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ABSTRACT

When building cryptosystems, cryptographers focus on finding problems that are not believed

to be solvable in polynomial-time. Some of the most popular problems they have found are the

Discrete Logarithm Problem and Integer Factoring. The former is used in Diffie-Hellman Key

Exachange (DHK) and El Gamal encryption, while the latter is used in RSA. El Gamal and DHK

are both very popular, but RSA is more prevalent due to its efficiency. Nevertheless, it is plausible

that in the next few decades, all three of these systems will likely be useless due to the advances

made by Peter Shor in quantum computing.

This paper will explain the details of how Shor’s algorithm works and how it accomplishes the

above. It will also feature a redesign of the proof of Jeffrey Miller (1975) that efficiently reduces

from order finding in a group of order N to factoring N . Hopefully, doing so will aid future

students in their studies of quantum algorithms and Post-Quantum Cryptography.
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NOMENCLATURE

BQP Bounded-Error Quantum Polynomial Time

lg lg(x) = log2(x) =

QFT Quantum Fourier Transform

FFT Fast Fourier Transform

gcd(x, y) Greatest Common Divisor of x and y

Fp The field containing {1, 2, . . . p}

Z/〈N〉 The ring of integers mod N

U∗ The complex-conjugate transpose of the matrix U

dxe The smallest integer greater than x

|x| The order of x in a given group
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1. INTRODUCTION

1.1 Cryptography Overview

Whenever we use messaging services (email, text, etc.), banking services, or anything that deals

with transferring information that we don’t want to be public, we are using some sort of cryptosys-

tem. These cryptosystems are made by cryptographers, and they use an encryption protocol that is

appropriate for the information being shared. This means that the system must be fast enough for

the users; i.e., we don’t want to wait 10 minutes for our phones to encrypt a text message before

it sends. It also means that the system must be secure enough to deal with the anticipated attack.

For example, in cabinets we probably store something like basic foods, whereas in a fire safe we’re

going to store something like private documents (passport, social security card, etc.). We’re not

too concerned about someone breaking into our home just to steal the food, but we are concerned

about the documents being stolen. Thus, we build fire safes more securely than cabinets.

When we make cryptosystems to protect information, we are generally basing the cryptosys-

tems off of the fact that it’s “hard” to solve some given problem. For our most secure systems we

are going to choose problems that (hopefully) require exponential time to solve. Unfortunately,

efficient cryptosystems that are provably this hard to break remain unknown. What is currently

known is how to build useful cryptosystems whose breakage implies the resolution of well-known

computational problems expected to be algorithmically hard in practice. In order to show these

things and verify that the cryptosystem is being based on an appropriate problem, we need a fun-

damental understanding of complexity theory, abstract algebra, and number theory. Despite that,

it’s been shown that cryptography has been around since approximately 1900 BC. However, a new

and potentially dangerous sub-field, quantum cryptography, arose in 1970. The danger comes from

the potential to break current cryptosystems that are secure enough to be used by the NSA, FBI,

DEA, etc.

My interest lies in the field of post-quantum cryptography which is the study of cryptography

with the assumption that we have a stable quantum computer that can run quantum algorithms.
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Fortunately for us, it’s estimated that we still have 25-100 years before such a computer can be

made which gives us time to study post-quantum cryptography and come up with alternatives to

our current cryptosystems. One can get away without knowing the quantum mechanics that lie

behind the quantum computer, but a decent knowledge of computer science is certainly needed

for post-quantum cryptography. One side of post-quantum cryptography is aimed at proposing a

method of encryption that can’t possibly be cracked by classical or quantum computers. The other

side is to take problems from current cryptosystems and prove that they belong to the complexity

class BQP . BQP , Bounded-Error Quantum Polynomial Time, is the complexity class of decision

problems that can be solved with a correct answer at least 2/3 of the time. The latter is the side that

I’m interested in, more specifically I’m interested in how we break famous cryptosystems such as

RSA and how we create cryptosystems that are quantum-resistant. The following will give us an

official definition to prove that Integer Factoring is indeed in BQP .

Definition 1. BQP is the class of decision problems for which there exists a uniform family of

polynomial-size quantum circuits that can be solved with a correct answer greater than 2/3 of the

times the problem is attempted.

1.2 Overview of RSA

RSA is a cryptosystem made by Rivest, Shamir, and Adleman that assumes that factoring

an arbitrary integer is considered to be hard, classically. In outline we have two people, Alice and

Bob, who are trying to communicate without their adversary, Eve, getting in the way. Alice secretly

chooses two prime numbers, p and q. She then publishes n = p·q and r such that gcd(r, φ(n)) = 1

where φ is Euler’s Totient function. Bob then chooses a message M such that 1 ≤ M < n and

checks that gcd(M,n) = 1. Bob then computes C ≡ M r (mod n) and sends C to Alice. Alice

can then find s such that r · s ≡ 1 (mod φ(n)) and then use that to compute Cs ≡ M mod (n).

In order to recover the message, Eve needs to find φ(n) which means that she needs to be able

to factor n. Even our best algorithms (Elliptic Curve method, Quadratic Sieve, etc.) are unable

to factor a general integer faster than eO((log(N))1/3(log(log(N)))2/3) by [5]. This is good because that

running time is exponential and thus doesn’t put integer factoring in P . This means that it’s safe
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for our government and our servers to continue using RSA encryption.

1.3 Overview of El Gamal and Diffie-Hellman

There is another type of encryption known as El Gamal which is based off the Diffie-Hellman

Key-Exchange Protocol which relies on the Discrete Logarithm Problem (DLP) being hard. For

DLP, we are trying to find x such that gx ≡ b (mod n) when given g, b, and n. We can apply this

to an Alice, Bob, and Eve situation as follows. First, Alice chooses a prime p that is large enough

that it’s unfeasible to solve DLP in Fp. Alice will secretly select a private key, a and compute

A ≡ ga (mod p) where g ∈ Fp. Bob will now need to send a message, m ∈ Z, to Alice where

2 ≤ m < p. In order to encrypt m, Bob computes b1 ≡ gk (mod p) and b2 ≡ mAk (mod p)

where k is a randomly selected element of Fp. He will then send b1 and b2 to Alice and she will

compute (ba1)
−1 · b2 (mod p) in order to get m. A huge downside here is that we are using 2-1

encryption. This means that our cipher-text has to be twice as long as our original message. Due

to ease of use and speed, we primarily use RSA to encrypt information. There are various types of

RSA, with the most secure version being RSA-2048 which uses numbers that are 2048 bits long

(617 decimal digits).

1.4 Motivation for Studying Shor’s Algorithm

In 1994 Dr. Peter Shor released his algorithm [7] for factoring a general integer with

O((log(n))2(log(log(n)))(log(log(log(n))))) quantum gates. This put integer factoring in the

complexity class of BQP and thus implied that we would be able to break RSA with a “good”

quantum computer. By “good” quantum computer, we are talking about a quantum computer that

is stable enough to run Shor’s Algorithm and also utilizes over 4000 qubits. While experts predict

that we are still 25-100 years from having such a quantum computer, it’s still intimidating to think

that our most effective method of encryption will be broken. Bernstein, Mosca, and others have

made advances on Shor’s Algorithm by decreasing the number of qubits which weakens the time

complexity slightly. So it’s reasonable that we could have access to a similar algorithm that will

allow us to break RSA sooner than we expect.

3



1.5 Overview of how Shor’s Algorithm Works

The quantum algorithm developed by Shor doesn’t actually focus on factoring a number. In-

stead, it focuses on putting the order-finding problem in BQP . This is done by utilizing phase

estimation along with the quantum fourier transform and then applying some number-theoretical

results about modular exponentiation, continued fractions, and rational numbers. Then with a

polynomial reduction from order-finding to integer factoring, given by Dr. Jeffrey Miller in 1975,

we get that integer factoring is also in BQP . We’ll proceed with a description of the polynomial

reduction first.

4



2. REDUCTION FROM FINDING THE ORDER OF AN ARBITRARY GROUP ELEMENT

TO FACTORING AN INTEGER

2.1 Order-Finding Problem

Before starting, we should note that (Z/〈N〉) is the multiplicative group of all integers less than

N that are co-prime to N , i.e., Z∗8 = {1, 3, 5, 7}. The Order-Finding problem is the following: Let

N ∈ N and x ∈ (Z/〈N〉). Can we find the minimal r ∈ N such that xr ≡ 1 (mod N)? Since N

is the number that we wish to factor later on, we will also add on the constraint that N is odd and

composite. we makeN composite because if we were trying to factor a number, we would first use

the AKS primality test to determine whether N is prime or not in polynomial time. If it is, then we

have the factorization of N and the problem is trivial. We choose N to be odd, because if N were

even, then N
2k

is odd for some k ∈ N, and the problem reduces to factoring N
2k

. It’s also safe to say

that N is not a perfect square because this would also make our factoring problem trivial since we

can find the square root of number in polynomial time with Newton’s Method. we can now tighten

the bounds on x by saying that 2 < x < N − 1 because of the new constraints on N .

2.2 Polynomial Reduction From Order-Finding to Integer Factoring

So now our goal is to try to get a non-trivial factor of N with success greater than 2/3 of the

time and the assumption that we know the order of x. The following theorem will give us a way of

finding such a factor and then we can calculate the probability of the setting of the theorem actually

happening.

Theorem 1. Let x ∈ (Z/〈N〉) such that |x| = r, xr/2 6≡ −1 (mod N), and r is even. Then

gcd(xr/2 − 1, N) gives a non-trivial factor of N in polynomial time.
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Proof.

r is even and |x| = r =⇒ xr ≡ 1 (mod N)

=⇒ xr − 1 ≡ 0 (mod N)

=⇒ (xr/2 + 1)(xr/2 − 1) ≡ 0 (mod N)

Now suppose that gcd(xr/2 − 1, N) gives a trivial divisor of N .

Case 1: Suppose gcd(xr/2 − 1, N) = N . Then N | xr/2 − 1 =⇒ xr/2 − 1 ≡ 0 (mod N)

which contradicts r being the order of x. Thus, gcd(xr/2 + 1, N) 6= N .

Case 2: Suppose gcd(xr/2 − 1, N) = 1. Then xr/2 − 1 ≡ 1 (mod N) =⇒ N | xr/2 + 1 =⇒

xr/2 +1 ≡ 0 (mod N). However, this contradicts xr/2 6≡ −1 (mod N). Thus, gcd(xr/2−1, N) 6=

1.

In either case, gcd(xr/2 − 1, N) gives a non-trivial divisor of N . The Euclidean Algorithm can

then be used to calculate the gcd in polynomial time.

Before we find the probability of r being even and xr/2 6≡ −1 (mod N), we’ll need two

lemmas. Beforehand, it’s important to note that, by the Fundamental Theorem of Arithmetic, N

has a unique prime factorization, i.e. N = pα1
1 · . . . · pαmm where every pi is prime and m is

the number of distinct prime factors of N . For notational purposes in the following lemmas, let

rj = |xj| and dj be the largest integer such that 2dj |rj . Similarly d is the largest integer such that

2d|r.

Lemma 1. Let x ∈ (Z/〈N〉) such that |x| = r. If r is odd or xr/2 ≡ −1 (mod N), then dj = c

for some c ∈ Z and for all j such that 1 ≤ j ≤ m.

6



Proof. We know that every rj | r because

xr ≡ 1 (mod N)

≡ 1

(
mod

(
m∏
j=1

p
αj
j

))

≡ 1
(
mod

(
p
αj
j

))
for all j ∈ Zm \ {0}

Case 1: Suppose r is odd. Since we must have rj|r for all j ∈ Zm \ {0} we also must have that

every rj is odd. Therefore dj = 0 = d for all j ∈ Zm \ {0}.

Case 2: Suppose r is even and xr/2 ≡ −1 (mod N). Similar to case 1, we get that xr/2 ≡

−1
(
mod p

αj
j

)
for all j ∈ Zm \ {0} which means that rj doesn’t divide r

2
for every j ∈ Zm \ {0}.

Claim: All of the dj’s are equal to each other.

Proof of Claim: Suppose not. Then ∃ distinct i, j ∈ Zm \ {0} such that i 6= j and di 6= dj .

WLOG suppose di < dj . We know that rj | r and ri | r by Lagrange’s Theorem. We know that

rj = 2djqj for some odd, positive integer qj , and ri = 2diqi for some odd, positive integer qi. Since

rj | r and ri | r, we have that r = 2djqjkj for some kj ∈ Z and r = 2diqiki for some ki ∈ Z. Thus,

2dj | r and qi | r. Since qi is odd, we must have that 2dj and qi are co-prime. Therefore,

2djqi | r =⇒ 2dj−di+diqi | r

=⇒ 2dj−di2diqi | r

=⇒ 2dj−diri | r

=⇒ ri |
r

2
which is a contradiction.

Therefore, di = dj for all i, j ∈ Zm \ {0}. Since they are all equal we also have that di = d for all

i ∈ Zm \ {0}.

Lemma 2. Let p be an odd prime and h is the largest power of 2 that divides φ(pα) where φ is the

Euler φ function. Then with probability 1
2
, 2h divides the order, y, modulo pα of a random x ∈ Z∗pα .

Proof. Let x ∈ Z∗pα . As a property of the Euler φ function, we know that φ(pα) = pα−1 · (p −

7



1). Since p is odd we know that φ(pα) is even which means that h ≥ 1. Z∗pα is cyclic under

multiplication so x = gk (mod pα) where g is a generator of Z∗pα and k ∈ [0, φ(pα)] ∩ Z .

Case 1: Suppose k is odd. Then we have

xy = 1 (mod pα) =⇒ gky = 1 (mod pα)

=⇒ φ(pα) | ky

=⇒ 2h | ky

=⇒ 2h | y, since k is odd

Case 2: Suppose k is even. Then x = gk (mod φ(pα)) =⇒ xφ(p
α)/2 (mod (φ(pα)) =

1 (mod φ(pα)). This means that y | φ(pα)/2. Since h is the largest integer such that 2h | φ(pα) we

know that 2h doesn’t divide φ(pα)/2. Therefore 2h doesn’t divide y.

Since the probability of k ∈ [0, φ(pα)] ∩ Z being odd is 1
2
, we have that the probability of 2h

dividing y is 1
2
.

Theorem 2. Let x ∈ (Z/〈N〉) such that |x| = r. Then the probability that r is even and xr/2 6≡

−1 (mod N) is greater than or equal to 1− 2−m where N = pα1
1 · . . . · pαmm .

Proof. PROB(r is even and xr/2 6≡ −1 (mod N)) = 1−PROB(r is odd or xr/2 = −1 (mod N))

so it suffices to prove that PROB(r is odd or xr/2 = −1 (mod N)) = 2−m. By Lemma 1, we

know that these conditions can only be met if all of the dj’s are equal to d. The probability of this

happening for just one of the dj’s is at most 1
2

by Lemma 2.

Therefore PROB(r is odd or xr/2 = −1 (mod N)) ≤ 2−m =⇒ PROB(r is even and xr/2 6≡

−1 (mod N)) ≥ 1− 2−m.

Now we have shown that given the order of an arbitrary element in a group of order N , we

can get a non-trivial factor of N with at least 3/4 chance of being correct. We have at least a 75%

chance because N is a composite number that is not a perfect square, so it must have at least two

different prime factors. Thus, m ≥ 2 so 1 − 2−m ≥ 3
4
. This means that if the Order-Finding

problem is in BQP , then so is integer factoring. Before showing how to place the Order-Finding

8



problem in BQP , we’ll first take a look at some of the rudimentary concepts associated with the

mathematics of quantum computing.
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3. CLASSICAL COMPUTING VS. QUANTUM COMPUTING AND THE MATH

INVOLVED

3.1 Differences Between Classical and Quantum Computing

Suppose we have a number N ∈ N. We can represent N in binary notation as N is an element

of {0, 1}k where k = blg(N) + 1c (the number of bits required to represent N in binary notation

without a sign bit). This representation is independent of whether we are using a classical or

quantum computer. In both scenarios we have registers that store these bits/qubits. The differences

between classical and quantum computing come from how these registers act when measured and

how the bits/qubits work. These differences also help us to understand why we are so interested in

the complexity class BQP when it comes to quantum computing.

When representing N in classical computing, what we really have is a register that contains

k flip flops. You can think of some sequence x1x2 . . . xk where all of the xj’s are light switches.

When we turn a light switch on we get a 1 for the xj and when we turn a light switch off we get a

0 for the xj . Anybody who has ever tried to play with a normal light switch in their house, would

know that the light switch can’t be off and on at the same time. Thus, we can only represent one

number at a time with this sequence of xj’s. The upside is that we can flip light switches on and off

while observing the different light settings without destroying anything. In the language of clas-

sical computing, this means that we can measure our register with a non-destructive measurement

so that we can continue using that register later on if need be.

In quantum computing our register, |Ψk〉, is made up of k qubits. A huge upshot for quantum

computing is that |Ψk〉 doesn’t just represent one number. Instead, it represents every number

y ∈ Z such that 0 ≤ y ≤ 2k − 1 (we can represent negative numbers and rational numbers as well

by using the same methods that classical computing uses). We do this by putting each qubit into a

superposition of states that will give us some number with high probability when we perform our

measurements. However when we perform this measurement we use “destructive” measurement.

This prevents us from accessing a lot of information from the register.

10



Example of destructive measurement: Suppose we have a 2 qubit register

|Ψ2〉 = |a〉 |b〉 such that |a〉 = a1 |0〉 + a2 |1〉 and |b〉 = b1 |0〉 + b2 |1〉 where a1, a2, b1, b2 ∈ C.

Every qubit must have a norm of 1, i.e. |a1|2 + |a2|2 = |b1|2 + |b2|2 = 1. The multiplication

of |a〉 and |b〉 is just the tensor product of their respective vectors, i.e. |a〉 |b〉 = a1b1 |00〉 +

a1b2 |01〉+ a2b1 |10〉+ a2b2 |11〉. Now suppose we measure |a〉 and we get |a〉 = 1. Now we have

|a〉 |b〉 = a2b1 |10〉+ a2b2 |11〉. However, this will not satisfy the norm requirement unless a1 = 0.

This means that we are most likely changing our coefficients to get |a〉 |b〉 = a′2b
′
1 |10〉+ a′2b

′
2 |11〉

to satisfy the norm requirement.

3.2 How to Visualize and Understand Qubits

The superposition of a quantum state is represented as

|Ψ〉 = α0 |0〉+ α1 |1〉 =

α0

0

+

 0

α1


The coefficients of the computational bases, namely α0 and α1, represent the up-spin and down-

spin of a particle respectively. The only criteria on the coefficients are that they are complex

numbers with modulus (distance from (0, 0) ∈ C) no greater than 1 and that the sum of the squares

of their moduli is equal to 1.

One way of visualizing this is by using the Bloch Sphere from [6]. In order to do this we will

see that every |Ψ〉 can be written as below, simply by factoring out the phase of α0.

|Ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉

The following shows that this is an acceptable definition by the criteria of the coefficients:

Criterion 1: Clearly the coefficients are complex numbers. The image of the cosine function

gives us that | cos
(
θ
2

)
| ≤ 1. To find the modulus of the second coefficient we have

|eiφ sin
(
θ
2

)
| = |eiφ| · | sin( θ

2
)| = (cos2(φ) + sin2(φ)) · | sin( θ

2
)| = sin( θ

2
) ≤ 1 by the image of the

sine function.
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Criterion 2: The sum of the squares of their moduli is given by

∣∣∣∣cos

(
θ

2

)∣∣∣∣2+

∣∣∣∣eiφ sin

(
θ

2

)∣∣∣∣2 =

∣∣∣∣cos

(
θ

2

)∣∣∣∣2+

(∣∣eiφ∣∣ · ∣∣∣∣sin(θ2
)∣∣∣∣)2

= cos2
(
θ

2

)
+sin2

(
θ

2

)
= 1

Now if we take (x, y, z) = (sin(θ) cos(φ), sin(θ) cos(φ), cos(θ)) then we get a point on the unit

sphere where the closer we are to the north or south pole, the higher probability we have of mea-

suring a 0 or 1 respectively. This can all be seen in the following picture:

Figure 3.1: Representation of a qubit on the Bloch Sphere adapted from [6]
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4. PHASE ESTIMATION

4.1 The Problem for Phase Estimation

The motivation for the following is that if we can place the phase estimation problem in BQP

then we can place the order-finding problem in BQP . Phase Estimation is a quantum procedure

to finding the eigenvalue of a given unitary operator U and a given eigenvector |ψ〉. Since a

unitary operation preserves the norm of a vector, the corresponding eigenvalue of U is just an

exponential complex function with real value φ such that 0 ≤ φ < 1. Thus we can state the

problem we are trying to solve as follows: Given a unitary operator U and it’s eigenvector |ψ〉, find

an arbitrarily close estimation for φ such that 0 ≤ φ < 1 and U |ψ〉 = e2πiφ |ψ〉. Now note that

e2πiφ = cos(2πφ) + i sin(2πφ) =⇒ φ ∈ [0, 1). We can write the binary approximation of φ as

φ̃ = 0.φ1φ2 . . . φt = φ1
2

+ φ2
22

+ . . .+ φt
2t

where the size of t is dependent on how close we want the

approximation to be, how many qubits our quantum computer can use, and the range of error that

we want (this will be explained later when we analyze phase estimation procedure). Note that if

φ = φ̃ for some t then φ is called a Dyadic number.

4.2 Solving Phase Estimation

It’s important to note that the following is not an actual quantum algorithm. That is, phase

estimation relies on the fact that we have “black-boxes” (also known as oracles) that are capable

of presenting us with |ψ〉 and U . That being said, we will refer to phase estimation as a procedure

for how to solve for φ, given the above-mentioned black-boxes. We start with two registers named

R1 and R2. In R1 we will have t qubits that are set equal to |0〉. We will refer to these qubits as

|xi〉 such that 1 ≤ i ≤ t. In R2 we will store |ψ〉 and apply controlled-U operations. R2 will not be

important in the sense that we will never measure it. Afterwards, we apply the circuit model given

on the next page.
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|0〉 H

|0〉 H

|0〉 H

|0〉 H

1√
2

(
|0〉+ e2πi(2

t−1φ̃)|1〉
)

1√
2

(
|0〉+ e2πi(2

2φ̃)|1〉
)

1√
2

(
|0〉+ e2πi(2

1φ̃)|1〉
)

1√
2

(
|0〉+ e2πi(2

0φ̃)|1〉
)

· · ·

· · ·

· · ·

· · ·

· · ·|ψ〉 |ψ〉U20 U21 U22 U2t−1

First register
t qubits

Second register

...
...

Figure 4.1: Phase Estimation Circuit Model adapted from [6]

In the above circuit model we have H , the Hadamard gate, is the quantum gate with matrix

representation given by H = 1√
2

1 1

1 −1

. The Hadamard gate just takes a qubit and puts it into

superposition with an equal chance of measuring 0 or 1. We can verify that the Hadamard gate is

indeed a unitary operator by making quick use of the following theorem.

Proposition 1. Let U be a matrix of size n× n where the rows of U are denoted u1, u2, . . . , un. If

every pair of distinct row vectors is orthogonal and ~ui ·~ui = 1 for all 1 ≤ i ≤ n, then U is unitary.

Going forward, when a matrix is stated to be “clearly unitary”, it is because a quick computation

via Theorem 3 will show that it is indeed unitary. Now as much as we would love to just state that a

the multiplication of a unitary matrix with a suitable vector preserves the norm of the vector, such

a statement requires proof. In the proof we’ll use the following lemma.

Lemma 3. Let U be a n× n matrix and v be a column vector in Cn. Then (Uv)∗ = v∗U∗.
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Proof. Let uij denote the entries in U , ui denote the i-th row of U and let vi denote the entries of v.

Note that ui is equal to the row vector ui where we have taken the complex conjugate of each entry.

Uv =


u1 · v

u2 · v
...

un · v


=⇒ (Uv)∗ =

[
u1 · v u2 · v . . . un · v

]

v∗U∗ =
[
u1 · v u2 · v . . . un · v

]
= (Uv)∗

Corrolary 1. Let U be a n × n unitary matrix and v be a row-vector in Cn. Then Uv preserves

the norm of v, that is, ‖v‖ = ‖Uv‖

Now going back to the circuit model for phase estimation, we can see how the controlled-U

gates work. The black dots in the circuit model represent which qubit is being acted on by each

controlled-U gate. Essentially if a qubit is in the state |0〉 then nothing will happen, but if a qubit

is in the state |1〉 then we will adjust the coefficient of the qubit. Since we still have to satisfy the

norm requirements for a quantum state, we are just changing the phase of qubit, i.e. changing the

exponent in the coefficient e2πi. We can now represent the first register as

|R1〉 =
t−1⊗
k=0

1√
2

(
|0〉+ e2πi2

kφ̃ |1〉
)

= 1
2t/2

2t−1∑
k=0

e2kπiφ̃ |k〉

Using the binary approximation of φ̃ from 4.1, we can substitute for φ̃ to get

|R1〉 = 1
2t/2

2t−1∑
k=0

e2kπi[.φ1φ2...φt] |k〉 (4.1)

An important thing to note is that we only used O(t) gates in register 1 of the phase estimation

circuit model (we’ll talk about register 2 later). This is key because it fits with our definition of

15



BQP (it also fits the probability of error part of the definition which will be explained later). Next

we’ll take a look at the Quantum Fourier Transform (QFT) to show how to obtain φ̃ from |R1〉.
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5. QUANTUM FOURIER TRANSFORM

5.1 Deriving and Developing Definitions of the QFT

For those who are already familiar with Fourier Transforms such as the Discrete Fourier Trans-

form (DFT) you may think of the QFT as the quantum analogue of DFT−1. For others, we’ll define

the QFT in multiple ways below. As always, in quantum computing we should check that the QFT

is a unitary operator before we do anything with it. To do so, it’s best to start with the following

definition.

Definition 2. Let |Xn〉 be a register consisting of n qubits denoted by x1, x2, . . . , xn. Then the

matrix representation of the QFT acting on |Xn〉 is given by

QFT(|Xn〉) =
1√
2n



1 1 1 . . . 1

1 e
2πi
2n e

4πi
2n . . . e

2(2n−1)πi
2n

1 e
4πi
2n e

8πi
2n . . . e

4(2n−1)πi
2n

...
...

... . . . ...

1 e
2(2n−1)πi

2n e
4(2n−1)πi

2n . . . e
2(2n−1)2)πi

2n


If we want the QFT to act on a single basis state given by |x1x2 . . . xn〉 then we can look at the

entries of the i-th row, where i = xn + 2xn−1 + . . . 2n−1x1, to get the coefficients of x1, x2, . . . xn.

For example, let’s look at the QFT acting on a register of 3 qubits. The corresponding matrix

would be given by
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1
2
√
2



1 1 1 1 1 1 1 1

1 1+i√
2

i −1+i√
2
−1 −1−i√

2
−i 1−i√

2

1 i −1 −i 1 i −1 −i

1 −1+i√
2
−i 1+i√

2
−1 1−i√

2
i −1−i√

2

1 −1 1 −1 1 −1 1 −1

1 −1−i√
2

i 1−i√
2
−1 1+i√

2
−i −1+i√

2

1 −i −1 i 1 −i −1 i

1 1−i√
2
−i −1−i√

2
−1 −1+i√

2
i 1+i√

2


From this we can gather that

QFT(|100〉) = 1
2
√
2

(|000〉 − |001〉+ |010〉 − |011〉+ |100〉 − |101〉+ |110〉 − |111〉)
We can also develop a circuit model for the QFT acting on 3 qubits, which can be seen below.

|x1〉 1√
2

(
|0〉+ e2πi[0.x1x2x3] |1〉

)
|x2〉 1√

2

(
|0〉+ e2πi[0.x2x3] |1〉

)
|x3〉 1√

2

(
|0〉+ e2πi[0.x3] |1〉

)
H R2 R3

H R2

H

Figure 5.1: Quantum Fourier Transform on 3 qubits adapted from [6]

In the above circuit model we have the Hadamard gate once again showing up and then the

Rk’s are called controlled-phase gates where Rk =

1 0

0 eπi2
−k+1

. Once again, the black dots

represent the Rk gate acting on the bit on the corresponding line. If the bit is equal to |0〉 then

nothing happens and if it’s in state |1〉 then we change the phase by a factor of πi2−k+1. Now

we want to try to develop the tensor product equation and the summation equation for n qubits
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so that we can transfer that into a circuit model for n qubits. Once we do that we will notice a

very shocking relation between our circuit model for phase estimation and our circuit model for

the QFT. The derivation of the tensor product and summation equation can be seen as following

by starting with the map given by the matrix in definition 2.

QFT(|Xn〉) =
1√
2n

(
|0〉+ e2πi[.xn] |1〉

) (
|0〉+ e2πi[.xn−1xn] |1〉

)
· · ·
(
|0〉+ e2πi[.x1x2···xn] |1〉

)
=

1√
2n

n⊗
j=1

(
|0〉+ e2πi[.xjxj+1···xn]

)
=

1√
2n

n⊗
j=1

 1∑
kj=0

e2πiXnkj2
−j |kj〉


=

1√
2n

1∑
k1=0

· · ·
1∑

kn=0

n⊗
j=1

e2πiXnkj2
−j |kj〉

=
1√
2n

1∑
k1=0

· · ·
1∑

kn=0

e
2πiXn

(
n∑
j=1

kj2
−j

)
|k1k2 · · · kj〉

=
1√
2n

2n−1∑
k=0

e2πiXnk2
−n |k〉 note that |k〉 should be written using binary notation

The tensor product equation is what we use to get our circuit model, but the summation equation

will be restated as another definition of the QFT for computational purposes.

Definition 3. Let Xn be a positive integer written in binary notation with n qubits, denoted by

x1, x2, . . . xn in order from left to right. Then QFT(Xn) = 1√
2n

2n−1∑
k=0

e2πiXnk2
−n |k〉. Note this is

equivalent to Definition 2 and the following circuit model.
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|x1〉

|x2〉

|x3〉

|xn−1〉

|xn〉

1√
2

(
|0〉+ e2πi[0.x1...xn] |1〉

)
1√
2

(
|0〉+ e2πi[0.x2...xn] |1〉

)
1√
2

(
|0〉+ e2πi[0.x3...xn] |1〉

)

1√
2

(
|0〉+ e2πi[0.xn−1xn] |1〉

)
1√
2

(
|0〉+ e2πi[0.xn] |1〉

)

H R2 R3 ·· Rn

H R2

H R2

H

Figure 5.2: Quantum Fourier Transform on n qubits adapted from [6]

5.2 Making Use of the QFT

Now suppose we wanted make use of awful notation and instead of using Xn and xj’s for the

QFT, we chose to use φ̃n and φ̃j’s for the QFT. We would then see that if we perform a bit reversal

after letting the QFT act on φn, we would indeed end up with the exact same output as the phase

estimation circuit model. Since the QFT is clearly a unitary operator, we know that QFT−1 exists

and is a unitary operator as well. Thus, we take our output for the phase estimation model, act on

it with the QFT−1, and perform a measurement to retrieve φ̃ (the estimate for the eigenvalue of the

unitary operator we were given). Suppose our acceptable range of error from φ is 2−n, i.e. we want

φ− φ̃ ≤ 2−n. It turns out that if we take t = n+dlog(2+ 1
2ε

)e then we can get a successful estimate

of φ with probability at least 1− ε. Since we are going to be acting on the phase estimation circuit

model, we should note that we will have t qubits in the QFT−1. Thus we will have t Hadamard

gates, t − 1 R2 gates, t − 2 R3 gates, . . . , and 1 Rt gate. So in total we will have O(t2) = O(n2)

gates for the QFT−1. Note that we’re not including the bit reversal in this because the amount of

gates needed for that is negligible in comparison.
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6. MODULAR EXPONENTIATION AND CONTINUED FRACTIONS

6.1 What Happened in Register 2 of Phase Estimation

In order to discuss what happened in register 2 of phase estimation, we’ll take another look at

the circuit model for phase estimation.

|0〉 H

|0〉 H

|0〉 H

|0〉 H

1√
2

(
|0〉+ e2πi(2

t−1φ̃)|1〉
)

1√
2

(
|0〉+ e2πi(2

2φ̃)|1〉
)

1√
2

(
|0〉+ e2πi(2

1φ̃)|1〉
)

1√
2

(
|0〉+ e2πi(2

0φ̃)|1〉
)

· · ·

· · ·

· · ·

· · ·

· · ·|ψ〉 |ψ〉U20 U21 U22 U2t−1

First register

t qubits

Second register

...
...

Again let |R1〉 denote the contents of the first register. Then the purpose of the controlled-U

operations is to take the state |R1〉 |ψ〉 to the state |R1〉
∣∣xR1ψ mod (N)

〉
. So, essentially, we just

want to multiply the second register |ψ〉 by xR1 mod (N). So if we can find the number of gates

it takes to compute xR1 mod (N), then we can combine the number of gates from the first register

to find out how many gates are actually used in Phase Estimation. Note that the following can be

improved drastically, but since our only concern is placing integer factoring in BQP , we’re only

concerned with making sure that we have a family of polynomial size circuits. Remember that we

are using t qubits in |R1〉 where t = n + dlog(2 + 1
2ε

)e. We can compute xR1 mod (N) with

O(n) squaring operations if we use repeated squaring. Each of these squaring operations will have

a cost of O(n2) if we use the grade-school multiplication algorithm. Thus, we will not need any

more than O(n3) gates to compute xR1 mod (N). Combining this with the number of gates from

the first register, we get that phase estimation only requires O(n3) gates.
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6.2 Why is the Eigenvalue of the U in Phase Estimation Important?

To recap what has been performed so far, we have used a black-box and the phase estimation

circuit to set up the phase estimation problem. Afterwards we applied a bit reversal to the QFT and

then computed the QFT−1 of the output of the phase estimation circuit. The output of all of this is

φ̃ which is our t qubit approximation of the original eigenvalue φ. Remember the whole point of

this was to get the order of an arbitrary element of (Z/〈N〉) with high probability so that we could

apply our polynomial reduction. It turns out that if we just apply the continued fractions algorithm

to φ̃ then we will do exactly that.

6.3 Continued Fractions Algorithm

Before we apply such an algorithm to φ̃, we need to verify that there is a finite continued

fraction for φ̃. Remember, φ̃ = [.φ1φ2 . . . φt] = φ1
2

+ φ2
4

+ . . . φt
2t

. Therefore φ̃ is a finite sum of

rational numbers so φ̃ is a rational number. With the following theorem we will verify that φ̃ has

a finite continued fraction representation which means that the algorithm will terminate. However,

since there are multiple ways to represent continued fractions, we’ll make use of the following

definition.

Definition 4. A continued fraction for a number x is given by [x0, x1, x2, . . . , xn] such that

x = [x0, x1, x2, . . . , xn] = x0 + 1
x1+

1

x2+
1

...+ 1
xn

Theorem 3. Every x ∈ Q has a finite continued fraction representation.

Proof. Since x ∈ Q we can write x = a
b

such that a, b ∈ Z, b 6= 0, and a
b

is already reduced into
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its lowest terms. By the Euclidean algorithm we can write

a = x1b+ r1 s.t. 0 ≤ r1 ≤ b− 1; (6.1)

b = x2r1 + r2 s.t. 0 ≤ r2 ≤ r1 − 1; (6.2)

r1 = x3r2 + r3 s.t. 0 ≤ r3 ≤ r2 − 1; (6.3)

... (6.4)

rn−2 = xnrn−1 (6.5)

Dividing by the quotients in each step of the Euclidean algorithm will give us

a

b
= x1 +

r1
b

(6.6)

b

r1
= x2 +

r2
r1

(6.7)

r1
r2

= x3 +
r3
r2

(6.8)

... (6.9)

rn−2
rn−1

= xn (6.10)

If we back-substitute (6.10) into (6.9), (6.9) into (6.8), . . . , and (6.7) into (6.6) we will get

a
b

= x1 + 1
x2+

1

x3+
1

...+ 1

xn−1+
1
xn

Therefore, x must have a finite continued fraction representation since the Euclidean Algorithm

must terminate in n steps for some n ∈ N.

It’s extremely important to note that this part of Shor’s Algorithm is done classically because

there is no extreme advantage from using a quantum computer at this time. We know that we can

run the Euclidean algorithm in polynomial time so we must be able to find the continued fraction

representation of φ̃ in polynomial time (specifically we can do it with O(n3) gates where n was
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our range of error on φ). Now we’ll rewrite φ̃ = a
b

such that a, b ∈ Z and b 6= 0, since φ̃ a

rational number. We made a
b

such that φ − a
b
≤ 2−n so we have a convergent of the continued

fraction of φ by Theorem 171 in [1]. The only way that b doesn’t give us the order of an element

is if we had some error in phase estimation or if a and b are not co-prime. For the first scenario

remember that we can choose ε so that our chance of failure in phase estimation is suitable. For

the second scenario, note that a < b and the number of prime numbers less than b is greater than

b
2 log(b)

. Therefore, the probability that a is co-prime to b is greater than 1
2 log(b)

which is greater than

1
2 log(N)

. So if we repeat the algorithm 2 log(N) times we will have a suitable chance at obtaining

a and b such that gcd(a, b) = 1.
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7. SUMMARY AND CONCLUSIONS

7.1 Layout of the Entire Algorithm for Integer Factoring

The algorithm for integer factoring can be stated as follows:

Input: N such that N ∈ N, N = 2k + 1 for some k ∈ N, and N has at least 2 distinct prime

factors.

Output: p such that p is a non-trivial factor of N

Number of Gates Needed: O(n3) gates are needed where n is given by the range of error allowed

on φ̃ during phase estimation

Procedure:

1. Randomly choose x ∈ Z∗N . If gcd(x,N) 6= 1, then return x.

2. Create two quantum registers |R1〉 = |0〉 and |R2〉 = |1〉 so that our quantum system is

represented by |0〉 |1〉

3. Create a superposition in the first register using a Hadamard gate on each qubit for

t = n + dlog(2 + 1
2ε

)e qubits. This gives us |R1〉 = 1√
2t

2t−1∑
j=0

|j〉. So our quantum system is

represented by 1√
2t

2t−1∑
j=0

|j〉 |1〉

4. Utilize a black-box and modular exponentiation on the second register to transform it into

|R2〉 = |xj mod (N)〉. So our quantum system is represented by 1√
2t

2t−1∑
j=0

|j〉 |xj mod (N)〉.

5. Utilize a bit reversal, the QFT−1, and then a measurement to obtain φ̃

6. Apply the continued fraction algorithm

7. Let b be the order (denominator) from the continued fraction algorithm.

If xb/2 = −1 mod (N) or b is even then restart the algorithm by choosing x′ from Z∗N \{x};

Else, return gcd(xr/2 − 1, N) to retrieve the non-trivial factor of N .
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7.2 Verifying Membership in BQP

Recall that we only used O(n3) gates in phase estimation and O(n2) gates in the QFT (so

similarly we use O(n2) gates in the QFT−1. So for steps 1 through 5 of our integer factoring

algorithm, we have satisfied the gate requirement of BQP . For steps 6 and 7 we note that both of

these can be completed in polynomial time via the euclidean algorithm so they will not affect the

algorithm’s membership in BQP . The only thing left to verify is that we can achieve a successful

output with greater than 2/3 success. We can choose our chance of error for phase estimation so

that part is negligible. Similarly we can run the algorithm iteratively for the continued fraction

portion so we can keep our success above 2/3. As far as the polynomial reduction is concerned

we know that the probability of success there is greater than 3/4. Thus we have shown that with a

polynomial family of gates we can achieve a non-trivial factor of N with probability of error less

than or equal to 1
3
.
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