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ABSTRACT 

 

 

Chronic kidney disease (CKD) is a significant cause of death in dogs. However, 

the gene and microRNA (miRNA) expression profile that affects progression in CKD has 

only been partially characterized. Dogs with X-linked hereditary nephropathy (XLHN) 

have a glomerular basement membrane defect that leads to progressive juvenile-onset 

renal failure, and their disease is analogous to Alport syndrome in humans. Therefore, 

dogs with XLHN not only serve as a good model of canine CKD but also an animal model 

for Alport syndrome in humans. In the report, kidney tissue mRNA and small RNA 

sequencing were used to aid in the characterization of CKD progression in colony dogs 

with XLHN. Further, biofluid miRNA expression in serum and urine was characterized to 

serve as potential biomarkers in canine patients with natural-occurring glomerular 

diseases. 

Differentially expressed genes (DEGs) and differentially expressed miRNAs (DE 

miRs) were identified via mRNA and small RNA sequencing in serial kidney biopsies 

obtained from dogs with XLHN. The DEGs and the top-ranked miRNA target genes 

derived from DE miRs were used to identify enriched biological processes, over-

represented pathways, and upstream regulators that contribute to kidney disease 

progression. Differentially expressed genes and DE miRs identified over 3 clinical time 

points revealed upregulation of inflammatory pathways, and TGF-b1 was identified as the 

primary upstream regulator. These results provide new insights into the underlying 
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molecular mechanisms of disease progression in XLHN, and the identified DEGs and DE 

miRs can be potential biomarkers and therapeutic targets translatable to all CKDs.  

Biofluid miRNA detection was performed in carrier female dogs with XLHN. This 

preliminary study helped optimize RNA isolation and library preparation methods for 

canine serum and urine. A biofluid miRNA biomarker study was then performed in dogs 

with 3 types of glomerular diseases diagnosed histopathologically: focal segmental 

glomerulosclerosis, immune complex glomerulonephritis, and amyloidosis. Compared 

with healthy control dogs, DE miRs were identified in the serum and urine from dogs with 

mild or advanced tubulointerstitial fibrosis in all 3 diseases. Several miRs showed promise 

in their ability to distinguish among these 3 glomerular diseases. These results will provide 

non-invasive options for diagnosing canine glomerular diseases. 
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CHAPTER I      

INTRODUCTION 

 

 

Canine chronic kidney disease 

Chronic kidney disease (CKD) is defined as the presence of structural or functional 

abnormalities of one or both kidneys that have been present for an extended period, usually 

3 months or longer.1 CKD is a significant cause of morbidity and mortality in dogs, as the 

median survival time from diagnosis in dogs is less than one year.2 While early treatment 

of CKD has been shown to slow disease progression3-6, early stage CKD has no obvious 

clinical signs and many non-invasive diagnostic tests are poorly sensitive and not specific 

to the etiology, causing CKD to remain unrecognized until late in the disease process in 

many patients.  

The gold standard method for assessing kidney function is the estimated 

glomerular filtration rate 7 using clearance techniques.7,8 However, due the high technical 

demand and expense of these clearance techniques, serum creatinine (sCr) concentration 

is most often used as an estimate of glomerular filtration rate 7 for the diagnosis of CKD. 

Creatinine is thought to increase only after the loss of approximately 75% of the functional 

nephron mass9, and it is affected by other non-renal factors such as muscle mass, body 

weight, age, and breed10, often resulting in failure of early diagnosis. Recently, symmetric 

dimethylarginine (SDMA) has received growing attention as it is can detect CKD earlier 

than creatinine in dogs and cats.11,12 While SDMA is not affected by lean body mass in 
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dogs13, its concentration is significantly influenced by time on food13 and breed.14 

Proteinuria can allow for early detection of CKD in dogs with glomerular diseases and is, 

in fact, often the first abnormal finding in such patients. However, none of the above 

diagnostic methods is specific for the etiology of CKD.   

The majority (>80%) of proteinuric dogs with CKD have glomerular diseases such 

as immune-complex glomerulonephritis, glomerulosclerosis, or amyloidosis.15 Renal 

biopsy is necessary to identify specific causes. Knowing the cause of the glomerular 

disease is important as it can affect treatment strategy. For example, evidence of an active 

immune-mediated pathogenesis would benefit from immunosuppressive therapy; 

however, such therapy could contribute to more rapid progression for dogs with 

amyloidosis.16,17 Therefore, the development of a highly sensitive, non-invasive, and 

etiology-specific biomarker would be beneficial for dogs with CKD that have 

contradictions for renal biopsy. 

Canine X-linked hereditary nephropathy 

To characterize gene and microRNA expression in dogs with CKD, colony dogs 

with X-linked hereditary nephropathy (XLHN) housed at Texas A&M University18 were 

used as a canine model for CKD in this report. Canine XLHN is caused by a naturally-

occurring, 10-base deletion in the gene located on the X chromosome encoding the type 

IV collagen ⍺5 chain (COL4A5).19 The inability to synthesize complete ⍺5 chains impedes 

the formation of the ⍺3.⍺4.⍺5 heterotrimer of type IV collagen in the glomerular basement 

membrane, leading to juvenile-onset CKD that progresses to end-stage renal disease in 

affected males (hemizygous), and the development of proteinuria in carrier female dogs 
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(heterozygous).18,20 These dogs serve as a suitable large animal model for X-linked Alport 

Syndrome (XLAS) in human patients because they both exhibit similar clinical 

manifestations21 and shared the mutation of the same X-linked COL4A5 gene in 80% of 

XLAS cases.22  

Studies done in dogs with XLHN have characterized the protein and gene 

expression during CKD progression to some extent.  Early studies of protein expression 

in end-stage dogs with XLHN mainly focused on matrix metalloproteinases (MMPs): 

MMP-2, MMP-3, MMP-7, MMP-9, and membrane type 1-MMP (MT1-MMP or MMP-

14).23,24 Elevated expression of MMP-2,  MMP-9, and MT1-MMP was found in the 

fibrotic renal cortex of affected dogs23, likely activated by MMP-3 and MMP-7 as 

indicated by their increased protein and mRNA expression in kidney tissue.24 To expand 

the scope of gene characterization, microarray was used to characterize more genes in the 

end-stage kidney tissue of the affected dogs.21 Overall, 133 genes showed significant 

changes in affected dogs compared to age-match littermates, including upregulated genes 

(WFDC2, CLU, SPP-1, COL1A1, and TIMP-1) and downregulated genes (EGF and 

APOA2).21 These findings have contributed to the understanding of the pathogenesis of 

CKD25-27 and could contribute to the development of a therapeutic for XLAS in humans.28  

While these studies on gene expression at end-stage disease have enhanced our 

understanding of CKD, changes in gene expression before extensive kidney damage 

would provide even more insight into CKD progression. A recent study in dogs with 

XLHN examined the morphological changes as well as selective gene expression in 

kidney tissues of affected dogs at 4, 6, and 9 months of age.29 Overall upregulation of 
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CDH2 (or NCAD), CLU, TGFB1, CTGF, PDGFD, MMP-2, MMP-9, TIMP-1 and 

downregulation of EGFR was seen, including genes upregulated as early as 4 months of 

age (TGFB1 and CTGF) and at later timepoints (CLU, TIMP-1).29 This age-based staging 

approach provided novel findings as compared to previous studies that solely focused on 

dogs with end-stage CKD.21,23,24 In this report, we compared the gene expression in dogs 

with XLHN at different clinical stages of CKD, hoping to mitigate the difference seen in 

progression rate of affected dogs in the traditional age-based approach.29 Also, we 

expanded the scope of the study by incorporating next-generation sequencing. RNA 

sequencing30 is a non-species-dependent, high-throughput method that has high flexibility 

in the identification of gene expression.31 In theory, every gene present in a sample has 

the potential to be identified through RNA sequencing.30 Results of RNA-seq have been 

shown to be accurate and strongly correlate with the gold-standard method of PCR32-36, 

even at the fold change level.37 Using RNA-seq, we aimed to fully characterize the gene 

expression in dogs with XLHN and gain new insights into the disease progression of CKD. 

MicroRNA 

MicroRNAs (miRNAs or miRs) are short non-coding RNAs (21–25 nucleotides 

long) that bind to the 3’ untranslated region38 of messenger RNA to post-transcriptionally 

regulate gene expression.39-41 The biogenesis of mammalian miRNAs starts from several 

kilobase-long primary miRNAs (pri-miRNAs) that are transcribed either from 

independent transcription units or from a part of the intron (or exon) in genes.42,43 Pri-

miRNAs are further cleaved by microprocessors (Drosha and DGCR8)44 into 

approximately 70 nucleotide-long stem-loop precursor miRNAs (pre-miRNA) in the 
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nucleus. Pre-miRNAs are then exported to the cytoplasm by the nuclear Exportin-5 

protein.45 In the cytoplasm, the endonuclease Dicer cleaves out the stem-loop structure, 

leaving an approximately 22 nucleotide-long double-stranded miRNA duplex.46 One 

strand is loaded onto the Argonaute proteins, forming the RNA-induced silencing complex 

(RISC). This strand is referred as the mature miRNA (the “guide” strand). The other, often 

degraded strand is called the “passenger” strand.47 A single mature miRNA can bind to 

multiple mRNAs, and one mRNA can be regulated by multiple miRNAs. Such an 

extremely complex miRNA-mRNA interaction influences a wide range of physiological 

changes and pathological processes.40 

To date, 48,885 mature miRNA sequences have been identified in 271 species 

(miRbase v22 released on March 12, 2018). Information about these miRNAs is stored in 

a miRNA repository database, miRBase (www.mirbase.org/).48 In humans, 2693 mature 

miRNA sequences have been identified48, representing approximately 1% of the human 

gene repertoire. However, these miRNAs are estimated to regulate more than 60% of all 

protein-coding genes.49 With the maturation of next generation sequencing technologies, 

researchers are now interested in comprehensive miRNA profiling and novel miRNA 

discovery in other species. Thus far, 1045 mature miRNAs have been documented in the 

cattle genome. Of these 19.8% have sequences identical to those of human miRNAs. 

Respective numbers in other species are horse (720; 36.4%), dog (504; 36.7%), goat (436; 

34.2%), pig (461; 36.5%), and sheep (153; 28.1%). Interestingly, feline miRNAs have not 

yet been described in the miRBase.48 Since miRNAs are highly conserved across 
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species50,51, miRNA profiling in a less characterized species is made possible by using 

references in other species.52  

miRNAs are present in cells and in cell-free biological fluids (biofluids), such as 

cerebrospinal fluid, vitreous humor, saliva, serum, plasma, urine, and semen.53 Binding to 

Argonaute proteins provides protection against endogenous RNase degradation.54 High-

density lipoproteins (HDL)55 and nucleophosmin 1 (NPM1)56 have also been observed to 

bind to miRNAs. However, HDL binds to only a small proportion of circulating 

miRNAs57, and binding of miRNA with NPM1 has not been identified in vivo.58  

miRNA can also be enclosed in extracellular vesicles59-61 called exosomes.62 

Exosomes are 40-100 nm structures that originate from multivesicular bodies. They have 

received considerable attention because they are more consistent in size than other 

vesicles. Furthermore, exosomes contain a significant proportion of small RNAs (20-200 

nt) and small amounts of proteins, mRNAs, and ribosomal RNA.61,63-65 Even though all 

body fluids contain miRNAs, the proportion present in exosomes varies.66,67 This review 

will focus on circulating total RNA and urinary exosomal RNA for 2 reasons. First, 

although some contradictory evidence has been proposed68,  most circulating miRNAs are 

thought to be associated with proteins rather than exosomes.54,56,58,69,70 Second, urinary 

miRNAs are enriched and more stable in urine-derived exosomes than in cell-free 

urine.63,71  

MicroRNA as biomarkers 

In biofluids, miRNAs are association with proteins and exosomes.72 Intriguingly, 

miRNA content in biofluids was found to be distinct from the miRNA content in cells 
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from which the miRNA originated, supporting that miRNAs might be selectively secreted 

into biofluids.61,73-75 Alternatively, this distinct miRNA content might be a result of 

sequence-dependent decay, isolation bias, and the affinity of miRNA to the outer-layer of 

multivesicular vesicles.58,76-79 The exact mechanism for selection of miRNAs for 

exportation and the regulation of the sorting and exportation remain elusive.80 As of now, 

3 routes have been proposed in the literature: cell lysis and apoptosis (non-selective), 

exosome secretion (random selection or selective protein sorting), and cellular export of 

protein-binding RNAs.54-58,63  

Studies of tissue miRNA during development81,82 and in diseases83,84 are well-

documented. In these cases, miRNAs from tissue samples might serve as early biomarkers 

for various diseases before histopathologic changes occur.85 However, tissue collection 

might not be possible for certain organs or in every patient. Thus, tissue-based miRNA 

evaluation is not a practical option for routine diagnosis and monitoring of diseases. To 

overcome this challenge, there has been a shift toward “liquid biopsy,” a minimally 

invasive technique that obtains cells or nucleic acids from biofluids. Therefore, 

investigations into obtaining biofluid miRNAs and linking pathological changes with 

levels of miRNA expression are increasing in popularity. For example, liver necrosis was 

found to result in miR-122 and miR-192 release into the bloodstream. When both miRNAs 

were used to monitor acetaminophen toxicity in a mouse model, miR-122 and miR-192 

were more sensitive than alanine aminotransferase (ALT) for detecting hepatocellular 

necrosis.86 Similarly, urine exosomal miRNAs have diagnostic potential for urinary-

system diseases, including kidney diseases87-90 and urological tumors.91-94 Some evidence 
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exists that miRNAs can be transferred from cell to cell via exosomes in a paracrine or 

autocrine fashion58,61,95,96 and that  exosomal miRNAs serve as functional components in 

cell-to-cell communication, cell growth promotion, and cancer cell invasion.92,97-99 A list 

of miRNAs with identified origin and recipient cells that utilize exosomal transportation 

can be found in another review.72  

In domestic animals, many studies have shown the correlation between 

differentially expressed circulating and urinary exosomal miRNAs with diabetes 

mellitus52, kidney function and histopathological changes100, hepatocellular injury and 

hepatobiliary diseases101,102, cardiovascular diseases103-105, infectious diseases106-111, 

lymphoma112, neuromuscular diseases113-115, estrous cycle and pregnancy116-119, and toxin 

exposure120,121 (Table 1). The following sections will discuss preanalytical considerations 

and isolation methods that were addressed in these studies. 
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Table 1. Summary of circulating and urinary miRNA studies in domestic animals (2011-present). 

Topic (sample 
size) 

Sample 
type 

Sample 
vol. 

Isolation method(s) RNA quantity and 
measurement method 

Profiling 
method(s) 

Library prep. Seq. 
platform 

Seq. results qRT-PCR 
internal 
control or 
normalization 

Ref. 

Bovine 
Foot-and-mouth 
disease virus 
infection (n=2) 

Serum N/A QIAamp Circulating 
Nucleic Acid Kit 
(Qiagen) 

N/A PCR array, 
qRT-PCR 

N/A N/A N/A bat-miR-127 122 

Bovine viral 
diarrhea virus 
infection (n=9) 

Serum N/A miRNeasy 
serum/plasma kit 
(Qiagen) 

N/A Small 
RNA-seq 

NEBNext 
Multiplex 
Small RNA 
Library Prep 
Set for Illu- 
mina 

Illumina 
HiSeq 
2500 

Total reads: 
197M 
Mapped 
reads: 0.9M 

N/A 123 

Pregnancy (n=15) Serum 500 µL Plasma/Serum 
Circulating and 
Exosomal RNA 
Purification Mini 
Kit (Norgen) 

N/A qRT-PCR N/A N/A N/A miR-25- 3p 124 

Foot-and-mouth 
disease virus 
infection (n=12) 

Serum 200 µL miRNeasy 
serum/plasma kit 
(Qiagen) 

N/A PCR array, 
qRT-PCR 

N/A N/A N/A Cel-miR-39 
(Spike-in), 
snoRNA, and 
snRNA 

107 

Early pregnancy 
(n=22) 

Plasma 700 µL TRIzol LS 
(ThermoFisher 
Scientific)+glycogen 

N/A Small 
RNA-seq, 
qRT-PCR 

TruSeq Small 
RNA 
Preparation Kit 

Illumina 
HiSeq 
2000 
system 
(36SE) 

Total reads: 
16.1M/sample 
Mapped 
reads: 8.0M 
MiRNA 
reads: 5M 

Cel-miR-39 
(Spike-in), 
miR-128 

125 

Metritis (n=8) Serum 150 µL miRNeasy 
serum/plasma kit 
(Qiagen) 

N/A qPCR 
array 

N/A N/A N/A Cel-miR-39 
(Spike-in), 
SNORD42B, 
SNORD69, 
SNORD61, 
SNORD68, 
SNORD96A, 
RNU6-2, 
miRTC, and 
PPC 

126 
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Table 1. Continued.  

Topic (sample size) Sample 
type 

Sample 
vol. 

Isolation method(s) RNA quantity 
and 
measurement 
method 

Profiling 
method(s) 

Library prep. Seq. 
platform 

Seq. results qRT-PCR 
internal 
control or 
normalization 

Ref. 

Estrous Cycle variation 
(n=8) 

Plasma 1.05 
mL 

TRIzol 
LS(ThermoFisher 
Scientific)+glycogen 

N/A Small RNA-
seq, qPCR 
array, qRT-
PCR 

TruSeq Small 
RNA 
Preparation Kit 

Illumina 
HiSeq 
2000 
system 
(36SE) 

Total reads: 
9.1M/sample 
Mapped 
reads: 4.3M 
miRNA% out 
of mapped 
reads: 70% 
no. of 
miRNA: 313 

Cel-miR-39 
(Spike-in) 

116 

Early pregnancy (n=24) Plasma 1.05 
mL 

TRIzol 
LS(ThermoFisher 
Scientific)+glycogen 

N/A Small RNA-
seq, qPCR 
array, qRT-
PCR 

TruSeq Small 
RNA 
Preparation Kit 

Illumina 
HiSeq 
2000 
system 
(36SE) 

Total reads: 
9.2M/sample 
Mapped 
reads: 4.0M 
MiRNA 
reads: 2.8M 

Cel-miR-39 
(Spike-in) 

117 

Healthy (n=4) Serum 200 µL Total RNA 
Purification Kit 
(Norgen) 

9.25ng (QB 
mIRNA) 

Small RNA-
seq, qRT-
PCR 

TruSeq Small 
RNA 
Preparation Kit 
(input: 5 µL of 
total RNA) 

Illumina 
HiSeq 
2000 
system 
(50SE) 

Total reads: 
29,692,695  
MiRNA% 
out of 
mapped 
reads: 6.9% 
miRNA 

U6, miR-127, 
miR-744, 
miR-93 

127 

M. bovis infection (n=16) Serum 200 µL miRNeasy 
serum/plasma kit 
(Qiagen) 

 Small RNA-
seq 

NEBNext 
Multiplex Small 
RNA Library 
Prep Set for Illu- 
mina 

Illumina 

Hi-Seq  

 

miRNA 
reads: 1.3M 

N/A 108 

M. 
paratuberculosis infection 
(n=20) 

Serum  1 mL miRNeasy Mini Kit 
(Qiagen) 

708-2640 
pg/µL (BA 
small RNA) 

Small RNA-
seq 

TruSeq Small 
RNA 
Preparation Kit 

Illumina 
HiSeq 
2500 
Rapid 
(50SE) 

Total reads: 
311,475,358 
MiRNA% 
out of 
mapped 
reads: 2.7% 
 
 
 

N/A 109 
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Table 1. Continued.  

Topic (sample size) Sample 
type 

Sample 
vol. 

Isolation 
method(s) 

RNA 
quantity and 
measurement 
method 

Profiling 
method(s) 

Library 
prep. 

Seq. 

platform 

Seq. results qRT-PCR 
internal 
control or 
normalization 

Ref. 

M. 
paratuberculosis infection 
(n=12) 

Serum 1 mL miRNeasy 
Mini Kit 
(Qiagen) 

N/A Small 
RNA-seq 

TruSeq 
Small RNA 
Preparation 
Kit 

Illumina 
HiSeq 
2500 
Rapid 
(50SE) 

Total reads: 
325,249,513 
miRNA% out of 
total reads: 4.3% 

N/A 110 

Reference gene study 
(n=49) 

Serum Unknown miRNA 
purification 
kit 
(Genolution) 

N/A qRT-PCR 
(input: 
100ng of 
RNA) 

N/A N/A N/A geNorm, 
NormFinder, 
and 
BestKeeper  
 

128 

Controlled ovarian 
hyperstimulation (n=10) 

Plasma 200µL miRNeasy kit 
(Qiagen) 
 

N/A E panel N/A N/A N/A global 
normalization 
method 

129 

Healthy (n=9) Plasma 9 mL miRNeasy 
Serum/Plasma 
Kit (Qiagen) 

36.3-210.4 
ng (QB total 
RNA) 

Small 
RNA-seq 

NEBNext 
Multiplex 
Small RNA 
Library 
Prep Set 

Illumina 
HiSeq 
2000 

Total reads: 
10,465,348 
miRNA% out of 
total reads: 5% 

N/A 118 

Canine 
Kidney disease carrier 
(pooled sample from n=7) 

Serum 2 mL Modified 
Direct-zol 
RNA 
MiniPrep 
(Zymo 
Research) 

0.918 ng/µL 
(Fragment 
analyzer) 

Small 
RNA-seq 

NEXTflex 
Small RNA 
Library 
Prep Kit 

Illumina 
HiSeq 
2500R to 
obtain at 
least 10 
million 
50bp 
single end 
reads per 
sample  

Total reads: 
9,700,565 
Mapped%: 95.65% 
miRNA% out of 
mapped reads: 
11.47% 
miRNA reads: 
1,344,094 

N/A Chu, 
unpublished 
data 

Transitional cell carcinoma 
(n=70) 

Whole 
blood 
and 
urine 
cell 
pellets 

2.5 mL 
and 5 mL 

PAXgene 
blood miRNA 
kit 
(PreAnalytiX) 
and 
miRNeasy 
(Qiagen) 

N/A qRT-PCR N/A N/A N/A Cel-miR-39 
(Spike-in) 
and RNU6 

130 
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Table 1. Continued.  

Topic (sample size) Sample 
type 

Sample 
vol. 

Isolation 
method(s) 

RNA 
quantity and 
measurement 
method 

Profiling 
method(s) 

Library 
prep. 

Seq. platform Seq. 
results 

qRT-PCR 
internal 
control or 
normalization 

Ref. 

Myxomatous mitral valve 
disease (n=27) 

Plasma 400 µL TRIzol 
LS(ThermoFisher 
Scientific) and 
miRNeasy 
(Qiagen) 

N/A qRT-PCR N/A N/A N/A Geometric 
mean 

131 

Pancreatic injury (n=4) Serum 50 µL TaqMan miRNA 
ABC purification 
kit – human 
panel A 

N/A Digital 
droplet 
PCR 
(ddPCR) 

   Ath-miR-
159a (Spike-
in) 

132 

Kidney diseases (n=84) Urine 
(exosome) 

1 mL or 5 
mL 

Urine Exosome 
RNA Isolation 
Kit (Norgen) 

N/A Small 
RNA-seq, 
qRT-PCR 

TruSeq 
Small 
RNA 
Preparation 
Kit  

Illumina 
HiSeq2000 

miRNA 
out of 
mapped 
reads: 
0.12-
0.42% 

N/A 100 

Hepatic biliary diseases 
(n=57) 

Serum 100 µL miRNeasy 
serum/plasma kit 
(Qiagen) 

N/A qRT-PCR N/A N/A N/A Cel-miR-39 
(Spike-in) 

101 

Hepatocellular injury 
(n=66) 

Serum 100 µL miRNeasy 
serum/plasma kit 
(Qiagen) 

N/A qRT-PCR N/A N/A N/A Cel-miR-39 
(Spike-in) 

102 

Meningoencephalomyelitis 
of unknown origin(n=13) 

Serum 200 µL miRNeasy Micro 
kit (Qiagen) 

N/A qRT-PCR N/A N/A N/A Cel-miR-39 
(Spike-in) 
and mean 
expression 
value 

133 

Pancreatic toxicity (n=6) Serum  100 µL miRNeasy 
(Qiagen) 

N/A  qRT-PCR N/A N/A N/A Synthetic 
miR-55-3p 
(Spike-in) 

134 

Myxomatous mitral valve 
disease (n=18) 

Serum 200 µL miRNeasy 
serum/plasma kit 
(Qiagen) 

N/A qRT-PCR N/A N/A N/A Mean 
expression 
value 

103 
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Table 1. Continued.  

Topic (sample size) Sample 
type 

Sample vol. Isolation method(s) RNA 
quantity and 
measurement 
method 

Profiling 
method(s) 

Library 
prep. 

Seq. 
platform 

Seq. results qRT-PCR 
internal 
control or 
normalization 

Ref. 

Lymphoma (n=6) Serum 200 µL miRNeasy Mini kit 
(Qiagen) 

N/A  qRT-PCR N/A N/A N/A MiR-26b, 
RNU6-2, 
SNORD61-1, 
miR-16-2, 
SNORD95-1, 
SNORD96A-
1 

112 

Muscular dystrophy (n=5) Serum 300 µL miRNeasy (Qiagen) N/A  Small 
RNA-seq, 
qRT-PCR 

See 
original 
paper 

Illumina 
HiSeq 
36b 

MiRNA 
reads: 0.8-
1.2M 
 

MiR-16 114 

Chronic degenerative 
valvular disease (n=24) 

Plasma N/A MiRCURY RNA 
isolation kit – 
biofluids (Qiagen)  

N/A qRT-PCR N/A N/A N/A miR-16-5p 135 

D. immitis infection (n=4) Plasma 7.5-10 mL Plasma/Serum 
Circulating RNA 
Purification Maxi Kit 
(Norgen) 

112-554ng 
(ND total 
RNA) 

Small 
RNA-seq, 
qRT-PCR 

TruSeq 
Small 
RNA 
Preparation 
Kit 

Illumina 
GAIIx 

Total reads: 
15,378,851 

miR-223 106 

Dilated cardiomyopathy 
(n=8) 

Serum 400 µL miRNeasy Mini kit 
(Qiagen) 

158-262ng 
(ND total 
RNA) 

Microarray 
(customized 
miRNA 
array based 
on dog and 
mouse 
miRNA) 

N/A N/A N/A RNUA1_1, 
RNU6B_2 

105 

Muscular dystrophy (n=10) Serum 50 µL mirVana (Ambion) N/A qRT-PCR N/A N/A N/A Cel-miR-39 
(Spike-in), 
miR-16 

113 

Equine 
Endurance exercise (n=4) Plasma 500 µL MiRUCY RNA 

isolation kit – 
biofluids (Exiqon) 

N/1 Small 
RNA-seq 

NEBNext 
Multiplex 
Small 
RNA 
Library 
Prep Set 
for Illu- 
mina 

Small 
RNA-
seq, 
qRT-
PCR 

MiRNA 
reads: 1-15M 

N/A 136 
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Table 1. Continued.  

Topic (sample size) Sample 
type 

Sample 
vol. 

Isolation 
method(s) 

RNA quantity 
and 
measurement 
method 

Profiling 
method(s) 

Library prep. Seq. platform Seq. results qRT-PCR 
internal 
control or 
normalization 

Ref. 

Insulin resistance 
(n=6) 

Serum N/A TRIzol BD 
(Molecular 
Research Center) 

N/A qRT-PCR N/A N/A N/A Geometric 
mean 

137 

Hendra virus 
infection (n=6) 

Whole 
blood 

N/A miRNeasy Mini 
Kit (Qiagen) 

N/A Small RNA-
seq, qRT-PCR 

TruSeq Small 
RNA 
Preparation Kit 

Illumina HiSeq 
2000 

MiRNA 
reads: 6-10M 

miR-103 138 

Endurance exercise 
(n=14) 

Whole 
blood 

N/A PAXgene Blood 
RNA kit 
(Qiagen) 

N/A (ND and 
BA total RNA) 

Microarray 
(custom 
Equine 
miRNA array), 
qRT-PCR 

N/A N/A N/A hsa-miR-191 139 

Healthy (n=141) Plasma 
and 
Serum 

2 mL miRNeasy 
Serum/Plasma 
Kit (Qiagen) 

40-8760pg/µL 
(BA small 
RNA) 

Small RNA-
seq 

unknown Illumina HiSeq Total reads: 
7.1-16.5M 
 

N/A 140 

Healthy (n=35) Serum  2 mL Modified 
miRNeasy 
serum/plasma kit 

2-428 ng/µl, 
(QB total 
RNA)  
69-89% 
miRNA (BA 
small RNA) 

Small RNA-
seq 

NEBNext 
Multiplex Small 
RNA Library 
Prep Set 
 

Illumina HiSeq 
2500 with 50 
sequencing 
cycles. total of 
12 M reads on 
average 

miRNA% out 
of total reads: 
2.3 to 62.9% 
(18.8% on 
average)  

N/A 141 

Reference gene 
study (n=3) 

Plasma unknown TRIzol 
(ThermoFisher 
Scientific) 

N/A Small RNA-
seq 

TruSeq Small 
RNA 
Preparation Kit 

Illumina 
HiSeq2000 

Total reads: 
21.8-25.6M 
Total 
processed 
reads: 21.7-
25.4 
MiRNA 
reads and % 
out of 
processed 
reads: 10.3-
15.8M, 45.3-
72.7% 

N/A 142 
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Table 1. Continued.  

Topic (sample 
size) 

Sample type Sample 
vol. 

Isolation 
method(s) 

RNA quantity 
and 
measurement 
method 

Profiling 
method(s) 

Library 
prep. 

Seq. 
platform 

Seq. results qRT-PCR 
internal 
control or 
normalization 

Ref. 

Feline 
Diabetes mellitus 
(n=18) 

Serum 400 µL miRNeasy Mini 
kit (Qiagen) 

138-432ng 
(ND total 
RNA) 

Microarray 
(custom 
miRNA 
array based 
on mouse 
miRNA), 
qRT-PCR 

N/A N/A N/A RNUA1_1, 
RNU6B_2 

52 

Ovine 
Prion disease 
(n=21) 

Plasma 200 µL Norgen Total 
RNA 
Purification kit 
(Norgen 
Biotek)  

N/A qRT-PCR N/A N/A N/A Cel-miR-39 
(Spike-in) 

119 

Fetal Alcohol 
Exposure (n=10) 

Plasma unknown MagMAX Viral 
RNA Isolation 
kit (Ambion)  
 

N/A E panel N/A N/A N/A Mean 
expression 
value 

120 

Seasonal variation 
(n=5) 

Urine (cell-free total 
RNA) 

500 µL mirVana kit 
(Invitrogen) 

N/A Small RNA-
seq 

SOLiDTM 
Total RNA-
Seq Kit 

SOLIDTM 
sequencer 
(Applied 
Biosystems, 
CA)  

miRNA reads: 
4,926 per 
sample 

N/A 143 

Porcine 
Thoracic Spinal 
Cord Injury (n=16)  

Serum 1 mL modified 
mirVana 
PARIS kit 
(ThermoFisher) 

N/A Small RNA-
seq 

TruSeq 
Small RNA 
Preparation 
Kit 

Illumina 
MiSeq or 
HiSeq 2500 

no. of miRNA 
detected: 314 

N/A 115 

Trichuris suis  
Infection (n=12) 

Serum unknown miRNeasy 
serum/plasma 
kit (Qiagen) 

N/A qRT-PCR N/A N/A N/A miR-423-5p, 
miR-19b, let-
7c, miR-21, 
let-7a, miR-
23a 

111 

Acetaminophen-
Induced Acute 
Liver Failure (n=9) 

Plasma unknown miRNeasy Mini 
kit (Qiagen) 

N/A qRT-PCR N/A N/A N/A miR-26a 
 

121 
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Table 1. Continued.  

Topic (sample size) Sample 
type 

Sample 
vol. 

Isolation method(s) RNA quantity 
and 
measurement 
method 

Profiling 
method(s) 

Library 
prep. 

Seq. 
platform 

Seq. results qRT-PCR 
internal 
control or 
normalization 

Ref. 

Cardiogenic shock (n=12) Plasma unknown TRIzol 
LS(ThermoFisher 
Scientific)+miRNeasy 
mini kit (Qiagen) 

N/A qRT-PCR  N/A N/A N/A miR-16 144 

ST elevation myocardial 
infraction model (n=6) 

Serum unknown TRIzol LS 
(ThermoFisher 
Scientific)+miRNeasy 
mini kit (Qiagen) 

N/A qRT-PCR  N/A N/A N/A Normalized 
against 
baseline 
values and 
the maximum 
value in each 
pig 

104 

Abbreviations: A, Affymetrix Microarray; BA small RNA: Bioanalyzer Small RNA kit(Agilent); E, miRCURY LNA Universal RT microRNA PCR (Qiagen); EP, miRCURY microRNA 
QC PCR Panel (Qiagen); N/A, not mentioned in the paper; ND, NanoDrop (Thermo Fisher Scientific); Q, miScript miRNA Assays (Qiagen); QB miRNA, Qubit microRNA assay kit 
(Thermo Fisher Scientific); QB total RNA, Qubit RNA/RNA High Sensitivity assay kit (Thermo Fisher Scientific);T, TaqMan miRNA Assays (Life Technologies); TLDA, TaqMan low-
density arrays; U, unspecified qRT-PCR. 
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Preanalytical considerations 

The study of extracellular miRNAs faces many challenges well before RNA 

isolation. Common preanalytical factors that might introduce variability in conventional 

veterinary clinical pathology testing should be considered for miRNA studies as well.145 

Whenever possible, researchers should use consistent sample types, collection tubes, 

collection methods, animal conditions (diurnal duration, nutritional status, fasting or non-

fasting, hydration status, stress, exercise etc.), sample processing, and storage to minimize 

preanalytical variability.  

Serum versus plasma 

Serum and plasma are common sources of circulating miRNAs. The biggest 

difference between serum and plasma is the presence of coagulation proteins, particularly 

fibrinogen, in plasma. In some studies, the miRNA expression in serum and plasma was 

highly correlated146,147 while in other studies, differences were observed.59,70,148,149 In one 

of the studies demonstrating high correlation based on sequencing results, differences can 

be seen depending on the RNA isolation method used.147 The comparison of 2 qRT-PCR 

platforms also revealed high correlations between serum and plasma.148 However, one 

study found a higher overall miRNA concentration in serum than plasma and speculated 

it was caused by miRNAs released from WBCs, RBCs, or platelets during coagulation.59 

In another study comparing paired heparinase-treated heparin plasma and serum 

concluded that no significant correlation was found in miRNA expression levels of serum 

and plasma.150 Possible explanations other than heparinase digestion include degradation 
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of serum components because of the delay in time for clot formation145, or trapping of 

exosomes in the clot.150 Taken together, these studies support that various factors might 

explain differences in miRNA profiling between serum and plasma. Beyond consistency 

within a particular study, there is currently no preference for using one over the other.149 

EDTA, heparin, and citrate plasma 

In veterinary medicine, sodium or potassium-EDTA plasma is commonly used in 

hematology, heparin plasma is commonly used in biochemistry145, and citrated plasma is 

used for coagulation testing. In RNA studies, heparin and citrated plasma are not 

recommended for follow-up analysis because both anticoagulants interfere with PCR151-

153 and consequently, hamper nearly all profiling methods, including qRT-PCR, 

microarray, and small RNA-seq. For example, one study using qRT-PCR reported overall 

lower concentrations of miRNA for samples collected in citrate tubes than in serum.154 

Although corrective methods using heparinase and lithium chloride have been proposed 

to reduce the heparin concentration in heparinized plasma, administration of heparin in 

patients (in vivo) and addition of heparin to EDTA-plasma (in vitro) will selectively 

change the expression spectrum of endogenous miRNAs as well as exogenous miRNAs 

that were introduced during isolation.155 As this procedure induces variation and increases 

expense, EDTA-plasma is preferred over heparinized plasma.72,156  

Biological variation 

Various biological factors affect hematology and biochemistry results in veterinary 

clinical pathology, such as species, breed, sex, nutritional status and diet, stress, 
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medications, biological rhythms, exercise, and environmental conditions.145 Several of 

these preanalytical factors also affect miRNA expression.124,129,141,143 This is not surprising 

given the ubiquity of miRNAs in biofluids and their broad regulation. For example, 

Pacholewska et al141 described 50 differentially expressed serum miRNAs (7.05- to 6.4-

fold) between ponies and Warmblood horses. Seasonal variations led to a dramatic (up to 

27-fold) change in expression levels of 40 urinary miRNAs in goats.143 Hormonal changes 

also caused a slight increase (up to 2.2-fold) in 4 miRNAs in cattle.116  In early pregnancy, 

cattle showed 1.7- to 3.1-fold upregulation of miR-26a.117,125 In humans, women in the 

third trimester of pregnancy showed a more than 600-fold increase in expression levels of 

miR-526a and miR-527.157 Nutritional status and dietary factors might change the level of 

carrier proteins and lipid components and indirectly affect the species and proportions of 

miRNAs or miRNome in blood and urine.55 Alternatively, increased lipid content in 

biofluids (ie, lipemia) could introduce variation in miRNA isolation.158 Several studies 

have shown dietary factors to impact circulating miRNAs.159-161 Stress, exercise, and 

hydration status might also affect miRNA expression in an exercise- and miRNA-specific 

manner, with some miRs increasing or decreasing nearly 20-fold after exercise in human 

subjects.149,162-165 In horses, one study showed endurance exercise minimally (1.25- to 2-

fold) changed whole blood miRNA expression139 while another study showed up to a 7-

fold increase in certain plasma miRNAs.136 Recently, studies have investigated the 

interplay between miRNAs and circadian rhythms.166-169 However, one study comparing 

paired plasma from human subjects in the morning and afternoon did not identify 

differentially expressed miRNAs (DE miRs).170 For consistency, in human medicine, 
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morning urine samples are commonly used for investigation of urinary 

exosomes.71,88,171,172  

Overall, biological variation may influence the expression of miRNAs, but effects 

appear to be minimal except during vigorous exercise and reproductive changes (for 

example, pregnancy and estrus). Ideally, sample selection and collection time should be 

as consistent as possible.173 However, a more stringent cutoff value in differential 

expression (at least 2-fold or 3-fold change) could serve as an alternative method to 

facilitate biomarker discovery in diverse populations.  

Biofluid sample collection and processing 

In veterinary medicine, common methods for collecting urine include 

cystocentesis, catheterization, and voided/free catch. Cystocentesis is the preferred 

method to reduce the prokaryotic transcriptome from contaminating bacteria.171 A full 

urinalysis (physical appearance, chemical analysis, and sediment evaluation) should be 

performed at the time of urine collection to exclude urine samples with active urine 

sediments. This is because exosomes might be released from RBCs and WBCs and 

adversely affect the interpretation of results. 

There is no consensus for standard processing of urine before long-term storage. 

In studies that involved isolation of urinary exosomes, the majority of them processed the 

urine first using ultracentrifugation to obtain exosome pellets before storage at -80°C.88-

90,174-177 The remaining studies left urine unprocessed178,179, or performed minimal 

centrifugation at 1000-2000 g for 1-10 minutes to remove cellular debris.92,180,181 In rare 

situations, urine was mixed with guanidinium thiocyanate182 or filtered through a 0.8 µm 
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filter183 for long-term storage. To our knowledge, there have been no comprehensive 

studies comparing different urine collection and processing methods for exosomal miRNA 

investigation. Since the time-consuming nature of ultracentrifugation impedes its 

application in the clinical setting (see “Evaluation of miRNA isolation method” section), 

we recommend an initial minimal centrifugation to remove cellular debris followed by 

long-term storage at -80°C. Readers are referred to other resources for general guidelines 

regarding urine sample collection.184,185 

Currently there appear to be no published studies evaluating the effects of variables 

such as needle gauge, free flow, syringe size, and vacuum tube on circulating miRNA 

profiling for blood collection. Therefore, guidelines for minimizing preanalytical factors 

should be adopted when designing miRNA profiling studies.145 Recommendations include 

using a large enough needle to minimize hemolysis, applying minimal negative pressure 

while withdrawing blood, and discarding the first few milliliters of blood to avoid tissue 

and cell contamination from the vascular puncture site.145,173 For multiple vacuum tubes, 

a specific collecting order is recommended in human medicine to minimize possible 

carryover of additives to other tubes.186 After centrifugation, one should carefully aspirate 

only the supernatant and avoid any disturbance of the buffy coat or fibrin to minimize 

contamination from cellular miRNAs. This can be accomplished by aspirating the top 

three-fourths of the supernatant or leaving at least 5 mm of residual volume above the 

buffy coat or fibrin layer.187 Processing time should also be minimized (ie, separating 

serum or plasma within 2-4 hours of collection).158,188 This recommendation is based on a 

study in which significant changes in expression levels of miRNAs was observed 
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depending on whether the time between blood collection and centrifugation was 2 or 6 

hours.189 For serum-derived miRNA, no study appears to have investigated the difference 

between tubes (plain versus gel separator) or the effect of the time allowed for coagulation. 

However, consistency within a given study is recommended to reduce confounding 

factors. For instance, a standard temperature and time (eg, clot at 25°C for 30 mins) should 

be used.158,187  Readers are referred to other resources for general guidelines regarding 

processing of serum and EDTA plasma samples.184,185  

Cellular contamination in serum and plasma  

In evaluating cell-free circulating miRNAs, it is crucial to minimize cellular 

miRNA contamination from white blood cells (WBCs), platelets, and red blood cells 

(RBCs) that might affect the miRNA concentration or expression profile. Hunter et al59 

demonstrated different overall miRNA expressions across human plasma microvesicles, 

WBCs, and platelets; however, there was an extensive overlap among the top 10 highly 

expressed miRNAs. Additional studies found substantial overlap between miRNAs from 

human plasma and those from blood cells, supporting the hypothesis that blood cells are 

the major contributors to circulating miRNAs.85,190 This finding also indicates the potential 

for misleading results if cellular components are not completely removed prior to miRNA 

isolation. WBC contamination is less worrisome since WBC-free biofluid is achievable 

by standard centrifugation. However, contamination with platelets and lysed RBCs is of 

greater concern. Merkerova et al191 profiled 13 miRNAs in human hematopoietic cells and 

found miR-223 to be highly expressed in platelets. Another study showed that miR-223, 

miR-142-3p, and let-7a were more highly expressed in human platelet concentrate than in 
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plasma.187 Also, higher expression of miR-15b, miR-16, and miR-24 (up to a difference 

of 5 quantification cycles (Cq)) have been associated with platelet contamination in human 

plasma.70  Additional processing, such as centrifugation at 1940 g or 15,000 g and filtering 

through a 0.22 µm filter, decreased the expression level of these miRNAs in human plasma 

significantly but only minimally influenced the expression in serum (which is naturally 

platelet-poor).70,187  

Kirschner et al192 and MacLellan et al159 showed an increased overall miRNA 

expression and number of detectable miRNAs in hemolyzed human plasma or serum. In 

human RBCs, miR-16 and miR-451 are highly expressed.191 Therefore, Kirschner et al192 

assessed if these miRs could be candidate reference miRNAs for hemolysis. They found 

that the expression levels of miR-16 and miR-451 were stable in grossly non-hemolyzed 

human plasma. In another study, serum miR-15 and miR-16 were substantially increased 

when hemolysate was added to mimic hemolysis.70 Other miRNAs that appear to be 

affected by hemolysis include miR-17, miR-21, miR-92a, miR-106a, miR-210, and miR-

486.193,194 Given the influence of RBC miRNAs released upon hemolysis, it is important 

to exclude hemolyzed samples before miRNA analysis. Visual hemolysis assessment 

lacks sensitivity and is subject to interpretation.195 However, hemoglobin (HGB) 

concentration can be easily assessed by inspecting the absorbance at 414, and, to a lesser 

extent, 541 and 576 nm, using spectrophotometry.196 A prominent peak at 414 nm using 

spectrophotometry provides objective measurements and correlates with visual 

assessment of hemolysis as well as the expression of miRNAs that might be altered due 

to hemolysis.149 A strong linear correlation has been observed between the absorbance at 



 

24 
 

 

414 nm (A414) and the concentration of lysed RBCs. However, A414 is also influenced 

by the presence of lipemia.197 Therefore, Appierto et al197 proposed incorporating the 

absorbance at 385 nm (A385) to generate a lipemia-independent hemolysis score using 

the following equation:  

Hemolysis score (HS) = A414 - A385 + lipemia correlation factor x A385.197 

Researchers are then encouraged to use the mean (HS) + 3 x SD (HS) obtained from many 

non-hemolyzed samples as a cutoff value for sample exclusion.197 In some cases, only 

purified RNA may be accessible without corresponding information regarding hemolysis. 

In these samples, quantification of RBC-enriched miRNAs (eg, miR-16 and miR-451, 

both of which demonstrated up to an 8-fold increase in samples containing free HGB192) 

has been proposed as an alternative method to determine the degree of hemolysis.198  

Storage and stability 

Blood and urine have high RNase activity; therefore, the stability of miRNA in 

these fluids relies on miRNA binding with proteins and lipids and enclosure within 

exosomes.59-61,199 Veterinary research often relies heavily on archived samples, making 

the stability of miRNA in long-term storage, short-term storage, and freeze-thaw cycles 

an important consideration.  

For urine, Zhou et al172 demonstrated that exosomes remained intact in human 

urine stored for up to 7 months at -80 °C, but a significant loss in exosomes was observed 

in urine stored at -20 °C. Similarly, another study found that the storage of human urine 

for 24 hours at -20 °C led to a 40% loss of RNA yield (measured by RiboGreen); the 

percentage of miRNA was, however, not affected.200 In another study, up to a 58% and 
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65% decrease in specific miRNAs (miR-16 and miR-21) was observed in human urine 

based on qRT-PCR after 5 days of storage at 4°C or room temperature, respectively.201 In 

addition to storage temperature and time, vigorous vortexing of human urine after thawing 

can substantially increase exosome recovery from urine samples as determined by 

expression of exosome-associated proteins.172 However, no separation of cells was 

performed before the procedure, and the perceived increased in exosome recovery may 

have been due to cell rupture.   

For circulating miRNAs, long-term stability at -80°C was demonstrated by the 

recovery of 177 miRNAs in human plasma stored at -80°C for more than 12 years. The 

Cq values obtained were not significantly higher than those obtained from freshly frozen 

plasma from different patients.189 Over 400 miRNAs can still be detected via qRT-PCR in 

human serum that has been through long-term storage (40 years) at -25 °C, although 

library preparation for sequencing failed in certain samples.202 Short-term storage at higher 

temperatures was examined by incubating serum and plasma samples at room temperature 

or 4 °C. In one study, Cq values for miR-122 and miR-145 increased after incubation of 

serum at 4 °C for up to 24 hours.203 Another study evaluated the expression of 4 miRNAs 

(miR-16, miR-24, miR-181a, and miR-451) isolated from human plasma that had been 

incubated at 4 °C for 2 weeks. The Cq values of all but miR-16 increased.204 Further, other 

studies done at room temperature have demonstrated that the expression of 20 miRNAs in 

human serum157 and 3 miRNAs (miR-15b, miR-16, and miR-24) in human plasma146 

remain stable after incubating the serum and plasma for up to 4 hours and (up to) 24 hours, 

respectively. The ability to still detect miRNAs after incubation of serum at room 
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temperature for 10 days demonstrates marked stability of circulating miRNAs.205 For 

freeze-thaw cycles, the expression levels of miR-15b, miR-16, and miR-24 in human 

plasma remain stable after 8 freeze-thaw cycles.146 In human serum, let-7a, miR-16, miR-

103, and miR-210 remained stable after 10 freeze-thaw cycles85 whereas the Cq values for 

miR-24, miR-93, miR-223, and miR-451 were slightly increased (approximately by 2 

Cq).205  

Stability of miRNAs could also be influenced by species differences. Currently, 

only a few studies have evaluated miRNA stability in domestic animals. Archived equine 

EDTA blood that was stored at -80 °C for 5 to 11 years did not show significant changes 

in RNA yield as compared to short-term stored samples from different horses. Some 

archived samples produced over 7 million reads, but sequencing results were not 

disclosed.140 For bovine serum stored at -20 °C for over 10 years, the miRNA fractions 

did not show significant differences compared to those from different samples stored at -

80 °C for less than 1 year, and the identified miRNAs were largely identical.109 Only 4 

miRNAs (let-7a, miR-16, miR-23a, and miR-26a) in canine serum and plasma have been 

evaluated after short-term storage of the sample at room temperature.206 In contrast to a 

previous human study146, the miRNA expression was stable for 1 hour but not for 24 hours 

at room temperature.206  

Overall, miRNAs appear to be relatively stable in urine, serum, and plasma despite 

prolonged storage, even in suboptimal temperatures and after repeated freeze-thaw cycles. 

Nevertheless, the inconsistency between studies in determining the expression of specific 

miRNAs could be related to the stability of the miRNA in question. To prevent drawing 
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conclusions on a limited number of miRNAs, global profiling using small RNA-seq is 

beneficial.109 Furthermore, to minimize the interference of preanalytical factors, readers 

are advised to use samples that are less than one year old and stored at -80 °C for miRNA 

studies.  

Standardized reporting of preanalytical factors 

Because of the impact that preanalytical factors can have on analytical results, 

researchers should strive for standardization of these factors to facilitate comparison of 

miRNA profiling results across laboratories.207 Below is a summary of these various 

factors: 

1. Animal conditions: breed, sex, age, neuter status, and fasting/non-fasting. 

2. Sample collection: sample type, collection site, collection time, needle gauge, and 

collection method (free flow, syringe, butterfly needle, or vacuum tube with specific 

collection order), blood collection tube type (ie, separator gel or not), tube size, and 

brand (name of manufacturer). 

3. Sample processing: total processing time from collection to storage, time and 

temperature during clotting (for serum), centrifuge temperature, time, and speed. 

4. Sample storage: temperature and container.     

5. Quality control: methods for excluding hemolyzed samples (ie, visual assessment, 

spectrophotometry, measuring RBC-derived miRNAs). 
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Overview of small RNA-seq workflow 

As mentioned previously, global profiling is ideal to obtain a comprehensive 

assessment of the miRNA composition in a particular sample. For this, small RNA-seq 

provides the most comprehensive approach currently available. A typical small RNA-seq 

experiment starts with RNA isolation, followed by library preparation, sequencing, and 

data analysis (Figure 1). Researchers should tailor each step to optimize cost. The choice 

of optimal RNA isolation method is based on sample type, volume, ability to modify the 

protocol, RNA yield, and performance based on profiling results available in the literature. 

Next, library preparation kit, sample pooling, the effective size of biological replicates to 

reach ideal statistical power, sequencing platform, and sequencing depth also need to be 

considered. For data analysis, different platforms are available for all skill levels in 

computational biology. Before staring RNA isolation, one also needs to consider if qRT-

PCR verification is needed since synthetic miRNA might need to be spiked-in during RNA 

isolation for qRT-PCR normalization. These topics will be discussed in detail in the 

following sections. 
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Figure 1. Small RNA-seq workflow. The upper circles represent each step in small RNA-
seq and the lower diagrams illustrate the content of each step. For library preparation, 
RNA is reverse-transcribed into cDNA and is bound to adaptors. One or multiple libraries 
can be multiplexed and sequenced in one or more lanes on the flow cell (the sequencing 
surface). The sequencing machine sequences a complete flow cell at a time. In the data 
analysis, raw reads generated by the machine are aligned to miRNAs present in a reference 
database. Differential analysis is performed to identify differentially expressed miRs. 
 
 
 

Evaluation of miRNA isolation method 

Currently, there is no gold standard for biofluid miRNA isolation.208 For urine 

samples, the traditional approach is to use ultracentrifugation (100,000-167,000 g) to 

pellet the exosomes.209 In a 2016 survey by the International Society for Extracellular 

Vesicles, ultracentrifugation (including differential centrifugation) was reported to be the 

most commonly used method for isolating extracellular vesicles (reported by 81% of 

investigators who were polled) for various downstream applications.210 However, 

ultracentrifugation is time-consuming154, requires a large input volume, and co-

precipitates macromolecules.209 These limitations have hampered the application of 
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ultracentrifugation in the clinical setting. The same survey also revealed that only 64% of 

investigators would use ultracentrifugation if less than 1 mL of starting material was 

available.210 Alternatively, investigation of an expedited isolation process involving 

precipitation, membrane filtration, gel filtration, and affinity purification has been 

performed.63,211,212 However, co-precipitation of proteins and other microvesicles was 

found to be a limitation of these commercial precipitation-based methods.213 For 

explanations of exosome isolation principles, readers are referred to other recent 

reviews.154,214,215  

Five studies from 2012 to 2016 compared urinary exosome isolation methods with 

qRT-PCR and sequencing. In total, 8 methods were used to isolate urinary exosomes from 

5-19 mL of urine.71,87,178,200,216 Ultracentrifugation was the most frequently compared 

method, followed by the Urine Exosome RNA Isolation Kit (Norgen Biotek), which was 

identified as the best exosome isolation method in 3 of the studies.71,178,216 Depending on 

the method used, the resulting total RNA concentration ranged widely, from 0.4 to 30 ng 

per mL of urine (Table 2).87,200,217  
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Table 2. Urinary exosome isolation method comparison based on qRT-PCR or sequencing. 

Ref. 217 178 71 200 87 
Sample vol. (mL) 10 5 5-19 

See below 
10-25 
See below 

10-15 
See below 

RNA isolation input (µL)  70 Unknown Unknown unknown unknown 
Elution vol. (µL) 35 Unknown 100 30 unknown 
Verification T T N/A T T 
Number of miRNA/RNAs examined 8 RNAs 7 RNAs +1 miRNA Sequencing 2 miRNAs 2 miRNAs 

Ultracentrifugation ● ● ● 
19 mL 

● 
25 mL 

◎ 
15 mL 

Ultracentrifugation + 30% sucrose cushion     ◎ 
15 mL 

Ultracentrifugation + 0.22µm filtration     ◎ 
15 mL 

Nanomembrane ultrafiltration concentrator 
(Vivaspin 20, Sartorious) 

   ★ 
25 mL 
(RB total RNA: 4.69 
ng/mL of urine) 

◎ 
15 mL 

ExoQuick-TC Exosome Precipitation Solution 
(System Biosciences)  

●   ● 
10 mL 

● 
15 mL 

Total Exosome Isolation Reagent (Invitrogen, Life 
Technology) 

●    ● 
15 mL 
☆ 
10 mL 
(lower Cq) 

Urine Exosome RNA Isolation Kit (Norgen 
Biotek) 

☆ 
(BA total RNAa: 2.7ng/mL 
of urine) 
(most transcripts detected) 

★  
(BA total RNAa: 15-346 
ng/µL) 

☆ 
5 mL 
(BA miRNA: 30 ng/mL of 
urine) 
(most miRNA detected) 

  

Biotinylated Solanum tuberosum lectin (Vector 
Laboratories) 

◎     

Denotations: ●, Unmodified (follow manufacturer’s protocol); ◎/☆, modified (refer to the ref for modification); ★/☆, Best method according to paper, could be the one that produces the 
highest total RNA or small RNA yield, the lowest Cq values, or the one that identifies the most miRNAs (read descriptions inside the parenthesis for details); aRNA 6000 Pico kit; bSmall 
RNA kit (6-40 nt); cSmall RNA kit (14-29 nt). 
Abbreviations: A, Affymetrix Microarray; BA: Bioanalyzer (Agilent); E, miRCURY LNA Universal RT microRNA PCR (Qiagen); EP, miRCURY microRNA QC PCR Panel (Qiagen); 
ND, NanoDrop (Thermo Fisher Scientific); Q, miScript miRNA Assays (Qiagen); RG, RiboGreen RNA quantification kit; T, TaqMan PCR/TaqMan miRNA Assays (Life Technologies); 
TLDA, TaqMan low-density arrays; U, unspecified qRT-PCR. 
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For circulating RNA isolation, TRIzol-based and silica-based methods are 

commonly used. TRIzol-based extraction is the traditional method in which serum or 

plasma is first homogenized with guanidinium thiocyanate solution (ie, TRIzol, QIAzol, 

or other comparable products). This is followed by phase separation using chloroform and 

RNA precipitation with isopropanol. Increasingly, commercial kits have been employing 

silica-based columns to absorb RNA. After initial homogenization and phase separation 

(as described above), the mixture of isopropanol (or ethanol) and RNA-containing solution 

is transferred to the column. After several washing steps, the absorbed RNA is eluted with 

RNase-free water. Table 3 compares studies that evaluated the performance of different 

commercial kits for isolating circulating miRNAs based on either qRT-PCR or 

microarray.207,218-227 For several of these studies, an inconsistent starting volume (of 

plasma or serum) and different input volume of miRNA (for qRT-CPR or microarray) 

were used for comparing different isolation methods within the study.218,221,222,224 Since 

the low concentration of miRNA in biofluids impedes accurate quantification, a fixed 

starting volume of biofluid for miRNA isolation and a fixed input for qRT-PCR are 

necessary for comparing isolation methods. The starting volume of plasma and serum 

needed for performing qRT-PCR ranges from 50-500 µL, and, depending on the kit, the 

recommended elution volume ranges from 14 to 100 µL.  Among all 15 commercial kits 

tested, miRNeasy Serum/Plasma kit (Qiagen), miRCURY RNA Isolation Kit-biofluids 

(Qiagen), NucleoSpin miRNA Plasma kit (Macherey-Nagel), and mirVana PARIS kit 

(Ambion) were the most frequently tested. These are all column-based methods, and each 

was determined as the best method in approximately half of the trials (Table 3).
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Table 3. Circulating RNA isolation method comparison based on qRT-PCR and microarray. 

Ref. 218 219 220 228 221 222 223 224 225 226 207 227 
Sample type Serum Plasma 

and Serum 
Plasma Plasma Plasma Plasma Plasma Serum Plasma Plasma Plasma Serum  

Sample vol. 
(µL) 

400 200 200 200 200-400 
See below 

200-300 
See below 

50 200-300 
See below 

100 400 500 200 

Elution vol. 
(µL) 

unknown 50 50 See below See below See below 50 See below See below See below unknown 50 

Spike-in No No Yes Yes Yes Yes Yes No Yes No No Yes 
Verification T Q and T TLDA Q Q and T EP E TLDA T A U T 
Number of 
miRNAs 
examined 

6 90 756 5 2 9 10 380 6 1733 4 2 

Direct-zol 
RNA 
MiniPrep Kit 
(Zymo 
Research) 

   ●  
14 µL 

 ● 
200->50 
µL 

●      

exoRNeasy 
Serum/Plasm
a Kit 
(Qiagen)  

   ●  
14µL 

        

mirVana 
(Ambion) 

      ◎  ● 
100 µL 

   

mirVana 
PARIS 
(Ambion) 

    ★ 
400->100 
µL (lower 
Cq) 

    ● 
100 µL  
(ND total 
RNA: 
0.54ug) 

★  
(lower Cq) 

● 
(BA small 
RNAc: 
29.3pg/µL
) 

MiRCURY 
Cell&Plant 
(Qiagen) 

        ● 
50 µL 

   

MiRCURY 
RNA 
Isolation Kit 
–biofluids 
(Qiagen) 

 ●  
(BA total 
RNAa: 
147.2pg/µ
L) 

◎  
(no. of 
miR: 111) 

 ★ 
200->50 
µL (lower 
Cq) 

★ 
200->50 
µL 
(lower Cq) 

◎  ★ 
50 µL 
(lower Cq) 
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Table 3. Continued. 

Ref. 218 219 220 228 221 222 223 224 225 226 207 227 
NucleoSpin 
miRNAs 
Plasma kit 
(Macherey-
Nagel)  

   ★ 
30 µL 
(lower Cq) 

★ 
400->50 
µL 
(lower Cq) 

● 
300->30 
µL 

 ★  
300->30 
µL (ND 
total RNA: 
0.273ng; 
BA small 
RNAb: 
80pg/µL, 
no. of 
miR: 84) 

    

Plasma/Seru
m Circulating 
RNA 
purification 
kit (Norgen)  

   ★ 
30 µL 
(lower Cq) 

● 
400->50 
µL 

● 
250->100 
µL 

 ●  
200->50 
µL (ND 
total RNA: 
0.267ng; 
BA small 
RNAb: 
11pg/µL;  
no. of 
miR: 41) 

    

RNAzol-RT 
(Sigma-
Aldrich) 

★ 
(ND total 
RNA 
yield: 
378.8±28.
45ng/µL) 

           

RNeasy Mini 
kit (Qiagen) 

      ☆ 
(lower Cq) 

     

miRNeasy 
Mini kit 
(Qiagen)  

  ☆  
(no. of 
miR: 313) 

● 
30 µL 

  ☆ 
(lower Cq) 

● 
300->30 
µL (ND 
total RNA: 
0.198ng; 
BA small 
RNAb: 
22pg/µL 
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Table 3. Continued. 

Ref. 218 219 220 228 221 222 223 224 225 226 207 227 
miRNeasy 
Serum/Plasm
a kit (Qiagen)  

 ◎  
(BA total 
RNAa: 
184pg/µL) 

 ★ 
14 µL 
(lower Cq) 

● 
200->25 
µL 

● 
200->14 
µL 

  ● 
14 µL 

★ 
28 µL 
(ND total 
RNA: 
42ug) 

 ★ 
(BA small 
RNAc: 
48.8pg/µL
, lower 
Cq) 

TaqMan 
miRNA ABC 
Purification 
kit 
(ThermoFishe
r Scientific) 

 ◎  
(BA total 
RNAa:14p
g/µL) 

          

Total RNA 
Purification 
Kit (Norgen) 

           ● 
(BA small 
RNAc: 
11.7pg/µL
) 

TRIzol LS 
(ThermoFishe
r Scientific) 

        ◎ 
100 µL 

● 
100 µL 
(ND total 
RNA: 
6.01ug) 

●  

In-house 
method  

●  
(ND total 
RNA 
yield: 
226.5±13.
34ng/µL) 

☆  
(BA total 
RNAa: 
1.06±0.44
ng, lower 
Cq) 

          

Denotations: ●, Unmodified (follow manufacturer’s protocol); ◎/☆, modified (refer to the ref for modification); ★/☆, Best method according to paper, could be the one that produces the 
highest total RNA or small RNA yield, the lowest Cq values, or the one that identifies the most miRNAs (read descriptions inside the parenthesis for details); aRNA 6000 Pico kit; bSmall 
RNA kit (6-40 nt); cSmall RNA kit (14-29 nt). 
Abbreviations: A, Affymetrix Microarray; BA: Bioanalyzer (Agilent); E, miRCURY LNA Universal RT microRNA PCR (Qiagen); EP, miRCURY microRNA QC PCR Panel (Qiagen); 
ND, NanoDrop (Thermo Fisher Scientific); Q, miScript miRNA Assays (Qiagen); T, TaqMan miRNA Assays (Life Technologies); TLDA, TaqMan low-density arrays; U, unspecified qRT-
PCR. 
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Methods for comparing RNA isolation protocols 

miRNA quantification 

For miRNA profiling, both RNA quantity and quality typically predict success. It 

is therefore helpful to accurately quantify the miRNA present in a sample. The most 

common tool used to measure RNA quantity is the spectrophotometric-based analysis, 

such as the NanoDrop (Thermo Fisher Scientific). For cell- and tissue-derived total RNA, 

the concentration is typically high enough to be accurately quantified by this method. In 

addition, potential protein and phenol contamination can be determined.158,229,230 

However, the concentration of total RNA derived from biofluids often falls below the 

detection limit of spectrophotometry (4-10 ng/µL).207 In this case, the total RNA 

concentration measured by this method is unreliable.171 Furthermore, the proportion of 

miRNA cannot be discerned.231 Therefore, the NanoDrop is not recommended for 

quantifying extracellular RNA, and care should be taken when reviewing RNA yield, as 

it may not correlate with the concentration measured using more specific quantification 

methods.218,224  

Alternatively, fluorometric methods, such as the Qubit (Thermo Fisher Scientific) 

and Quant-iT RiboGreen (Thermo Fisher Scientific) can be used for quantifying RNA. In 

one study, the results generated by the Qubit resembled the Bioanalyzer results (discussed 

below) and demonstrated less variability than those obtained using the NanoDrop.171 The 

Qubit RNA High Sensitivity Assay can quantify total RNA concentrations as low as 250 

pg/µL. However, for samples with low RNA concentration, a large volume of eluted RNA 
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(up to 20 µL) may be needed for quantification. The need for such a relatively large 

volume can limit the amount of RNA available for downstream applications. Use of a 

spike-in RNA of known quantity to decrease the volume required has been proposed to 

allow accurate quantification.232  

The Agilent Bioanalyzer and Advanced Analytical Fragment Analyzer are other 

methods available for RNA quantification. With the Agilent RNA 6000 Pico Kit, the 

Bioanalyzer quantifies total RNA concentration and provides a 0-10 RNA integrity 

number (RIN) based on the ratio of 28S and 18S RNA to indicate RNA degradation.233 

Similarly, the RNA quality number (RQN) is generated by the Fragment Analyzer. While 

RINs are commonly used to determine whether the quality of RNA is high enough for 

downstream analysis (ie, microarray and sequencing)234, the RIN relies on the presence of 

ribosomal RNA. Since RNA extracted from biofluids typically lacks ribosomal RNA, the 

quality of the extracted RNA cannot be determined.70,226,227 Therefore, the Agilent Small 

RNA Kit is used to specifically detect the presence of small RNAs between 6 and 150 nt. 

It provides absolute miRNA concentration between 50 and 2000 pg/µL as well as the 

percentage of miRNA (miRNA/small RNA x 100).235,236 As shown in Table 3, a 

comparison of 4 isolation kits showed that the NanoDrop did not distinguish performance 

among different kits while the Bioanalyzer results corresponded to the microarray 

results.224 

qRT-PCR 

The most frequently used method to determine the best RNA isolation protocols is 

qRT-PCR. In other words, the best isolation protocols resulted in samples for which the 
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spike-in miRNAs or endogenous miRNAs had the lowest Cq and standard deviation of Cq 

values. Most studies relied on only a few miRNAs to make this 

determination.207,218,221,222,225,227,228 However, at least one RNA isolation method (the 

standard TRIzol protocol) has been reported to cause the loss of miRNAs with low GC 

content during RNA isolation from cells, particularly when cell input is low. This resulted 

in the retraction of one paper.237 If miRNAs are preferentially selected during isolation, it 

would make qRT-PCR a questionable method for identifying the best protocol, and high-

throughput analysis is required to identify whether any bias in RNA isolation methods 

might also apply to biofluids.219  

Small RNA-seq 

Compared with simple quantification and qRT-PCR, small RNA-seq offers a 

comprehensive way to compare the performance of different isolation kits based on raw 

reads, miRNA reads, miRNA percentage, miRNAs detected, and the miRNA distribution 

pattern. Gautam et al238 examined 3 RNA isolation methods and 3 modifications with 200 

µL or 350 µL of serum. While the RNA concentration was too low to be quantified by 

spectrophotometric measurement, successful library preparation was achieved. In the 

study, RNA extracted by TRIzol demonstrated the highest percent alignment to miRBase. 

Notably, the percentage of miRNA determined by the Bioanalyzer did not translate into 

the actual percentage of miRNA among processed reads in small RNA-seq. Since possible 

contamination of degraded mRNA might be misidentified as miRNA by the Bioanalyzer, 

small RNA-seq would be a better tool for comparing isolation performance. Similarly, 

Guo et al239 compared 5 methods for isolating RNA from 200 µL of serum. Again, the 
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concentration of isolated RNA was too low for Qubit measurement, but successful 

Bioanalyzer measurement and library preparation were performed. Despite not having the 

highest concentration or the most raw reads, the TRIzol LS method was determined as the 

best isolation method based on the highest number of miRNA reads and miRNA 

percentage. These results highlight the importance of considering multiple factors when 

determining the best RNA isolation method.  

Modification of RNA isolation protocols 

Researchers commonly make in-house modifications to isolation protocols 

including commercially available kits in an attempt to optimize RNA isolation. Such 

modifications include changing starting sample volumes, increasing the proportion of 

TRIzol, adding carriers, manipulating the phase separation, performing 2 elutions (versus 

one) from the column, and altering the final elution volume. These are described in more 

detail below. While these modifications typically improve RNA quantity and possibly 

RNA quality, they complicate the systematic comparison of methods between studies. 

Furthermore, these modifications have most often been assessed by qRT-PCR, and their 

impact on sequencing results are largely unknown.  

The first step in RNA isolation, protein denaturation by homogenization with 

TRIzol or comparable products, is considered important because the thorough mixing of 

the sample and denaturing solution is essential for successful phase separation. However, 

the volume of denaturing solution varies among kits, ranging from 2 to 5 or rarely 10 times 

the sample volume.158 Li et al227 tested different QIAzol to sample ratios in serum miRNA 

isolations and concluded that a 7:1 ratio produces the highest RNA quantity. However, 



 

40 
 

 

this result was not validated by qRT-PCR. Although increasing the denaturing solution to 

sample ratio might increase RNA yield, it might require the use of larger tubes (eg, 15 

mL). Since larger tubes are not low nucleic acid-binding, an increase in RNA yield may 

not be evident as expected.  

Yeast RNAs, glycogen, and linear acrylamide are carriers that have been evaluated 

in serum and plasma RNA isolation.240 Carriers have been shown to increase RNA yield226 

based on lower Cq values of spike-in miRNAs during qRT-PCR evaluation.223 However, 

some evidence suggests that the effect of a carrier on endogenous miRNAs is method-

dependent.225 In a small RNA-seq study, the use of an RNA carrier led to a low percentage 

of miRNA despite having higher processed reads compared to isolation without a 

carrier.238 This indicated the presence of degraded carrier RNA, since a smearing effect 

was seen in the gel image of the prepared small RNA library.238 Since carrier RNA could 

potentially contaminate samples, cautious use of carriers are advised.  

Like protein denaturation, phase separation is a critical step in RNA isolation. In 

this step, the addition of chloroform followed by centrifugation separates samples into 3 

layers: the upper aqueous layer containing RNA, the interface layer containing DNA, and 

the lower layer containing the organic phase. Duy et al223 demonstrated that methods with 

a phase separation step yield a better intra-method reproducibility in spike-in miRNA 

expression than methods without phase separation. Another study attempted to maximize 

RNA recovery by introducing a second upper aqueous layer extraction, but no evidence 

of increased RNA recovery was seen.140 



 

41 
 

 

The last isolation step in column-based methods is elution of RNA from the 

column using RNase-free water. The protocols of commercially available kits are varied. 

For example, the recommended elution volume ranges from 14 µL to 100 µL, depending 

on the kit used. McAlexander et al225 examined the influence of volume expansion using 

the miRNeasy Serum/Plasma kit and found that the recommended elution volume of 14 

µL could recover most of the RNA compared to 50 µL or 100 µL. While it is unknown 

whether volume reduction in other kits can as effectively concentrate the RNA, a study 

has shown that the reuse of a column to do a second elution does not significantly increase 

the RNA yield.140  In summary, readers should pay attention to protocol details when 

interpreting results for 2 main reasons. First, even a slight modification in the RNA 

isolation protocol could potentially cause substantial changes in results.208 Second, most 

method comparison studies do not account for different elution volumes when making 

comparisons (Table 3).  

Special considerations for RNA isolation  

The challenge of biofluid miRNA research is not just limited to the low abundance 

of RNA, small input volume, high variation in isolation procedures, and subsequent 

difficulty in quantification. The potential for degradation of RNA by ubiquitous RNases 

is the major challenge. RNases from skin, bacteria, saliva, and dust might contaminate the 

work bench, glassware, plastic ware, pipettes, and pipet tips.241 Therefore, it is important 

to use an RNase decontamination solution, such as RNaseZap (Invitrogen) or RNase 

AWAY (Invitrogen), to properly decontaminate work surfaces and pipettes. Additionally, 

a designated lab coat, constant changing of gloves, and avoidance of talking during RNA 
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extraction are all common practice. Use of RNase-free disposable plasticware is also 

recommended. If such plasticware is not available, baked glassware (150 °C for 4 hours) 

must be used, since standard autoclaving protocols cannot effectively inactivate 

RNases.241 

A high variation in RNA quantity may be observed among samples, and this can 

be due to biological variation227 or technical variation in column-based methods (TruSeq 

Small RNA Library Prep Reference Guide, Document 15004197 v02, July 2016). 

Therefore, if a rigid concentration is used to guide sample submission for library 

preparation, the isolation method should be tested on multiple samples to ensure 

consistency in yield.  

Standardized reporting of RNA isolation 

To summarize, all steps in the RNA isolation protocol should be carefully standardized 

within a study and clearly described in resulting manuscripts207 to include: 

1. Sample thawing condition, any additional centrifugation before isolation 

(centrifugation temperature, time, and speed). 

2. For urine samples, details of ultracentrifugation (rotor angle, centrifugal force, and 

type of tubes, all of which can affect the quality of precipitated exosomes)  

3. Sample starting volume for actual isolation. 

4. Isolation kit (provide full name, manufacturer, and catalog number to avoid 

confusion). 

5. Protein denaturing solution (provide full name, manufacturer, and volume used). 
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6. Provide the step-by-step procedure in supplementary data. Avoid using “follow 

manufacturer’s instruction.”  

7. Explicitly state whether carriers and spike-in miRNAs were used or not. If used, 

provide the full name and concentration (manufacturer and catalog number). 

8. State the elution solution and volume (column-based method) or the resuspension 

solution and volume (non-column-based precipitation method). 

9. Quantification of RNA: provide the instrument (manufacturer), kit or assay (full name, 

manufacturer, and catalog number), readouts (with proper unit) provided in main text 

or supplementary data.  

Library preparation 

With the development of next generation sequencing, small RNA-seq provides 

unprecedented flexibility in miRNA profiling and enables discovery of novel miRNAs. 

However, successful extraction of RNA for qRT-PCR does not guarantee successful small 

RNA-seq results, as small RNA-seq requires a higher RNA concentration, and therefore a 

higher volume of biofluid for library preparation.85,242 This higher volume requirement is 

a major limitation, particularly for retrospective studies. Table 1 includes examples where 

small RNA-seq was successfully performed using biofluid RNA isolated by different 

methods. During library preparations, RNAs were attached with 3’ and 5’ adapters, 

reverse transcribed into cDNA, amplified by PCR, and then the right size range of PCR 

products was selected for sequencing.  
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Common library preparation kits 

The most commonly used library preparation kits are the TruSeq Small RNA 

Library Preparation Kits (Illumina) and the NEBNext Small RNA Library Prep Set for 

Illumina (New England BioLabs). TruSeq requires 1 µg of total RNA in 5 µL of nuclease-

free water (200 ng/µL of eluent) or 10-50 ng purified small RNA in 5 µL of nuclease-free 

water (2-10 ng/µL of eluent). In contrast, NEBNext requires 100 ng-1 µg total RNA in 1-

6 µL of nuclease-free water (17-1000 ng/µL of eluent). These total RNA concentrations 

are difficult to achieve from small volumes of biofluids.  

Previous studies have shown that increasing the plasma input volume for RNA 

isolation from 5 to 50 µL223 or from 50 to 200 µL220,225 can increase endogenous miRNA 

expression in qRT-PCR. However, no comparison was conducted using larger starting 

volumes. Pacholewska et al141 obtained 2-428 ng/µL total RNA (measured by the Qubit 

RNA HS Assay) from 2 mL of equine serum by using a column-based isolation method. 

Library preparation was successful using the NEBNext library preparation kit. Similarly, 

Shaughnessy et al109 extracted 708-2640 pg/µL small RNA (measured by the Bioanalyzer 

Small RNA kit) from 1 mL bovine serum using the same isolation method, again followed 

by successful library preparation using the Illumina library preparation kit. In Table 3, it 

is evident that when the starting plasma and serum volume are lower (eg, 200 µL), the 

total RNA yield, as determined by the Bioanalyzer, is also substantially lower (11-147 

pg/µL) than the required input for library preparation using the TruSeq library preparation 

kit.219,224,227 In one study, 5 commercial kits were used to obtain 13-3674 pg/µL presumed 

small RNAs from 200 µL of serum. Even though only one isolation met the minimum 
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requirement of 2 ng/µL, the RNA samples were able to proceed with the TruSeq library 

preparation for the other isolations by increasing the number of PCR amplification cycles 

from 11 to 18.239  

Library preparation using low input RNA 

If researchers cannot increase the starting sample volume to obtain a higher RNA 

concentration, they may consider using the recently developed NEXTflex Small-RNA Seq 

Kit (Bioo Scientific). This kit requires 1 ng - 2 µg total RNA in up to 10.5 µL nuclease-

free water (95 pg/µL - 190 ng/µL of eluent). Thus, the lowest feasible concentration for 

this kit is attainable with small biofluid volumes. The manufacturer’s manual recommends 

altering the number of PCR cycles based on the input RNA concentration used. In our 

experience, we obtained approximately 0.9 ng/µL total RNA (measured by the Fragment 

Analyzer) from 2 mL of canine serum and successfully performed library preparation 

using the NEXTflex kit with 24 PCR cycles as dictated by the protocol (unpublished 

observations). Notably, the NEXTflex kit also detected the highest number of miRNAs in 

recent studies comparing the performance of different library preparation kits.243,244 

Increasing the number of PCR amplification cycles during library preparation is a 

feasible method to overcome low input RNA concentration as previously mentioned.239 

For example, one study used 11 cycles for high input of starting material (1 µg) and 18 

cycles for lower input (10 ng).244 While the NEXTflex kit provides guidelines for the 

number of PCR cycles, Illumina does not provide such a recommendation (personal 

communication). Furthermore, with increasing PCR amplification cycles, the variation in 

both read length and GC content will result in PCR amplification bias and greater noise in 
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the data.245 This bias can affect the completeness of the resulting cDNA library246,247, and 

replicates can only be compared if they all have been subjected to the same number of 

PCR cycles.245 

With low RNA input, researchers should be cautious about any potential bias that 

would not be present had a standard RNA input been used. For example, the sequencing 

platform and sequencing facility may not be the major contributors to variation in miRNA 

expression under normal circumstances.248 However, studies done with low RNA input 

showed statistically significant differences in genome mapping rates between libraries that 

were prepared at different locations.244 Moreover, it is worrisome that in one study, a PCA 

plot demonstrated a clustering of samples based on location of library preparation rather 

than based on the originating tissue type.244 Although studies have shown excellent 

reproducibility of technical replicates for library preparation36 regardless of library 

preparation kits used249, the need for technical replicates may need to be re-evaluated for 

low input samples. 

Sample pooling for library preparation 

As described previously, sample volume is one of the limiting factors in 

conducting RNA-seq studies. Sample pooling before or after RNA isolation is a strategy 

to increase the volume of biofluid or quantity of RNA and to decrease genetic 

variation.85,250-253 One study attempted to verify sample-pooling strategies for RNA-seq, 

but they instead compared unpooled samples with pooled technical replicates instead of 

pooled biological replicates.254 We therefore re-analyzed the data to test the effect of 

pooling different sample combinations for library preparation in a gene-by-gene 
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arithmetically averaging manner to mimic sample pooling. We found that creating 4 pools 

from a total of 8 biological replicates (2 individuals per pool) led to more differentially 

expressed genes (DEGs) identified by RNA-seq, but fewer of these genes could be qRT-

PCR-verified when compared to the unpooled design (4 individuals without pooling). 

Indeed, a similar simulation showed that genes with higher variability in expression, 

especially those with low expression levels, may be inappropriately recognized as 

differentially expressed in the pooled design.255 Although sequencing as many biological 

replicates as possible is ideal, they found that sample pooling is more cost-effective for 

samples with large biological variation and when library preparation cost is higher than 

RNA isolation cost. Although sample pooling may seem to be a promising strategy, 

researchers need to bear in mind that sample pooling to create only one sequencing result 

per condition doesn’t account for biological variation (see “Replicates: biological versus 

technical” section). Therefore, data interpretation would be challenging as a single data 

point would represent a combination of multiple samples.   

Small RNA-seq experimental design 

Replicates: biological versus technical  

As in traditional experiments, replicates are included in small RNA-seq to ensure 

that the differential expression of miRNA between target groups represents a pathological 

difference. Biological replicates are biological samples obtained from different animals, 

whereas technical replicates represent the repeated experimental steps on the same sample 

for all steps of miRNA profiling. Several mRNA-seq studies examine technical replicates 
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at the sequencing level.32,256 Overall, the reproducibility of technical replicates is 

excellent. Low count reads might show higher inconsistency between technical replicates 

than high count reads33, but low count reads are typically removed before differential 

expression analysis.257 Given that biological replicates introduce a much higher 

variation258, technical replicates for sequencing are not necessary32,62,259 unless the 

biological variation is abnormally high.260 

More samples versus deeper sequencing 

In RNA-seq, sequencing depth or coverage refers to the average number of reads 

that map to, or cover, the reference genomes. Since sequencing capability of each flow 

cell is limited, the number of samples to be sequenced is inevitably tied to the sequencing 

depth as a tradeoff. Under a fixed budget, the more samples to be sequenced, the less 

resulting sequencing depth per sample. Several studies have shown that, although 

increasing sequencing depth and sample size can both increase power, sample size is more 

potent than sequencing depth259,261, especially when sequencing depth is ≥ 20 million 

reads.262 Others also demonstrated that once a sequencing depth of 10 million reads is 

reached, the statistical power of increased sequencing depth deminishes.259,263  

In general, the goal of the experiment determines the sequencing depth. An 

experiment aimed at novel transcript discovery would require extensive sequencing (> 30 

million reads)260, whereas, for differential analysis, a sequencing depth of 10 million reads 

is considered adequate.264 On the other hand, the number of biological replicates per group 

depends on the inherent variation in the biological samples. Samples obtained from single-

breed, same-sex animals that reside in a strictly controlled experimental environment 
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would have smaller inter-individual variation than samples collected from client-owned 

animals that are different breeds and live in various households.264 One study proposed 

that 3 biological replicates in each group should be the minimal requirement for samples 

having the least variation (ie, inbred mice and cell lines).255 However, in a later experiment 

using 42 replicates of 2 strains of S. cerevisiae, a subset of 3 replicates per group only 

identified 20-40% of DEGs compared to the full set of 42 replicates.265 This study 

concluded that a minimum of 6 biological replicates per condition should be used, 

although 12 replicates were suggested if the goal is to identify the majority of DEGs.265  

Multiplex and sequencing budget calculation 

Multiplexing refers to the sequencing of multiple samples in a single lane of a flow 

cell by attaching a unique, short sequence (or barcode) to each sample library. As the data 

generated from each flow cell increases substantially with new developments in 

sequencing technology, multiplexing is becoming increasingly popular. Common library 

preparation kits allow users to multiplex up to 48 samples in a single lane. This approach 

could significantly reduce sequencing cost with the potential tradeoff of increased wait 

times for other lanes on the flow cell to be filled by other researchers as a flow cell can 

have up to 8 lanes. In calculating the sequencing budget, the number of biological 

replicates per condition, number of conditions, minimal sequencing depth, and sequencing 

cost all need to be considered.  To facilitate budget calculation, we made a sequencing 

cost calculator that allows users to easily plug in appropriate numbers for a study to obtain 

an estimated cost for the desired sequencing strategy (Supplementary Table S1). 
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Standardized reporting of experimental design 

Standardized reporting of the experimental design can help readers quickly understand 

the study. Recommended content should include: 

1. The numbers of treatment and control groups and biological replicates per condition. 

2. The library preparation kit used (full name, manufacturer, and catalog number), RNA 

input volume or quantity for library preparation, number of PCR cycles if different 

from the standard protocol, and any quality control method used. 

3. The sequencing platform, multiplexing design, number of lanes of the flow cell used, 

anticipated amount of data generated. 

Small RNA-seq data analysis 

Data analysis is the most intimidating step in RNA-seq projects according to a 

recent poll on the RNA-Seq Blog.30 Indeed, it is the most unfamiliar field for most 

veterinary researchers. The typical data analysis steps, or data analysis pipeline, include 

obtaining a reference gene sequence (if applicable), quality control, mapping/alignment, 

assigning aligned reads to genes, and differential expression (Figure 2). The 

ENCyclopedia of DNA Elements (ENCODE) Project Consortium266 has proposed small 

RNA-seq data standards and processing pipeline267 for data analysis. In addition, the NIH-

funded Extracellular RNA Communication Consortium (ERCC)268 also proposed a 

publicly available pipeline: exceRpt small RNA-seq pipeline269 for analyzing small RNA-

seq data, although only human and mouse genomes are available in this platform. 
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Figure 2. An example pipeline of RNA-seq data analysis up to the point of differential 
expression. For each box, the analysis tool is bolded, and the input file (.fastq, .fasta, and 
.GTF) and output file (.sam, .bam, .txt, .csv, and .xls) format are nonbolded. The alignment 
tool, STAR270 and its “--quantMode” function, was selected according to the ENCODE 
pipeline.  EdgeR271 and DESeq2272 are the most commonly used tools in differential 
analysis and thus were provided as examples. 
 
 
 

Traditional approaches to data analysis often require the access to a high 

performance research computing center, command line knowledge of the Unix/Linux 

system, and, ideally, the R programming ability to use popular differential expression tools 

such as edgeR271 and DESeq2.272 However, as the popularity of RNA-seq grows, more 

and more web-based platforms that require minimal computational knowledge are 

available. Galaxy (http://usegalaxy.org)273 is the most commonly used web-based 

platform that incorporates popular tools and a supportive forum 
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(https://biostar.usegalaxy.org/) to facilitate genomic research. The UEA Small RNA 

Workbench provides both cloud analysis and downloadable desktop software.274,275 Also, 

there are many web-based pipelines for data analysis, such as CPSS 2.0276, Oasis 2277, and 

miRMaster278 that can perform the analysis illustrated in Figure 2. An online database 

containing all available microRNA bioinformatic resources is available.279 The 

exploration of different analysis tools is beyond the scope of this review; however, 

excellent review articles for RNA-seq and miRNA data analysis are available.264,280,281 

Numerous YouTube videos and online courses are also freely available for learning how 

to use the analysis tools. For a complete list of resources, including on-site courses, 

YouTube videos, tutorial websites, and online courses, readers can visit the author’s post 

on the Biostar forum (https://www.biostars.org/p/174376/). 

Standardized reporting of data analysis 

Besides RNA isolation, data analysis is another major source that significantly affects 

reproducibility. The International Society for Extracellular Vesicles (ISEV) published a 

position paper that has a proposed checklist of details that should be included in 

publications.62 These include: 

1. Analysis platform, software/tool, and version; online tools should have their URL 

listed.  

2. For every step of data analysis, be sure to list command line options, exclusion and 

inclusion criteria. For example, ‘quality score of 30 was set as the cutoff value’ or ‘low 

expression genes with read count less than 5 were excluded.’ If no modifications to 

the default settings were used, then specifying such may be all that is required.  
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3. Source of reference genome assemblies and release numbers. 

4. Report summaries of raw data and alignment parameters (eg number of raw reads per 

sample, number of processed reads per sample, number of aligned reads per sample, 

and percentage of alignment) 

5. Make customized code available to the public by posting on software development 

platform, such as GitHub.282 

6. Deposit data in National Center for Biotechnology Information (NCBI) depositories 

such as Sequence Read Archive (SRA) and Gene Expression Omnibus (GEO). 

qRT-PCR verification 

Whether or not to perform qRT-PCR verification of sequencing results is still 

highly debated in RNA-seq. This question can be approached from 2 angles: verification 

in the sequenced sample groups or verification in a different cohort. For RNA-seq 

technology, it is questionable whether qRT-PCR validation on a few selected genes in the 

same sample groups that were sequencing is necessary283, as RNA-seq may be more 

reliable than qRT-PCR due to its higher sensitivity and lower probe bias.34 Also, many 

studies have shown extremely close correlations between qRT-PCR and RNA-seq data.32-

37 The existing evidence suggests qRT-PCR would have a higher value in validating 

differential expression findings in a different cohort.   

Primers 

To accurately detect and quantify certain mature miRNAs, the qRT-PCR primers 

need to be specific with minimal cross-reactivity with other non-specific targets.284 It is 
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challenging to design primers for mature miRNA qRT-PCR for several reasons. First, 

miRNAs themselves are as long as the traditional primers for mRNAs. Second, there is no 

common sequence present across different miRNAs285, and the mature miRNA sequence 

is also present in pri- and pre-miRNA.286,287 Third, mature miRNA sequences are too short 

to be templates.288 Two of the most popular commercial products, TaqMan miRNA 

Assays and miRCURY LNA miRNA PCR System, each use a different reverse 

transcriptase strategy to overcome this all of these challenges. TaqMan applies the stem-

loop miRNA specific structure to generate cDNA, whereas miRCURY adds a poly-A tail 

to the 3’ end of the mature miRNA sequence followed by universal poly-T primers to 

synthesize cDNA. The former method is highly specific, but requires more RNA and 

repeated RT if detection of more than one miRNA species is desired.287 Recently, a new 

product, TaqMan Advanced miRNA Assays, also adapts the poly-A tailing with the 

ligation of adapters at the 5’ end of miRNA to perform a universal RT reaction. However, 

the cost and reaction time using this product are much higher than the other 2 products as 

shown in the qRT-PCR cost calculator (Supplementary Table S2). All 3 products claim 

high specificity, even when differentiating sequences that differ by only 1-4 nucleotides 

(human miRNA let-7 family)289-291. Because of the challenges in creating highly specific 

miRNA primers, the primers are much more expensive than traditional PCR primers, and 

the complete sequence of each primer remains confidential. To reduce cost, researchers 

may use a primer design tool to develop their own miRNA primers; however, the 

specificity needs to be experimentally tested to minimize off-target binding.286 
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RNA input 

Conventionally, RNA concentration serves as the basis for sample input for qRT-

PCR; however, the use of total RNA concentration is controversial for biofluids as the 

total RNA content may change with the disease state.146,292 Therefore, using a fixed 

volume of sample for RNA isolation and a fixed volume of resulting RNA for qRT-PCR 

are recommended.146,219,227 Standardized volume of the biofluid, elution volume, and input 

volume for RT are applied along with normalization (discussed below) to achieve proper 

quantification of biofluid miRNAs. As high biological variation may be expected among 

samples of interest, substantial variation in RNA concentration between different samples 

may also be expected. Therefore, it is important to understand the necessity of 

normalization in addition to volume standardization when performing miRNA studies 

using qRT-PCR.  

Internal controls and spike-ins 

To identify DEGs, stably expressed housekeeping genes are used for normalization 

in traditional qRT-PCR experiments to facilitate comparison between samples. Similarly, 

several housekeeping genes in biofluids or exosomes have been proposed, demonstrating 

variable performance. Table 1 includes qRT-PCR internal controls and normalization 

methods, when available, used in circulating and urinary miRNA studies in domestic 

animals.  

Among all housekeeping genes used as internal controls, small nuclear RNA 

(snRNA) U6 (snRNU6 or RNU6) and U6B (RNU6B) and miR-16 were most frequently 

used. Promising internal controls, such as 18S rRNA, 5S rRNA, small nucleolar RNA 
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(snoRNA) U43, and snRNU6 were found to be highly variable in plasma and significantly 

differed from blood mononuclear cells.59 In one study, RNU6B was undetectable in cell-

free plasma192, and levels were variable in several other studies.59,85,293-295 Another small 

nucleolar RNA, RNU48, was only detectable in RBC and hemolyzed plasma but not in 

non-hemolyzed plasma.193 In addition to their variable detection, arguments against the 

use of snRNAs as internal controls are that they are not expressed at a similar level to 

miRNAs, and they are structurally and functionally different. Small nuclear RNAs are 

different than miRNAs in nucleic acid composition, in length, and in secondary structure, 

and their isolation and reverse transcription (RT) efficiency and stability might also be 

different. Additionally, snRNAU6 is exclusively located in the nucleus296, suggesting the 

detection of snRNAU6 may represent cellular contamination.  

Given the limitations of snRNAs as reference genes, miRNAs might serve as better 

internal controls as they should demonstrate a similar behavior during RNA isolation.297 

However, deciding which miRNAs to use as internal controls can be challenging.  As 

mentioned in the section “Cellular contamination in serum and plasma,” the expression of 

blood cell-derived miRNAs could mask the miRNAs of interest. For instance, the 

commonly used internal control, miR-16, was found to be inconsistent and affected by 

hemolysis in multiple studies.70,85,192 Endogenous miRNA controls could also be species- 

and disease-specific. In one study, miRNA let-7c was identified as an internal reference 

for pigs infected with porcine whipworm111 while the same miRNA was found to be 

expressed significantly higher in pregnant cattle versus controls.125 While a thorough 

review of the literature is recommended to help identify endogenous miRNAs to use as 
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internal controls for a particular study, it is strongly recommended that researchers also 

conduct pilot qRT-PCR experiments or use small RNA-seq data to identify promising 

miRNAs internal controls (see below in “Normalization” section). The stability of internal 

controls can be discerned by the standard deviation of their Cq values among samples, the 

slope of the regression line when their Cq values are plotted against respective samples, 

and using software such as geNorm298 (updated version incorporated in qbase+ 

software299), NormFinder300, BestKeeper301, and DataAssist.302 A detailed discussion of 

these tools was covered by a review written by Occhipinti et al.303  

Alternatively, exogenous synthetic miRNAs, or spike-ins, can be introduced after 

TRIzol homogenization as controls for qRT-PCR normalization. Among all 47 studies 

investigating biofluid miRNAs in domestic animals, 30 studies incorporated qRT-PCR, 

and almost half used cel-miR-39 as a spike-in for normalization. Despite frequent use of 

the spike-in for normalization using the 2-DDCq method304 (see the following 

“Normalization” section), it is only suitable for assessing recovery of the RNA isolation 

method.225 In other words, a spike-in can only reflect any interference after the 

homogenization step, and, unlike endogenous miRNAs, it does not reflect conditions 

regarding sample collection, processing, and storage.222  

Normalization 

The purpose of using qRT-PCR is to verify miRNAs that are differentially 

expressed between animals with disease and healthy controls.  The goal of normalization 

is to minimize the technical variation within a dataset by detecting changes relevant to 

experimental variables. The most commonly used normalization method for qRT-PCR is 
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the 2-DDCq method proposed by Livak and Schmittgen.304 Briefly, for every sample, the Cq 

value of the internal control is subtracted from the Cq value of target miRNA, generating 

the DCq. Next, the DCq of untreated samples is subtracted from the DCq of treated samples 

to obtain the DDCq. Since the fluorescent signal doubles every Cq cycle, the fold change 

of target miRNA in treated samples versus the untreated samples can be expressed by 2-

DDCq.304 However, it is often ignored that the 2-DDCq method assumes that the PCR 

amplification efficiencies of the target miRNA and internal controls are similar and close 

to 100%. This limitation inevitably narrows its application given that PCR amplification 

efficiency differs among target miRNAs. For the same miRNA targets, different miRNA 

isolation methods used may even affect the PCR amplification efficiency305, 

presumptively due to co-purification of inhibitors. Therefore, Pfaffl306 proposed an 

improved model that adjusts for different PCR efficiencies among the internal control and 

target miRNAs. The drawback of this approach is that only one internal control is allowed. 

Another widely used normalization method is the mean expression value or global 

mean normalization.307 The original “global mean normalization” method first set a cutoff 

Cq value to filter out noise signals. Then, the individual Cq values of all miRNA targets 

in one sample is subtracted by the arithmetic mean of all Cq values for that sample. This 

method calculates the difference between Cq values of specific miRNAs and the mean Cq 

value of all expressed miRNAs. This approach does not require identification of internal 

controls; however, users should be aware that this method is only valid in profiling a large 

number of miRNAs that do not reside in the same gene cluster. The method is based on 

the assumption that only a small of portion of the miRNAs is differentially expressed, with 
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equal numbers of up- and down-regulated miRNAs.  Therefore, the presence of an outlier 

could potentially skew the global mean and subsequent calculations.307,308 Alternatively, 

a group of internal controls that resembles the global mean expression can be used to 

overcome this limitation. Prior miRNome profiling data can help identify promising 

internal controls: First, global mean normalization is performed on the profiling data, then 

the standard deviations of the Cq values across all samples are calculated for each miRNA. 

MiRNAs with the lowest standard deviation are determined as promising internal controls. 

A list of 10 promising internal controls can be further analyzed by geNorm.298 The 

algorithm of geNorm298 ranks miRNAs base on their stability (M value), and the calculated 

normalization factor (V value), to suggest the optimal number of internal controls. 

Mestdagh et al.307 concluded that both approaches for global mean normalization 

performed equally well. If no prior data is available for selecting promising internal 

controls, a set of unbiased miRNAs (more than 8) that are transcribed at different loci in 

a representative sample set consisting of at least 10 samples can be analyzed by geNorm298 

to consolidate a set of normalizers as described above. 

The qbase+ software299 improves upon the modified global mean normalization.288 

Briefly, after filtering out miRNAs with low expression, Cq values are converted into 

relative quantities (RQ). A sample specific normalization factor (NF) is then used to obtain 

the normalized RQ (NRQ). The software provides 2 options for the NF calculation. One 

is based on all expressed target miRNAs in one sample, namely the “modified global mean 

normalization.” Alternatively, the NF can be generated using only the miRNA targets that 

are expressed in all samples, namely the “modified global mean normalization on common 



 

60 
 

 

targets.” The original “global mean normalization”, the “modified global mean 

normalization”, and the “modified global mean normalization on common targets”  lead 

to a more pronounce decrease in standard deviations for each individual miRNAs than the 

use of a specific internal control, and the modified approaches can further reduce the 

impact of missing data compared with the originally proposed calculation for “global 

mean normalization.”288 In qbase+ 3.1 (Biogazelle, Zwijnaarde, Belgium - 

www.qbaseplus.com), available normalization strategies are reference targets (as selected 

by geNorm298), modified global mean normalization, and modified global mean 

normalization on common targets.288 

Standardized reporting of qRT-PCR 

The Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments (MIQE) Guideline was published in 2009309, followed by the development 

of a Real-Time PCR Data Markup Language310 to consistently report qRT-PCR data.310 

The minimum information that must be reported for a qRT-PCR experiment includes 

experimental design, sample type, nucleic acid extraction method, RT method, target 

information, oligonucleotides, protocol, validation, and data analysis. A checklist is 

available on the RDML website (http://www.rdml.org/MIQE_checklist.pdf) and should 

be submitted along with the paper. Alternatively, readers can use RDML Ninja, the 

reference software, or other RDML compliant third-party software to report data in the 

RDML file format (http://www.rdml.org/software.php). 
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Biofluid-derived microRNA in chronic kidney disease -- biomarker discovery 

Since 2011, several studies explored the application of circulating and cell-free 

urinary miRNA as biomarkers in chronic kidney diseases. One of the earliest biofluid 

miRNA studies focused on circulating miRNA in 75 patients with CKD receiving 

hemodialysis.311 The overall miRNA concentration in plasma and Cq values for individual 

miRNAs (miR-16, miR-21, miR155, miR-210 and miR-638) was inversely correlated 

with renal function as determined by eGFR (P-value < 0.004; correlation coefficient 

ranging from -0.347 to -0.723). However, the etiology of CKD was not specified, and it is 

unclear how the authors quantified RNA input for qRT-PCR (by volume or by quantity) 

and whether the Cq values were normalized or not.311 In another study, 28 CKD patients 

were divided into 2 groups based on the eGFR.179 The miRNA PCR array identified 172 

upregulated and 94 downregulated circulating miRNAs isolated from plasma comparing 

low to high eGFR groups. However, among the top 10 DE miRs, the fold changes are 

relatively low (< 2-fold), and the P-values are of borderline statistical significance.179 In 

this study, RNA input for qRT-PCR was quantified, and, RNU6B, a small nuclear RNA 

that is not readily expressed in serum312-314, was used for qRT-PCR normalization.89  

Six miRNAs (miR-29a, miR-29b, miR-29c, miR-200a, miR-200b, and miR-200c) 

were examined in urinary exosomes obtained from 32 patients with heterogenous 

glomerular diseases, including diabetic nephropathy (DN), focal segmental 

glomerulosclerosis, IgA nephropathy, membranous nephropathy, and mesangial 

proliferative glomerulonephritis.89 Among them, miR-29c is the only miRNA identified 

that had a marginal significant positive correlation with eGFR (P-value = 0.042; 
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correlation coefficient = 0.365). While the quantification of RNA input for qRT-PCR was 

unspecified in the paper, marked differential expression (fold change: 6.59-27.24) was 

found between patients and controls for all miRNAs. Urinary miRNAs were also 

examined in the study described above.179 Using miRNA PCR array, 248 upregulated and 

136 downregulated urinary miRNAs were identified in low eGFR CKD patients compared 

to high eGFR CKD patients.179 Similar to results of plasma-derived miRNAs, the low fold 

changes (< 2.2-fold) and borderline statistically significant P-values (> 0.01) were seen 

among the top 10 DE miRs. Also, in both studies, RNU6B was again used for qRT-PCR 

normalization89,179 despite its unstable expression and questionable appearance in urine.315 

Next-generation sequencing technology has also been used to identify 

differentially expressed miRNAs in humans with CKD compared to healthy subjects. A 

recent study sequenced urinary miRNAs from 25 samples obtained from 15 CKD patients 

(7 with early disease (stages I and II), and 8 with late disease (stages III and IV)) and 10 

healthy controls.316 Up to 9 upregulated miRNAs (let-7c, miR-222, miR-27a, miR-27b, 

miR-296, miR-31, miR-3687, miR-6769b, and miR-877) and 7 downregulated miRNAs 

(miR-1-2, miR-133a, miR-133b, miR-15a, miR-181a, miR-181c, and miR-34a) were 

identified throughout all stages of CKD patients compared to controls. Of note, the 

expression of miR-181a was markedly decreased (> 160-fold change) in CKD patients 

compared to controls. This substantial change indicates potential application of miR-181a 

in the diagnosis and/or pathogenesis of CKD. 

Only one study has evaluated miRNAs in the urine of dogs with kidney disease. In 

this study, 47 dogs with elevated serum creatinine were grouped as having kidney 
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diseases.100 After RNA isolation, urinary RNA samples from all 47 dogs with kidney 

diseases and 37 healthy controls were pooled (one pool for each group) for small RNA-

seq. Due to the lack of biological replicates, no statistical analysis was performed, and 

candidate miRNAs and internal controls were selected based on read counts and fold 

change presented in the sequencing data. Urine samples obtained from dogs with kidney 

diseases had more reads mapped to miR-486, miR-21, miR-10a, and miR-10b than those 

of the control sample. However, in the following qRT-PCR verification, the differential 

expression of these miRs changed depending on whether miR-26a or miR-191 was used 

for qRT-PCR normalization.100 In general, various preanalytical and analytical factors, 

such as study subjects, sample storage temperature, and experimental design, would have 

huge impact on data interpretation. Therefore, many studies focus on a single, biopsy-

confirmed glomerular disease to optimize the specificity for biomarker discovery in CKD, 

as described in the following sections.  

Focal segmental glomerulosclerosis 

In a 2015 report analyzing 84,301 patients with end-stage renal disease attributed 

to glomerulonephritis (GN) from 1996 to 2011, focal segmental glomerulosclerosis (FSGS) 

is the most common cause (40.7%) of all GN cases, followed by lupus nephritis (LN) 

(19.5%) and IgA nephropathy (IgAN) (15.4%).317 Therefore, FSGS is commonly used as 

a representative example of CKD due to glomerular disease318, and there is substantial 

interest in identifying biofluid miRNAs as biomarkers for FSGS. In an early study, 2 

miRNAs specific to mouse kidney, miR-10a and miR-30d, were investigated in the urine 

of FSGS patients.319 Although it was unclear how the RNA input was quantified for qRT-
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PCR, raw Cq values were normalized with spike-in synthetic plant MIR168a. Similar to 

the results obtained from the unilateral and bilateral renal ischemia/reperfusion mouse 

model performed in the same study, the urine from FSGS patients had an approximately 

13- and 10-fold increase of miR-10a and miR-30d, respectively, compared to controls.319 

Later studies implemented high-throughput microarray technology to screen for 

candidate miRNAs. A miRNA microarray containing 1733 mature miRNA probes has 

been used to discover DE miRs among patients with FSGS. Compared with sex- and age- 

matched controls, 39 plasma miRNAs (67% upregulated) and 135 urine miRNAs (31% 

upregulated) were differentially expressed. Unfortunately, the complete list of DE miRs 

was not provided. Among the miRNA selected for verification with qRT-PCR, urinary 

miR-155 was upregulated and urinary miR-1915 was down-regulated in FSGS patients. 

However, the qRT-PCR set up was suboptimal since a defined RNA quantity (10 ng) was 

used for qRT-PCR input, and RNU6B was used as an internal control.320  

In another study focusing on FSGS patients with and without ongoing proteinuria, 

a microarray targeting 754 miRNAs in human plasma was carried out using snRNAU6 as 

internal control. They found that miR-125b, miR-186, and miR-193a-3p were upregulated 

in FSGS patients with active proteinuria (fold changes: 2.62-9.75). Among them, plasma 

miR-125b and miR-186 were differentially expressed between proteinuric patients versus 

patients in remission, and the expression levels of both miRNAs reduced after effective 

steroid treatment compared to the pre-treatment period.321  

The same group also conducted a similar study on urinary miRNAs, identifying 27 

upregulated miRNAs in FSGS patients with active proteinuria.322  Despite using the same 
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internal control (snRNAU6), candidate miRNAs identified in urine (miR-196a, miR-30a-

5p, and miR-490) were different from those previously described in plasma.321 These 

urinary miRNAs were found upregulated among proteinuric patients versus patients in 

complete remission or healthy controls (fold changes: 2.81-6.74). Furthermore, decreased 

expression was seen after patients responded to steroid therapy, but it was not seen in the 

unresponsive group.322 Next, a follow-up study focused on urinary miR-196a as the sole 

predictor for FSGS progression. Urinary miR-196a was differentially expressed in 

proteinuric FSGS patients and was associated with proteinuria, eGFR, interstitial fibrosis 

and tubular atrophy.318 

A recent study used a miRNA PCR array to examine the expression of 515 

miRNAs in plasma from 5 patients with FSGS compared with those from 5 healthy 

controls.323 During the initial screening, 16 upregulated and 18 downregulated miRNAs 

were identified (P-value < 0.05, absolute fold change > 2) when cel-miR-39 was used for 

normalization. Among them, 4 downregulated miRNAs (miR-17, miR-451, miR-106a, 

and miR-19b) were subsequently selected to be candidate miRNAs. These candidate 

miRNAs were also downregulated with disease when tested via qRT-PCR in a larger 

group consist of 97 patients and 124 controls. The expression of 3 miRNAs (miR-17, miR-

451, and miR-106a) was downregulated in FSGS and was found to correlate with FSGS 

remission. These miRNAs also appeared to be disease-specific, as their reduction was 

absent in patients with other kidney diseases, such as IgA nephropathy, mesangial 

proliferative glomerulonephritis, and membranous nephropathy. However, snRNAU6 was 

used as an internal control for all qRT-PCR experiments.323 
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Overall, different studies demonstrated variable results. Examining the 27 urinary 

DE miRs reported in a study of proteinuric FSGS patients322, miR-30d was also 

differentially expressed in another FSGS study.319 However, other DE miRs, such as miR-

10a and miR-155, were not differentially expressed in other studies319,320. Even in the same 

study, miR-196a and miR-30a-5p were upregulated using qRT-PCR, but they were not 

significantly upregulated using microarray.322 These discrepancies highlight the 

importance of standardization in all stages of a microRNA study.  

Lupus nephritis 

Several miRNAs (miR-141, miR-192, miR-200a, miR-200b, miR-200c, miR-205, 

miR-429) were examined using qRT-PCR in serum and urine of patients with lupus 

nephritis (LN).324 In this study, the authors used a standard input volume of total RNA, 

and RNU48, a small nucleolar RNA, was used for normalization. For serum, all miRNAs 

except for miR-141 showed decreased expression in patients with LN while inconsistent 

results were seen in the urine samples. No correlation in the levels of serum and urine 

miRNAs was found.324 

In a study that used microarray to examine expression of 851 miRNAs in serum, 

51 miRNAs were found differentially expressed when comparing LN patients with 

controls.325 Surprisingly, this study did not identify any of the DE miRs in the previous 

study324 to be differentially expressed more than 2-fold.325 Eight of the DE miRNAs were 

validated by qRT-PCR using cel-lin-4 as the normalizer. MiR-125a, miR-146a, and miR-

155 were decreased, and miR-126, miR-16, miR-21, miR-223, and miR-451 were 

increased in LN patients compared to controls.325 
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In another study, expression of miR-335, miR-302d, miR-200c, miR-146a were 

examined in urinary exosomes obtained from patients with LN.326 Cq values normalized 

by spike-in cel-miR-39 were used to compare miRNA expression between patients and 

controls, showing all 4 miRNAs were upregulated in LN (up to a 15-fold change in miR-

146a). When focusing on patients with active LN, the fold change for all miRNAs 

dramatically increased, notably up to a 103-fold change in miR-146a.326 Interestingly, the 

expression of urinary miR-200c was found to be increased in LN instead of decreased, as 

in the previous study324, and for miR-146a, its levels were upregulated in urine versus 

downregulated in serum as previously reported.325 While the discrepancy in expression of 

miR-200c and miR-146a could be explained by multiple factors, such as different study 

populations, different samples (serum, cell-free urine, and urinary exosomal pellets), and 

normalization methods used in qRT-PCR (RNU48, cel-lin-4, and cel-miR-39), it 

highlights the importance of standardization in the discovery of miRNA biomarkers.324-326 

IgA Nephropathy 

 Two studies have also characterized circulating327 and urinary88 miRNA 

expression in patients with IgA Nephropathy (IgAN). In one study, the plasma miRNA 

signature of patients with IgAN was described based on a miRNA PCR panel to screen 20 

IgAN patients and 10 healthy controls.327 In the screening stage, 48 DE miRs were found 

(46 upregulated and 2 downregulated miRNAs). Later, the candidate pool of miRNAs was 

further downsized by performing qRT-PCR in 83 IgAN patients and 82 controls. 

Eventually, 4 miRNAs (miR-148a, miR-150, miR-20a, and miR-425) were identified to 
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be upregulated in patients with IgAN (fold change: 2.65-6.13), especially in the early 

stages of the disease.327 

In the other study, RNA isolated from urine from 12 patients with IgAN and 12 

healthy controls was used to perform small RNA-seq, leading to the identification of 158 

urinary DE miRs.88 Among them, 21 DE miRs with a P-value less than 0.01 an absolute 

fold change of more than 2 were identified, including 12 upregulated and 9 downregulated 

DE miRs. Notably, 14 out of 21 DE miRs had markedly differential expression (>400 fold 

change) between IgAN and controls.  The results of 2 upregulated miRNAs (miR-378i 

and miR-215) and 2 down-regulated miRNAs (miR-135b and miR-365b) were 

subsequently validated by qRT-PCR in a cohort of 6 patients with IgAN and 6 controls. 

However, the qRT-PCR results were normalized based on RNU6B that was reported to be 

undetectable in human urine in another study.315 

These studies demonstrate the potential of using biofluid-derived miRNAs in CKD 

to non-invasively subtype GN. The discrepancies between studies were likely from 

differences in multiple steps in the biomarker discovery process, including different 

criteria in recruiting subjects, sample processing, RNA isolation methods, and data 

analysis. However, the discovery of markedly DE miRs in biofluids indicates the 

possibility that robust biomarkers could still be detected despite the presence of substantial 

technical and biological variation. Large-scale studies and meta-analysis studies are 

needed to draw more definitive conclusions regarding miRNA biomarker discovery in 

biofluids. 
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CHAPTER II      

RNA-SEQ OF SERIAL KIDNEY BIOPSIES OBTAINED DURING 

PROGRESSION OF CHRONIC KIDNEY DISEASE FROM DOGS WITH X-

LINKED HEREDITARY NEPHROPATHY* 

Introduction 

XLHN in dogs leads to CKD because of a defect in type IV collagen in the 

glomerular basement membrane (GBM). In the XLHN dogs in this study, a naturally-

occurring, 10-base-pair deletion in the COL4A5 gene located on the X chromosome results 

in the inability to synthesize complete ⍺5 chains.19 This alteration in the type IV collagen 

network compromises the structure and function of the GBM in both affected 

(hemizygous) males and, to a lesser extent, carrier (heterozygous) female dogs.20  

XLHN in dogs is analogous to Alport syndrome (AS) in humans, as approximately 

85% of people with AS have an X-linked mutation in COL4A5.328 AS is characterized by 

juvenile-onset CKD, ocular abnormalities, and hearing loss in affected males.329 Thus far, 

only the renal abnormalities have been detected in XLHN dogs.20 In dogs with XLHN, 

juvenile-onset CKD manifests as persistent proteinuria of glomerular origin as early as 3-

*Reprinted from “RNA-seq of serial kidney biopsies obtained during progression of chronic kidney disease
from dogs with X-linked hereditary nephropathy” by Candice P. Chu et al., 2017, Scientific Reports, 7, 
16776, Copyright 2017 by Candice P. Chu. 
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6 months of age, followed by decreasing GFR and worsening azotemia, typically leading 

to end-stage renal failure before 1 year of age.18,20  

Although XLHN has been studied as an example of canine CKD caused by 

glomerular disease and as an animal model of human AS20, the gene expression profile 

that affects progression has only been partially characterized. Furthermore, dogs with the 

same mutation causing XLHN display substantial variation in the rate of disease 

progression such that some dogs reach end-stage disease by 6 months of age and others at 

12 months of age or later. Although varied times of onset and rates of progression are 

common among different types of mutations in people with AS330, disease progression 

may also vary among members of an AS family with an identical mutation331, as seen in 

dogs.29  

While several studies have characterized gene expression in humans with CKD 

and in animal Alport models using microarrays21,332 or PCR21,23,29,333, studies that have 

incorporated high-throughput RNA sequencing 30 with the objective of identifying DEGs 

and upstream regulators are lacking. Compared with traditional approaches in gene 

expression analysis, RNA-seq provides unprecedented flexibility in the discovery of 

DEGs31 while preserving accuracy and strong correlation with PCR32-36, even considering 

fold change levels.37 

The objective of this study was to compare the gene expression between dogs with 

rapid versus slow disease progression phenotypes at 3 stages of the disease. We conducted 

Gene Ontology (GO) and pathway analyses to characterize DEGs among sample groups 

at specific time points. Since all CKDs share common pathways that lead to end-stage 
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kidney disease334, the results help elucidate the molecular basis of CKD progression and 

thus may benefit canine patients and indicate potential therapeutic targets for AS patients. 

Material and methods 

Animals  

The dogs in this study were part of a colony with XLHN maintained at Texas A&M 

University.18  XLHN is caused by a 10-base deletion in the gene encoding the ⍺5 chain of 

type IV collagen. Affected males develop juvenile-onset CKD that progresses to end-stage 

renal disease as previously described.18 Overall, 6 affected dogs and 2 unaffected 

littermates were studied. All dogs were raised according to standardized protocols, and no 

treatments were given to these dogs. All protocols were approved by the Texas A&M 

University Institutional Animal Care and Use Committee. 

Clinical phenotypes 

For this study, dogs were selected to represent both extremes in the speed of 

disease progression in this family of dogs (rapid versus slow progression). Clinical 

progression was determined by serial monitoring of serum and urine biomarkers of kidney 

disease, which allowed us to establish specific progression time points335: T1 (onset of 

proteinuria: defined as the presence of microalbuminuria for 2 consecutive weeks (E.R.D. 

HealthScreen Canine Urine Test Strips, Loveland, CO, USA)); T2 (onset of azotemia: 

serum creatinine ≥ 1.2 mg/dL); and T3 (end-stage disease: serum creatinine ≥ 5 mg/dL). 

Rapidly-progressing (rapid) dogs (n = 3) reached each time point at an earlier age than 

slowly-progressing 115 dogs (n = 3). On average, the rapid group reached T3 at 26.3 weeks 
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of age (range: 26-27 weeks), while the slow group reached the last clinical time point (T3) 

at 49 weeks of age (range: 46-52 weeks) (Supplementary Table S3).  

Tissue collection 

Kidney cortex was serially collected from each dog at the aforementioned 3 

clinical time points (independent of age). Control dogs (n = 2) were biopsied to correspond 

with an affected littermate. All samples were collected by ultrasound-guided needle 

biopsy. This technique was appropriate for the current study as it is unlikely to induce 

changes that might be confused with those of CKD progression.336 Samples for pathology 

evaluation and immunohistochemistry were placed in formalin and embedded in paraffin. 

Samples for RNA sequencing were immediately placed in RNAlater Stabilization 

Solution (Life Technologies, Foster City, CA, USA) and stored at -80 °C until RNA 

isolation.  

Histopathological evaluation 

Paraffin-embedded samples were processed and stained as previously described.335 

To determine the severity of interstitial fibrosis and chronic inflammation, a board-

certified veterinary anatomic pathologist (REC) evaluated 5 or 20 randomly chosen 20x 

fields of renal cortex based on core size for each biopsy. For interstitial fibrosis, a score 

of 0 to 3 was assigned for each field based on the degree of tubulointerstitial architecture 

distortion caused by fibrosis: 0 - no fibrosis, 1 - fibrosis present but no distortion, 2 – 

moderate distortion, and 3 – severe distortion. For chronic inflammation, 0 – no 

inflammatory cells, 1 – scattered inflammatory cells, 2 – aggregates of inflammatory cells 
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that separate or replace tubules, and 3 – diffusely distributed inflammatory cells. Statistical 

analysis comparing the average scores between groups was performed using bootstrap in 

R (version 3.2.4) to construct simultaneous 95% confidence intervals for all 3 pairwise 

comparisons of mean fibrosis and chronic inflammation scores at each of the latter 2 

disease stages. 

RNA isolation and sequencing 

The MirVana miRNA Isolation Kit (Ambion, Austin, TX, USA) was used to 

isolate total RNA from homogenized kidney tissue according to the manufacturer’s 

instructions. The library preparation, sequencing, and initial quality check were performed 

by the Texas A&M AgriLife Genomics and Bioinformatics Service 

(http://www.txgen.tamu.edu/). RNA integrity was assessed by the Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The average RIN was 3.4, 

and the average RNA yield was 86.2 ng/µL (Supplementary Table S3). To compensate 

for the low-input samples, we use the TruSeq Stranded Total RNA Library Prep Kit with 

Ribo-zero Gold (Illumina, San Diego, CA, USA), based on the best practice for RNA with 

variable qualities337 (to remove both cytoplasmic and mitochondrial rRNA) and its 

compatibility with canine samples. Samples were then sequenced using the Illumina 

Genome Analyzer (HiSeq 2500v4 High Output). Raw sequencing data were submitted to 

the NCBI SRA (Accession: SRP101707; Samples: SAMN06560417, SAMN06560429-

51; BioProject: PRJNA378728). 
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Data analysis 

FastQC (version 0.11.2) was used for quality control to ensure that the quality 

value was above Q30. The canine (Canis familiaris) genome FASTA file 

(ftp://ftp.ensembl.org/pub/current_fasta/canis_familiaris/dna/Canis_familiaris.CanFam3.

1.dna.toplevel.fa.gz) and gene annotation GTF file (CanFam 3.1 assembly; 

ftp://ftp.ensembl.org/pub/current_gtf/canis_familiaris/) were obtained from Ensembl.  

Although RNA-seq is a popular research tool, there is no gold standard for analyzing 

RNA-seq data. Among the available tools, we chose up-to-date open source tools for 

mapping, retrieving read counts, and differential analysis. We used HISAT2338 (version 

2.0.3-beta) to generate indexes and to map reads to the canine genome. For assembly, we 

chose SAMtools (version 1.2) and the “union” mode of HTSeq339 (version 0.6.1), as the 

gene-level read counts could provide more flexibility in the differential expression 

analysis. Both HISAT2 and HTSeq analyses were conducted using the high performance 

research computing resources provided by Texas A&M University (http://hprc.tamu.edu) 

in the Linux operating system (version 2.6.32). Differential expression and statistical 

analysis were performed using DESeq2 (release 3.3) in R (version 3.2.4). DESeq2272 was 

chosen as it is a popular parametric tool that provides a descriptive and continually updated 

user manual. DESeq2 internally corrects for library size, so it is important to provide un-

normalized raw read counts as input. We used variance stabilizing transformation to 

account for differences in sequencing depth. P-values were adjusted for multiple testing 

using the Benjamini-Hochberg procedure.340 A false discovery rate adjusted P-value (ie, 

q-value) < 0.05 was set for the selection of differentially expressed genes. 
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Gene ontology (GO), pathway, and upstream regulator analysis 

GO and PANTHER pathway analyses were performed with the PANTHER 

Overrepresentation Test (released on July 15, 2016) in PANTHER341 version 11.1 

(http://www.pantherdb.org/, released on October 24, 2016). This program supports the 

canine genome. Also, Qiagen’s Ingenuity Pathway Analysis (IPA, Qiagen Redwood City, 

www.qiagen.com/ingenuity) was used to provide overrepresented orthologous genes in 

human, mouse, and rat databases and to identify orthologous pathways and upstream 

regulators in our data. PANTHER used the binomial test and Bonferroni correction for 

multiple testing, while IPA used the right-tailed Fisher Exact test and displayed z-scores 

to indicate whether a potential regulator was activated or inhibited. We used the default 

settings for statistical analysis in both the PANTHER pathway and IPA.  In PANTHER, 

only pathways and GO terms with fold enrichment > 0.2 were listed. In IPA, P-value < 

0.05 and fold change > 2 were set as cutoff values. 

Immunohistochemistry (IHC) 

Three-micrometer, formalin-fixed, paraffin-embedded renal cortex sections of 

both affected and control dogs were stained for CD3 (n = 24) and CD20 (n = 9). After 

deparaffinization, the sections were placed in citrate buffer (pH 6.0) for antigen retrieval, 

using a pressure cooker (Decloaking Chamber, Biocare Medical). Endogenous peroxidase 

activity and non-specific protein binding were blocked with 3% hydrogen peroxide and 

Sniper protein block (Biocare Medical), respectively. After blocking, the sections were 

incubated with primary antibodies CD3 (1:300 dilution; Dakocytomation, Carpinteria, 

CA) and CD20 (1:500 dilution; Thermo Scientific, Fremont, CA) for 1 hour at room 
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temperature, then incubated with MACH 2 polymer for 30 minutes at room temperature. 

DAB (Vector Laboratories, Burlingame, CA) was used as the chromogen to demonstrate 

sites of antibody-antigen reaction. Mayer’s hematoxylin was used for the counterstain. 

Photographs were obtained using a SPOT Insight 2Mp FW Color Mosaic Camera 

(Diagnostic Instruments, Inc., Sterling Heights, MI) and the SPOT software (version 5.2).  

Results 

Histopathological evaluation of kidney biopsies  

Figure 3 presents representative cortical fields of the kidney biopsies and the mean 

interstitial fibrosis scores comparing the rapid versus slow groups. Clinical time points in 

affected dogs were defined as: T1 - onset of proteinuria (the earliest time point that clinical 

disease can be detected); T2 - onset of azotemia (sCr ≥ 1.2 mg/dL); and T3 - end-stage 

disease (sCr ≥ 5 mg/dL).  At both T2 and T3, mean fibrosis and chronic inflammation 

scores were significantly higher in diseased dogs than in controls (Supplementary Table 

S4-S5). The degree of fibrosis in the rapid group was more severe at T2 and T3 than that 

in the slow group, despite the 2 groups being clinically indistinguishable; however, 

statistical significance between the scores was reached only at T3 (Supplementary Table 

S6 and Figure S1). No statistically significant difference was observed for the chronic 

inflammation score between the rapid and slow groups (Supplementary Table S7 and 

Figure S2).  
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Figure 3. Kidney biopsies from representative dogs and mean interstitial fibrosis 
scores. Scores are ranged from 0 [normal] to 3 [severe] for each group of affected dogs at 
3 time points (T1, T2, and T3). Fibrosis scores were based on evaluation of multiple 20x 
fields. *Statistical significant. Scale bar: 100 µm. Trichrome-stained. 
 
 
 

RNA-sequencing of dog transcriptomes  

The average RNA yield from the 24 kidney biopsies was 86.2 ng/µL, and the 

average RIN was 3.4 (Supplementary Table S8). Because of the variable quality of RNA, 

the proper library preparation kit was used to compensate for the low-input samples 

according to the best practice for RNA with variable qualities337 (see “RNA isolation and 

sequencing” section in Methods). After performing quality control, we obtained an 

average of over 30 million paired-end reads from each sample (n = 24). Overall, 91-96% 

of reads were mapped to the canine genome (CanFam 3.1) by HISAT2.338 Among them, 

70-78% of reads were uniquely mapped (Supplementary Table S8 and Figure S3). Based 



 

78 
 

 

on the union setting of HTSeq339, ambiguous reads that mapped to multiple genes were 

not included in our analysis. 

Principal component analysis (PCA) and hierarchical clustering analysis 

We performed PCA at each time point to determine whether samples in each group 

clustered with each other or other groups. First, we used HTSeq339 to count reads that 

uniquely aligned to one gene, and these data were then imported into DESeq2272 to 

generate PCA plots. At T1, the PCA results demonstrated that most samples clustered 

together, regardless of the grouping (Figure 4). Except for one dog, rapid and slow groups 

became separated from controls at T2. Although the slow group tended to be closer to the 

controls than the rapid group, there was no clear distinction between rapid and slow groups 

at T2 or T3. Furthermore, PCA scree plots confirmed that principal components 1 (PC1) 

and 2 (PC2) accounted for 76-90% of the total variation in gene expression at each time 

point (Supplementary Figure S4). To further investigate the time-dependent nature of the 

DEGs, we performed hierarchical clustering of the top 100 DEGs (ie, those with the 

smallest q-value identified in the time course analysis in DESeq2). In agreement with the 

PCA plots, this analysis demonstrated clustering of almost all sample groups at T1 (Figure 

5A).  At time points T2 and T3, the rapid and slow groups clustered together (Cluster 1 in 

Figure 5A) and were distinctly separated from the control group for all but one T2 sample 

(Cluster 2 in Figure 5A).  
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Figure 4. Principal component analysis (PCA) for all samples at 3 time points. 
Principal component 1 (PC1) and principal component 2 (PC2) were identified by variance 
stabilizing transformation in DESeq2 at the 3 time points. The percentage of variance 
indicates how much variance was explained by PC1 and PC2. (Red: control group; Green: 
rapid group; Blue: slow groups). 
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Figure 5. Hierarchical clustering analysis, heatmap, and gene expression. (A) 
Hierarchical clustering analysis and heatmap of the 100 genes with the smallest q-values 
in the time course analysis in DESeq2 (Column names: t1, t2, and t3 designate 3 clinical 
time points; slow, rapid and control represent grouping; _1, _2, and _3 are individual dogs 
in each group). (B) Trends of gene expression over time for the 10 genes with the smallest 
q-values (from left to right, top to bottom) (Red: control group; Green: rapid group; Blue: 
slow group). 
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Differentially expressed genes (DEGs) 

In average, 20,090 genes were mapped by at least one read in each of the kidney 

biopsy samples (Supplementary Table S8). Overall, 1,947 DEGs with a q-value < 0.05 

were detected over the 3 time points in the time course analysis of DESeq2 

(Supplementary Table S9). We applied the plot counts function in DESeq2 to visualize 

the top 10 genes with the smallest q-values (Figure 5B). While these genes were not 

differentially expressed at T1, group-specific changes were observed over time, and 

expression in the slow group was consistently closer to that in the control group for each 

gene at T2 (Figure 5B).  

To achieve the primary goal of this study, we identified 70 DEGs between the 

rapid and slow groups among all time points (q-value < 0.05) (Table 4). In this 

comparison, T2 demonstrated the most DEGs, with 68 of the 70 DEGs unique to T2. Two 

DEGs were identified at T1: stearoyl-CoA desaturase 5 (SCD5) (fold change = -3.55, q-

value = 1.1x10-05), which was also detected at T2, and thymidine kinase 1 (TK1) (fold 

change = 2.49, q-value = 0.02).  At T3, no DEGs were identified when these 2 groups 

were compared.  
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Table 4. Overview of 70 significant DEGs comparing rapid and slow groups. 

Up-regulated DEGs in the rapid group 

Gene Symbol Full Name Fold 
Change q-value 

COL1A1 Collagen type I alpha 1 chain 6.52 2.62E-20 
COL3A1 Collagen type III alpha 1 chain 5.35 1.05E-17 
COL1A2 Collagen type I alpha 2 chain 4.01 4.66E-13 
COL5A1 Collagen type V alpha 1 chain 3.8 7.21E-05 
COL6A3 Collagen type VI alpha 3 chain 3.27 7.08E-07 
COL6A1 Collagen type VI alpha 1 chain 3.26 1.82E-05 
LOX Lysyl oxidase 3.13 1.42E-03 
COL6A2 Collagen type VI alpha 2 chain 3.07 2.34E-04 

PAMR1 Peptidase domain containing associated with muscle 
regeneration 1 2.99 5.76E-03 

CDCA8 Cell division cycle associated 8 2.98 2.80E-02 
COL11A1 Collagen type I alpha 1 chain 2.86 5.33E-03 
COL15A1 Collagen type XI alpha 1 chain 2.82 6.24E-03 
C1QTNF6 C1q and tumor necrosis factor related protein 6 2.81 4.98E-03 
FNDC1 Fibronectin type III domain containing 1 2.81 3.22E-02 
FN1 Fibronectin 1 2.8 4.10E-02 
CCDC80 Coiled-coil domain containing 80 2.72 7.98E-04 
MFSD7 Major facilitator superfamily domain containing 7 2.7 3.22E-02 
FBLN1 Fibulin 1 2.69 4.10E-02 
NID2 Nidogen 2 2.61 1.52E-07 
COL4A2 Collagen type IV alpha 2 chain 2.6 1.42E-03 
FAM69B Family with sequence similarity 69, member B 2.6 3.42E-02 
NDN Necdin 2.59 4.39E-02 
COL4A1 Collagen type I alpha 1 chain 2.59 5.76E-03 

HTR7 5-hydroxytryptamine (serotonin) receptor 7, adenylate 
cyclase-coupled 2.58 2.60E-02 

PCOLCE Procollagen C-endopeptidase enhancer 2.58 5.83E-03 
OLFML2B Olfactomedin like 2B 2.56 6.24E-03 
TK1a Thymidine kinase 1 2.49 1.98E-02 
C15orf39 Chromosome 15 open reading frame 39 2.47 2.76E-02 
RCN3 Reticulocalbin 3 2.46 6.94E-04 
MFAP2 Microfibrillar associated protein 2 2.45 1.42E-03 
HSPG2 Perlecan 2.45 1.20E-02 
PRSS35 Protease, serine 35  2.45 4.10E-02 
MMP2 Matrix metallopeptidase 2 2.43 4.48E-05 
FBN1 Fibrillin 1 2.37 3.57E-03 
CD248 CD248 molecule 2.36 2.72E-02 
FOXRED2 FAD dependent oxidoreductase domain containing 2 2.35 1.11E-02 
GXYLT2 Glucoside xylosyltransferase 2 2.34 3.62E-02 
FSCN1 Fascin actin-bundling protein 1 2.34 1.20E-02 
ENSCAFG00000008741c Novel gene 2.29 1.18E-02 
ENSCAFG00000012963c Novel gene 2.28 1.23E-03 
BGN Biglycan 2.19 1.85E-02 
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Table 4. Continued. 

Up-regulated DEGs in the rapid group 

Gene Symbol Full Name Fold 
Change q-value 

FAS Fas (TNF receptor superfamily member 6) 2.16 2.08E-02 

ADAMTS2 ADAM metallopeptidase with thrombospondin type 1 
motif 2 2.15 3.23E-02 

PXDN Peroxidasin 2.14 4.10E-02 
SPARC Secreted protein acidic and cysteine rich 2.13 4.48E-05 
THBS1 Thrombospondin 1 2.12 1.26E-04 
KCP Kielin/chordin-like protein 2.12 4.19E-02 
LRP1 LDL receptor related protein 1 2.11 7.98E-04 
CERCAM Cerebral endothelial cell adhesion molecule 2.11 4.39E-02 
ITGA5 Integrin subunit alpha 5 2.07 7.03E-03 
BMP1 Bone Morphogenetic Protein 1 1.88 6.74E-05 
FSTL1 Follistatin Like 1 1.72 1.25E-05 
PTGFRN Prostaglandin F2 Receptor Inhibitor 1.66 2.61E-05 

Down-regulated DEGs in the rapid group 

UGT1A6 UDP glucuronosyltransferase family 1 member A6 -4.77 1.23E-03 
NAT8 N-acetyltransferase 8 (putative) -4.1 1.09E-04 
R3HDML R3H domain containing like -4.02 1.42E-03 
LIX1 Limb and CNS expressed 1 -3.83 7.21E-03 
PRLR Prolactin receptor -3.73 4.64E-04 
SCD5b Stearoyl-coa desaturase 5 -3.55 1.07E-05 
FMO2 Flavin containing monooxygenase 2 -3.42 1.78E-02 
OAT3/SLC22A8 Solute carrier family 22 member 8 -3.37 2.45E-02 
SI Sucrase-isomaltase -3.25 1.16E-02 
ENSCAFG00000003760c Novel gene -2.92 3.96E-02 
SLC26A4 Solute carrier family 26 member 4  -2.79 7.14E-03 
ENSCAFG00000000799c Novel gene -2.77 3.25E-02 
HEPACAM2 HEPACAM family member 2 -2.66 8.81E-03 
IDO2 Indoleamine 2,3-dioxygenase 2 -2.58 3.42E-02 
PECR Peroxisomal trans-2-enoyl-coa reductase -2.57 6.24E-03 
MT-ND3 Mitochondrially encoded NADH dehydrogenase 3 -2.16 3.49E-03 
ABCA4 Retinal-specific ATP-binding cassette transporter -1.91 1.08E-04 
a DEG identified only at T1. 
b DEG identified at both T1 and T2. 
c Genes are displayed with ensembl IDs if gene annotations are unavailable. 
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We also compared the rapid and slow groups with the control group, both 

individually and combined as a single “affected” group (Figure 6A). In these comparisons, 

the number of DEGs increased with advancing disease, with the largest number of DEGs 

identified at T3. This phenomenon indicates that the DEGs are disease-dependent as they 

are more differentially expressed in the later time points (T2 and T3) than T1 (Figure 6).  

 
 
 

 

Figure 6. DEGs in different pairs of comparison at the 3 time points (T1, T2, and T3). 
Comparing the rapid and slow groups, 70 DEGs were found. Comparing each affected 
group with controls, several thousand DEGs were identified, with most of the DEGs 
occurring at T3. For each pair, only genes with a q-value < 0.05 were considered as DEGs. 
The total number of DEGs found at each time point appears in parentheses. 
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A substantial overlap of DEGs was present when comparing rapid and slow groups 

with the control group at T2 and T3 (Figure 7). The overlapping DEGs between the rapid 

and slow groups were more numerous at T3 (2,952 DEGs) than at T2 (190 DEGs), 

supporting that the 2 groups behave similarly at the end-stage disease, as expected based 

on Figs. 4-6. Furthermore, the number of DEGs (1,189 DEGs) identified in both T2 and 

T3 in the rapid group was higher than the number of DEGs (171 DEGs) identified in both 

T2 and T3 in the slow group. This supports the theory that rapidly-progressing dogs 

express end-stage DEGs at a young age. The complete lists of DEGs from the time course 

analysis and all pairs of comparisons appear in Supplementary Table S9. 

 
 
 

 
Figure 7. Overlapping DEGs in rapid and slow groups compared with control at T2 
and T3. For each comparison, only genes with a q-value < 0.05 were considered as DEGs. 
The total number of DEGs found at each time point appears in parentheses. 
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Gene Ontology (GO) and pathway analysis of DEGs 

To characterize the GO terms, including molecular functions, biological processes, 

cellular components, and functional pathways of DEGs, we conducted over-representation 

tests for all pairs of comparisons in PANTHER version 11.1 (released on October 24, 

2016) (Figure 8 and Supplementary Table S10). We used the GO-Slim PANTHER 

annotation data set, which represents phylogenetically inferred annotations.341  

Overlap of GO terms among comparisons was commonly seen in the current study. 

We will focus on “biological process” since it is the most characterized GO term. Within 

this category, the “immune system process” family was upregulated in all 10 comparisons 

presented in Figure 8, and the “immune response” family was upregulated in all except 

for the rapid versus slow comparison at T2 and the time course analysis. Both immune-

related GO terms appeared to be more upregulated at T2 than T3. At T2, the “biological 

adhesion” family, especially the cell-cell adhesion subfamily, was expressed in the rapid 

group more than in the slow group (Supplementary Table S10). 

The most common pathway represented by the DEGs within the various 

comparisons was the “integrin signaling pathway” (Figure 8). This was the only pathway 

identified in the comparison between rapid and slow groups. It was also the top 

upregulated pathway at T2 comparing rapid and control groups. Interestingly, analyzing 

the overlapping DEGs between T2 and T3, the integrin signaling pathway was identified 

as the top upregulated pathway within the rapid group, but not within the slow group, as 

compared with control.   
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Figure 8. Enriched pathways and GO term analysis for 10 selected comparisons. Enriched pathways, biological processes, 
and regulator analysis for all DEGs are presented based on T2 and T3 comparisons as well as a time course analysis incorporating 
all time points for all groups. The number of genes was normalized to allow comparison between groups within the same 
pathway, and comparisons were color coded in pairs, with the darker color corresponding to the later time point or the rapid 
group.  
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The “T cell activation” pathway was another frequently detected pathway in our 

study (Figure 8). It was upregulated in all comparisons with control at T2 and in 

overlapping DEGs between T2 and T3 within both the rapid and the slow groups. Another 

upregulated pathway included the “inflammation mediated by chemokine and cytokine 

signaling pathway” that was identified only when comparing all affected dogs with 

controls at T2. Because only limited numbers of DEGs were discovered, no enriched 

pathways were identified at T1 with any comparison.  

To further explore the possible biological interaction between orthologous genes 

in the human, mouse, and rat, we performed Ingenuity Pathway Analysis (IPA) to discover 

the most prevalent pathways and upstream regulators within each comparison. The 

“hepatic fibrosis/hepatic stellate cell activation pathway” was identified as the top 

pathway in multiple comparisons (Supplementary Table S11). Transforming growth 

factor beta 1 (TGF-β1) was the most activated upstream regulator when the rapid and slow 

groups were compared at T2 and in the time course analysis (Supplementary Table S11). 

Immunohistochemistry (IHC) validation of inflammatory pathways 

Lastly, we aimed to validate the overexpression of inflammatory pathways in 

kidney biopsies. We chose to identify the predominant lymphocyte subtype present (T 

versus B cell) since the identified inflammatory pathways are all closely related to the 

presence of T lymphocytes342 and antibodies for CD3 (T cell) and CD20 (B cell) are 

validated for use in dogs.343,344 As shown in Figure 9, we confirmed the lymphocyte 

infiltration in the affected dogs to be composed mostly of T cells rather than B cells. This 

result correlates with the previously assigned chronic inflammation scores based on the 



 

89 
 

 

histopathological evaluation (Supplementary Table S5 and Figure S2) and validates our 

RNA-seq data. 

 
 
 

 

Figure 9. Expression of CD3 and CD20 using IHC in kidney biopsies from 
representative dogs. In affected dogs, lymphocyte infiltration presented at later time 
points consisted mostly of CD3-positive lymphocytes with few CD20-positive 
lymphocytes identified. Scale bar: 20 µm. 
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Discussion 

Dogs with XLHN have been studied as both an example of progressive canine 

glomerular disease and an animal model of human AS, which has CKD as a major 

syndrome component.20 The genetic cause is well characterized; however, the gene 

expression and molecular pathways influencing disease progression are incompletely 

known.  In particular, the variable rate of disease progression in dogs with the same 

mutation and within families affected by AS is intriguing.331 We, therefore, aimed to 

evaluate differential gene expression, overrepresented pathways, and upstream regulators 

by comparing RNA-seq data in dogs that displayed a rapid clinical progression of the 

disease to those with relatively slow disease progression.  

In this study, we examined serial biopsies from rapid and slow groups as well as 

healthy age-matched littermates. To understand the biological changes during the 

pathogenesis of CKD, we included the earliest time point at which clinical disease could 

be detected in these dogs (onset of proteinuria, T1), with the onset of azotemia (T2) and 

the advent of end-stage disease (T3). By performing renal biopsies when animals reached 

specific clinical markers of disease progression, we could compare the same clinical stage 

in the rapid and slow groups. We believe this type of approach provides more confidence 

in identifying DEGs that are involved in the rate of disease progression than the traditional 

method of using age-driven time points, as differences detected are likely to be the driving 

force rather than the consequence of disease progression. Our data demonstrate the 

dynamic changes in gene expression at different stages of the disease. It also supports that 

the biological processes and pathways of fibrosis/adhesion and inflammation are the likely 
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driving forces producing different rates of disease progression in the rapid and slow 

groups. 

While it is known that serum creatinine correlates strongly with tubulointerstitial 

fibrosis335, one of the most intriguing findings when comparing the rapid and slow groups 

was the increase in fibrosis observed in the rapid group at the same clinical stage of disease 

(T2 and T3; Figure 3). This corresponds with many of the 70 DEGs identified using RNA-

seq between the rapid and slow groups that are implicated in fibrosis, almost all of which 

were identified at T2. Several of these genes have been previously described as 

upregulated in XLHN dogs, Alport mice, and other kidney diseases.21,23,345,346 Among 

these, one of the upregulated genes, CD248 (endosialin or tumor endothelial marker 1, 

TEM1), has been found to mediate the adhesion and migration of cells through ligand 

interaction with the upregulated collagen-related genes: collagen type I, collagen type IV, 

and fibronectin-1(FN1).347 CD248+ stromal cells bind extracellular matrix and have been 

implicated in kidney348, liver349, and lung fibrosis.350 In non-inflamed kidneys, CD248 is 

expressed by mesangial cells located in glomeruli. In fibrotic kidneys, CD248 is 

additionally expressed by myofibroblasts and stromal fibroblasts, and the increased 

expression is closely related to prognostic indicators, such as albuminuria and renal 

scarring.348 Of note, one of the downregulated genes in the rapid group, prolactin receptor 

(PRLR), decreased in association with the extent of interstitial collagen I deposition in 

kidney transplant rejection351, suggesting that PRLR might be a protectant against renal 

fibrosis. In our study, the decrease in PRLR could be responsible for the more rapid 

development of fibrosis and consequential faster progression of disease in the rapid group. 
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Involvement of inflammatory components in the progression of CKD is another 

major finding of this study. Several inflammatory genes involved in fibrotic changes, such 

as biglycan (BGN), kielin/chordin-like protein (KCP), and MMP2 were upregulated in the 

rapid versus slow groups. BGN plays a role in bone growth, muscle development and 

regeneration, and collagen fibril assembly in multiple tissues. BGN is upregulated in renal 

fibrosis27, and BGN protein expression strongly correlated with chronic kidney 

progression in one study345, which may suggest its role in regulating inflammation and 

innate immunity. KCP expression is stimulated by renal stress, and it enhances the 

antifibrotic function of BMP7 to attenuate the profibrotic stimulus of TGF-β and to 

suppress proinflammatory cytokines.352 In Alport mice, the administration of recombinant 

BMP7 reduces glomerular and interstitial fibrosis but also upregulates MMP2.353 This 

upregulation of MMP2 seems contradictory, as it is associated with renal fibrosis in 

several animal models, including XLHN dogs.23 However, the function of MMP2 is 

specific to the temporal context of fibrosis. At the prefibrotic phase, increased MMP2 

induces epithelial to mesenchymal transition, tubular atrophy, and fibrosis. For established 

fibrosis, inducing MMP2 synthesis by BMP7 promotes proteolytic removal of 

accumulated extracellular matrix, which is thought to be a potential therapeutic strategy.354 

Since both KCP and MMP2 are upregulated at T2, when fibrosis is already relatively well 

established in the rapid group, their downstream actions are likely skewed toward anti-

fibrotic effects.  

Mechanisms other than fibrosis and inflammation can also play roles in the rapid 

progression of CKD. NAT8, which is almost exclusively expressed by tubular cells in the 
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renal cortex355, is a cysteine S-conjugate N-acetyltransferase that is responsible for 

glutathione-mediated detoxification of nephrotoxic substances. The downregulation of 

NAT8 in the rapid group suggests a more severe loss of normal renal function in the 

presence of similar serum creatinine concentrations compared with the slow group. 

Another downregulated gene, organic anion transporter 3 (OAT3, also known as 

SLC22A8), is decreased in kidney biopsies from human CKD patients46 and in a 

nephrectomized rat model of CKD.356,357 Reduced protein expression of Oat3 is associated 

with decreased excretion of an endogenous uremic toxin; meanwhile, the accumulation of 

this uremic toxin further inhibits Oat3-mediated transportation, accelerating toxin 

accumulation in serum.356,357 Therefore, downregulation of OAT3 in the rapid group may 

result in impaired urinary excretion that is not adequately represented by serum creatinine 

concentration.  

Only 2 DEGs, SCD5 and TK1, were differentially expressed in the rapid group as 

compared with the slow group at T1. SCD5 was downregulated at both T1 and T2 in the 

rapid compared with the slow group. And, it was downregulated in the rapid versus control 

comparison throughout all 3 time points. SCD5 is an isoform of stearoyl-CoA desaturase 

that is responsible for the formation of monounsaturated fatty acids. Although SCD5 has 

not previously been described in the CKD literature, it has been proposed as a novel 

regulator of neural cell proliferation and differentiation, likely through β-catenin-

independent (non-canonical) Wnt pathways.358 In fibrotic kidneys, the canonical Wnt 

pathway induces myofibroblast differentiation, and the non-canonical Wnt pathway leads 

to cytoskeleton rearrangement, cell adhesion, and cell movement.359 TK1 is the only DEG 
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that was exclusively upregulated at T1. Thymidine kinase is responsible for producing 

dTMP that is later incorporated into DNA. The cytoplasmic isoform of TK1 is cell cycle-

dependent, as it substantially increases in the S phase of the cell cycle. Given that 

unregulated proliferation is the hallmark of neoplasia, TK1 is a valuable serum marker for 

breast cancer, non-Hodgkin’s lymphoma, plasmacytoma, and lung cancer.360 Its 

upregulation in our study could indicate increased cell proliferation at T1 in the rapid 

group. However, further investigation of SCD5 and TK1 is needed to determine their roles 

in CKD progression. 

In addition to abovementioned genes, many genes that are rarely described in CKD 

progression were found differentially expressed in the rapid versus slow groups at T2 (eg, 

LOX, PAMR1, CDCA8, C1QTNF6, FNDC1, CCDC80, MFSD7, FMO2, SI, SLC26A4). 

The protein product of the upregulated gene lysyl oxidase (LOX) is an extracellular 

enzyme that is essential for covalent cross-linking of collagen in irreversible extracellular 

matrix deposition.361 Despite reports of its upregulation in liver fibrosis362,363 and 

cardiomyopathy364, the upregulation of LOX in CKD has only been described in one study 

using a glomerulonephritis mouse model.365 Simtuzumab, a monoclonal antibody that 

inhibits one of the LOX family members, lysyl oxidase homologue 2 (LOXL2), has 

recently been a focus of research as a possible new treatment for lung, liver, and kidney 

fibrosis due to a similar pathogenesis.366 Another gene minimally described in nephrology 

is the downregulated sucrase-isomaltase (SI). SI is an α-glucosidase that commonly 

appears on the brush border of small intestinal enterocytes and is involved in glucose 

digestion. SI is also present in small amounts in non-intestinal cells such as blood 
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leukocytes and kidney cells.367 Little is known about the function and significance of SI 

in the renal tubule. However, the decreased expression of SI could indicate renal damage.  

To characterize DEGs in functional groups, we performed GO terms and pathway 

analyses by comparing affected dog groups, both individually and collectively, with 

control dogs at each time point. GO terms showed that the functions of identified DEGs 

were associated with “biological adhesion,” “immune system processes,” and “immune 

response,” representing a common mechanism of disease progression in the early stages 

of CKD.368 Consistent with the GO terms, the “integrin signaling pathway” was the most 

upregulated pathway, and the “T cell activation pathway” and the “chemokine and 

cytokine signaling pathway” were also upregulated in multiple comparisons. The 

exclusive early expression of the “integrin signaling pathway” in the rapid group and 

universal expression at a later time point could indicate that it is an essential pathway 

driving rapid progression of disease in these dogs. The “integrin signaling pathway” 

consists mainly of collagen and integrin genes. The integrin subunit α 2 gene (ITGA2) was 

increased in the rapid versus control group at both T2 and T3. The COL4A3-/-/ITGA2-/- 

double knockout Alport mouse model has delayed renal fibrosis compared with COL4A3-

/-/ITGA2+/+ Alport mice, which express significantly higher levels of MMP2, MMP9, 

MMP12, and TIMP1.369 Upregulation of MMP2 is consistent with our Alport dog model, 

suggesting that the “integrin signaling pathway” is involved in matrix accumulation.  

To verify the pathway analysis results, we used IHC to identify the infiltrating 

lymphocyte population. The “T cell activation,” “integrin signaling,” and the 

“inflammation mediated by chemokine and cytokine signaling” pathways are all closely 
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related to the presence of T lymphocytes.342 Consistent with this, T lymphocytes were 

identified as the predominant inflammatory cell population present in the affected dogs, 

as well as in a study of canine end-stage renal disease.370 Moreover, T cell infiltration 

inversely correlates with renal function at the time of renal biopsies in AS patients.371 

Overall, IHC validated the results of GO terms and pathway analyses, which showed that 

inflammatory pathways and corresponding biological processes are altered during the 

progression of CKD. 

IPA allows for characterizing orthologous genes, and results identify possible 

mechanisms that have been validated in humans, mice, and rats. The top upregulated 

pathway identified in multiple comparisons was the “hepatic fibrosis/hepatic stellate cell 

activation pathway.” The IPA identified enriched pathways based on the over-represented 

DEGs, and the principle is the same as that used in the Gene Ontology analysis via Panther. 

There was an extensive overlap between the DEGs we identified and the genes involved 

in the “hepatic fibrosis/hepatic stellate cell activation pathway” in the IPA, including 

collagen genes, cytokine-related genes, matrix metalloproteinases, tissue inhibitor of 

metalloproteinase, and the TNF receptor superfamily. Therefore, the upregulation of this 

pathway in our study supports common mechanisms involved in hepatic and renal fibrosis. 

It could also indicate contributing genes beyond those identified using known canine gene 

pathways.  

The upstream regulator analysis of IPA identified the TGF-β group, especially 

TGF-β1, as the top upstream regulator, with both the highest activated z-score and the 

lowest P-value across multiple comparisons. Previous studies in canine29 and murine372 



 

97 
 

 

models of AS demonstrated the expression of TGF-β mRNA in kidney tissue. However, 

TGF-β was not differentially expressed in our comparisons, and IHC staining for TGF-β 

did not demonstrate appreciable differences in XLHN dogs compared to controls in a 

previous study.29 The IPA Upstream Regulator Analysis predicts the upstream regulator 

of gene expression changes based on the knowledge of this regulatory cascade in the 

literature compiled in the Ingenuity Knowledge Base. Thus, the identified upstream 

regulator may not be identified as a DEG despite its importance in gene regulation.  

A limiting factor of this study is that the kidney biopsies were immediately placed 

into RNAlater to preserve RNA integrity, so microscopic evaluation could not be 

performed to determine whether the biopsy used for RNA isolation was representative of 

the cortex as a whole. Thus, one of the samples in the control group at T1 could have 

represented an area affected by a clinically insignificant insult. Another limiting factor is 

that expression data represents the mean expression by many cell types. Because the 

kidney has many cell types, all with different roles in CKD progression, it would be ideal 

to study gene expression changes in individual cells using laser-capture microdissection 

to further elucidate the progression of CKD. Last, extensive validation of the RNA-seq 

results was not performed; however, previous studies have shown RNA-seq to be a robust 

tool that highly correlates with qRT-PCR results.32-37 RNA-seq may even be more reliable 

than qRT-PCR due to its higher sensitivity and lower probe bias.34 We did perform IHC 

to further characterize the inflammatory population, which supported the pathways 

identified through the RNA-seq results.   
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In what appears to be the first RNA-seq study of a canine CKD model, we 

identified several previously described and novel genes and enriched pathways involved 

in the pathogenesis and development of CKD. The approach of acquiring biopsies at time 

points determined by the clinical stage of disease was an attempt to target causative gene 

expression starting at the clinical onset of proteinuria rather than secondary changes. 

Regardless of initial insult, CKD has common pathways that lead to end-stage kidney 

disease.334 Therefore, many genes found in the current study may serve as predictive or 

diagnostic biomarkers for early detection of CKD in dogs and people. They may also be 

potential targets for drug development for this condition.  
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CHAPTER III      

INVESTIGATION OF MICRORNAS AS NON-INVASIVE BIOMARKERS OF 

CHRONIC KIDNEY DISEASE IN DOGS 

 

 

Introduction 

Dogs with XLHN have been used as a model of canine CKD as well as an animal 

model of human AS.20 XLHN dogs have a naturally-occurring, 10-base deletion in 

COL4A5 gene located on the X chromosome. The genetic defect leads to inability to 

synthesize complete ⍺5 chains19, one of the main components in the GBM of the mature 

kidney in mammals20, causing juvenile-onset, rapidly progressive CKD in affected 

(hemizygous) males and persistent proteinuria in carrier (heterozygous) female dogs.20 In 

humans with AS, 85% are X-linked, with a mutation in COL4A5.328 While male AS 

patients have juvenile-onset CKD, ocular abnormalities, and hearing loss329, the renal 

abnormalities are the only documented feature in XLHN dogs.20 The juvenile-onset CKD 

manifests as persistent proteinuria of glomerular origin as early as 3 months of age in the 

affected male dogs with XLHN, followed by progressive azotemia and decreased GFR, 

developing into end-stage renal failure between 6 months to 1 year of age.18,20,373 

Previously, our group used RNA-seq to characterize the gene expression in dogs with 

XLHN demonstrating rapid versus more slowly progressive disease. In that study, more 

than 1947 DEGs were identified in affected dogs, and TGF-β1 was identified as the top 

upstream regulator.373 While we have described the gene expression related to CKD 
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progression, the driving force leading to such a distinct change has not been completely 

understood.  

MiRNAs are small, non-coding RNAs that post-transcriptionally regulate gene 

expression through binding the 3’ UTR of mRNAs.39-41 The complex miRNA-mRNA 

interaction influences various physiological changes and pathological processes.40 In the 

kidney, miRNAs play important roles in kidney development and progression of CKD in 

humans and animals.374,375 While highly expressed renal miRNAs have been identified in 

healthy dogs376,377, a comprehensive renal miRNA expression profile in dogs with CKD 

is lacking. Therefore, we aimed to use small RNA-seq to identify differentially expressed 

renal miRNAs that contribute to CKD progression in dogs.  

 A typical small RNA-seq workflow includes RNA isolation, library preparation, 

sequencing, data analysis, and qRT-PCR verification. Of these steps, data analysis remains 

the most intimidating step in sequencing projects.30 Herein, we compared the performance 

of 3 different analysis tools: miRDeep2378, Array Studio, and CPSS 2.0.276 We 

subsequently used NormFinder300 on the small RNA-seq data to explore promising 

miRNAs as internal controls for qRT-PCR normalization, followed by verification with 

geNorm298 and qbase+.299 The identified miRNA internal controls can be used for reliable 

normalization for the future studies.  

 In the current study, small RNA-seq was performed on RNA isolated from canine 

kidney biopsies to characterize and compare the miRNA expression between dogs with 

XLHN versus controls at 3 clinical time points. The performance of 3 alignment tools that 

use the canine genome and miRNA annotations were compared and verified by qRT-PCR. 
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The results obtained from the optimal alignment tool were used to find putative miRNA 

targets. We then conducted GO and pathway analyses to characterize the miRNAs targets 

among sample groups at specific time points. Our results deepen both the current 

understanding of the molecular mechanisms in AS as well as CKD progression in general. 

The DE miRs can be predictive biomarkers for the early detection of CKD and can 

represent potential therapeutic targets for CKD in both dogs and humans. 

Material and methods 

Animals  

The dogs evaluated in this study were part of a colony with XLHN maintained at 

Texas A&M University.18  XLHN is caused by a 10-base deletion in the gene encoding 

the ⍺5 chain of type IV collagen. The affected males developed juvenile-onset CKD that 

progressed to end-stage renal disease as previously described.18 Overall, 5 affected dogs 

and 4 age-matched, unaffected littermates were included in this study. All dogs were 

raised according to standardized protocols, and no treatments were given to these dogs. 

All protocols were approved by the Texas A&M University Institutional Animal Care and 

Use Committee. 

Clinical phenotypes 

Clinical progression in the affected dogs was determined by serial monitoring of 

serum and urine biomarkers of kidney diseases, which allowed for comparison of dogs at 

standardized clinical time points335: T1 (n = 5; onset of proteinuria: defined as the presence 

of microalbuminuria (E.R.D. HealthScreen Canine Urine Test strips, Loveland, CO, USA) 
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for 2 consecutive weeks); T2 (n = 3; onset of azotemia: serum creatinine ≥ 1.2 mg/dL); 

and T3 (n = 3; serum creatinine ≥ 2.4 mg/dL). On average, the affected dogs reached the 

first clinical time point (T1) at 13.2 weeks of age (range: 11-17 weeks), the second clinical 

time point (T2) at 23.3 weeks of age (range: 21-26 weeks), and the last clinical time point 

(T3) at 29.6 weeks of age (range: 24-33 weeks). (Supplementary Table S12).  

Tissue collection and histopathological evaluation 

Kidney cortex was collected by ultrasound-guided needle biopsy from each dog at 

the aforementioned 3 clinical time points (independent of age), and control dogs (n = 4 at 

all 3 time points) were biopsied to correspond with an affected littermate. Samples for 

pathology evaluation and immunohistochemistry were placed in formalin and embedded 

in paraffin, and they were processed and evaluated as previously described.335,373 Samples 

for small RNA-seq were immediately placed in RNAlater Stabilization Solution (Life 

Technologies, Foster City, CA, USA) and stored at -80 °C until RNA isolation.  

RNA isolation and sequencing 

All samples (n = 23) were homogenized in RLT Buffer (Qiagen, Valencia, CA) using 

a Bead Ruptor Mill Homogenizer (Omni International, Kennesaw, GA). Total RNA, 

including small and miRNA, was isolated using the mirVana miRNA Isolation Kit 

(ThermoFisher Scientific, Waltham, MA) following the manufacturer’s protocol. Total 

RNA concentration and the 260/280 absorbance ratio was determined by the 

NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA) (Supplementary 

Table S12). The samples were processed using the TruSeq Small RNA library prep kit 
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(Illumina, San Diego, CA, USA) according to the manufacturer’s protocol. The steps of 

the library preparation included Small RNA filtration on PAGE gel, adapter ligation, 

reverse transcription, PCR product purification, and library quality testing by the Agilent 

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and the ABI 

StepOnePlus Real-Time PCR System. Samples were then sequenced using the Illumina 

HiSeq 4000 (50 bp single-end) at the sequencing facility (BGI) to reach the expected 

output of 10M reads per sample.  

Data analysis 

Small RNA-seq reads and quality control were reprocessed by the sequencing facility 

(BGI). Data analysis was carried out by using 3 different tools: (1) Array Studio (Version 

10.0.1.48, Omicsoft lnc., Cary, NC), a commercial next-generation sequencing and -omic 

analysis software, (2) miRDeep2378(version 2.0.0.8, Latest Update: May 2016), a popular 

algorithm for miRNA identification, and (3) CPSS 2.0 

(http://114.214.166.79/cpss2.0/index.html), a web-based Small RNA-seq analysis tool.276 

For all 3 analyses, canine genome (CamFam 3.1) and miRBase (release 21) were used 

with default settings. MiRDeep2 was performed using the high performance research 

computing resources provided by Texas A&M University (http://hprc.tamu.edu) in the 

Linux operating system (version 2.6.32). For all 3 tools, un-normalized raw read counts 

were used to perform differential expression and statistical analysis with the identical 

script using DESeq2272 (release 3.3) in R (version 3.3.2) as previously described.373 We 

used the Benjamini-Hochberg procedure340 to adjust P-values for multiple testing. An 

adjusted P-value < 0.05 was set for the selection of DE miRs. 
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Target prediction, gene ontology (GO), and pathway analysis 

For DE miRs at each time point, we selected the top 10 up-regulated (fold change > 

2) and down-regulated (fold change < 2) miRNAs as input for miRDB379 

(http://mirdb.org/. Last modified on May 3, 2016). MiRDB is an online database for 

miRNA target prediction that hosts predictive miRNA targets in 5 species: human, mouse, 

rat, dog and chicken. To date, there are 453 miRNAs targeting 128,703 genes in the 

database.  All miRNA targets are assigned with a target score range from 50-100 

determined by the MirTarget algorithm.380 We used the target score of 90 as a cutoff value 

since higher scores represent more statistical confidence. The list of miRNA targets was 

passed onto Gene ontology and PANTHER pathway analysis using Canis familiaris 

reference list (20,141 genes in the database) and the Overrepresentation Test (released on 

December 5, 2017) in PANTHER381 version 13.1 with the default setting (Protein 

ANalysis THrough Evolutionary Relationships, http://www.pantherdb.org/, released on 

February 3, 2018). Also, manually curated Reactome pathway analysis382 version 58 

(released on December 7, 2016) was used. The updated PANTHER Overrepresentation 

Test incorporates Fisher’s Exact Test with false discovery rate multiple test correction, 

and adjusted P-value < 0.05 was set as the cutoff value.  

qRT-PCR verification and normalization 

Small RNA-seq data generated by the 3 alignment tools were analyzed using 

NormFinder300 to identify suitable miRNAs as candidates for qRT-PCR internal controls. 

Ten RNA samples remain available after small RNA-seq were used for qRT-PCR. 

Additionally, 2 control samples used in a previous study373 were recruited to make 2 
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affected dogs and 2 controls for each time point. The miRCURY LNA miRNA PCR 

Assays (Qiagen, Germany) were used for the miRNA targets: miR-142 (Cat. no. 

YP02102101), miR-147 (Cat. no. YP00204368), and miR-21 (Cat. no. YP00204230), and 

miRNA internal controls: miR-16 (Cat. no. YP00205702), miR-186 (Cat. no. 

YP00206053), miR-26b (Cat. no. YP00205953), and miR-99a (Cat. no. YP00204521). 

First, total RNA isolated from kidney biopsies was diluted to the concentration of 10 

ng/µL. Next, the miRCURY LNA RT Kit (Qiagen, Germany) was used in a 10 µL reaction 

for RT consisting of 2 µl of 5X Reaction Buffer, 5 µL RNase-free water, 1 µL enzyme 

mix (omitted for no reverse transcriptase controls), and 2 µL diluted RNA (10 ng/µl). The 

RT reaction was performed using a T100 Thermal Cycler (Bio-Rad, UK) with the protocol 

of 60 minutes at 42°C (reverse transcription), 5 minutes at 95°C (inactivation), followed 

by storage at -20°C. While the cDNA is stable for up to 5 weeks, all PCRs were performed 

within 18 days from the RT reaction. For PCR, the miRCURY LNA SYBR Green PCR 

Kit (Qiagen, Germany) was used to make a 10 µL reaction consisting of 5 µL SYBR Green 

Master Mix, 1 µL PCR Primer Mix, 1 µL RNase-free water, and 3 µL 1:15 diluted cDNA 

(omitted for no template controls). Mater Mix and cDNA were distributed in Hard-Shell 

384-Well Standard PCR Plates (Bio-Rad, UK) by the epMotion 5075 Automated Liquid 

Handling Systems (Eppendorf, Germany). The PCR was performed using a CFX384 

Touch Real-Time PCR Detection System (Bio-Rad, UK) with the protocol of 2 minutes 

at 95°C (initial heat activation), 40 cycles of 10 seconds at 95°C (denaturation) and 60 

seconds at 56°C (annealing), followed by a melting curve analysis at 60-95°C. Negative 



 

106 
 

 

controls included RNase-free water only, no reverse transcriptase (NRT), and no template 

controls (NTC) to ensure no genomic DNA contamination was present.  

Once qRT-PCR was performed, the Cq values of these candidate miRNAs were 

further analyzed by geNorm298 in the qbase+ software.299 Candidate miRNAs for internal 

controls were ranked by geNorm298 base on the stability (M value) and coefficient of 

variation. The algorithm of geNorm298 then calculates the normalization factor (V value) 

and determines the optimal number of internal controls. Lastly, the consolidated candidate 

miRNAs were analyzed for reference target stability quality control in qbase+.299 Data 

were normalized base on the 2-DDCq method304, using miR-186 and miR-26b as reference 

miRNAs. One-way ANOVA was applied for mean comparison using the qbase+ 

software.299 P-value less than 0.05 was set as cut-off value. 

Results 

Summary of histopathological evaluations 

The interstitial fibrosis scores and the chronic inflammation scores of 

representative cortical fields of the kidney biopsies were recorded in Supplementary Table 

S12. In the current study, the clinical time points in affected dogs were defined as: T1 - 

onset of proteinuria (the earliest time point that clinical disease can be detected); T2 - onset 

of azotemia (sCr ≥ 1.2 mg/dL); and T3 – advanced CKD (sCr ≥ 2.4 mg/dL).  At T2, the 

mean fibrosis and chronic inflammation scores were significantly higher in affected dogs 

than in controls (Supplementary Table S12). However, no statistically significant 

difference was observed between affected dogs and controls at T1 and T3.  
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Summary of canine RNA-sequencing data 

We obtained an average RNA yield of 437.6 ng/µL with an average 260/280 

absorbance ratio of 2.1 from 23 kidney biopsies collected at 3 clinical timepoints 

(Supplementary Table S12). For each sample, approximately 12 million single-end reads 

passed the quality control. Overall, 81-99% of reads were mapped to the canine genome 

(CanFam 3.1). The mean genome mapping rate of CPSS 2.0 (99.x%) was significantly 

higher than for Array Studio (90.0%) and miRDeep2 (88.7%) (Supplementary Figure S5). 

Both CPSS 2.0 (167 miRNAs) and Array Studio (170 miRNAs) detected a significantly 

higher number of miRNAs than miRDeep2 (124 miRNAs). The average miRNA mapping 

rates were high, ranging from 83 to 94% for each sample (Supplementary Table S12). The 

representative read length distribution and genome mapping results are illustrated in 

Figure 10.  
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Figure 10. Averaged read length distribution (bar chart) and genome mapping 
results (pie charts). Bar chart: the majority of sequencing reads were between 21-25 
nucleotides in length, consistent with miRNAs. Pie charts: the pie charts show almost all 
reads mapped to the dog genome. Among the mapped reads, the vast majority belong to 
miRNA (90.8%), with a small population mapped to non-coding RNA (Rfam database; 
7.7%) and mRNA (0.5%). The results of CPSS 2.0 analysis were used. 
 
 
 

Exploratory principal component analysis (PCA) 

PCA was performed to assess the clustering between samples at each clinical time 

point (T1, T2, and T3). The PCA of read count tables obtained from all 3 alignment tools 

showed similar patterns, and representative PCA plots for each clinical time point are 

shown in Figure 11. Two samples from affected dogs showed a distinct miRNA expression 

pattern at T1 (Figure 11A). At T2, samples were further separated out except for one 

affected dog (Figure 11B). When dogs developed advanced azotemia at T3, a clear 

separation between affected and control dogs was seen (Figure 11C). At each clinical time 

point, the principal components 1 (PC1) and 2 (PC2) accounted for 62-76% of the total 

variation in miRNA expression.  
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Figure 11. PCA plots for all samples at 3 clinical time points. The percentage of 
variance in principal component 1 (PC1) and 2 (PC2) indicates how much variance in 
miRNA expression was explained by PC1 and PC2. The result of CPSS 2.0 were used. 
(Red: control group; Green: affected group). 
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Differentially expressed miRNAs (DE miRs) 

Overall, up to 25 miRNAs (adjusted P-value < 0.05) differentially expressed between 

affected and control dogs were found at each clinical time point as shown in the Venn 

diagrams (Figure 12 and Supplementary Table S13). The number of DE miRs detected at 

each time point by all 3 alignment tools were similar to each other. Of note, miR-147 was 

identified as upregulated with a more than 3.78-fold change at all time points in both CPSS 

2.0 and Array Studio but not in miRDeep2. Similarly, both CPSS 2.0 and miRDeep2 found 

miR-142 upregulated with a more than 2.14-fold change at all time points, whereas Array 

Studio did not identify miR-142 as differentially expressed.  

 
 
 

 
Figure 12. DE miRs identified by each alignment tool at the 3 time points (T1, T2, 
and T3). Comparing the affected dogs with sex- and age-matched controls, up to 25 DE 
miRs were found at each clinical time point. Only miRNAs with an adjust P-value < 0.05 
were considered as DE miRs. The total number of DE miRs found at each time point 
appears in parentheses.  

 
 
 
The miRNAs repetitively identified as differentially expressed in all 3 tools at each 

time point are listed in Table 5 (adjusted P-value < 0.05, absolute fold change > 2). MiR-

802, miR-146b, and miR-21 were upregulated in kidney tissues of affected dogs 
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throughout all time points. Hierarchical clustering analysis and heatmap of miR-802, miR-

146b, and miR-21 in all samples show almost all affected dogs clustered together (Cluster 

1 in Figure 13).  The hierarchical clustering results (Cluster 2 in Figure 13) agree with 

PCA plots in that affected dogs were distinctly separated from the controls for all but 2 T1 

dogs (Figure 11A) and 1 T2 affected dogs (Figure 11B).  

 
 
 

 

Figure 13. Hierarchical clustering analysis and heatmap of miR-802, miR-146b, and 
miR-21. MiR-802, miR-146b, and miR-21 were upregulated throughout all time points in 
affected dogs compared with controls. (Column names: A and C designate affected dogs 
and controls; Arabic numerals represent individual dogs in each group; T1, T2, and T3 
designate 3 clinical time points). The result from CPSS 2.0 analysis were used. 
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Table 5. Top DE miRs identified in affected dogs versus controls at 3 time points.  

Time points Regulation miRNAs Fold Change Adjusted P-value 

T1 Up 

miR-802* 10.34 6.07E-05 
miR-146b* 5.04 1.84E-03 
miR-21* 4.92 4.66E-05 
miR-150 3.76 1.14E-02 
miR-142 3.18 2.35E-03 
miR-101 2.78 1.76E-02 
miR-31 2.70 2.39E-02 
miR-19a 2.59 4.32E-02 
miR-29a 2.30 7.68E-04 
miR-340 2.21 3.80E-04 

T2 
Up 

miR-802* 18.33 4.09E-06 
miR-146b* 9.16 1.08E-04 
miR-183 8.18 1.08E-04 
miR-150 6.33 3.06E-04 
miR-182 4.99 8.25E-04 
miR-142 4.65 8.25E-04 
miR-96 4.18 2.10E-02 
miR-21* 3.75 1.25E-03 
miR-146a 3.59 1.02E-02 
miR-380 3.57 9.17E-03 
miR-410 3.35 9.37E-03 
miR-155 3.03 3.70E-02 
miR-335 2.77 3.37E-02 
miR-31 2.49 9.70E-03 
miR-451 2.29 4.63E-02 
miR-29a 2.29 3.35E-03 

Down miR-196a -2.13 8.25E-04 
miR-215 -2.28 1.84E-02 

T3 Up 

miR-802* 6.99 8.03E-05 
miR-146b* 4.03 5.47E-04 
miR-18a 3.35 1.30E-02 
miR-21* 3.29 3.48E-03 
miR-155 2.89 3.23E-02 
miR-34a 2.89 3.23E-02 
miR-708 2.08 4.07E-02 

Down miR-486 -2.40 2.62E-02 
All listed miRs have an absolute fold change > 2 and adjusted P-value < 0.05 in the 
CPSS 2.0 analysis. 
* miRNAs were DE miRs identified in all 3 time points. 
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qRT-PCR validation of DE miRs 

To verify the sequencing results, we performed qRT-PCR for 3 miRNAs (miR-142, 

miR-147, and miR-21) that were found to be upregulated at all time points using at least 

2 alignment tools. Also, NormFinder analysis was performed on the sequencing data, and 

4 miRNAs were identified as promising internal controls (miR-16, miR-186, miR-26b, 

and miR-99a). We examined the expression of these 7 miRNAs using 10 samples 

sequenced in the current study and 2 control samples used in a previously study373 to make 

2 samples from each group at each respective time points. The geNorm analysis showed 

stable expression for 3 of the 4 promising internal controls (miR-16, miR-186, and miR-

26b), and the use of the 2 most stable miRNAs (miR-186 and miR-26b) were indicated 

(Supplementary Figure S6). In the reference target stability quality control of qbase+, we 

further verified the stability of miR-186 and miR-26b and confirmed that they are reliable 

for normalization (Supplementary Figure S6C).  

Using qRT-PCR, we verified the upregulation of miR-142, miR-147, and miR-21 in 

the kidney tissues of affected dogs at T2 and T3, as detected by small RNA-seq (Figure 

14). This finding supports that CPSS 2.0 outperformed Array Studio and miRDeep2 in 

capturing the expression of miR-142 and miR-147. Moreover, the qRT-PCR data showed 

a time-dependent increase in the degree of upregulation that was not discernable from the 

small RNA-seq data. As shown in Figure 14, the expression of miR-142, miR-147, and 

miR-21 gradually increased as the kidney disease progressed in the affected dogs while 

expression in the control dogs was similar throughout each time point. The complete pair-

wise comparison results are available in Supplementary Table S14.  
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Figure 14. Expression of selected upregulated miRNAs in affected dogs and controls 
detected by qRT-PCR and small RNA-seq at 3 time points. (A) Expression of miR-
142, (B) Expression of miR-147, (C) Expression of miR-21. The expression of miRNAs 
detected using qRT-PCR is represented in lines on the top of each figure with the 
corresponding normalized relative quantity on the right vertical axis. The bars on the 
bottom of each figure represent the small RNA-seq data with the corresponding 
normalized reads on the left vertical axis. Data are presented as mean value ± standard 
deviation. (*: P-value < 0.05; **: P-value < 0.01;***: P-value < 0.001; ****: P-value < 
0.0001). 
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Target prediction, Gene Ontology (GO), and pathway analysis for DE miRs 

Based on the qRT-PCR results, data obtained from CPSS 2.0 were used to proceed 

with the remaining analysis. The top 10 DE miRs with an absolute fold change more than 

2 were selected as inputs for miRDB.379 To better characterize the changes in target genes, 

upregulated and downregulated DE miRs were used as 2 separate inputs. In miRDB, only 

putative target genes with a target score higher than 90 were considered satisfactory for 

the subsequent overrepresentation test in the PANTHER Gene Ontology and pathway 

analyses381,382 (Supplementary Table S15).  

Due to the low number of downregulated miRNAs and the consequently insufficient 

miRNA targets, no Gene Ontology and pathway analyses results were obtained for 

downregulated miRNAs at all time points. In contrast, 319 to 729 putative targets of 

upregulated miRNAs were mapped in PANTHER, identifying 12 biological process GO 

terms, 3 Reactome pathways, and 12 PANTHER pathways (Supplementary Table S16). 

Cellular process and RNA metabolic process were the main GO terms enriched in the 

current study. Specifically, “regulation of transcription from RNA polymerase II 

promoter” was upregulated at T1 and T3 while “intracellular signal transduction” and 

“regulation of phosphate metabolic process” were upregulated at T2 and T3. 

For Reactome pathway analysis, the signal transduction pathway was enriched in 

affected dogs throughout the progression of kidney disease, and its subfamily pathway, 

the “signaling by TGF-β receptor complex” pathway was also enriched approximately 5-

fold at T1. The PANTHER pathways, such as gonadotropin-releasing hormone receptor 

pathway and Wnt signaling pathway, were enriched in affected dogs at T1 and T2. Ten 
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other enriched PANTHER pathways were identified at T2, but no PANTHER pathway 

was identified at T3, presumptively due to fewer miRNA targets (Supplementary Table 

S16).  

Discussion 

Dogs with XLHN haven been studied as an example of canine CKD as well as an 

animal model for human AS. The gene expression in XLHN dogs has been partially 

characterized using qRT-PCR29 and microarray.21 Recently, our group used RNA-seq to 

investigate the gene expression linked to rapid CKD progression in dogs with XLHN.373 

In the current study, we performed small RNA-seq on 23 kidney specimens collected 

during serial renal biopsies from affected dogs and healthy littermates to characterize the 

miRNA expression during CKD progression. Up to 25 miRNAs were differentially 

expressed at specific clinical time points comparing affected dogs with controls, including 

3 miRNAs (miR-146b, miR-21, and miR-802) that were upregulated throughout all 3 time 

points. Meanwhile, we compared 3 miRNA alignment tools to optimize the data analysis 

in small RNA-seq and identified promising miRNA internal controls (miR-186 and miR-

26b) for qRT-PCR normalization.   

 Table 5 lists DE miRs with more than a 2-fold change during the progression of 

CKD, including 22 unique upregulated miRNAs and 3 downregulated miRNAs. The 

majority of DE miRs were upregulated in the kidney tissue of affected animals as in 

previous studies using CKD mouse models.383,384 Among them, miR-146b, miR-21, and 

miR-802 were consistently upregulated in affected dogs before the presence of azotemia. 

Both miR-146b and miR-21 were previously described in the context of CKD. In one 
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study, miR-146b and miR-21 were among the top 3 upregulated miRNAs in the kidney 

tissue of 12-month-old mice with spontaneous CKD (B6.MRLc1) compared to healthy 

controls (C57BL/6).383 The upregulation of renal miR-146b was also noted in 4 other 

kidney injury mouse models (folic acid-induced, unilateral ureteral obstruction, bilateral 

renal ischemia/reperfusion, and cisplatin-induced)384,385 with peak expression associated 

with fibrosis. In our study, miR-146b reached peak expression at T2 based on sequencing 

data, which was the time that XLHN dogs became azotemic and had visible fibrotic change 

on histopathological evaluation.373 MiR-21 is regulated by TGF-β1/Smad3386,387 and 

contributes to renal fibrosis by silencing metabolic pathways388; however, it also possesses 

a protective effect against ischemic injury in the kidney.389 Several studies have 

documented an increase in renal miR-21 during CKD.383,387,390-392 In the current study, 

qRT-PCR verified upregulation of renal miR-21 at T2 and T3 in affected dogs, 

corresponding with our previous finding that TGF-β1 is the top up-stream regulator of 

CKD progression in XLHN dogs.373  Recently, we have identified the same miR-21 

upregulation pattern in a larger group of XLHN dogs. The expression of renal miR-21 did 

not increase significantly until affected dogs became azotemic (unpublished 

observations). Similarly, the expression of renal miR-21 did not differ between T2 and T3 

in the current study (Supplementary Table S13).  

 In addition to abovementioned DE miRs, renal miR-146b, miR-150, and miR-29a 

that have been described in CKD progression were also upregulated in affected dogs at 

various time points. MiR-146a is highly homologous to miR-146b, and they differ by only 

2 nucleotides in dogs, mice, and humans. In dogs with XLHN, renal miR-146 was 
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upregulated at T2 in the affected dogs. The upregulation of miR-146a was seen in the 

kidney tissues of IgAN patients393, a CKD mouse model383, a DN rat model394, dogs with 

CKD100, and in the glomeruli of LN395 and membranoproliferative GN.396 Renal miR-150 

is upregulated at T1 and T2 in affected dogs. It was also upregulated in 24-month-old rats 

compared to young rats397 and in LN patients.398 Mir-29a was upregulated at T1 and T3 in 

affected dogs. In contrast, decreased renal miR-29a expression was seen in streptozotocin-

induced DN mice and in an adenine-induced renal fibrosis mouse model.399 Some studies 

showed the inhibition of miR-29 was caused by TGF-β1399 and likely mediated by Smad3 

during DN progression.400 However, the reduction of miR-29 could also be regulated by 

hyperglycemia, given the changes seen in podocytes and mesangial cells of DN mice.401,402 

We speculated that the discrepancies in the directions and time points of miRNA 

expression could be caused by the difference in the enriched location of miRNAs (TI 

versus glomerular) and different subtypes of CKD.  

 Several miRNAs identified in our study have only been rarely described in the 

context of CKD, including miR-802, miR-142, and miR-147. The expression of renal 

miRNA-802 was upregulated in the dogs with XLHN throughout all 3 time points. The 

increased expression of miR-802 was observed in the kidney, specifically in the cortical 

collecting duct, of mice exposed to high potassium diets.403 In vitro, miR-802 targets 

caveolin-1 and decreases caveolin-1 expression, which in turn increases the surface 

expression of the renal outer medullary potassium channel and facilitates potassium 

excretion.403 We have reported the caveolin-1 gene (CAV1) being differentially expressed 

in dogs with XLHN at T2 and T3373; however, we would expect the putative target for 
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miR-802 to be downregulated, whereas it was upregulated in that study. More studies are 

needed to resolve the discrepancy. The upregulation of renal miR-142 in XLHN dogs was 

verified by qRT-PCR at T2 and T3. The canine miR-142 (cfa-miR-142) differs from miR-

142-3p in humans, mice, and rats by 2 nucleotides. The human miR-142-3p (hsa-miR-

142-3p) was upregulated in patients with acute rejection of a renal allograft404, most likely 

due to an influx of lymphoid cells as in acute T-cell mediated rejection.405 We have 

demonstrated T cells were the predominant lymphoid cells that infiltrate the kidneys of 

dogs with XLHN373; therefore, the source of upregulated miR-142 would likely be T cells. 

The upregulated miR-147 in XLHN dogs at T2 and T3 was also verified by qRT-PCR. 

However, research on human miR-147b-3p and its role in the development of CKD is 

lacking.  

We identified DE miR target genes and performed GO terms and pathway analyses 

at each time point. The biological process GO terms were mainly “Cellular process” and 

“RNA metabolic process,” with subfamilies indicating “MAPK cascade” and “regulation 

of transcription from RNA polymerase II promoter,” respectively. We incorporated the 

peer-reviewed, manually curated Reactome pathways to characterize the miRNA targets 

presented in our study.381 The Reactome pathway analysis results are consistent with the 

GO terms that show involvement of the “signal transduction” pathway. Particularly, the 

“signaling by TGF-β receptor complex” is consistent with our previous finding that TGF-

β1 was the top upstream regulator of CKD progression in XLHN dogs.373 Other 

PANTHER pathways were also related to signaling transduction, such as “gonadotropin-

releasing hormone receptor” and “Wnt signaling” pathways. Indeed, several genes in these 
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2 pathways were downregulated in dogs with XLHN used in a previous mRNA-seq study 

(eg, ACTG2, ADCYAP1R1, and CACNA1C at T1; MAP3K3, FZD4, ACVR1B, PER1, 

GATA2, MYH15, and GATA4 at T2).373 

 The raw sequencing reads were aligned to the same version of the canine genome 

and miRNA annotations with 3 alignment tools using the default settings. CPSS 2.0 had a 

significantly higher genome mapping rate than Array Studio and miRDeep2. For the 

number of miRNAs detected, no difference was found between CPSS 2.0 and Array 

Studio, but both detected more miRNAs than miRDeep2. CPSS 2.0 and miRDeep2 

employ the same alignment algorithm, Bowtie406, for genome mapping; however, Bowtie 

is operated under different default settings. For example, CPSS allows up to 3 mismatches 

in genome alignment, but miRDeep2 by default only retains perfect mappings.378 The 

difference could impact the genome mapping rate and the number of miRNAs detected, 

as we observed. Array Studio uses OSA407, a different alignment algorithm from Bowtie, 

to achieve genome mapping. Although the performance of OSA and Bowtie have not been 

directly compared using small RNA-seq data, OSA has been reported to align more reads 

in a shorter time than the other alignment tool for RNA-seq that incorporates Bowtie.407  

  Further, we incorporated qRT-PCR to verify the sequencing results for 3 miRs: 

miR-21, miR-142, and miR-147. miR-21 was repetitively detected in all 3 alignment tools 

throughout all time points, whereas both miR-142 and miR-147 were detected by only 2 

of the 3 all alignment tools. qRT-PCR verified the upregulation of all 3 miRNAs in 

affected dogs at T2 and T3. Given that Array studio and miRDeep2 did not identify 

upregulated miR-142 or miR-147, CPSS 2.0 was the only alignment tool that accurately 
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captured the changes in miR-142 and miR-147. To our surprise, despite all 3 miRNAs 

showing upregulation in affected dogs at T1 based on the small RNA-seq data, no 

statistically significant change at T1 was observed based on the qRT-PCR data (Figure 

14). Although RNA-seq has been argued to be more sensitive and have lower probe bias 

than qRT-PCR34, we speculate that using 2 samples for each group at respective time 

points might lead to the indifferent expression in qRT-PCR as those verified by qRT-PCR 

may not represent all sequenced samples. 

 In qRT-PCR, the expression levels of miRNAs are closely tied to the normalization 

method used. In theory, the high concentration of RNA isolated from tissue samples would 

permit reliable quantification and the subsequent use of a fixed RNA quantity for qRT-

PCR input. However, normalization is still required since the miRNA proportion in the 

isolated total RNA could fluctuate between samples.384 Although snRNAU6 is frequently 

used for qRT-PCR normalization, snRNAs are structurally and functionally different from 

miRNAs. The difference in nucleic acid composition, length, and secondary structure 

could potentially introduce variation between a snRNAs control and miRNAs of interest. 

We used NormFinder300 on small RNA-seq data to select 4 miRNAs (miR-16, miR-26b, 

miR-99a, and miR-186) for further assessment by qRT-PCR. All miRNAs except miR-

99a had a similarly low M value in the geNorm analysis (Supplementary Figure S6). The 

stably expressed miR-16377, miR-186377, and miR-26b408 have all been proposed as 

internal controls in renal studies. In particular, miR-16 and miR-186 were identified as 2 

of the most stably and ubiquitously expressed miRNAs across 16 types of canine tissues, 

including kidney.377 MiR-26b has also been described as a suitable internal control for 



 

122 
 

 

glomerular miRNA quantification in IgA nephropathy patients.408  

One of the limiting factors of this study is the inability to perform microscopic 

evaluation and RNA isolation on the same kidney biopsy. Given that the biopsied renal 

tissues were immediately placed into RNAlater to preserve RNA integrity, we could not 

determine whether the biopsy used for RNA isolation was representative of the cortex. 

Two affected samples at T1 and 1 affected sample at T2 had similar miRNA expression 

patterns as control samples, which could indicate that the biopsy used for RNA isolation 

were from more slowly progressing dogs. Indeed, affected dog A1 and A4 reached the 

end-point of the experiment at the age of 36 to 37 weeks while the end-point happened at 

the age of 27 to 37 weeks in the other 3 affected dogs. Laser-capture microdissection could 

help narrow down the cell types of interests to achieve a more homogenous miRNA 

expression that more accurately represents each clinical time point.   

In the current study, we have identified several previously described and novel 

miRNAs that were differentially expressed in the presence of CKD. Along with our 

previous RNA-seq study in the same canine CKD model373, the putative targets of DE 

miRs and the enriched pathways further characterize the development and the progression 

of CKD. Both studies took the approach of acquiring biopsies at defined clinical stages of 

disease in an attempt to more accurately compare gene expression among different dogs 

throughout progression of disease. Since common pathways in CKD lead to end-stage 

kidney disease regardless of the initial insult334, miRNAs found in the current study may 

be predictive biomarkers for the early detection of CKD and can represent potential 

therapeutic targets for CKD in both dogs and humans. 
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CHAPTER IV      

COMPARISON OF RNA ISOLATION AND LIBRARY PREPARATION 

METHODS FOR SMALL RNA SEQUENCING IN CANINE BIOFLUIDS 

 

 

Introduction 

MicroRNAs (miRNAs) are highly-conserved, small (21–25 nucleotides in length), 

non-coding RNAs that are present in different types of biofluids such as serum, plasma, 

and urine.53 Through the post-transcriptional regulation of mRNA expression, miRNAs 

control diverse physiological activities.40 Recently, it has been reported that biofluid-

derived miRNAs can serve as novel non-invasive biomarkers for early detection of cancers 

and degenerative and metabolic diseases as well as therapeutic targets for such 

conditions.91,409,410 Several veterinary studies have profiled biofluid-derived miRNAs, 

mainly in serum and plasma.52,101,111,123,139  

To date, there is no gold standard for isolating miRNA from biofluids, in part due 

to lack of a gold standard method for evaluation.87,207,218,219,221,223,225,227 The quantitative 

real-time PCR (qRT-PCR) is the most commonly used method for evaluating the 

performance of miRNA isolation methods. While qRT-PCR is a sensitive and specific tool 

that allows absolute quantification of miRNAs308, it is a low-throughput technique and 

requires pre-selection of miRNAs of interest. Thus, qRT-PCR limits the complete 

understanding of miRNA expression and the discovery of novel miRNAs. In contrast, 

small RNA sequencing 30 allows comprehensive miRNA profiling (ie, miRNome). This 
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technique not only provides high accuracy in distinguishing similar miRNAs but also can 

detect novel miRNAs.308  

However, the relative scarcity of miRNAs in biofluids compared to tissue 

combined with the high requirement for RNA input for the library preparation poses a 

challenge for small RNA-seq in biofluids.288 For instance, the TruSeq Small RNA Library 

Preparation Kit (Illumina), which is most commonly used, requires 200 ng/µL total RNA 

or 2-10 ng/µL purified small RNA in 5 µl nuclease-free water. In contrast, miRNA isolated 

from 200 µL human serum was reported to be as low as 14-184 pg/µL.219 Although using 

a large volume of biofluid could boost the RNA yield, such volumes often are unavailable 

in retrospective veterinary studies. 

The objective of this study was to test 6 commonly used commercial miRNA 

isolation kits using canine serum and urine. Using small RNA-seq, we compared the 

performance of selective miRNA isolation kits and 2 library preparation kits. We 

hypothesized that small RNA-seq would reveal differences in miRNA isolation and library 

preparation kits regarding the global miRNA profile such as the total number of reads, 

genome mapping rate, miRNA mapping rate, miRNA reads, and the species and numbers 

of unique and overlapping miRNAs. The results provide a comprehensive assessment for 

choosing the optimal miRNA isolation and library preparation methods for small RNA-

seq research in canine biofluids. 
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Material and methods 

Serum and urine collection and processing 

Pooled serum and urine were collected as part of routine medical evaluations of 7 

proteinuric but non-azotemic female dogs that were carriers for X-linked hereditary 

nephropathy (XLHN) and housed at Texas A&M University.18 For serum, blood samples 

were allowed to clot at room temperature for 30-60 minutes and then centrifuged at 1500 

x g for 10 minutes at room temperature. Once separated, 2.5 to 5 mL serum that was 

obtained from each dog was pooled together then aliquoted into individual cryotubes to 

ensure equal comparison among methods. Urine was collected via cystocentesis, and urine 

remaining after urinalysis was centrifuged at 1000 x g for 10 minutes at 4°C.  Supernatant 

was pooled and aliquoted into separate 15 ml tubes. All serum and urine samples were 

processed within 2 hours of collection and immediately frozen after processing and stored 

at -80 °C until RNA isolation. All protocols were approved by the Texas A&M University 

Institutional Animal Care and Use Committee. 

RNA isolation 

Six miRNA isolation methods were evaluated in the current study. Serum miRNA 

isolation kits included Zymo Direct-zol RNA MiniPrep Kit (Zymo Research, Irvine, CA, 

USA), mirVana PARIS Kit (Ambion, Austin, TX, USA), and miRCURY RNA Isolation 

Kit-Biofluids (Qiagen, Germany). Urine miRNA isolation kits included Norgen Urine 

Exosome RNA Isolation Kit (Norgen Biotek, Thorold, ON, Canada), Qiagen exoRNeasy 

Serum/Plasma Maxi Kit (Qiagen, Germany), and miRCURY Exosome Isolation Kit - 
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Cells, urine and CSF (Qiagen, Germany). RNA isolation was performed in triplicate for 

each method. Furthermore, RNA was isolated from serum and urine by the same person 

(CPC), and each sample underwent a single freeze-thaw cycle. A fixed amount of serum 

(2ml) and urine (10ml) was used for each isolation. The volume of reagents used was 

adjusted based on input volume as needed, according to the manufacturers’ protocols. For 

Zymo Direct-zol, however, the isolation protocol was modified (Supplementary File S1). 

For each isolation, the elution volume was fixed to 100 µl to facilitate inter-method 

comparisons. For each sample type, the NanoDrop 2000 (Thermo Fisher Scientific, 

Wilmington, DE, USA), Qubit microRNA Assay Kit (Invitrogen Corporation, Carlsbad, 

CA, USA), and Fragment Analyzer High Sensitivity RNA Analysis Kit (Advanced 

Analytical Technologies, Inc., Ankeny, IA, USA) were used to identify the methods with 

the highest RNA yield for subsequent sequencing.  

Library preparation and sequencing 

We compared 2 library preparation kits: TruSeq Small RNA Library Preparation 

Kit (Illumina, San Diego, CA, USA) and NEXTflex Small RNA Library Prep Kit 

(Bioo Scientific Corp, Austin, TX, USA). According to the manufacturer, the NEXTflex 

kit requires only 95 pg/µL - 190 ng/µL total RNA in up to 10.5 µL nuclease-free water.248 

For TruSeq, 15 PCR amplification cycles were performed. The libraries were run in a 

PippinHT system (Sage Science, Beverly, MA, USA) with a 3% gel cassette to achieve 

size selection of 120 bp to 180 bp. For NEXTflex, 24 PCR amplification cycles were 

performed according to the manufacturer protocol for low RNA input.  The libraries were 

run in a PippinHT system (Sage Science, Beverly, MA, USA) with a 3% gel cassette to 
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select 115 bp to 170 bp as dictated by the manufacturer protocol. Following size selection, 

there was a bead purification step in which the final library was eluted in 25 µL of the 

included resuspension buffer.  

To minimize technical variation, samples were sequenced using the 50 base-pair, 

single-end setting of the Illumina Genome Analyzer (HiSeq 2500v4 Rapid Mode) in a 

single lane of the flow cell. The library preparation, sequencing, and initial quality check 

were performed by the Texas A&M AgriLife Genomics and Bioinformatics Service 

(http://www.txgen.tamu.edu/).  

Data analysis 

The small RNA-seq data was analyzed using CPSS 2.0 

(http://114.214.166.79/cpss2.0/index.html), a newly updated computational platform for 

species-specific small RNA-seq data analysis.276 The canine genome (Canis familiaris) 

and default setting were used. The statistical significance of the sequencing results was 

tested using the Wilcoxon rank sum test using the stats package in R, and the continuity 

correction was applied if required. Once the read count table was generated, the 

differential expression and statistical analysis on the raw unnormalized miRNA read 

counts were done using the DESeq2 package in R.272 For multiple testing, we used the 

Benjamini-Hochberg procedure to adjust P-values. A false discovery rate (FDR) < 0.05 

was set to select DE miRs. Novel miRNAs were identified using miRDeep2.378 Predictive 

novel miRNAs were deemed significant and selected for further analysis based on a 

miRDeep2 score ³ 2 as suggested in a previous study.249 Novel miRNAs of interest was 
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search against miRBase(release 22) to establish the evidence of homology (E-value < 

0.05) between novel and existing sequence.48 

Results 

RNA quantification 

A summary of the RNA quantification results for each isolation method is 

presented in Table 6. For each sample type, the 2 highest-yield isolation methods based 

on the Fragment analyzer and Qubit miRNA Assay results were selected to proceed with 

library preparation. For serum, these were the modified Zymo Direct-zol and miRCURY-

Biofluids kits; for urine, they were the Qiagen exoRNeasy and Norgen Urine Exosome 

kits. Based on our selection of isolation and library preparation kits, we expected to 

compare 4 sequencing results each for serum and urine. However, only the modified Zymo 

Direct-zol isolation method in combination with the NEXTflex library preparation passed 

quality control. Therefore, only one serum sequencing result was available.  
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Table 6. Total RNA/miRNA concentration in serum and urine samples isolated using different kits. 

              NanoDrop      Qubit miRNA Assay  

 
Sample (volume) 

 
Isolation kits 

 
Mean RNA 
concentration 
(ng/µL) 

 
SD  
 
(ng/µL) 

 
Mean RNA  
concentration(ng/µL) 

 
SD  
 
(ng/µL) 

 
Proceed to 
library 
preparation 

 
Serum (2ml) 

 
Modified Zymo Direct-zol 

 
10.8 

 
2.61 

 
1.31 

 
0.635 

 
Yes 

miRCURY - Biofluids 49.0 39.5 2.82 0.360 Yes 

mirVana PARIS 4.67 1.45 1.22 0.553 No 

Urine (10 ml) 

Qiagen exoRNeasy 11.6 1.13 5.443 0.794 Yes 

Norgen Urine Exosome 6.53 1.14 0.474 0.012 Yes 

miRCURY Exosome 3.07 0.115 <0.25* N/A* No 

*The miRNA concentration is below the detection limit of the Qubit miRNA Assay. 
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Small RNA-seq statistics 

Both urine miRNA isolation kits, Qiagen exoRNeasy and Norgen Urine Exosome, 

produced similar total reads and genome mapping rates (Table 7). However, Qiagen 

exoRNeasy produced significantly higher miRNA mapping rates (P < 0.005) and miRNA 

reads (P < 0.005), and it detected more miRNAs (P < 0.05), irrespective of the library 

preparation used. Similarly, the NEXTflex library preparation produced more total reads 

(P < 0.005) and higher genome mapping rates (P < 0.005) compared to TruSeq. Our 

sequencing results indicate 89-95% mapping of the genome (Table 7). Also, 198 miRNAs 

were found in the serum sample while up to 115 miRNAs were found in the urine sample. 

 
 
 
Table 7. Sequencing results of serum and urine samples from different combinations 
of isolation and library preparation kits. 

      

Total reads Genome 
mapping (%) 

miRNA 
mapping (%) 

miRNA 
reads 

Number of 
detected miRNAs* 

Sample Isolation kits Library 
prep Mean SD Mean SD Mean SD Mean SD Mean 

 
Serum 
(2ml) 

 
Modified 

Zymo Direct-
zol 

 
NEXTflex 

 
9570811 

 
512651 

 
95.64 

 
0.14 

 
10.19 

 
1.35 

 
935949 

 
159778 

 
198 

Urine 
(10ml) 

 

Qiagen 
exoRNeasy 

NEXTflex 8785349a 751807 95.00a 0.07 0.34a 0.03 28089a 2284 115a 

TruSeq 6521116b 371876 89.78b 0.33 0.54a 0.06 31550a 1708 96a 

Norgen Urine 
Exosome 

NEXTflex 8221119a 669080 95.77a 0.64 0.07b 0.05 5357b 3736 73b 

TruSeq 5845279b 550725 91.12b 0.41 0.03b 0.01 1538b 330 45b 

* Number of detected miRNAs for each combination was determined based on the sum of reads mapped to miRNA from triplicates. 
a,b Within each column, different superscripts indicate a statistically significant difference in mean values using the Wilcoxon rank sum test 
(P < 0.05, unless specified in the main text). Only urine samples were teste. 
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MiRNA expression 

We used principal component analysis (PCA) to explore the variation in miRNA 

expression among different sample types and combinations of isolation and library 

preparation kits. The PCA plot shows distinct miRNA expression in serum compared to 

urine (Figure 15A). For urine samples, principal component 1 (PC1) accounts for most of 

the variance, and samples prepared by different library preparation kits separated 

horizontally (Figure 15B). To a lesser degree, samples isolated by different isolation kits 

were also separated vertically based on principal component 2 (PC2). Thus, the PCA 

results indicated that library preparation introduced a higher degree of variation in miRNA 

expression than miRNA isolation method.  
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Figure 15. PCA plots for all sequenced samples. (A) all samples (B) urine samples only. 
PCA reduced the dimension of the data to multiple principal components (only PC1 and 
PC2 were shown here) while preserving the differences between samples. The percentage 
of variance indicates how much variance could be explained by PC1 and PC2.  

 
 
 
To further compare the miRNA expression among samples, Venn diagrams were 

created, where each oval represents miRNA detected under a specific combination. 

Comparing the 2 urine results and the single serum result using the NEXTflex library 

preparation, more mature and novel miRNAs were detected in serum compared to urine 

(Figure 16 and S1). For serum, many mature and novel miRNAs were serum-specific. 

Among those serum-specific novel miRNAs, one has the highest miRDeep2 score (528.3) 

and approximately 1000 mapped reads that bears a sequence (aggacuguccaaccugagagug) 

almost identical to miR-1388 in multiple species (Supplementary File S2). Similarly, 3 
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other sequences were identified as potential homologs sequences to miR-502, miR-324, 

and miR-1224. While urine mature miRNAs were mostly detectable in serum, only 2 

novel miRNAs overlap between urine and serum with borderline miRDeep2 scores (2.8 

and 3.1) (Supplementary File S3).  

 
 
 

 

Figure 16. Serum and urine mature miRNA detected using different isolation 
methods. All samples were prepared with NEXTflex library preparation. For each 
method, only the miRNAs that have more than one mapped read across triplicates were 
counted. The total number of miRNAs detected is indicated in parentheses. 

 
 
 
Next, we compared urine miRNA expression among all 4 method combinations of 

isolation and library preparation kits (Figure 17 and Supplementary File S4). Overall, the 

combination of Qiagen exoRNeasy and NEXTflex identified most of the mature and novel 

miRNA presented in our studies. None of the novel miRNAs was consistently presented, 
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and the only 2 overlapping novel miRNAs were seen in samples isolated with Qiagen 

exoRNeasy with borderline miRDeep2 scores (Supplementary File S4). On the other hand, 

39 mature miRNAs were consistently detected in all combinations (Figure 17), and all 39 

are highly expressed miRNAs in canine kidney tissues based on 2 recent studies.376,377  

 
 
 

 
Figure 17. Urine mature miRNAs detected using different combinations of isolation 
and library preparation methods. For each combination, only the miRNAs that have 
more than one mapped read across triplicates were counted. The total number of miRNAs 
detected is indicated in parentheses. 

 
 
 
Further, we compared the read count distribution pattern for these 39 miRNAs, 

comparing different miRNA isolation kits using the same library preparation, and 

comparing different library preparations for the miRNA isolation kit identified as most 

optimal in this study (Figure 18). Despite using different miRNA isolation methods, nearly 

identical normalized read count distribution patterns were observed when the same library 
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preparation was used (Figure 18A, B). In contrast, using the same miRNA isolation 

method (Qiagen exoRNeasy) but different library preparations, substantial discrepancies 

in miRNA expression was observed (Figure 18C). Moreover, the differential expression 

for NEXTflex compared with TruSeq was as high as ~20-fold upregulation in let-7b and 

~29-fold downregulation in miR-126 (Supplementary Table S17).  
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Figure 18. Comparisons of normalized miRNAs reads sequenced from urine samples 
that were processed by different RNA isolation and library preparation kits. (A) 
NEXTflex + Q versus NEXTflex + N. (B) TruSeq + Q versus TruSeq + N. (C) NEXTflex 
+ Q versus TruSeq + Q. The most abundantly expressed miRNAs in canine kidney were 
sorted on the left side of the plot in a descending order as indicated by the bracket. Q: 
Qiagen exoRNeasy; N: Norgen Urine Exosome. (*: DE miRs between the 2 methods being 
compared) (false discovery rate < 0.05 and absolute fold change ³ 2). 
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Discussion 

To date, there is no gold standard for isolating miRNA from biofluids. Several 

studies have compared commercial miRNA isolation kits for serum227, plasma207,221-

223,225,226, and urine71,87 using samples from human and non-human primates. In addition, 

various kit modifications207,221,223,225-227 and measurements (eg, NanoDrop218,224,226 and 

Agilent Bioanalyzer226,227) have been used for comparing methods. However, most of 

these studies used qRT-PCR to determine the optimal miRNA isolation 

methods87,207,218,219,221,223,225,227, and conclusions were often reached based on the 

expression levels of only a few miRNAs. In our current study, we tested 6 commercial 

miRNA isolation kits and used small RNA-seq to compare the performance of 2 urinary 

miRNA isolation kits along with 2 library preparation kits. Thus, we provide a more 

comprehensive approach to identifying optimal preparations for miRNA from canine 

serum and urine. 

We first used RNA concentration to compare the performance of miRNA isolation 

kits. NanoDrop is a spectrophotometer commonly used for measuring tissue- and cell-

derived total RNA. Given that total RNA concentration in biofluids often falls below its 

detection limit (4-10 ng/µL)207, NanoDrop was of limited use in our case.171 Unlike the 

NanoDrop, the Agilent Bioanalyzer Small RNA Kit can quantify small RNAs at lower 

concentrations (50-2,000 pg/µL). In an isolation method comparison study, the Agilent 

Bioanalyzer results corresponded to microarray results while NanoDrop failed to 

distinguish the performance between isolation kits.224 Due to the lack of access to the 

Agilent Bioanalyzer, we used the Fragment Analyzer to measure the total RNA 
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concentration (50-5000 pg/µL). Both machines employ capillary gel electrophoresis to 

analyze nucleic acids. Our sequencing facility uses a cutoff value of 0.8 ng/µL for total 

RNA concentration to anticipate successful library preparation using NEXTflex (personal 

communication). Indeed, the miRCURY-Biofluids kit yielded a mean RNA concentration 

of 0.659 ng/µL, and the sample consequently failed in both library preparations. 

Since the NanoDrop and the Fragment Analyzer only measured total RNAs, we 

incorporated the Qubit microRNA Assay to measure small RNAs. The Qubit microRNA 

Assay uses specific fluorescent dyes that selectively bind to small RNAs (detection range: 

50-10,000 pg/µL). Garcia-Elias et al. have reported that the Qubit microRNA Assay is 

better than the NanoDrop and the Agilent Bioanalyzer to evaluate low miRNA 

concentration in human plasma.411 Indeed, the Qiagen exoRNeasy kit yielded the highest 

RNA concentration in the urine sample as determined by the Qubit microRNA Assay 

(Table 6). Based on sequencing data, RNA isolated with this kit also had higher miRNA 

reads and number of miRNAs as compared with the Norgen kit (Table 7). Surprisingly, 

for serum miRNA isolation methods, we were unable to generate libraries for the RNA 

isolated by the miRCURY-Biofluids kit, even though this kit had the highest RNA 

concentration based on the Qubit microRNA Assay. Since the Qubit microRNA Assay 

detects all forms of small RNAs411, this discrepancy might have been caused by the 

presence of other types of small RNAs isolated by the miRCURY-Biofluids kit.  

Regarding correlation between RNA quantification methods and small RNA-seq, 

previous studies have shown that RNA concentration and miRNA percentage determined 

by the Agilent Bioanalyzer did not translate into the number of miRNA reads and the 



 

139 
 

 

percentage of miRNAs found using small RNA-seq.238,239 Since the Agilent Bioanalyzer 

could misclassify degraded mRNAs as miRNAs, small RNA-seq is a better tool for 

comparing isolation performance. In our study, we also noticed that an increase in the 

number of reads mapped to miRNAs did not translate into a higher number of detected 

miRNAs. This supports that certain library preparations might be selective for certain 

miRNAs as demonstrated by recent studies compared multiple commercially available 

library preparation kits.244 

Compared to RNA quantification methods, small RNA-seq provides a more 

comprehensive assessment of miRNA isolation and library preparations regarding miRNA 

mapping rate, the number of miRNAs detected, and novel miRNAs. In our study, we found 

that the miRNA mapping rate varied between serum and urine, ranging from 

approximately 10% in serum to less than 0.5% in urine (Table 7). Our results are similar 

to previous human and canine studies in which wide ranges of miRNA mapping rates have 

been reported for serum (10-25%) and urine (0.42-11%).100,239,412,413 Although miRNA 

mapping rates could vary due to different preprocessing steps of raw reads in different 

studies, the number of miRNA reads and miRNAs detected in human serum and plasma 

are consistently higher than urine53,412, as in our canine samples (Figure 16). Of note, we 

found extensive overlapping of miRNAs between serum and urine samples. While these 

dogs have inherited protein-losing nephropathy, studies in healthy people also shown 

substantial overlaps between circulating and urinary miRNAs.412,413 For novel miRNAs, 

more were detected in canine serum than urine samples. While none of the urine-specific 

novel miRNAs was deemed homologous sequence in analysis, we identified 4 promising 
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serum-derived novel miRNA that could be homologous to miR-1388, miR-502, miR-324, 

and miR-1224 in other species.  

Moreover, we observed that the library preparation method introduced more 

variation in miRNA detection than the method of miRNA isolation (Figure 15). Several 

studies have found that the adapter ligation step was the main cause of bias during library 

preparation.248,414 Bias-contributing factors in adapter ligation, such as ligation efficiency, 

secondary structure, and adapter sequences, have been reviewed by Raabe et al.246 TruSeq 

and NEXTflex use different types of adapters (fixed versus degenerate), different ligases 

(T4 versus AIR ligase), and different strategies to prevent adapter dimers (none versus 

removal of extra 3’ adapters). Therefore, we anticipated different miRNA profiles and 

differential expression of the overlapping miRNAs between these 2 library preparations. 

Similar to previous studies used high243,244,248  and low RNA inputs244 isolated from 

tissues248, cells243, and plasma244, we found that NEXTflex can detect miRNAs that evade 

capture by TruSeq. To our surprise, however, the expression levels of certain miRNAs, 

including some that are highly expressed in canine kidney tissues376,377, were markedly 

different between the 2 library preparations (Figure 18). These highly expressed miRNAs 

in kidney tissues have a great potential to be biomarkers for kidney diseases.377 For 

example, several miRNAs for which expression differed considerably between the 2 

preparations have been described as promising biomarkers in kidney diseases (for 

example, serum let-7b in IgA nephropathy415 and urinary miR-126 in DN416). Our results 

support the conclusion that library preparation method can greatly influence the 

identification and selection of biomarkers if based on sequencing data alone. 
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There are several limitations of this study. Pooled serum and urine samples from 

dogs with a single cause of protein-losing nephropathy were used to ensure equal 

comparison among methods. Although disease-specific bias in miRNA isolation methods 

has not been reported, we cannot rule out the possibility that this single sample source 

could introduce bias in the performance of the miRNA isolation kits. To measure the 

isolated RNA, we used the Fragment Analyzer and the Qubit miRNA Assay but did not 

incorporate the Agilent Bioanalyzer because of limited access. Also, we did not test one 

of the commonly used library preparation kits, NEBNext (New England BioLabs). 

However, a recent study shown no significant difference in the number of miRNA detected 

by TruSeq and NEBNext.244  Finally, we sequenced our samples using one Illumina 

platform at a single sequencing facility since the study was designed to be a pilot study 

for a larger sequencing project. While one study demonstrated that sequencing platform 

and sequencing facility were not major contributors to variation in miRNA expression 

profiles248, a recent study has shown increased impact of library preparation location on 

the percentage of RNA mapped reads when using low input RNA, particularly with the 

NEXTflex kit.244 Therefore,  including more sequencing platforms and locations could 

potentially expand the scope of the current study. 

In conclusion, we successfully performed small RNA sequencing with total RNA 

isolated from 2 ml serum and 10 ml urine in dogs. We found that the optimal isolation 

method tested for canine serum was the modified Zymo Direct-zol kit and that for canine 

urine was the Qiagen exoRNeasy RNA isolation kit. The NEXTflex library preparation 

kit was the optimal library preparation method tested in this study for canine serum and 
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urine. Knowledge of the performance of these isolation and library preparation methods 

might be helpful for planning future studies in which a limited volume of biofluids is 

available. Also, different isolation and library preparation methods demonstrated 

significant differences in miRNA expression. Notably, library preparation method 

introduced a much higher variation in miRNA expression than miRNA isolation method. 

The library preparation-dependent bias could be significant in miRNA profiling for 

biomarker discovery.  
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CHAPTER V      

MICRORNA PROFILING IN DOGS WITH CHRONIC KIDNEY DISEASE 

CAUSED BY GLOMERULAR DISEASES 

 

 

Introduction 

CKD is a significant cause of morbidity and mortality in all breeds of dogs, and it 

is commonly caused by underlying glomerular diseases. Our recent data indicate that an 

overwhelming majority (>80%) of proteinuric dogs with CKD have immune complex-

mediated glomerulonephritis (ICGN), glomerulosclerosis (GS), or amyloidosis 

(AMYL).15 While dogs with AMYL tend to have higher urine protein to urine creatinine 

ratio (UPC) values than dogs with other types of glomerular diseases, extensive overlap 

in UPC values exists among all groups.417 Renal biopsy and comprehensive 

histopathologic examination are currently indispensable to the diagnosis of specific 

glomerular diseases and to guide proper treatments.16 Patients deemed unsuitable to 

undergo anesthesia for a renal biopsy can be empirically managed with 

immunosuppressive treatment; however, immunosuppressive therapy is considered 

contraindicated in non-ICGN glomerular diseases.418 

MiRNAs are small, non-coding, highly-conserved RNAs that post-

transcriptionally regulate gene expression and play important roles in governing biological 

activity in both health and disease. To date, more than 2,600 mature miRNA sequences 

have been identified in humans (miRBase 22 release). These miRNAs not only exist in 
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cells, but they are also present in cell-free biofluids, including serum, plasma, and urine.53 

For CKD, biofluid miRNAs could serve as promising non-invasive biomarkers of disease 

onset, progression (including monitoring of therapeutic interventions), the degree of 

kidney damage, and categorization (ie, histologic diagnosis).  

Several studies have identified circulating and urinary miRNAs in human patients 

with glomerular diseases. The subjects were either grouped as CKD patients89,311 or 

studied within individual glomerular disease categories, such as FSGS319,320, LN325,326, and 

IgA nephropathy.88,327 Since tissue-specific miRNA expression patterns have been 

described in patients with DN, FSGS, IgA nephropathy, and membranoproliferative GN396, 

it is reasonable to expect that biofluid-derived miRNA could exhibit similar patterns of 

expression and might even differentiate categories of glomerular diseases.  

Using next-generation small RNA-seq technology, we aimed to globally 

characterize miRNAs in urine and serum from clinically healthy dogs and dogs with CKD 

caused by the 3 most common glomerular diseases (ICGN, GS, and AMYL) at 2 different 

stages of disease progression. We hypothesized that unique miRNA signatures would be 

found in the serum and urine of dogs with each of these glomerular diseases and that these 

miRNAs might serve as non-invasive diagnostic markers or targets for novel therapies 

that contribute to both canine health and human health. 
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Material and methods 

Animal specimens 

Samples from 18 dogs, 6 from each glomerular disease category (ICGN, GS, and 

AMYL), were selected from archived serum and urine samples previously submitted to 

the International Veterinary Renal Pathology Service (IVRPS) for diagnostic purposes. 

Additionally, samples from 6 clinically healthy dogs were used as controls. Signalment 

and clinical information for all 24 dogs are summarized in Supplementary Table S18. 

Dogs with kidney disease were assigned a glomerular disease category based on a 

comprehensive kidney biopsy evaluation including light microscopy, transmission 

electron microscopy, and immunofluorescence.419 Membranous glomerulonephropathy, a 

form of ICGN where the immune deposits are subepithelial in location, was selected to 

represent ICGN in this study. Urine and serum samples were obtained at the time of renal 

biopsy. A standard protocol was provided to clinicians for centrifugation and separation 

of supernatant. Samples were then shipped overnight on wet ice and stored at -80°C for 1 

to 6 years until analysis. Dogs with CKD were retrospectively selected based on (1) age 

(≥1-year-old), (2) category of glomerular disease (confirmed by biopsy)285, (3) inactive 

urine sediment (within 2 weeks of biopsy defined as absence of discoloration or cloudiness 

on gross examination, <5 WBCs/high-power field, <100 RBCs/high-power field, and no 

bacteriuria), (4) adequate sample volume (serum: ≥ 1 ml and urine:  ≥ 3 ml), and (5) non-

hemolyzed serum base on a hemolysis score (see “RNA isolation” section). Serum and 

urine from the same dog were required for inclusion in the study. Within each disease 

category, CKD dogs were further divided into stage 1 and stage 2. Stage 1 was defined as 
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dogs with proteinuria but not azotemia (sCr < 1.4 mg/dl or appropriately low for the breed) 

and with biopsy findings limited to minimal to mild tubulointerstitial (TI) damage. Stage 

2 was defined as dogs with proteinuria and mild to moderate azotemia (1.4 ≤ sCr ≤ 5 

mg/dl) or sCr < 1.4 mg/dl but inappropriately high for the breed and biopsy results 

demonstrating significant TI damage. All stage 1 GS dogs exhibited FSGS while stage 2 

GS dogs had advanced segmental to global glomerulosclerosis.  

For the clinically healthy dogs used as controls, a physical examination, complete 

blood count, chemistry panel, urinalysis, and UPC were performed. After collection, 

uncoagulated blood was allowed to sit at room temperature for 30 minutes to 1 hour then 

centrifuged at 1500 g for 10 minutes at room temperature to separate serum. Urine was 

collected via cystocentesis, and urine remaining after the urinalysis was centrifuged at 

1000 g for 10 minutes at 4oC. Serum and urine were aliquoted into cryotubes and stored 

at -80°C for approximately 3 years until RNA isolation. The protocol was approved by the 

Texas A&M University Institutional Animal Care and Use Committee and client consent 

was obtained. 

RNA isolation  

All serum samples were screened for hemolysis by measuring the A385 and A414 

using the NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA) and the 

following formula: hemolysis score = A414 - A385 + lipemia correlation factor*A385.197 

Incorporating A385 in the calculation of the hemolysis score was done to minimize the 

interference of lipemia when measuring A414.197 Scores were compared with an in-house 

hemolysis score cutoff value generated from a set of 28 grossly non-hemolyzed leftover 
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from clinical samples submitted to the Texas A&M University Veterinary Medical 

Teaching Hospital.  

 Circulating RNA was isolated from serum by a modified protocol using the 

Direct-zol RNA MiniPrep Kit (Zymo Research, Irvine, CA, USA). For each dog, 1 mL of 

serum was first homogenized with 5 ml QIAzol Lysis Reagent (Qiagen, Germany). The 

mixture was vortexed then incubated at room temperature for 5 minutes. Next, 1.2 ml 

chloroform was added, and lysates were vortexed then incubated at room temperature 

again, for 5 minutes, followed by 4°C centrifugation at 13400 g for 15 minutes. After 

centrifugation, the upper aqueous phase was mixed with 4.8 ml 100% ethanol, added to 

the Zymo-Spin Column (Zymo Research, Irvine, CA, USA), and centrifuged for 30 

seconds at 12000 g at room temperature. The spin column was then washed 4 times: twice 

with Zymo RNA pre-wash buffer (Zymo Research, Irvine, CA, USA), once with Zymo 

RNA wash buffer (Zymo Research, Irvine, CA, USA), and last with 500 µL 80% ethanol. 

Finally, 25 µL 50°C RNase-free water was used to elute RNA.  

For each dog, urinary RNA was isolated from 3 mL urine using the Qiagen 

exoRNeasy Serum/Plasma Maxi Kit (Qiagen, Germany). The manufacture’s protocol was 

followed up to the point of adding QIAzol Lysis Reagent (Qiagen, Germany). The 

subsequent steps were identical to the serum isolation protocol, except that the RNeasy 

MinElute Spin Columns (Qiagen, Germany) were washed 3 times: Once with Buffer RWT 

(Qiagen, Germany) and twice with Buffer RPE (Qiagen, Germany). RNA was also eluted 

with 25 µL 50°C RNase-free water.  
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Small RNA sequencing and data analysis 

RNA samples were measured using the Fragment Analyzer High Sensitivity RNA 

Analysis Kit (Advanced Analytical Technologies, Inc., Ankeny, IA, USA). Laboratory 

personnel at the Texas A&M University Genomics and Bioinformatics service generated 

a cDNA library using the NEXTflex Small RNA Library Prep Kit (Bioo Scientific Corp, 

Austin, TX, USA). Under a 50 base-pair, single-end setting, all 48 cDNA libraries were 

multiplexed and sequenced in parallel on 3 lanes of a flow cell in an Illumina Genome 

Analyzer (HiSeq 2500v4) to minimize technical variation and ensure sufficient data 

output. 

Pre-processing of raw reads (fastq files) included (1) removal of the 3’ adapter 

sequence (TGGAATTCTCGGGTGCCAAGG), (2) trimming of the first and last 4 bases 

from the adapter-clipped reads (as recommended by the manufacturer)285, (3) filtering out 

reads less than 16 base-pair to prevent false degraded RNA or adapter dimers264, and (4) 

removal of low quality reads (quality score < 30). Untrimmed raw reads were discarded 

as they were unlikely to be miRNAs based on read lengths. FASTX-Toolkit (version 

0.0.14) was used to transform the fastq format into collapsed fasta files as proper inputs 

for CPSS 2.0 (http://114.214.166.79/cpss2.0/index.html).276 Default settings along with 

the canine genome (Canis familiaris, CanFam 3.1) and microRNA annotation in miRBase 

(release 21) were used for analysis. To identify candidate miRNAs for internal controls, 

NormFinder (updated January 2015) was applied to the read count table.300 The DESeq2 

package in R was used for miRNA differential expression.272 For multiple testing, Wald 

test P-values were corrected to the false discovery rate (adjusted P-values) by the 
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Benjamini-Hochberg procedure. An adjusted P-value < 0.05 was set to robustly select DE 

miRs. 

Results 

Circulating and urinary DE miRs expression 

 Figure 19 shows the clinical parameters of dogs in the current study. The difference 

in mean age between different disease groups is noted while no overall difference in sCr 

is seen among the disease groups.  As expected based on our study design, sCr is 

significantly higher in stage 2 CKD dogs than stage 1 CKD dogs and controls. No UPC 

difference was seen among dogs with different types of glomerular diseases, but dogs with 

stage 2 CKD had higher UPC values than stage 1 dogs and controls. 

Forty-eight RNA samples were used for small RNA-seq, 24 samples isolated from 

serum and 24 samples isolated from urine. One serum sample representing stage 2 ICGN 

was excluded for having less than 5 million reads (Supplementary Table S19). Sequenced 

serum samples had an average of 6.5 million reads and a 97.6% genome mapping rate, 

with 1.6 million reads mapped to miRNAs whereas urine samples had an average of 6.9 

million reads and a 90.1% genome mapping rate, with 79019 reads mapped to miRNAs. 

On average, 167 and 88 miRNAs with at least 10 mapped reads were detected in serum 

and urine samples, respectively.  
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Figure 19. Boxplots of age, sCr, and UPC distribution. (A, B) Age difference among 
different disease groups and stages. (C, D) SCr difference among different disease groups 
and stages. (E, F) UPC difference among different disease groups and stages. Wilcoxon 
test was performed in a pair-wise manner with Benjamini-Hochberg Procedure for 
multiple testing. P-values < 0.05 was shown in the plots. (*: P-value < 0.05; **: P-value 
< 0.01; ***: P-value < 0.001). 
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For each sample type, we compared DE miRs in dogs with CKD to clinically 

healthy controls. Overall, 47 circulating miRNAs and 18 urinary miRNAs were DE in 

CKD dogs versus controls. Comparing stage 1 CKD dogs (non-azotemic and minimal TI 

damage) with controls, 9 circulating and 13 urinary DE miRNA were detected while 46 

circulating and 24 urinary DE miRs were discovered comparing stage 2 CKD dogs 

(azotemic and advanced TI damage) with controls.  For DE miRs identified in specific 

glomerular diseases (ICGN, GS, and AMYL), only those with an absolute fold change > 

2 that were also differentially expressed in CKD dogs compared to controls were listed 

(Figure 20). In each category, CKD dogs were compared to controls regardless of disease 

stage (Figure 20A, D) or were further divided into stage 1 (Figure 20B, E) and stage 2 

(Figure 20C, F). Regardless of disease stage, 5 circulating miRNAs (miR-107, miR-129, 

miR-186, miR-365, and miR-371) and 5 urinary miRNAs (miR-7, miR-9, miR-22, miR-

203, and miR-423a) were DE in dogs with all 3 glomerular diseases when compared to 

controls. Downregulated circulating miR-186 was also one of the 6 common DE miRs 

among all 3 disease categories comparing stage 2 CKD dogs with controls (Fig 20C). 

Downregulated urinary miR-7 and miR-22 were the only 2 common DE miRs among all 

3 disease categories identified in stage 1 dogs compared with controls, and they also 

comprised 2 of the 5 DE miRs in stage 2 dogs compared with controls (Fig 20E-F). In 

general, more DE miRs were discovered in samples from dogs with stage 2 disease than 

were discovered in samples from dogs with stage 1 disease.  A list of circulating and 

urinary DE miR is provided in Supplementary Tables S20 and S21. For DE miRs in 
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specific disease categories, only those DE miRs that were also differentially expressed 

when comparing all dogs with CKD with controls at the respective stage are included. 

 
 
 

 

Figure 20. DE circulating and urinary miRNAs identified in CKD dogs (based on 
glomerular disease category) versus controls. Dogs with CKD were compared to 
controls regardless of disease stage (A, D), at stage 1 (B, E), and at stage 2 (C, F). The 
total number of DE miRs are shown in parenthesis. Only those DE miRs that were also 
differentially expressed when comparing all dogs with CKD with controls at the respective 
stage are included. Differential expression was based on an absolute fold change > 2 and 
an adjusted P-value < 0.05. (S1: stage 1 CKD; S2: stage 2 CKD). 
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DE miRs associated with disease progression 

We further examined miRNAs that were differentially expressed in CKD dogs at 

stage 2 compared to stage 1. When all CKD dogs were combined together regardless of 

glomerular disease category, no circulating DE miRs were identified between stage 2 

CKD dogs and stage 1 CKD dogs. However, 3 urinary DE miRs were identified comparing 

stage 2 versus stage 1 CKD dogs, including 2 upregulated DE miRs (miR-182, and miR-

21) and 1 downregulated DE miRs (miR-486) (Figure 21). Notably, the expression of 

urinary miR-486 is significantly decreased in stage 2 CKD compared to both stage 1 and 

controls (Figure 21). 

Comparing the glomerular disease categories, no DE miRs were found when 

comparing stage 2 to stage 1 AMYL. However, 22 circulating DE miRs and 1 

downregulated urinary (miR-486) miRNAs were found comparing stage 2 to stage 1 GS. 

The high number of circulating DE miRs in stage 1 versus stage 2 GS were caused by the 

indistinguishable miRNA expression of 2 stage 1 GS samples from the controls 

(Supplementary Figure S7).  For ICGN, 1 downregulated circulating (miR-485) and 1 

downregulated urinary (miR-128) miRNA were found comparing stage 2 to stage 1 CKD 

dogs. A complete list of circulating and urinary DE miRs comparing stage 1 and stage 2 

is provided in Supplementary Table S22. 
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Figure 21. Normalized read counts for urinary DE miRs identified between stage 2 
and stage 1 CKD dogs. (A) miR-486, (B) miR-21 (C) miR-182. (*: P-value < 0.05). 
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Disease-specific urinary miRNAs  

We aimed to identify biofluid-derived miRNAs that are exclusively differentially 

expressed in certain types of canine glomerular diseases. No circulating miRNAs were 

found to be differentially expressed among the different glomerular diseases. For urinary 

miRNAs, the expression of level of miR-335 was significantly higher in dogs with GS 

than in other categories, including controls (Figure 22).  

 
 
 

 

Figure 22. Normalized read counts for urinary miR-335 in all 4 categories. (*: P-value 
< 0.05; ***: P-value < 0.001). 
 
 
 

We also compared each glomerular disease category within each disease stage to 

examine the DE miRs in early vs. later disease. In Table 8, we first noticed the unlikely 

enormous upregulation of canine miR-1836 (cfa-miR-1836). Literature search confirmed 

that the annotation of cfa-miR-1836 overlaps with snoRNA 20 (SNORA20) with high 
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confidence (probability = 0.99).420 Therefore, we will exclude miR-1836 in our analysis. 

At stage 1, 3 circulating miRNAs (miR-335, miR-101, and miR-32) and 5 circulating 

miRNAs (miR-320, miR-99b, miR-218, miR-335, and miR-485) were differentially 

expressed in ICGN compared with AMYL and GS, respectively. No urinary DE miRs 

were identified among stage 1 samples. At the later stage, urinary miR-350 were 

differentially expressed comparing AMYL and GS. No circulating DE miR was found for 

ICGN versus AMYL, and circulating miR-374a was differentially expressed in ICGN 

versus AMYL. At the later stage, 5 urinary DE miRs were discovered in at least one pair 

of comparisons among the 3 glomerular diseases. Notably, the distinctive expression of 

urinary miR-126, miR-335, and miR-128 could correctly group azotemic, proteinuric dogs 

into ICGN, GS, or AMYL (Figure 23). This unique finding supports that urinary miRNAs 

might help establish a diagnosis in azotemic dogs with suspected glomerular disease. 
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Table 8. DE miRs identified in each glomerular disease category in early versus later 
disease. 

    Serum Urine 

  Comparisons  miRNA Fold change Adjusted 
P-value miRNA Fold 

change 
Adjusted 
P-value 

Stage 1 

AMYL vs GS N/A N/A N/A N/A N/A N/A 

AMYL vs ICGN 

miR-335 86.7 1.10E-02 N/A N/A N/A 

miR-101 3.67 4.70E-02    

miR-1836* 23852 4.70E-02    

miR-32 14.9 4.70E-02    

GS vs ICGN 
  

miR-320 -4.30 3.00E-03 N/A N/A N/A 

miR-99b -3.18 4.30E-02    

miR-218 6.23 4.70E-02    

miR-335 42.0 4.70E-02    

miR-485 -19.0 4.70E-02       

Stage 2 

AMYL vs GS 
miR-1836* -3726076 2.30E-05 miR-335 -9.61 1.28E-02 

miR-350 91.6 2.90E-02 miR-8904b 20.8 1.28E-02 

AMYL vs ICGN 

miR-1836* -5769001 1.80E-04 miR-126 -10.9 1.25E-02 
   miR-128 4.15 1.25E-02 
   miR-143 -7.02 4.45E-02 

GS vs ICGN 
  

miR-374a -5.86 2.03E-02 miR-8904b -24.3 6.80E-03 

      miR-126 -26.3 4.74E-02 

* miR-1836: See main text for the description of cfa-miR-1836. 
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Figure 23. Heatmap and clustering analysis of urinary miR-126, miR-335, and miR-
128 in dogs with stage 2 glomerular diseases and controls. The expression levels of 
miR-126, miR-335, and miR-128 are significantly higher in azotemic dogs diagnosed with 
I (ICGN), G (GS), and A (AMYL), respectively.  
 
 
 

Endogenous controls for biofluid-derived miRNAs in dogs with CKD 

Lastly, to identify appropriate endogenous reference miRNAs as controls, 

NormFinder300 was performed on sequencing data. Small RNA-seq data were grouped 

according to disease stage and category, then NormFinder300 was applied to rank candidate 

genes based on their expression stability in the given experimental design. The stability 

score is a direct measurement of estimated expression variation. Therefore, miRNAs that 
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are good candidates for being an internal control should have lower stability scores. The 

miRNAs with the lowest stability scores are presented in Table 9. It is worth noticing that 

these candidate miRNAs were not identified as DE miRs in any given pair of comparisons 

in the current study. 

 
 
 

Table 9. Top 3 endogenous reference miRNAs identified in serum and urine by 
NormFinder. 

 Serum Urine 

miRNA Group 
difference 

Group standard 
deviation Stability miRNA Group 

difference 
Group standard 
deviation Stability 

let-7d 2561.65 366.64 115.71 miR-151 215.27 77.48 100.42 

miR-192 2900.57 530.42 131.38 miR-28 93.81 138.49 108.06 

miR-15b 1703.19 670.56 275.62 miR-8859a 235.13 98.79 109.99 

 
 
 

Discussion 

Canine CKD is commonly caused by glomerular diseases. A 2013 study found that 

more than 80 percent of dogs biopsied for suspicion of glomerular disease have ICGN 

(48.1%), GS (20.6%), or AMYL (15.2%).15 Renal biopsies are the gold standard method 

for diagnosing glomerular diseases, and patients that are unable to have a kidney biopsy 

obtained due to cost or anesthetic risk are empirically managed.418 Therefore, our aim was 

to identify miRNA biomarkers in serum and urine in dogs with CKD compared with 

clinically healthy dogs. In particularly, we aimed to identify miRNAs that indicate disease 

progression and might distinguish between the most common types of glomerular diseases 

(ICGN, GS, and AMYL). 
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 Several studies have investigated the expression of biofluid-derived miRNAs in 

human CKD patients.  Early studies provided limited information due to the low numbers 

of miRNAs screened89,311, or identification of miRNAs with low fold changes (< 2 fold).179 

With the development of next-generation sequencing, more recent studies have sequenced 

urinary miRNAs in CKD patients, providing more extensive and robust data.316 In one 

study, the miRNA expression in 15 CKD patients was compared with 10 healthy controls 

using small RNA-seq. In this study, 16 urinary miRNAs were found to be consistently 

differentially expressed throughout all 4 stages of CKD.316 Comparing those urinary 

miRNAs with the DE miRs discovered in the current study, miR-222 is the only 

overlapping miRNA that was also upregulated in dogs with CKD compared to controls 

(Supplementary Table S21). While not extensively studied in the context of kidney 

disease, miR-222 was identified in the exosomes derived from melanoma cells. Its 

upregulation promotes tumorigenesis by activating the PI3K/AKT pathway.421 

At this point in time, only one canine study has used small RNA-seq for 

investigating urinary miRNAs in dogs with kidney disease. In this study, 2 urine samples 

were sequenced: one pooled sample from dogs with kidney disease and one pooled sample 

from healthy controls. The sample obtained from dogs with kidney diseases had more 

reads mapped to miR-10a, miR-10b, miR-21, and miR-486 than the control sample while 

the number of reads mapped to miR-191, miR-192, miR-22, and miR-30a were reported 

to be similar between the 2 samples.100 However, since no statistical analysis was 

performed due to the lack of biological replicates100, the reproducibility is questionable. 

Among the 4 miRNAs reported in that study to have higher expression in diseased dogs100, 
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miR-486 was the only urinary DE miR identified in our study. Moreover, miR-22, one of 

the miRNAs previously determined to be similarly expressed between dogs with kidney 

diseases and controls100, was one of the top urinary DE miRs across all pairs of 

comparisons between CKD dogs and controls in our study.  

In addition to identifying DE miRs in dogs with CKD, we also explored biofluid-

derived miRNAs that could potentially indicate disease progression. The expression levels 

of miR-182, miR-21, and miR-486 in the urine of azotemic, proteinuric dogs are 

significantly different from those of non-azotemic, proteinuric dogs. In a rat renal 

proximal tubular cell line (NRK-52E), miR-182 targets the transcription factor 7-like-2 

(TCF7L2) mRNA expression. In hypoxic NRK-52E cells, TCF7L2 suppresses hypoxia-

induced apoptosis by activating the Wnt/β-catenin signaling pathway to promote cell 

repair. Increased miR-182 inhibits TCF7L2, resulting in increased apoptosis and 

exacerbating acute kidney injury (AKI).422 Furthermore, the knockdown of miR-182 

results in decreased blood urea nitrogen (BUN) and sCr in an AKI rat model422, indicating 

that miR-182 could be involved in the molecular mechanisms resulting in TI damage. The 

expression level of miR-182 was found to be increased in the kidney tissue from patients 

with post-transplant AKI compared to allographs without pathology.423 In the current 

study, the expression level of miR-182 in urine is significantly higher in azotemic CKD 

dogs than non-azotemic CKD dogs and controls. Taken together, urinary miR-182 could 

be a potential biomarker for kidney injury.  

Urinary miR-21 was also found to be increased in azotemic CKD dogs in our study, 

similar to other studies in dogs with azotemic kidney disease. In dogs with X-linked 
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hereditary nephropathy, urinary miR-21 increased upon the development of azotemia 

based upon qRT-PCR and normalization with miR-16 (unpublished observations). Based 

on a small RNA-seq study, more reads were mapped to miR-21 in dogs with azotemic 

kidney disease due to a variety of causes compared with controls.100 In humans, urinary 

miR-21 is higher in AKI patients compared to healthy controls.424,425 Also, it has been 

proposed as a potential biomarker for hypertensive kidney injury and fibrosis in a study 

using a murine model426; however, additional studies using validated endogenous controls 

other than snRNAU6 are needed.315  

The expression level of miR-486 was significantly lower in the urine of azotemic 

CKD dogs than both non-azotemic CKD dogs and the healthy controls. MiR-486 results 

in inhibition of transcription factor FoxO1. While FoxO1 has many proposed actions, it 

appears to be a dominant mediator of muscle wasting in CKD.427 Exosomes derived from 

human endothelial colony-forming cells (ECFC) that were enriched with miR-486 were 

protective against AKI in mice, inhibiting endothelial cell apoptosis caused by hypoxia 

and reperfusion, and inhibition of miR-486 obviated these protective effects.428 Although 

they originate from endothelial cells, it has been shown that ECFC-derived exosomes 

could be delivered to the kidney via renal capillaries and renal tubules.429 Therefore, it is 

possible that a portion of the protective miR-486 could be detected in urine, and the 

downregulation of miR-486 in CKD dogs may play a role in the progression of kidney 

disease.  

In azotemic dogs, the upregulation of urinary miR-126, miR-355, and miR-128 

were exclusively seen in those diagnosed with ICGN, GS, and AMYL, respectively 
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(Figure 23). Given that not all of them were significantly increased in one disease category 

compared with the others, simply measuring just 1 miRNA would likely be insufficient 

for distinguishing different glomerular diseases in azotemic dogs. ICGN was the most 

common cause of glomerular disease in dogs biopsied for suspicion of glomerular 

disease.15 Our study demonstrated a significant increase in miR-126 in azotemic dogs with 

ICGN compared with GS and AMYL. While no published literature currently exists 

regarding the expression of miR-126 in ICGN, increased expression of urinary miR-126 

was found in patients with type 2 diabetes mellitus and DN compared with patients without 

DN.416 Similarly, in a recent meta-analysis including 14 studies on miRNA expression in 

blood and urine from DN patients, urinary miR-126 expression was significantly 

upregulated compared to healthy controls and patients with no evidence of DN.430 In 

contrast, both our data and previous studies on DN patients documented a significant 

decrease in circulating miR-126 expression in dogs and people with kidney disease 

(Supplementary Table S20).7,430 MiRNA-126 was shown to be enriched in endothelial 

progenitor cell-derived extracellular vesicles and was thought to be responsible, in part, 

for their protective effect against ischemic AKI.429 Given the opposite findings in the 

serum vs. urine, more studies regarding the originations of circulating and urinary miR-

126 are needed to understand the discrepancy in its detection and its potential role in 

disease.  

In the current study, urinary miR-335 was upregulated in azotemic dogs diagnosed 

with GS when compared to azotemic dogs with AMYL. Similarly, miR-335 was 

upregulated in the kidney tissue of old rats (24 months old) compared to young rats (3 
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months old).431 In aging mesangial cells, significant upregulation of miR-335 was seen, 

and the expression of superoxide dismutase 2 (SOD2), a putative target of miR-335, was 

markedly downregulated.431 Based on knockout and over expression studies, miR-335 

contributes to the accumulation of reactive oxygen species (ROS) and consequent renal 

aging by suppressing the antioxidant effect of SOD2 in mitochondria.431 While the 

pathophysiological mechanism of FSGS is not entirely understood, putative pathways 

involving ROS have been postulated.432 Several studies found that agents that lower ROS 

levels433,434 or stimulate SOD activity435 could attenuate GS in murine models. Therefore, 

miR-335 is likely involved in the pathogenesis of GS in dogs. 

Urinary miR-128 is upregulated in azotemic dogs with AMYL when compared to 

azotemic dogs with ICGN. Currently, miRNA studies in renal amyloidosis are lacking; 

however, the function of miR-128 in renal cells has been characterized.  The 

overexpression of miR-128 induces apoptosis in human embryonic kidney cells 

(HEK293T) by regulating the pro-apoptotic protein Bax.436 In normal rat kidney cells 

(NRT) in which miR-128 was overexpressed, the expression of pro-inflammatory genes 

such as CCL5, CX3CL1, and CXCL7 was also upregulated.417 The MAPK pathway 

appears to be the top enriched pathway of miR-128 target genes.417  

Future directions 

The highlighted miRNAs that were differentially present among the disease groups 

and disease stages in this small RNA-seq study will be validated using qRT-PCR in a 

second cohort of similarly-obtained and stored samples from dogs with a variety of 

glomerular diseases. This will help to establish a miRNA profile for CKD and different 
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glomerular diseases in dogs. Our small RNA-seq data has provided a foundation for 

selecting promising endogenous miRNAs as controls for this qRT-PCR. However, spike-

in synthetic miRNA will be introduced during RNA isolation and analyzed along with the 

internal control candidates using the geNorm298 algorithm for normalization. The 

validated results will be correlated with clinical and pathologic data, such as 

histopathologic scoring of kidney biopsies, routine tests of renal function, and survival 

data. Results will provide valuable information for discovering non-invasive, novel 

microRNA biomarkers in dogs with glomerular diseases. 
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CHAPTER VI      

CONCLUSIONS 

 

 

CKD is a significant cause of morbidity and mortality in dogs. The majority of 

proteinuric CKD dogs have glomerular diseases, including FSGS, ICGN, and AMYL. 

These glomerular diseases have distinct therapeutic strategies, and a renal biopsy is needed 

for an accurate diagnosis. In this report, our ultimate goal was to use small RNA-seq to 

investigate miRNAs as biomarkers for early detection and progression of CKD. To 

achieve our goal, we first explored the genes and miRNA expression in kidney biopsies 

from male dogs with XLHN using RNA-seq and small RNA-seq. Next, samples from 

female dogs that were carriers for XLHN were used to optimize RNA isolation and library 

preparation for small RNA-seq. Finally, the established protocol was applied to dogs with 

3 types of glomerular diseases (FSGS, ICGN, and AMYL). The knowledge acquired from 

naturally occurring, progressive CKD establishes the basis for future studies. 

In the first RNA-seq study in a canine model of CKD, Chapter II described a study 

that profiled the gene expression in kidney biopsies obtained from male dogs with XLHN 

that have different speeds of disease progression. For these dogs born with the same gene 

mutation, lifespan until end-stage renal disease varied from as rapid as 6 months to as slow 

as one year. The results identified up to 70 DEGs when rapid and slow groups were 

compared at specific clinical time points. When using the time-course analysis to identify 

genes with group-specific changes over time, 1947 DEGs were identified. The 
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upregulation of inflammatory pathways was verified by T cell infiltration via IHC, and 

TGF-β1 was identified as the top upstream regulator. Before this study, the gene 

expression in dogs with XLHN was partially characterized by low-throughput methods, 

and progression-related genes were unknown. Hence, the study provides new insights into 

the underlying molecular mechanisms of disease progression in XLHN, and the identified 

DEGs are translatable to all CKDs.  

In Chapter III, we further explored the driving force leading to the distinct gene 

expression seen in Chapter II. We used small RNA-seq to profile miRNA expression in 

kidney biopsies from affected dogs with XLHN versus controls. We also compared the 

performance of 3 alignment tools for the analysis of the data. We identified miR-186 and 

miR-26b as suitable internal controls for canine kidney tissues. Up to 25 miRNAs were 

differentially expressed at specific clinical time points, including miR-146b, miR-21, and 

miR-802 that were constantly upregulated throughout progression of CKD. These DE 

miRs target genes involved in the signal transduction pathway, particularly the “signaling 

by TGF-β receptor complex” pathway. In what appears to be the first small RNA-seq study 

in a canine model of CKD, the DE miRs found in the current study may be predictive 

biomarkers for the early detection of CKD and can represent potential therapeutic targets 

for CKD in both dogs and humans. 

With the ultimate goal being to profile miRNAs in canine biofluids, the previously 

used methods in Chapter III required modification to accommodate the limited sample 

volume and scarcity of miRNAs in biofluids. In Chapter IV, we compared the performance 

of 6 commercial RNA isolation kits and 2 library preparation methods for small RNA-seq 
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using canine serum and urine collected and pooled from female dogs that are carrier for 

XLHN. For serum, Zymo Direct-zol combined with NEXTflex was the only combination 

that enabled successful library preparation, while for urine, Qiagen exoRNeasy combined 

with NEXTflex outperformed other combinations in detecting miRNAs. The total number 

of miRNAs detected in serum and urine was 198 and up to 115, respectively. MiRNA 

expression in serum was distinct from urine. Furthermore, we found that the library 

preparation method introduced a higher variation in urine results than RNA isolation 

method. Small RNA-seq provides an unbiased, global assessment for comparing these 

methods in canine biofluids, and we concluded that different isolation and library 

preparation methods show significant differences in miRNA results that could affect 

biomarker discovery.  

Developed upon the foundation provided in the previous discoveries, we used 

small RNA-seq to profile miRNA expression in serum and urine of dogs with different 

types of glomerular diseases. In Chapter V, archived IVRPS serum and urine samples 

obtained from 24 dogs with ICGN, GS, AMYL, and healthy controls were divided into 

azotemic and non-azotemic groups. Comparing CKD dogs with controls, 47 circulating 

miRNAs and 18 urinary miRNAs were differentially expressed. Regardless of disease 

stage, 5 circulating miRNAs (miR-107, miR-129, miR-186, miR-365, and miR-371) and 

5 urinary miRNAs (miR-7, miR-9, miR-22, miR-203, and miR-423a) were differentially 

expressed in dogs with all 3 glomerular diseases when compared to controls. The 

differential expression of urinary miR-182, miR-21, and miR-486 was related to the 
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progression of CKD. The distinctive expression of urinary miR-126, miR-335, and miR-

128 could correctly group azotemic dogs into ICGN, GS, and AMYL, respectively.   

This report is the first sequencing-based investigation in dogs with glomerular 

diseases. Future evaluation will use qRT-PCR to validate the DE miRs present among the 

disease groups and disease stages in a second cohort of dogs with glomerular disease, as 

in Chapter V. The validated results will be correlated with clinical and pathologic data, 

such as histopathologic scoring of kidney biopsies, routine tests of renal function, and 

survival data. In summary, the results provide valuable information for the discovery of 

non-invasive, novel miRNA biomarkers in dogs with glomerular diseases. 
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