenboom et al., 2003). Corn ET was modeled 

using both of DSSAT’s built-in methods: FAO-56 and Priestly-Taylor/Ritchie, both of 

these methods model potential ET, which is then modified by CERES to estimate crop 

ET using soil water and crop growth information (Hoogenboom et al., 2003). Results 

from the ET methods will be compared to each other.  Models using the Priestly-

Taylor/Ritchie method will be referred to as PT, and models using the FAO-56 method 

will be referred to as FAO.  

5.2.5. Statistical Analysis 

Statistical analysis was performed using DSSAT’s internal system and manual 

calculation. The following indices of model performance were manually calculated: 
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index of agreement (D-Index), normalized root mean square error (nRMSE), r-squared, 

and co-coefficient of residual mass (CRM). The D-index shows the degree of fit between 

the modeled data and the real data, with a perfect fit between the modeled and observed 

data giving a D-index of 1.0 and no fit giving a D-index of 0.0 (Soler et al., 2007; 

Adhikari et al., 2016; Basso et al., 2016; Amouzou et al., 2018). The calculation of the 

D-index is as follows, where x is the modeled value and y is the observed value: 

𝑑 = 1 − [
∑(𝑥 − �̅�)2

∑(|𝑥 − �̅�| + |𝑦 −  �̅�|)2
] 

The CRM shows the degree of over or underestimation between the model and 

the measured data. A perfect fit between a model and measurement would give a CRM 

of zero, positive numbers indicate underestimation and negative numbers indicate 

overestimation by the model (Xevi et al., 1996; Jalota et al., 2010; Dettori et al., 2011).   

CRM =  
∑ 𝑦 − ∑ 𝑥

∑ 𝑦
 

 

5.3. Results and Discussion 

5.3.1. Phenology Models 

The phenology (height, biomass, and leaf area) models for 2017 are shown in 

Figure 25 and their statistical results are shown in Table 5. The Leaf Area Index (LAI) 

model (Figure 25A) slightly underestimated actual LAI during the earlier portion of the 

growing season. The Weswood LAI had a slight drop in LAI during the mid-growing 

season that was not seen in the Ships model or in the actual data. The Weswood model 

predicted a maximum LAI of 2.61, while the observed maximum LAI for the Weswood 

soil was 2.56. The RMSE for this model was 0.56. The Ships model predicted a 



 

195 

 

maximum LAI of 2.87, while the observed maximum LAI for the Ships soil was 2.59. 

The RMSE for this model was 0.42. A meta-analysis of 23 studies using DSSAT’s 

CERES MAIZE  to model LAI found a typical RMSE for dryland models to be 0.84 and 

that most studies had a d-Index above 0.8 (Basso et al., 2016). Other studies of LAI 

modeling using CERES-Maize produced similar results (Xevi et al., 1996). The result 

for these LAI models were well within the range of results observed in other studies.  

The biomass models (Figure 25B) performed well. The Weswood model 

predicted a maximum aboveground biomass of 12951 kg ha-1, while the observed 

maximum aboveground biomass for the Weswood soil was 13187 kg ha-1 with an RMSE 

of 1331.53 kg ha-1. The Ships model predicted a maximum aboveground biomass of 

14557 kg ha-1, while the observed maximum aboveground biomass for the Ships soil 

was 12026 kg ha-1 with an RMSE of 772.16 kg ha-1. The results of the 2017-biomass 

models were within those of other modeling efforts.  Other modeling studies using 

CERES-Maize had a wide range of RMSE values (400 kg ha-1 – 5000 kg ha-1) for the 

aboveground biomass, however most modeling efforts produced an RMSE 

approximately between 1500 kg ha-1  and 2000 kg ha-1 (Saseendran et al., 2005; Mubeen 

et al., 2013; Basso et al., 2016).  

During 2017, the corn height model (Figure 25C) performed quite well for the 

first half of the growing season; however, it underestimated the actual plant height at 

maturity. This is due to a limitation in the CERES model, which sets a maximum plant 

height at 1.6 meters (Hoogenboom et al., 2003), thus the maximum predicted plant 
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height using both soil models was 1.6 meters while the actual maximum height was 2.02 

m in the Ships soil and 2.17 m in the Weswood soil.  
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Figure 25: 2017 Corn Phenology Models 

The 2017 Phenology models are shown above. Figure “A” is the LAI model, Figure “B” 

is the biomass model, and Figure “C” is the canopy height model. The black circles refer 

to the model using the Ships soil file. The grey squares refer to the measured points from 
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the area of the field with the Ships clay soil. The red triangles refer to the model using 

the Weswood soil file. The maroon diamonds refer to the measured points from the area 

of the field with the Weswood silt loam. 

 

Table 5: Statistical Results for 2017 Phenology Model 

2017 Phenology Models 

 Plant Height Leaf Area Index Biomass 

Statistic Ships 

Clay 

Weswood 

Silt Loam 

Ships 

Clay 

Weswood 

Silt Loam 

Ships 

Clay 

Weswood 

Silt Loam 

RMSE 0.32 0.32 0.42 0.56 772.16 1331.53 

R2 0.84 0.98 0.88 0.83 0.98 0.98 

D-Index 0.95 0.95 0.96 0.93 0.99 0.98 

 

The phenology models for 2018 are shown in Figure 26 and Table 6. The LAI 

model (Figure 26A) using the Ships soils file simulated a lower LAI at maturity than the 

model using the Weswood file, which is the inverse of what was observed in 2017. The 

model using the Weswood soil file underestimated LAI during the dry-down period. The 

Weswood model predicted a maximum LAI of 3.11, while the observed maximum LAI 

for the Weswood soil was 3.06 with an RMSE for this model was 0.39. The Ships model 

predicted a maximum LAI of 2.80, while the observed maximum LAI for the Ships soil 

was 2.54. The RMSE for this model was 0.28. As with 2017, the error rate for the LAI 

model was similar to those seen in other modeling studies using CERES.  

The biomass models (Figure 26B) both underestimated actual biomass, although 

the effect was more pronounced with the Ships model. The Weswood model predicted a 

maximum aboveground biomass of 12174 kg ha-1, while the observed maximum 

aboveground biomass for the Weswood soil was 12649 kg ha-1 with an RMSE of 946.74 
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kg ha-1. The Ships model predicted a maximum aboveground biomass of 13352 kg ha-1, 

while the observed maximum aboveground biomass for the Ships soil was 8016 kg ha-1 

with an RMSE of 2571.74 kg ha-1. The error for the Ships model was greater than 

expected but still within the range observed by other studies (Basso et al., 2016). As with 

2017, the CERES model set the maximum high to 1.6 meters, causing the mature height 

to be underestimated (Figure 26C).  Additionally, the height model overestimated 

observed height during the early growing season. The observed maximum height was 

2.5 m for the Ships soil and 2.8 m for the Weswood soil.   
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Figure 26: 2018 Corn Phenology Models 

The 2018 Phenology models are shown above. Figure “A” is the LAI model, Figure “B” 

is the biomass model, and Figure “C” is the canopy height model. The black circles refer 

to the model using the Ships soil file. The grey squares refer to the measured points from 

the area of the field with the Ships clay soil. The red triangles refer to the model using 

Days After Planting

0 20 40 60 80 100 120 140

B
io

m
a

s
s

 (
k

g
 h

a
-1

)

0

2000

4000

6000

8000

10000

12000

14000

16000

Simulation (Weswood) 
Simulation (Ships) 
Measured (Ships)
Measured (Weswood) 

Days After Planting

0 20 40 60 80 100 120 140

L
A

I

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Simulation (Ships) 
Simulation (Weswood) 
Measured (Ships)
Measured (Weswood) 

Days After Planting

0 20 40 60 80 100 120 140

C
a
n

o
p

y
 H

e
ig

h
t 

(m
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Simulation (Ships) 
Simulation (Weswood) 
Measured (Ships) 
Measured (Weswood)

A

B

C



 

201 

 

the Weswood soil file. The maroon diamonds refer to the measured points from the area 

of the field with the Weswood silt loam. 

 

Table 6: Statistical Results for 2018 Corn Phenology Models 

2018 Phenology Models 

 Plant Height Leaf Area Index Biomass 

Statistic Ships 

Clay 

Weswood 

Silt Loam 

Ships 

Clay 

Weswood 

Silt Loam 

Ships 

Clay 

Weswood 

Silt Loam 

RMSE 0.54 0.68 0.28 0.39 2571.74 946.74 

R2 0.78 0.79 0.97 0.90 0.98 0.96 

D-Index 0.89 0.85 0.98 0.97 0.89 0.99 

 

 

The phenology models for 2019 are shown in Figure 27 and Table 7. The LAI 

model (Figure 27A) using the Weswood soil file overestimated LAI during the peak of 

the growing season. The model using the Ships clay file followed the measured data 

much more accurately, including data points from the areas of the field with Weswood 

soils. The Weswood model predicted a maximum LAI of 3.70, while the observed 

maximum LAI for the Weswood soil was 2.85 with an RMSE for this model was 0.49. 

The Ships model predicted a maximum LAI of 3.02, while the observed maximum LAI 

for the Ships soil was 2.46 with an RMSE for this model was 0.32. 

The biomass model (Figure 27B) performed well with the Weswood model 

estimating a slightly higher biomass than the Ships model. The Weswood model 

predicted a maximum aboveground biomass of 13738 kg ha-1, while the observed 

maximum aboveground biomass for the Weswood soil was 11349 kg ha-1 with an RMSE 
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of 1032.55 kg ha-1. The Ships model predicted a maximum aboveground biomass of 

12065 kg ha-1, while the observed maximum aboveground biomass for the Ships soil 

was 8926 kg ha-1 with an RMSE of 1197.05 kg ha-1. The height models (Figure 27C) 

performed similarly in 2019 to previous years.  

Compared to each other, the 2018 models had the least agreement with the 

measured data, while the 2017 and 2019 models had a similar agreement with the 

measured data. The primary differences between the years were the weather data and the 

calibrated cultivar parameters. The model settings and methods were kept constant 

between the years.  A comparison of 23 studies using CERES-Maize with DSSAT to 

model LAI found an average RMSE of 0.84 for dryland and limited irrigation systems. 

All RMSE values for this study were well within this range, and many were closer to the 

average RMSE value of 0.31 for irrigated systems (Basso et al., 2016; Jones et al., 

2017). The same meta-analysis also looked at biomass models with 31 studies of 

biomass modeling with CERES-Maize. Reported errors in biomass studies varied widely 

with the average RMSE in dryland and deficit irrigation studies being 1998.8 kg ha-

1(Basso et al., 2016). The biomass model from 2018 using the Ships soils file was the 

only one to have an RMSE greater than this, however several studies reported an RMSE 

of over 5000 kg ha-1 (Carberry, 1991; Lopez-Cedron et al., 2008).  
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Figure 27: 2019 Corn Phenology Models 
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The 2019 Phenology models are shown above. Figure “A” is the LAI model, Figure “B” 

is the biomass model, and Figure “C” is the canopy height model. The black circles refer 

to the model using the Ships soil file. The grey squares refer to the measured points from 

the area of the field with the Ships clay soil. The red triangles refer to the model using 

the Weswood soil file. The maroon diamonds refer to the measured points from the area 

of the field with the Weswood silt loam. 

 

Table 7: Statistical Results for 2019 Corn Phenology Models 

2019 Phenology Models 

 Plant Height Leaf Area Index Biomass 

Statistic Ships 

Clay 

Weswood 

Silt Loam 

Ships 

Clay 

Weswood 

Silt Loam 

Ships 

Clay 

Weswood 

Silt Loam 

RMSE 0.16 0.11 0.32 0.49 1197.05 1032.55 

R2 0.96 0.98 0.95 0.94 0.995 0.99 

D-Index 0.99 0.99 0.98 0.96 0.97 0.9 

 

 

5.3.2. Energy Balance 

The energy balance closure is shown in Figure 28. The energy balance closure 

(the slope of the regression line for Rn-G v LE+H) was 0.70 in 2017, 0.86 in 2018, and 

0.84 in 2019. These values are within the range of energy balance closures of other EC 

studies. One of the largest meta-analysis of EC sites and energy balance closure found an 

average closure of 0.79 with a range of 0.53 to 0.99 over 22 sites (Wilson et al., 2002). 

Studies in corn specifically have cited energy balance closure well within this range with 

most citing a closure between 0.75 and 0.90 (Twine et al., 2000; Saigusa et al., 2002; 

Baker and Griffis, 2005; Yu et al., 2006; Li et al., 2008, 2018; Carmelita et al., 2014). 
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The 2017 closure was on the lower end of the range of typical energy balance slopes. 

The 2018 and 2019 closures were typical for EC studies and were above the average 

closure for the meta-analysis by Wilson, et al.  

 

 

Figure 28: Corn Energy Balance Closure 
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The energy balance closure is shown above. Image “A” shows the closure for 2017. 

Image “B” shows 2018. Image “C” shows 2019. The red line shows the best fit for the 

data. Equation of the regression line and the r-square are also shown in the images 

above.  

 

5.3.3.  Evapotranspiration Models 

The evapotranspiration models for 2017, 2018, and 2019 are shown in Figure 29, 

Figure 30, and Figure 3, respectively and the statistical analysis are shown in Table 8. 

The total measured ET in 2017 was 461.12 mm. The Priestly-Taylor model predicted a 

total ET of 459.20 mm using the Weswood soils file and a total ET of 500.70 mm using 

the Ships file. The FAO-56 model predicted a total ET of 456.39 mm using the 

Weswood soils file and 491.23 mm using the Ships soils file. In 2017, the best 

agreement between measured and modeled ET was during the late vegetative and 

reproductive growth periods in both models. Both models underestimated ET during the 

early vegetative and senescence periods. The Priestly-Taylor model had a tendency to 

overestimate ET during the main growing season, which was not seen in the FAO-56 

model.  The models using the Ships soils file had a greater tendency to overestimate ET. 

The lowest nRMSE (0.35 mm) was with the FAO-56 model using the Ships soils file. 

This is a higher nRMSE than ideal, however it is within the range of other dryland 

studies (Anothai et al., 2013; Basso et al., 2016). 

  The total measured ET in 2018 was 410.95 mm. The Priestly-Taylor model 

predicted a total ET of 323.72 mm using the Weswood soils file and a total ET of 376.78 
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mm using the Ships file. The FAO-56 model predicted a total ET of 334.05 mm using 

the Weswood soils file and 388.74 mm using the Ships soils file. All 2018 models 

greatly underestimated actual ET during the early vegetative phase, although this was 

less prominent for the FAO-56 models.  The models (both FAO-56 and Priestly-Taylor) 

that used the Weswood soils file tended to underestimate ET during the late growing 

season compared to models using the Ships soils file. All 2018 models underestimated 

the actual ET (CRM greater than 0), however, it was only a slight overestimation for 

models using the Ships soils file. The Priestly-Taylor model using the Ships soil file had 

a good index of agreement (above 0.8) and had the lowest nRMSE of all of the 2018 

models.  

  The total measured ET in 2019 was 410.86 mm. The Priestly-Taylor model 

predicted a total ET of 327.70 mm using the Weswood soils file and a total ET of 321.38 

mm using the Ships file. The FAO-56 model predicted a total ET of 318.59 mm using 

the Weswood soils file and 310.49 mm using the Ships soils file. All 2019 models 

significantly underestimated ET; this was particularly true during the latter half of the 

growing season. Error between all 2019 models was similar (nRSME 0.31 mm & 0.33 

mm). While the 2019 models underestimated ET, the pattern of the fluxes was modeled 

accurately, as all the models had a high index of agreement (D-Index above 0.8) and r-

square values compared to the models in previous years. The model is likely 

underestimating ET in 2019 due to the change in tillage practices. As pre-plant tillage 

did not take place in 2019, pre-plant tillage was not included in 2019, which was 

different from the models in previous years.  
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 Across all three years, the models in 2017 performed poorly compared to the 

models in 2018 and 2019. In all models except for the 2018 model with the Ships soils 

file, the FAO-56 method produced more accurate results than the Priestly-Taylor 

method. There was a tendency of most of the models to underestimate actual ET. Model 

error was within the typical range for DSSAT studies using dryland production. The use 

of DSSAT to model dryland production typically produces more error than with irrigated 

production (Sau et al., 2004; Anothai et al., 2013; Soldevilla-Martinez et al., 2014; Basso 

et al., 2016).  This reduced accuaracy in dryland systems is a potential problem for 

modeling in regions where dryland farming the predominate management practice.  

There is some evidence that the second stage of the soil water model used by 

DSSAT is contributing to this problem. In irrigated systems, regular water applications 

assure that the second-stage soil water flow is less prominent in determining soil water 

availability and evaporation (Suleiman and Ritchie, 2003; Ritchie et al., 2009). This is 

likely exacerbated by the presences of shrink-swell minerals at this site, which have been 

well-established to alter soil water processes by creating preferential flow and allowing 

for evaporation from deep within the soil via cracks (Patil and Rajput, 2009; Harmel et 

al., 2019). Finally, over the decades, in the time since the DSSAT system’s crop 

coefficients were developed, corn breeder have been developing new traits that impact 

crop water use and evapotranspiration.  
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Figure 29: 2017 Corn Evapotranspiration Models 

The ET models for 2017 are shown above against measured ET and rainfall. The top 

image shows the models using the Priestly-Taylor method. The bottom image shows the 

models using the FAO-56 method. The x-axis shows days after the start of the 

simulation. The left y-axis shows ET in millimeters. The right y-axis shows rainfall in 

millimeters. The vertical bars represent daily rainfall. The black circles show modeled 
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ET using the Ships soils file. The blue triangles show modeled ET using the Weswood 

soil file. The red squares show measured ET from the EC system.  

 

 

Figure 30: 2018 Corn Evapotranspiration Models 

The ET models for 2018 are shown above against measured ET and rainfall. The top 

image shows the models using the Priestly-Taylor method. The bottom image shows the 

models using the FAO-56 method. The x-axis shows days after the start of the 
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simulation. The left y-axis shows ET in millimeters. The right y-axis shows rainfall in 

millimeters. The vertical bars represent daily rainfall. The black circles show modeled 

ET using the Ships soils file. The blue triangles show modeled ET using the Weswood 

soil file. The red squares show measured ET from the EC system. 

 

 

Figure 31: 2019 Corn Evapotranspiration Models 
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The ET models for 2017 are shown above against measured ET and rainfall. The top 

image shows the models using the Priestly-Taylor method. The bottom image shows the 

models using the FAO-56 method. The x-axis shows days after the start of the 

simulation. The left y-axis shows ET in millimeters. The right y-axis shows rainfall in 

millimeters. The vertical bars represent daily rainfall. The black circles show modeled 

ET using the Ships soils file. The blue triangles show modeled ET using the Weswood 

soil file. The red squares show measured ET from the EC system.  

 

Table 8: Corn Evapotranspiration Model Statistical Results 

ET Model Statistics 
 

2017 2018 2019 

Statistic Weswood Ships Weswood Ships Weswood Ships 

Priestly-Taylor/Ritchie Model 

nRMSE 0.46 0.43 0.39 0.26 0.31 0.33 

CRM -0.05 -0.15 0.21 0.08 0.22 0.24 

D-index 0.75 0.76 0.79 0.86 0.87 0.86 

R
2

 
0.13 0.16 0.45 0.74 0.79 0.80 

FAO-56 Model 

nRMSE 0.39 0.35 0.42 0.30 0.31 0.32 

CRM 0.01 -0.13 0.19 0.05 0.20 0.22 

D-index 0.76 0.79 0.72 0.75 0.87 0.85 

R
2

 
0.10 0.16 0.26 0.56 0.77 0.76 
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5.4. Conclusions 

 The phenology models were reasonably successful with the outcomes being 

similar to those reported in other studies of modeling corn growth in dryland production. 

The modeling efforts using the DSSAT system to model ET in dryland corn were met 

with mixed success. The nRMSE for the models ranged between 0.26 mm to 0.46 mm. 

The FAO-56 method produced results that are more consistent and usually had better 

agreement with the measured data. The inclusion of different soils files affected the 

modeling results, highlighting the potential problem of non-uniform soils in modeling 

efforts. The models often underestimated actual ET, which increased the error associated 

with the model. Unfortunately, mixed results like this are somewhat typical for ET 

modeling efforts in dryland systems. This effect is likely exacerbated by the presence of 

2:1 shrink-swell clays at the site. The DSSAT system does not differentiate between clay 

minerals, which could be affecting model success. The gap in accuracy between irrigated 

and dryland modeling efforts is a particular problem in regions where dryland 

production is the predominate practice. Further work is needed to improve the accuracy 

of DSSAT’s ET modeling in dryland systems.  
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6. COMPARISON OF SIMULATED ET USING DSSAT-CROPGRO-COTTON AND 

MEASURED ET USING THE EDDY COVARIANCE METHOD 

 

6.1. Introduction  

Improving our understanding of crop water use and its impact of regional and 

global hydrologic cycles is an important topic of research given current concerns over 

the effects of a rising human population and climate change on the availability of water 

for using in agriculture. Evapotranspiration (ET), is the combination of evaporation and 

plant transpiration, and over terrestrial areas, ET is largely plant transpiration plus some 

soil water evaporation. Agriculture can change ET patterns compared to natural 

ecosystems due to changes in soil management and plant cover. For example, the 

clearing of forest for cropland typically results in a decrease in ET as deep-rooted trees 

with access to groundwater are replaced with short rooted crops with access only to the 

surface soil (Shelton, 1987; Rost et al., 2008; Tian et al., 2010; Spera et al., 2016). 

Current global ET estimates suggest that approximately 12% of terrestrial ET comes 

from crop production, irrigated and dryland (Oki and Shinjiro, 2006; Rost et al., 2008). 

However, large-scale ET estimates can be difficult due to the highly variable nature of 

ET processes and the lack of actual measurements in many areas (Rodell et al., 2015). 

While cropping systems account for a low percentage of terrestrial ET, it accounts the 

majority (85 – 90%) of human water use (Foley et al., 2005; Oki and Shinjiro, 2006). 

Agricultural ET also important because it is correlated with yield and productivity due to 

the role of transpiration in the CO2 assimilation process (Sinclair and Muchow, 2001). 
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Increasing our efforts to understand crop water use via measurement and modeling can 

improve our ability to predict how ecosystems will respond to a changing climate.  

Eddy covariance (EC) is a well-established technique for measuring gas fluxes, 

including water vapor, from larger-scale ecosystems and agricultural settings (Suyker et 

al., 2004a; Yu et al., 2006; Burba, 2013; Hirschi et al., 2017). Gas fluxes are calculated 

as the covariance between the vertical wind speed and the concentration of the interest.  

The eddy covariance method is comparable to older lysimeter based methods, although it 

does have a tendency towards error immediately after rain events (Möller et al., 2004; 

Hirschi et al., 2017). The EC method has successfully been used with cotton, although 

studies of EC in cotton are limited compared to more common crops, such as corn or 

wheat (Uddin et al., 2013; Han et al., 2014; Qin et al., 2016; Li et al., 2018). While the 

EC method is useful for measuring ET, the cost of establishing and maintaining a system 

is high. Additionally, the EC method requires a large uniform and level area with the 

same crop to perform adequately, as such it is not applicable to non-uniform fields, 

smaller fields, and fields on sloped land (Burba, 2013; Hirschi et al., 2017). Simulation 

of ET, via various modeling systems, is thus important for fully understanding ET, 

particularly where direct measurement is not possible or practical.  

Crop modeling uses known agronomic principals, weather information, soil 

information, and management information to predict the growth and development of a 

crop. Crop models often incorporate ET as part of the modeling effort to determine crop 

water use. Most ET modeling platforms use the Penman-Monteith equation or a 

modified version thereof to model potential ET and then modify that to simulate crop ET 
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(Soler et al., 2007; Pathak et al., 2012; Jones et al., 2017). Some of the more commonly 

used crop-modeling software platforms include DSSAT, CropSyst, and APSIM.  

 The Decision Support System for Agrotechnology Transfer (DSSAT) is a crop-

modeling software platform with ET modeling capabilities. DSSAT has a modular 

approach that incorporates multiple models, i.e. CERES, CROPGRO, IXIM, into one 

software platform with internal soil and water modeling methods. Cotton is modeled 

using the CROPGRO method, which was initially developed for soybean and peanut and 

has since been modified for use in a variety of dicot (broadleaf) crops, including cotton 

(Hoogenboom et al., 2003; Jones et al., 2017). In the DSSAT system, ET is modeled in a 

two-step process. The first step is to calculate potential ET and the second is to modify 

potential ET with the soils file and crop model to produce ET. There are two internal 

methods for calculating potential ET within DSSAT, Priestly-Taylor/Ritchie (default) 

method, and the FAO-56 method. The Priestly-Taylor method is a modification of the 

Penman-Monteith equation published by C.H.B. Priestly and R.J. Taylor in 1972. This 

method calculates potential ET using air temperature and solar radiation (Priestly and 

Taylor, 1972; Hoogenboom et al., 2003; Jones et al., 2003). This method has been found 

to work adequately in low wind and humid conditions (Jones, 1993; Xu and Chen, 

2005).  The FAO-56 method a more complete version of the Penman-Monteith equation 

that was published in the Food and Agriculture Organization’s paper number 56. This 

method calculated potential ET using air temperature, solar radiation, wind speed, and 

relative humidity. This method is recommended by DSSAT for use in arid and windy 

climates (Jones, 1993; Jones et al., 2003; Monteith, 1986). However several studies have 
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found that the FAO-56 method is preferred even in humid climates as it produces less 

error than the Priestly-Taylor/Ritchie model (Suleiman and Hoogenboom, 2007; 

Suleiman et al., 2007; Thorp et al., 2014).  

 While DSSAT’s ET modeling capabilities have been used widely in some crops, 

like corn, there have been limited applications in cotton. The studies that have been done 

in cotton have generally had more success in irrigated cropping compared to dryland 

(Howell et al., 2004; Thorp et al., 2014; Dejonge and Thorp, 2017). As such, the overall 

goal of this study is to improve our knowledge of modeling ET in cotton using the 

DSSAT system. This study will model ET from a cotton crop in Texas using both of 

DSSAT’s internal methods. The modeled ET will be compared to observed ET from an 

EC tower in the cotton field.  

6.2. Methods 

6.2.1. Instrumentation 

Continuous 10 Hz measurements of CO2 and water vapor flux were made using 

an eddy covariance system (EC). The EC system consisted of a sonic anemometer (C-

SAT3; Campbell Scientific, Logan, UT, USA) and an infrared gas analyzer, IRGA (LI-

7500; LI-COR, Lincoln, NE, USA). The sonic anemometer and IRGA were connected to 

LI-COR’s SmartFlux system, which used EddyPro (version 6.2.2) software to process 10 

Hz fluxes and compile them into 30-minute summaries. Eddy covariance instruments 

were maintained at 2 m above the plant canopy and were installed facing due south, 

which was the direction of the prevailing winds. Instruments were calibrated and had 

their internal chemicals changed annually as recommended by the manufacturer.  
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Additional meteorological instruments were installed at the site to accompany the 

EC measurements and to allow for an energy balance closure. Air temperature and 

relative humidity were measured using a temperature and relative humidity probe 

(HMP155A; Vaisala, Vantaa, Finland). Solar instruments consisted of a pyranometer 

(LI-200R; LI-COR, Lincoln, NE, USA), a quantum (PAR) sensor (LI-190R; LI-COR, 

Lincoln, NE, USA), and a net radiometer (NR-LITE2; Kipp and Zonen, Delft, 

Netherlands). Precipitation was measured using a tipping bucket style rain gauge 

(TE525; Texas Electronics, Dallas, TX, USA). Soil instruments consisted of seven soil 

moisture sensors (CS655; Campbell Scientific, Logan, UT, USA), four soil 

thermocouples (TCAV; Campbell Scientific, Logan, UT, USA), and four soil heat-flux 

plates (HPF01SC; Hukseflux, Delft, Netherlands). Three soil moisture sensors were 

placed horizontally at a depth of 4 cm; two were placed vertically between 10 and 20 

cm; the last two were placed vertically between 20 and 30 cm.  Soil heat-flux plates were 

placed in pairs, 1 meter apart, and buried at 8 cm.  Soil thermocouples were buried at 2 

and 6 cm above the soil heat-flux plates. Additional meteorological instruments and soil 

instruments were connected to a datalogger (CR-3000; Campbell Scientific, Logan, UT, 

USA). Readings were collected every 2 seconds and compiled into 30-minute 

summaries. 

6.2.2. Field Information  

The study was conducted in a 12.14 ha conventionally managed dryland cotton 

(Gossypium hirsutum) field, which is shown in Figure 32. The field was located at the 

Texas A&M Agrilife Research Farm in Burleson County, Texas (3032’46.2” N, 
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9625’19.7”W), approximately 15 km from the College Station campus. The cotton crop 

was planted on April 6 (DOY 96) in 2017, April 18 (DOY 108) in 2018, and April 30 

(DOY 120) in 2019. Wet and cool soil conditions delayed planting in 2019 The cotton 

crop was defoliated using GinSTAR (BayerCrop Science, Leverkusen, Germany) on 

August 21 (DOY 233) 2017, August 21 (DOY 233) in 2018, and September 3 (DOY 

246) in 2019. The cotton crop was harvested on September 11 (DOY 254) in 2017, 

September 17 (DOY 260) in 2018, and September 16 (259) in 2019. The variety was 

Phytogen 333WRF in 2017 and 2018 and Phytogen 350 in 2019. The plant population 

was 6.24 plants m-2 in 2017, 6.22 plants m-2 in 2018, and 6.11 plants m-2 in 2019. 

Nitrogen 95 kg N ha-1 was applied to the cotton crop in all years. The field was tilled and 

hilled prior to planting. After harvest, the residues were shredded and then tilled into the 

soil. 

The climate of the location is humid subtropical (Köppen Cfa) with an average 

annual temperature of 20.58C and an average annual precipitation of 1018 mm 

(National Oceanic and Atmospheric Administration, 2011). Rainfall typically follows a 

bimodal pattern with the most precipitation occurring in May, June, and October. The 

dominant soil type in the field is Weswood silt loam (Udifluventic Haplustepts, 38% 

clay in surface horizon, floodplain), which contains high amounts of 2:1 shrink-swell 

clays.  The site is located in the Texas Blacklands and Post-Oak Savanah region, where 

the majority of cotton grown in the region (80 – 95%) is dryland (Matocha et al., 2009; 

Texas A&M Agrilife, 2019). Cotton is the most common crop in Burleson Country, 

where this study is located (USDA-NASS, 2017). 
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Figure 32: The Cotton EC Tower and Location. 

The study site is shown above. The left image is a satellite image of the site with the 

cotton field outlined in green. The red triangle represents the location of the EC system, 

which is shown in the lower right. The upper right image shows the location of the site 

within Texas (Google Earth, 2018). 

 

6.2.3. Data Analysis  

The EddyPro (6.2.2) embedded within SmartFlux computed 30-minute fluxes 

from the 10 Hz input data. The sign convention used was that positive numbers indicate 

fluxes away from the canopy and negative numbers indicate fluxes toward the canopy. 

The EddyPro software flagged data for quality based on internal turbulence tests. High-

quality data was marked with a “0”, moderate quality with a “1” and low quality with a 

“2”. Low-quality points were manually removed during data inspection for gap filling. 
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Gap filling was used to fill in missing and removed data points. Gap filling and flux 

partitioning (partitioning CO2 uptake {GPP} and respiration {Reco}) were done using the 

Max Plank Institute for Biogeochemistry’s online R-based program (R Gui 3.4.1) using 

the default settings.  

Evapotranspiration (ET) was calculated from Latent heat (LE), after gap filling.  

𝐸𝑇 =  
𝐿𝐸 ∗ 0.0018

2.5
 

6.2.4. Energy Balance Calculation  

After gap filling, an energy balance was calculated with the data in order to 

verify the data quality and correct for unaccounted energy. Net radiation (from net 

radiometer) minus soil heat storage (calculated from soil heat -plates) was regressed 

against LE + Sensible Heat (H) (both from EC instruments).  

𝑅𝑛 − 𝐺 = 𝐿𝐸 + 𝐻 

𝐺 = 𝐺8𝑐𝑚 + ((1.02 + (𝑉𝑊𝐶 ∗ 4.19)) ∗ (∆𝑇 ∗ 8) ∗  
100

18
  

Where G8cm is the soil heat from the flux plate at 8 cm, VWC is the volumetric water 

content at 4 cm, and T is the temperature difference between the soil heat-flux plates 

and the soil surface. The slope of Rn – G vs LE + H represented the amount of energy 

correctly accounted for by the EC system. The inverse of the slope was equivalent to the 

energy unaccounted for by the EC system. The unaccounted energy was redistributed to 

LE and H based on the Bowen ratio. Due to an instrument malfunction, an energy 

balance calculation was not possible for 2017.  
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6.2.5. DSSAT Modelling 

The Decision Support System for Agrotechnology Transfer (DSSAT) software 

system (Version 4.7; The DSSAT Foundation, Gainesville, FL, USA) modeled crop 

growth and ET.  The simulation was started on March 1 (DOY 60) in 2017, on April 1 

(DOY 91) in 2018, and on April 1 (DOY 91) in 2019. The following weather variables 

were input into the DSSAT model as a daily summary: precipitation, maximum 

temperature, minimum temperature, dew point, relative humidity, solar radiation, plant-

available radiation, and wind speed. Soils files were created in DSSAT using soil 

information from direct sampling as well as information from the NRCS soil survey. A 

soil file was created for each soil type found in the field. The soil files contained the 

following information: texture, pH, and CEC (estimated from soil texture and 

mineralogy). 

The collected phenological data was used alongside DSSAT’s Generalized 

Likelihood Uncertainty Estimation (GLUE) tool to calibrate the cultivar file parameters 

used for the model (Table 9). GLUE creates many successive models and compares them 

to the actual recorded phenological information using a likelihood function. The cultivar 

parameters are adjusted until the closest match is obtained. This process minimizes 

uncertainty in parameter estimation (DSSAT, 2017, Pathak et al 2012). The species and 

ecotype files were not modified. Following the creation of weather, soil, and cultivar 

files, the models themselves were set up using the X-build feature.  

 

 



 

250 

 

 

Table 9: Cotton Cultivar Parameters 

Cotton Cultivar Parameters 

Parameter Description Calibrated 

2017 

Calibrated 

2018 

Calibrated 

2019 

EM-FL Time between emergence 

and first flower 

37.1 37.0 36.1 

FL-SD Time between first flower 

and first seed 

15.0 17.5 12.7 

SD-PM Time between first seed and 

maturity 

47.11 40.47 47.96 

FL-LF Time between first flower 

and end of leaf expansion 

50.0 50.0 75.0 

LFMAX Maximum leaf 

photosynthesis rate 

1.05 1.03 1.11 

SLAVR Leaf area under standard 

conditions 

210 191 241.7 

SIZLF Maximum leaf size 275 250.2 280.0 

XFRT Max portion of growth used 

in seed development 

0.75 0.75 0.75 

SFDUR Seed filling duration under 

standard conditions 

29.9 27.3 23.25 

SDPDV Average # seeds per pod.  23.53 20.84 25.84 

 

 

The CROPGRO-Cotton model was used to model cotton growth and 

development. CROPGRO is the only cotton growth model in the DSSAT system. 

CROPGRO is a broad range model that has applications with many crops, including 

cotton. CROPGRO uses a growing degree-day based formula that changes with the 

phenological stage of the cotton crop to model cotton growth and development (DSSAT, 

2017). DSSAT used a number of different sub-models to simulate environmental 

conditions (i.e. ET, soil moisture) for the CROPGRO model.   
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Soil evaporation was modeled using the method developed by Suleiman and 

Ritchie in 1972. This method uses a two-step process, the first step occurs under high 

soil moisture and evaporation is limited only by available radiation energy. The second 

step occurs under lower soil moisture and is limited by radiation, water availability, and 

soil properties  (Hoogenboom et al., 2003; Suleiman and Ritchie, 2003; Ritchie et al., 

2009).  Soil organic matter was modeled the default DSSAT method, which is based on a 

modification of the PAPRAN model  (Seligman and Van Keulen, 1981; Godwin and 

Jones, 1991; Godwin and Singh, 1998; Hoogenboom et al., 2003; Dejonge and Thorp, 

2017). Soil water movement was modeled using the method developed for CERES-

Wheat; all DSSAT models use this soil water model. This model calculates water content 

in each soil layer on a daily time-scale using rainfall, ET, drainage, irrigation, and 

unsaturated water flow (Ritchie and Otter, 1985; Jones and Ritchie, 1991; Jones, 1993; 

Ritchie, 1998; Hoogenboom et al., 2003). CROPGRO uses an hourly photosynthesis 

model that uses climate and weather information, canopy height, width, LAI, leaf angle, 

row spacing, day of year, and time of day to compete total C fixation. For sunlit leaves, 

photosynthesis is largely controlled by CO2 concentration and temperature. For shaded 

leaves, the complication is more complex (Boote and Pickering, 1994; Hoogenboom et 

al., 2003).  

Cotton ET was modeled using both of DSSAT’s built-in methods: FAO-56 and 

Priestly-Taylor/Ritchie. Both of these methods are used to model potential ET, which is 

then modified by CROPGRO in DSSAT to simulate actual ET. The default method is the 

Priestly-Taylor/Ritchie method, which was developed in 1972 as a simplified 
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modification of the Penman-Monteith equation. This method uses solar radiation and 

temperature to calculate potential ET (Priestly and Taylor, 1972; Ritchie, 1972; Xu and 

Chen, 2005; Agam et al., 2010). DSSAT has recently incorporated the potential ET 

model described in FAO paper number 56, which is a more complete version of the 

Penman equation. This method uses wind speed and humidity in addition to temperature 

and radiation (Doorenbos and Pruitt, 1977; Monteith, 1986; Agam et al., 2010; Dejonge 

and Thorp, 2017). DSSAT recommends using the FAO-56 method for arid and windy 

climates and the Priestly-Taylor/Ritchie for humid environments.  Following the 

calculation of potential ET by one of two methods DSSAT then converts potential ET to 

actual ET using the soil water models and the crop growth model (Hoogenboom et al., 

2003). 

6.2.6. Statistical Analysis  

Statistical analysis was performed using manual calculation, DSSAT’s internal 

system, and SigmaPlot (Version 14.0). Regression analysis of the energy balance was 

calculated using SigmaPlot. The following indices of model performance were manually 

calculated: index of agreement (d-Index), normalized root mean square error (nRMSE), 

r-squared, and co-coefficient of residual mass (CRM). The d-index shows the degree of 

agreement between the modeled data and the observed data, with a perfect fit between 

the modeled and observed data resulting in a d-index of 1.0 and no fit with a d-index of 

0.0 (Soler et al., 2007; Adhikari et al., 2016; Basso et al., 2016; Amouzou et al., 2018). 

The calculation of the d-index is as follows, where x is the modeled value and y is the 

observed value: 
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𝑑 = 1 − [
∑(𝑥 − �̅�)2

∑(|𝑥 − �̅�| + |𝑦 −  �̅�|)2
] 

The CRM shows the degree of over- or underestimation between the modeled 

and the observed data. A perfect fit between a model and measurement would result in a 

CRM of zero, positive numbers indicate underestimation and negative numbers indicate 

overestimation by the model (Xevi et al., 1996; Jalota et al., 2010; Dettori et al., 2011).   

CRM =  
∑ 𝑦 − ∑ 𝑥

∑ 𝑦
 

6.3. Results and Discussion 

6.3.1.  Energy Balance 

The energy balance closure is shown in Figure 33. The energy balance closure 

(the slope of the regression line between Rn-G and LE+H) was, 0.71 in 2018, and 0.78 

in 2019. As previously mentioned, an energy balance calculation was not possible in 

2017 due to a malfunction with the net radiometer. However, the energy balance closure 

for 2018 and 2019 was similar to that seen of energy balance closures in other EC 

studies. One of the largest meta-analysis of EC studies found an average energy balance 

closure of 0.79 with a range of 0.53 to 0.99 over 22 sites (Wilson et al., 2002).  Studies 

in specifically cotton have found similar energy balance closure values (Gonzalez-Dugo 

et al., 2009; Hirschi et al., 2017; Li et al., 2018). Hirschi et al (2017) found an average 

closure of 0.77. Li et al (2018) found a range of closure values between 0.57 and 0.95 

across several EC sites in cotton across China and Kazakhstan. The energy balance for 

this site was better in 2019, but both were acceptable. The closure allowed LE to be 
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corrected, which improved model accuracy. Despite the lack of energy balance closure in 

2017, the model efficacy was still adequate.  

 

Figure 33: Cotton Energy Balance Closure 

Energy Balance closure is shown above. Image “A” refers to the closure for 2018. Image 

“B” refers to the closure for 2019. The slope and r-square of the linear regression is 

shown on the graph. 
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6.3.2. Phenology Models 

The phenology models for 2017 are shown in Figure 34 and their statistical 

results are shown in Table 10.  These phenology models were used to verify the model 

performance. The 2017 cotton height (Figure 34A) model overestimated mature plant 

height. The maximum plant height in 2017 was 0.90  0.01 meters, whereas the 

simulated maximum plant height was 1.12 meters. The RMSE of this estimation was 

0.16 meters with a d-index of 0.93. Other modeling efforts using CROPGRO-Cotton 

have achieved lower RMSE, however many of these were in irrigated cotton. Studies in 

dryland and deficit irrigation have produced results similar to these (Thorp et al., 2014, 

2015; Modala et al., 2015). The reduced model efficiency found in studies of dryland 

cropping systems indicates a need for further study and model improvement.  

The 2017 LAI model (Figure 34B) simulated the early growing season well, 

although it underestimated the actual maximum LAI. The actual maximum LAI was 

2.55  0.09, while CROPGRO predicted a maximum LAI of 2.24.  The LAI model had 

an RMSE of 0.26 and a d-index of 0.98. Compared to other studies using CROPGRO-

Cotton, this is an ideal result, even when compared to studies in irrigated cotton.  Other 

studies of LAI in cotton have reported a range of RMSE values from 0.16 to 1.11 

(Pathak et al., 2012; Modala et al., 2015; Thorp et al., 2015).  
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Figure 34: Cotton Phenology Model 2017 

Cotton Phenology Models for 2017 are shown above. Image “A” refers to the canopy 

height model. Image “B” refers to the LAI model. Black circles show the simulated 

values and red triangles show the measured values. Error bars show standard error of the 

mean. 
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Table 10: Cotton Phenology Models - 2017 

2017 

Statistic Height Model LAI Model 

RMSE 0.16 0.26 

R2 0.90 0.95 

D-index 0.93 0.98 

 

The phenology for 2018 models are shown in Figure 35 and their statistical 

results are shown in Table 11. The 2018 height model (Figure 35A) was more accurate 

than the 2017 model with only a slight overestimation and better agreement in the early 

growing season. The maximum observed height was 0.95  0.01 meters while the 

maximum simulated height was 0.99 meters. The RMSE of this estimation was 0.07 

meters with a d-index of 0.99. The results of this modeling effort are more in line with 

those observed in other studies utilizing DSSAT’s CROPGRO-Cotton model (Modala et 

al., 2015; Thorp et al., 2015). 

The 2018 LAI model (Figure 35B) performed slightly worse than the 2017 

model, primarily due to measurements later in the season. Cotton LAI decreased more 

quickly with drought stress than predicted in the model. This indicates a deficit in the 

model with simulating the effects of drought-stress and soil water storage.  The prior to 

defoliation, the observed LAI was 0.66  0.07 while the simulated LAI was 1.39. The 

maximum observed LAI was 2.80  0.24 while the maximum simulated LAI was 2.41. 

The RMSE of this model was 0.34 meters and the d-index was 0.97. While not as precise 
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as the 2017 model, the results for the 2018 LAI model were still within the typical range 

observed by other studies (Pathak et al., 2012; Modala et al., 2015; Thorp et al., 2015).  

 

 

Figure 35: 2018 Cotton Phenology Models 

Cotton phenology models for 2018 are shown above. Image “A” refers to the canopy 

height model. Image “B” refers to the LAI model. Black circles show the simulated 

values and red triangles show the measured values. Error bars show standard error of the 

mean. 
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Table 11: Cotton Phenology Models - 2018 

2018 

Statistic Height Model LAI Model 

RMSE 0.07 0.34 

R2 0.97 0.88 

D-index 0.99 0.97 

 

 

The phenology models for 2019 are shown in Figure 36 and their statistical 

results are shown in Table 12. The 2019 height model (Figure 36A) significantly 

overestimated actual height resulting in a high RMSE of 0.22 meters. The d-index in 

2019 was 0.93, similar to that of 2017. The actual maximum height was 1.03  0.09, 

while the model predicted a maximum height of 1.25 meters. While the model 

overestimates mature plant height all three years, this effect was most pronounced in 

2019. DSSAT’s CROPGRO-Cotton performs most adequately when run and calibrated 

under irrigated conditions. This model could be improved by calibrating the cultivar co-

efficient with data from an irrigated plot (Hoogenboom et al., 2003; Modala et al., 2015; 

Thorp et al., 2015). The lack of model efficiency in dryland settings is a potential 

problem with this modeling system.  

The 2019 LAI model (Figure 36B) performed similarly to previous years. The 

model did underestimate cotton LAI late in the season; however, this effect was similar 

to that of previous years.  The maximum observed LAI was 2.41  0.13 while the model 
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predicted a maximum LAI of 2.29. The RMSE of the 2019 LAI model was 0.28 and the 

d-index was 0.97. Model efficacy for the 2019 phenology model is limited by the lower 

number of observations (4) due to poor weather conditions early in the season.  In spite 

of this, the LAI model performed well, similar to the results seen in other studies using 

DSSAT’s CROPGRO-Cotton. 
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Figure 36: 2019 Cotton Phenology Models 

Cotton phenology models for 2019 are shown above. Image “A” refers to the canopy 

height model. Image “B” refers to the LAI model. Black circles show the simulated 

values and red triangles show the measured values. Error bars show standard error of the 

mean. 
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Table 12: Cotton Phenology Models - 2019 

2019 

Statistic Height Model LAI Model 

RMSE 0.22 0.28 

R2 0.98 0.95 

D-index 0.93 0.97 

 

 

6.3.3.  Evapotranspiration Modeling 

The ET modeling efforts for 2017 is shown in Figure 37 and the associated 

statistical analysis is shown in Table 13. The FAO-56 model simulated ET well 

throughout most of the growing season. The model did have a slight tendency to 

overestimate ET pulses after rain events, particularly in the early growing season. The 

Priestly-Taylor ET had a greater tendency to over and under-estimate ET following rain 

events. The negative CRM values (-0.05 for the Priestly-Taylor model and -0.01 for the 

FAO-56 model) indicate that the model had a tendency to overestimate actual ET, 

although that trend was very slight with the FAO-56 models.  

Total observed cumulative ET during the 2017 modeled period (March 1 to 

August 15; DOY 60 – DOY 227) was 547.61 mm m-2, while precipitation during this 

period was 561.83 mm m-2. The FAO-56 model predicted a cumulative ET of 545.38 

mm m-2, which is a cumulative underestimation of 2.23 mm m-2. The normalized RMSE 

of this estimation was 0.12 mm m-2 day-1. The error of this modeling effort is within the 

range observed in other modeling efforts using DSSAT’s CROPGRO-Cotton (Thorp et 
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al., 2015). The Priestly-Taylor model predicted a cumulative ET of 558.98 mm m-2, 

resulting in a cumulative overestimation of 11.37 mm m-2. The normalized RMSE of this 

estimation was 0.58 mm m-2 day-1, which although greater than that observed by the 

FAO-56 model was still within the range of results seen by Thorp et al (2015). 

 

 

Figure 37: 2017 Cotton Evapotranspiration Models 

The cotton evapotranspiration models for 2017 are shown above. Image “A” shows the 

Priestly-Taylor/Ritchie model. Image “B” shows the FAO-56 model. Black circles in 
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both images refer to simulated ET values. Red triangles show observed ET values in 

both images. Teal-stripped bars show precipitation. The simulation was started on April 

1 (DOY 91). 

 

The evapotranspiration models for 2018 are shown in Figure 38 and their 

statistical analysis is shown in Table 13. In 2018, the Priestly-Taylor model performed 

similarly to that of 2017. However, the 2018 FAO-56 model had much more error than 

the Priestly-Taylor model. The FAO-56 model overestimated ET following rain events 

and underestimated ET during dry spells. This is a significant change in model 

efficiency between the years, 2018 was an unusually dry year. While the FAO-56 model 

is traditionally thought to perform better in arid conditions, this was not the case for 

2018 at this location (Hoogenboom et al., 2003; Jones et al., 2003). It is possible that the 

unique shrink-swell nature of the soils at this site are affecting soil water evaporation in 

ways not anticipated by the model (Patil and Rajput, 2009).   

Total observed cumulative ET during the 2018 modeled period (April 1 to 

August 31; DOY 60 – DOY 227) was 485.84 mm m-2, while precipitation during this 

period was 201.42 mm m-2. The FAO-56 model predicted a cumulative ET of 410.53 

mm m-2, which is a cumulative underestimation of 75.31 mm m-2. The normalized 

RMSE of this estimation was 2.04 mm m-2 day-1. The error of this modeling effort is 

within the range observed in other modeling efforts using DSSAT’s CROPGRO-Cotton 

(Thorp et al., 2015). The Priestly-Taylor model predicted a cumulative ET of 447.64 mm 
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m-2, resulting in a cumulative underestimation of 38.2 mm m-2. The normalized RMSE 

of this estimation was 0.61 mm m-2 day-1 

 

 

Figure 38: 2018 Cotton Evapotranspiration Models 

The 2018 cotton evapotranspiration models are shown above. Image “A” shows the 

Priestly-Taylor/Ritchie model. Image “B” shows the FAO-56 model, note that the left Y-

axis is different for the FAO-model. Black circles in both images refer to simulated ET 

values. Red triangles show observed ET values in both images. Teal-stripped bars show 

precipitation. The simulation was started on April 1 (DOY 91). 
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The evapotranspiration models for 2019 are shown in Figure 39 and their 

statistical analysis is shown in Table 13. In 2019, the Priestly-Taylor model 

underestimated ET throughout the early 2019 growing season. During a dry period later 

in the growing season, the Priestly-Taylor model significantly underestimated actual ET. 

The FAO-56 model performed similarly to the Priestly-Taylor model, however the 

under- and overestimation was less pronounced. The tendency of the model to estimate 

the effect of a rain-pulse on ET incorrectly was more pronounced in 2019 and was 

exacerbated by frequent rain events in the early growing season. Additionally the models 

both underestimated ET during dry-spells, possibly indicating an issue with modeling 

soil water storage.  

Total observed cumulative ET during the 2019 modeled period (April 1 to 

September 6; DOY 60 – DOY 249) was 637.08 mm m-2, while precipitation during this 

period was 603.74 mm m-2. The FAO-56 model predicted a cumulative ET of 588.05 

mm m-2, which is a cumulative underestimation of 49.03 mm m-2. The normalized 

RMSE of this estimation was 0.43 mm m-2 day-1; however, the overall correlation was 

poor with an r2 of only 0.13. The Priestly-Taylor model predicted a cumulative ET of 

585.06 mm m-2, resulting in a cumulative underestimation of 52.01 mm m-2. The 

normalized RMSE of this estimation was 0.46 mm m-2 day-1.  This model had a poor 

correlation with an r2 of only 0.15. Both models overall performed poorly for 2019, 

which was more pronounced with the Priestly-Taylor. 

 

 



 

267 

 

 

Figure 39: 2019 Cotton Evapotranspiration Models 

The 2019 cotton evapotranspiration models are shown above. Image “A” shows the 

Priestly-Taylor/Ritchie model. Image “B” shows the FAO-56 model. Black circles in 

both images refer to simulated ET values. Red triangles show observed ET values in 

both images. Teal-stripped bars show precipitation. The simulation was started on April 

1 (DOY 91). 
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Table 13: Cotton Evapotranspiration Model Statistical Analysis 

Statistical Analysis 

 Priestly-Taylor FAO-56 

Statistic 2017 2018 2019 2017 2018 2019 

nRMSE 0.58 0.61 0.46 0.12 2.04 0.43 

CRM -0.05 0.08 0.08 -0.01 0.16 0.08 

D-Index 0.87 0.93 0.77 0.87 0.70 0.78 

r2 0.68 0.76 0.15 0.66 0.43 0.13 

 

While there was some success in modeling cotton evapotranspiration using 

DSSAT’s CROPGRO-Cotton, there was also a considerable error in some for the 

models. Throughout all three years, the model frequently misrepresented the effect of 

both rain-pulses and dry spells. Other attempts at modeling ET in dryland cotton have 

also been met with mixed-to-low success (Thorp et al., 2015; Dejonge and Thorp, 2017). 

The reduced model in dryland systems has been observed in other crops, indicating a 

need to make improvements in the model (Sau et al., 2004; Anothai et al., 2013; 

Soldevilla-Martinez et al., 2014; Thorp et al., 2014; Modala et al., 2015; Basso et al., 

2016). Dejonge and Thorp et al. (2017) were able to improve the model efficacy in 

CROPGRO-Cotton by altering the wind component of the FAO-56 method within 

DSSAT, indicating a possible cause of these issues. An additional study found that the 

soil water distribution during the second stage may be causing some of the issues with 

dryland modeling (Ritchie et al., 2009). These issues with modeling ET in dryland 
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systems are potential problems for regional ET estimates in Eastern Texas as the 

majority of cotton grown in this region is dryland (Matocha et al., 2009; USDA-NASS, 

2017; Texas A&M Agrilife, 2019). 

 A possible complication at this site is the presence of 2:1 shrink-swell clays. The 

soils file in DSSAT only includes total clay, with no consideration given to the type of 

clay minerals. 2:1 shrink-swell clays interact with water in a different manner than non-

shrink-swell clays. During dry periods, cracks form that create preferential flow 

pathways for water, altering its movement into and through the soil profile. Early-stage 

water infiltration after a dry period in shrink-swell soils is more rapid due to the presence 

of the preferential flow pathways. However, as the soil absorbs water and the cracks 

close, infiltration is greatly reduced (Wang et al., 2018; Harmel et al., 2019). The effect 

of shrink-swell properties on soil water movement has been found to make predicting 

crop water use more unpredictable and more difficult to manage (Ringrose-Voase and 

Nadelko, 2013). Traditional soil water movement and storage models, which are 

incorporated into DSSAT’s ET model during the calculation of crop ET from potential 

ET, have been found to be less effective in soils high in shrink-swell clays (Patil and 

Rajput, 2009). All of this together suggests a need for greater study and modeling efforts 

in dryland agriculture and in soils with shrink-swell properties.  

6.4. Conclusions 

The phenology models were somewhat successful. The cotton height model had 

a tendency to overestimate mature plant height and the leaf area model often 

overestimated leaf area index late in the growing season. The energy balance closure 
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computed for 2018 and 2019 was well within the range of results observed in other 

studies, indicating that the observed ET data was good.  The ET modeling effort using 

the DSSAT CROPGRO-cotton was less successful. Of the two internal potential ET 

methods, the Priestly/Taylor method was more consistent (average nRMSE: 0.55). The 

accuracy of the FAO-56 method was highly variable between the years, with a good fit 

in 2017 (nRMSE: 0.12) and a poor fit in 2019 (nRMSE: 2.04). The 2019 modeling effort 

had a problem with significantly underestimating ET late in the season; this problem was 

observed for both internal methods. Unfortunately, there is less literature on modeling 

ET in cotton than other crops. Most work modeling ET using the DSSAT system has 

found that modeling ET in dryland systems is less accurate than modeling in irrigated 

systems.  There is some evidence that the second-stage soil water model might be a 

contributing factor. The presences of shrink-swell minerals at this study site likely 

complicated the modeling effort. The shrink-swell minerals interact with water in a 

different manner than non-shrink-swell clay minerals, potentially influencing crop ET. 

Given the predominance of dryland farming in this region, the lack of model accuracy in 

dryland systems is a problem with estimating crop water use and energy balance in this 

region and in others where dryland farming is common.   
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7. CONCLUSIONS 

 

7.1. Conclusions 

The overarching goal of this dissertation was to improve our understanding of 

carbon and water fluxes in East-Central Texas agroecosystems. Agroecosystems are 

unique compared to natural ecosystems due to their inputs and management practices 

(Foley et al., 2005; Tscharntke et al., 2005; Tian et al., 2010; Han et al., 2014). Carbon 

and water vapor fluxes are extremely important ecosystem processes that are part of 

nutrient cycling and energy transfer. Understanding these fluxes from agroecosystems 

can allow for improved management that preserves the function of these vital ecosystem 

services (Tscharntke et al., 2005; Bennett et al., 2009; Tian et al., 2010; Han et al., 

2014). By incorporating modeling and measurements, this dissertation explored carbon 

and water vapor fluxes from conventional corn production and conventional cotton 

production. 

The first chapter (after the introduction) described the observations of carbon 

fluxes in dryland production cotton over two full years, including off-season (fallow). 

Carbon fluxes were compared to weather conditions and NDVI from PlanetScope 

satellite images. There were substantial differences between the two years, likely caused 

by meteorological conditions. Precipitation was the greatest predictor of gross primary 

productivity (GPP) compared to photosynthetically active radiation, and air temperature. 

High off-season precipitation in 2018 caused a growth of weeds, which increased off-
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season carbon uptake. The overall carbon balance for 2017 was a net emission of 175.4 g 

C m-2 and the overall carbon balance for 2018 was a net sequestration of 5.1 g C m-2.  

In the second chapter, high-resolution satellite imagery from Planet Labs, Inc. 

was used to model GPP in conventionally tilled, dryland corn. A variation on the light 

use efficiency model where light use efficiency is replaced by a remotely sensed 

vegetation index was used (Monteith, 1977; Yan et al., 2009; Zhou et al., 2017; Shafian 

et al., 2018). GPP was correlated with vegetation index multiplied by photosynthetically 

active radiation and leaf area index to develop the models using data from 2017. The 

models were validated using data from 2018 and 2019. The vegetation indices used were 

the normalized difference vegetation index (NDVI), soil adjusted vegetation index 

(SAVI), weighted difference vegetation index (WDVI), and the enhanced vegetation 

index (EVI). The SAVI-based models were the most successful with a standard error of 

the estimate of 1.74 g C m-2 for the 2018 validation and 1.50 g C m-2 for 2019. The slope 

of the modeled GPP using SAVI compared to observed GPP from the eddy covariance 

system was not different from one.  

 The third chapter highlighted the efforts to model GPP in dryland, conventionally 

tilled cotton using Planet Labs, Inc.’s high-resolution satellite data. The same method 

based on Monteith’s light-use efficiency that was used to model corn GPP was also used 

to model cotton GPP. The following vegetation indices were used to model GPP in 

cotton: the normalized difference vegetation index (NDVI), soil adjusted vegetation 

index (SAVI), Green Chlorophyll Index (CIGreen), and the enhanced vegetation index 

(EVI). The 2018 model validation was somewhat successful with an average standard 
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error across all VI-based models of 1.78 g C m-2, while the 2019 validation was less 

successful with an average standard error of 2.36 across all VI-based models. The most 

successful model in 2018 was the NDVI-based model and the most successful model in 

2019 was the SAVI-based model.  

 In the fourth chapter, the Decision Support System for Agrotechnology Transfer 

(DSSAT) was used to model corn growth and evapotranspiration in a dryland, 

conventionally tilled system. Modeled evapotranspiration was then compared 

statistically to evapotranspiration observed using the eddy covariance system. Of 

DSSAT’s internal potential evapotranspiration methods, the FAO-56 method generally 

was less error-prone than the Priestly-Taylor model. The models had the most error 

shortly after precipitation events. Evapotranspiration modeling in corn was successful 

with standard error and index of agreement within the range seen by other studies in 

dryland corn (Gonzalez-Dugo et al., 2009; Basso et al., 2016).  

.  In the fifth chapter, DSSAT was used to model cotton growth and 

evapotranspiration in dryland, conventionally tilled cotton. The eddy covariance water 

vapor flux data was then used to validate the evapotranspiration models. Once again, the 

FAO-56 method produced fewer errors, especially following rain events. The cotton 

models were less successful than the corn models, with the 2019 models having low 

agreement with observed ET (r2 = 0.14). In both modeling efforts (DSSAT and remote 

sensing), the modeling with cotton was less successful than that with corn. Cotton has a 

more complex growth habit that is likely more difficult for models to accurately 

simulate. In the early growing season, cotton plants grow slowly, putting most of their 
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energy belowground. Despite potentially high PAR and air temperatures, plant growth 

can remain slow. In the later season, the application of growth regulators and defoliants 

further alters the response of cotton ET and GPP to meteorological conditions. 

Additionally, the unique shrink-swell characteristics of the soil at the site are likely 

further complicating modeling efforts (Ringrose-Voase and Nadelko, 2013; Zapata et al., 

2017, 2019; Harmel et al., 2019).   

 

 

 

 

 


