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ABSTRACT 

 

  The accumulation of lipofuscins such as all-trans retinal dimer/cycloretinal in the 

retina may contribute to the progression of age-related macular degeneration (AMD). 

While the biosynthesis of cycloretinal is not fully understood, it has been shown that the 

milk protein β-lactoglobulin (BLG) can promote the cyclodimerization of all-trans retinal 

to cycloretinal both in vitro and in vivo. To further our understanding of this 

cyclodimerization, we have used site-directed mutagenesis of BLG as well as mass 

spectrometric analysis with substrate analogs to demonstrate that lysine residues play a key 

role in catalysis. It is shown that catalytic activity necessitates the presence of a physical 

binding site and cannot be mediated by a peptide chain. We also report that BLG is a 

promiscuous enzyme (a feature common to enzymes with a hydrophobic binding site and 

an active site lysine) that can catalyze the retroaldol cleavage of α, β unsaturated 

aldehydes. Retroaldolase activity was seen to be most effective on substrates with phenyl 

or napththyl side-chains. While the fluorescence images reported in this dissertation 

suggest that BLG may not be crossing into the retina to be the major protein responsible 

for cycloretinal biosynthesis, it might be possible that the blood-retina barrier becomes less 

coherent with age. These studies provide insight into the mechanism of the 

cyclodimerization process and provide a model system for biocatalysis and biosynthesis of 

cycloretinal in vivo.  In the long term, these studies may pave the way for drug 

development and inhibitor design as an early treatment regimen for AMD.  
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NOMENCLATURE 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Of the three most commonly diagnosed eye conditions (Table 1), Age-related macular 

degeneration is the most difficult to treat or detect.
(1)

 Ever since surgical treatment of 

cataracts became a routine procedure
(2)

, AMD has become the leading cause of blindness 

in people above the age of 50 in the United States of America.
(1, 3)

   

 

Table 1 Prevalence of AMD in the USA 

 

 

Eye disease 

 

Prevalence 

 

AMD 

 

1.6 million people above the age of 50 

 

Diabetic retinopathy 

 

5.3 million people above the age of 18 

 

Cataract 

 

20.5 million people above the age of 40 

 

 

 

Parts of this chapter are reprinted with permission from ‘Gowda, V., Foulke-Abel, 

J., Agbo, H., Bench, B. J., Chae, J., Russell, W. K., and Watanabe, C. M. H. (2017) 

Lipofuscin Formation Catalyzed by the Milk Protein β-Lactoglobulin: Lysine Residues in 

Cycloretinal Synthesis, Biochemistry 56, 5715-5719’. Copyright (2017) American 

Chemical Society 
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1.1 Epidemiology of AMD 

 

Studies into the prevalence of AMD in the United States of America by age and race have 

regularly found that Caucasians above the age of 80 are the highest at risk for AMD 

(Figure 1).
(3-5)

 This drastic increase in the prevalence of AMD in Caucasians vs other races 

could be due to dietary or lifestyle dissimilarities. Moreover, compared to Caucasians in 

the USA, AMD appears to be less common in Japanese people above the age of 50.
(5, 6)

 

The authors have hypothesized that this could be related to the higher consumption of an 

antioxidant by  

 

 

 

 

Figure 1 Prevalence of AMD in the USA by age and race 
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Japanese people. However, in the context of this dissertation, we should keep in mind that 

per capita milk consumption amongst Japanese is half the daily per capita milk 

consumption in the USA. 
(7)

 

 

1.2 Structure of the eye  

 

 

 

To better understand the types, cause and treatment of AMD, a basic understanding of the 

histopathology of the cells responsible for vision is required.   

The sclera is the outer layer of the eyeball (Figure 2). It is a protective layer and has little 

blood vessels.
(8)

  

Figure 2 Structure of the human eye 
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The choroid is the middle layer of the eyeball (Figure 2). The choroid has nearly all the 

blood vessels responsible for maintaining the retina 

 

The retina is the innermost layer of the eye that is responsible for vision.  Histological 

analysis of the retina (Figure 3) has shown that the retina can be divided into the following 

layers: 

 Just in front of the choroid is the retinal pigment epithelium (RPE)  

 Attached to the RPE are the photoreceptor cells (rods and cones). The area where 

the photoreceptor cells are present is called the outer nuclear layer 

  Other layers including outer plexiform layer, inner plexiform layer, ganglion layer, 

nerve fiber layer and inner limiting membrane that are transparent to light are found 

above the outer nuclear layer.
(8)

  

 

The macula is a collection of cells and specialized structures found in a disk under 250μm 

thick and less than 4mm in diameter near the center of the retina and is responsible for 

20/20 vision.
(1)
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The photoreceptor cells (rods and cones) contain the enzymes and structures necessary for  

phototransduction (the process by which light is converted into electrical signals that can 

be transmitted to the brain). Light dependent isomerization of rhodopsin activated 11-cis-

retinal to all-transretinal (ATR), a critical step in phototransduction occurs in the 

photoreceptor cells.
(9)

 Subsequently, the all-trans retinol produced at the end of 

phototransduction is converted back into 11-cis retinal by enzymes found in the RPE 

(Figure 4). 
(9)

 

 

 

Figure 3 Histopathological structure of the retina 
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Figure 4 The human vision cycle 

 

 

 

1.3 Etiology of AMD 

 

Any damage to the RPE, the photoreceptor cells or the blood vessels that supply blood to 

these layers (chroricapillaris) could lead to the loss of phototransduction activity.
(10)

 

Furthermore, the RPE cells, the photoreceptor cells and the choriocapillaris are physically 

and physiologically interconnected with a loss in any one of them resulting in the loss of 
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the other two. 
(11-14)

 If such degradation occurs in the macula, complete central vision is 

lost.
(1)

  

 

Accumulation of cellular by-products arising from the apoptosis or degradation of cellular 

material (including photoreceptor cells) lead to aggregates of a mixture of lipids, proteins  

and other cellular elements above the RPE called drusen.
(1, 15)

 The presence of noticeable 

drusen which does not necessarily affect vision is referred to as ‘dry AMD’ (Figure 5).  

 

The enlargement of drusen can result in a condition called geographic atrophy of the 

RPE.
(5)

 In such a scenario, the part of the RPE that undergoes atrophy loses its ability to 

phototransduce. If this affects the center of the macula (fovea), this could seriously impair 

Figure 5 Progression of AMD 



 

8 

 

vision. If instead of atrophy, there is choroidal neovascularization in the sub-RPE or sub-

retinal space, this could lead to severe vision loss and is known as ‘wet AMD’.
(16)

 As 

shown (Figure 5), this only affects about 10% of the total number of patients with AMD 

but it accounts for nearly 90% of the severe visual loss seen in AMD patients.
(11)

  

 

1.4 Drusen and lipofuscin, a biochemical analysis 

 

The presence of drusen is often diagnosed as an early stage of AMD.
(15)

 In order to 

discover the biogenesis of drusen, it has been analyzed to identify the lipids and proteins 

that constitute this complex mixture. The drusen is a mixture of proteins, lipids, 

polysaccharides and glycosaminoglycans. Lipids like esterified cholesterol and 

phosphatidyl choline comprise about 40% of the drusen
(17)

 while more than one hundred 

proteins have been characterized in the drusen with clusterin, vitronectin and serum 

albumin being identified as the proteins present in the highest concentration.
(17, 18)

 While 

most of these characterized proteins are generally found in the RPE, it is noteworthy to 

mention that β-lactoglobulin (BLG), a bovine milk protein not biosynthesized in humans 

has also been identified in the drusen of patients affected with AMD.
(18)

   

 

1.4.1 A2E 

 

The degradation of photoreceptor cells (rods and cones) leads to the formation of 

lipofuscins (non-degradable fluorophores) in the RPE.
(19, 20)

 A majority of the characterized 

molecules in lipofuscin are derivatives of ATR.
(21)

 Of these compounds, the one most 
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studied is the bis-retinoid A2E. Not only does A2E damage cells via detergent action but it 

also undergoes photo-oxidation leading to the formation of DNA damaging epoxides.
(19)

  

A2E is predicted to be biosynthesized from 2 molecules of ATR and a molecule of 

phosphatidylethanolamine (PE) (Figure 6). The cyclization of PE activated ATR followed 

by oxidation and dephosphorylation is proposed to generate A2E.
(9, 22-24)

   

 

Figure 6  Proposed biosynthesis of retinoid-derived compounds found to accumulate in 

lipofuscins of the RPE.R groups in phosphatidylethanolamine designate the long alkyl 

chains. 
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1.4.2 Cycloretinal 

 

A more recently characterized lipofuscin, ATR dimer or cycloretinal
(21-26)

 is very similar to 

A2E but lacks the enthanolamine fragment. While the cell-toxicity of cycloretinal is not 

well studied, it is reasonable to predict that photo-oxidation of cycloretinal could lead to 

cell damage in a manner similar to A2E.  

 

While cycloretinal could be generated chemically by activating ATR with an amine (like 

PE or proline) (Figure 7A),
(9, 25)

 such reactions have not been shown to progress in vitro at 

physiological pH.
(25, 27)

 An excess of base (triehylamine) is required for catalysis. 

Moreover, the identification that the R enantiomer of cycloretinal is preferably 

biosynthesized indicates the role of a stearic active site in this cyclodimerization.
(21, 26)

 It is 

therefore proposed that this cyclodimerization could be protein catalyzed (Figure 7B).    

 

1.5 Treatment of AMD 

 

Patients diagnosed with early stage AMD, dry AMD or geographic atrophy have no 

recourse to therapeutics and are only advised to get regular eye checks, quit smoking and 

take multi-vitamins so as to prevent wet AMD.
(28-30)

 Wet AMD is treated by injecting 

vascular endothelial growth factor (VEGF) inhibitors intravitreally at approximately six 

week intervals.
(1)

 Drugs like pegapatnib (nucleic acid)
(31)

 or bevacizumab (monoclonal 

antibody)
(32, 33)

 are currently being injected to prevent the growth of blood vessels in the 

retina, thereby delaying ‘wet’ AMD.  
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Figure 7  Proposed mechanism for cycloretinal formation mediated by A] 

phosphatidylethanoloamine B] proteinaceous lysine residues. 
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1.6 Beta-lactoglobulin and AMD 

 

Investigations into the synthesis and biosynthesis of cycloretinal
(21, 27, 34)

, a component of 

lipofuscin has led to the discovery that BLG can promote the cyclodimerization of ATR to 

cycloretinal both in vitro and in vivo.
(35, 36)

 The identification of BLG in the drusen of 

people affected with AMD
(18)

 and a study suggesting that milk consumption may lead to an 

increased likelihood of developing AMD
(37)

 has led to the proposal that BLG may have a 

role in the biosynthesis of the lipofuscin cycloretinal.  

 

BLG’s availability (it can easily be isolated from the whey fraction of milk)
(38)

 has resulted 

in nearly 300 papers studying the biochemical and biophysical properties of the protein 

being published yearly since 1996.
(39-41)

While the role of BLG in milk processing and its 

role as an allergen
(42, 43)

 have been the target of extensive investigations in the dairy 

industry,
(44-46)

 its stability at low pH,
(47)

 the presence of a central hydrophobic cavity,
(48)

 the 

Tanford transition,
(49)

 its ability to bind lipids and retinol
(39)

 and its similarity to retinol 

binding protein
(50-52)

 have been of particular interest to protein chemists.  

Despite all these investigations, a role for this milk protein in humans, if any, has not been 

identified.  
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1.7 Structure of BLG 

 

1.7.1 Primary structure 

A phylogenetic tree generated by comparing the primary amino acid sequence of bovine 

beta-lactoglobulin with BLG found in other mammals (Figure 8) shows that the Bos taurus 

protein is most similar to the BLG found in sheep, goats, bison and water buffalo, all 

members of the family bovidae. Interestingly, the primary amino acid sequence for BLG 

found in Orcinus orca (killer whale) is more similar to that of bovine BLG as compared to 

the BLG found in Equus caballus (horse).
(53)

   

 

Figure 8 phylogenetic tree generated by comparing bovine BLG to BLG of other species 
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1.7.2 Tertiary structure 

The three-dimensional structure of BLG has been well characterized by X-ray 

crystallography 
(38, 39, 41, 54-81)

 and nuclear magnetic resonance (NMR) spectrometry.
(60, 82-85)

 

BLG is an 18.4 kDa protein which contains nine beta strands and a single three-turn alpha 

helix (Figure 9). Eight of the nine beta strands fold into a beta-barrel that contains the 

central hydrophobic cavity or calyx. The ninth beta strand is believed to form the dimer 

interface in the bovine protein.
(39)

   

 

A representative crystal structure of BLG bound to retinoic acid
(62)

 shows that the beta-

ionone ring of BLG is surrounded by hydrophobic residues: Leucine 32, Valine 43, 

Isoleucine 56, Phenyl alanine 105 and alanine 118. The polar carboxylate terminal of 

retinoic acid is surrounded by polar residues lysine 60, lysine 69 and glutamate 62 (Figure 

10). ATR is postulated to bind similarly in the hydrophobic cavity with the aldehyde group 

set up to form an imine bond with either lysine.  

Figure 9 Central hydrophobic cavity of BLG with retinoic acid bound 
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Various spectrometric studies support the theory that the EF loop of BLG located at the 

‘open’ end of the central calyx moves to ‘close’ the calyx when pH is lowered from 7.1 to 

6.2. This transition, referred to as the Tanford transition, suggests that the central calyx of 

the protein can only bind ligands at higher pH while being ‘closed’ at lower pH.
(49, 83, 85, 86)

 

Heteronuclear NMR studies indicate that the regions close to the entrance to the calyx (CD 

and EF loops) are locally unfolded at neutral pH which could correspond to the open 

state.
(83, 85)

 There is some crystallographic evidence for this transition.
(57, 59)

 The Kd of 

retinol with BLG at pH 2 or pH 7.5 is very similar suggesting that the tertiary structure of 

the protein is stable to acidic conditions.
(47)

  

 

1.7.3 Quaternary structure 

 

Bovine BLG is believed to exist as a dimer at neutral pH and as a monomer at lower pH.
(39, 

41)
 Comparison of crystal structures of goat,

(87, 88)
 sheep

(89, 90)
 and reindeer

(91)
 BLG to 

Figure 10 Cartoon of 3-dimensional structure of BLG 
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bovine BLG shows that all these proteins exist as dimers at native pH while horse BLG 

exists as a monomer.
(39)

  

 

1.8 Ligand binding of BLG 

 

Table 2  Selected ligand binding constants for bovine BLG 

 
 

Entry Ligand  Kd (M) Entry Ligand Kd (M) 

1 Lauric acid 7.0 x 10-7 5 Vitamin D2 4.91 x 10-9 

2 Palmitate 1.0 x 10-7 6 Stearate 1.2 x 10-7 

3 Retinoic Acid 2.0 x 10-7 7 Cholesterol 3.49 x 10-8 

4 Retinol 1.5 x 10-7 8 β-Ionone 6.0 x 10-7 
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BLG has been crystallized with non-polar ligands including retinol,
(62)

 retinoic acid,
(62)

 

vitamin D,
(39, 67)

 dodecyl sulfate,
(74, 76)

 and various fatty acids (stearic acid,
(75)

 palmitic 

acid,
(58)

 oleic acid,
(75)

 myristic acid,
(73)

 lauric acid,
(56, 73, 74, 92)

 linoleic acid,
(75)

 decanoic 

acid
(55, 71)

) bound in its central hydrophobic cavity.  The native ligand of BLG has not been 

conclusively identified since BLG isolated from milk has not been crystallized with any 

ligands bound.  

 

The binding of ligands to BLG in solution has also been studied by various techniques 

(Table 2) with fluorescence titration being the most popular one.
(39)

 Since the initial 

discovery that retinol binds BLG, the energy transfer between a tryptophan residue of BLG 

(donor) and the ligand (acceptor) has been used to measure the dissociation constants for 

ligands
(47)

 including sodium dodecyl sulfate, palmitic acid, stearic acid, retinoic acid and 

retinol.
(93, 94)

 These studies have also reinforced the early observations that the Kd does not 

change when the pH is lowered from pH 7.5 to pH 2. The presence of a secondary binding 

site has been predicted with some crystal structures,
(67)

 molecular docking
(95)

 and FRET
(96)

 

studies finding evidence for multiple hydrophobic binding sites. An understanding of BLG 

catalyzed cyclodimerization may also help in the identification of a secondary binding site.  

 

1.9 BLG functional analysis 

 

BLG is classified as a lipocalin due to its eight stranded antiparallel beta barrel three- 

dimensional structure. Lipocalins are a family of proteins commonly associated with the 

transport of hydrophobic ligands.
(97)

 BLG’s structural similarity to retinol binding protein 
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(RBP) (Figure 11),another lipocalin, its ability to strongly bind retinol very similarly to 

RBP (Kd of both is in 10
-8

M range),
(52, 77, 97)

 its ability to solubilize hydrophobic ligands in 

aqueous solvents and its presence in human blood
(93, 98)

 has led to the ascription of a 

transport function for this protein.   

The discovery of receptors for BLG in the small intestine has supported the proposal
(98)

 

that BLG absorbs into the blood via the small intestine. Even though human blood has  

 

 

micro-molar concentrations of BLG in the human blood, very few studies have been 

undertaken to identify the fate of this protein. Using radioactive 
125

I- BLG, researchers 

were able to show that BLG which was intravenously introduced into blood is secreted into 

the milk of lactating mice.
(99)

 BLG has been found in the drusen of patients affected with 

Figure 11 Cartoon of 3-dimensional structure of RBP 
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AMD.
(18)

  Identifying the fate of blood BLG may help in identifying a transport function 

for this enigmatic milk protein.  

While the native function of BLG has remained elusive, it has been a target of various 

functionalization studies. Two of the important ones to discuss are drug delivery and 

catalysis.  

 

1.9.1 Applications of BLG in drug delivery 

 

Drug development is prone to failure with many potential drugs being rejected for non-

specificity or susceptibility to degradation.  To improve specificity and stability, drug 

delivery systems with the following properties are applied:
(100)

  

 Bio-compatibility: Any drug delivery agent has to be compatible with the living 

system that it is being applied to. Some of the most preferred targets for drug 

delivery development are therefore food or plant based compounds that are already 

regularly consumed or used in daily life and have been shown to be innocuous. 

Such materials prevent the necessity for costly clinical trials to prove their 

biocompatibility. Milk proteins are some of the most biocompatible 

compounds.
(100)

 Despite BLG being an allergen, a vast majority of humans 

consume milk containing BLG. Therefore, it has been an attractive target for drug 

delivery development.  

 Encapsulation properties: To prevent any active pharmaceutical or other ingredient 

from degrading, delivery agents are used to encapsulate the molecule. There are 

varying degrees of encapsulation. While protein binding the API in its cavity 
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prevents the material from degradation, this limits the choice of delivery agents to 

those that are naturally available and have the binding properties. Other techniques 

of encapsulation use the technique of self-assembly and co-assembly of protein 

nano-particles.
(100)

 Nano-particles of protein isolates (10 to 100nm in size) are 

prepared and then allowed to assemble into micelles, either by heat induced 

aggregation or desolvation.
(101)

 These micelles are then used to encapsulate target 

drug moelcules.  Nanoparticles of BLG have been prepared and shown to be 

structurally stable even at low pH.
(102)

 BLG-pectin nanoparticles have been 

introduced in acid beverages for delivery of vitamin D and other molecules.
(100)

  

 Bio-accessibility: Drug delivery targets have to be accessible to the tissues or cells 

that they intend to target. This is especially important in the case of oral drug 

delivery vehicles. Oral drug delivery vehicles should be resistant to pepsin 

digestion and tough acidic stomach environment. They should be easily absorbed in 

the intestines and selectively aggregate in the cells or tissue systems that they 

intend to target. Therefore, proteins like BLG that are stable at low pH
(47)

 and able 

to absorb into the blood through the small intestine
(98)

 are special targets for 

applications as drug delivery agents.  

 Bio-degradability: Any good drug delivery agent should be easily degraded and 

excreted from the body within a short period of time following the completion of 

its function. Proteins that can be easily degraded and excreted are generally the first 

targets for drug delivery application development.  
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Milk proteins other than BLG, mainly BSA are also well studied for drug delivery 

applications. For example, BSA nanoparticles for the delivery of the chemotherapeutic 

drug 5-fluorouracil have been developed.
(100)

 Human Serum albumin (HSA) has been 

shown to accumulate in solid tumours resulting in the development of a methotrexate-

albumin drug conjugate to selectively target tumour cells.
(103)

  

 

 

1.9.2 BLG’s catalytic applications 

 

For a long time, no catalytic function was attributed to BLG. While BLG’s native function 

might be as a carrier protein, like many other proteins,
(104, 105)

 BLG may moonlight as a 

catalyst promiscuous in its activity. Bovine serum albumin, another milk protein has been 

shown to catalyze Kemp elimination reactions, thiomichael addition reactions and aldol 

and knoevenagel condensations.
(106)

 

 

Even catalysts developed to perform specific functions, like catalytic antibody 38C2 which 

was raised to catalyze aldol reactions have been shown to catalyze reactions like the Kemp 

elimination. The enzyme was believed to use its hydrophobic pocket and the active site 

lysine to perform both aldol condensation and the Kemp elimination.
(105)

  

The de-novo designed and directionally evolved retro-aldolase, RA95.5-8 with activity 

approaching that of natural class I aldolases 
(107)

 is not just capable of retroaldol breakdown 

of hydrophobic molecules but is also able to catalyze Michael additions
(108)

 and 
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Knoevenagel condensations
(109)

 indicating that the presence of a hydrophobic cavity and 

active site lysine introduces promiscuous activity to these enzymes (Scheme 1.1).  

Similarly, the presence of a pair of lysines in BLG along with its hydrophobic calyx leads 

to the possibility that BLG can catalyze some of these reactions as well.  

 

Other work to introduce catalytic function to BLG includes the design of artificial 

metallocatalysts using BLG’s hydrophobic cavity (described in detail earlier) to bind 

diimine ligands carrying various fatty acid substituents and their d6-piano stool Ru/Rh 

complexes and then applying the complex to perform transfer hydrogenation of an 

activated aryl ketone in aqueous solvent, thereby affording (R)-enantiomer of the 

corresponding alcohol with ee up to 32%.
(110, 111)

 Further studies are underway to identify 

more functions for BLG and evolve its metalloenzymatic functionality.  

 

While enzymes currently do not find widespread use in the manufacture of chemicals, 

stricter environmental regulations and the cost of metal based catalysts might force the 

chemical manufacturing industry to direct themselves towards using enzymes in catalysis 

in which case the widely available milk proteins might be the cheapest starting point. With 

this in mind and the development of molecular biology techniques to manipulate BLG in 

cow and goat milk,
(112, 113)

 the exploration of BLG’s catalysis functions may be significant.  
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 1.10 Statement of purpose 

 

In these following chapters, we explain a novel strategy to express and purify recombinant 

BLG, and apply it to both probe the role of lysines in the cyclodimerization of ATR to 

cycloretinal as well as study the passage of BLG through the retina of BALB/c mice, all 

with the hope that these efforts may lead to a better understanding of the cause of AMD. 

We also demonstrate the retroaldolase activity of BLG and propose that BLG has the 

potential to be applied as a green catalyst in the chemical industry.  
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CHAPTER II  

EXPRESSION AND PURIFICATION OF BLG 

 

2.1 Introduction 

 

80 years’ investigation of BLG has shown that it can bind non-polar molecules,
(39)

 is stable 

to pepsin digestion, can get absorbed into the blood through receptors in the small 

intestine,
(114)

 and is present at micro-molar concentrations in blood serum.
(98)

 Due to its 

presence in whey protein, and ease of isolation from milk, it is being applied as an 

encapsulation protein for nutraceutical delivery.
(100)

  

 

BLG has been shown to catalyze cyclodimerization of α,β-unsaturated aldehydes to their 

respective cyclodimers.
(35)

 To continue our investigations into BLG catalyzed 

cyclodimerization, to probe the role of lysines in cyclodimerization and to track the fate of 

serum BLG in animal models, we needed an efficient technique to express and purify 

BLG. While BLG has been expressed and purified in P. pistoris,
(115)

 the added complexity 

of glycosylation deterred us from following this route. Expression in mammalian cells has 

been reported, 
(116, 117)

 but this route was too slow to pursue. 

 

 

Parts of this chapter are reprinted with permission from ‘Gowda, V., Foulke-Abel, 

J., Agbo, H., Bench, B. J., Chae, J., Russell, W. K., and Watanabe, C. M. H. (2017) 

Lipofuscin Formation Catalyzed by the Milk Protein β-Lactoglobulin: Lysine Residues in 

Cycloretinal Synthesis, Biochemistry 56, 5715-5719’. Copyright (2017) American 

Chemical Society 
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While it would be ideal to express BLG in E.coli, this technique has resulted in BLG being 

expressed in inclusion bodies,
(116)

 likely due to the inability of the reducing environment of 

E.coli cytoplasm to support formation of the two disulfide bonds in BLG.
(118)

 Origami DE3 

(Novagen) cells are E.coli mutant cells with a cytoplasmic redox potential comparable to 

mammalian endoplasmic reticulum.
(119)

 By co-expressing disulfide bond isomerase (DsbC) 

with BLG in Origami DE3 (Novagen), soluble protein was isolated.
(119)

 Since the BLG was 

not tagged, the purification process included a precipitation step where the host cell protein 

was salted out by decreasing the pH. Around the same time New England Biolabs made 

commercially available an E.coli mutant that had a cytoplasmic redox potential comparable 

to mammalian endoplasmic reticulum and overexpressed DsbC (New England Biolabs 

catalog number C3029J). Other techniques to improve solubility of proteins that express in 

inclusion bodies include the use of solubility enhancing tags like E.coli maltose binding 

protein (MBP) which are known to promote proper folding and in some cases, even 

increase yield of their fusion partners.
(120)

  

 

In this chapter, we detail our laboratory’s success in expressing, purifying and 

characterizing soluble BLG (and its various mutants) using a cleavable, solubility 

enhancing E.coli maltose binding protein (MBP) tag.  
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2.2 Results and discussion 

 

2.2.1 Expression of His6 variant of BLG 

 

DsbC expressing mutant of BLG,  SHuffle® T7 Express (New England Biolabs) E.coli 

with a cytoplasmic redox potential similar to mammalian endoplasmic reticulum was 

expected to be capable of expressing BLG in the soluble form.  Our attempts to express 

BLG in this mutant strain of E.coli as a His6 variant failed to produce soluble protein. 

Other attempts by Dr. Jennifer Foulke-Abel to clone and express E.coli codon-optimized 

BLG variant B in popular pET or pQE vectors employing T7 or lac promoters also failed 

to produce soluble protein. 

 

2.2.2 Expression of maltose binding protein (MBP) tagged variant of BLG 

 

In our laboratory, the MBP-BLG fusion construct generated soluble fusion protein in 

excess of 100 mg/L under a tac promoter when induced with IPTG at 16°C. However, 

earlier attempts by Dr. Jennifer Foulke-Abel at cleaving MBP-BLG to obtain pure BLG 

using Factor Xa proved to be so inefficient a process that it was impractical to carry out at 

large scale. To explore different protein cleaving enzymes, a tobacco etch virus (TeV) 

cleavage site was strategically placed between the MBP and BLG proteins by Dr. Hillary 

Agbo.  
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His6 TeV protease was expressed and purified in our lab. While the TeV protease cleaved 

our fusion protein efficiently to give BLG (Figure 12), His6 BLG could not be separated 

from His6 TeV protease. A modified strategy to express tag-less BLG and then separate it 

from His6 TeV protease using ion-exchange chromatography yielded a mixture of uncut 

MBP-BLG fusion protein and cleaved BLG.   

 

Figure 12  His6 TeV protease cleavage of MBP-BLG fusion protein 

Figure 13 Screening of conditions for MBP-TeV protease catalyzed cleavage of 

fusion protein: 1] MBP-BLG fusion protein 2]MBP-Tev Protease 3] cleavage with 

5mM DTT; 4
0
C 4 days 4] cleavage with 20mM DTT; 4

0
C 4 days 5] Ladder  6] 

cleavage with 1mM DTT; 30
0
C o/n; 4

0
C 3days 7] cleavage with 5mM DTT; 30

0
C 

o/n; 4
0
C 3days 8] cleavage with 10mM DTT; 30

0
C o/n; 4

0
C 3days 
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Subsequently, we designed a strategy which would use MBP-tagged TeV protease instead 

of the His6 variant. Screening of cleavage efficiency indicated that the large MBP tag  

lowered the efficacy of the TeV protease. Evaluation of multiple cleavage conditions 

indicated that 30
o
C overnight was optimal for cleavage (Figure 13). However, this resulted 

in a significant loss of yield due to protein precipitation. BLG’s proven stability, and the  

need for a large amount of clean BLG, prompted us to cleave at 4
 
C over a week rather 

than 30
o
C overnight. Attempts to purify the protein subsequent to cleavage using Nickel 

affinity chromatography proved difficult since the uncut fusion protein co-eluted with the 

cleaved protein. Unsuccessful efforts to remove the uncut fusion protein by trapping it on 

an amylose resin column could have been due to maltose  tightly binding MBP.  

 

To overcome this problem, we designed two strategies:  

 1M Methyl α-D-glucopyranoside has been reported to elute MBP tagged proteins. 

While this was not as efficient as maltose and did reduce yield, it also dissociated 

readily from MBP enabling the tagged protein to bind amylose resin on a second 

pass (Figure 14). 

 The second strategy was to mix crude, clarified and filtered lysates of MBP-BLG 

and MBP-TeV protease together and incubate with 20mM DTT for a week. DTT, a 

known protease inhibitor does not inhibit TeV protease. Subsequent to cleavage, 

the mixture is purified by Nickel affinity chromatography to yield a mixture of 

uncut fusion protein and BLG.  The uncut fusion protein is then bound to an 

amylose resin column resulting in clean BLG flowing through. This technique 

yielded 7mg/L cell culture of clean, pure BLG. 



 

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BL
Cleavage 

Pure 

DTT/ 1 

week 

Cut 

Uncut 
MBP-
BLG 

MBP-
MBP-

66 

20 20 

66 

20 

66 kDa 

Figure 14  Schematic diagram illustrating the BLG cleavage and purification process 
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2.2.3 Characterization 

 

The mass of the purified protein was analyzed by SDS-PAGE and ESI-MS. The mass 

detected by ESI-MS, 19404 Da matched the expected mass. Western blot analysis using 

anti-his antibody showed a single band corresponding to that of BLG (Figure 15).  

 

 

 

2.2.4 Mutagenesis 

 

A mutant of BLG where all the lysines were mutated to alanine (KA-BLG) was generated 

and overexpressed with a MBP tag. However, since the MBP tag could not be cleaved, 

possibly due to the inaccessibility of the TeV site, 8 glycines were added at the N-terminal 

of BLG to introduce a spacer between MBP and BLG. This construct was cloned, 

overexpressed and purified to obtain KA-BLG protein. Mutants of KA-BLG, A77K, 

Figure 15 Characterization of purified BLG by mass spectrometry and western blot 

analysis 
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A60K/A69K and A77K/A91K used in chapter 3 were also cloned, overexpressed and 

purified using the same strategy (Figure 16). KA-BLG and its mutants were observed to 

yield far less protein (0.5-2mg/L of cell culture) vs the wild-type variants (7mg/L of cell 

culture). The reduction in yield could be due to translation of mutants being affected in the 

absence of lysines.  

  

 

2.3 Significance 

 

The study of BLG has been limited by the lack of an efficient strategy for its expression 

and purification in E.coli. Our strategy to express and purify BLG using a cleavable, 

solubility enhancing E.coli maltose binding protein (MBP) tag has afforded us not only 

wild-type BLG but also its various mutants. Optimization of E.coli to improve the 

Figure 16 SDS-PAGE gels of purified KA-BLG; A6069K-BLG; A7791K-BLG and 

A77K-BLG 
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expression of disulfide bond containing proteins or the application of in vivo cleavage 

strategies may help in improving the yield of clean protein.  While the expression, 

purification and characterization of BLG and its mutants will allow us to explore the 

mechanism of BLG catalyzed cyclodimerization as well as track serum BLG in mice, those 

researchers interested in constructing chimeras of BLG or directionally evolving BLG to 

improve substrate specificity or kinetics now have access to a competent strategy to obtain 

catalytically active BLG mutants from E.coli.   

 

2.4 Experimental procedures 

 

2.4.1 Cloning of wt-BLG 

 

An E. coli codon-optimized version of Bos taurus BLG variant B (accession CAA88303) 

was synthesized and ligated to the TA cloning vector pQE-30UA (Qiagen, Valencia, CA) 

by GenScript (Piscataway, NJ) to generate the plasmid pQE30-BLG. To generate the 

maltose binding protein-BLG fusion construct, the BLG fragment was produced by PCR 

with primers BLG-BamHI-F and BLG-HindIII-R using pUC57-KA-BLG template with 1 

Taq MasterMix (M0483).  The N-terminal primer introduced a cysteine at the N-terminus 

of BLG. After agarose gel purification, digestion with BamHI and HindIII, the PCR 

fragment was ligated to the vector pMAL-c4X (New England Biolabs) using T4 DNA 

ligase at 16 °C to give the vector pMAL-BLG. Following transformation in E. coli 

DH10B, colonies were screened by PCR to identify positive clones and sequenced using 

pMALseqF and pMALseqR primers. 
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2.4.2 Cloning of Lys to Ala Mutant of BLG (KA-BLG) 

 

An E. coli codon-optimized version of Bos taurus BLG variant B with all lysine residues 

mutated to alanine was synthesized and ligated to the subcloning vector pUC57 by 

GenScript (Piscataway, NJ), giving plasmid pUC57-KA-BLG. To generate the maltose 

binding protein-BLG fusion construct, the KA-BLG fragment was produced by PCR with 

primers KA-BLG-BamHI and BLG-HindIII using pUC57-KA-BLG template with 1 Taq 

MasterMix (M0483).  The N-terminal primer introduced 8 glycines at the N-terminus to 

facilitate TeV cleavage by introducing a long gap between the TeV site and the BLG 

protein. After agarose gel purification, digestion with BamHI and HindIII, the PCR 

fragment was ligated to the vector pMAL-c4X (New England Biolabs) using T4 DNA 

ligase at 16 °C to give the vector pMAL-KA-BLG. Following transformation in E. coli 

DH10B, colonies were screened by PCR to identify positive clones and sequenced using 

pMALseqF and pMALseqR primers. 

 

2.4.3 Site Directed Mutagenesis of KA-BLG  

 

The QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies, Inc., Santa 

Clara, CA) was used to generate mutants A77K; A77&91K and A60&69K of KA-BLG.  

Primers (Table 3) were generated by the software provided on the Agilent website.  Each 

of the mutants was generated utilizing pUC57-KA-BLG as a template. Double mutants 

A7791K-BLG and A6069K-BLG were obtained by mutating A77K and A69K, 

respectively. The mutants were then cloned into pMALC4X (New England Biolabs) using 
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the primers KA-BLG-BamHI-F and BLG-HindIII. The resulting constructs were 

sequenced to confirm the correct DNA sequence and the TeV site between MBP and BLG.  

 

2.4.4 General conditions for overexpression and purification of BLG & its mutants  

 

2.4.4.1 Overexpression  

 

KA-BLG was transformed into BL21 DE3 cells by electroporation. The cells were then 

plated on LB-Agar plates containing ampicillin (100 µg/mL) and incubated overnight (~16 

h). An individual colony was then selected and grown overnight in 15 mL of LB medium 

containing 100 µg/mL ampicillin at 37 °C.  This starter culture was used to inoculate 1 L 

of LB Miller broth containing 0.2% glucose and 100 µg/mL ampicillin. The glucose helps 

to suppress endogenous amylases thus helping to increase protein expression.  The culture 

was shaken (225 rpm) at 37 °C to an optical density of 0.8 at λ 600 nm. This culture was 

then cooled to 16 °C and induced with 1 mM isopropyl β-thiogalactopyranoside for 20 h at 

16°C with a shaking frequency of 220 rpm. The cells were pelleted (7,000 rpm, 10 min), 

resuspended in 25 mL of column buffer (50 mM Tris-HCl pH 7.5, 200 mM NaCl, 1 mM 

EDTA, 10% glycerol) and stored frozen at -80 °C. 
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Table 3 Primers used in this study 
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2.4.4.2 Purification  

 

The cell suspension was thawed at 4 °C.  β-Mercaptoethanol and phenylmethylsulfonyl 

fluoride was then added to the cell suspension (1 mM final concentration).  The cell 

suspension was lysed using a Branson Sonifier 450 fitted with a 5 mm microtip (6 15s 

pulses at 50% duty cycle, output setting 6, with 3 min cooling intervals). Care was taken to 

maintain the temperature of the cell suspension at 4 °C by carrying out the sonication in a 

cold room and keeping the solution on ice.  The debris was pelleted at 12,000 rpm for 90 

min. The resulting supernatant was diluted with column buffer (1:6 ratio) before applying 

to a 25 mL amylose resin (New England Biolabs) column (Kontes Flex-Column, 2.5 x 10 

cm) that was packed by gravity-flow and equilibrated with column buffer. The column was 

subsequently washed with 12 column volumes of column buffer and MBP-BLG eluted 

with column buffer containing 1 M α-methylglucopyranoside (AMG).  The purification 

process was carried out at 4 °C in a chromatography refrigerator. The resulting protein was 

confirmed by SDS-PAGE and the concentration of the protein determined by Bradford 

assay using commercial Bovine Serum Albumin (BSA) as a standard.  BSA was used as a 

standard since the size of BSA (66 kDa) is very similar to the size of the fusion protein.  

All mutants of BLG were expressed and purified as per the protocol detailed above.  
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2.4.5 Overexpression and Purification of MBP-TeV Protease  

 

2.4.5.1 Overexpression 

 

 The construct expressing an autolysis-resistant S219V mutant of MBP tagged TeV 

protease (addgene Plasmid #8835)
(121)

 was transformed into BL21 DE3 cells along with 

the tRNA accessory plasmid pRIL (from the BL21 CodonPlus strain, Stratagene) by 

electroporation. The cells were plated on LB-agar medium containing chloramphenicol (30 

µg/mL) and ampicillin (100 µg/mL) and incubated overnight. An individual colony was 

then selected and grown overnight in 15 mL of LB medium containing chloramphenicol 

(30µg/mL) and ampicillin (100 µg/mL) at 37 °C. This starter culture was used to inoculate 

1 L of LB Miller broth containing 0.2% glucose, chloramphenicol (30 µg/mL) and 

ampicillin (100 µg/mL). The glucose helps suppress endogenous amylases, thus helping 

increase protein expression.  The culture was shaken (225 rpm) at 37 °C to an optical 

density of 0.8 at λ 600 nm. This culture was then cooled to 30 °C and induced with 1 mM 

isopropyl β-thiogalactopyranoside for 4 h.  The cells were pelleted (7,000 rpm, 10 min), 

resuspended in 25 mL column buffer (50 mM Tris.HCl pH 7.5, 200 mM NaCl, 1 mM 

EDTA, 10% glycerol), and stored frozen at -80 °C. 

 

2.4.5.2 Purification  

 

The MBP-tagged TeV protease was purified using the protocol that was used to purify the 

BLG fusion protein. The presence of the protein was confirmed by SDS-PAGE analysis. 
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The concentration was assessed by Bradford assay using commercial Bovine Serum 

Albumin (BSA) as a standard. 

 

2.4.6 Cleavage of the BLG Fusion Proteins by MBP tagged TeV Protease  

 

A schematic diagram illustrating the overall cleavage and protein purification process is 

shown in Figure 1, pg. S11.  To achieve cleavage, the purified KA-BLG protein and the 

MBP-TeV protease were dialyzed by centrifugal ultrafiltration (Amicon Ultra-15 

Centrifugal Filter Unit, Millipore, Billerica, MA) to a final concentration of 1 mg/mL in 

column buffer (50 mM Tris.HCl pH 7.5, 200 mM NaCl, 1 mM EDTA, 10% glycerol). The 

proteins were mixed and dithiothreitol (DTT) was added to give a final concentration of 20 

mM. The cleavage mixture was subsequently incubated at 4 °C for a 1 week period. 

During screening trials, cleavage conditions were varied by changing the concentration of 

DTT added after buffer transfer and by varying the incubation temperature and duration. 

Optimal conditions were found to be 20 mM DTT at 4 °C for 1 week. Cleavage was 

monitored by SDS-PAGE analysis.  Following incubation, the cleavage mixture was 

dialyzed by centrifugal ultrafiltration with loading buffer (50 mM Tris.HCl pH 7.5, 200 

mM NaCl, 5 mM imidazole, 10% glycerol). The protein was diluted to 50 mL and applied 

to a pre-equilibrated HisTrap FF 5 mL column (GE Healthcare Life Sciences, Piscataway, 

NJ) using a peristaltic pump at a rate of 0.2 ml/min. The column was washed with 200 mL 

of wash buffer (50 mM Tris.HCl, pH 7.5, 200 mM NaCl, 20mM imidazole, 10% glycerol) 

for 16 h. The column was subsequently washed with 25 mL of wash buffer containing 100 

mM of imidazole. Clean protein was eluted with elution buffer (50 mM Tris.HCl, pH 7.5, 
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200 mM NaCl, 250mM imidazole, 10% glycerol) and the resulting protein analyzed by 

SDS-PAGE.  The concentration of the protein determined by Bradford assay using BLG 

obtained from Davisco as a standard.  

 

2.4.7 Cleavage of wt-BLG Fusion Protein by MBP tagged TeV Protease without intial 

purification 

 

The cell suspension of wt-BLG and MBP tagged TeV Protease was thawed at 4 °C.  β-

Mercaptoethanol and phenylmethylsulfonyl fluoride was then added to the cell suspension 

(1 mM final concentration).  The cell suspension was lysed using a Branson Sonifier 450 

fitted with a 5 mm microtip (6 15s pulses at 50% duty cycle, output setting 6, with 3 min 

cooling intervals). Care was taken to maintain the temperature of the cell suspension at 4 

°C by carrying out the sonication in a cold room and keeping the solution on ice.  The 

debris was pelleted at 12,000 rpm for 90 min. The resulting supernatants were 

subsequently filtered by passing through a 0.2 μm filter. 25mL of wt-BLG supernatant and 

25mL of MBP-TeV protease supernatant was then mixed together. 1mL of 1M DTT was 

added to the resulting mixture to give a final concentration of 20mM DTT. This cleavage 

reaction was incubated at 4
0
C for 1 week. Subsequently, the mixture was dialyzed by 

centrifugal ultrafiltration (Amicon Ultra-15 Centrifugal Filter Unit, Millipore, Billerica, 

MA) with loading buffer (50 mM Tris.HCl pH 8.0, 200 mM NaCl, 5 mM imidazole, 10% 

glycerol). The protein was diluted to 50 mL and applied to a pre-equilibrated HisTrap FF 1 

mL column (GE Healthcare Life Sciences, Piscataway, NJ) using a peristaltic pump at a 

rate of 0.2 ml/min. The column was washed with 15 column volumes of wash buffer (50 
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mM Tris.HCl, pH 8.0, 200 mM NaCl, 20mM imidazole, 10% glycerol) for 16 h. Clean 

protein was eluted with elution buffer (50 mM Tris.HCl, pH 8.0, 200 mM NaCl, 250mM 

imidazole, 10% glycerol) and the resulting protein analyzed by SDS-PAGE.  The 

concentration of the protein determined by Bradford assay using BLG obtained from 

Davisco as a standard. 

 

2.4.8 Mass Spectrometric Analysis 

 

BLG solutions (0.4mg/mL) was dialyzed by centrifugal ultrafiltration (Amicon Ultra-

0.5mL 3kDa Centrifugal Filter Unit, Millipore, Billerica, MA) in 50mM ammonium 

acetate (pH=7.08) to a final concentration of 2mg/mL. This solution was prepped using 

zip-tip columns from Millipore. The tip was wet by withdrawing 20 μL acetonitrile twice. 

It was then equilibrated with 0.1% formic acid by pipetting out 20 μL of 0.1% formic acid 

four times. Sample was then bound to this tip by pipetting 20 μL of the sample ten times. 

To remove salt, the tip was then washed with 0.1% formic acid by pipetting 20 μL of the 

formic acid solution ten times. Finally, sample was eluted into a small, clean centrifuge 

tube by pipetting 15 μL of 7:10 (Acetonitrile/water) with 0.1% formic acid in and out of 

the loaded pipette tip.  

 

2.4.9 Western blot analysis 

 

After the protein was transferred to PVDF membraine (10V, 165 min), the membrane was 

incubated in blocking solution (3% bovine serum albumin solution in TBS buffer (50mM 
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NaCl, 10mM Tris-HCl pH 7.5)) for 60 minutes.  Subsequently, the membrane was washed 

twice with TBSTT buffer (500mM NaCl, 20mM Tris-HCl pH 7.5, 0.2% Triton X-100, 

0.05% Tween-20) for 20 minutes.  The membrane is then incubated with primary antibody 

(1μg his-tag monoclonal antibody in 10 mL blocking solution) for 10 minutes after which 

it was washed with 20mL TBSTT in two washes for a total of 20 minutes. The membrane 

was then washed with 15 mL TBS buffer for 10 minutes.  Afterwards, the membrane was 

incubated with secondary antibody (2μL goat anti-mouse AP conjugate in 10mL blocking 

solution) and then washed 4 times for 10 minutes each with 20mL TBSTT buffer.  To stain 

the membrane, AP detection reagent kit (Novagen 69264-3) was used. NBT-BCIP solution 

(750 μL 20X AP buffer, 60μL NBT, 60μL BCIP made up to 15mL with water) was added 

to the membrane and allowed to sit without shaking. Once color developed, the membrane 

is washed in water and air dried.  
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CHAPTER III  

LIPOFUSCIN FORMATION CATALYZED BY THE MILK PROTEIN 

ΒETA‑LACTOGLOBULIN: LYSINE RESIDUES IN CYCLORETINAL SYNTHESIS 

 

 3.1 Introduction 

 

Cycloretinal 3.2, also referred to as all-trans retinal dimer (Figure 17), has been isolated 

from the human eye and is one of several metabolites associated with age-related macular 

degeneration (AMD).
(19, 22, 25, 26)

 AMD is the most common cause of blindness affecting 

adults over the age of 50.
(122)

 In the early stages of the disease, the ‘dry’ form, this medical 

condition begins with the accumulation of yellow and white deposits in the macula (the 

central part of the retina of the eye).  These deposits contain lipofuscins, by-products of the 

visual cycle such as cycloretinal and A2E.
(1, 19, 22, 25, 26)

 In the advanced stage of the disease, 

the ‘wet’ form’, blood vessel leakage results from vascularization of the macula leading to 

the loss of central vision.   

 

 

 

 

Parts of this chapter are reprinted with permission from ‘Gowda, V., Foulke-Abel, 

J., Agbo, H., Bench, B. J., Chae, J., Russell, W. K., and Watanabe, C. M. H. (2017) 

Lipofuscin Formation Catalyzed by the Milk Protein β-Lactoglobulin: Lysine Residues in 

Cycloretinal Synthesis, Biochemistry 56, 5715-5719’. Copyright (2017) American 

Chemical Society 
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Figure 18 Proposed mechanism for BLG catalyzed cyclodimerization 

Figure 17 BLG catalyzed cyclodimerization of retinal to cycloretinal 
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Bovine β-lactoglobulin (BLG) is a highly stable small protein (18.4 kDa) that constitutes 

between 12–15% of the protein content of milk. Although the protein has been extensively 

investigated,
(41)

 its biological function has yet to be assigned. While BLG has been 

speculated as a transport protein, we have observed that the protein possesses moonlighting 

activity and is capable of promoting cyclodimerization of α, β-unsaturated terpenals to 

their respective cycloterpenals (Figure 17).  This includes the formation of cycloretinal 3.2, 

formed through condensation of all-trans retinal 3.1, in vitro and in vivo, as has been 

shown with a rabbit study.
(35)

  The cycloterpenals are a family of natural products of 

terpenoid biosynthetic origin with a central cyclohexadienal structural motif.
(34, 123)

 It is 

proposed that BLG can catalyze the condensation of α, β-unsaturated aldehydes through 

one of two possible pathways: a stepwise Michael-like imine addition or a concerted Diels-

Alder-type reaction (Figure 18).  For the reaction to proceed, both mechanisms require the 

activation of aldehyde residues via the formation of a Schiff base with lysine residues of 

the protein. In this study, we evaluate the involvement of lysine residues via Schiff base 

formation in facilitating the reaction as well as the need of a physical binding pocket to 

promote catalysis.  

 

3.2 Results and discussion  

 

BLG contains 15 lysine residues within its primary sequence, 4 of which are contained 

within binding sites.  Analysis of the BLG crystal structure (PDB: 1GX9) reveals a central 

calyx, which has been reported to bind retinal 3.1. Lysine residues K60 & K69, which span 

4.8 Å, line the active site (Figure 19A).  A secondary binding site has been thought to exist 
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on the β-barrel exterior
(67)

 with lysines K77 and K91 situated within ~12 Å of each other 

(based on crystal structure 1B8E, Figure 19B). In its native state, BLG exists as a dimer 

(Figure 19C). 

 

To evaluate the involvement of Schiff base formation and the role of lysine residues in 

cyclodimer formation, the reaction mixture was treated with sodium cyanoborohydride.  

This serves to trap the Schiff base intermediate (formed between the lysine and its 

aldehyde substrate and/or product) and reduces the imine bond to its corresponding amine.  

Since retinal and cycloretinal display light and temperature sensitivity, we employed the 

substrate analog citral to explore the BLG chemistry. Following reduction, the protein-

A B 

C 

Figure 19 BLG lysine residue pairs postulated to be involved in cycloterpenal catalysis: 

[A] Residues K60 and K69 on the β-barrel wall interior, [B] Residues K77 on the 

flexible loop and K91 on the β-barrel exterior, (1GX9), Lysine side chains are 

highlighted in red (1B8E), [C] Native dimer structure of BLG (1B8E) 



 

47 

 

bound complexes were fragmented by trypsin digest and the resulting short peptides 

analyzed by ESI-MS.  MS/MS analysis was performed, which enabled MASCOT-assisted 

prediction of peptide sequences.  Mining of fragment signatures revealed peptides 

containing residues K77 and K91 with citral substrate bound, and residue K91 with the 

product cyclocitral bound (Figure 20). Residues K77 and K91 are situated within 

reasonable proximity of one another, 12.8 Å (Figure 19B).  While K91 would be 

considered fairly immobile on the outer wall of the β-barrel, K77 resides on a flexible loop 

and could facilitate the reaction. However, time-course analysis revealed additional 

fragments of citral bound lysine residues, distributed in a randomized fashion, throughout 

the protein.  This is perhaps not surprising as the reaction is carried out with excess citral to 

achieve target residue saturation.  In a standard extraction of BLG incubated with citral, the 

aqueous phase retains a deep orange color (indicative of a citral-protein Schiff base) even 

after exposure to organic solvent.  While no additional lysine residues other than K91 

showed product bound, this raised some degree of ambiguity in the results. 

 

The generation and evaluation of BLG lysine mutants was the logical next step.  As the 

purified MBP-BLG fusion was shown to retain its activity to support cycloterpenal 

formation, site-directed mutagenesis was performed, generating lysine to alanine mutants 

at each of the fifteen positions.  However, as these mutants were not inactivating 

cycloterpenal formation as shown by HPLC, we modified the strategy whereby BLG was 

expressed as its MBP fusion and subsequently cleaved using a tobacco etch virus (TeV) 

cleavage site that was strategically placed between the MBP and BLG proteins. A C-

terminal His-tag on BLG was used to aid in the isolation of BLG. Circular dichroism (CD) 
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analysis of BLG showed no discernible change while monitoring the course of the 

reaction, which suggested no to minimal conformational change during the catalytic 

process and formation of cycloretinal (Figure 21).   

 

 

 

 

 

 

 

 

Figure 20 Mass spectrometric results obtained after trypsin digestion of BLG showing 

cyclocitral (homodimer product) bound to K91 
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Figure 22 HPLC analysis of cyclodimerization activity of BLG and mutants: A] wtBLG, 

KA-BLG B] A77K/A91K-BLG, A60K/A69K-BLG, A77K-BLG 

 

 

BLG and retinal over 1] 17hours 2] 41 hours 3] 72 hours 4] 90 hours 

Figure 21 CD analysis of BLG catalyzed cyclodimerization of all-trans retinal 

A] B] 
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To evaluate the role of lysines in cyclodimerization, we mutated each of the lysine residues 

of BLG to alanine (KA-BLG), to effectively “blank” the activity, with the idea of adding 

back specific lysine residues for evaluation.  The KA-BLG construct was cloned, 

overexpressed and shown to generate soluble protein.  We evaluated the ability of KA-

BLG to promote cycloretinal formation utilizing an HPLC assay (Figure 22A). The crude 

product was derivatized with 2, 4-dinitrophenylhydrazine (DNPH), analyzed by HPLC and 

quantified using a standard curve generated using a DNPH derivatized synthetic 

cycloretinal standard. 

 

With this assay, the KA-BLG mutant was shown to inactivate cyclodimerization (Figure 

22A), negating cycloretinal formation.  We, therefore, generated two sets of mutants.  We 

re-introduced the central calyx lysines K60 and K69 into KA-BLG giving A60K/A69K-

BLG and the secondary binding site lysines K77 and K91 giving A77K/A91K-BLG 

(Figure 22B).  Both sets of mutants restored activity, demonstrating that each pair of lysine 

residues is catalytically active. Total turnover number is defined as the ratio of moles of 

product generated divided by the moles of biocatalyst used in a reaction and is used to 

quantify activity of enzymes involved in non-native catalysis.
(124, 125)

 Comparison of total 

turnover number of both mutants (1.7 ± 0.1 μM per mM for A77K/A91K-BLG and 1.5 ± 

0.1 μM per mM A60K/A69K-BLG) showed that they were not as active as wild-type BLG 

(4.3 ± 0.2 μM per mM protein), which is consistent with the wild-type protein having more 

than one catalytic site.  To evaluate whether a single lysine residue is capable of catalyzing 

the reaction, we generated BLG with a single mutation, giving A77K-BLG (Figure 22B).  
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The single mutant was incapable of promoting the reaction, which is suggestive that two 

lysine residues are required for catalysis.    

 

 

To further corroborate these results, a 100-amino acid long truncated peptide mutant of 

DERA (deoxyribose 5-phosphate aldolase is a well-expressed E. coli protein), tDERA, was 

cloned, overexpressed and assayed for activity (Figure 23A). Despite having six lysines, 

tDERA was also shown to be catalytically inactive (Figure 23B), and demonstrates the 

importance of having a binding site to promote catalysis. SDS-treatment of BLG 

inactivates activity (Figure 24), which further reflects the importance of BLG’s tertiary 

structure and hydrophobic binding sites in the condensation process and formation of 

cycloretinal.   

. 

Figure 23 SDS-PAGE analysis [A] and HPLC analysis of cyclodimerization 

activity [B] of tDERA 

A] B] 
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Homology studies on BLG and a phylogenic analysis (Appendix figure 6 & 7, Page 119-

120) show that lysines 60, 69, 77 and 91 are highly conserved within members of the 

Bovidae family (cattle, bison, buffalo, sheeps and goats).  However, in comparison to other 

families that make up the order Cetartiodactyla including the Cevidae family (white-tailed 

deer and reindeer), the Delphinidae family (killer whales), the Physeteridae family 

(sperm whales) or the Balaenopteridae family (minke whales), lysine residues are shown 

to be mutated to glutamate.  Based on the literature, it is unclear as to what extent these 

animals suffer from AMD or whether the protein is present in the eye. While humans have 

no BLG homolog, BLG is transported to human serum from our diet
(98)

 and proteomic 

studies on both normal individuals and those with AMD have identified BLG as one of the 

major proteins in the eye.
(18)

 

Figure 24 1H-NMR analysis showing that SDS treated BLG does not catalyze 

cyclodimerization 

3.3 3.4 
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Figure 25 Evaluation of the mechanism with substrates analogs: condensation reaction with compounds 5 and 6 

3.5 

3.6 

3.8 

3.7 
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BLG has been shown to catalyze the cyclodimerization of a variety of aromatic substrates 

including cross condensation reactions in the formation of mixed dimers
(35)

.  In order to 

gain further insight into the mechanism of the BLG catalyzed cyclodimerization reaction, 

we designed an experiment to evaluate trapping of a reaction intermediate on the protein 

active site residue, utilizing compound 3.5 and brominated derivative 3.6 (Figure 25).  

Our rationale was that if cyclodimerization proceeded through a concerted Diels-Alder 

mechanism, deprotonation would result in the elimination of bromide resulting in the 

formation of a stable covalent amine bond between the protein’s active site lysine and 

reaction intermediate 3.7. Conversely, if the reaction proceeded through a stepwise 

mechanism, product 3.8 (Figure 25) would be formed.  Trypsin digestion and ESI-MS 

analysis of the control reaction (BLG incubated with 3.5), revealed product 3.9 (Figure 26) 

bound to lysine K91; a result which is consistent with our Schiff base trapping experiments 

with NaCNBH3. Mass spectrometric analysis of the reaction incubating both compounds 

3.5 and 3.6 with BLG did not reveal compound 3.7 bound to the protein. Moreover, 

extraction of the reaction with ethyl acetate and its subsequent analysis by H-NMR 

3.5 3.9 

Figure 26 Control reaction with compound 3.5 
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spectroscopy did not reveal the formation of compound 3.8.  However, compound 3.9 was 

also not isolated from the reaction mixture.  Hence, while reaction of 3.5 and 3.6 with BLG 

did not proceed as designed, compound 3.6 did appear to be serving as an inhibitor of the 

reaction.  

 

Trypsin digestion and subsequent peptide analysis by ESI-MS revealed lysines K91 and 

K60 bound to debrominated 3.6, shown as species 3.10, (Appendix Table 1, Page 118).  

Two other surface lysines (K135 & K8) also revealed labeling. These results are consistent 

with our mutagenesis studies and support the notion that inactivating single lysines of the 

lysine pair K60/K69 or K77/K91 eliminates cyclodimerization activity in BLG.  

Trypsin digestion and subsequent peptide analysis by ESI-MS revealed lysines K91 and 

K60 bound to debrominated 3.6, shown as species 3.9 (Figure 26).  Two other surface 

lysines (K135 & K8) also revealed labeling. These results are consistent with our 

mutagenesis studies and support the notion that inactivating single lysines of the lysine pair 

K60/K69 or K77/K91 eliminates cyclodimerization activity in BLG. 
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Figure 27 Mass spectrometric results obtained before trypsin digestion of BLG showing 

product bound to BLG 
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Figure 28 Mass spectrometric results obtained after trypsin digestion of product-bound  

BLG 
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Figure 29 Proposed mechanism for covalent labelling of BLG by 3.6 

 

 

3.3 Significance 

 

Understanding the mechanism of lipofuscin formation like cycloretinal, may contribute 

toward the development of therapies that control the progression of AMD. Proteomic 

studies on both normal individuals and those with AMD have identified BLG as one of the 

major proteins in the eye. 
(18)

 Humans have no BLG homolog, hence, the protein is derived 

from our diet.  Moreover, BLG has been shown to support cycloretinal formation in vivo, 

as revealed by a rabbit study. 
(35)

 It has been suggested that the biosynthesis of cycloretinal 

might involve proteinaceous acid-base catalysis and a chiral protein environment.
(25)

 Our 

findings here on the BLG promoted cyclodimerization of retinal to cycloretinal 

demonstrate the key role that Schiff base formation plays in catalysis, specifically that 

between the retinal aldehyde and lysine residues of the protein.  Moreover, the reaction 

3.6 

3.10 
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necessitates the involvement of two lysine residues (A60K/A69K or A77K/A91K), as 

opposed to one and a physical binding pocket.  A single lysine residue or a peptide chain 

does not support the reaction. BLG provides as a model system toward understanding how 

cycloretinal is formed and may lead to the identification of other endogenous proteins with 

similar properties that play a significant role in lipofuscin formation. 

 

3.4 Experimental procedures 

  

3.3.1 Instrumentation and General Methods 

 

NMR spectra were acquired on a Bruker Avance III 500 MHz spectrometer equipped with 

a 5 mm H-C-N cryoprobe (Bruker Corporation, Billerica, Massachusetts, USA) at 500 

MHz for 
1
H NMR and 125 MHz for 

13
C NMR in CDCl3.  Mass spectra (ESI) were 

obtained at the Laboratory for Biological Mass Spectrometry at the Department of 

Chemistry, Texas A&M University, with an API QStar Pulsar, MDS Sciex (Toronto, ON, 

Canada) Quadrupole-TOF hybrid spectrometer.  

 

3.3.2 General methods for trypsin digestion and mass spectrometric analysis 

 

Trypsin digest, liquid chromatography-mass spectrometry (LC-MS) and the associated 

data mining procedures were each carried out at the Laboratory for Biological Mass 

Spectrometry at Texas A&M University. Aliquots (75 μL) of each sample were desalted 

using a Micro Bio-Spin P30 column (BioRad, Hercules, CA).  Protein concentration was 
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adjusted to 0.1 mg/mL with (NH4)2HCO3 buffer and reduced with 5 mM dithiothreitol at 

60 °C for 1 h.  Subsequent protein alkylation was achieved using 20 mM iodoacetamide at 

room temperature for 10 min.  Protein samples were then digested with trypsin overnight 

(protein:enzyme ratio of 1:50) at 37 °C.  Separation and mass spectrometry were carried 

out on a NanoFrontier LC-MS (Hitachi High Technologies, Dallas, TX) equipped with a 

nanospray ESI source.  A 200 ng peptide sample was separated on a Vydac C18 capillary 

column (Grace Davison Discovery Sciences, 150 x 0.075 mm) at a flow rate of 200 nL/min 

under the following gradient routine employing water/acetonitrile and 0.1% formic acid in 

all conditions:  2% water/acetonitrile for 5 min, 2-10% over 0.1 min, 10-40% over 29.9 

min, 40-60% over 10 min, 60-98% over 5 min, 98% for 6 min, 98-2% over 1 min, 2% for 

13 min.  MASCOT-assisted predictions for modified lysine and carboamidomethyl groups 

on peptide fragments were used in manual examination of tandem MS/MS data.  Final 

spectra were produced by deconvolution to show the m/z +1 peaks and labeled to indicate 

the ion fragments resulting from b and y-type peptide cleavage. 

 

3.3.3 HPLC Analysis Conditions 

 

All samples in this study were analyzed using a Varian ProStar Liquid Chromatography 

system with a Luna 5 silica column (10 x 250 mm, 5 µm, 100 Å, Phenomenex) and a 

mobile phase gradient of 40% hexane in ethyl acetate to 20% hexane in ethyl acetate over 

30 min. with a 2 mL/min flow rate. A wavelength of 290 nm was used as it afforded the 

best signal to noise ratio for derivatized cycloretinal.  
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3.3.4 Cyclodimerization Assay Conditions  

 

Wild-type BLG or mutants of BLG (150 µM) was solubilized in 5 mL of PBS (10 mM 

phosphate buffer, 27 mM potassium chloride and 137 mM sodium chloride, pH 7.4) to 

which all-trans retinal (450 µM) was added. The reaction tube was covered with foil and 

incubated in a shaker (250 rpm) at 37 °C for 4 days
(35)

. The reaction was subsequently 

quenched by adding 5 mL of water and the solution extracted with ethyl acetate multiple 

times. The ethyl acetate fraction was dried over sodium sulfate and concentrated in vacuo. 

The resulting residue was stored at -80 °C until analysis. Prior to analysis by HPLC the 

organics were dissolved in 43.5 µL 0.07% HCl in methanol and the mixture derivatized 

with 16.5 µL of 2 mg/mL 2, 4-dinitrophenyl hydrazine.  The resulting mixture was 

analyzed by HPLC according to methods detailed on page S3.  The HPLC peak (Appendix 

Figure 1, Page 113) corresponding to cycloretinal was characterized by co-injection of 2,4-

dinitrophenyl hydrazine derivatized with synthetic cylocretinal. 

 

3.3.5 Cyclodimerization with SDS Denatured BLG 

 

Wild-type BLG (150 µM) was solubilized in 500 mL of PBS to which citral (450 µM) and 

50 g of SDS was added.  The mixture was shaken at 250 rpm for 4 days at 37 °C.  The 

BLG mixture was subsequently extracted with 2*500mL ethyl acetate and centrifuged to 

separate the organic layer. The organics were concentrated in vacuo and analyzed by NMR 

using CDCl3 as solvent.   
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3.3.6 Total Turnover Number (TTN) Analysis 

 

The amount of cycloretinal produced using wtBLG and its mutants was quantified using a 

standard curve generated with 2,4-DNP derivatized synthetic cycloretinal (Appendix 

Figure 2, Page 114). The amount of cycloretinal in micromoles was then divided by the 

number of millimoles of protein added to the reaction mixture to obtain TTN in terms of 

μM per mM of protein. 

 

3.3.7 Cloning of Truncated DERA 

 

The DERA gene was ordered from Genscript. The DERA gene was generated by 

amplifying the nucleotides coding for the first 100 amino acids of DERA using the primers 

mentioned in Table 1. The PCR product was purified and ligated into pET24b using the 

restriction enzymes NdeI and XhoI. 

 

3.3.8 Overexpression and purification of truncated DERA 

 

3.3.8.1 Overexpression  

 

The construct containing the truncated DERA was transformed into BL21 DE3 cells by 

electroporation and plated on LB-Agar plates containing kanamycin (50 µg/mL) and 

incubated overnight (~16 h). An individual colony was selected and grown overnight in 15 

mL LB media containing kanamycin (50 µg/mL) at 37 °C.  This starter culture was used to 
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inoculate 1 L LB Miller broth containing kanamycin (50 µg/mL). The culture was shaken 

(225 rpm) at 37 °C to an optical density at of 0.8 at λ 600 nm. The culture was cooled to 16 

°C and induced with 1 mM isopropyl β-thiogalactopyranoside for 20 h.  The cells were 

pelleted (7,000 rpm, 10 min), resuspended in 25 mL loading buffer (20 mM NaH2PO4, pH 

7.5, 200 mM NaCl, 5mM imidazole, 10% glycerol), and stored frozen at -80 °C.  

 

3.3.8.2 Purification 

 

 The cell suspension was thawed at 4 °C and β-mercaptoethanol and phenylmethylsulfonyl 

fluoride added to the cell suspension (1 mM final concentration). The cell suspension was 

lysed using a Branson Sonifier 450 fitted with a 5 mm microtip (6 15s pulses at 50% duty 

cycle, output setting 6, with 3 min cooling intervals). Care was taken to maintain the 

temperature of the cell suspension at 4 °C by carrying out the sonication in a cold room 

and keeping the solution on ice.  The cellular debris was pelleted at 12,000 rpm for 90 min. 

The resulting supernatant was diluted with loading buffer (20 mM NaH2PO4, pH 7.5, 200 

mM NaCl, 5 mM imidazole, 10% glycerol) in a 1:2 ratio, and applied to a pre-equilibrated 

HisTrap FF 5 mL column (GE Healthcare Life Sciences, Piscataway, NJ) with a peristaltic 

pump at a rate of 0.2 ml/min. The column was washed with 200 mL of wash buffer (20 

mM NaH2PO4, pH 7.5, 200 mM NaCl, 20 mM imidazole, 10% glycerol) for ~16 h, 

followed by a second wash with 25 mL of wash buffer containing 100 mM imidazole.  

Clean protein was eluted with elution buffer (20 mM NaH2PO4, pH 7.5, 200 mM NaCl, 

250 mM imidazole, 10% glycerol) and the protein subsequently analyzed by SDS-PAGE. 

The concentration of the protein was assessed by Bradford assay. Commercially available 
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BLG was used as a standard for Bradford assay as it was closer in size to the truncated 

DERA than Bovine Serum Albumin (BSA).  Subsequently, tDERA was assayed for 

cyclodimerization activity utiliizing the same conditions used to assay BLG catalyzed 

cyclodimerization. 

 

3.3.9 BLG-Citral Trapping Experiment with NaCNBH3  

 

Samples of BLG (1 mL, 1% w/v in PBS: 10 mM phosphate buffer, 2.7 mM potassium 

chloride and 137 mM sodium chloride, pH 7.4) were incubated with 4 molar equivalents of 

citral and 10 molar equivalents of NaCNBH3 at 37 °C for periods of 6, 24, 48, 72, and 96 

h.  A second set of BLG samples was set up in an identical fashion to which NaCNBH3 (10 

molar equivalents prepared in PBS) was added following each incubation period (6, 24, 48, 

72, and 96 h). After 2 h, the reaction mixture was dialyzed into 10 mM PBS, pH 7.4 using 

a millipore centrifugal filter (3 kDa). Two 75 μL aliquots of each time point were 

subsequently analyzed by trypsin digestion as detailed on page S3. 

 

3.3.10 BLG Reaction with 3-(naphthalene-2-yl)-but-2-enal  

 

Wild-type BLG was solubilized in 5 mL PBS (PBS: 10 mM phosphate buffer, 2.7 mM 

potassium chloride and 137 mM sodium chloride, pH 7.4) to give a 150 μM solution to 

which 3-(naphthalene-2-yl)-but-2-enal was added (450 µM). The reaction tube was 

covered in foil and incubated at 250 rpm for 4 days at 37 °C.  The sample (100 µL) was 

dialyzed with 400 μL of 50 mM ammonium acetate using a Millipore 3 kDa centrifugal 
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filter (10,000 rpm, 10 min).  The retentate was washed with 50 mM ammonium acetate and 

submitted for mass spectrometric and peptide analysis as detailed previously.  

 

~Note:  Due to the harsh conditions of trypsin digestion and analysis, the expected protein-

homodimer adduct will not be directly observed. However, if the homodimer is indeed 

bound to the protein, trypsin will not cleave at the labeled lysine site.  For example, we 

would expect to see the peptide ‘IDALNENKVLVLDTDYK’ in the reaction but not in the 

negative control. 
(126)

   

 

3.3.11 CD Analysis of BLG Promoted Cyclodimerization of All-Trans Retinal 

 

Wild-type BLG was solubilized in 5 mL PBS (PBS: 10 mM phosphate buffer, 2.7 mM 

potassium chloride and 137 mM sodium chloride, pH 7.4) to give a 150 μM solution to 

which all-trans retinal was added (450 µM). The reaction tube was covered in foil and 

shaken at 250 rpm for 4 days at 37 °C.  Aliquots (500µL) were taken daily and transferred 

to water using a Millipore 3 kDa centrifugal filter. The sample was then analyzed on a CD 

spectrometer (Chirascan) over the wavelength range of 200−400 nm for 5 min at 20 °C.  
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CHAPTER IV  

BIOCATALYSIS WITH THE MILK PROTEIN ΒETA-LACTOGLOBULIN: 

PROMOTING RETROALDOL CLEAVAGE OF CONJUGATED ALDEHYDES 

 

4.1 Introduction 

 

Enzymes that are versatile in their activity and substrate tolerance can be commercially 

applied to the production of chemicals and pharmaceuticals thereby increasing efficiency 

of manufacturing plants while reducing environmentally harmful waste.
(127)

 Natural 

enzymes, while highly proficient in the catalysis of their native substrates are not very 

versatile. Aldolases are a characteristic example of such enzymes with high activity 

towards their native polar substrates but very low tolerance towards hydrophobic ones.
(128, 

129)
 Various strategies including directed evolution,

(130)
 catalytic antibodies,

(131, 132)
 and 

computational design
(133)

 have been explored to design an aldolase with high activity 

towards non-polar molecules.  The de-novo design and directed evolution of a retro-

aldolase, RA95.5-8 with activity approaching that of natural class I aldolases has made the 

most progress toward this goal.
(107)

  Further investigations of RA95.5-8 indicate that this 

enzyme is not only promiscuous in substrate selectivity, but also in catalytic activity. 

Studies into the enzyme’s ability to catalyze Michael additions
(108)

 and Knoevenagel 

condensations
(109)

 indicate that the minimum requirement for promiscuity in catalyzing C-

C bond generating reactions is an active site capable of binding hydrophobic molecules 

and an active site lysine to form iminium ions or enamines.   
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Bovine β-lactoglobulin (BLG) constitutes between 12–15% of the protein content of milk. 

Despite extensive investigations into its physical and biochemical properties for 

approximately 80 years, the protein’s function remains unassigned.
(41)

  Its size, stability, 

bioavailability and capacity to bind hydrophobic molecules in its central calyx have 

resulted in applications including encapsulation and nutraceutical delivery.
(134)

  The 

presence of an active site lysine capable of activating aldehydes by imine formation and a 

hydrophobic cavity led us to propose that BLG, like RA95.5-8, could also serve as an 

effective retroaldolase. Previously, we have shown that BLG can promote condensation of 

α, β-unsaturated aldehydes, to their respective cyclodimers through C-C bond formation.
(35, 

135)
  For example, condensation of all-trans retinal 4.1 yields the formation of all-trans 

retinal dimer, cycloretinal 4.2 (Figure 30). 

 

 

Here, we report on the results of our investigations, which suggest that BLG is able to 

catalyze the retro-aldol breakdown of α, β-unsaturated aldehydes.  Exploration of the 

Figure 30 BLG catalyzed cyclodimerization of all-trans retinal to cycloretinal 
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substrate scope of BLG’s retroaldolase activity revealed that substrates with aromatic, non-

polar side chains are preferred to aliphatic or polar head groups.   

 

4.2 Results and discussion 

 

Synthesis of the α,β-unsaturated substrates was achieved by invoking a Horner-

Wadsworth-Emmons reaction to give the E-alkene ii, followed by DIBAL reduction of the 

nitrile, as shown for the formation of β-methyl naphthene aldehyde 4.5 (Figure 31A).
(136)

  

Due to the similarity between compound 4.5 and methodol, a compound used to study 

retroaldol reactions, we initially chose this compound to evaluate the cleavage products of 

the reaction.  

 

 

Figure 31Oxidative cleavage as mediated by BLG:  A] Synthesis of β-methyl naphthene 

aldehyde 4.5: i NaH, DCM; ii DIBAL-H, -60 °C; iii H2O;  B] BLG catalyzed oxidative 

cleavage of β-methyl naphthene aldehyde 4.5 

 

B] 

A] 
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Compound 4.5 was incubated with BLG in PBS buffer at 37 °C and the organics 

subsequently extracted with ethyl acetate.  Analysis by HPLC, revealed the formation of 

four peaks (Figure 32A). Each peak was collected and analyzed by NMR spectroscopy. 

 

 

 

Figure 32 Evaluation of BLG reaction by HPLC analysis: A] BLG reaction with compound 

4.5, B] BLG reaction with compound 4.13, C] acetonaphthone 4.3 synthetic standard 

 

 

The expected homodimer 4.6 was observed in peak a. Peak b was structurally 

characterized as acetonaphthone 4.3, which was also validated by comparison with 

acetonaphthone 4.3 standard (Figure 32C). Peak d was identified as starting material 4.5 

by H-NMR spectroscopy and Peak c was shown to be a compound closely related to the 

starting material; however, it wasn’t isolated in sufficient quantities to fully characterize it.  

a 

b 

c 

d e 

f 

g 

h 

A] B] C] 
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4.5 

4.5 

Figure 33 Control reaction showing that in the absence of protein, compound 3 does not 

non-enzymatically break down into acetonaphthone 

4.3 4.7 

4.5 

Figure 34 Proposed mechanism for BLG catalyzed retroaldol cleavage 



 

71 

 

A control reaction where 4.5 was incubated with PBS over 4 days resulted in the retrieval 

of only starting material (Figure 33). 

 

The scope of the reaction was evaluated with a series of α, β-unsaturated aldehyde 

substrates, Table 4.  The retro-aldol breakdown product for each was characterized by 

HPLC co-injection with synthetic standards and the total turnover number (TTN) for each 

substrate was evaluated as shown in Table 4.  BLG was shown to be most effective in the 

retroaldol cleavage of compounds with aromatic, phenyl 4.10 or naphthyl 4.5 side chains.  

Extending the side chain to that of a biphenyl- 4.11 or fluorene 4.12 groups resulted in a 3- 

to 10-fold reduction in retroaldolase activity, respectively.  Likewise, the more polar 

aromatic substrate, 2-methyl furanyl 4.9 moiety and the aliphatic substrate 4.8 showed very 

little to no retroaldolase activity.  This is thus suggestive that the retroaldolase activity 

favors that of a hydrophobic binding cavity that most effectively accommodates phenyl 

and naphthyl sidechains.  

 

The proposed route for cleavage of the α, β-unsaturated double bond of 4.5 to generate 

acetonaphthone 4.3 is depicted in Figure 34.  Hydrolysis of the imine activated double 

bond (via a lysine residue within the BLG binding pocket) initiates the process followed by 

a retro-aldol like cleavage of the C—C single bond.  The preference for aromatic groups 

over aliphatic side-chains is likely due to resonance stabilization of a transition state C-3 

carbocation during C-C bond cleavage.   
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Table 4 Evaluation of scope of the retroaldol reaction using a series of substrates 
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In light of this mechanism, we evaluated whether a cyclodimerization inhibitor, 3-

bromocinnamaldehyde 4.13 (Figure 35A),
(53)

 could effect an enhancement in retro-aldol 

activity.  Brominated 4.13 has been previously shown to inactivate key lysine residues 

(Figure 29) as validated by trypsin digestion and ESI/MS analysis.
(53)

  

 

 

 

The cyclodimerization process necessitates the involvement of two BLG lysine residues
(53)

 

as opposed to one for the retroaldol cleavage.  Hence, inhibitor 4.13 is expected to have a 

more substantive effect on the dimerization reaction as opposed to that of the oxidative 

cleavage.   Compound 4.13 was synthesized from acetophenone 4.14 using the Vilsmeier-

Haack reaction according to Figure 35B.
(137)

  BLG was incubated with a 1:1.5 ratio of 4.5 

to 4.13 in PBS buffer at 37 °C. The reaction mixture was subsequently quenched and 

extracted with ethyl acetate. HPLC analysis showed 4 peaks (Figure 32B) that were 

3

O

BLG
+

Br

O

O

4

A

8

B
O

9

N
O

+

Br

O

10 8

PBr3, 0 °C

Figure 35 Effect of substrate analog 4.13 on retroaldol cleavage: [A] BLG catalyzed 

retroaldol cleavage of β-methyl naphthene aldehyde 3 in the presence of inhibitor 8; [B] 

Synthesis of substrate analog 4.13 

4.13 4.5 4.3 

4.14 4.15 4.13 
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collected and characterized by H-NMR spectroscopy. Peak f was confirmed as 

acetonaphthone 4.3. Cyclodimer 4.6 was not observed indicating that treatment with 4.13 

eliminated cyclodimerization activity of BLG. While peak e eluted at about the same 

retention time as the homodimer 4.6, it was structurally characterized as 4.13. Peak h was 

confirmed as 4.5 and peak g was also not isolated in sufficient quantities for accurate 

characterization. 

 

The amount of acetonaphthone 4.3 formed in each experiment was quantified by HPLC 

analysis utilizing a standard curve (Appendix Figure 16, Page 129). Addition of 

cyclodimerization inhibitor 4.13 more than doubled the yield of acetonaphthone (0.45 

mg/L) compared to incubation of BLG with 4.5 alone, which yielded only 0.18 mg/L of the 

acetonaphthone cleavage product.  

 

Control experiments with 4.5 or 4.16 (Figure 36), which differ only by the presence of a 

bromo- or methyl-group at C-3, were carried out. Synthesis of 4.16 was achieved in the 

same manner as the synthesis of 4.13. ESI-MS analysis showed lysine labeling with 4.16 

while no labeling was observed with 4.5, which further substantiates that the bromo-group 

is critical for covalent labelling (Table 5).  
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Figure 36 Brominated analog of compound 4.5 

 

 

 

 

Table 5 Labelling of BLG with brominated substrate analogs 

 

 Expected mass Observed mass 

BLG + 1 molecule of 

compound 4.13 

18407.16 

& 18492.759 

18407.1992 

& 18494.1992 

BLG + 2 molecules of 

compound 4.13 

18538.32 

&18623.919 

18538.900 

& 18628.5996 

BLG + 1 molecule of 

compound 4.16 

18458 

&18639 

18457.5000 

&18639.1992 

BLG + 2 molecules of 

compound 4.16 

18543.5996 

&18724.5996 

18545.3008 

& 18726.6992 
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4.3 Significance 

 

Although the TTN for BLG catalyzed retroaldol cleavage is much lower than de-novo 

designed proteins, the ready availability of BLG makes it a viable choice for biocatalytic 

investigations. Davisco Foods International alone produces over 10 million pounds of 

whey protein isolates annually. Here, we have shown that β-lactoglobulin has the 

capability to catalyze retro-aldol cleavage of the α, β-unsaturated aldehydes. Catalysis is 

proposed to proceed through initial hydrolysis of the α, β-unsaturated imine followed by a 

retro-aldol cleavage of the alcohol (Figure 34). Use of a cyclodimerization inhibitor, 

disables this competing reaction and enhances the retroaldol process. We have 

demonstrated that BLG is a versatile protein with the ability to not only promote 

condensation reactions but also, a retroaldol type cleavage reaction.  Evolution of these 

enzymes and/or further understanding of the mechanism of these reactions might lead to 

the development of BLG variants with higher catalytic efficiency and/or adaptable 

biocatalysts for commercial use.  

 

4.4 Experimental procedures 

 

4.4.1 Instrumentation and general methods 

 

All reactions were carried `out in flame-dried glassware unless otherwise noted. All non-

enzymatic reactions were magnetically stirred and monitored by thin layer chromatography 

(TLC), performed using glass-backed silica gel plates Analtech (#47011). Flash column 
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chromatography was performed using 60Å Silica Gel (Silacycle, 230-400 mesh) as a 

stationary phase.
 1

H & 
13

C NMR spectra for synthesized compounds were recorded on a 

Varian Inova 300 unless otherwise noted. 
1
H NMR chemical shifts are reported as  values 

in ppm relative to CDCl3 (7.26 ppm), coupling constants (J) are reported in Hertz (Hz).  

Compounds obtained from enzymatic reactions using substrate 3 were purified on a Varian 

ProStar chromatography system and analyzed by NMR spectrometry. NMR spectra were 

acquired on a Bruker Avance III 500 MHz spectrometer equipped with a 5 mm H-C-N 

cryoprobe (Bruker Corporation, Billerica, Massachusetts, USA) at 500 MHz for 
1
H NMR 

and 125 MHz for 
13

C NMR in CDCl3. Mass spectra (ESI) were obtained at the Laboratory 

for Biological Mass Spectrometry at the Department of Chemistry, Texas A&M 

University, with API QStar Pulsar, MDS Sciex (Toronto, ON, Canada) Quadrupole-TOF 

hybrid spectrometer. 

 

4.4.2 Materials 

 

Commercial solvents, reagents, Phosphate Buffer Saline (PBS) salts and acetonaphthone 

standards were used as received from Sigma-Aldrich. β-lactoglobulin was obtained from 

Davisco Foods International,Inc. (JE-003-6-922, La Sueur, MN, 93.6% BLG). 

 

4.4.3 General methods for trypsin digestion and mass spectrometric analysis 

 

Trypsin digest, liquid chromatography-mass spectrometry (LC-MS) and the associated 

data mining procedures were each carried out at the Laboratory for Biological Mass 
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Spectrometry at Texas A&M University. Aliquots (75 μL) of each sample were desalted 

using a Micro Bio-Spin P30 column (BioRad, Hercules, CA).  Protein concentration was 

adjusted to 0.1 mg/mL with (NH4)2HCO3 buffer and reduced with 5 mM dithiothreitol at 

60 °C for 1 h.  Subsequent protein alkylation was achieved using 20 mM iodoacetamide at 

room temperature for 10 min.  Protein samples were then digested with trypsin overnight 

(protein:enzyme ratio of 1:50) at 37 °C.  Separation and mass spectrometry were carried 

out on a NanoFrontier LC-MS (Hitachi High Technologies, Dallas, TX) equipped with a 

nanospray ESI source.   A 200 ng peptide sample was separated on a Vydac C18 capillary 

column (Grace Davison Discovery Sciences, 150 x 0.075 mm) at a flow rate of 200 nL/min 

under the following gradient routine employing water/acetonitrile and 0.1% formic acid in 

all conditions:  2% water/acetonitrile for 5 min, 2-10% over 0.1 min, 10-40% over 29.9 

min, 40-60% over 10 min, 60-98% over 5 min, 98% for 6 min, 98-2% over 1 min, 2% for 

13 min.  MASCOT-assisted predictions for modified lysine and carboamidomethyl groups 

on peptide fragments were used in manual examination of tandem MS/MS data.   

 

4.4.4 General methods for mass spectrometric analysis of BLG 

 

Protein samples were dialyzed into 50mM Ammonium acetate using millipore centrifugal 

filters. The samples were then analyzed by injecting 30 μL of each sample onto API QStar 

Pulsar, MDS Sciex (Toronto, ON, Canada) Quadrupole-TOF hybrid spectrometer. The 

obtained spectra was deconvoluted to obtain mass spectra as a function of intensity vs m/z.  
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4.4.5 HPLC analysis conditions 

 

All samples except the reaction with 4.5 were analyzed on Thermo Scientific™ 

UltiMate™ 3000 Rapid Separation HPLC system with a Prodigy 5μm ODS-2 150 Å, LC 

column 250 mm×4.6 mm(Phenomenex) and a mobile phase comprising water (with 0.1% 

formic acid) as inlet A and 75%:25% Methanol:Isopropanol (with 0.1% formic acid) as 

inlet B. The conditions used were: 0-1 min: 80%A; 1-23 min: gradient change to 0% A; 

23-33 min: maintain 0%A. A wavelength of 280 nm was used as it afforded the best signal 

to noise ratio. 

The reaction assay of compound 3 with BLG was analyzed using a Varian ProStar Liquid 

Chromatography system with a Luna 5 silica column (10 x 250 mm, 5 µm, 100 Å, 

Phenomenex) and a mobile phase gradient of 40% hexane in ethyl acetate to 20% hexane 

in ethyl acetate over 30 min. with a 2 mL/min flow rate. A wavelength of 280 nm was used 

as it afforded the best signal to noise ratio. 

 

4.4.6 Generic assay of BLG with α,β unsaturated aldehydes 

 

Assays with BLG were carried out according to procedures reported by Bench, et.al 
(35)

. 

BLG (150 µM) was added to 500 mL of PBS (10 mM phosphate buffer, 27 mM potassium 

chloride and 137 mM sodium chloride, pH 7.4) along with the α,β unsaturated aldehyde 

(450 µM). The 1L flask was covered in foil and shaken at 250 rpm, 37 °C in an incubator 

shaker for 4 days. The reaction was quenched by adding 500 mL of water and the solution 

extracted twice with 250 mL of ethyl acetate. The ethyl acetate fraction was dried over 
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sodium sulfate and concentrated in vacuo. The resulting compound was stored at -80 °C 

until further analysis. Prior to analysis by HPLC the organics were dissolved in 200 µL 

methanol.  

Assay with brominated compound 8 was repeated in the same manner except that 35.5 mg 

of compound 8 was added to the reaction mixture.   

 

4.4.7 Total Turnover Number (TTN) analysis 

 

The amount of ketone product produced using wtBLG was quantified using a standard 

curves generated with synthetic standards.  The amount of ketone product in micromoles 

was then divided by the number of millimoles of protein added to the reaction mixture to 

obtain TTN in terms of μM per mM of protein. 

 

4.4.8 Synthesis of α,β unsaturated aldehydes 

 

The α,β unsaturated aldehydes used in this study were synthesized according to previously 

reported procedures. They were characterized by comparing H-NMR to previously 

reported H-NMR data.
(27, 34)

  

 

4.4.8.1 Synthesis of (Z)-3-bromo-3-naphthylacrylaldehyde  

 

Compound 11 was synthesized similarly to the synthesis of compound 4.13. A solution of 

dimethylformamide (15 mmol, 3.0 equiv) in CHCl3 (10 ml) was cooled to 0 
o
C and PBr3 
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(13.5 mmol, 2.7 equiv) was added to the solution over 15 min. The reaction mixture was 

stirred at room temperature for 1 h. Acetonaphthone (5 mmol, 1 equiv.) was added to the 

solution and was allowed to stir overnight. The reaction mixture was then poured into ice 

water, neutralized with K2CO3 to a pH of 8 and extracted with Et2O (20 ml x 3). The 

organic phase was washed with brine, dried over MgSO4, and concentrated in vacuo. The 

compound was purified by flash column chromatography (1:30, EtOAc: hexanes). 
1
H 

NMR (300 MHz, CDCl3) δ 9.96 (d, 1H), 8.05 (s, 1H), 7.75-7.62(m, 4H), 7.51-7.46(m, 

2H), 6.73(d, 2H) 13C NMR (300 MHz, CDCl3) δ 193.6, 144.9, 134.6, 134.4, 132.7, 129.5, 

129.1, 128.6, 128.2, 127.7, 127.6, 127.2, 124.0 HRMS (ESI) calcd for C13H9BrO [M+Na] 

282.97346 and 284.97141, found 282.97040 and 284.96837 Since this compound has not 

been characterized before, we have also included DEPT, COSY, HMBC, HSQC and 

MS/MS analysis.  
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CHAPTER V  

APPLICATION OF CONFOCAL FLUORESCENCE MICROSCOPY TO TRACK THE 

PASSAGE OF BLOOD-BORNE BLG IN MOUSE EYE  

 

5.1 Introduction 

 

Bovine BLG is a lipocalin being investigated as a drug delivery system since it is resistant 

to pepsin digestion in the stomach, is absorbed into blood through special receptors in the 

small intestine
(35, 93, 98, 114)

 and has been shown to bind various non-polar ligands. The fate 

of the micromolar amounts of BLG observed in blood is not known. It has been shown that 

125
I labelled BLG introduced intravenously was secreted into the milk of lactating mice 

indicating that BLG can pass across the mammary epithelial cell barrier by exploiting the 

immunoglobulin transport pathway.
(99)

  

 

BLG’s similarity to RBP,
(52)

 its ability to bind retinol
(39)

 and its detection in the retina of 

people affected with AMD
(18)

 could mean that its native function is the transport of retinol 

to the retina.  BLG may also be transported across the blood-retina barrier in a manner 

similar to the transport of immunoglobulins.
(138)

 Once in the retina, it is possible that BLG 

moonlights as an enzyme that promotes the formation of cycloretinal, a component of 

lipofuscin.  

 

Confocal fluorescence microscopy allows for images of thin sections of a tissue to be 

obtained (without the need for mounting or processing the tissue in any way) which can be 
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assembled into a three-dimensional image of the sample.
(139)

 This technique can be applied 

to track the passage of a BLG-fluorescent molecule conjugate through the retina of a live 

mouse in real time to confirm whether BLG is actively transported across the blood-retina 

barrier.   

 

In this study, we overexpress a BLG mutant with an extra cysteine at its N-terminal, couple 

it to a fluorescent molecule functionalized with a maleimide group, characterize the BLG 

conjugate and use it to study the passage of blood borne BLG through the retina.   

 

5.2 Results and discussion 

 

5.2.1 Over-expression and purification of N-Cys-BLG mutant 

 

Since it has been shown that the only cysteine in BLG that is not involved in a disulfide 

bond is not accessible to solvent,
(64)

 a mutant of BLG with an extra N-terminal cysteine 

(N-Cys-BLG) was cloned, overexpressed and purified to afford clean protein characterized 

by SDS-PAGE and mass spectrometric analysis.  

 

5.2.2 Coupling N-Cys-BLG to N-hydroxyethylmaleimide  

 

Initial optimization of coupling conditions was carried out using a cheap alternative 

maleimide compound: N-hydroxyethylmaleimide (NEM). Screening studies helped 

discover that phosphate buffered saline (PBS) at pH=8.1 was the best buffer for the 
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maleimide coupling. The significant difference in coupling efficiency between pH 7.5 (0% 

by mass spectrometric analysis) and 8.1 (100% by mass spectrometric analysis) (Figure 

37) could be due to the slightly basic conditions helping deprotonate the cysteine side-

chain (pKa= ~8.3). The optimal concentration for DMSO, used to solubilize NEM was 

found to be 1% as any increase in DMSO concentration beyond that resulted in protein 

precipitation. Trypsin digestion and mass spectrometric analysis revealed that the two 

labelled cysteines were cysteines 4 (N-terminal cysteine inserted in the mutant, Figure 38) 

and 164 (C-terminal cysteine, Figure 39) were binding NEM.  The exposure of BLG to 

DTT during purification may have resulted in the reduction of the Cys70-Cys164 disulfide 

bond making cysteine 164 accessible to disulfide bond formation.   

 

 

Figure 37 When treated with NEM, the peak for N-Cys-BLG (mass=19404 a.m.u.) 

disappeared and a new peak corresponding to BLG+ 2 moles of NEM (mass= 19686 

a.m.u.) was seen 



 

85 

 

 

 

 

 

 

9 561 1113 1665 2217 2769

Mass (m /z)

58.3

0

10

20

30

40

50

60

70

80

90

100

%
 I
n

te
n

s
it
y

4700 MS/MS Precursor 2622 Spec #1[BP = 2624.0, 58]

2623.9917

y6(+1),QLE E QCH(+1) - 28

2620.6096

y7(+1),QLE E QCHI(+1) - 28

1593.5924
2329.9988

b20 - 17(+1)

1517.8759y8(+1),QLE E QCHIH(+1) - 28

2055.8408
2582.4885

b15 - 17(+1)

QLE E QC(+1) - 28
2575.0598

2426.0845

LSFNPTQLEEQCHIHHHHH

H  
Expected mass for y11: 1451 Da 

Expected mass for y11+141= 1592 Da 

Observed mass: 1593 Da 

y11 

9.0 298.4 587.8 877.2 1166.6 1456.0

Mass (m /z)

158.8

0

10

20

30

40

50

60

70

80

90

100

%
 I
n

te
n

s
it
y

4700 MS/MS Precursor 1378.6 Spec #1[BP = 608.3, 159]

y5(+1)

y6(+1)

y4(+1)

559.2062
709.3660

y7(+1)672.2761
1380.1187

611.2556 CLIV TQTM(+1) - 18
y6 - 17(+1) 1361.7362

y5 - 17(+1) 773.2448 1101.6910
1317.5759645.3149 982.4905

a3(+1)

Expected mass for b5: 417 Da 

Expected mass for b5+141= 558 Da 

Observed mass: 559 Da 

b5 

GGSCLIVTQTM

K

Figure 38 Cysteine-4 containing peptide labeled with NEM analyzed by trypsin digestion 

and mass spectrometry 

Figure 39 Trypsin digestion and peptide analysis showing cysteine-164 containing 

peptide labeled with NEM 
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5.2.3 Coupling N-Cys-BLG to ATTO532 

 

Similar conditions to that used for NEM was used to couple BLG to ATTO532. However, 

the BLG-ATTO532 conjugate could not be analyzed by mass spectrometry. This could be 

due to ATTO532 (whose complete structure was not provided by ATTOTec) affecting the 

ionization of the protein conjugate. While the digestion of N-Cys-BLG or BLG-NEM 

conjugate had unveiled all the expected peptide sequences, attempts to digest BLG-

ATTO532 conjugate using trypsin and subsequently analyze by mass spectrometry did not 

divulge the N-terminal and C-terminal sequences hinting that these peptides had been 

modified in a way that they could not be detected. 

 

To verify that the dye had indeed coupled covalently to the protein and was not just bound 

in the hydrophobic cavity, we purified the coupled protein by passing it through a Nickel 

affinity column. After binding the protein, it was washed until the flow-through did not 

have any absorbance at 532 nm. During elution fractions which showed absorbance at 

532nm were collected, treated with a protein denaturant, sodium dodecyl sulfate (SDS) and 

dialyzed with PBS for a week to allow for any non-covalently bound dye to dialyze out. 

Subsequently, the protein was concentrated and analyzed by SDS-PAGE. SDS and DTT 

treatment would denature the protein and any molecule bound in the hydrophobic cavity 

would be released into the surrounding solvent. However, SDS-PAGE analysis showed 

that the protein corresponding to the size of BLG was fluorescent suggesting that the dye 

may be covalently bound to BLG (Figure 40).   
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Figure 40 Characterization of BLG-ATTO532 conjugate by SDS-PAGE analysis  

 

 

The number of dye molecules bound to 1 molecule of BLG, calculated by estimating the 

concentration of BLG-ATTO532 conjugate (by amino acid analysis) and  the concentration 

of fluorescent molecule (from absorbance at 532nm), showed that 4 molecules of dye was 

bound to each molecule of BLG. This high number could be due to the cleavage of 

disulfide bonds by DTT resulting in the increased access of cysteines to coupling.  
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5.2.4 Imaging mouse retina 

 

The retina of BALB/c mice that were intravenously introduced with BLG-ATTO532 

conjugate, ATTO532 dye and saline was observed by fluorescence microscopy. While 

injection of saline showed only the autofluorescence of the retinal region (Figure 41A), 

injection of ATTO532 showed images (Figure 41B) resembling an angiogram of mouse 

retina (Figure 41C).
(140)

 The retina of mice injected BLG-ATTO532 conjugate was very 

similar to those injected just ATTO532 (Figure 42A). An hour after injection, there was no 

marked decrease in fluorescence (Figure 42B) but 48 hours after injection, no fluorescence 

was observed (Figure 42C). Repeated injections every 48 hours did not reveal any 

fluorescence beyond the blood vessels suggesting that there was no build-up of BLG-

ATTO532 conjugate in the retina. These results suggest that either the BLG-ATTO532 

conjugate is not transported across the blood-retina barrier in young mice or that the 

amounts being transported are not within our detection limits. Repeating the experiment 

with older mice may help us study the effect of age on coherence of the blood-retina 

barrier.  

 

 

 

 

 



 

89 

 

 

 

 

 

 

 

 

 

A] B] 

C] 

A] B] C] 

Figure 41 Confocal images of retina of mouse A] saline injection B] ATTO532 injection  

C] Angiogram of mouse retina 

Figure 42 Confocal fluorescence image of mouse retina after A] 15 minutes B] 1 

hour C] 48 hours 
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5.3 Significance 

 

In these studies, we have reported an effective method to couple BLG to a fluorescent 

molecule using cysteine-maleimide coupling, thus yielding a conjugate that can be applied 

to discover the fate of blood borne BLG. Our studies to trace BLG in mice suggested that 

the blood-retina barrier in young mice is impervious to BLG (within the detection limits of 

confocal fluorescence microscopy). Since BLG was detected in drusen of a 93 year old 

man affected with AMD, it is possible that our mouse model, using young mice, does not 

accurately simulate a potentially weaker blood-retina barrier of older humans. Future 

studies using older mice may help discover the origin of BLG in the drusen of patients 

affected with AMD and thereby lead to a better understanding of the cause of this 

debilitating eye disease.   

 

5.4 Experimental procedures 

 

5.4.1 Overexpression and purification of N-Cys-BLG 

 

N-Cys-BLG was overexpressed and purified as described in Chapter 2. 
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5.4.2 Coupling of BLG to N-hydroxyethylmaleimide 

 

The BLG purified from his-trap column was dialyzed by centrifugal ultrafiltration 

(Amicon Ultra-15 Centrifugal Filter Unit, Millipore, Billerica, MA) to a final 

concentration of 2mg/mL in phosphate buffered saline (PBS) (10 mM phosphate buffer, 

2.7 mM potassium chloride and 137 mM sodium chloride, pH 8.1 at 4
o
C). This BLG 

solution was divided into 100μL aliquots in clean autoclaved microcentrifuge tubes.  

5mg of N-hydroxyethylmaleimide was dissolved in 140 μL dimethyl sulphoxide 

biotechnology performance certified (DMSO) purchased from Sigma (D2438) in a clean, 

autoclaved microcentrifuge tube. 1μL of this solution was added to each of the 100μL 

aliquots of BLG. The resultant solution was gently mixed by pipetting with 100μL pipette. 

The reaction tubes were then covered with foil and incubated at 4
o
C for 20 hours.  

The solution was then dialyzed by centrifugal ultrafiltration (Amicon Ultra-0.5mL 3kDa 

Centrifugal Filter Unit, Millipore, Billerica, MA) in 50mM ammonium acetate (pH=7.08) 

to a final concentration of 2mg/mL. This sample was used for further mass spectrometric 

analysis.  

 

5.4.3 Trypsin digestion and mass spectrometric analysis of coupled BLG 

 

BLG solutions (0.4mg/mL) was dialyzed by centrifugal ultrafiltration (Amicon Ultra-

0.5mL 3kDa Centrifugal Filter Unit, Millipore, Billerica, MA) in 50mM ammonium 

acetate (pH=7.08) to a final concentration of 2mg/mL. This solution was prepped using 

zip-tip columns from Millipore. The tip was wet by withdrawing 20 μL acetonitrile twice. 
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It was then equilibrated with 0.1% formic acid by pipetting out 20 μL of 0.1% formic acid 

four times. Sample was then bound to this tip by pipetting 20 μL of the sample ten times. 

To remove salt, the tip was then washed with 0.1% formic acid by pipetting 20 μL of the 

formic acid solution ten times. Finally, sample was eluted into a small, clean centrifuge 

tube by pipetting 15 μL of 7:10 (Acetonitrile/water) with 0.1% formic acid in and out of 

the loaded pipette tip.  

Trypsin digest, liquid chromatography-mass spectrometry (LC-MS) and the associated 

data mining procedures were each carried out at the Laboratory for Biological Mass 

Spectrometry at Texas A&M University. Protein concentration was adjusted to 1 mg/mL 

with (NH4)2HCO3 buffer and reduced with 2 mM dithiothreitol at 25 °C for 1 h.  

Subsequent protein alkylation was achieved using 20 mM iodoacetamide at room 

temperature for 10 min.  Protein samples were then digested with trypsin overnight 

(protein:enzyme ratio of 1:50) at 37 °C.  Separation and mass spectrometry were carried 

out at the Laboratory for Biological Mass Spectrometry at the Department of chemistry, 

Texas A&M University, with API QStar Pulsar, MDS Sciex (Toronto, ON, Canada) 

Quadrupole-TOF hybrid spectrometer. Final spectra were produced by deconvolution to 

show the m/z +1 peaks and labeled to indicate the ion fragments resulting from b and y-

type peptide cleavage. 

 

5.4.4 Coupling of BLG to ATTO-532 

 

The BLG purified from his-trap column was dialyzed by centrifugal ultrafiltration 

(Amicon Ultra-15 Centrifugal Filter Unit, Millipore, Billerica, MA) to a final 
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concentration of 2mg/mL in phosphate buffered saline (PBS) (10 mM phosphate buffer, 

2.7 mM potassium chloride and 137 mM sodium chloride, pH 8.1 at 4
o
C). This BLG 

solution was divided into 100μL aliquots in clean autoclaved microcentrifuge tubes.  

1mg of ATTO-532 (ATTO-TEC GmbH, Germany) was dissolved in 20μL in phosphate 

buffered saline (PBS) (10 mM phosphate buffer, 2.7 mM potassium chloride and 137 mM 

sodium chloride, pH 8.1 at 4
o
C) in a clean, autoclaved microcentrifuge tube. 2μL of this 

solution was added to each of the 100μL aliquots of BLG. The resultant solution was 

gently mixed by pipetting with 100μL pipette. The reaction tubes were then covered with 

foil and incubated at 4
o
C for 20 hours. The ratio of protein to dye is 1:12.  

The solution was then dialyzed by centrifugal ultrafiltration (Amicon Ultra-0.5mL 3kDa 

Centrifugal Filter Unit, Millipore, Billerica, MA) in 50mM ammonium acetate (pH=7.08) 

to a final concentration of 2mg/mL. This sample was used for further mass spectrometric 

analysis and is referred to as BLG-ATTO532 conjugate.   

 

5.4.5 Purification and SDS-PAGE characterization of BLG coupled to ATTO532 

 

Coupled BLG was dialyzed by centrifugal ultrafiltration (Amicon Ultra-0.5mL 3kDa 

Centrifugal Filter Unit, Millipore, Billerica, MA) in loading buffer (50 mM Tris.HCl pH 

8.0, 200 mM NaCl, 5 mM imidazole, 10% glycerol). Fractions that absorbed at 532nm was 

pooled together and separated into 3 aliquots. One aliquot was treated with sodium dodecyl 

sulfate (SDS) and then dialyzed into phosphate buffered saline (PBS) (10 mM phosphate 

buffer, 2.7 mM potassium chloride and 137 mM sodium chloride, pH 8.1 at 4
o
C) over a 

week using dialysis bag. Once all the unreacted dye was removed, the protein was 
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concentrated and analyzed by SDS-PAGE. One half of the gel was stained with Coomassie 

blue stain and then compared against a ladder and the unstained gel.  

 

5.4.6 Determining concentration of BLG-ATTO532 conjugate by amino-acid analysis 

 

5.4.6.1 Instrumentation 

 

Hydrolysis of samples is performed in a PicoTag Workstation.  Amino acids are 

derivatized and separated on an Agilent 1260 liquid chromatograph with” 

Chemstation”  software that controls the LC and collects, analyzes and reports the 

data.  The G1367E autosampler performs pre-column derivatization and multiple sample 

handling. 

Derivatized amino acids are eluted from a narrow bore, (2.1 x 200 mm), (Hypersil AA-

ODS), 5 um reverse phase column purchased from Thermo Fisher (part # 30105-

202130).  Solvent A consists of a 20mM Na acetate buffer with 0.018% v/v triethylamine 

(Fluka 90338), 0.05mM EDTA, (Sigma E4884) and 0.3% tetrahydrofuran (Fluka 87363) 

adjusted to pH 7.2 with weak acetic acid.  Solvent B is a 20% 100 mM Na acetate buffer 

(pH 7.2) with 40% acetonitrile and 40% methanol.  The working gradient begins at 0 

minutes at 100% A at 0.45 ml/min and goes to 60% B over 17 minutes. 

Primary amino acids (tagged with OPA, Agilent Item # 5061-3335) are detected at 

338/390 nm by the Variable Wavelength (UV) detector (G1365D) and secondary amino 

acids (tagged with FMOC, Agilent Item #5061-3337 ) at 266/324 nm. 
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5.4.6.2 Assay description 

 

Protein samples (both unreacted BLG and BLG-ATTO532 conjugate) were aliquoted and 

mixed with internal standards (Norvaline, Sigma # N7502 for primary amino acids and 

Sarcosine, Sigma S7672 for secondary amino acids), dried in glass tubes (6 x 50 mm, 

Fisher PN 14-957AA) in a vacuum concentrator and subjected to vapor phase hydrolysis 

by 6N HCl (Thermo Sci # 24308) at 150ºC for 1.5 hours under argon atmosphere in the 

presence of phenol (2%, Sigma #P5566) which limits the halogenation of Tyrosine 

residues. The samples were subsequently reconstituted in 0.4 N Borate Buffer (Agilent # 

5061-3339) to bring the eventual pH to 10 for optimum derivatization and transferred to 

the Agilent G1367E autosampler for automated derivatization and loading. Standard amino 

acids eluted at discrete retention times in the working portion of the chromatogram and the 

ChemStation® software integrated the area under the peak of the amino acid and compared 

it to the area under the peak of its internal standard.  A line was generated by linear 

regression.  

Note:  Since hydrolysis is used, Asparagine and Glutamine are deamidated to their 

respective acids.  Results for these residues are reported as ASX and GLX to denote that 

these data contain the combined amounts from both the amide and the acid.  Acid 

hydrolysis also destroys Tryptophan. The assay is controlled by a known protein, a 

recombinant Human Serum Albumin (Pro-Spec-TanyTechnoGene #pro-595).  An aliquot 

from the same batch of HSA was run with every assay.  The data from these controls was 

used to calculate the inter-assay error of all the amino acids. 
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5.4.7 Determining concentration of ATTO-532 dye by Absorbance Spectroscopy  

 

The concentration of the ATTO-532 dye in the BLG-ATTO532 conjugate was determined 

by absorbance scanning in a Genesys 2 UV-Vis spectrophotometer (ThermoFisher 

Scientific, Waltham, MA) at 532nm with PBS serving as the absorbance blank and using 

the absorptivity co-efficient of 115000 M
-1

cm
-1

 provided by the vendor.  

 

5.4.8 Imaging mouse retina 

 

The following protocol (IACUC 2016-0168) was approved by the Texas A&M University 

Institutional Animal Care and Use Committee (IACUC).  The mice (BALB/c) were 

purchased from Charles River (USA). All adult mice were housed separately in standard 

cages in the Laboratory Animal Resources and Research (LARR) facility at Texas A&M 

University and maintained under standard conditions.  

The mice were initially anesthetized using ketamine:dexmitomodene 

(25mg/mL:0.25mg/mL) cocktail. Coupled BLG was dialyzed by centrifugal ultrafiltration 

(Amicon Ultra-0.5mL 3kDa Centrifugal Filter Unit, Millipore, Billerica, MA) into 

phosphate buffered saline (PBS) (10 mM phosphate buffer, 2.7 mM potassium chloride 

and 137 mM sodium chloride, pH 8.1 at 4
o
C)  to give a final protein concentration of 

2.5mg/mL. 200 microliter of this solution was intravenously introduced into the mice 

(n=2). Control injections with either saline or ATTO532 was also performed.   

Imaging analysis 
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The mouse retina was imaged on an inverted Nikon confocal scanning microscope. The 

imaging objective was a Nikon CFI 10X with a 0.30 NA. This objective is to be used in 

free space air, something that contributed to less optimal imaging quality, and will be 

discussed later. Three lasers were used as excitation sources. Their center wavelengths are 

488 nm, 543 nm, and 632 nm, respectively. The three emission filters used were a 540/30 

nm, a 590/50 nm, and a 650 nm longpass, with each corresponding to in order to their 

respective laser above. The dye used is most efficiently excited and detected using the 543 

nm laser and 590/50 nm filter combination.  

After anesthetization and injection of saline, ATTO532 dye or BLG-ATTO532 conjugate, 

the non-imaged mouse eye was covered using a gel lubricant. Likewise, the imaged eye 

was covered using an optically clear ultrasound gel with the same refractive index as water 

and a pupil dilating agent: Opcon-A (Bausch and Lomb, active pharmaceutical ingredient- 

naphazoline HCl and pheniramine maleate). The mouse eye was then placed on a cover 

slip and “coupled” to the surface via the ultrasound gel. This coupling made a homogenous 

medium between the coverslip and the mouse eye. The gel for both eyes was necessary 

because of the effects of anesthesia on the mouse. Prolonged exposure to air without the 

ability to blink will dry the cornea, cause damage, and make imaging more difficult. The 

reasons ultrasound gel was used in particular are that it is optically clear and possess a 

similar refractive index to water, i.e. tissue and the eye. The idea behind this is that the 

medium changes between the objective and the eye would reduce the effects of index 

mismatch, such as aberrations.  

After the mouse was correctly positioned, axial translation was used to find the interface 

between the cornea and glass. This was set as the zero positon for imaging. The stage 
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axially was translated roughly 3-4 mm into the eye. However, because the lens of the 

mouse eye itself has a focal length of about ~2.6 mm on average, the distance into the eye 

is not the same as the focal spot translation.
(141)

 Simple geometric optics suggest that the 

axial focal spot inside the eye would non-linearly relate to the axial translation of the stage. 

A simple simulation using raytracing software reveals this to be true. Note that this was 

assuming only the lens of the eye affected the light rays. Regardless, the effective focal 

distance was roughly 2 mm into the eye where an offset of 1 mm in either direction 

translates to ~.2 mm. These are rough estimations as a rigorous examination to determine 

the exact focal position within the eye was not done. The axial resolution of the 

microscope in optimal conditions is 11.2 µm. Aberrations caused by refractive index 

mismatch between the air objective and water imaging environment as well as additional 

mouse eye lens would likely degrade this. Z-stacks, or volumetric three dimensional 

stacks, were acquired at two different positions. One stack was taken at the focal plane of 

the retina and another at 1 mm superficial to this. The axial spacing of the Z-stack was set 

so that each image in the stack was 15 µm apart from one another and covered anywhere 

from 1 mm to 0.2 mm.  
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CHAPTER VI  

CONCLUSIONS 

 

Dry form of age-related macular degeneration, a neurodegenerative disease proposed to 

affect five million people by 2050 is characterized by the deposition of drusen and 

lipofuscins in the retina. The biosynthesis of lipofuscin is poorly understood.  

Bovine BLG is an enigmatic protein whose native function, if any, has been hard to 

unravel. Its similarity to RBP, its detection in the drusen of patients affected with AMD 

and its ability to cyclodimerize ATR to cycloretinal both in vitro and in vivo leads to the 

belief that this protein may be one of the proteins responsible for the biosynthesis of the 

lipofuscin cycloretinal. Our results lead us to believe that a hydrophobic cavity and two 

lysines relatively proximal to each other are necessary for the cyclodimerization of retinal 

to cycloretinal. While mutagenesis studies support the initial proposal that this catalysis 

happens in the central hydrophobic cavity of BLG, mass spectrometric and other 

mutagenesis studies support the theory that a secondary binding site of BLG with lysines 

77 and 91 may also be involved. Further studies utilizing BLG from other animals that 

may not contain secondary binding sites could lead to better understanding of this 

cyclodimerization mechanism.   

 

During these studies, we discovered that BLG can catalyze the retro-aldol cleavage of α, β 

unsaturated aldehydes on hydrophobic substrates. Retroaldolase activity, only the second 

enzymatic activity discovered for BLG, was seen to be most effective on substrates with 

phenyl or naphthyl side-chains.  Retroaldolase activity of BLG, when combined with an 
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efficient purification technique for BLG reported in this dissertation could lead to the 

development of a cheap, commercial catalyst. 

 

While our results also suggest that the blood-retina barrier in mice is not permeable to 

BLG-ATTO532 dye conjugate, it could be possible that a potentially weak blood-retina 

barrier in older patients may be permeable to this protein. Computational analysis of the 

one hundred and thirty other proteins found in the drusen may also discover that some of 

these have two proximal lysines along with a hydrophobic cavity and thus be capable of 

cyclodimerizing ATR to cycloretinal.   

  

 

Figure 43 Various factors could potentially contribute to the progression of AMD 
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Therapeutics to prevent drusen formation will need to include not only a cocktail of drugs 

that can inhibit lipofuscin formation and strengthen the blood-retina barrier but also gene 

editing agents to negotiate the genetic causes of AMD. Discovering enzymes that break-

down lipofuscins into easily execrable by-products might be a preferable alternative 

therapy. Delivering these enzymes through means other than injections to the eye would 

further help alleviate the discomfort that people with AMD would need to go through. 

Better healthcare which has nearly doubled life expectancy in less than a hundred years 

from less than 50 to more than 80 years has also led to the increased prevalence of age-

related diseases. Protein mediated biosynthesis of the lipofuscin cycloretinal is probably 

only one musician in a whole orchestra of factors (from dietary to genetic) involved in the 

development of AMD, a neurodegenerative disease. While dietary intake of milk does lead 

to increased chance of developing AMD
(37)

,  our experiments and a survey of literature 

have not revealed any conclusive evidence for a  direct correlation between dietary intake 

of BLG and AMD progression. However, our studies into BLG mediated catalysis reported 

in this dissertation have provided insight on the role of lysines in the biosynthesis of 

cycloretinal in vivo.  
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APPENDIX 

 

 

 

 
 

 

Figure A 1 Representative Co-injection of wt-BLG reaction with synthetic cycloretinal:  See S7 for details on reaction 

conditions 
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Figure A 2 Standard curve generated by analyzing different amounts of cycloretinal: synthetic cycloretinal was 

derivatized with 2,4-dinitrophenylhydrazine 
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LYSINE 77 

Figure A 3 Mass spectrometric results obtained after trypsin digestion of BLG showing citral bound to K77 
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LYSINE 91 

Figure A 4 Mass spectrometric results obtained after trypsin digestion of BLG showing citral bound to K91 
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Figure A 5 MS/MS results obtained after trypsin digestion of 3.9-bound BLG 
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Table A 1 Comparison of the Peptides Obtained from BLG Incubated with Compound 6 to Control BLG 

 

Labelled lysine Sequence
a
 Modifications Cha

rge 

MH+ [Da] ΔM 

[ppm] 

RT 

[min] 

Missed 

Cleavag

es 

Lysine 91+ 6 

IDALNEnkVLVLD

TDYK 

K8(VGTAMU) 3 2094.07560 1.69 34.41  1 

Lysine 91 control IDALNEnKVLVLD

TDYK 

No modification 2 1964.01897 -1.72 25.77  1 

Lysine 60+ 6 VYVEELkPTPEGD

LEILLQK 

K7(VGTAMU) 3 2443.30313 -2.24 38.85  1 

Lysine 60 control VYVEELKPTPEGD

LEILLqK 

No modification 4 2314.25258 4.17 30.95  1 

Lysine 135 + 6 TPEVDDEALEKFD

kALK 

K14(VGTAMU) 3 2078.02585 -7.18 26.03  2 

Lysine 135 control TPEVDDEALEKFD

KALK 

No modification 2 1947.98454 -3.35 19.56  2 

Lysine 8 or 14 (peptide 1-

40) 

LIVTQTMkGLDIQ

KVAGTWYSLAM

AASDISLLDAQSA

PLR 

K8(VGTAMU) 4 4406.31557 -1.43 41.83  2 

Control peptides 1-14 VAGTWYSLAMA

ASDISLLDAQSAP

LR 

No modification 3 2707.36777 -3.08 48.87  0 

Control peptide 15-40 LIVTQTMKGLDIQ

K 

No modification 3 1587.90580 -5.12 23.26  1 

                   a
Peptides obtained by digesting the proteins with trypsin were subjected to mass spectrometric analysis 
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Figure A 6 BLAST analysis showing conservation of lysines 60, 69, 77 and 91 among closely related species 
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Figure A 7 BLAST analysis showing conservation of lysines 60, 69 and 91 among distantly related species 
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Figure A 8 HPLC analysis of BLG assay with compound 4.9 
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Figure A 9 Analysis of synthetic ketone product of 4.9 to generate standard curve 
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Figure A 10 HPLC analysis of BLG assay with compound 4.10 
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Figure A 11 Analysis of synthetic ketone product of 4.10 to generate standard curve 
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Figure A 12 HPLC analysis of BLG assay with compound 4.11 
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Figure A 13 Analysis of synthetic ketone product of 4.11 to generate standard curve 
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Figure A 14 HPLC analysis of BLG assay with compound 4.12 
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Figure A 15 Analysis of synthetic ketone product of 4.12 to generate standard curve 
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Figure A 16 Analysis of synthetic ketone product of 4.5 to generate standard curve 
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Observed mass for BLG wild type: 18277 & 18362.5996 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 Expected 

mass 

Observed 

mass 

BLG + 1 

molecule of 

compound 8  

18407.16 

&18492.759 

18407.1992 

&18494.1992 

BLG + 2 

molecules 

of 

compound 8 

18538.32 

&18623.919 

18538.900& 

18628.5996 

BLG 

The other major peaks observed are 

peaks corresponding to the loss of a 

water molecule from the labelled 

peaks. This could be due to the 

formation of an imine bond between 

the aldehyde and lysine residue in the 

protein active site. Variation in 

number of protonation state of the 

lysine residues could lead to a 

variation of 2-3 amu.  

Figure A 17 Mass  spectrometric analysis showing BLG covalently 

bound to compound 4.13 
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                    Observed mass for BLG wild-type: 18277 & 18362.5996
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On treatment with compound 11, BLG shows 

an increase in mass corresponding to the mass 

of debrominated compound 11. However, when 

BLG was treated with compound 3, no such 

increase in mass was observed. This provides 

support that the bromo substituent is responsible 

for the labelling of BLG by 11. 

BLG treated 

with  

Figure A 18 Mass spectrometric analysis showing BLG covalently bound to compound 4.16 
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Figure A 19 Characterization of compound 4.16 by 1H-NMR spectroscopy 
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Figure A  20 Characterization of compound 4.16 by 13C-NMR spectroscopy 
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Figure A 21 Characterization of compound 4.16 by mass spectrometry 
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Figure A 22 Characterization of compound 4.16 by MS/MS spectrometry 
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Figure A 23 Characterization of compound 4.16 by DEPT 90 
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Figure A 24 Characterization of compound 4.16 by DEPT 135 
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Figure A 25 H, H-COSY of compound 4.16 
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Figure A 26 HMBC of compound 4.16 
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Figure A 27 HSQC of compound 4.16 
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Homodimer standard was synthesized according to procedures previously reported by Bench, et. al 
(123)

. 

 

Synthetic standard 

Figure A 28 Characterization of peak ‘a’ by 1H-NMR spectroscopy 

Peak a 
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Synthetic standard 

Peak d 

Figure A 29 Characterization of peak‘d’ by 1H-NMR spectroscopy 
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Peak e 

Synthetic standard 

Figure A 30 Characterization of peak ‘e’ by 1H-NMR spectroscopy 
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Synthetic standard 

Peak h 

Figure A 31 Characterization of peak ‘h’ by 1H-NMR spectroscopy 
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Synthetic standard 

Peak d 

Peak h 

Figure A 32 Comparison of 1H-NMR spectra of peak‘d’ and peak ‘h’ 
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Figure A 33 Characterization of peaks ‘b’ and ‘f’ by 1H-NMR spectroscopy 



 

157 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peak f 

Peak b 

Standard 

Figure A 34 Characterization of peaks ‘b’ and ‘f’ by 13C-NMR spectroscopy 
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Figure A 35 Characterization of peaks ‘b’ and ‘f’ by HSQC correlation 



 

159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peak b 

Peak f 

Standard 

Figure A 36 Characterization of peaks ‘b’ and ‘f’ by COSY correlation 
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Figure A 37 Characterization of peaks ‘b’ and ‘f’ by low energy HMBC correlation 
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Figure A 38 Characterization of peaks ‘b’ and ‘f’ by high energy HMBC correlation 


