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ABSTRACT 

 

High-throughput phenotyping technologies can generate large volumes of data at low 

costs and are useful in a wide range of plant sciences, including plant breeding. Many 

phenotyping technologies increase the rate of currently measured traits, while others can 

detect completely novel traits yet to be fully explored.  

In addition to replacing current manual measures, higher throughput technologies may 

be used to indirectly predict yield. Here, we explore this concept, using high-throughput 

phenotype information from Fourier Transformed near-infrared reflectance spectroscopy 

(NIRS) of harvested kernels to predict parental grain yield in maize (Zea mays L.). A dataset 

of 2,563 kernel samples from a diversity panel of 346 hybrid testcrosses were scanned using 

an FT-NIRS interferometer, measuring 3,076 wavenumbers (bands) in the range of 4,000-

10,000 cm-1. Corresponding grain yield for each sample was used to train predictive models 

using three types of statistical learning: (a) partial least square regression (PLSR), (b) NIRS 

best linear unbiased predictors (NIRS BLUP) and (c) functional regression. These results 

found NIRS spectral data to be a useful tool in predicting maize grain yield of unknown 

samples and showed promising results for evaluating genetically independent breeding 

populations. High correlations between predicted and observed values demonstrated value for 

grain NIRS in ranking variety yields relative to one another, even where yield predictions 

were not accurate. More research in this area will provide better understanding for how NIRS 

and other phenomic technologies can be used to predict phenotypes in breeding programs. 
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The second project of this thesis explored the tradeoffs that exist between using high 

throughput phenotyping technologies with a higher error rate compared to a traditional 

phenotyping method with higher accuracy, with lower sampling rates. To accomplish this, 

populations were simulated to include variance from genetic, environmental, other effects, 

and error; different analysis scenarios were then created and assessed. It was determined that 

additional environmental sampling could compensate for greater measurement error; while for 

genetic mapping, increasing population size was most important to correctly predict genetic 

loci. This analysis provided an understanding of the threshold for high-throughput sample 

number increases needed to obtain a benefit over more accurate traditional measures.  
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CHAPTER I  

INTRODUCTION  

Aims 

This work primarily aims to develop and explore the value of phenomics towards 

improving trait estimations in plant breeding. To this end, a phenomic prediction approach 

using Near Infrared Reflectance Spectroscopy (NIRS) analogous to the genotyping data in a 

genomic prediction model was explored in maize. Ultimately, the goal is to develop models 

which could correctly predict which experimental varieties (hybrids or parental inbreds) 

should be kept and advanced, and those which should be discarded. However, for any such 

model, it is not-clear if there is sufficient discriminating information in non-target traits to 

accurately predict target traits, like yield. If successful, it is also unclear whether trait 

prediction is based on biological process relationships, or based on identifying genetic 

relationships between lines. Like many statistical prediction approaches, these questions 

require large amounts of data to evaluate. However, this large volume of phenomic data is 

likely to be of lower precision and accuracy than traditional measures. This creates a need to 

explore the trade-offs between high-throughput, and high accuracy or precision in phenotypic 

data collection. In other words, can low accuracy in sampling be overcome via a high rate of 

sampling? To address this, modeling is required to understand measurement trade-offs, and 

how they could affect the evaluation methods of a breeding program.  
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Plant Breeding 

Maize Domestication  

Globally, the most important food class is cereal grains, contributing to almost half of 

human caloric intake. Of those, maize, wheat, and rice make up most of the consumption, 

totaling 94% (Ranum et al., 2014). In particular, the domestication of maize, or corn (Zea 

mays L.), likely began about 9,000 years ago (Kennett et al., 2017). According to molecular 

data, it appears a single domestication event resulted in the maize grown today, whose current 

closest relative is a subspecies of teosinte, Zea mexicana (Schrad.) Kuntze (Matsuoka et al., 

2002). Since domestication, humankind has continued to improve maize yield and other 

qualities of value for consumption and production. According to the FAO, an estimated one 

billion tonnes of corn were produced globally in 2016 (FAOSTAT, 2016). Maize and other 

crops yields have increased in the US as a result of numerous factors, including improved 

management, increased irrigation, improved weed and pest management techniques, and most 

relevant to this study, breeding (Duvick, 2005; Assefa et al., 2017). The best estimate is that 

50% of maize improvement has been contributed by genetics and breeding, using Duvick’s 

so-called era studies (Duvick, 1992). 

A New Era of Plant Breeding 

 There have been at least three defined eras of plant breeding since the first plant 

domestication of over 10,000 years ago (Li et al., 2012; Lee and DeVore, 1968). The first era 

consisted of our ancestors using only traits that were visible to the naked eye, forming the 

basis of phenotypic selection. In the 20th century, there was a shift into the scientific era, 

where the use of heritability was first applied to the study of plants. Finally, this was followed 
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by the genomics era, when the focus shifted to molecular techniques, aimed at better 

elucidating the genetics behind heritability of phenotypic traits (Li et al., 2012). In maize, 

yields did not have substantial improvements until the late 1930s, where seed production 

moved from open pollination into the double hybrid, and then single cross hybrid breeding 

schemes, this is referred to as the era of hybrids, in maize (Hallauer et al., 2010). Biotech 

traits further improved yields, beginning in the 1990s, enabled by both improved genetics 

techniques and germplasm (Hallauer et al., 2010).  

The genomics era has dominated the attention of the field of plant breeding since the 

1990s. Improvements in molecular technologies have consumed large amounts of resources 

and contributed to large amounts of data. Presently, it seems there is yet another shift in the 

world of breeding, where once again, phenotypes are becoming a major focus of analysis. 

This new phenomics era is characterized by an increased shift in emphasizing phenotypic 

traits on a large scale. While a phenotype describes a characteristic that is morphological, 

biogeochemical, etc., the word phenome refers to the phenotype as a whole, or the expression 

of a genome in an environment, and usually results in high-dimensional data (Kumar et al., 

2015). Many phenomic technologies improve upon existing data collection methods (i.e. 

using a drone to measure plant height), whereas some investigate novel phenotypes altogether 

(i.e. using near-infrared spectroscopy or hyperspectral cameras). These phenomic datasets 

have the potential to complement, or even eventually replace, many technologies of the 

genomics era.  
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High Throughput Phenotyping 

In addressing phenotyping bottlenecks experienced in breeding programs, 

technologies are aiming to increase the throughput of traditional methods. The concepts of 

phenotyping have even evolved from the direct measurement of the trait of interest, to 

investigations surrounding more indirect measures of overall plant growth or spectral 

signatures, which may be inferred via remote or proximal sensing (Cabrera‐Bosquet et al., 

2012). Reductions in costs and technological hurdles have increased agricultural interest in 

the use of unoccupied aerial systems over the past decade (UAS, i.e. drones) opening up 

opportunities for new types of data collection by researchers and farmers (Shi et al., 2016), 

though field data collection remains challenging to collect (Araus and Cairns, 2014). When 

UAS campaigns successfully collect images over breeding programs, especially temporally 

over a growing season, many features from the images can be extracted. Some of these 

features may correspond to traditionally measured phenotypes such as plant height (Pugh et 

al., 2018), which can be incorporated into physiological growth models to extract novel, more 

robust, phenotypes (Anderson et al., 2019). Researchers have excitingly begun to incorporate 

many features into statistical models that can predict end yield, such as plant height 

(Anderson et al., 2019) and vegetation indices (Sun et al., 2019), already known to have some 

relationship with yield. In future work, it is likely that hundreds or thousands of features from 

UAS temporal flights and hyperspectral sensors could be identified that consistently 

differentiate between cultivars in the field; most such features have not yet been evaluated for 

their abilities to predict end yield (Shakoor et al., 2019). 
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As technologies for capturing phenotypic data continue to advance, the size of the 

datasets increases. These increasingly large datasets bring novel data management challenges, 

and new methods are becoming necessary for appropriately utilizing phenomic data. High 

density datasets demand improved data storage, processing, and analysis methodologies. Lots 

of data can provide lots of information, given the best protocols are established to mine that 

data.  

Furthermore, this increase of high throughput phenotyping has brought with it the 

promise of reductions in resource-intensive manual measurements. However, the accuracy of 

these new methods must be properly explored for these hopes to be realized. Can manual 

measurements truly become a technique of the past? These developing technologies offer the 

capacity to increase the data collected while limiting human labor, but the possible tradeoffs 

between accuracy and throughput have yet to be fully explored or understood in the context of 

breeding programs.  
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CHAPTER II  

PHENOMIC SELECTION AND PREDICTION OF MAIZE GRAIN YIELD FROM NEAR-

INFRARED REFLECTANCE SPECTROSCOPY OF KERNELS 

Introduction 

Advancement of plant breeding 

Modern plant breeding is conducted very differently from the crop domestication of 

over 10,000 years ago, and even from the first scientific breeding of 100 years ago (Lee and 

DeVore, 1968). As the science of plant breeding has progressed, a major focus has been on 

genomic tools for crop improvement, with key technological innovations being the primary 

driver of advancements. Over time, breeding has become faster, by decreasing cycle times 

(i.e. growing plants in off-season nurseries to reach multiple generations within a year), and 

has become more targeted, through marker-assisted selection and other molecular techniques 

(Brummer et al., 2011). Most recently, genomic prediction and selection approaches have 

shown to have practical value and have become extensively relied on for decision making in 

private and public sector breeding programs (Zhao et al., 2015; Cooper et al., 2004; Crossa et 

al., 2017). In general, technologies to better understand and collect genetic data have vastly 

improved over the past few decades (Levy and Myers, 2016). 

In contrast, the methods employed to collect and quantify phenotypic data, have not 

seen the same rate of technological advancement (Araus and Cairns, 2014). Rincent et al. 

(2012) and others have noted that phenotyping is the limiting factor in genomic selection and 

other breeding methods. Evaluating plants in the field is the single most costly and complex 

aspect of a breeding program, in terms of time, labor, and money, but is a key step in most 
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accurately estimating genetic yield potential and training genomic models (Bernardo, 2008; 

Bernardo and Yu, 2007). In addressing phenotyping bottlenecks, efforts are expanding to 

better collect and analyze phenotypic data on a wide scale. Recent findings suggest that 

improving phenotyping methods may not just simply improve genomic selection or other 

genetics-based techniques, but could potentially reduce or eliminate the need for genotyping 

in some cases (Rincent et al., 2018). Evaluating the thousands of features provided by Near-

Infrared Reflectance Spectroscopy (NIRS) may serve as a guide to utilizing many kinds of 

dense phenotypic datasets.  

Near-Infrared Reflectance Spectroscopy (NIRS) 

Near-infrared reflectance spectroscopy (NIRS) has a long history in agricultural 

settings for evaluating chemical composition since the 1960s, with some of the first mentions 

of the technology being used to quantify seed oil composition (Morris and Holman, 1961). 

NIRS is now commonly used to estimate characteristics of grain or seeds including protein, 

starch, and oil content (Chen et al., 2013; Ferreira et al., 2013; Murray et al., 2008a; Silva et 

al., 2008) as well as new composition traits such as grain phenolics (Meng et al., 2015 and 

many others). NIRS composition estimates are commonly made on plant tissue, such as 

forage and silage, to estimate bioenergy potential or livestock feeding value (Wolfrum et al., 

2013; Murray et al., 2008b). NIRS has a sound grounding in physics, as near-infrared light at 

specific wavelengths is absorbed by specific chemical bonds that make up the components of 

living tissues. Furthermore, the relative proportion of each of these bonds within the tissue 

quantitatively influence the nature of the absorbance of light at different wavenumbers (Foley 

et al., 1998). Typically however, no single region of the near-infrared spectrum can be 
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attributed to a single chemical component in living tissues, because plant and animal tissues 

exist as heterogeneous mixtures of compounds, making direct inference from spectra 

challenging (Foley et al., 1998). Statistical analysis is needed to extract meaningful 

information from NIRS on biological samples. Key among the benefits of NIRS is that there 

is no need to contact, damage, or destroy samples. Consequently, samples can be analyzed 

and still be available for planting or other analyses.  

Recently, NIRS has been shown to be useful as a high throughput phenotype for 

predicting grain yield and other end quality traits (Rincent et al., 2018). At the molecular 

level, it has been shown that NIRS can be an effective cell-wall mutant screening tool in 

Arabidopsis thaliana as well as in sorghum (Sorghum bicolor L.) or maize (Zea mays L.) 

research programs (Chen et al., 1998; Vermerris et al., 2007). While previous studies have 

shown the ability of NIRS to quantify composition, understand chemical bonds, differentiate 

between species, varieties, or even genetics (Bertrand et al., 1985; Espinoza et al., 2012; Lang 

et al., 2017), using NIRS information to perform selections in the context of breeding for 

grain yield remains relatively novel, since grain yield is not a chemical component. However, 

NIRS has been previously shown to correlate with yield. Ferrio et al. (2004) investigated 

grain yield correlation with NIRS of durum wheat flour. Despite high r values, the slopes of 

their predicted and measured yield values were not in unity, causing them to conclude that the 

ability of NIRS to predict grain yield in wheat was not an accurate way to achieve estimations 

under their conditions. They partially attributed these challenges to a lack of strong previous 

calibrations under the same growing conditions of the samples.  
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The concept of treating NIRS data as markers, and using them to make inferences 

about relatedness, is a recent phenomenon in breeding. Rincent et al. (2018) used NIRS 

wavelength data on wheat (Triticum aestivum L.) grain and leaf tissue as well as poplar 

(Populus nigra L.) wood to develop NIRS best linear unbiased predictions (NIRS BLUP, an 

NIRS similarity matrix); the authors surprisingly obtained better prediction accuracy than 

using G-BLUP (genomic similarity matrix). Krause et al. (2019) had success in wheat as well, 

developing relationship matrices from hyperspectral data collected via UAS and using them in 

yield predictions alongside markers and pedigree information.  

Phenomic prediction and selection for grain yield from grain or plant spectra 

The theory and the term of phenomic selection was first introduced by Rincent et al. 

(2018), as the practice of evaluating and selecting lines via phenotypic variables. Essentially, 

phenotypic, or phenomic, variables replace genetic marker information in traditional selection 

methodology. The present study serves to independently validate and generalize some of the 

concepts of Rincent et al.’s (2018) findings about the predictive capacity of NIRS, using 

phenomic prediction (plot basis) and phenomic selection (entry basis).  

The main objective of this study was to apply models and methods to the NIRS data 

for the phenomic prediction and selection of grain yield. Specifically, our aim was to predict 

parental grain yield from existing grain scans of a hybrid maize diversity panel grown in 

several environments (Barrero-Farfan et al., 2015; Warburton et al., 2013; Flint-Garcia et al., 

2005) and apply these calibrations on additional independent breeding populations. 

We sought to evaluate different statistical models: (1) partial least square regression 

(PLSR); (2) NIRS BLUP, employing the values of NIRS instead of markers as proposed by 
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Rincent et al. (2018); and (3) functional regression analyses using the NIRS values as 

covariates in a G×E, multi-environment model. In this case, PLSR was used as a phenomic 

prediction, where yield is predicted on a plot basis, with NIRS being used for each individual 

plot. This is analogous to how composition of grain samples would be predicted. The NIRS 

BLUP and functional regression models were used as phenomic selection, where predictions 

were made on an entry basis, with NIRS being averaged within pedigrees. This is analogous 

to how a breeding program predicts breeding values using marker information. 

Different cross-validations schemes were used to ensure prediction accuracy estimates 

would be relevant to future breeding activities. These schemes addressed 1) predicting known 

genotypes in unknown environments, 2) predicting unknown genotypes in known 

environments, and 3) so-called sparse testing, where known genotypes are predicted in known 

environments in which they are not observed.  

If NIRS can be used to estimate the performance (grain yield) of a genotype, either on 

a plot or entry basis, it therefore stands to reason that the spectra also capture some of the 

value of that material. Successful models for a trait of interest suggest that phenomic selection 

methods using NIRS could be useful in maize, or other hybrid crop, breeding programs.  

Functional regression analyses for high throughput phenotyping data 

High throughput phenotyping technologies, including NIRS, are increasingly available 

in agriculture and generate large volumes of data. Many such phenotypes are multi-

dimensional and these data can be represented as functions. Functional data analysis is a field 

of study that deals with the analysis and theory of data whose units of observation are 

functions (curves) defined as continuous domain (Morris, 2015). Recent studies by 
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Montesinos-Lopez et al. (2017a, b) present functional regression models to develop prediction 

equations for wheat grain yield and other traits using hyperspectral crop image data from the 

field. This work showed that functional regression models could provide yield predictions 

with similar and, in some cases, higher predictive power than that of conventional regression 

techniques. Montesinos-Lopez et al. (2018) described details for implementing Bayesian 

functional regression using the developed genomic functional regression package. 

Materials and Methods 

Experimental Design and Germplasm 

A set of 346 diverse hybrid lines were grown as a structured genome-wide association 

study (GWAS) to assess aflatoxin resistance, drought tolerance, and other agronomic traits 

such as yield in 2011 and 2012 (Barrero-Farfan et al., 2015). These lines originated from a 

subset of the USDA-Goodman maize association panel (Flint-Garcia et al., 2005), as well as 

the Southern subtropical Williams/Warburton panel (Warburton et al., 2013). This panel was 

crossed to two isogenic lines of Tx714, a high-yielding, Southern U.S. bred stiff-stalk line that 

is more than 95% identical to its stiff-stalk relative, B73 (Romay et al., 2013). Each isogenic 

hybrid was grown under one or two experimental conditions (well-watered (WW) and limited 

irrigation, or water stress (WS)) with two replicates in a randomized complete block design, 

where seed was available. A full description of the hybrids and experimental design is in 

Barrero-Farfan et al. (2015). Since the two isogenic lines did not differ in grain yield, the data 

from both were combined and treated as the same hybrid. This population was used for all 

model training and for validation.  
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Other elite hybrid breeding trials in the Texas A&M breeding program were also used 

as an independent validation set for evaluating prediction accuracy. These trials, grown in 

2011, consisted of hybrids with no known or expected relatedness to the original material 

presented above, most being sub-tropical derived lines crossed to U.S. commercial stiff stalk 

hybrids (Murray et al., 2019). These tests consist of relevant breeding material within the 

program, as opposed to the training data, which represented a genetic study. NIRS was 

collected for each test on a plot basis. These tests were grown to assess aflatoxin (AF) 

resistance. Material from within the program represented four tests, and are referred to in this 

study as 1AF, 2AF, 3AF, and 4AF. Two other tests were also assessed, which include 

breeding material from other programs. The first is Southeast Regional Aflatoxin Trials 

(SERAT; Wahl et al., 2017), and the next consists of germplasm enhancement of maize 

(GEM) lines.  

Three of these validation tests (4AF, SERAT, and GEM) were grown in College Station, TX 

under similar conditions, while, 1AF and 2AF were grown in Weslaco, TX, and 3AF was 

grown in Corpus Christi, TX. All together, these datasets combined represent 200 pedigrees 

across three Texas locations from 2011 (679 scans total), most of which is breeding material. 

This set of tests was used as a practical validation of how broadly the trained models could be 

used in a breeding program, or if more extensive calibration would likely be necessary. 

Spectral Data 

NIRS was performed on harvested grain from Barrero-Farfan et al. (2015) hybrids 

during the completion of the initial study. In total, 2,563 such whole kernel samples were 

scanned using Fourier transformed near-infrared reflectance spectroscopy. Spectra were 
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collected with a Thermo Anteris II FT Interferometer, where approximately 175g of bulked 

grain, acclimated to a climate-controlled room, were scanned 128 times, resulting in an 

average (full description of methodology in Meng et al., 2015). The spectra consist of every 

other wavenumber (i.e. band) from 4,000 to 10,000 cm-1 (a range of 1,000-2,500 nm).  

Data Processing 

In 2011, very low yields were observed in all experiments due to record heat and 

drought. The lowest yielding of the plots appeared remarkably atypical, so a threshold of at 

least 62 g m-2 (10 bu ac-1) per plot was set. Applying the threshold, 47 plots were removed, 

leaving 2,516 samples with an average yield of 559 g m-2, and a range of 63 to 1462 g m-2. 

Furthermore, as an objective method to eliminate bad NIRS, an algorithm was implemented in 

R (R Core Team, 2018) to eliminate scans that had shapes perceptively different from other 

scans. First, the difference of each spectra from the average spectra across each wavenumber 

was calculated; next, the sum of the absolute value of those differences were taken; and 

finally scans with large, outlying differences from the average were removed. This method 

successfully eliminated spectra with abnormal shapes (“bad scans”), as opposed to abnormal 

predictions within the model. This, presumably, was an unbiased approach to identifying 

these bad scans. This procedure removed 24 sample scans leaving 2,492 samples for final 

analyses.  

The cleaned scans were loaded into R and processed with the prospectr package 

(Stevens and Ramirez-Lopez, 2014) to obtain the first and second derivatives, using the 

Savitsky-Golay  method and a window size of 37 (Fig. 1). This transformation served as a 
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normalization from the raw scans, and mainly accounted for differences in albedo (overall 

reflectance) between samples. Interferometers, as used in this study, generally have a higher 

spectral resolution than other methods, often associated with a smaller ratio of signal-to-noise. 

Therefore, it has been recommended to use smoothing derivation methods such as the 

Savitsky-Golay method as opposed to a simpler, finite-difference derivative method (Rinnan 

et al, 2009). Ultimately, the first derivative proved to offer the best results in cross validation, 

so this was used across all model types. 
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Figure 1. All analyzed spectra from the set of whole kernel scans are shown in grey for A) 

untreated scans, or raw spectra and the B) the Savitsky-Golay first derivative of the scans. The 

black line in each graph is the average of all scans.   



 

18 

 

Statistical Models to Predict Grain Yield using NIRS information 

Multiple statistical approaches were investigated for grain yield prediction accuracy. 

Both phenomic prediction models, where data was assessed on a plot basis, and phenomic 

selection models, where data is assessed on an entry basis, are described. The models using 

the NIRS and phenotypic information are described below. 

Partial least squares regression (PLSR)  

Partial least squares regression (PLSR) was used to predict yield as implemented in 

the pls package in R (Wehrens and Mevik, 2007). Models were cross-validated using the 

default of 10 segments, and then further validated on a held out test set. When training this 

phenomic prediction model, random cross validation holds out observations on a plot basis, 

meaning hybrids can remain in both the training and testing sets. To mitigate this, a held out 

test set was selected to ensure that entire instances of a hybrid were held out. These test sets 

were selected using the DUPLEX method available in the prospectr package (Stevens and 

Ramirez-Lopez, 2014), which functions by selecting the two most distant points (based on 

principal components) iteratively for the sample size desired. This serves to select a spectrally 

representative set of samples to use for validation or calibration. If a hybrid was selected by 

the function to be held out in the test set, all replicates of that hybrid were held out for training 

the model; this is similar to predicting untested genotypes in known environments (Saint 

Pierre et al., 2016). 

For example, for the model trained on both years (PLSR 1, Table 1 in Results), the 

training set consisted of 1573 samples, representing 253 pedigrees. The validation test set was 
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composed of 848 samples, representing 91 pedigrees. All PLSR models were validated in this 

way, though the number of samples used to train and test the models varied (see Tables 1 and 

2 in Results).  

Additionally, PLSR models were built to investigate the ability for the model to be 

trained on one year to predict the same year, or to predict the other year. Models were 

evaluated either for their ability to predict known or unknown hybrids in an unknown year. 

Evaluating the ability of the model to predict yield for a separate experiment from another 

year, consisting of different hybrids, or predicting unknown genotypes in unknown 

environments (Saint Pierre et al., 2016), is also of great practical interest in breeding 

programs.  

The number of PLSR components used in each model were selected based on the root 

mean squared error prediction (RMSEP) curve using the one-sigma heuristic and permutation 

approaches as implemented in the pls package in R (Wehrens and Mevik, 2007). R code used 

for PLSR models can be found in Appendix B.  

Baseline single environment and across environment models for implementing NIRS 

BLUP and Functional Regression  

In this subsection, we explain the six phenomic selection models implemented using 

the phenotypic and NIRS information under a NIRS BLUP and functional regression 

approach.  Before describing the six models used under BLUP and functional regression we 

briefly describe the model used for obtaining the BLUEs (best linear unbiased estimators) for 

grain yield as well as for NIRS over each of the wavenumbers with the intention of removing 

the design. This analysis was the first stage analyses that produced the BLUEs used in the 
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second stage analysis where models M1 to M6 are implemented. BLUEs of each hybrid and 

NIRS in each environment  were obtained using the following model  

𝑦𝑗𝑘 = 𝜇𝑗+𝑏𝑘 + 𝐻𝑗 + 𝜖𝑗𝑘     (Eq. 1) 

where 𝑦𝑗𝑘 is the response variable (grain yield, or wavenumber measurements) of the jth 

hybrid in the kth complete block; 𝜇 is the overall mean; 𝑏𝑘 is the random effect of the kth 

complete block assuming independent and identically distributed (iid) 𝑁(0, 𝜎𝑏
2); 𝐻𝑗  is the 

fixed effect of the jth hybrid, and 𝜖𝑗𝑘, assuming iid 𝑁(0, 𝜎𝑒
2), represents the random residual 

plot error associated with  the observation 𝑦𝑗𝑘. 

 Then in the second stage analysis these BLUEs of grain yield were used as response 

variable and the BLUEs of each NIRS were incorporated as covariates to implement 

improved version of the following model that takes into account the hybrid × environment 

interaction 

    𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + 𝐻𝑗 + 𝐻𝐸𝑖𝑗 + 𝜖𝑖𝑗    (Eq. 

2) 

where 𝐸𝑖 is the fixed main effect of the ith environment; 𝐻𝑗 is main random effect of the jth 

hybrid identical and independent normal distributed (iid) 𝑁(0, 𝜎𝐿
2); 𝐻𝐸𝑖𝑗 is the random 

interaction effect between the ith environment and the jth hybrid; it is assumed iid 𝑁(0, 𝜎𝐻𝐸
2 ); 

and 𝜖𝑖𝑗 is the residual error term assumed iid 𝑁(0, 𝜎2). For the sake of clarity, later we named 

the model including hybrid × environment interactions as model M5.  

The NIRS BLUP model with interaction – M1   
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Wavenumber can be introduced in the previous baseline model such that the effect of 

hybrid (𝐻𝑗) can be replaced by 𝑤𝑗, which is expressed as a linear regression of phenotypic 

data on the wavenumber covariates that approximates the value of the jth hybrid such that the 

vector of NIRS random effect 𝒘 = [𝑤1, … , 𝑤𝐽]𝑇 is assumed 𝒘~𝑁(𝟎, 𝐖𝜎𝑤
2 ), where 𝜎𝑤

2  is the 

spectral variance component, and W is a scaled wavenumber relationship matrix that was 

computed using the matrix of  wavenumber information (N) from data of order 𝐽 × 𝑤 (for a 

total of 𝐽 lines and 𝑤  wavenumbers) as 𝑾 =
𝑵𝑵𝑻

𝑤
.  

It is important to point out that the final  𝑾  reported for lines was calculated as the 

average of the wavenumber relationship matrices calculated in each environment since the 

wavenumber reflectance values were obtained for each hybrid in each environment. Similarly, 

for the interaction terms, when wavenumber information was used, the hybrid × environment 

interaction 𝐻𝐸𝑖𝑗 of the lines across environments baseline model was replaced by 𝑤𝐸𝑖𝑗 the 

random effect of the interaction term of the ith environment and the jth wavenumber and 𝒘𝑬 =

[𝑤𝐸11, … , 𝑤𝐸𝐼𝐽]𝑇 ~𝑁(𝟎, 𝐖𝐴𝜎𝑤𝐸
2 ), where 𝜎𝑤𝐸

2  is the variance component associated with the 

wavenumber × environment interaction, but 𝐖𝐴 was calculated as 𝐖𝐴 =
𝑵𝑨𝑵𝑨

𝑻

𝑤
 where 𝑵𝑨 is the 

matrix of wavenumber information of order 𝐽𝐼 × 𝑤 where 𝐼 denotes the number of 

environments assuming that the same number of hybrids, 𝐽, were evaluated in each 

environment.  

Therefore, using basic wavenumber information, the NIRS BLUP model including 

environments, wavenumber, and their interactions becomes model M1, which is 
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𝑦𝑖𝑗 = 𝐸𝑖 + 𝑤𝑗 + 𝑤𝐸𝑖𝑗 + 𝜖𝑖𝑗.      (M1, eq. 3)                                                  

M1 establishes relationships between hybrids based on wavenumber information, which is 

similar to the conventional G-BLUP. In a traditional G-BLUP approach, dense molecular 

markers are used (instead of wavenumber), and covariates are incorporated to develop the 

genomic relationship matrix (G) establishing the similarities between hybrids based on 

genomic markers. The main difference in this scenario is that that wavenumbers are measured 

for all hybrids in each environment, as opposed to DNA markers, which are measured once 

for each hybrid.  

Functional regression model with interaction – M2  

The previously defined baseline model, 𝑦𝑖𝑗 = 𝐸𝑖+𝐻𝑗 + 𝐻𝐸𝑖𝑗 + 𝜖𝑖𝑗, can be combined 

with the information from the wavenumber, but not as a wavenumber matrix as introduced in 

model M1. Instead, wavenumber values are combined using models displaying wavenumbers 

as functional covariates. These models are called functional regression models, where the 

response variable is a scalar and some of the covariates are functions. Thus, this combination 

will be named model M2 and is represented as  

𝑦𝑖𝑗 = 𝐸𝑖+𝐻𝑗 + 𝐻𝐸𝑖𝑗 + ∫ 𝑤𝑖𝑗(𝑘)𝛽1(𝑘)𝑑𝑘
10000 𝑐𝑚−1

4000 𝑐𝑚−1
+ 𝜖𝑖𝑗.                         (M2, eq. 4)  

Here, 𝑤𝑖𝑗(𝑘) is the functional predictor and represents the value of a continuous underlying 

process evaluated at wavenumber 𝑘; 𝛽1(𝑘) is the functional regression beta coefficient for the 

functional part of  the model; and 𝜖𝑖𝑗 is defined as in model M1 (Montesinos-López et. al., 

2017b).  
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The functional regression models add the 3,076 wavenumbers to M2 as functional 

covariates constructed over the interval between 4,000 and 10,000 cm-1. Model M2 was 

implemented using a total number of 𝐿 = 101, Fourier basis, to approximate the functions, 

𝑤𝑖𝑗(𝑘) and 𝛽1(𝑘) in model M2. The Fourier basis is a set of predefined functions in terms of 

sine and cosine. If in model M2, we replace the integral of the product by the sum of products 

(∑ 𝑤𝑖𝑗𝑘𝛽𝑘
𝑝
𝑘=1 ), then model M2 is reduced to a conventional linear regression model. In this 

model, 𝑤𝑖𝑗𝑘 represents the 𝑘th wavenumber data measured on the 𝑗th hybrid in the 𝑖th 

environment with 𝑘 = 1,2, … ,3076; 𝑤𝑖𝑗𝑘 are BLUEs obtained in the first stage analysis; and 

𝛽𝑘 is the beta regression coefficient for the 𝑘th wavenumber. Note that we implemented model 

M2 to avoid implementing a model with 3076 beta coefficients corresponding to each of the 

wavenumbers. This model was implemented using a Bayesian approach. 

The NIRS BLUP model with only main effects of hybrids – M3  

Model M3 is similar to M1 but only with main effects of hybrids (with wavenumbers 

incorporated through a covariance matrix) applied for each environment.   This model is equal 

to  

 𝑦𝑗 = 𝑤𝑗 + 𝜖𝑗.                                                     (M3, eq. 

5) 

In M2 eq. 4, 𝒘~𝑁(𝟎, 𝐖𝜎𝑤
2 ), where 𝐖 was calculated with the wavenumber information of 

each environment. Note that model M3 is obtained from model M1, ignoring the main effect 



 

24 

 

of environment, 𝐸𝑖, and the interaction term, 𝑤𝐸𝑖𝑗. It is reduced to 𝑦𝑗 = 𝑤𝑗 + 𝜖𝑗, with  𝒘 =

[𝑤1, … , 𝑤𝐽]𝑇 and 𝒘~𝑁(𝟎, 𝐖𝜎𝑤
2 ).  

Functional regression model with only main effects of hybrids – M4  

Model M4 is similar to M2, but with only the main effects of hybrids, 𝑦𝑗 = 𝐻𝑗 + 𝜖𝑗. 

When using the wavenumbers as covariates, model M4 is described as    

𝑦𝑗 = 𝐻𝑗 + ∫ 𝑤𝑗(𝑘)𝛽1(𝑘)𝑑𝑘
10000 𝑐𝑚−1

4000 𝑐𝑚−1
+ 𝜖𝑖𝑗.                      (M4, eq. 6) 

Models without NIRS – M5 and M6  

As previously mentioned, the model of the hybrid × environment interactions is 

named model M5,  

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖+𝐻𝑗 + 𝐻𝐸𝑖𝑗 + 𝜖𝑖𝑗       (M5, eq. 7). 

 

Furthermore, when model M5 includes only the random effect of hybrids, this yields 

model M6; 

 𝑦𝑗 = 𝐻𝑗 + 𝜖𝑖𝑗       (M6, eq. 8). 

 

Assessing the models’ prediction accuracy 

For all validation schemes, we report the Pearson´s correlation (r) and RMSEP 

between the observed and predicted values of grain yield for the testing set. For PLSR 

models, these results are reported for the held out validation test sets as described above. For 
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functional regression and NIRS BLUP models, we report the average of the five folds 

resulting from the random partitions implemented.  

The phenomic selection models (functional regression and NIRS BLUP) were 

subjected to three different cross-validations schemes; a) cross-validation predicting one 

environment using the other environments as the training set; b) random cross-validation 

within each environment where 20% of the maize hybrids are predicted using 80% of the 

other hybrids as the training population; c) random cross-validation for multi-environments 

where 20% of the lines were observed in some environments and predicted in other 

environments using the other 80% of lines.  

The first scheme consists of the prediction of all hybrids in one environment (in turn, 

WW_2011, WW_2012, WS_2011, and WS_2012) using all the hybrids combined from the 

other three environments as the training set. This prediction is named cross-validation 0 

(CV0) (predicting known genotypes in pseudo-unknown environments). In this experiment, 

even if the model was not trained on the environment, since the NIRS data is collected in the 

environment, the environment is therefore only considered to be pseudo-unknown. The PLSR, 

functional regression, and NIRS BLUP models were all assessed with the CV0 scheme, to test 

the models’ abilities to perform in unknown environments.  

The second cross-validation scheme is a random cross-validation within each 

environment, where a 5 fold random partitioning was implemented. In each partition, 20% of 

the hybrids are predicted by the remaining 80% of hybrids; this is named (CV1) (unknown 

genotypes in known environments).  
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Finally, the last cross-validation strategy was a 5 fold random cross-validation (CV2) 

where 20% of the hybrids were predicted by 80% of the other hybrids, similar to CV1. 

However, in this case, 20% of hybrids are not observed in some environments, and thus 

predicted in those environments, but are observed in other environments (known genotypes in 

known environments). This CV2 mimics a prediction problem faced by breeders in 

incomplete field trials where hybrids are evaluated in some, but not all, target environments 

(usually called sparse testing). Note that in CV2, all environments were used in training the 

model. In this cross validation, some hybrids can never be part of the training set. This is 

because some hybrids were not observed in all environments. This CV2 strategy used 

sampling with replacement, which means that one observation can appear in more than one 

partition. Training and testing partitions were obtained as follows: since the total number of 

records per trait available for the data set with multi-environments is 𝑁 = 𝐽 × 𝐼 observations 

comprising of J hybrids and I environments, to select lines in the test data set, we fixed the 

percentage of data to be used for test (Testing=20%). Then we chose 0.20× 𝑁 (hybrids) at 

random, and subsequently, one environment per hybrid was randomly picked from 𝐼 

environments. The resulting cells (𝑖𝑗) were assigned to the test data set, while cells not 

selected through this algorithm were allocated to the training data set. Hybrids were sampled 

without replacement if 𝐽 ≥ 0.20 × 𝑁 , and with replacement otherwise (López-Cruz et al., 

2015).  

The PLSR models were tested to predict unknown genotypes via their ability to 

predict a held out validation set of genotypes the model was not trained on, as described 
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above in the PLSR section. To test their ability to predict in new environments, on either 

known or unknown hybrids, held out test sets were designed (see Table 2 in results). PLSR 

models were also subjected to the CV0 scheme.  

Other analysis 

To investigate if yield was simply correlating with some compositional aspect of the 

kernels, predictions for crude protein, starch, and oil content were obtained using existing 

calibrations from these components built within the research program (Meng et al., 2015; 

Christman, 2017). To assess the correlation of composition to yield, simple linear models 

(LM) were built using the lm function in R (R Core Team, 2018). These LM were compared 

to the results of the PLSR model trained and tested on the same samples sets, as both predict 

on a plot basis. Repeatability for grain yield on an entry basis across all environments were 

estimated as explained by Anderson et al. (2018).  

Results 

The results are presented in two main sections. The first section presents the 

predictions under the PLSR and LM methods. The second section describes the predictions 

based on the phenomic selection models (NIRS BLUP and functional regression), for single 

environment and G×E multi-environment approaches under the CV0, CV1, and CV2 

schemes. 

Prediction accuracy of PLSR and LM 

Yield predictions from models using PLSR within the same years demonstrated a high 

Pearson’s correlation to maize grain yield on a plot basis (r = 0.84; Table 1, PLSR 1). The 

model successfully used spectra alone to predict the yield of a sample on a plot basis, based 
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on error in prediction. With only spectral data, the PLSR model using 15 PLS components 

predicted yield with a RMSEP of 163.67 g m-2.  

To investigate if kernel compositional traits were correlated with yield, NIRS 

composition predictions were used to predict yield using simple LM. A PLSR model as above 

was run, but using only the 2,155 samples with composition predictions to build the training 

and testing sets (Table 1; PLSR 2); this had an r of 0.82. Looking at individual components, 

crude protein was the only measured component with a strong correlation with yield (r = 0.58) 

(Table 1; LM 1). Both starch and fat had very low correlations (r ≤ 0.17, Table 1; LM 2-3). 

Combining all compositional predictions into a model to predict yield improved predictions 

over protein alone, but only slightly, yielding an r of 0.64 (Table 1; LM 4). 
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Table 1. Description of factors used in training PLSR and LM models for grain yield on all GWAS data and their 

results. The number of samples used in the training and testing sets as well as the number of genotypes (pedigrees) 

represented by those samples are reported. The number of Partial Least Squares components used for each model are 

listed (PLS) when relevant. Pearson´s correlation (r) and root mean square error of prediction (RMSEP) in g m-2 were 

calculated between observed and predicted values of the test set. 

 

Scenario 
Training Data  Testing Data      

Samples Pedigrees  Samples Pedigrees  Predictor PLS r RMSEP 

PLSR 1 1573 253  848 91  NIRS 15 0.84 163.67 

PLSR 2† 1389 254  734 90  NIRS 11 0.82 174.52 

LM 1 1389 254  734 90  Protein‡  - 0.59 247.25 

LM 2 1389 254  734 90  Starch‡  - 0.21 296.38 

LM 3 1389 254  734 90  Oil‡  - 0.12 301.86 

LM 4  1389 254  734 90  Protein/starch/oil‡  - 0.63 238.52 

† The full data set did not have corresponding composition estimations for each sample, so a baseline PLSR was run with the 

subset of the data for which composition was available.  

‡ Protein, starch, and oil values were estimations based on previously trained NIRS models calibrated with wet chemistry.
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Next, PLSR scenarios were developed to predict yield on samples from a year 

unknown to the model, on known or unknown hybrids (see Table 2). Results showed that a 

model built on 2011 predicted unknown hybrids in 2011 better than a 2012 model predicting 

unknown hybrids in 2012 (Table 2; PLSR 3-4). Results also showed that a model trained on 

2011 predicted 2012 well, and better than the reverse (PLSR 5 and 8); even though the 

predicted hybrids were known to the model in both cases. In predictions between years, the 

best performing model was trained on all available samples from 2011 to predict 2012 (PLSR 

6). PLSR 6 had more training data than PLSR 5, as this training data represented all available 

2011 data (including the USDA and other breeding populations from 2011). We also 

investigated the ability of a model to predict only unknown hybrids from a new year (PLSR 

7), which was comparable to when most of the hybrids were already known from a previous 

year (PLSR 5).   
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Table 2. Description of factors used in training PLSR scenarios to carry out year-to-year predictions on grain 

yield and their results. The number of samples used in the training and testing sets as well as the number of 

genotypes (pedigrees) represented by those samples are reported. The number of partial least squares components 

used for each model are listed (PLS). Pearson´s correlation (r) and root mean square error of prediction (RMSEP) 

in g m-2 were calculated between observed and predicted values of the testing sets. 

 

Scenario 
Training Data  Testing Data   

PLS  

  

Year Samples Pedigrees  Year Samples Pedigrees  r RMSEP 

PLSR 3 2011 913 213  2011 363 61  12 0.81 121.03 

PLSR 4 2012 768 239  2012 448 85  15 0.72 195.03 

PLSR 5 2011 1276 275†  2012 1216 324†  9 0.62 247.58 

PLSR 6 2011‡ 1962 475†  2012 1216 324†  15 0.69 209.64 

PLSR 7 2011 1276 275  2012 201 69  10 0.60 244.38 

PLSR 8  2012 1216 324†  2011 1276 275†  11 0.19 329.79 

† Indicates the pedigrees were not completely unique between years. 

‡ Indicates data from separate 2011 experiments were included. 
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Cross-validation under CV0, CV1, and CV2 schemes 

Prediction of observed hybrids in new environments (CV0) 

Results of cross-validation CV0, where one environment is predicted using the other 

three environments (year by irrigation) as the training data, for PLSR, NIRS BLUP (M1), and 

functional regression (M2) models are shown in Tables 3 and 4. PSLR had slightly higher 

prediction accuracies across all scenarios than both M1 and M2 (r = 0.55; Table 3). Model 

M2, using functional regression with wavelength as covariates, gave higher prediction on 

average when compared to model M1, using NIRS BLUP (r = 0.53 versus 0.40; Table 4). 

Error, as presented via the average RMSEP in g m-2 were nearly identical between functional 

regression and PLSR models (272.12 and 272.66, respectively). In general, all hybrids 

predicted in individual environments had higher prediction accuracies for model M2 than for 

model M1 (e.g. WS_2012 = 0.68 for M1 versus WS_2012 = 0.74 for M2). Results showed 

that the prediction of hybrids unobserved in WW using observed hybrids in WS is better than 

the reverse, and this is much higher for M2 than for M1 (WS = 0.42 and WW = 0.75 for M2 

versus WS = 0.20 and WW = 0.28 for M1; Table 4). PLSR performed similarly to M2 overall 

(Table 3). Similarly, hybrids grown in 2012 were more predictable than hybrids in 2011, 

which makes sense given 2011 was a drought year, presenting more overall stress to plants. 

Based on the r values between samples’ observed and predicted values, and the RMSEP 

results, functional regression model M2 and PLSR models had substantially higher prediction 

accuracies of unobserved hybrid performance than NIRS BLUPs model M1. 
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Table 3. Pearson´s correlation (r) between predicted and observed values for 

environments water stress (WS) and well-watered (WW) during years 2011 

and 2012 for PLSR phenomic prediction models. The number of PLS 

components are also reported (PLS). Root mean squared error prediction 

(RMSEP) is reported in g m-2. Cross-validation CV0 predicted one 

environment using the other three environments, one irrigation regime (WW, 

WS) using the other irrigation regime, or one year (2011, 2012) using the other 

year. 

 

Model  Predicted Environment PLS r RMSEP Validation 

PLSR WS_2011 12 0.43 402.97 CV0 

PLSR WS_2012 12 0.64 206.12 CV0 

PLSR WW_2011 13 0.72 232.09 CV0 

PLSR WW_2012 13 0.47 235.22 CV0 

PLSR WS 12 0.48 343.08 CV0 

PLSR WW 10 0.81† 183.49 CV0 

PLSR 2011 11 0.19 329.79 CV0 

PLSR 2012 12 0.66 248.89 CV0 

 Mean -- 0.55 272.66  

† Model with highest correlation (r) 

‡ Model with lowest RMSEP 
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Table 4. Pearson´s correlation (r) between predictive and observed value for 

environments water stress (WS) and well-watered (WW) during years 2011 

and 2012 for phenomic selection models M1 and M2 including interactions 

between wavenumber × environment. Root-mean squared error prediction 

(RMSEP) is reported in g m-2. Cross-validation CV0, predicted one 

environment using the other three environments, one irrigation regime (WW, 

WS) using the other irrigation regime, or one year (2011, 2012) using the other 

year.  

 

Model  Predicted Environment r RMSEP Validation 

M1 WS_2011 0.41 1905.22 CV0 

M1 WS_2012 0.68† 1533.79 CV0 

M1 WW_2011 0.62 101.55‡ CV0 

M1 WW_2012 0.45 1581.57 CV0 

M1 WS 0.19 762.47 CV0 

M1 WW 0.28 3969.53 CV0 

M1 2011 0.23 638.25 CV0 

M1 2012 0.31 340.07 CV0 

 Mean 0.40 1354.06  

M2 WS_2011 0.45 322.53 CV0 

M2 WS_2012 0.74 148.28‡ CV0 

M2 WW_2011 0.67 215.82 CV0 

M2 WW_2012 0.44 220.89 CV0 

M2 WS 0.42 395.73 CV0 

M2 WW 0.75† 197.21 CV0 

M2 2011 0.13 354.82 CV0 

M2 2012 0.64 321.69 CV0 

 Mean 0.53 272.12  

† Model with highest correlation (r) 

‡ Model with lowest RMSEP 
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Prediction of unobserved hybrids within environment (CV1) 

Results of models M3 and M4 under CV1 for the predictions of hybrids within each 

environment are shown in Table 5. Models M3 and M4 are the counterpart of models M1 and 

M2, respectively, but include only main effects of hybrids. In general, results showed that 

NIRS BLUP model M3 with only main effects predicts the unobserved hybrids better (0.57) 

than the main effect functional regression model M4 (0.46). The prediction accuracy of 

unobserved hybrids in WS_2012 for M3 (0.54) was lower than that achieved in WS_2012 for 

M4 (0.64). 
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Table 5. Pearson´s correlation (r) between predictive and observed values for 

environments water stress (WS) and well-watered (WW) during years 2011 and 2012 for 

models M3 and M4 within only a single environment. Root-mean squared error prediction 

(RMSEP) is reported in g m-2. CV1 predicted 20% of unobserved lines in that single 

environment using the remaining 80% of lines. SE_r denotes standard error under r and 

SE_RMSEP denotes standard error under RMSEP. 

 

Model  Environment r SE_r RMSEP SE_RMSEP Validation 

M3 WS_2011 0.28 0.07 75.97‡ 18.6 CV1 

M3 WS_2012 0.54 0.05 148.45 51.12 CV1 

M3 WW_2011 0.63 0.02 101.04 33.14 CV1 

M3 WW_2012 0.30 0.06 184.56 58.31 CV1 

M3 WS 0.85† 0.02 132.64 40.1 CV1 

M3 WW 0.77 0.03 170.97 57.57 CV1 

M3 2011 0.75 0.02 108.36 30.03 CV1 

M3 2012 0.37 0.02 203.56 40.28 CV1 

 Mean 0.57 --- 1780.3 ---  

M4 WS_2011 0.30 0.11 74.93‡ 1.73 CV1 

M4 WS_2012 0.64† 0.15 135.06 2.44 CV1 

M4 WW_2011 0.63 0.15 103.72 2.23 CV1 

M4 WW_2012 0.25 0.20 189.47 1.57 CV1 

M4 WS 0.47 0.21 109.22 3.1 CV1 

M4 WW 0.44 0.26 152.74 3.04 CV1 

M4 2011 0.47 0.21 90.47 2.99 CV1 

M4 2012 0.45 0.26 164.53 3.14 CV1 

 Mean  0.46 --- 132.77 ---  

† Model with highest correlation (r) 

‡ Model with lowest RMSEP 
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Within an irrigation treatment, prediction of unobserved hybrids tested under WS 

using observed hybrids evaluated under WW was higher than the prediction of hybrids under 

WW using hybrids in WS by means of models M3 and M4, if both years were included 

(Table 5). The prediction of hybrids in WS environment was of 0.85 with model M3 and of 

only 0.47 for model M4. In this case, unobserved hybrids in 2011 were more predictable than 

unobserved hybrids in 2012. Based on r between observed and predicted values, results 

indicated that functional regression model, M4, had lower prediction accuracy than NIRS 

BLUP model M3. However, based on RMSEP values, results indicated that functional 

regression model M4 had higher prediction accuracy than NIRS BLUP model M3. 

Prediction of unobserved hybrids in some environments (sparse testing) (CV2) 

Table 6 shows the random cross-validation CV2 fitting models M1 and M2. When 

including the environment × hybrid interaction the functional regression using the NIRS as 

covariates (M4) gave much higher prediction accuracy of the unobserved hybrids (r = 0.73; 

Table 6) than the NIRS BLUP (r = 0.38). Model M2 with functional regression covariates in 

the G×E multi-environment modes gave very good predictions of unobserved hybrids in WS 

(r = 0.91; Table 6) as well as in WW (r = 0.87); on the contrary, NIRS BLUP with G×E 

multi-environment (M1) gave very poor prediction of unobserved hybrids in WS (r = 0.07) 

and in WW (r = 0.14) (Table 6). 
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Table 6. Pearson´s correlation (r) between predictive and observed values for environments 

water stress (WS) and well-watered (WW) during years 2011 and 2012 for models M1 and 

M2 including interaction wavenumber × environment. Root-mean squared error prediction 

(RMSEP) is reported in g m-2. Random cross-validation CV2 for predicting 20% of the lines 

not observed in listed environments but observed in others. SE_r denotes standard error 

under r and SE_RMSEP denotes standard error under RMSEP. 

 

Model  Environment r SE_r RMSEP SE_RMSEP Validation 

M1 WS_2011 0.50 0.05 78.06‡ 27.81 CV2 

M1 WS_2012 0.65 0.05 130.58 31.55 CV2 

M1 WW_2011 0.70† 0.02 92.4 29.66 CV2 

M1 WW_2012 0.47 0.13 170.61 58.07 CV2 

M1 WS 0.07 0.09 254.6 45.87 CV2 

M1 WW 0.14 0.03 266.92 56.57 CV2 

M1 2011 0.12 0.05 166.05 48.31 CV2 

M1 2012 0.37 0.07 206.34 49.67 CV2 

 Mean 0.38 --- 182.69 ---  

M2 WS_2011 0.48 0.15 80.1‡ 2.51 CV2 

M2 WS_2012 0.74 0.10 120.52 2.08 CV2 

M2 WW_2011 0.71 0.10 88.08 2.01 CV2 

M2 WW_2012 0.52 0.10 167.28 103.16 CV2 

M2 WS 0.91† 0.01 103.11 41.61 CV2 

M2 WW 0.87 0.03 134.85 69.51 CV2 

M2 2011 0.86 0.02 84.65 26.16 CV2 

M2 2012 0.75 0.07 147.87 73.97 CV2 

 Mean 0.73 --- 119.66 ---  

† Model with highest correlation (r) 

‡ Model with lowest RMSEP 
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The unobserved hybrids of WS environments in both years were less predictable than 

the unobserved hybrids in WW environments, and hybrids in 2012 were more predictable 

than those tested in 2011 for model M1, whereas the opposite was true for model M2 (Table 

6). Based on r values and RMSEP, results indicated that functional regression model M2 had 

substantially higher prediction accuracy than NIRS BLUP model M1. Models M5 and M6, 

which do not include the NIRS data (Table 7), gave a much lower prediction accuracy than 

models M1, M2, M3, and M4 that include NIRS, for all three cross-validations schemes 

(CV0, CV1, and CV2). 
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Table 7. Pearson´s correlation (r) between predictive and observed values for 

environments water stress (WS) and well-watered (WW) from 2011 and 2012 for 

model M4, as well as for models M5 and M6, which do not include NIRS information. 

Root-mean squared error prediction (RMSEP) is reported in g m-2. SE_r denotes 

standard error under r and SE_RMSEP denotes standard error under RMSEP. For M4 

and M6 models the main effects of environments were considered.   

Model Environment r SE_r RMSEP SE_RMSEP Validation 

M4 WS_2011 0.32 --- 492.54 --- CV0 

M4 WS_2012 0.70 --- 427.09 --- CV0 

M4 WW_2011 0.48 --- 200.7‡ --- CV0 

M4 WW_2012 0.59† --- 3135.51 --- CV0 

M4 WS 0.28 --- 4095.16 --- CV0 

M4 WW 0.33 --- 482.74 --- CV0 

M4 2011 0.26 --- 1182.65 --- CV0 

M4 2012 0.39 --- 941.75 --- CV0 

 Mean 0.42 --- 1369.77 ---  

M5 WS_2011 0.01 0.06 78.45‡ 17.12 CV1 

M5 WS_2012 0.04 0.09 175.46 62.18 CV1 

M5 WW_2011 0.04 0.05 128.83 45.48 CV1 

M5 WW_2012 0.06† 0.03 194.6 60.29 CV1 

M5 WS -0.10 0.04 251.91 54.39 CV1 

M5 WW -0.09 0.05 268.33 49.75 CV1 

M5 2011 -0.09 0.05 161.69 49.89 CV1 

M5 2012 -0.10 0.03 220.83 37.88 CV1 

 Mean -0.03 --- 185.01 ---  

M6 WS_2011 0.34 0.05 92.28‡ 33.68 CV2 

M6 WS_2012 0.66† 0.03 142.67 58.21 CV2 

M6 WW_2011 0.46 0.08 114.52 39.88 CV2 

M6 WW_2012 0.52 0.07 169.42 58.32 CV2 

M6 WS -0.30 0.02 263.42 48.64 CV2 

M6 WW -0.27 0.03 281.41 55.38 CV2 

M6 2011 -0.15 0.03 176.22 37.02 CV2 

M6 2012 0.20 0.02 216.95 61.52 CV2 

 Mean 0.18 --- 182.11 ---  

† Model with highest correlation (r) 

‡ Model with lowest RMSEP  
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Predicting on elite breeding material 

The PLSR 1 model (Table 1 describes training set) was applied to other breeding tests 

from 2011 to investigate the ability for this calibration to predict other genetic material, 

relevant for breeding. This model had an ability to predict not only unknown pedigrees from 

within the experiment (a genetics study where all hybrids share the same tester line Tx714), 

but also showed ability in predicting genetically distinct material from different experiments 

grown in 2011 on a plot basis (Fig. 2). These breeding experiments were grown across three 

locations in the state of Texas. Among the best predicted were 3AF (r = 0.68), a low yielding, 

late planted diverse test grown in Corpus Christi, SERAT (r = 0.53, Fig. 2B) a moderate 

yielding late planted test in College Station, while the other breeding tests from Weslaco (1AF 

and 2AF) and College Station (4AF) were not particularly well correlated (r = 0.23, 0.25, 

0.21, respectively), as well as GEM (Fig. 2B; r = 0.33). In the GEM predictions, two plots 

were predicted erroneously, having a negative yield prediction. These plots were removed 

from plotting and analysis. It is important to note that while these plots were not accurately 

predicted, they were also some of the lowest yielding plots from the test.  

Various phenomic selection models were also investigated for their ability to perform 

on this unrelated material, though results were not as impressive, even when 10% of the new 

material was included into the training set.  
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Figure 2. Ability for PLSR1 (Table 1) model trained on original samples to predict yield on a plot basis of A) genetically 

unrelated samples of breeding trials from the Texas A&M Corn Program in 2011 B) genetically unrelated tests representing 

two tests of material from outside of the program (note: two negatively predicted plots were removed from GEM test). The 

dotted lines show the 1:1 line. 
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Repeatability for Yield 

 The repeatability of yield across and within environments are presented in Table 8. 

Note that the lowest repeatability is within WS_2011 (0.55), and that overall repeatability was 

relatively high (0.77). 

Table 8. Repeatability for yield on an entry basis across all environments and within each 

environment 

Environment Repeatability 

All 0.7745 

WS_2011 0.5559 

WW_2011 0.6369 

WS_2012 0.7421 

WW_2012 0.7534 

 

Discussion 

Our aims were to determine if information from NIRS of maize grain could be used to 

estimate grain yield in both phenomic prediction and selection scenarios. If the spectra can 

capture value of genetic material, there seems to be a great potential for these methods to be 

useful within the context of breeding programs. The models used in this experiment 

represented two methods of mining the spectral data, phenomic prediction and phenomic 

selection. The relative success of both approaches offers promise for future techniques using 

NIRS beyond its traditional composition analysis.  

It was clear that the NIRS information was the basis of most prediction capability for 

each of the model types used in this study. Models not including NIRS information (Table 7) 

had very little correlation between predicted and observed values. The mode of action for the 

strong predictive relationships across genotypes and years is not yet understood.  
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One hypothesis is that spectra could be indicative of some compositional aspect of the 

kernels that is correlated with yield. This could be investigated by comparing composition 

prediction model results, and only crude protein appeared to have any significant correlation 

on its own (Table 1; LM 1). Combining all measured compositional predictions (starch, oil, 

protein; LM 4) into a model to predict yield improved predictions over a single compositional 

component alone, demonstrating that composition is relevant but likely not sufficient in 

predicting yield. However, adding more components could further improve correlations.  

While crude protein seemed to have a significant inverse correlation with yield, using 

composition in any combination was never as accurate as using NIRS data.  

Alternatively, the spectra could be explaining genetic relatedness between samples. If 

the NIRS was capturing this alone, the phenomic selection models, would have significantly 

outperformed the PLSR phenomic prediction models, and this was not the case either. 

However, given that the NIRS BLUP and functional regression models could not predict the 

unrelated genetic material as well as the PLSR models suggests that they likely rely more on 

genetics than a plot-based method. The plot-based nature of the PLRS phenomic prediction 

method may mean it relies more on composition, which could be why it is more flexible and 

adaptable to predict new genetic material (Fig. 2).  

Phenomic prediction with PLSR analysis 

In the case of the PLSR models, which predicted on each sample on a plot basis, 

genetic relatedness did not appear to have any discernible correlation to prediction accuracy 

(Table 2; Fig. 2), since many genetically unrelated samples were predicted quite well (Fig 2). 

Because composition is likely a factor in the PLSR model’s prediction capacity, this may 
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expand the prediction capacity to a wider range of germplasm, since composition may be a 

more robust measure than kinship, at least on unrelated material.  

The GEM dataset from 2011 was predicted with poor accuracy (r = 0.33), though the 

SERAT test was predicted relatively well (r =0.53; Fig. 2B). Both of these tests represented 

material from outside of the A&M Corn Breeding Program, and therefore represent different 

genetics than the AF tests from within the program. Most likely, some combination of 

composition and relatedness is what was being captured in the NIRS spectra. The fact that 

using this plot basis method to predict new, unrelated material (Fig. 2) was much better than 

the entry basis methods suggests that perhaps composition becomes more important for the 

prediction capacity in these cases.  

The composition data used in the LM came from the NIRS in some capacity, so it may 

be that the compositional predictions capture some of the spectral data important in predicting 

yield.  It is more likely that the spectra in its entirety is able to pick up the composition of the 

kernel as a whole, including protein, in relation to how it compares to other samples. In 

addition, yield predictions were surprisingly better than what is usually observed or expected 

in predictions of compositional traits (Christman, 2017). 

By predicting or at least improving yield estimates, grain NIRS has the potential to 

reduce the number of field replications needed. Reducing replications or using less expensive 

plot evaluation methodology has potential to save breeding resources. Improving phenotypic 

data accuracy also has potential to improve selection ability. For new technologies to improve 

plant breeding they need to either reduce evaluation resources, improve data accuracy, or 

both. High-throughput phenotyping tools like NIRS offer potential for inexpensive, fixed-cost 
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methods of evaluating best yielding varieties within a breeding program. It is also important 

to note that the repeatability for yield in this study was relatively high, which may have 

impacted the success of NIRS being able to capture yield. One surprising factor here, 

however, is that the most stressed environment (WS_2011), which seemed to be best to 

include in training sets, had the lowest repeatability.   

Advantages of NIRS BLUPS  

The NIRS BLUP model mimics the genomic best linear unbiased prediction (G-

BLUP) model by building a relationship matrix with the bands of the spectral data. This 

mimicry made NIRS BLUP models very parsimonious despite large p (independent variables, 

bands in this case) and small n (number of observations). The G-BLUP is one of the most 

popular methods in genomic selection because of high prediction accuracies of sample data, 

and because it is easy to process and implement in conventional statistical software. Thus, 

these benefits are also applicable when computing the NIRS BLUPS via generation of a NIRS 

similarity matrix between entries. 

Advantages of functional regression analyses 

Functional regression analyses accounts for spectral bands as transformed covariates 

of the original bands, which are of considerably fewer dimensions than the original number of 

bands. Because of this, functional regression is parsimonious and practical to implement in 

conventional software for phenomic selection. The functional regression analyses was 

implemented under a Bayesian approach using conventional genomic selection software 

(Montesinos-Lopez, et al., 2018).  
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One problem with the functional regression model is that it is not easy to choose the 

required number of basis functions (L) that give rise to the transformed covariates used for 

final implementation. This process is somewhat analogous to selecting the number PLS 

components to use. The correct method for selecting the hyperparameter L is via a tuning 

process. The advantage is that when the bands (original covariates) are strongly correlated 

with few transformed covariates (L=25), it must be enough to capture most of the information 

existing in the original spectral data. 

Advantages of phenomic selection  

NIRS BLUP and functional regression both offered parsimonious models for directly 

including all the spectral data (bands). NIRS BLUP included all the spectral data for building 

a NIRS relationship matrix, which mimics the genomic relationship matrix of the G-BLUP 

method of genomic selection. The functional regression analyses uses only a few transformed 

covariates (L=101 in our case) that represent the 3,076 bands originally measured.  

Furthermore, the obvious advantage over a simple plot-based prediction method is that 

the selection methods aim to determine the yield value of a variety, which more easily fits the 

objectives of most breeders. 

Strong potential of NIRS-based phenomic methods  

Models traditionally used in NIRS, such as PLSR, as well as more novel approaches 

implemented by NIRS BLUP and functional regression, showed surprising promise for 

extracting meaningful information from NIRS of kernels. This discovery aligns with findings 

by Rincent et al. (2018) for predicting end quality traits in wheat.  
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In all cases, NIRS in the model allowed a useful prediction ability for grain yield. 

Some information is available within the NIRS that can be attributed to yield on a plot or 

entry basis. It is not necessarily important to understand why the NIRS successfully predicts, 

simply that the prediction is reliable and consistent within the context that it is used. Still, 

these results pose some interesting, novel fundamental research questions about how NIRS 

can help understand information that connects to and predicts the yields of plants; it is 

conceivable there is a novel biological basis to this prediction ability that could open up new 

areas of research. 

Beyond predicting for unknown pedigrees with that share a tester with the training set, 

there also is an ability to predict unknown pedigrees that are genetically distinct from those in 

the model calibration. These results suggest that NIRS prediction models have promise to 

predict unknown pedigrees that have breeding use and value in a program. In our case, the 

results are limited to the year on which the model is calibrated. However, as results in Fig. 2 

show, some of the datasets were poorly predicted, and understanding the underlying reason 

for this could hold the key for why NIRS phenomic prediction works (or in some cases, does 

not work). Factors outside of simple genetic relatedness are unlikely to be the main cause, 

given that plot-based methods sometimes outperformed entry-based methods, especially on 

genetically unrelated material.  

Ultimately, high r values, even when the yield predictions are not highly accurate, 

suggest that NIRS based models offer a strong potential to be used in ranking varieties 

relative to one another, as is often done in breeding programs. Furthermore, as suggested by 

Rincent et al. (2018), there is potential for NIRS to assist in negative selection, to eliminate 
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varieties with confidence that none of the best lines are being lost, before subjecting a 

population to more expensive or rigorous screening.  The most practical future application 

would be an eventual relative ranking model to be designed to assist breeders in selection. 

One recurrent question surrounding NIRS prediction methods are the optimization of 

the environment in which to capture scans. Spectra collection in environments separate from 

the environment in which calibrations are made has presented challenges in the past (Ferrio et 

al., 2004), and remains a key question to be answered in optimizing selection models using 

NIRS. It has been shown that NIRS can be used to predict in new environments (Rincent et 

al., 2018), but understanding what makes the best calibration site is yet to be determined. In 

this study, where entire environments were held out from the training of the model (CV0), it 

was always better to build the model using the more stressed environment, which is consistent 

with the findings of Rincent et al. (2018).  Evidence from this experiment and previous 

studies suggest a more stressful growing condition is likely better for training models using 

NIRS information. 

This current approach has a number of potential direct applications. First, it would be 

useful in improving plot combine yield data, which would be particularly easy to incorporate 

into programs with NIRS-capable combines. There is also the potential to carry out single-ear, 

hand-harvested yield estimates to reduce the amount of plants grown or plots combined. This 

would be most useful when increasing the environments where limited or unskilled labor 

might be available for collecting some ears but not the entire plot.  

One of the expected pitfalls, as opposed to the successful wheat study, is that maize is 

an outcrossing crop grown as a hybrid, meaning the grain likely is not a pure representation of 
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the mother plant, unlike wheat. Fortunately, xenia effects are not usually impactful in maize 

grain (Seka and Cross, 1995).   

It is also likely that the most robust models in a breeding program will be those 

calibrated with data from multiple years, across a wide diversity of genotypes. This is 

supported by the improvement made in prediction accuracy between PLSR 5 and PLSR 6 

(Table 2), where more genetic material across more environments added to the training set 

improved prediction results.  

Genomic prediction has been rapidly adopted by industry in the improvement of major 

field crops. The genomic selection approach requires building prediction models using 

genotyping information to better estimate the breeding value of different varieties within a 

breeding program (Bernardo et al, 1994; Meuwissen et al., 2001; Bernardo and Yu, 2007; 

Crossa et al., 2010, 2017; Rincent et al., 2012). Our results suggest that phenomic prediction 

(such as NIRS of grain yield) might also be useful, although it will be under more restrictive 

scenarios where the grain composition can be readily assessed, such as in hand harvested 

experiments and where NIRS is mounted within grain combines, since NIRS was needed for 

each sample in each environment. Our results also suggest that phenomic selection, where the 

NIRS is used to make inferences about the value or performance of a variety, may be even 

more useful, once protocols for the conditions to best collect NIRS calibration information are 

better established and understood. 

Conclusions 

This study supports previous evidence from wheat that the use of grain spectral data is 

useful for predicting grain yield, but for the first time, shows that this approach is valid in 
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maize. For this reason, these results offer promise for studies in other crops, and will likely 

guide users to choose a statistical analysis method which best suits their goals. PLSR is 

routinely used with NIRS, and showed promise for predicting a non-compositional trait on a 

plot basis. However, the prediction performance obtained with the functional regression 

method was competitive, and may offer even more value for breeders once protocols are 

established.  

Furthermore, there is reason to suggest that building NIRS prediction models 

including multiple years will strengthen the prediction accuracy. Future experiments or 

applications of these methods should aim for more than two years of data to predict 

subsequent years. Low cost of implementation and evidence provided in this work suggest 

that breeders interested in this technology should scan as much relevant genetic material as 

possible when building calibrations, and continually add and update the models just as in 

genomic selection. 

Acknowledgements 

 The authors would like to acknowledge the students of the Texas A&M Quantitative 

Genetics and Maize Breeding Program who assisted in making the phenotypic data collection 

possible. We would also like to thank Dr. Sofija Bozinovic, who tested some of the R scripts 

for this article.  



 

52 

 

Author Contributions 

H.M. Lane: conceptualization, formal analysis, investigation, methodology, software, writing 

(original draft), review and editing (lead), visualization; S.C. Murray: conceptualization, 

funding acquisition, methodology, project administration, supervision, resources, review and 

editing (supporting); O.A. Montesinos-López: software, formal analysis, writing, review and 

editing (supporting); A. Montesinos-López: software, formal analysis, writing; J. Crossa: 

software, formal analysis, writing, resources, supervision, review and editing (supporting); 

D.K. Rooney: data curation; I.D. Barrero-Farfan: data curation; G.N. De La Fuente: data 

curation; C.L.S. Morgan: methodology, review and editing (supporting).  

 

Funding 

This project was made possible by financial support from USDA-NIFA-AFRI Awards No. 

2010-85117-20539, 2017- 67013-26185, USDA-NIFA Hatch funds, Texas A&M AgriLife 

Research, the Texas Corn Producers Board, and the Eugene Butler Endowed Chair. Holly M. 

Lane was funded under Texas A&M College of Agriculture and Life Sciences Excellence 

Fellowship. 

 

Conflicts of Interest 

The authors declare there are no conflicts of interest.  

  



 

53 

 

References 

Anderson, S.L., A.L. Mahan, S.C. Murray, and P.E. Klein. 2018. Four parent maize (FPM) 

population: effects of mating designs on linkage disequilibrium and mapping 

quantitative traits. The Plant Genome 11(2): 0. doi: 

10.3835/plantgenome2017.11.0102. 

Anderson, S.L., S.C. Murray, L. Malambo, C. Ratcliff, S. Popescu, et al. 2019. Prediction of 

maize grain yield before maturity using improved temporal height estimates of 

unmanned aerial systems. The Plant Phenome Journal. doi: 10.2135/tppj2019.02.0004  

Araus, J.L., and J.E. Cairns. 2014. Field high-throughput phenotyping: the new crop breeding 

frontier. Trends in Plant Science 19(1): 52–61. doi: 10.1016/j.tplants.2013.09.008. 

Barrero-Farfan, I.D.B., S.C. Murray, S. Labar, and D. Pietsch. 2013. A multi-environment 

trial analysis shows slight grain yield improvement in Texas commercial maize. Field 

Crops Research 149: 167–176. doi: 10.1016/j.fcr.2013.04.017. 

Barrero-Farfan, I.D.B., G.N.D.L. Fuente, S.C. Murray, T. Isakeit, P.-C. Huang, M. 

Warburton, P. Williams, G.L. Windham, and M. Kolomiets. 2015. Genome wide 

association study for drought, aflatoxin resistance, and important agronomic traits of 

maize hybrids in the sub-tropics. PLOS ONE 10(2): e0117737. doi: 

10.1371/journal.pone.0117737. 

Bernardo R.1994. Prediction of maize single-cross performance using RFLPS and 

information from related hybrids. Crop Science 34:20-25. 

Bernardo, R., and J. Yu. 2007. Prospects for genomewide selection for quantitative traits in 

maize. Crop Science 47(3): 1082–1090. doi: 10.2135/cropsci2006.11.0690. 

Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: learning 

from the last 20 years. Crop Science 48(5): 1649–1664. doi: 

10.2135/cropsci2008.03.0131 

Bertrand, D., P. Robert, and W. Loisel. 1985. Identification of some wheat varieties by near 

infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture 

36(11): 1120–1124. doi: 10.1002/jsfa.2740361114. 

Brummer, E.C., W.T. Barber, S.M. Collier, T.S. Cox, R. Johnson, et al. 2011. Plant breeding 

for harmony between agriculture and the environment. Frontiers in Ecology and the 

Environment 9(10): 561–568. doi: 10.1890/100225. 

https://doi.org/10.3835/plantgenome2017.11.0102
https://doi.org/10.1016/j.tplants.2013.09.008
https://doi.org/10.1016/j.fcr.2013.04.017
https://doi.org/10.1371/journal.pone.0117737
https://doi.org/10.2135/cropsci2006.11.0690
https://doi.org/10.2135/cropsci2008.03.0131
https://doi.org/10.1002/jsfa.2740361114
https://doi.org/10.1890/100225


 

54 

 

Cabrera‐Bosquet, L., J. Crossa, J. von Zitzewitz, M.D. Serret, and J.L. Araus. 2012. High-

throughput phenotyping and genomic selection: the frontiers of crop breeding 

converge. Journal of Integrative Plant Biology 54(5): 312–320. doi: 10.1111/j.1744-

7909.2012.01116.x. 

Chen, J., X. Ren, Q. Zhang, X. Diao, and Q. Shen. 2013. Determination of protein, total 

carbohydrates and crude fat contents of foxtail millet using effective wavelengths in 

NIR spectroscopy. Journal of Cereal Science 58(2): 241–247. doi: 

10.1016/j.jcs.2013.07.002. 

Chen, L., N.C. Carpita, W.-D. Reiter, R.H. Wilson, C. Jeffries, et al. 1998. A rapid method to 

screen for cell-wall mutants using discriminant analysis of Fourier transform infrared 

spectra. The Plant Journal 16(3): 385–392. doi: 10.1046/j.1365-313x.1998.00301.x. 

Christman, J.L. 2017. Development of near infrared reflectance spectroscopy (NIRS) 

calibrations of maize kernel phosphorus for the identification of useful breeding 

material. https://oaktrust.library.tamu.edu/handle/1969.1/161508 (accessed 3 July 

2019). 

Cooper, M., O.S. Smith, G. Graham, A. Lane, and et al. 2004. Genomics, genetics, and plant 

breeding: a private sector perspective. Crop Science; Madison 44(6): 1907–1913. 

Crossa, J., de los Campos, G., Pérez-Rodríguez, P., Gianola, D., Burgueño, J., et al. 2010. 

Prediction of genetic values of quantitative traits in plant breeding using pedigree and 

molecular markers. Genetics 186 713–724. 

Crossa, J. Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O.A., Jarquín, D., et al. 2017. 

Genomic selection in plant breeding: methods, models, and perspectives. Trend in Plant 

Science. 11(22): 961-975. doi.org/10.1016/j.tplants.2017.08.011. ISSN: 1360-1385. 

Espinoza, J.A., G.R. Hodge, and W.S. Dvorak. 2012. The potential use of near infrared 

spectroscopy to discriminate between different pine species and their hybrids. Journal of 

Near Infrared Spectroscopy 20(4): 437–447. doi: 10.1255/jnirs.1006. 

Ferreira, D.S., J.A.L. Pallone, and R.J. Poppi. 2013. Fourier transform near-infrared 

spectroscopy (FT-NIRS) application to estimate Brazilian soybean [Glycine max (L.) 

Merril] composition. Food Research International 51(1): 53–58. doi: 

10.1016/j.foodres.2012.09.015. 

Ferrio, J.P., E. Bertran, M.M. Nachit, J. Català, and J.L. Araus. 2004. Estimation of grain 

yield by near-infrared reflectance spectroscopy in durum wheat. Euphytica 137(3): 

373–380. doi: 10.1023/B:EUPH.0000040523.52707.1e. 

https://doi.org/10.1111/j.1744-7909.2012.01116.x
https://doi.org/10.1111/j.1744-7909.2012.01116.x
https://doi.org/10.1016/j.jcs.2013.07.002
https://oaktrust.library.tamu.edu/handle/1969.1/161508
https://doi.org/10.1255/jnirs.1006
https://doi.org/10.1016/j.foodres.2012.09.015
https://doi.org/10.1023/B:EUPH.0000040523.52707.1e


 

55 

 

Flint‐Garcia, S.A., A.-C. Thuillet, J. Yu, G. Pressoir, S.M. Romero, et al. 2005. Maize 

association population: a high-resolution platform for quantitative trait locus 

dissection. The Plant Journal 44(6): 1054–1064. doi: 10.1111/j.1365-

313X.2005.02591.x. 

Foley, W.J., A. McIlwee, I. Lawler, L. Aragones, A.P. Woolnough, et al. 1998. Ecological 

applications of near infrared reflectance spectroscopy – a tool for rapid, cost-effective 

prediction of the composition of plant and animal tissues and aspects of animal 

performance. Oecologia 116(3): 293–305. doi: 10.1007/s004420050591. 

Krause, M.R., L. González-Pérez, J. Crossa, P. Pérez-Rodríguez, O. Montesinos-López, et al. 

2019. Hyperspectral reflectance-derived relationship matrices for genomic prediction 

of grain yield in wheat. G3: Genes, Genomes, Genetics: g3.200856.2018. doi: 

10.1534/g3.118.200856. 

Lang, C., D.R.A. Almeida, and F.R.C. Costa. 2017. Discrimination of taxonomic identity at 

species, genus and family levels using Fourier Transformed Near-Infrared 

Spectroscopy (FT-NIR). Forest Ecology and Management 406: 219–227. doi: 

10.1016/j.foreco.2017.09.003. 

Lee, R.B., and I. DeVore. 1968. Problems in the study of hunters and gatherers. 

Levy, S.E., and R.M. Myers. 2016. Advancements in next-generation sequencing. Annual 

Review of Genomics and Human Genetics 17(1): 95–115. doi: 10.1146/annurev-

genom-083115-022413. 

Meng, Q., S.C. Murray, A. Mahan, A. Collison, L. Yang, et al. 2015. Rapid estimation of 

phenolic content in colored maize by near-infrared reflectance spectroscopy and its 

use in breeding. Crop Science 55(5): 2234–2243. doi: 10.2135/cropsci2014.11.0767. 

Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard. 2001. Prediction of total genetic value 

using genome-wide dense marker maps. Genetics 157(4): 1819–1829. 

Morris, J. S. (2015). Functional regression. Annual Review of Statistics and Its Application, 

2, 321-359. 

Morris, L.J., and R.T. Holman. 1961. Naturally occurring epoxy acids: II. Detection and 

measurement of long-chain epoxy acids by near infrared spectrophotometry. J. Lipid 

Res. 2(1): 77–82. 

Montesinos-López, O. A., Montesinos-López, A., Crossa, J., de los campos, G., Alvarado, G., 

et al. 2017a. Predicting grain yield using canopy hyperspectral reflectance in wheat 

breeding data. Plant Methods, 13(4): 1-23. DOI 10.1186/s13007-016-0154-2 

https://doi.org/10.1016/j.foreco.2017.09.003
https://doi.org/10.1146/annurev-genom-083115-022413
https://doi.org/10.1146/annurev-genom-083115-022413
https://doi.org/10.2135/cropsci2014.11.0767


 

56 

 

Montesinos-López, A., Montesinos-López, O. A., Cuevas, J., Mata-López, W. A., Burgueño, 

J., et al. 2017b. Genomic Bayesian functional regression models with interactions for 

predicting wheat grain yield using hyper-spectral image data. Plant Methods. Plant 

Methods 13 (62): 1-29. DOI 10.1186/s13007-017-0212-4. 

Montesinos-Lopez A, Montesinos-Lopez OA, de los Campos G, Crossa, J, Burgueño J, Luna-

Vazquez FJ. 2018. Bayesian functional regression as an alternative statistical analysis 

of high-throughput phenotyping data of modern agriculture. Plant Methods. 14:46. 

Plant Methods (2018) 14:46. https ://doi.org/10.1186/s1300 7-018-0314-7. 

Murray, S.C., W.L. Rooney, S.E. Mitchell, A. Sharma, P.E. Klein, et al. 2008a. Genetic 

improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural 

carbohydrates. Crop Science 48(6): 2180–2193. doi: 10.2135/cropsci2008.01.0068. 

Murray, S.C., A. Sharma, W.L. Rooney, P.E. Klein, J.E. Mullet, et al. 2008b. Genetic 

improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain 

nonstructural carbohydrates. Crop Science 48(6): 2165–2179. doi: 

10.2135/cropsci2008.01.0016. 

Murray, S.C., K. Mayfield, J. Pekar, P. Brown, A. Lorenz, et al. 2019. Tx741, Tx777, Tx779, 

Tx780, and Tx782 inbred maize lines for yield and southern United States stress 

adaptation. Journal of Plant Registrations 13(2): 258–269. doi: 

10.3198/jpr2017.07.0044crp. 

Pugh, N.A., D.W. Horne, S.C. Murray, G. Carvalho, L. Malambo, et al. 2018. Temporal 

estimates of crop growth in sorghum and maize breeding enabled by unmanned aerial 

systems. The Plant Phenome Journal 1(1). doi: 10.2135/tppj2017.08.0006. 

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. 

Rinnan, Å., F. van den Berg, and S.B. Engelsen. 2009. Review of the most common pre-

processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry 

28(10): 1201–1222. doi: 10.1016/j.trac.2009.07.007.  

Rincent, R., D. Laloë, S. Nicolas, T. Altmann, D. Brunel, et al. 2012. Maximizing the 

reliability of genomic selection by optimizing the calibration set of reference 

individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays 

L.). Genetics 192(2): 715–728. doi: 10.1534/genetics.112.141473.  

Rincent, R., J.-P. Charpentier, P. Faivre-Rampant, E. Paux, J.L. Gouis, et al. 2018. Phenomic 

selection is a low-cost and high-throughput method based on indirect predictions: 

proof of concept on wheat and poplar. G3: Genes, Genomes, Genetics 8(12): 3961–

3972. doi: 10.1534/g3.118.200760. 

https://doi.org/10.2135/cropsci2008.01.0068
https://doi.org/10.2135/cropsci2008.01.0016
https://doi.org/10.3198/jpr2017.07.0044crp
https://doi.org/10.2135/tppj2017.08.0006
https://doi.org/10.1534/g3.118.200760


 

57 

 

Romay, M.C., M.J. Millard, J.C. Glaubitz, J.A. Peiffer, K.L. Swarts, et al. 2013. 

Comprehensive genotyping of the USA national maize inbred seed bank. Genome 

Biol. 14(6): R55. doi: 10.1186/gb-2013-14-6-r55. 

Saint Pierre, C., J. Burgueño, J. Crossa, G. Fuentes Dávila, P. Figueroa López, et al. 2016. 

Genomic prediction models for grain yield of spring bread wheat in diverse agro-

ecological zones. Sci Rep 6. doi: 10.1038/srep27312. 

Seka, D., and H.Z. Cross. 1995. Xenia and maternal effects on maize agronomic traits at three 

plant densities. Crop Science 35(1): 86–90. doi: 

10.2135/cropsci1995.0011183X003500010015x. 

Silva, C.F.L., S.C.K. Milach, S.D.A. Silva, and C.R. Montero. 2008. Near infrared reflectance 

spectroscopy (NIRS) to assess protein and lipid contents in Avena sativa L. Cropp 

Breeding and Applied Biotechnology 8(2): 127–133. doi: 10.12702/1984-

7033.v08n02a05. 

Stevens, A., and L. Ramirez–Lopez. 2014. An introduction to the prospectr package. R 

Package Vignette, Report No.: R Package Version 0.1 3. 

Vermerris, W., A. Saballos, G. Ejeta, N.S. Mosier, M.R. Ladisch, et al. 2007. Molecular 

breeding to enhance ethanol production from corn and sorghum stover. Crop Science 

47(Supplement_3): S-142-S-153. doi: 10.2135/cropsci2007.04.0013IPBS. 

Wahl, N., S.C. Murray, T. Isakeit, M. Krakowsky, G.L. Windham, et al. 2017. Identification 

of resistance to aflatoxin accumulation and yield potential in maize hybrids in the 

Southeast Regional Aflatoxin Trials (SERAT). Crop Science 57(1): 202–215. doi: 

10.2135/cropsci2016.06.0519. 

Warburton, M.L., W.P. Williams, G.L. Windham, S.C. Murray, W. Xu, et al. 2013. 

Phenotypic and genetic characterization of a maize association mapping panel 

developed for the identification of new sources of resistance to Aspergillus flavus and 

aflatoxin accumulation. Crop Science 53(6): 2374–2383. doi: 

10.2135/cropsci2012.10.0616. 

Wehrens, R., and B.-H. Mevik. 2007. The pls package: principal component and partial least 

squares regression in R. 

Wolfrum, E., C. Payne, T. Stefaniak, W. Rooney, N. Dighe, et al. 2013. Multivariate 

calibration models for sorghum composition using near-infrared spectroscopy. 

National Renewable Energy Lab. (NREL), Golden, CO (United States). 

Zhao, Y., M.F. Mette, and J.C. Reif. 2015. Genomic selection in hybrid breeding. Plant 

Breeding 134(1): 1–10. doi: 10.1111/pbr.12231

https://doi.org/10.1186/gb-2013-14-6-r55
https://doi.org/10.1038/srep27312
https://doi.org/10.2135/cropsci1995.0011183X003500010015x
https://doi.org/10.12702/1984-7033.v08n02a05
https://doi.org/10.12702/1984-7033.v08n02a05
https://doi.org/10.1111/pbr.12231


58 

 

CHAPTER III  

MODELING TRADEOFFS BETWEEN HIGH THROUGHPUT AND HIGH ACCURACY 

PHENOTYPING IN A PLANT BREEDING PROGRAM 

Introduction 

The History of Plant Breeding 

The history of plant breeding can be divided into three relatively defined eras: 1) the 

early phenotypic selection of our ancestors, based only on visualizable traits; 2) the scientific 

era, which began in the 20th century, when the underlying heritability of traits first began to 

be investigated; 3) the genomics era, in which molecular techniques, such as markers, have 

become abundant and well-utilized (Li et al., 2012).  

The latest era has been defined by different genetics methodologies, one of the most 

notable being quantitative genetics studies, which aimed to identify and map loci which 

contribute to the complex traits of interest (Tanksley et al., 1982). These quantitative trait loci 

(QTL) studies focused on pinning down locations of chromosomes important for targeted 

traits, as well constructing genetic maps and full genome sequences (Cooper et al., 2004). 

Since then, genomic selection, where genetic markers are used more generally for their 

predictive capacity within a population, has had much more success, especially in the 

commercial sectors of both plant and animal breeding (Meuwissen et al., 2001; Heffner et al., 

2009; Zhao et al., 2015). Phenotyping capacity remains a bottlenecking, yet key step in 

training genomic selection models (Bernardo and Yu, 2007; Bernardo, 2008, Rincent et al., 

2012).  
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Tools and technologies may now allow scientific plant breeding to enter a new era: 

phenomics. This new era will be defined, in part, by novel challenges of data collection and 

analysis. An increase in data quantity, regardless of quality, also requires resources to be 

allocated to data storage and the development of data processing pipelines. To do this, a 

decrease in human labor may be offset in the increase of skill needed in those human 

resources, and an increase in computing power requirements. Work is needed to address how 

tradeoffs in resource allocation will affect breeding programs.  

High Throughput Phenotyping (HTP) 

Remote sensing applications in plant breeding are continuing to both improve and 

drop in price, with the most commonly used method of data capture being RGB cameras 

(Araus et al., 2018). Flying over a field and collecting images can increase throughput 

capacity for data collected to unprecedented levels. Using an unoccupied aerial system (UAS, 

aka drones), allows the data collection process to be automated and throughput greatly 

increased, meaning more plants can be measured than before.  

Plant height, usually collected at the end of the season to capture terminal growth, is 

relatively simple to collect manually, though involves a significant amount of manual labor 

and time, and is therefore a good candidate to benefit by automated collection methods 

(Anderson et al., 2019). Hand collection for plant height and other data has been previously 

limited to the labor available, how quickly plants can be measured, and the subjectivity of 

different individuals’ measurements. For example, rice (Oryza sativa) plots can be measured 

manually for plant height at a rate of 45 plots per hour, though a UAS can fly at a rate of 

3,000 plots per hour (Tanger et al., 2017), excluding the time needed to extract heights from 



 

 

60 

 

the images, which may be substantial. The UAS approach also has the added benefits of 

measuring an entire plot of plants, as opposed to only a few “representative” plants in a plot 

that when measured by hand. While UAS data extraction is an added step requiring highly 

skilled labor, for the time being, this work is often less biologically time-sensitive, and can be 

done after the original collection out of the field. Additionally, while more computing power 

is required, fewer people are needed. Flights also can be made more easily throughout the 

growing season, bringing a temporal dimension to a formerly single-point trait (Anderson et 

al., 2019). 

Plant height is valuable not just as a standalone phenotype, but also shows predictive 

capacity for grain yield in some environments (Katsvairo et al., 2003; Machado et al., 2002; 

Mallarino et al., 2003; Barrero-Farfan et al., 2013). Additionally, unlike yield data, collected 

using machinery such as a combine, collecting plant height via a drone or other UAS, or other 

HTP methods, is nondestructive, can be done relatively rapidly, or earlier in the season or 

breeding process (Rincent et al., 2018; Anderson et al., 2019). 

Not only can HTP methods improve how we analyze traditional traits of interest, these 

technologies are also allowing novel phenotypes to be collected invisible to the human eye, 

and therefore impossible before. This includes using hyperspectral cameras to track plant 

stress or fertility status (Behmann et al., 2014; Zhao et al., 2005), or using near-infrared 

reflectance spectroscopy (NIRS) to make inferences about plant performance or breeding 

value (Rincent et al., 2018; Lane et al., in review). 
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Near Infrared Reflectance Spectroscopy (NIRS) 

NIRS is among the oldest tools to be used to increase throughput at the expense of 

accuracy. Once the initial capital investment has been made for a NIRS machine that fits a 

program’s needs, the cost of scanning samples using NIRS is very inexpensive, limited to 

labor costs, and the results very repeatable (Shenk and Westerhaus, 1991). While current costs 

to outsource a sample for wet chemistry typically ranges from $11 to $33 per sample 

depending on the number of components analyzed, (Ward Laboratories Inc., 2019), the 

estimated costs per NIRS scan is around $0.40, depending on operator speed. NIRS methods 

need to be properly calibrated through the appropriate use of wet chemistry. More than 150 

wet chemistry samples are recommended to ensure a broadly applicable calibration for a 

given species, and these should be selected to be spectrally, and perhaps genetically, 

representative of the populations of samples you wish to analyze (Windham et al., 1989; 

Wolfrum et al., 2013). This means that after the initial investment of the machine, and 

calibration development costs, about fifty times the number of samples could be predicted 

using NIRS. This could be more informative in capturing valuable information about a 

population, if it allows resources to be extended so that an entire population to be evaluated, 

or that additional environments can be evaluated. The accuracy of NIRS methods is related to 

the accuracy of the chemical methods used for calibration, but cost savings over 80% or more 

can be observed over normal laboratory methods (Aragones, 1997; Foley et al., 1998). Over 

time, a decrease in equipment costs for NIRS interferometers and other types of machines is 

making these methods even less cost-prohibitive. One other major advantage is that multiple 

phenotypes can be predicted simultaneously for maize, for instance, with one scan we can get 
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estimates on starch, protein, oil, phenolic antioxidants (Meng et al., 2015), among others. 

Furthermore, we can go back to predict past samples by applying any newly developed 

calibrations to old spectra (Lane et al., in review).  

Simulations and Plant Breeding 

To investigate how HTP can impact a breeding program, there are a few empirical 

datasets, which would require both HTP and ground truth to be collected on all samples. 

Computer simulations have been important in scientific research for both generating and 

testing hypotheses, and began around the same time that computers were invented, in 1945 

(Winsburg, 2010). Plant breeding is costly, in terms of both resources and time, making it 

useful to model experiments to determine the value of a method or breeding scheme before 

this is conducted (Li et al., 2012). Assessing methods in silico is nearly considered a 

necessary step in determining the efficacy of a potential new method (Sun and Mumm, 2016). 

Essentially, generating a population for which the ‘truth’ is known (because it was set in the 

simulation), allows validation of how well a method can accurately or precisely capture that 

truth. Such simulations were essential to the development of quantitative genetics and 

genomics, where such phenomenon as the ‘Beavis Effect’ (Beavis, 1994; Beavis 1998; Xu, 

2003) was discovered, and statistical tools, such as permutation analysis and the genome wide 

association Q+K model were developed (Churchill and Doerge 1994; Yu et al., 2005; Yu  et 

al., 2006). However, a simulation approach has not, to our knowledge, been applied to HTP 

tools, to evaluate the experimental advantages that they can bring.  
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Objectives 

In plant breeding, it is usually more desirable to be precise, or to have high 

repeatability of a measurement to differentiate the best genotypes to keep from those to be 

discarded, rather than to be accurate, or close to the true value. In the agronomic sense it is 

important to be accurate, to estimate the true yield of a genotype. In both cases there may be 

value in sacrificing precision and accuracy of individual plots in exchange for a greater 

number of measurements, which statistically may increase a genotypes experiment-wise 

precision and accuracy. In other words, quantity of data may be more usefully predictive than 

quality of data in a breeding program. For example, using NIRS to predict seed composition, 

instead of wet chemistry, is less accurate, but much less resource intensive to perform 

allowing an order of magnitude more samples to be screened. Increasingly, the use of 

unoccupied aerial systems (UAS aka drones) will be used to take manual agronomic field 

measurements such as plant height (Anderson et al., 2019; Ashapure et al., 2019).  

In this study, we sought to investigate under which circumstances, if any, it is better to 

use a lower accuracy higher throughput HTP method to capture phenotypes, and at what 

levels of throughput and error benefits are realized. We investigate both the ability to capture 

a phenotype (e.g. height) on an entry number basis, as well as the ability to accurately detect 

genetic effects via single quantitative trait loci (QTL) analysis. This study is directly relevant 

to the current directions of plant breeding, which appears to be moving from hand 

measurements to measurements collected via UAS or other automated systems on wider 

scales.  
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Materials and Methods 

 Building genotypes - An F2 population of 300 individuals was simulated to have 100 

single nucleotide polymorphisms (SNPs) with an allele frequency uniformly distributed 

around 0.5 (between 0.4 and 0.6). Because these alleles were randomly assigned, they are 

unlinked and without LD. Allele effects were simulated using a geometric distribution with 

the probability set to 0.3, this yielded a result where approximately one third of the SNPs, on 

average, would have no effect on the trait of interest (e.g. numbers relevant to maize [Zea 

mays L.] plant height in this case). To compare analysis across population types, F3 and 

inbred populations were also assessed, and the population size was expanded to 1000 

genotypes via random selection of parents from the F2. The F3 generation was generated via 

simulated selfing of the F2 population. Unlike an inbred population, heterozygous loci are 

present and therefore various dominance effects exist. These effects were simulated via a 

Poisson distribution to have either no dominance (therefore additive) effect, a standard 

dominance effect where the heterozygote and homozygote have the same effect, or an over-

dominance effect, where the heterozygote has a larger effect than the homozygote. To void all 

dominance effects, the population was immediately advanced to homozygosity into a 

recombinant inbred line (RIL) population of 1000 individuals, similar to what would be 

achieved with double haploid technology. The effects of the additive and dominance effects 

for all loci in each individual were summed to generate that individual’s genotypic value.  

Building phenotypes - Populations were simulated to be grown in ten environments, 

where an environmental effect was randomly generated from a normal distribution, centered 

on zero, with a standard deviation of ten (cm for plant height). Genotype by environment 
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(GxE) effects were randomly generated for each genotype in each environment via a random 

distribution; the standard deviation for each GxE interactions simulation was itself randomly 

generated from a normal distribution centered at five with a standard deviation of ten. Next, 

four replicate effects were added for each rep within each environment. Again, these were 

normally distributed, centered at zero, with a standard deviation of five. A baseline random 

error term was then generated for each observation to be equally proportional to the genetic 

effects based on their variance as presented in code by Tang et al. (2016). 

 Adding HTP measurement error - To compare error rates in measurement, four 

residual levels were used. The first level, treated as the more accurate was manual 

measurements, simply the baseline residual generated above, where genetic and residual 

variance are proportional to one another. The additional levels tested various levels of 

additional error that might be added with HTP methods. The baseline residual is increased, 

via an additional error term, generating using the method described above. The three levels of 

increased error add an additional error value where the residual is: 1) proportional to the size 

of the genetic effects, making total error variance twice the size of the genetic variance 2) four 

times the size of the genetic effects, making total error variance five times the size of the 

genetic variance; 3) is nine times the size of the genetic effects, making total error variance 

ten times the size of genetic variance. These three levels represent three different HTP 

methods with varying accuracy. The four levels of error, or measurement types respectively 

are HTP2x, HTP5x, and HTP10x in addition to the manual measurement.  

 A multitude of scenarios were tested. The number of genotypes, environments, and 

replications were varied by taking subsamples from the generated dataset described above. 
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This process looked at 100, 300, 500, and 1000 genotypes, grown in 1, 2, 5, and 10 

environments, replicated 2 and 3 times, in both F3 or RIL populations. This entire process of 

simulating and analyzing the population was iterated 50 times. 

 In each scenario, a best linear unbiased estimator (BLUE) was extracted for each 

genotype using the lme4 package in R (Bates et al., 2015). Single marker analysis was also 

conducted for each SNP. This analysis used an ANOVA test to assess if there was a 

significant effect contributed by the SNP (p-value <0.05), and then an estimate for the size of 

the effect of the SNP.  

To compare each scenario, root mean squared error (RMSE) was calculated based on 

the simulated, true genetic heights, and the estimated genetic values (BLUEs) from the mixed 

linear model applied to the phenotypes generated previously. This permitted an assessment of 

the ability of capturing true genetic heights on an entry number basis. The single-marker 

analysis served to detect quantitative trait loci (QTL), and then these scenarios were compared 

via the proportion of true QTL that were detected, as well as what proportion of all of the 

determined QTL were false (an effect was detected where none was simulated).  

Initial analysis indicated that increasing the number of genotypes and reps had a 

minimal effect on reducing RMSE. For this reason, a second loop was designed to simulate 

and assess scenarios where 300 genotypes of both F3 and RIL populations were analyzed in 

up to 25 environments.  

 Datasets and models were simulated in R (R Core Team, 2018), using custom scripts 

(Appendix C) and packages lme4 and dplyr (Bates et al., 2015; Wickham et al., 2018). 
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Results and Discussion 

Replicates and environments effects on genotypic accuracy 

Increasing replicates and environments improved the ability of statistical model to 

detect the true genetic value of an individual genotype, on an entry number basis, as shown by 

a decrease in RMSE (Fig.3). The increase in throughput needed to overcome an increased 

error rate for the same RMSE level was dependent on the level of error added (HTP2x, 

HTP5x, HTP10x). Overall, the biggest improvement in accuracy, in terms of RMSE for 

genotype predictions was seen in our scenarios via an increase in the number of environments 

in which the population was assessed (Fig. 3), while the number of replicates made only a 

marginal improvement, though this was directly correlated to the size of replicate effect 

generated in the simulation code.  
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Figure 3. Four different error rates of measurement (manual, HTP with 2x error, HTP with 5x 

error, and HTP with 10x error) compared across a differing number of environments. The left 

panel shows the results of the scenarios of an F3 population, while the right shows a 

recombinant inbred line (RIL) population, both had 300 genotypes replicated two times in 

each environment. Each scenario was repeated ten times. The shaded area shows a 95% 

confidence interval for the mean, the lines show the mean RMSE for each scenario.   
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Accuracy of QTL estimation 

To capture QTL, results showed that combinations of increasing the number of 

environments and the number of genotypes was important in capturing QTL. Similar results 

have been found both by other studies in both simulation (Beavis et al., 1998; Yu et al., 2005) 

and empirically (Beavis et al., 1994; Anderson et al. 2018). The proportion of true QTL that 

were detected in each scenario (Fig. 4) increased around 10% more greatly by doubling the 

genotypes than by doubling the environments: this would require the same increased number 

of observations, but would increase development costs to create these larger populations. 

When using one environment, error rate had a very large effect on the ability to identify QTL, 

but increasing the number of environments decreased the effects of measurement methods, 

where HTP methods with lower accuracy were nearly as effective as the more accurate 

manual methods. Increasing genotypes was the best way to capture more QTL, especially if 

the number of environments was held constant.  
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Figure 4. The proportion of the simulated, true quantitative trait loci accurately captured across varying numbers of 

genotypes assessed. The figure is faceted along the y-axis to compare F3 and recombinant inbred line (RIL) populations, and 

faceted along the x-axis to compare increasing numbers of environments. The lines show the mean across each scenario after 

replication, the shading represents the standard error of the mean. 
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The simulated QTL were compared to the statistically detected QTL to assess what 

proportion of the detected QTL were real versus which were false positives, where the model 

detected an additive effect on height by a SNP when there was no effect (Fig. 5). It was nearly 

impossible to completely reduce the risk of capturing false QTL, but increasing both the 

number of genotypes and environments decreased chances greatly. Again, the method of 

measurement did not greatly impact the risk of false QTL detection, except in the cases of the 

fewest number of genotypes in a single environment. Even with the lowest error rate (manual 

measurements), growing a small population (100-300 genotypes), in one environment 

presented the likeliness that in some cases, more than 20% of detected QTL would not have a 

true effect on the trait of interest. This risk was mainly present for small effect loci (effect < 4 

cm), and was less of an issue in large effect SNPs (effect > 6 cm). This propensity in small 

populations, and especially those with heterozygosity (F2 and F3) has been termed the Beavis 

effect (Beavis et al., 1998; Xu 2003). 
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Figure 5. The proportion of detected quantitative trait loci in varying scenarios that in reality 

had no effect on the trait across increasing numbers of genotypes analyzed. The figure is 

faceted along the x axis to compare F3 and recombinant inbred line (RIL) populations, and 

faceted along the y axis to compare increasing numbers of environments. The lines show the 

mean across each scenario after replication, the shading represents the standard error of the 

mean. 

 

 

Throughout the process of running different simulations under the described 

parameters, it became clear that increasing the number of environments had the largest impact 

on improving the accuracy of a scenario in terms of the ability to accurately predict a 

genotype’s simulated, true genetic height on an entry number basis, under both population 
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types assessed (Fig. 4). It is not unrealistic, and it is nearly mandatory, for a breeding program 

to test genotypes in many environments. These environments are occasionally obtained within 

the same location through varied planting dates and/or input and irrigation regimens. Across 

five locations, 16 environments were reported in one heterosis study in maize (Li et al., 2018), 

and breeding programs may even subject genotypes to hundreds of environments over the 

years (Gaffney et al., 2015). At minimum, a program could plant irrigated and unirrigated 

trials, or an optimal and late planting. The results of these simulations show that increasing 

environments is more impactful than increasing replications beyond two. 

Increasing the number of genotypes analyzed within a population did not improve 

RMSE values, but rather made RMSE more consistent between iterations. Therefore, we 

hypothesize that if the goal is the most accurate estimate of genotypic values, resources would 

be better allocated in increasing the number of environments in an experiment, rather than 

spending them on increasing genotypes or replications within fewer experiments.  

In contrast, when the ability to identify, and correctly predict the effects of QTL is of 

the most interest, the number of genotypes plays a significant role, with the number of 

environments being secondary. Assessing QTL under only one environment resulted in the 

highest rates of false positives (Fig. 6). Evaluating under only one environment, a higher error 

rate affects the ability to detect QTL greatly, and there is little difference between 

measurement types as the number of environments increases (Fig. 4). This suggests that high 

quantity phenotyping (e.g. HTP) become more valuable over high accuracy phenotyping as 

more environments are used, because high quantity phenotyping is also more affordable. 

Furthermore, even under the most rigorous testing scenarios, with 1000 genotypes in 10 
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environments, the risk of capturing false small effect QTL is never completely eliminated 

(Fig. 5). 

Additionally, according to these results, increasing the accuracy of measurements does 

not seem to have any effect on reducing the risk of capturing false QTL (Fig. 5). Only 

increasing the number of genotypes assessed sufficiently had a real decrease in false QTL 

identified. Ultimately, investigators who are aiming to better understand genetic effects 

should be aiming to analyze the biggest population feasible under as many environments as 

possible. This is consistent with other authors empirical findings (Anderson et al. 2018; 

Beavis et al., 1994) and simulated findings (Beavis et al., 1998; Zhu et al., 2008) It is difficult, 

and unlikely, to accurately distinguish true genetic effects in limited environmental context, 

and is more likely that SNPs serve a purpose for predictive capacity. SNPs with relatively 

large effects were less likely to be falsely identified, so the risk of false identification is higher 

the smaller the predicted effect. This predictive capacity further suggests why genomic 

selection is successful when properly calibrated for the population assessed (Heffner et al., 

2009). 

Advantages of HTP 

There are cases where the accuracy of phenotyping cannot be compared to “by-hand” 

measurements as they are completely novel and not visible without these new phenomic 

technologies. Furthermore, the “ground truth” measurements taken manually may also not 

necessarily be more accurate or precise than their high throughput counterpart, just because 

their values do not align. A higher repeatability of high throughput measurements in some 

cases (as in Pugh et al., 2018) may indicate that the automated phenotyping may in fact be 
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more precise. Ashapure et al. (2019) detected differences in UAS-derived phenotypes that 

were undetectable with infield measures due to a much greater number of measures. In the 

case of Anderson et al. (2019), the UAS height measurements actually allowed for more of 

the variation to be explained, binning less into residual.  

Limitations 

The simulation used here, like all simulations, presents some limitations due its 

simplistic nature of modeling complex biology and biological interactions. While simplicity 

offers some generalizability across organisms and applications, it also presents limitations in 

authenticity and its ability to very accurately simulate real-life, genetic conditions. Despite 

being a rather basic avenue through which to compare varying error rates, the objectives are 

still addressed and offer valuable insights to breeders and geneticists looking at expanding the 

throughput of their phenotyping methods, particularly those who feel their accuracy may be 

decreased by doing so. Additionally, the simplicity of the simulation and analysis code offers 

relatively easy expansion or investigation by those who may be more interested in comparing 

their own conditions.  

 

Conclusions 

In general this study demonstrates that that it is efficient and prudent to replace high-

accuracy measurements with high-throughput ones where these gains allow more genotypes 

and environments to be evaluated. Future empirical and simulation studies should consider 

how linkage and kinship could affect genetics studies, and also should consider how HTP 

methods may offer advantages distinct from accuracy levels.  
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CHAPTER IV  

CONCLUSIONS, REFLECTIONS, AND FUTURE DIRECTIONS 

Conclusions 

Phenomic technologies are increasing in both interest and investment, and offer 

promise to improve breeding programs of any crop, though maize was the primary species of 

interest investigated in this research. This work indicates strong capacity for NIRS to expand 

beyond its traditional use, and that increasing throughput in phenotyping by better allocating 

resources through these and other technologies will allow breeders to leverage data quantity, 

even if quality of data cannot be maintained. As throughput is increased, it is likely data 

quality can be sacrificed to save money and other resources. 

Moving Forward 

There are future opportunities to explore the genetic marker information for the 

varieties assessed with NIRS in this work, and to compare the efficacy of phenomic selection 

approaches to genomic selection approaches in the same sample set, as marker information is 

available for these lines. Additionally, it is unclear whether or not the predictive capacity of 

the NIRS stemmed from biological and causal relationships (e.g. starch or protein content), or 

from detecting genetic relatedness, which was investigated with the NIRS BLUP and 

functional regression models. Based on the results of plot-based analysis methods, however, it 

is likely that the compositional predictive capacity of NIRS is also playing a role in success, 

especially given its superior capacity to predict unfamiliar genetic material. Diving into the 

genotyping data for the lines in this study may hold the key in better elucidating the nature of 

these phenomic predictions, and better understanding the best environments to capture NIRS.  
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As HTP methods and options for breeders continue to improve and increase in 

number, breeders must weigh whether or not investing in these new technologies will offer 

significant benefit to their program. This research has shown that increasing throughput stands 

to greatly increase the capture of genetic information and predictive capacities for various 

model types, even when the quality of data may not be maintained. It is likely that many 

breeders in both the public and private sectors stand to benefit from the increased tools made 

available to them through HTP platforms.  
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APPENDIX A  

NOMENCLATURE 

5FRCV Five-fold random cross validation 

AF  Aflatoxin  

BLUE  Best linear unbiased estimator 

BLUP  Best linear unbiased predictor  

CV  Cross validation 

CV  Cross validation 

CV0  Predicting one environment using all other environments 

CV1 20% of hybrids are predicted by the remaining 80% (five-fold), within each 

environment 

CV2 Similar to CV1, but used across environments, where hybrids are seen in 1 

environment but predicted in another (mimics sparse testing) 

G-BLUP Genomic best linear unbiased predictor, a genomic similarity matrix 

GWAS  Genome-wide association study 

GxE  Genotype by environment  

HTP  High throughput phenotyping 

LM  Simple linear model 

NIRS  Near-Infrared Reflectance Spectroscopy 

NRMSE Normalized root mean squared error 

r  Pearson’s Correlation 

PLSR  Partial Least Squares Regression 
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RMSE  Root mean square error 

RMSEP Root mean square error of prediction 

SE  Standard error 

SNPs  Single nucleotide polymorphisms 

UAS  Unoccupied aerial systems 

WS  Water stress; unirrigated treatment 

WW  Well-watered; irrigated treatment 
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APPENDIX B  

PLSR AND LM R SCRIPTS 

Building PLSR Models 1, 3-5, 7, 8: 

 

## To convert yield from BU/AC to G/M^2, multiply yield by (6.271) 

 

setwd("C:/Users/holly.lane/Project/Manuscript Files") ## set this for your system 

library(reshape); library(reshape2);library(ggplot2); library(dplyr) 

library(prospectr);library(RcppArmadillo);library(Rcpp); library(foreach) ; library(iterators) 

library(resemble);require(prospectr);library(ggfortify);library(cluster); library(pls) 

###########################################################################

######### 

 

# First, we clean the data and transform it with an SG derivative 

 

###########################################################################

######### 

wholecorn<- read.csv("Supplemental 1.csv", header=TRUE, check.names = FALSE)  

#check.names prevents R from placing an X in front of the wavelength column names 

dim(wholecorn) 

colnames(wholecorn[,1:83]) 

##forcing R to accept numeric column names makes the column names in valid 

##extract spectra columns before fixing this 

wholecornspc <- wholecorn[,83:3194] 

wholespc <- data.matrix(wholecornspc) 

##now fix column names  

valid_column_names <- make.names(names=names(wholecorn), unique=TRUE, allow_ = 

TRUE) 

names(wholecorn) <- valid_column_names 

#select informational columns of interest, then attach matrix of spectra as variable  

wholecornfull<- select(wholecorn,c(5,6,7,8,9,21,22,23,25,32,43,77,78)) 

wholecornfull$year<-as.factor(wholecornfull$year) 

wholecornfull$spc<-wholecornspc 

###in example dataset, NIRsoil, spectra is variable spc as a matrix within "dataframe" 

wholecornfull$raw<-wholespc 

 

#sum(wholecornfull$yield.buac<10) #47 removed 

 

wholecornya<-wholecornfull[!wholecornfull$yield.buac<10,] 

###########################################################################

######## 
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whole.sg <- savitzkyGolay(wholecornya$spc, p = 3, w = 37, m = 1) 

whole.sg2 <- savitzkyGolay(wholecornya$spc, p = 3, w = 37, m = 2) ## adjust w 

wholecornya$sg1<-whole.sg 

wholecornya$sg2<-whole.sg2 

 

wc<-wholecornya 

 

###########################################################################

######## 

#create average spectra to compare to as baseline 

avewc <- wc [c(10, 50, 100, 222, 500, 300, 1300, 2000),]  

 

avewc1 <- wc[1,] 

 

avewc1$sg1<-t(as.matrix(colMeans(avewc$sg1))) 

 

aveSpec <- avewc1$sg1 

################### 

aveSpec <-matrix(aveSpec, nrow= nrow(wc$sg1), ncol=ncol(aveSpec), byrow=TRUE) 

 

wc$diff<- wc$sg1 - aveSpec 

 

wc$sumdiff<-rowSums (abs(wc$diff)) 

 

hist(wc$sumdiff, breaks=200) #see the distribution of differences 

################### 

sum(wc$sumdiff>.5) 

 

sum(wc$sumdiff>.4) 

 

wholecornCLEAN<-wc[!wc$sumdiff>.4,]# Final threshold selected to remove plots with poor 

scans 

 

wc<-wholecornCLEAN 

 

hist(wc$sumdiff, breaks=200) 

 

rownames(wc) <- seq(length=nrow(wc)) 

 

###########################################################################

################## 

#we removed two extra odd points, identified here 
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wc.pls <- plsr(yield.buac~sg1, data= wc, ncomp=15, validation="CV") 

summary(wc.pls) 

plot(wc.pls, ncomp = 15, asp = 1, line = TRUE) 

 

plot(RMSEP(wc.pls), legendpos = "topright") 

 

plot(wc.pls, plottype = "scores", comps = 1:10) 

 

plot(x= wc.pls$scores[,5], y= wc.pls$scores[,9]) 

 

#identify(x= wc.pls$scores[,5], y= wc.pls$scores[,9], plot=TRUE) 

 

wc2<- wc[-c(1778, 2032),] 

 

wc<-wc2 

rownames(wc) <- seq(length=nrow(wc)) 

###########################################################################

################# 

###########################################################################

################# 

 

hist(wc$yield.buac) 

wc11 <- wc[(wc$year=="2011"),] 

wc12 <-wc[(wc$year=="2012"),] 

rownames(wc11) <- seq(length=nrow(wc11)) 

rownames(wc12) <- seq(length=nrow(wc12)) 

 

## below are histograms to compare the difference between years in yield distribution 

 

hist(wc11$yield.buac,  

     main="Distribution of 2011 Yield", 

     xlab = expression(paste(" Yield ", "(bu ac"^"-1" ,")" )),  

     xlim=c(0,250), 

     ylim=c(0,175), 

     cex.axis=1.25, 

     col="#003A66", #poster color 

     #col = "darkred", #presentation color 

     las=1, 

     breaks=20) 

range(wc11$yield.buac) 

 

hist(wc12$yield.buac,  

     main="Distribution of 2012 Yield", 
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     xlab = expression(paste(" Yield ", "(bu ac"^"-1" ,")" )),  

     cex.axis=1.25, 

     xlim=c(0,250), 

     ylim=c(0,175), 

     col="#003A66", #poster color 

     #col = "darkred", #presentation color 

     las=1, 

     breaks=20) 

range(wc12$yield.buac) 

 

###########################################################################

## 

### 

## Importing, cleaning, and filtering 2011 experiments 

 

###########################################################################

######### 

corn2011<- read.csv("Supplemental 3.csv", header=TRUE, check.names = FALSE) 

#check.names prevents R from placing an X in front of the wavelength column names 

dim(corn2011) 

##forcing R to accept numeric column names makes the column names in valid 

##extract spectra columns before fixing this 

colnames(corn2011[,1:80]) 

corn2011spc <- corn2011[,30:3141] 

spc2011 <- data.matrix(corn2011spc) 

##now fix column names  

valid_column_names <- make.names(names=names(corn2011), unique=TRUE, allow_ = 

TRUE) 

names(corn2011) <- valid_column_names 

#select informational columns of interest, then attach matrix of spectra as variable  

corn2011full<- select(corn2011,c(1,2,3,4,9:12,20)) 

corn2011full$year<-as.factor(corn2011full$year) 

 

corn2011full$spc<-corn2011spc 

###in example dataset, NIRsoil, spectra is variable spc as a matrix within "dataframe" 

corn2011full$raw<-spc2011 

 

#sum(corn2011full$yield.buac<10) #47 removed 

 

corn2011ya<-corn2011full[!corn2011full$yield.buac<10,] 

###########################################################################

######## 
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whole.sg <- savitzkyGolay(corn2011ya$spc, p = 3, w = 37, m = 1) 

whole.sg2 <- savitzkyGolay(corn2011ya$spc, p = 3, w = 37, m = 2) ## adjust w 

corn2011ya$sg1<-whole.sg 

corn2011ya$sg2<-whole.sg2 

 

MORE2011<-corn2011ya 

 

#MORE2011<-na.omit(MORE2011) #NAs are present in the dataset for different variables 

 

MORE2011<-na.omit(MORE2011, cols= "yield.buac") 

###########################################################################

######## 

 

aveMORE2011 <- MORE2011  

 

aveMORE20111 <- MORE2011[1,] 

aveMORE20111$sg1<-t(as.matrix(colMeans(aveMORE2011$sg1))) 

 

 

aveSpec <- aveMORE20111$sg1 

 

################### 

 

aveSpec <-matrix(aveSpec, nrow= nrow(MORE2011$sg1), ncol=ncol(aveSpec), 

byrow=TRUE) 

 

MORE2011$diff<- MORE2011$sg1 - aveSpec 

 

MORE2011$sumdiff<-rowSums (abs(MORE2011$diff)) 

 

hist(MORE2011$sumdiff, breaks=200) 

 

################### 

 

sum(MORE2011$sumdiff>.5) 

 

which(MORE2011$sumdiff>.5) 

 

sum(MORE2011$sumdiff>.35) 

 

which(MORE2011$sumdiff>.4) 

 

MORE2011CLEAN<-MORE2011[!MORE2011$sumdiff>.35,] ##Final threshold selected 
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MORE2011<-MORE2011CLEAN 

 

#hist(MORE2011$sumdiff, breaks=200) 

 

rownames(MORE2011) <- seq(length=nrow(MORE2011)) 

 

###########################################################################

######## 

## again, two odd points identified and removed 

 

pls.11<- plsr(yield.buac~sg1, data= MORE2011, ncomp=15, validation="CV") 

summary(pls.11) 

plot(pls.11, ncomp = 15, asp = 1, line = TRUE) 

 

plot(RMSEP(pls.11), legendpos = "topright") 

 

plot(pls.11, plottype = "scores", comps = 1:10) 

 

plot(x= pls.11$scores[,7], y= pls.11$scores[,1]) 

 

#identify(x= pls.11$scores[,7], y= pls.11$scores[,1], plot=TRUE) 

 

MORE20112<- MORE2011[-598,] 

 

MORE2011<-MORE20112 

rownames(MORE2011) <- seq(length=nrow(MORE2011)) 

MORE20112<- MORE2011[-157,] 

 

MORE2011<-MORE20112 

rownames(MORE2011) <- seq(length=nrow(MORE2011)) 

 

 

####################################################################### 

# 

## Now we can start building testing and training sets for PLSR models 

# 

####################################################################### 

 

 

# Need to select a representative validation set to test our PLS on, using DUPLEX method 

wc.duplex<-duplex(X=wc$sg1,k=120,pc=10) #takes awhile to run 
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plot(wc.duplex$pc) 

points(wc.duplex$pc[wc.duplex$model, 1],wc.duplex$pc[wc.duplex$model, 2], col = "red", 

pch = 19) 

points(wc.duplex$pc[wc.duplex$test, 1], wc.duplex$pc[wc.duplex$test, 2], col = "blue", pch 

= 19) 

legend("topright", legend = c("calibration", "validation"), pch = c(19, 19), 

       col = c("red", "blue")) 

 

##result is list with row index for calibration(model)/and validation(test) samples 

 

testrows<-wc.duplex$test 

testrows<-sort.int(testrows) 

 

wcTest <- wc[(testrows),] 

 

wcTrain <-wc[-testrows,] 

 

levels(droplevels(wc$pedigree)) 

# 344 represented -- NOTE: Some may be missing from yield adjustments 

 

levels(droplevels(wcTest$pedigree)) 

# 91 represented, need to eliminate all from training set 

 

levels(droplevels(wcTrain$pedigree)) 

#343 represented 

###########################################################################

############## 

wcTest.pedigree<-wc[wc$pedigree %in% wcTest$pedigree, ] 

 

levels(droplevels(wcTest.pedigree$pedigree)) 

dim(wcTest) 

dim(wcTest.pedigree) 

wcTest.pedigree[1:10,1:5] 

 

wcTrain.pedigree<-wc[!wc$pedigree %in% wcTest$pedigree, ] 

 

dim(wcTrain) 

dim(wcTrain.pedigree) 

wcTrain.pedigree[1:10,1:5] 

 

levels(droplevels(wcTrain.pedigree$pedigree)) 

#253 pedigrees in training set 
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###########################################################################

################ 

wcTest<-wcTest.pedigree 

wcTrain<-wcTrain.pedigree 

###########################################################################

################ 

whole.pls.ya <- plsr(yield.buac~sg1, data= wcTrain, ncomp=50, validation="CV") 

#now we have built PLSR 1  

 

summary(whole.pls.ya) 

plot(whole.pls.ya, ncomp = 25, asp = 1, line = TRUE) 

#### 

#modelresults<-sort.default(whole.pls.ya$validation$pred[,,15]) 

## 

RMSEP(whole.pls.ya, newdata=wcTest) 

 

plot(RMSEP(whole.pls.ya), legendpos = "topright") 

 

ncomp.onesigma <- selectNcomp(whole.pls.ya, method = "onesigma", plot = TRUE) 

ncomp.permut <- selectNcomp(whole.pls.ya, method = "randomization", plot = TRUE) 

 

plot(RMSEP(whole.pls.ya, newdata=wcTest), legendpos = "topright") 

 

plot(R2(whole.pls.ya, newdata=wcTest)) 

 

ncomp.onesigma <- selectNcomp(whole.pls.ya, method = "onesigma", plot = TRUE,  

                              main = "Component Selection") 

 

##### PLOT  

rmsep<-RMSEP(whole.pls.ya, newdata=wcTest, ncomp=10) 

R2(whole.pls.ya, newdata=wcTest, ncomp=10) 

 

regline<- lm((predict(whole.pls.ya, ncomp=10, newdata=wcTest))~ wcTest$yield.buac) 

 

predplot(whole.pls.ya, ncomp = 10, newdata = wcTest, line = TRUE, 

         cex.axis = 1.5, cex.lab = 1.5,cex.main=2,   

         pch = 16, main = "Global Prediction Ability (NIRS)",  

         xlab = expression(paste("True Yield ", "(bu ac"^"-1" ,")" )),  

         ylab = expression(paste("Predicted Yield ", "(bu ac"^"-1" ,")" )), 

         las=1)+ 

  abline(a=0,b=1,col="firebrick3",lwd=2) 

abline(regline, lwd=2) 
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legend(x=140, y=60, legend= paste("R2 =", format(summary(regline)$r.squared, digits=2)), 

bty="n") 

legend(x=140, y=50, legend= noquote(paste("RMSEP=", (round(rmsep$val[1,1,2], digits=2)), 

"bu/ac")), bty="n") 

legend(x=175, y=20, legend = c("regression", "1:1"),pch= "_",  

       col = c("black", "firebrick3"), pt.cex = 2,bty="n" ) 

 

############################### 

 

## Below are within year and between year models 

 

###########################################################################

############# 

## 2011 ### 

wc11.duplex<-duplex(X=wc11$sg1,k=70,pc=10) 

 

plot(wc11.duplex$pc) 

points(wc11.duplex$pc[wc11.duplex$model, 1],wc11.duplex$pc[wc11.duplex$model, 2], col 

= "red", pch = 19) 

points(wc11.duplex$pc[wc11.duplex$test, 1], wc11.duplex$pc[wc11.duplex$test, 2], col = 

"blue", pch = 19) 

legend("topright", legend = c("calibration", "validation"), pch = c(19, 19), 

       col = c("red", "blue")) 

 

testrows11<-wc11.duplex$test 

 

testrows11<-sort.int(testrows11) 

 

wc11Test <- wc11[(testrows11),] 

wc11Train <-wc11[-testrows11,] 

###########################################################################

######## 

 

wc11Test.pedigree<-wc11[wc11$pedigree %in% wc11Test$pedigree, ] 

 

levels(droplevels(wc11Test.pedigree$pedigree)) 

 

wc11Train.pedigree<-wc11[!wc11$pedigree %in% wc11Test$pedigree, ] 

 

levels(droplevels(wc11Train.pedigree$pedigree)) 

#213 pedigrees in training set 
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###########################################################################

################ 

wc11Test<-wc11Test.pedigree 

wc11Train<-wc11Train.pedigree 

###########################################################################

######## 

wc11.pls <- plsr(yield.buac~sg1, data= wc11Train, ncomp=15, validation="CV") 

#PLSR 3 

 

summary(wc11.pls) 

plot(wc11.pls, ncomp = 15, asp = 1, line = TRUE) 

 

RMSEP(wc11.pls, newdata=wc11Test) 

 

plot(RMSEP(wc11.pls), legendpos = "topright") 

 

plot(RMSEP(wc11.pls, newdata=wc11Test), legendpos = "topright") 

 

#################### 

#plot 

regline<- lm((predict(wc11.pls, ncomp=12, newdata=wc11Test))~ wc11Test$yield.buac) 

 

rmsep<-RMSEP(wc11.pls, newdata=wc11Test, ncomp=12) 

 

predplot(wc11.pls, ncomp = 12, newdata = wc11Test, line = TRUE, 

         pch = 16, main = "Prediction Ability on 2011 Data Alone",  

         xlab = expression(paste("True Yield ", "(bu ac"^"-1" ,")" )),  

         ylab = expression(paste("Predicted Yield ", "(bu ac"^"-1" ,")" )), 

         las=1, cex.axis=1.5)+ 

  abline(a=0,b=1,col="firebrick3",lwd=2) 

abline(regline, lwd=2) 

legend(x=100, y=45, legend= paste("R2 =", format(summary(regline)$r.squared, digits=4)), 

bty="n") 

legend(x=100, y=35, legend= noquote(paste("RMSEP=", (round(rmsep$val[1,1,2], digits=2)), 

"bu/ac")), bty="n") 

legend(x=100, y=20, legend = c("regression", "m=1"),pch= "_",  

       col = c("black", "firebrick3"), pt.cex = 2,bty="n" ) 

 

###########################################################################

######## 

## 2012 ### 

 

wc12.duplex<-duplex(X=wc12$sg1,k=100,pc=10) 
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plot(wc12.duplex$pc) 

points(wc12.duplex$pc[wc12.duplex$model, 1],wc12.duplex$pc[wc12.duplex$model, 2], col 

= "red", pch = 19) 

points(wc12.duplex$pc[wc12.duplex$test, 1], wc12.duplex$pc[wc12.duplex$test, 2], col = 

"blue", pch = 19) 

legend("topright", legend = c("calibration", "validation"), pch = c(19, 19), 

       col = c("red", "blue")) 

 

testrows12<-wc12.duplex$test 

 

testrows12<-sort.int(testrows12) 

 

wc12Test <- wc12[(testrows12),] 

wc12Train <-wc12[-testrows12,] 

###########################################################################

######## 

wc12Test.pedigree<-wc12[wc12$pedigree %in% wc12Test$pedigree, ] 

 

levels(droplevels(wc12Test.pedigree$pedigree)) 

 

wc12Train.pedigree<-wc12[!wc12$pedigree %in% wc12Test$pedigree, ] 

 

levels(droplevels(wc12Train.pedigree$pedigree)) 

#258 pedigrees in training set 

 

###########################################################################

################ 

wc12Test<-wc12Test.pedigree 

wc12Train<-wc12Train.pedigree 

###########################################################################

######## 

wc12.pls <- plsr(yield.buac~sg1, data= wc12Train, ncomp=15, validation="CV") 

# PLSR4 

 

summary(wc12.pls) 

plot(wc12.pls, ncomp = 15, asp = 1, line = TRUE) 

 

RMSEP(wc12.pls, newdata=wc12Test) 

 

plot(RMSEP(wc12.pls), legendpos = "topright") 

 

plot(RMSEP(wc12.pls, newdata=wc12Test), legendpos = "topright") 
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######### PLOT 

 

rmsep<-RMSEP(wc12.pls, newdata=wc12Test, ncomp=15) 

regline<- lm((predict(wc12.pls, ncomp=15, newdata=wc12Test))~ wc12Test$yield.buac) 

 

 

predplot(wc12.pls, ncomp = 15, newdata = wc12Test, line = TRUE, 

         pch = 16, main = "Prediction Ability on 2012 Data Alone",  

         xlab = expression(paste("True Yield ", "(bu ac"^"-1" ,")" )),  

         ylab = expression(paste("Predicted Yield ", "(bu ac"^"-1" ,")" )), 

         las=1)+ 

  abline(a=0,b=1,col="firebrick3",lwd=2) 

abline(regline, lwd=2) 

legend(x=150, y=80, legend= paste("R2 =", format(summary(regline)$r.squared, digits=4)), 

bty="n") 

legend(x=150, y=65, legend= noquote(paste("RMSEP=", (round(rmsep$val[1,1,2], digits=2)), 

"bu/ac")), bty="n") 

legend(x=150, y=50, legend = c("regression", "m=1"),pch= "_",  

       col = c("black", "firebrick3"), pt.cex = 2,bty="n" ) 

 

###########################################################################

###################### 

 

######################################### 

 

wc12TestSet.pedigree<-wc12[!wc12$pedigree %in% wc11$pedigree, ] 

 

levels(droplevels(wc12TestSet.pedigree$pedigree)) 

#69 

 

levels(droplevels(wc11$pedigree)) 

#275 

 

wcTestSet<-wc12TestSet.pedigree 

############################################### 

wc12.pls <- plsr(yield.buac~sg1, data= wc11, ncomp=25, validation="CV") 

#PLSR 7 

 

summary(wc12.pls) 

plot(wc12.pls, ncomp = 15, asp = 1, line = TRUE) 

 

RMSEP(wc12.pls, newdata=wcTestSet) 
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plot(RMSEP(wc12.pls), legendpos = "topright") 

 

plot(RMSEP(wc12.pls, newdata=wcTestSet), legendpos = "topright") 

 

######### PLOT 

 

rmsep<-RMSEP(wc12.pls, newdata=wcTestSet, ncomp=10) 

regline<- lm((predict(wc12.pls, ncomp=10, newdata=wcTestSet))~ wcTestSet$yield.buac) 

 

 

predplot(wc12.pls, ncomp = 10, newdata = wcTestSet, line = TRUE, 

         pch = 16, main = "2011 Prediction Ability on 2012 Data - Different Pedigrees",  

         xlab = expression(paste("True Yield ", "(bu ac"^"-1" ,")" )),  

         ylab = expression(paste("Predicted Yield ", "(bu ac"^"-1" ,")" )), 

         las=1)+ 

  abline(a=0,b=1,col="firebrick3",lwd=2) 

abline(regline, lwd=2) 

legend(x=150, y=80, legend= paste("R2 =", format(summary(regline)$r.squared, digits=4)), 

bty="n") 

legend(x=150, y=65, legend= noquote(paste("RMSEP=", (round(rmsep$val[1,1,2], digits=2)), 

"bu/ac")), bty="n") 

legend(x=150, y=50, legend = c("regression", "m=1"),pch= "_",  

       col = c("black", "firebrick3"), pt.cex = 2,bty="n" ) 

 

############################################### 

################### 

## 2011 to predict 2012 ## 

 

wc11.pls <- plsr(yield.buac~sg1, data= wc11, ncomp=25, validation="CV") 

#PLSR5 

 

summary(wc11.pls) 

plot(wc11.pls, ncomp = 9, asp = 1, line = TRUE) 

 

RMSEP(wc11.pls, newdata=wc12) 

 

plot(RMSEP(wc11.pls), legendpos = "topright") 

 

plot(RMSEP(wc11.pls, newdata=wc12), legendpos = "topright") 

 

 

regline<- lm((predict(wc11.pls, ncomp=9, newdata=wc12))~ wc12$yield.buac) 
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predplot(wc11.pls, ncomp = 9, newdata = wc12, line = TRUE, 

         pch = 16, main = "2011 Prediction Ability on 2012 Data",  

         xlab = expression(paste("True Yield ", "(bu ac"^"-1" ,")" )),  

         ylab = expression(paste("Predicted Yield ", "(bu ac"^"-1" ,")" )), 

         las=1)+ 

  abline(a=0,b=1,col="firebrick3",lwd=2) 

abline(regline, lwd=2) 

legend(x=150, y=75, legend= paste("R2 =", format(summary(regline)$r.squared, digits=4)), 

bty="n") 

legend(x=150, y=55, legend = c("regression", "m=1"),pch= "_",  

       col = c("black", "firebrick3"), pt.cex = 2,bty="n" ) 

 

###########################################################################

###################### 

## 2012 to predict 2011 ## 

 

wc12.pls <- plsr(yield.buac~sg1, data= wc12, ncomp=15, validation="CV") 

#PLSR 8 

 

summary(wc12.pls) 

plot(wc12.pls, ncomp = 15, asp = 1, line = TRUE) 

 

RMSEP(wc12.pls, newdata=wc11) 

 

plot(RMSEP(wc12.pls), legendpos = "topright") 

 

plot(RMSEP(wc12.pls, newdata=wc11), legendpos = "topright") 

 

regline<- lm((predict(wc12.pls, ncomp=11, newdata=wc11))~ wc11$yield.buac) 

 

predplot(wc12.pls, ncomp = 11, newdata = wc11, line = TRUE, 

         pch = 16, main = "2012 Prediction Ability on 2011 Data",  

         xlab = expression(paste("True Yield ", "(bu ac"^"-1" ,")" )),  

         ylab = expression(paste("Predicted Yield ", "(bu ac"^"-1" ,")" )), 

         las=1)+ 

  abline(a=0,b=1,col="firebrick3",lwd=2) 

abline(regline, lwd=2) 

legend(x=100, y=80, legend= paste("R2 =", format(summary(regline)$r.squared, digits=4)), 

bty="n") 

legend(x=100, y=50, legend = c("regression", "m=1"),pch= "_",  

       col = c("black", "firebrick3"), pt.cex = 2,bty="n" ) 

########################################################################### 
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Building PLSR Model 2 and LM 1-4 

## To convert yield from BU/AC to G/M^2, multiply yield by (6.271) 

 

setwd("C:/Users/holly.lane/Project/Manuscript Files") ## Set this for your system 

library(reshape); library(reshape2);library(ggplot2); library(dplyr) 

library(prospectr);library(RcppArmadillo);library(Rcpp); library(foreach) ; library(iterators) 

library(resemble);require(prospectr);library(ggfortify);library(cluster); library(pls) 

###########################################################################

############# 

wholecorn<- read.csv("Supplemental 1.csv", header=TRUE, check.names = FALSE) 

#check.names prevents R from placing an X in front of the wavelength column names 

dim(wholecorn) 

##forcing R to accept numeric column names makes the column names in valid 

##extract spectra columns before fixing this 

wholecornspc <- wholecorn[,83:3194] 

wholespc <- data.matrix(wholecornspc) 

##now fix column names  

valid_column_names <- make.names(names=names(wholecorn), unique=TRUE, allow_ = 

TRUE) 

names(wholecorn) <- valid_column_names 

#select informational columns of interest, then attach matrix of spectra as variable  

wholecornfull<- select(wholecorn,c(5,7,8,9,21,22,23,25,32,43,48:61,77,78)) 

wholecornfull$year<-as.factor(wholecornfull$year) 

wholecornfull$spc<-wholecornspc 

###in example dataset, NIRsoil, spectra is variable spc as a matrix within "dataframe" 

wholecornfull$raw<-wholespc 

###########################################################################

############ 

 

whole.sg <- savitzkyGolay(wholecornfull$spc, p = 3, w = 37, m = 1) 

whole.sg2 <- savitzkyGolay(wholecornfull$spc, p = 3, w = 37, m = 2) ## adjust w 

wholecornfull$sg1<-whole.sg 

wholecornfull$sg2<-whole.sg2 

 

wcFULL<-wholecornfull 

 

WCcomp<- na.omit(wcFULL) 

rownames(WCcomp) <- seq(length=nrow(WCcomp)) 

 

############### 

wc.pls <- plsr(yield.buac~sg1, data= WCcomp, ncomp=15, validation="CV") 

summary(wc.pls) 

plot(wc.pls, ncomp = 15, asp = 1, line = TRUE) 
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plot(RMSEP(wc.pls), legendpos = "topright") 

 

plot(wc.pls, plottype = "scores", comps = 1:10) 

 

plot(x= wc.pls$scores[,6], y= wc.pls$scores[,10]) 

 

#identify(x= wc.pls$scores[,6], y= wc.pls$scores[,10], plot=TRUE) 

 

WCcomp2<- WCcomp[-c(1438, 1560),] 

 

WCcomp<-WCcomp2 

rownames(WCcomp) <- seq(length=nrow(WCcomp)) 

 

############################################################## 

WCcomp.duplex<-duplex(X=WCcomp$sg1,k=100,pc=10) # takes awhile to run 

 

plot(WCcomp.duplex$pc) 

points(WCcomp.duplex$pc[WCcomp.duplex$model, 

1],WCcomp.duplex$pc[WCcomp.duplex$model, 2], col = "red", pch = 19) 

points(WCcomp.duplex$pc[WCcomp.duplex$test, 1], 

WCcomp.duplex$pc[WCcomp.duplex$test, 2], col = "blue", pch = 19) 

legend("topright", legend = c("calibration", "validation"), pch = c(19, 19), 

       col = c("red", "blue")) 

##result is list with row index for calibration(model)/and validation(test) samples 

 

testrows<-WCcomp.duplex$test 

testrows<-sort.int(testrows) 

 

WCcompTest <- WCcomp[(testrows),] 

 

WCcompTrain <-WCcomp[-testrows,] 

 

levels(droplevels(WCcomp$pedigree)) 

# 345 represented -- NOTE: Some may be missing from yield adjustments 

 

levels(droplevels(WCcompTest$pedigree)) 

# 82 represented, need to eliminate all from training set 

 

levels(droplevels(WCcompTrain$pedigree)) 

# 345 represented 

######################## 
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WCcompTest.pedigree<-WCcomp[WCcomp$pedigree %in% WCcompTest$pedigree, ] 

 

levels(droplevels(WCcompTest.pedigree$pedigree)) 

dim(WCcompTest) 

dim(WCcompTest.pedigree) 

WCcompTest.pedigree[1:10,1:5] 

 

WCcompTrain.pedigree<-WCcomp[!WCcomp$pedigree %in% WCcompTest$pedigree, ] 

 

dim(WCcompTrain) 

dim(WCcompTrain.pedigree) 

WCcompTrain.pedigree[1:10,1:5] 

 

levels(droplevels(WCcompTrain.pedigree$pedigree)) 

#263 pedigrees in training set 

 

###########################################################################

################ 

WCcompTest<-WCcompTest.pedigree 

WCcompTrain<-WCcompTrain.pedigree 

###########################################################################

################ 

whole.pls.ya <- plsr(yield.buac~sg1, data= WCcompTrain, ncomp=25, validation="CV") 

# PLSR 2 built 

 

summary(whole.pls.ya) 

plot(whole.pls.ya, ncomp = 15, asp = 1, line = TRUE) 

#### 

#modelresults<-sort.default(whole.pls.ya$validation$pred[,,15]) 

## 

#RMSEP(whole.pls.ya, newdata=WCcompTest) 

 

plot(RMSEP(whole.pls.ya), legendpos = "topright") 

 

 

ncomp.onesigma <- selectNcomp(whole.pls.ya, method = "onesigma", plot = TRUE) 

ncomp.permut <- selectNcomp(whole.pls.ya, method = "randomization", plot = TRUE) 

 

plot(RMSEP(whole.pls.ya, newdata=WCcompTest), legendpos = "topright") 

 

##### PLOT  

rmsep<-RMSEP(whole.pls.ya, newdata=WCcompTest, ncomp=13) 
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regline<- lm((predict(whole.pls.ya, ncomp=13, newdata=WCcompTest))~ 

WCcompTest$yield.buac) 

 

predplot(whole.pls.ya, ncomp = 13, newdata = WCcompTest, line = TRUE, 

         pch = 16, main = "Global Prediction Ability (NIRS)",  

         xlab = expression(paste("True Yield ", "(bu ac"^"-1" ,")" )),  

         ylab = expression(paste("Predicted Yield ", "(bu ac"^"-1" ,")" )), 

         las=1)+ 

  abline(a=0,b=1,col="firebrick3",lwd=2) 

abline(regline, lwd=2) 

legend(x=100, y=75, legend= paste("R2 =", format(summary(regline)$r.squared, digits=2)), 

bty="n") 

legend(x=100, y=65, legend= noquote(paste("RMSEP=", (round(rmsep$val[1,1,2], digits=2)), 

"bu/ac")), bty="n") 

legend(x=100, y=30, legend = c("regression", "1:1"),pch= "_",  

       col = c("black", "firebrick3"), pt.cex = 2,bty="n" ) 

 

###########################################################################

################ 

#protein 

cor.test(WCcomp$yield.buac, WCcomp$crude.protein, method="pearson") 

 

pp <- lm(yield.buac ~ crude.protein, data= WCcompTrain) 

 

predictions<-predict(pp, newdata=WCcompTest) 

 

regline <- lm(predictions ~ WCcompTest$yield.buac) 

 

plot(WCcompTest$yield.buac, predictions) 

abline(regline, lwd=2) 

legend(x=180, y=75, legend= paste("R2 =", format(summary(regline)$r.squared, digits=2)), 

bty="n") 

legend(x=180, y=65, legend= paste("R =", format(sqrt(summary(regline)$r.squared), 

digits=2)), bty="n") 

 

## need to calculate RMSEP by hand.... 

 

WCcompTest$diff<-(predictions) - (WCcompTest$yield.buac) 

 

WCcompTest$diff.sq<-(WCcompTest$diff)*(WCcompTest$diff) 

 

diff.sum<-sum(WCcompTest$diff.sq) 
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MSEP<-(diff.sum)/(nrow(WCcompTest)) 

 

RMSEP <- sqrt(MSEP) 

RMSEP #in bu/ac 

###########################################################################

################ 

#starch.2 

cor.test(WCcomp$yield.buac, WCcomp$starch.2, method="pearson") 

 

sp <- lm(yield.buac ~ starch.2, data= WCcompTrain) 

 

predictions<-predict(sp, newdata=WCcompTest) 

 

regline <- lm(predictions ~ WCcompTest$yield.buac) 

 

plot(WCcompTest$yield.buac, predictions) 

abline(regline, lwd=2) 

legend(x=180, y=75, legend= paste("R2 =", format(summary(regline)$r.squared, digits=2)), 

bty="n") 

legend(x=180, y=65, legend= paste("R =", format(sqrt(summary(regline)$r.squared), 

digits=2)), bty="n") 

 

WCcompTest$diff<-(predictions) - (WCcompTest$yield.buac) 

 

WCcompTest$diff.sq<-(WCcompTest$diff)*(WCcompTest$diff) 

 

diff.sum<-sum(WCcompTest$diff.sq) 

 

MSEP<-(diff.sum)/(nrow(WCcompTest)) 

 

RMSEP <- sqrt(MSEP) 

RMSEP #in bu/ac 

###########################################################################

################ 

#fat.3 

cor.test(WCcomp$yield.buac, WCcomp$fat.3, method="pearson") 

 

fp <- lm(yield.buac ~ fat.3, data= WCcompTrain) 

 

predictions<-predict(fp, newdata=WCcompTest) 

 

regline <- lm(predictions ~ WCcompTest$yield.buac) 
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plot(WCcompTest$yield.buac, predictions) 

abline(regline, lwd=2) 

legend(x=180, y=90, legend= paste("R2 =", format(summary(regline)$r.squared, digits=2)), 

bty="n") 

legend(x=180, y=92, legend= paste("R =", format(sqrt(summary(regline)$r.squared), 

digits=2)), bty="n") 

 

WCcompTest$diff<-(predictions) - (WCcompTest$yield.buac) 

 

WCcompTest$diff.sq<-(WCcompTest$diff)*(WCcompTest$diff) 

 

diff.sum<-sum(WCcompTest$diff.sq) 

 

MSEP<-(diff.sum)/(nrow(WCcompTest)) 

 

RMSEP <- sqrt(MSEP) 

RMSEP #in bu/ac 

###########################################################################

################ 

#all 

ap <- lm(yield.buac ~ fat.3+starch.2+crude.protein, data= WCcompTrain) 

 

predictions<-predict(ap, newdata=WCcompTest) 

 

regline <- lm(predictions ~ WCcompTest$yield.buac) 

 

 

plot(WCcompTest$yield.buac, predictions) 

abline(regline, lwd=2) 

legend(x=180, y=90, legend= paste("R2 =", format(summary(regline)$r.squared, digits=2)), 

bty="n") 

legend(x=180, y=85, legend= paste("R =", format(sqrt(summary(regline)$r.squared), 

digits=2)), bty="n") 

 

WCcompTest$diff<-(predictions) - (WCcompTest$yield.buac) 

 

WCcompTest$diff.sq<-(WCcompTest$diff)*(WCcompTest$diff) 

 

diff.sum<-sum(WCcompTest$diff.sq) 

 

MSEP<-(diff.sum)/(nrow(WCcompTest)) 

 

RMSEP <- sqrt(MSEP); RMSEP #in bu/ac  
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Running PLSR under CV0 Scheme: 

 

setwd("C:/Users/holly.lane/Project/Manuscript Files") 

library(reshape); library(reshape2);library(ggplot2); library(dplyr) 

library(prospectr);library(RcppArmadillo);library(Rcpp); library(foreach) ; library(iterators) 

library(resemble);require(prospectr);library(ggfortify);library(cluster); library(pls) 

###########################################################################

### 

## Make sure you have run the other script that cleans and creates the wc object first 

###########################################################################

### 

 

wc11 <- wc[(wc$year=="2011"),] 

wc12 <-wc[(wc$year=="2012"),] 

rownames(wc11) <- seq(length=nrow(wc11)) 

rownames(wc12) <- seq(length=nrow(wc12)) 

 

WW<-wc[(wc$treatment =="IRRI"),] 

WS<-wc[(wc$treatment =="NIRRI"),] 

 

WW11<-wc[(wc$trial.1 =="CS11_WW"),] 

WW12<-wc[(wc$trial.1 =="CS12_WW"),] 

 

WS11<-wc[(wc$trial.1 =="CS11_WS"),] 

WS12<-wc[(wc$trial.1 =="CS12_WS"),] 

 

rownames(WW) <- seq(length=nrow(WW)) 

rownames(WS) <- seq(length=nrow(WS)) 

rownames(WW11) <- seq(length=nrow(WW11)) 

rownames(WS11) <- seq(length=nrow(WS11)) 

rownames(WW12) <- seq(length=nrow(WW12)) 

rownames(WS12) <- seq(length=nrow(WS12)) 

 

###########################################################################

################ 

wcTest<-WS12 ##Update and change plot title for each treatment 

wcTrain<-WW  

wcTrain<-wc[!(wc$trial.1 =="CS12_WS"),] #Update and change plot title 

 

###########################################################################

################ 

whole.pls.ya <- plsr(yield.buac~sg1, data= wcTrain, ncomp=50, validation="CV") 

#summary(whole.pls.ya) 
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#plot(whole.pls.ya, ncomp = 25, asp = 1, line = TRUE) 

#### 

#modelresults<-sort.default(whole.pls.ya$validation$pred[,,15]) 

## 

#RMSEP(whole.pls.ya, newdata=wcTest) 

plot(RMSEP(whole.pls.ya), legendpos = "topright") 

 

ncomp.onesigma <- selectNcomp(whole.pls.ya, method = "onesigma", plot = TRUE) 

ncomp.permut <- selectNcomp(whole.pls.ya, method = "randomization", plot = TRUE) 

 

plot(RMSEP(whole.pls.ya, newdata=wcTest), legendpos = "topright") 

 

##### PLOT  

rmsep<-RMSEP(whole.pls.ya, newdata=wcTest, ncomp=12) 

R2(whole.pls.ya, newdata=wcTest, ncomp=12) 

 

regline<- lm((predict(whole.pls.ya, ncomp=12, newdata=wcTest))~ wcTest$yield.buac) 

 

predplot(whole.pls.ya, ncomp = 12, newdata = wcTest, line = TRUE, 

         cex.axis = 1.5, cex.lab = 1.5,cex.main=2, #for poster  

         pch = 16, main = "Fix",  

         xlab = expression(paste("True Yield ", "(bu ac"^"-1" ,")" )),  

         ylab = expression(paste("Predicted Yield ", "(bu ac"^"-1" ,")" )), 

         las=1)+ 

  abline(a=0,b=1,col="firebrick3",lwd=2) 

abline(regline, lwd=2) 

legend(x=90, y=80, legend= paste("R2 =", format(summary(regline)$r.squared, digits=2)), 

bty="n") 

legend(x=90, y=70, legend= noquote(paste("RMSEP=", (round(rmsep$val[1,1,2], digits=2)), 

"bu/ac")), bty="n") 

legend(x=95, y=50, legend = c("regression", "1:1"),pch= "_",  

       col = c("black", "firebrick3"), pt.cex = 2,bty="n" ) 

 

summary(regline)$r.squared 
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APPENDIX C  

CHAPTER III SCRIPTS 

getwd() 

setwd("C:/Users/holly.lane/Project 2") 

library(lme4); #library(MuMIn);  

library(dplyr); library(ggplot2) 

 

iterations<-1:50 

 

results <- matrix(0, 100000,25) 

results <- as.data.frame(results) 

colnames(results) <-

c("Scenario","Population","Genotypes","Environments","Reps","n","measurement", 

                      "Percent.Detection.QTL", "False.QTL","Percent.False.QTL", "r2.QTL", 

                      "r2", "RMSE","NRMSE", "H2", "var.gxe", "var.gen", "var.rep", "var.env", 

"var.residual", 

                      "per.var.gxe", "per.var.gen", "per.var.rep", "per.var.env", "per.var.residual") 

row<-0 #leave outside of loop 

 

 

gen.test<-c(100,300,500,1000)#numbers of genotypes to test 

env.test<-c(1,2,5,10) #numbers of environments to test  

rep.test<-c(2,3) #numbers of reps to test #numbers of reps to test 

measurement<-c("manual", "HTP.50", "HTP.80", "HTP.90") # whether or not error is added, 

how much 

 

 

for (ITER in iterations){ 

  print(c("Iteration", ITER)) 

 

individuals<- 300 #number of indviduals to start at 'F2' 

SNPs<-100 

 

## What about for allele frequencies that vary at each SNP? (This would not apply to a RIL 

population) 

F2<-matrix(data = NA, nrow=individuals, SNPs) 

 

AlleleFreq<-round(abs(runif(SNPs, min = 0.4, max = 0.6)), digits=2)  

#want to be close to 0.5, but won't be exact realistically  

 

AlleleFreq # frequency of each allele 
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for (i in 1:ncol(F2)) {  

  F2[,i]<-rbinom(nrow(F2),2,AlleleFreq[i]) 

} 

 

F2 #SNP matrix for F2 parent population 

############################################## 

# defining phenotypic values 

baseline.ht <- 0 #cm  

# G2F hybrid data from 2017 shows mean height of 213 cm (range 71-345) 

 

AlleleEffect.ht <- rgeom(SNPs, 0.3) # allele effect following geometric distribution 

 

sum(AlleleEffect.ht==0) # how many alleles have no effect 

#hist(AlleleEffect.ht) 

 

ht.effect<-t(t(F2) * AlleleEffect.ht) 

 

ht <- rowSums(ht.effect)+baseline.ht 

ht 

 

### adding dominance effect 

 

##AlleleEffect.ht.dom <- c(0,2,4,0,0,1,3,0,0,2) ##Figure out how to softcode 

 

AlleleEffect.ht.dom <- rpois(SNPs, 0.5) 

 

dom.effect.ht <-matrix (0,nrow(F2),ncol(F2)) 

 

for (SNP in 1:ncol(F2)) {  

  for (IND in 1:nrow(F2)) {  

    print(c("loop SNP",SNP, "IND", IND,  AlleleEffect.ht.dom[SNP])) 

    if(F2[IND,SNP] ==1) { 

      dom.effect.ht[IND,SNP]<-(AlleleEffect.ht.dom[SNP] * ht.effect[IND,SNP])} 

  }} 

 

dom.effect.ht 

F2 

 

ht <- rowSums(ht.effect)+baseline.ht+rowSums(dom.effect.ht) 

ht # "true" genetic height of the F2 population 

###########################################################################

########## 
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# 

# 

### 

#### 

 

###########################################################################

########################### 

## Now let's self the population - write to expand or contract the population 

progeny <- 1000 ## make it as big as possible and then subset 

individuals<-progeny #must both be the same length 

 

# defining phenotypic values 

environments <- 10 

reps<- 3 

h2 <- 0.5  # ratio of genetic to residual variance 

############################################################## 

#### 

## 

## 

# 

#build progeny matrix 

gen3parents<-matrix(NA, nrow= progeny, ncol=ncol(F2)) 

#choose parents to advance 

#in this case, we do not need to select parents from a F1, so this code is a bit overkill 

 

#randomly select and write selected parents to an object (sample function, with replacement) 

parents<-sample(1:nrow(F2), progeny, replace = TRUE) 

 

gen3parents<- F2[parents, byrow= TRUE] 

 

gen3<-matrix(NA, nrow= nrow(gen3parents), ncol=ncol(F2)) 

 

count<-0 

for (PAR in 1:nrow(gen3parents)){ 

  for (SNP in 1:ncol(gen3parents)){ 

    count<- count+1 

    print(c("genotype",PAR,  "SNP",SNP, count)) 

    gen3[PAR,SNP]<- ifelse(gen3parents[PAR,SNP]!= 1, (gen3parents[PAR,SNP]), 

(rbinom(1,2,0.5)))  

  }} 

 

F3<-gen3 
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gen4<-matrix(NA, nrow= nrow(gen3), ncol=ncol(gen3)) 

 

count<-0 

for (PAR in 1:nrow(gen3)){ 

  for (SNP in 1:ncol(gen3)){ 

    count<- count+1 

    print(c("genotype",PAR,  "SNP",SNP, count)) 

    gen4[PAR,SNP]<- ifelse(gen3[PAR,SNP]!= 1, (gen3[PAR,SNP]), (rbinom(1,2,0.5)))  

  }} 

 

 

#rapidly advance to RIL 

 

RIL<-matrix(NA, nrow= nrow(gen4), ncol=ncol(gen4)) 

count<-0 

for (PAR in 1:nrow(gen4)){ 

  for (SNP in 1:ncol(gen4)){ 

    count<- count+1 

    print(c("genotype",PAR,  "SNP",SNP, count)) 

    RIL[PAR,SNP]<- ifelse(gen4[PAR,SNP]!= 1, (gen4[PAR,SNP]), (rbinom(1,1,0.5)*2))  

     

  }} 

RIL[1:10,1:10] #RIL SNP matrix 

############################################################## 

 

RIL.ht.effect<-t(t(RIL) * AlleleEffect.ht) 

 

RIL.ht <- rowSums(RIL.ht.effect)+baseline.ht 

#RIL.ht # "true" genetic height of each genotype 

 

### dominance effect (shouldn't be in RILs) 

###################################### 

 

F3.ht.effect<-t(t(F3) * AlleleEffect.ht) 

 

F3.ht <- rowSums(F3.ht.effect)+baseline.ht 

 

F3.dom.effect.ht <-matrix (0,nrow(F3),ncol(F3)) 

 

for (SNP in 1:ncol(F3)) {  

  for (IND in 1:nrow(F3)) {  

    print(c("loop SNP",SNP, "IND", IND,  AlleleEffect.ht.dom[SNP])) 

    if(F3[IND,SNP] ==1) { 
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      F3.dom.effect.ht[IND,SNP]<-(AlleleEffect.ht.dom[SNP] * F3.ht.effect[IND,SNP])} 

  }} 

rowSums(F3.dom.effect.ht)  

# F3 

 

F3.ht <- rowSums(F3.ht.effect)+baseline.ht+rowSums(F3.dom.effect.ht) 

head(F3.ht) #now that dominance is applied 

 

###########################################################################

########## 

## GxE  is an unpredictable effect of the environment on different genotypes 

# randomly, normally distributed around 0  

 

## ENVIRONMENT effect, number set above 

 

enveffect<-round(rnorm(environments, mean=0, sd=15), digits= 0) 

enveffect 

 

enviroEffects<-matrix(data= enveffect, length(RIL.ht), environments, byrow= TRUE)  

 

head(enviroEffects) #matrix to apply to achieve RIL phenotypes observed 

 

## GxE effect 

 

GxE.effect<-abs(round(rnorm(environments, mean=5, sd=10), digits= 0)) ##CANNOT BE 

NEGATIVE 

## this effect is used as the std. dev in the script below, so take abs 

 

GxE.effects<-matrix(data= NA, length(RIL.ht), environments) 

 

for (ENV in 1:ncol(GxE.effects)) {  

  for (IND in 1:nrow(GxE.effects)) {  

    print(c("loop ENV",ENV, "IND", IND,  GxE.effect[ENV])) 

    GxE.effects[IND,ENV] <- rnorm(1,0,GxE.effect[ENV]) 

  }} 

 

#hist(GxE.effects) #may be too small, investigate % variance 

 

## REPLICATE effect ############################ 

 

# number of reps set above 

 

repEffect<-(environments*reps) 
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repEffects<-matrix(rnorm(repEffect,0,5),reps,environments) 

#repEffects 

 

RIL.obs<-length(enviroEffects)*reps 

RIL.obsmatrix <- matrix(,RIL.obs,4) 

#RIL.obsmatrix 

 

count<-0 

for (ENV in 1:ncol(GxE.effects)) {  

  for (IND in 1:nrow(GxE.effects)) {  

    for (REP in 1:reps) { 

      count<- count +1 

       

      print(c("Environment",ENV, "Individual", IND,  "count",count, "rep", REP, count)) 

      RIL.obsmatrix[count,1] <- IND 

      RIL.obsmatrix[count,2] <- ENV 

      RIL.obsmatrix[count,3] <- REP 

      RIL.obsmatrix[count,4] <- RIL.ht[IND]+enviroEffects[IND, ENV] 

+repEffects[REP,ENV]+ GxE.effects[IND,ENV] 

    }}} 

head(RIL.obsmatrix) #col 1 = individual, col 2 = environment, col 3 = rep, col 4 = height  

### 

 

F3.obs<-length(enviroEffects)*reps 

F3.obsmatrix <- matrix(,F3.obs,4) 

#F3.obsmatrix 

 

count<-0 

for (ENV in 1:ncol(GxE.effects)) {  

  for (IND in 1:nrow(GxE.effects)) {  

    for (REP in 1:reps) { 

      count<- count +1 

       

      print(c("Environment",ENV, "Individual", IND,  "count",count, "rep", REP, count)) 

      F3.obsmatrix[count,1] <- IND 

      F3.obsmatrix[count,2] <- ENV 

      F3.obsmatrix[count,3] <- REP 

      F3.obsmatrix[count,4] <- F3.ht[IND]+enviroEffects[IND, ENV] +repEffects[REP,ENV]+ 

GxE.effects[IND,ENV] 

    }}} 

head(F3.obsmatrix)  

##### ERROR ######################################################## 
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## error is independent for each observation (essentially RepxGxE) (unexplained variation) 

 

## following code from Dr. Zhang of Washington State University 

# h2 set above 

n <- reps*environments*progeny 

 

effectvar <- var(RIL.ht) 

#effectvar 

 

residualvar=(effectvar-h2*effectvar)/h2 

residualvar 

residual=rnorm(n,0,sqrt(residualvar)) 

# end of adapted script 

#hist(residual) 

mean(abs(residual)) 

 

error<-residual 

 

RIL.obsmatrixerr<-RIL.obsmatrix 

 

RIL.obsmatrixerr[,4]<-RIL.obsmatrix[,4]+error 

 

head(RIL.obsmatrixerr)  #col 1 = individual, col 2 = environment, col 3 = rep, col 4 = height 

(with error effect) 

 

##### ERROR ######################################################## 

 

## error is independent for each observation (essentially RepxGxE) (unexplained variation) 

 

## following code from Dr. Zhang of Washington State University 

# h2 set above 

n <- reps*environments*progeny 

 

effectvar <- var(F3.ht) 

#effectvar 

 

residualvar=(effectvar-h2*effectvar)/h2 

residualvar 

residual=rnorm(n,0,sqrt(residualvar)) 

# end of adapted script 

#hist(residual) 

mean(abs(residual)) 
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error<-residual 

 

F3.obsmatrixerr<-F3.obsmatrix 

 

F3.obsmatrixerr[,4]<-F3.obsmatrix[,4]+error 

 

head(F3.obsmatrixerr)  #col 1 = individual, col 2 = environment, col 3 = rep, col 4 = height 

(with error effect) 

 

 

##################### 

#ObservMatrix <-RIL.obsmatrixerr; P<- RIL.ht 

ObservMatrix <-F3.obsmatrixerr ; P<- F3.ht 

 

Data<-data.frame(ObservMatrix) 

names(Data) <- c("Gen","Env","Rep","Hgt") # variable names 

 

Data$Gen<-factor(Data$Gen) 

Data$Env<-factor(Data$Env) 

Data$Rep<-factor(Data$Rep) 

############################### 

 

#ObservMatrix <- ObservMatrix[-which((ObservMatrix[,2]=="X")),] # remove environment 

X 

 

 

## need to do multiple trials of each level (repeated measures) to gain an average  

#Loops<-c(1:25) #number of times to replicat each scenario 

 

#for(LOOP in Loops){print(c("Loop",LOOP)) # 

   

  for (GENOTYPE in gen.test){ 

    genotypes<- sort(sample(progeny, GENOTYPE, replace = FALSE)) 

     

    index<-rep(F,nrow(Data)) 

     

    for(j in 1:length(genotypes)){ 

       

      for(k in 1:nrow(Data)){ 

         

        if(index[k]==T){ 

          next 
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        } 

        if(as.character(Data$Gen[k])==as.character(genotypes[j])){ 

          index[k]<-T 

        } 

         

      } #### close k loop 

       

    }#### Close j loop 

     

    Data.sub<-Data[index,] 

     

     

    for (ENVIRONMENT in env.test){ 

       

      environments.index<- sort(sample(environments, ENVIRONMENT, replace = FALSE)) 

       

      index<-rep(F,nrow(Data.sub)) 

       

      for(j in 1:length(environments.index)){ 

         

        for(k in 1:nrow(Data.sub)){ 

           

          if(index[k]==T){ 

            next 

          } 

          if(as.character(Data.sub$Env[k])==as.character(environments.index[j])){ 

            index[k]<-T 

          } 

           

        } #### close k loop 

         

      }#### Close j loop 

       

      Data.sub2<-Data.sub[index,] 

       

       

      for (REP in rep.test){ 

         

        reps.index<- sort(sample(reps, REP, replace = FALSE)) 

         

        #print((c(length(environments.index), "environments"))) 

        #print((c(length(reps.index), "reps"))) 
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        index<-rep(F,nrow(Data.sub2)) 

         

        for(j in 1:length(reps.index)){ 

           

          for(k in 1:nrow(Data.sub2)){ 

             

            if(index[k]==T){ 

              next 

            } 

            if(as.character(Data.sub2$Rep[k])==as.character(reps.index[j])){ 

              index[k]<-T 

            } 

             

          } #### close k loop 

           

        }#### Close j loop 

        Data.sub3<-Data.sub2[index,] 

         

         

        for (m in measurement){ 

          Data.sub3<-Data.sub2[index,] 

          print(paste(c(length(genotypes), "genotypes", length(environments.index), 

"environments",length(reps.index), "reps", m ))) 

           

          # if (m=="HTP.20"){ 

          # n2 <- nrow(Data.sub3) 

          #  h22<-0.8 #adds 20% more error 

          # effectvar2 <- var(RIL.ht[genotypes]) 

          #  residualvar2=(effectvar2-h22*effectvar2)/h22 

          #  residualvar2 

          #  residual2=rnorm(n2,0,sqrt(residualvar2)) 

          #  error<-residual2 

           

          #   Data.sub3[,4]<-Data.sub3[,4]+error 

          #  } 

          if (m=="HTP.50"){ 

            n2 <- nrow(Data.sub3) 

            h22<-0.5 #adds 50% more error, same size as baseline 

            effectvar2 <- var(P[genotypes]) 

            residualvar2=(effectvar2-h22*effectvar2)/h22 

            residualvar2 

            residual2=rnorm(n2,0,sqrt(residualvar2)) 

            error<-residual2 
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            Data.sub3[,4]<-Data.sub3[,4]+error 

          } 

           

          if (m=="HTP.90"){ 

            n2 <- nrow(Data.sub3) 

            h22<-0.1 #adds 90% more error relative to genetic effects 

            effectvar2 <- var(P[genotypes]) 

            residualvar2=(effectvar2-h22*effectvar2)/h22 

            residualvar2 

            residual2=rnorm(n2,0,sqrt(residualvar2)) 

            error<-residual2 

             

            Data.sub3[,4]<-Data.sub3[,4]+error 

          } 

           

          if (m=="HTP.80"){ 

            n2 <- nrow(Data.sub3) 

            h22<-.2 #adds 80% more error relative to genetic effects 

            effectvar2 <- var(P[genotypes]) 

            residualvar2=(effectvar2-h22*effectvar2)/h22 

            residualvar2 

            residual2=rnorm(n2,0,sqrt(residualvar2)) 

            error<-residual2 

             

            Data.sub3[,4]<-Data.sub3[,4]+error 

          } 

           

          DataSub<-Data.sub3 

          if (ENVIRONMENT!=1){ 

            fm1 <- lmer(Hgt ~ (1|Gen) + (1|Env) + (1|Gen:Env) + (1|Env:Rep), data = DataSub) 

#all random 

          } 

          if (ENVIRONMENT==1){ 

            fm1 <- lmer(Hgt ~ (1|Gen) +  (1|Gen:Env) + (1|Env:Rep), data = DataSub) # if only 1 

env 

          } 

           

          #fm1 <- lmer(Hgt ~ 1 + Gen +  (1|Gen:Env) + (1|Env:Rep), data = Data) 

          #summary(fm1) 

           

          varcomp<-as.data.frame(VarCorr(fm1)) 
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          var<-(select(varcomp, grp, vcov)) 

           

          var[6,1]<-"Total" 

          var[6,2]<- sum(var$vcov[1:5]) 

          var$pervar<-0 

          var$pervar[1:6]<-round((var$vcov[1:6]/var[6,2])*100,digits=3) 

          ###  

          if (ENVIRONMENT!=1){ 

            fm1 <- lmer(Hgt ~ 1 + Gen + (1|Env) + (1|Gen:Env) + (1|Env:Rep), data = DataSub) 

          } 

          if (ENVIRONMENT==1){ 

            fm1 <- lmer(Hgt ~ 1 +Gen +  (1|Gen:Env) + (1|Env:Rep), data = DataSub) # if only 1 

env 

          } 

          #gives estimated effect for each genotype, you could then select best genotypes to 

advance 

           

          est<-as.data.frame(fixef(fm1)) 

          est$estimated.gen<-0 

           

          est$estimated.gen[1]<- est[1,1] # first genotype is the intercept 

           

          est$estimated.gen[2:(nrow(est))]<- 

(est$`fixef(fm1)`[2:nrow(est)])+est$estimated.gen[1] 

          #this adds the intercept to the effects to achieve estimated genotypic height 

           

          ########## SINGLE QTL ANALYSIS  

          BLUP<-est$estimated.gen #give BLUP to data frame 

           

          estimates<- as.data.frame(cbind(F3[genotypes,],BLUP)) 

           

          single.marker<- matrix(NA,SNPs,6) 

           

          single.marker <- as.data.frame(single.marker) 

          colnames(single.marker) <-

c("SNP","Effect.Present","Effect.Detected","Pvalue","Est.Homozygote","True.Effect") 

          round<-0 

           

          for (MARKER in 1:SNPs){ 

            QTL<- estimates[,MARKER] 

            V<- colnames(estimates[MARKER]) 

             

            if(length(levels(as.factor(estimates[,MARKER])))==1){next} ## skip locus if fixed 
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            TEST<-(aov(BLUP~as.factor(QTL), data=estimates)) 

            MEANS<-model.tables(TEST,"means") 

            EFFECTS<-model.tables(TEST,"effects") 

            summary(TEST) 

            round<-round+1 

            if(na.omit(summary(TEST)[[1]][["Pr(>F)"]]) < 0.05){ 

              single.marker$Effect.Detected[round]<- "YES" 

            } 

            if(na.omit(summary(TEST)[[1]][["Pr(>F)"]]) > 0.05){ 

              single.marker$Effect.Detected[round]<- "NO" 

            } 

            if (AlleleEffect.ht[MARKER]==0){ 

              single.marker$Effect.Present[round]<-"NO" 

            } 

            if (AlleleEffect.ht[MARKER]!=0){ 

              single.marker$Effect.Present[round]<-"YES" 

            } 

            if(length(levels(as.factor(estimates[,MARKER])))==3){ #if heterozygotes exist 

              single.marker$Est.Homozygote[round]<-

round((EFFECTS$tables$`as.factor(QTL)`[3]-EFFECTS$tables$`as.factor(QTL)`[1]),4)[[1]] 

#homozygote 

            } 

            if(length(levels(as.factor(estimates[,MARKER])))==2){ #if inbred at locus 

              single.marker$Est.Homozygote[round]<-

round((EFFECTS$tables$`as.factor(QTL)`[2]-EFFECTS$tables$`as.factor(QTL)`[1]),4)[[1]] 

#homozygote 

            } 

            single.marker$True.Effect[round]<-AlleleEffect.ht[MARKER]*2 #real homozygous 

effect 

            single.marker$Pvalue[round]<-na.omit(summary(TEST)[[1]][["Pr(>F)"]]) #pvalue 

column 

            single.marker$SNP[round]<- MARKER 

          } 

           

          single.marker<-na.omit(single.marker) 

           

          #from this results table we can then generate % of false positives, missed QTL,  

          #and accuracy of estimations, this then allows us to compare scenarios 

          #********************************** 
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          Percent.Detection<-

sum(single.marker$Effect.Present=="YES"&single.marker$Effect.Detected=="YES")/sum(si

ngle.marker$Effect.Present=="YES") 

           

          False.QTL <-

sum(single.marker$Effect.Present=="NO"&single.marker$Effect.Detected=="YES") 

           

          Percent.False <-

sum(single.marker$Effect.Present=="NO"&single.marker$Effect.Detected=="YES")/sum(sin

gle.marker$Effect.Detected=="YES") 

           

          r.qtl<-lm((subset(single.marker, Effect.Detected %in% "YES" & Effect.Present %in% 

"YES")$Est.Homozygote)~ 

                      (subset(single.marker, Effect.Detected %in% "YES" & Effect.Present %in% 

"YES")$True.Effect)) 

           

          r2.qtl<-round((summary(r.qtl)$r.squared), digits=2) 

          #**************************************** 

          ### END SINGLE QTL 

           

          est$true.gen<-P[genotypes] 

           

          est$error<- (est$true.gen)-(est$estimated.gen) 

           

          est$error2<- (est$error*est$error) 

           

          RMSE <- sqrt((sum(est$error2))/(nrow(est))) 

           

          #NRMSE<- (RMSE)/(max(DataSub[,4])-min(DataSub[,4]))#skewed due to outliers in 

HTP error 

          NRMSE<- (RMSE)/(max(P[genotypes])-min(P[genotypes])) 

           

          reg<- lm(est$true.gen~est$estimated.gen) 

           

          row <-row + 1 ; print(row) 

           

          results$Scenario[row]<- row 

          results$Population[row]<- "F3" 

          results$Genotypes[row]<- GENOTYPE 

          results$Environments[row]<-ENVIRONMENT 

          results$Reps[row]<-REP 

          results$n[row]<-nrow(DataSub) 

          results$measurement[row]<-m 
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          results$r2[row] <- round((summary(reg)$r.squared), digits=2) 

          results$RMSE[row] <- RMSE 

          results$NRMSE[row] <- NRMSE 

          results$H2[row] <- 

(var[2,2])/(((var[5,2])/REP*ENVIRONMENT)+((var[1,2])/ENVIRONMENT)+(var[2,2])) 

          results$Percent.Detection.QTL[row]<-Percent.Detection 

          results$False.QTL[row]<- False.QTL 

          results$Percent.False.QTL[row]<-Percent.False 

          results$r2.QTL[row]<-r2.qtl 

          results$var.gxe[row]<-var[1,2] 

          results$var.gen[row]<-var[2,2] 

          results$var.rep[row]<-var[3,2] 

          results$var.env[row]<-var[4,2] 

          results$var.residual[row]<-var[5,2] 

          results$per.var.gxe[row]<-var[1,3] 

          results$per.var.gen[row]<-var[2,3] 

          results$per.var.rep[row]<-var[3,3] 

          results$per.var.env[row]<-var[4,3] 

          results$per.var.residual[row]<-var[5,3] 

           

        }#end of error loop 

      }#end of rep loop 

    }#end of env loop 

  }#end of genotypes loop 

  #could we add another loop to repeat this multiple times and get an average? 

   

   

  ##################### 

  ObservMatrix <-RIL.obsmatrixerr; P<- RIL.ht 

  #ObservMatrix <-F3.obsmatrixerr ; P<- F3.ht 

   

  Data<-data.frame(ObservMatrix) 

  names(Data) <- c("Gen","Env","Rep","Hgt") # variable names 

   

  Data$Gen<-factor(Data$Gen) 

  Data$Env<-factor(Data$Env) 

  Data$Rep<-factor(Data$Rep) 

  ############################### 

   

  ### now loop for RIL population, do not reset 'row' as it will just continue onto existing 

  # results table 

   

  for (GENOTYPE in gen.test){ 
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    genotypes<- sort(sample(progeny, GENOTYPE, replace = FALSE)) 

     

    index<-rep(F,nrow(Data)) 

     

    for(j in 1:length(genotypes)){ 

       

      for(k in 1:nrow(Data)){ 

         

        if(index[k]==T){ 

          next 

        } 

        if(as.character(Data$Gen[k])==as.character(genotypes[j])){ 

          index[k]<-T 

        } 

         

      } #### close k loop 

       

    }#### Close j loop 

     

    Data.sub<-Data[index,] 

     

     

    for (ENVIRONMENT in env.test){ 

       

      environments.index<- sort(sample(environments, ENVIRONMENT, replace = FALSE)) 

       

      index<-rep(F,nrow(Data.sub)) 

       

      for(j in 1:length(environments.index)){ 

         

        for(k in 1:nrow(Data.sub)){ 

           

          if(index[k]==T){ 

            next 

          } 

          if(as.character(Data.sub$Env[k])==as.character(environments.index[j])){ 

            index[k]<-T 

          } 

           

        } #### close k loop 

         

      }#### Close j loop 
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      Data.sub2<-Data.sub[index,] 

       

       

      for (REP in rep.test){ 

         

        reps.index<- sort(sample(reps, REP, replace = FALSE)) 

         

        #print((c(length(environments.index), "environments"))) 

        #print((c(length(reps.index), "reps"))) 

         

        index<-rep(F,nrow(Data.sub2)) 

         

        for(j in 1:length(reps.index)){ 

           

          for(k in 1:nrow(Data.sub2)){ 

             

            if(index[k]==T){ 

              next 

            } 

            if(as.character(Data.sub2$Rep[k])==as.character(reps.index[j])){ 

              index[k]<-T 

            } 

             

          } #### close k loop 

           

        }#### Close j loop 

        Data.sub3<-Data.sub2[index,] 

         

         

        for (m in measurement){ 

          Data.sub3<-Data.sub2[index,] 

          print(paste(c(length(genotypes), "genotypes", length(environments.index), 

"environments",length(reps.index), "reps", m ))) 

           

           

          if (m=="HTP.50"){ 

            n2 <- nrow(Data.sub3) 

            h22<-0.5 #adds 50% more error, same size as baseline 

            effectvar2 <- var(P[genotypes]) 

            residualvar2=(effectvar2-h22*effectvar2)/h22 

            residualvar2 

            residual2=rnorm(n2,0,sqrt(residualvar2)) 

            error<-residual2 
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            Data.sub3[,4]<-Data.sub3[,4]+error 

          } 

           

          if (m=="HTP.90"){ 

            n2 <- nrow(Data.sub3) 

            h22<-0.1 #adds 99% more error relative to genetic effects 

            effectvar2 <- var(P[genotypes]) 

            residualvar2=(effectvar2-h22*effectvar2)/h22 

            residualvar2 

            residual2=rnorm(n2,0,sqrt(residualvar2)) 

            error<-residual2 

             

            Data.sub3[,4]<-Data.sub3[,4]+error 

          } 

           

          if (m=="HTP.80"){ 

            n2 <- nrow(Data.sub3) 

            h22<-.2 #adds 80% more error relative to genetic effects 

            effectvar2 <- var(P[genotypes]) 

            residualvar2=(effectvar2-h22*effectvar2)/h22 

            residualvar2 

            residual2=rnorm(n2,0,sqrt(residualvar2)) 

            error<-residual2 

             

            Data.sub3[,4]<-Data.sub3[,4]+error 

          } 

           

          DataSub<-Data.sub3 

          if (ENVIRONMENT!=1){ 

            fm1 <- lmer(Hgt ~ (1|Gen) + (1|Env) + (1|Gen:Env) + (1|Env:Rep), data = DataSub) 

#all random 

          } 

          if (ENVIRONMENT==1){ 

            fm1 <- lmer(Hgt ~ (1|Gen) +  (1|Gen:Env) + (1|Env:Rep), data = DataSub) # if only 1 

env 

          } 

           

          #fm1 <- lmer(Hgt ~ 1 + Gen +  (1|Gen:Env) + (1|Env:Rep), data = Data) 

          #summary(fm1) 

           

          varcomp<-as.data.frame(VarCorr(fm1)) 

           



 

 

124 

 

          var<-(select(varcomp, grp, vcov)) 

           

          var[6,1]<-"Total" 

          var[6,2]<- sum(var$vcov[1:5]) 

          var$pervar<-0 

          var$pervar[1:6]<-round((var$vcov[1:6]/var[6,2])*100,digits=3) 

          ###  

          if (ENVIRONMENT!=1){ 

            fm1 <- lmer(Hgt ~ 1 + Gen + (1|Env) + (1|Gen:Env) + (1|Env:Rep), data = DataSub) 

          } 

          if (ENVIRONMENT==1){ 

            fm1 <- lmer(Hgt ~ 1 +Gen +  (1|Gen:Env) + (1|Env:Rep), data = DataSub) # if only 1 

env 

          } 

          #gives estimated effect for each genotype, you could then select best genotypes to 

advance 

           

          est<-as.data.frame(fixef(fm1)) 

          est$estimated.gen<-0 

           

          est$estimated.gen[1]<- est[1,1] # first genotype is the intercept 

           

          est$estimated.gen[2:(nrow(est))]<- 

(est$`fixef(fm1)`[2:nrow(est)])+est$estimated.gen[1] 

          #this adds the intercept to the effects to achieve estimated genotypic height 

           

          ########## SINGLE QTL ANALYSIS  

          BLUP<-est$estimated.gen #give BLUP to data frame 

           

          estimates<- as.data.frame(cbind(RIL[genotypes,],BLUP)) 

           

          single.marker<- matrix(NA,SNPs,6) 

           

          single.marker <- as.data.frame(single.marker) 

          colnames(single.marker) <-

c("SNP","Effect.Present","Effect.Detected","Pvalue","Est.Homozygote","True.Effect") 

          round<-0 

           

          for (MARKER in 1:SNPs){ 

            QTL<- estimates[,MARKER] 

            V<- colnames(estimates[MARKER]) 

             

            if(length(levels(as.factor(estimates[,MARKER])))==1){next} ## skip locus if fixed 
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            TEST<-(aov(BLUP~as.factor(QTL), data=estimates)) 

            MEANS<-model.tables(TEST,"means") 

            EFFECTS<-model.tables(TEST,"effects") 

            summary(TEST) 

            round<-round+1 

            if(na.omit(summary(TEST)[[1]][["Pr(>F)"]]) < 0.05){ 

              single.marker$Effect.Detected[round]<- "YES" 

            } 

            if(na.omit(summary(TEST)[[1]][["Pr(>F)"]]) > 0.05){ 

              single.marker$Effect.Detected[round]<- "NO" 

            } 

            if (AlleleEffect.ht[MARKER]==0){ 

              single.marker$Effect.Present[round]<-"NO" 

            } 

            if (AlleleEffect.ht[MARKER]!=0){ 

              single.marker$Effect.Present[round]<-"YES" 

            } 

            if(length(levels(as.factor(estimates[,MARKER])))==3){ #if heterozygotes exist 

              single.marker$Est.Homozygote[round]<-

round((EFFECTS$tables$`as.factor(QTL)`[3]-EFFECTS$tables$`as.factor(QTL)`[1]),4)[[1]] 

#homozygote 

            } 

            if(length(levels(as.factor(estimates[,MARKER])))==2){ #if inbred at locus 

              single.marker$Est.Homozygote[round]<-

round((EFFECTS$tables$`as.factor(QTL)`[2]-EFFECTS$tables$`as.factor(QTL)`[1]),4)[[1]] 

#homozygote 

            } 

            single.marker$True.Effect[round]<-AlleleEffect.ht[MARKER]*2 #real homozygous 

effect 

            single.marker$Pvalue[round]<-na.omit(summary(TEST)[[1]][["Pr(>F)"]]) #pvalue 

column 

            single.marker$SNP[round]<- MARKER 

          } 

           

          single.marker<-na.omit(single.marker) 

           

          #from this results table we can then generate % of false positives, missed QTL,  

          #and accuracy of estimations, this then allows us to compare scenarios 

          #********************************** 
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          Percent.Detection<-

sum(single.marker$Effect.Present=="YES"&single.marker$Effect.Detected=="YES")/sum(si

ngle.marker$Effect.Present=="YES") 

           

          False.QTL <-

sum(single.marker$Effect.Present=="NO"&single.marker$Effect.Detected=="YES") 

           

          Percent.False <-

sum(single.marker$Effect.Present=="NO"&single.marker$Effect.Detected=="YES")/sum(sin

gle.marker$Effect.Detected=="YES") 

           

          r.qtl<-lm((subset(single.marker, Effect.Detected %in% "YES" & Effect.Present %in% 

"YES")$Est.Homozygote)~ 

                      (subset(single.marker, Effect.Detected %in% "YES" & Effect.Present %in% 

"YES")$True.Effect)) 

           

          r2.qtl<-round((summary(r.qtl)$r.squared), digits=2) 

          #**************************************** 

          ### END SINGLE QTL 

          est$true.gen<-P[genotypes] 

           

          est$error<- (est$true.gen)-(est$estimated.gen) 

           

          est$error2<- (est$error*est$error) 

           

          RMSE <- sqrt((sum(est$error2))/(nrow(est))) 

           

          #NRMSE<- (RMSE)/(max(DataSub[,4])-min(DataSub[,4]))#skewed due to outliers in 

HTP error 

          NRMSE<- (RMSE)/(max(P[genotypes])-min(P[genotypes])) 

           

          reg<- lm(est$true.gen~est$estimated.gen) 

           

          row <-row + 1 ; print(row) 

           

          results$Scenario[row]<- row 

          results$Population[row]<- "RIL" 

          results$Genotypes[row]<- GENOTYPE 

          results$Environments[row]<-ENVIRONMENT 

          results$Reps[row]<-REP 

          results$Percent.Detection.QTL[row]<-Percent.Detection 

          results$False.QTL[row]<- False.QTL 

          results$Percent.False.QTL[row]<-Percent.False 
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          results$r2.QTL[row]<-r2.qtl 

          results$n[row]<-nrow(DataSub) 

          results$measurement[row]<-m 

          results$r2[row] <- round((summary(reg)$r.squared), digits=2) 

          results$RMSE[row] <- RMSE 

          results$NRMSE[row] <- NRMSE 

          results$H2[row] <- 

(var[2,2])/(((var[5,2])/REP*ENVIRONMENT)+((var[1,2])/ENVIRONMENT)+(var[2,2])) 

          results$var.gxe[row]<-var[1,2] 

          results$var.gen[row]<-var[2,2] 

          results$var.rep[row]<-var[3,2] 

          results$var.env[row]<-var[4,2] 

          results$var.residual[row]<-var[5,2] 

          results$per.var.gxe[row]<-var[1,3] 

          results$per.var.gen[row]<-var[2,3] 

          results$per.var.rep[row]<-var[3,3] 

          results$per.var.env[row]<-var[4,3] 

          results$per.var.residual[row]<-var[5,3] 

           

        }#end of error loop 

      }#end of rep loop 

    }#end of env loop 

  }#end of genotypes loop 

#}#end of subsetting loop 

}#end of iterations loop 

 

results 

 

#results3<-rbind(results[1:row,], results2) 

 

## add results2 and results together 

 

 

results2<-results[1:row,] 


