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ABSTRACT

Decision making under uncertainty is an important problem in engineering that is tradition-

ally approached differently in each of the Stochastic optimal control, Reinforcement learning and

Motion planning disciplines. One prominent challenge that is common to all is the ‘curse of dimen-

sionality’ i.e, the complexity of the problem scaling exponentially as the state dimension increases.

As a consequence, traditional stochastic optimal control methods that attempt to obtain an optimal

feedback policy for nonlinear systems are computationally intractable. This thesis explores the ap-

plication of a near-optimal decoupling principle to obtain tractable solutions in both model-based

and model-free problems in robotics.

The thesis begins with the derivation of a near-optimal decoupling principle between the open

loop plan and the closed loop linear feedback gains, based on the analysis performed with the

second-order expansion of the cost-to-go function. This leads to a deterministic perturbation feed-

back control based solution to fully observable stochastic optimal control problems. Basing on

this idea of near-optimal decoupling, a model-based trajectory optimization algorithm called the

‘Trajectory-optimized Perturbation Feedback Controller’ (T-PFC) is proposed. Rather than aiming

to solve for the general optimal policy, this algorithm solves for an open-loop trajectory first, fol-

lowed by the feedback that is automatically entailed by the algorithm from the open-loop plan. The

performance is compared against a set of baselines in several difficult robotic planning and control

examples that show near identical performance to non-linear model predictive control (NMPC)

while requiring much lesser computational effort.

Next, we turn on to the investigation of the model-free version of the problem, where a policy

is learnt from the data, without incorporating system’s theoretical model. We present a novel

decoupled data-based control (D2C) algorithm that addresses this problem using a decoupled ‘open

loop - closed loop’ approach. First, an open-loop deterministic trajectory optimization problem is

solved using a black-box simulation model of the dynamical system. Then, a closed loop control

is developed around this open loop trajectory by linearization of the dynamics about this nominal
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trajectory. By virtue of linearization, a linear quadratic regulator based algorithm is used for the

demonstration of the closed loop control. Simulation performance suggests a significant reduction

in training time compared to other state of the art reinforcement learning algorithms.

Finally, an alternative method for solving the open-loop trajectory in D2C is presented (called

as ‘D2C-2.0’). Stemming from the idea of model-based ‘Differential Dynamic Programming’

(DDP), it possesses second-order convergence property (under certain assumptions) and hence is

significantly faster to compute the solution than the original D2C algorithm. An efficient way of

sampling from the environment to convert it to a model-free algorithm, along with the suitable

line-search and regularization schemes are presented. Comparisons are made with the original

version of D2C and a state-of-the-art reinforcement learning algorithm using a variety of examples

in the MuJoCo simulator. In conclusion, limitations for each of the above methods are discussed

and accordingly, some possible directions have been provided for the future work.
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1. INTRODUCTION AND LITERATURE REVIEW

Decision-making under uncertainty is a well-studied problem since the origins of dynamic pro-

gramming in 1950s for its wide range of applications across various disciplines of engineering [1].

It is studied under the subject of Stochastic optimal control for deriving control laws to control

dynamic systems under various kinds of uncertainties [1]. In other words, it is concerned with

controlling a system whose behavior is not completely predictable. The uncertainty could arise

from either of the noise in an applied control signal, sensor measurement, theoretical model or

other ignored environmental effects. The first challenge one faces in designing a control policy is

to convert the raw information obtained from the system into a comprehensible and a meaningful

entity. This is generally categorized under the problems of state estimation and system identifica-

tion. The second challenge is to design a right control policy among several possible policies, in

order for the system to achieve desired behavior. Hence, the three important aspects of decision-

making under uncertainty are state estimation, system identification and stochastic control [1]. As

this thesis deals with the class of problems that are considered under fully observed scenarios, it

is assumed that we have a perfect state information or reasonably good state estimates that don’t

severely affect the proposed approaches when executed. Hence, we aim to address the stochastic

control aspect and also briefly touch upon the system identification process. The following subsec-

tions provide a brief overview of the standard methods in each of the Stochastic optimal control,

Motion Planning and Reinforcement Learning fields.

1.1 Stochastic Optimal Control

Let xt ∈ Rnx , ut ∈ Rnu , µt : Rnx → Rnu , wt ∈ Rnw denote the state of the system,

the control signal, the policy and the uncertainty parameter at time t respectively. Let Ut(.) :

Rnx × Rnu × Rnw → R represent the utility function and ft(.) : Rnx × Rnu × Rnw → Rnx be

the system dynamical model respectively, both at time t. Then, the general problem of stochastic

optimal control is given as shown in Problem 1 [2]. Note that g(.) is a function of the state and
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control that represents general equality or inequality constraints. Also, xinit is assumed to be the

initial state of the system.

Problem 1: Stochastic optimal control problem

minimize
µ0,µ1,··· ,µN−1

UH(xH) +
H−1∑
t=0

Ut(xt, µt(xt),wt)

such that

xt+1 = ft(xt, µ(xt),wt),

gt(xt, µ(xt)) < = 0

x0 = xinit

Throughout this thesis, we consider that the noise is Gaussian distributed and is additive in

nature. This is a common assumption made in order to better analyze the effects of noise. Although

multiplicative noise is the next common case [3], it is out of the scope as far as thesis is concerned.

1.2 Motion Planning

Motion planning, as the name suggests, is concerned with driving the state of a system from its

current state to a goal state under certain constraints such as obstacle avoidance, actuator saturation,

non-holonomic constraints etc. As the state of a system grows, so does its complexity. As a result,

motion planning is typically performed in a hierarchy of planners. For example, most motion

planners have a global planner and a local planner [4]. Sampling based planners are a popular set

of methods for the former and trajectory optimization is performed for the later. The following

subsections review each of these planners. Note that in the scope of this work, we only consider

static obstacles although some of the techniques presented in this thesis are mildly applicable in

dynamic cases, typically by re-planning.
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1.2.1 Sampling-based Planners

Sampling-based planners rely on random sampling in the collision-free configuration space and

have achieved widespread popularity for offering several path planning algorithms that are prob-

abilistically complete. One such popular class of algorithms is the ‘Rapidly Exploring Random

Trees’ (RRTs) [5]. It is an incremental sampling and searching approach that works by continually

building a tree until it reaches a pre-defined vicinity of the goal. It is probabilistically complete

[4], which means, if it is feasible to find a path, the algorithm is bound to find one. The catch here

being that it might take a very long time to result in a satisfactory solution. Also, it doesn’t offer

any guarantees on the optimality of the path. RRT* (read as ‘RRT star’) is later proposed in [6]

to guarantee the convergence to the optimality, when the number of nodes approach infinity. The

optimality is based on the metric based on which the tree is built (for example, Euler’s distance).

Essentially, it also involves an additional step of rewiring the tree after connecting the new sample

to the nearest node in the tree. Though it guarantees optimality, it is slower for online computation

as compared to the original RRT [4]. There are several variants that have emerged later to address

the above issues, such as

Though RRT is fast and to an extent, practical for online path planning, it doesn’t take into

consideration the non-holonomic path constraints that restrict the movement of the robots. Non-

holonomic constraints, by definition, are the differential constraints that cannot be directly inte-

grated to remove time derivatives of the state variables. In informal terms, these constraints not

only depend on the current state, but also on the history of states of the system. Majority of the

interesting problems in Robotic path planning lie in dealing with the non-holonomic constraints

[4]. [7] paved a way for incorporating these constraints while planning a path. In other words, the

algorithm results not only in a path, but one that is feasible for the given system to travel along.

Hence, it is used to generate an initial guess for some trajectory optimization problems in this

thesis.
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1.2.2 Trajectory Optimization

Trajectory optimization in motion planning is the process of obtaining a trajectory that min-

imizes a user-specified cost function while satisfying some constraints. It is formulated as an

optimal control problem and the available methods can be categorized under two types : (i) Direct

methods and (ii) Indirect methods [8].

Direct methods discretize the optimization problem and feed it to a non-linear program (NLP)

solver to solve the optimization problem. The dynamical model of the system and other con-

straints involving the state and the control are passed as constraints to the optimization problem.

This is also called as ‘direct transcription’, and is generally solved using one of the (i) Collocation

methods or (ii) Direxct shooting methods (ii) Pseudospectral methods. Direct collocation methods

are implicitly Runge-Kutta methods and typically approximate the states and the controls using

piece-wise polynomials [8] such as trapezoidal collocation scheme, Hermite-Simpson scheme etc.

Shooting methods parameterize the optimization problem entirely in terms of the control sequence

and the states are generated by a forward rollout of the control trajectory. On the other hand,

pseudospectral methods represent the entire trajectory as a global polynomial with orthogonally

collocated points. This is in contrast with the local collocation methods in which the number of

collocation points are varied and the degree of the polynomial is fixed. Whereas in the pseudospec-

tral methods, the degree of polynomial is varied with the number of collocation points being fixed

[9]. Originally developed to solve the computational fluid dynamical problems, they have gained

popularity due to their exponentially convergence properties [9]. Popular pseudospectral methods

have employed Lagrange, Legendre and Chebyshev polynomials as basis functions. Consequently,

the three popular methods are (i) Legendre pseudospectral method (ii) Chebyshev pseudospectral

method and (iii) Jacobi pseudospectral method (Gauss-Lobatto formulation) [9].

Indirect methods, instead of transcribing the original problem to a non-linear program, start

with the analytical construction of the sufficient conditions for local optimality. They are then

discretized to obtain a numerical solution. To paraphrase the difference with direct methods from

[8], “Direct methods discretize and then optimize, whereas indirect methods optimize and then
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discretize". Due to this, they tend to result in more accurate solutions [8]. But on the other hand,

they require better initializations of the optimization variables and become complicated with the

inclusion of various kinds of constraints. Such scenarios are precisely where the direct methods

fare well [8].

Differential Dynamic Programming (DDP) based methods have recently gained popularity due

to the minor but important modifications made to its original formulation by [3].It is an indirect

shooting method, in that, the trajectory optimization problem is iteratively solved using a set of

equations resulted from the local optimality condition. The local optimality condition finds its

origins in the well-celebrated Pontryagin’s principle [10]. While the original formulation involved

computation of the second order derivatives of the dynamics terms, modified methods such as

ILQR [3] [11] [10] [12] dropped them by compensating with Gauss-Newton approximations, reg-

ularization and line search schemes. The consequence of it is that it has faster convergence and

can also be fit into the MPC framework. This advantage of ILQR forms the basis of the D2C-2.0

approach, a model-free reinforcement learning problem that is presented in this thesis.

MS-Thesis/figures/traj_opt_example/manipulator_2.png

(a)

MS-Thesis/figures/traj_opt_example/manipulator_3.png

(b)

MS-Thesis/figures/traj_opt_example/manipulator_4.png

(c)

Figure 1.1: Illustration of the control sequence obtained by trajectory optimization being executed
on a 6-DOF UR5 manipulator. Arrows (in pink) indicate the end effector’s pose during the course
of its path traversal(shown in green).
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1.3 Reinforcement Learning

The field of ‘Reinforcement Learning’ (hereon also called as RL) is concerned with obtaining

policies for a system to achieve the desired behavior. A policy, here, is a mapping from a state

to an action. It could be a look-up table as in discrete state spaces or a function of the general

state, such that given the distribution of the current state, it engenders an action to be taken. The

desired behavior is obtained by defining a reward corresponding to every state and the action taken

at that state, and then looking for policies that maximize the cumulative reward over time. This is

similar to other domains, say, optimal control where we look for a control law that minimizes the

cumulative cost or a utility maximum problem in Microeconomics [13]. Reinforcement Learning

differs in that, it aims to solve for such problems where the state transition model is not known

or no assumptions are made about it. This is where the learning component of RL seeps in. Ex-

periments (or simulations, for that matter!) are conducted for a system to explore its environment

in a trial-and-error fashion. This lets the system learn more about the relation between its current

state, the action, next state and the reward obtained in transition. As it explores its surroundings,

it ‘discovers’ the behavior that is driving it to maximize the cumulative reward. This resembles

the way humans and animals learn their behavior [13]. Their activities are driven by Dopamine,

a neuro-transmitter in their brain that is involved in reward processing. Similarly, for any system

here, the more it explores, better are the chances of finding an optimal such policy. However, this

is a never-ending problem in most cases, in that, the state-space is large enough in most real-world

problems that it is not possible to explore in its entirety. So, the policies have to be designed from

the incomplete information that the system has about its environment. In other words, it has to

exploit from the available information to come up with the best possible policy. This dilemma is

widely prevalent in the broad field of RL and is popularly called as the ’Exploration vs. Exploita-

tion Dilemma’.
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1.3.1 Markov Decision Processes

As discussed in the earlier subsection, the crux of the RL lies around the notion of decision-

making or obtaining policies. Finite Markov Decision Process (MDP) is a discrete time stochas-

tic control process that provides a mathematical framework to model and formalize sequential

decision-making [13]. They are an extension of Markov chains along with the addition of ‘actions’

at each ‘state’ guided by ‘rewards’.

In MDPs, the decision maker is called the agent. Everything else surrounding it is the environment.

The agent interacts with its environment by taking a discrete action at, and by observing the change

in its state st and the corresponding reward rt. This is shown in the figure 1.2. The transitions in the

state can be described by its state transition model as p(st+1|st, at) and are guided by the Markov

property which says that given the current state, the history of past states is irrelevant in deter-

mining the next state. Mathematically, if St denotes the random variable of the state at time t and

st be its corresponding value, then, p(St+1 = st+1|St = st) = p(St+1 = st+1|St = st, St−1 =

st−1, . . . , S0 = s0). To summarize, a Markov Decision Process (MDP) is a tuple of states - S,

actions - A, rewards - R and a transition model T .

MS-Thesis/figures/mdp_loop.PNG

Figure 1.2: Markov Decision Process (MDP) : Agent takes an ‘action’ that is applied on the environment.
In return, environment gives the information regarding the state (assuming fully-observed scenario) and the
reward corresponding to the state-action pair.
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1.3.2 Model-free RL methods

Model-free RL is concerned with learning the optimal policy without directly learning the

transition probability in the process. Q-learning is a popular model-free reinforcement learning

algorithm that tries to learn the state-action value function, also called the Q-function. The most

important step in Q-learning is a value iteration update over the current average based on the new

information, which is as follows [13]:

Qnew(st, at) = (1− α)Q(st, at) + α(rt + γ maxaQ(st+1, a)),

where, st, at, rt are the state, action and reward at time t respectively. γ and α are the discount

factor and the learning rate respectively.

Methods based on Q-learning, especially those that used powerful function approximators such

as neural networks to represent the Q-function witnessed a great success in the past decade [14]

[15] [16] [17] [18]. However, they are all pertained to discrete action-spaces and are not directly

applicable to continuous domains, where most of the real-world robotics problems are located. Pol-

icy gradient based algorithms are widely used in order to deal with the continuous action spaces

[19]. Here, a general stochastic policy, say πθ(at|st)(= Pr(At = at|St = st; θt = θ)), is pa-

rameterized in terms of a set of parameters θ, where at is the action at time t and st is the state

at time t. The performance objective can be written as J(πθ) = Eπθ [
∑∞

i=t ri(si, πθ(si))γ
i−t|πθ].

Since the policy is parameterized in terms of θ, we can rewrite the performance objective just as a

function of θ as J(θ). The most straightforward way to determine the parameters θ is by gradient

descent, as follows: θt+1 = θt + α∇θtJ(θt). However, it is challenging to directly computing the

above gradient. The policy gradient theorem has an elegant simplification to the above gradient as

follows [19] [13]:

∇θJ(θ) = Es∼ρπ , a∼πθ [∇θlog(πθ(a|s; θ)Qπ(s, a)]

or
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∇θJ(θ) ∝
∑
s

ρπ(s)
∑
a

Qπ(s, a)∇θπθ(a|s; θ)

A notable fact from the above equation is that the policy gradient does not depend on the gradient

of the state distribution. This makes it practically convenient to apply in model-free continuous

reinforcement learning problems. A large number of widely successful algorithms [20] [19] [21]

[22] [23] in the continuous action spaces that have emerged from the so-called actor-critic archi-

tecture are based on policy gradient theorem. Deep Deterministic Policy Gradient (DDPG) [20] is

one such popular algorithm that is used as a baseline for benchmarking the approaches proposed

in this thesis. More in-depth details about the algorithm are provided in the appendix - A.0.3.
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2. T-PFC : TRAJECTORY-OPTIMIZED PERTURBATION FEEDBACK APPROACH

Note : This chapter is reprinted from our published paper with the same title. 1

2.1 Introduction

Stochastic optimal control is concerned with obtaining control laws under uncertainty, mini-

mizing a user-defined cost function while being compliant with its model and constraints. This

problem frequently arises in robotics, where, planning a robot’s motion under sensor, actuator and

environmental limitations is vital to achieve a commanded task. Online planning methods such as

Model Predictive Control (MPC) have become popular of late over offline methods for their accu-

racy and ability to deal with uncertainty. However, approaches within the MPC framework take a

toll on the on-board computational resources for recursively solving the optimal control problem.

On the other hand, offline solutions are susceptible to drift, and cannot deal with a dynamic envi-

ronment. In this work, we propose a composite approach that merges the merits of both approaches

i.e, computation off-line and a robust feedback control online, while re-planning, unlike in MPC,

is performed only rarely, and is typically required only beyond moderate levels of noise.

The main contributions of this chapter are as follows:

(a) to demonstrate the decoupling between the deterministic open-loop and the closed loop feed-

back control of perturbations, in a fully-observed stochastic optimal setting, that is near-optimal,

(b) to propose a novel method based on the aforementioned decoupling principle to deal with

robotic stochastic optimal control problem, and

(c) to draw comparisons between the proposed approach and the non-linear MPC framework,

aimed at re-examining the widespread use of non-linear MPC in robotic planning and control.

1Reprinted with permission from “T-PFC : Trajectory-Optimized Perturbation Feedback Approach” by K.S.
Parunandi et al., 2019. Robotics and Automation - Letters, vol. 4, no. 4, pp. 3457-3464. Copyright 2019 by
IEEE.
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2.2 Related Work

In fully observable systems, decision-making is typically modeled as a Markov Decision Pro-

cess (MDP). Methods that try to solve MDPs using dynamic programming/HJB face the ‘curse of

dimensionality’ in high-dimensional spaces while discretizing the state space [24]. Hence, most

successful/practical methods are based on Pontryagin’s maximum principle [25] though it results

in locally optimal solutions. Iterative methods such as ILQG [11], DDP [26] and stochastic DDP

[27] fall under this category. They expand the optimal cost-to-go and the system dynamics about a

nominal, which is updated with every iteration. ILQG relies on the quadratic expansion of the cost-

to-go and a linear expansion of system dynamics. DDP/stochastic-DDP considers the quadratic

approximation of both. The convergence of these methods is similar to Newton’s method. These

methods generally optimize the open loop and the linear feedback gain together in an iterative fash-

ion. Differently, in our approach, owing to the decoupling, the open loop optimal control sequence

is obtained using a state-of-the-art Nonlinear Programming (NLP) solver, and given this open loop

sequence, the optimal feedback gain is obtained using the “decoupled" gain equations. This, in

turn, avoids, the expensive recursive Ricatti solutions required by ILQG and DDP techniques.

Model Predictive Control (MPC) is a popular planning and control framework in robotics. It

bypasses the curse of dimensionality by repeatedly generating open-loop controls through the nu-

merical solution of a finite horizon constrained optimal control problem at every discrete time-step

[28]. Initially employed in chemical process industry [29], MPC has found widespread application

in robotics owing to its ability to handle nonlinearity and constraints. Currently, this framework is

well-established in the field and has demonstrated success in diverse range of problems including

manipulation [30], visual servoing [30], and motion planning. In robotic motion planning, MPC

is widely in use for motion planning of mobile robots, manipulators, humanoids and aerial robots

such as quadrotors [31]. Despite its merits, it can be computationally very expensive, especially in

context of robot planning and control, since (a) unlike in process industries, typical robotic systems

demand re-planning online at high frequency, (b) most systems have highly non-linear dynamical
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models and (c) constraints apply both on state and controls. Hence, the nonlinear-MPC (NMPC)

poses a number of challenges in practical implementation [32]. Lighter variants of MPC such

as LMPC, explicit MPC [32], tube-based MPC [33] and other simplified NMPC-based methods

[34][32] have emerged. However, LMPC gradually induces uncertainties and fails for highly non-

linear systems where the range of linearization is narrow and inadequate [28]. Explicit MPC is

not practical for higher state and input states due to expensive memory requirements [32]. In [35],

the authors proposed a decoupling principle under a small noise assumption and demonstrated first

order near optimality of the decoupled control law for general non-linear systems.

This chapter derives a near-optimal decoupling principle that consists of a nominal open loop

controls sequence along with a precisely defined linear feedback law dependent on the open loop.

The latter is derived using a perturbation expansion of the Dynamic Programming equation, that

is near optimal to second order, and hence, can work for even moderate noise levels. Further,

we perform an extensive empirical comparison of our proposed technique [36], termed as the

“Trajectory-optimized Perturbation Feedback Control (T-PFC)", with the NMPC technique, that

shows near identical performance up to moderate noise levels, while taking approximately as much

as 100× lesser time than NMPC to execute in some examples.

2.3 Problem Formulation and Preliminaries

This section outlines the details of the system considered and the problem statement.

2.3.1 System Description

Let xt ∈ X ⊂ Rnx and ut ∈ U ⊂ Rnu denote the system state and the control input at time

t respectively, with X and U being corresponding vector spaces. We consider a control-affine

nonlinear state propagation model as xt+1 = f(xt) + g(xt)ut + ε
√
dTωt, where, ωt ∈ N (0, I)

is an i.i.d. zero mean Gaussian noise with variance I. It is derived from the noiseless continuous

model: ẋt = f̄(xt)+ ḡ(xt)ut, as follows: Let dT be the discretization time for the continuous time
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Stochastic Differential Equation (SDE) : dx = f̄(x)dT + ḡ(x)udT + εdw, where ε is a scaling

factor and w denotes a Wiener process (Standard Brownian motion). It is assumed throughout

this chapter that ε is small (small noise assumption). Note that dw =
√
dTωt. The discrete time

dynamics are obtained from the SDE as follows: f(xt) = xt + f̄(xt)dT , g(xt) = ḡ(xt)dT and

the noise term becomes ε
√
dTωt, where ωt are standard normal random variables. The reason we

explicitly introduce the discretization time dT will become clear later in this section. It is assumed

from hereon that O(dT 2) terms are negligible, i.e, the discretization time is small enough.

2.3.2 Problem Description

Given an initial state x0, the problem of a discrete-time stochastic optimal control [37] for a

fully observed control-affine system is to solve

min
π

E
ωt

[
CN(xN) +

N−1∑
t=0

Ct(xt,ut)
]

(2.1)

s.t xt+1 = f(xt) + g(xt)ut + ε
√
dTωt

for a sequence of admissible control policies π = {π0, π1, ..πt, ., πN−1}, where πt : X → U ,

Ct : X × U → R denotes the incremental cost function and CK : X → R, the terminal cost. The

definition of a policy πt at time t gives the relation between the state and the control signal at time

t as : ut = πt(xt).

2.3.3 Definitions

Let (x̄t, ūt) represent the nominal trajectory of the system, with its state propagation described

by the model, x̄t+1 = f(x̄t) + g(x̄t)ūt. Let (δxt, δut) denote the perturbation from its nominal

trajectory at (x̄t, ūt), defined by δxt = xt − x̄t, δut = ut − ūt. Now, by Taylor’s expansion of

the state propagation model about (x̄t, ūt) and the zero mean wt, the state perturbation at time t

can be written as δxt+1 = Atδxt + Btδut + ε
√

dTωt + rt, where At = ∂f(xt)
∂xt
|x̄t + ∂g(xt)

∂xt
|x̄tūt,

Bt = g(x̄t) and rt represents higher order terms in δxt and δut.

Let J̄t(xt) denote the optimal cost-to-go function at time t from xt for the deterministic prob-
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lem (i.e, ε = 0), and J̄ εt (xt) denote the optimal cost-to-go function of the stochastic problem. We

expand the deterministic cost-to-go quadratically about the nominal state in terms of state pertur-

bations as J̄t(xt) = J̄t(x̄t) + Gtδxt + 1
2
δxᵀ

tPtδxt + qt, where, Gt = ∂J̄t(xt)
∂xt

ᵀ
|x̄t , Pt = ∂2J̄t(xt)

∂2xt
|x̄t

and qt denotes the higher order terms.

Finally, we consider a step cost function of the form Ct(xt,ut) = l(xt) + 1
2
uᵀ

tRut and let

Lt = ∂l(xt)
∂xt
|x̄t and Ltt = ∂2l(xt)

∂2xt
|x̄t . Using the definitions above, we assume that the functions

f(xt), J̄(xt) and l(xt) are sufficiently smooth over their domains such that the requisite derivatives

exist and are uniformly bounded.

2.4 Methodology

This section states a near-optimal decoupling principle that forms the basis of the T-PFC algo-

rithm presented in the next section. Our program in this section shall be as follows:

• Decoupling: First, we shall show that the optimal open loop control sequence of the deter-

ministic problem (given by the gains Gt) can be designed independent of the closed loop

gains determined by Pt, i.e, the Pt do not affect the Gt equations for an optimal control

sequence in the deterministic problem.

• Step A: Next, we shall only keep the first two terms in the optimal deterministic feedback

law, i.e., ul
t = ūt +Ktδxt, and show that the closed loop performance of the truncated linear

law is within O(ε2dT ) of the full deterministic feedback law when applied to the stochastic

system.

• Step B: Finally, we will appeal to a result by Fleming [38] that shows that the closed loop

performance of the full deterministic law applied to the stochastic system is within O(ε4dT )

of the optimal stochastic closed loop, and show that the stochastic closed loop performance

of the truncated linear feedback law is within O(ε2dT ) of the optimal stochastic closed loop

The scheme above is encapsulated in Fig. 2.1.
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./figures/T-PFC/t_pfc_schematic_1.png

Figure 2.1: Schematic of the Near-Optimal Decoupling Principle

2.4.1 A Near Optimal Decoupling Principle

Proposition 1: Given an optimal nominal trajectory, the backward evolutions of the deter-

ministic gain Gt and the covariance Pt of the optimal cost-to-go function J̄t(xt), initiated with

GN = ∂C̄N (xN)
∂xN

ᵀ
|x̄N

and PN = ∂2C̄N (xN)
∂2xN

|x̄N
respectively, are as follows:

Gt = Lt +Gt+1At (2.2)

Pt = Ltt + Aᵀ
tPt+1At −Kᵀ

t StKt +Gt+1 ⊗ R̃t,xx (2.3)

for t = {0, 1, ..., N − 1}, where,

St = (Rt +Bᵀ
t Pt+1Bt), Kt = −S−1

t (Bᵀ
t Pt+1At + (Gt+1 ⊗ R̃t,xu)

ᵀ),

R̃t,xx = ∇2
xxf(xt)|x̄t +∇2

xxg(xt)|x̄tūt,

R̃t,xu = ∇2
xu(f(xt) + g(xt)ut)|x̄t,ūt

where ∇2
xx represents the Hessian of a vector-valued function w.r.t. x and ⊗ denotes the tensor

product.

Proof: Let J̄t(xt) be the optimal cost-to-go from the state xt. By definition and dynamic program-
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ming principle respectively, it can be written as

J̄t(xt) = min
ut

Jt(xt,ut) = min
ut

{Ct(xt,ut) + J̄t+1(xt+1)}

By Taylor’s expansion of J̄t+1(xt+1) about x̄t+1 i.e, the nominal state at time t+ 1,

J̄t+1(xt+1) = J̄t+1(x̄t+1) +Gt+1δxt+1 +
1

2
δxt+1

ᵀPt+1δxt+1 + qt+1(δxt+1).

Substituting δxt+1 = Atδxt +Btδut + rt(δxt, δut) in the above expansion,

J̄t+1(xt+1) = J̄t+1(x̄t+1) +Gt+1(Atδxt +Btδut + rt(δxt, δut))+

(Atδxt +Btδut + rt(δxt, δut))
ᵀPt+1(Atδxt +Btδut + rt(δxt, δut))

+ qt+1(δxt+1)

Similarly, expand the incremental cost at time t about the nominal state,

Ct(xt,ut) = l̄t + Ltδxt +
1

2
δxt

ᵀLttδxt +
1

2
δut

ᵀRtūt +
1

2
ūᵀ

tRtδut +
1

2
δut

ᵀRtδut

+
1

2
ūᵀ

tRtūt + st(δxt)

Jt(xt,ut) =

J̄t(x̄t)︷ ︸︸ ︷
[l̄t +

1

2
ūᵀ

tRtūt + J̄t+1(x̄t+1)] +δut
ᵀ(Bᵀ

t

Pt+1

2
Bt +

1

2
Rt)δut+

δut
ᵀ(Bᵀ

t

Pt+1

2
Atδxt +

1

2
Rtūt +Bᵀ

t

Pt+1

2
rt)+

(δxt
ᵀAᵀ

t

Pt+1

2
Bt +

1

2
ūtRt + rᵀt

Pt+1

2
Bt +Gt+1Bt)δut + δxt

ᵀAᵀ
t

Pt+1

2
Atδxt+

δxt
ᵀPt+1

2
Aᵀ
t rt + (rᵀt

Pt+1

2
At +Gt+1At)δxt+

rᵀt
Pt+1

2
rt +Gt+1rt + qt.
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Now, min
ut

Jt(xt,ut) = min
ūt, δut

Jt(x̄t + δxt, ūt + δut)

= min
ūt

Jt(x̄t, ūt) +min
δut

Ht(δxt, δut)

(2.4)

First order optimality: At every state and control (x̄t, ūt) in the optimal nominal trajectory at

time t, it follows from the minimum principle that

∂Ct(xt,ut)

∂ut

+
∂g(xt)

∂ut

ᵀ∂J̄t+1(xt+1)

∂xt+1

= 0

⇒ Rtūt +Bᵀ
tG

ᵀ
t+1 = 0 (2.5)

By setting ∂Ht(δxt,δut)
∂δut

= 0 and solving for optimal δut, we get:

δut = −S−1
t (Rtūt +Bᵀ

tG
ᵀ
t+1)− S−1

t (Bᵀ
t Pt+1At + (Gt ⊗ R̃t,xu)

ᵀ)δxt − S−1
t (Bᵀ

t Pt+1rt)

= −S−1
t (Bᵀ

t Pt+1At + (Gt+1 ⊗ R̃t,xu)
ᵀ)︸ ︷︷ ︸

Kt

δxt + S−1
t (−Bᵀ

t Pt+1rt)︸ ︷︷ ︸
pt

(using (2.5))
(2.6)

where, St = Rt +Bᵀ
t Pt+1Bt.

⇒ δut = Ktδxt + pt.

Substituting it in the expansion of Jt and regrouping the terms based on the order of δxt (till 2nd

order), we obtain:

J̄t(xt) = J̄t(x̄t) + (Lt + (Rtūt +Bᵀ
tG

ᵀ
t+1)Kt +Gt+1At)δxt+

1

2
δxt

ᵀ(Ltt + Aᵀ
tPt+1At −Kᵀ

t StKt +Gt+1 ⊗ R̃t,xx)δxt

By substituting the equality from (2.5) in the above expression, we obtain

J̄t(xt) = J̄t(x̄t) + (Lt +Gt+1At)δxt +
1

2
δxt

ᵀ(Ltt + Aᵀ
tPt+1At −Kᵀ

t StKt +Gt+1 ⊗ R̃t,xx)δxt
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Expanding the LHS about the optimal nominal state up to second order,

J̄t(x̄t) +Gtδxt +
1

2
δxtPtδxt = J̄t(x̄t) + (Lt +Gt+1At)δxt +

1

2
δxt

ᵀ(Ltt + Aᵀ
tPt+1At −Kᵀ

t StKt+

Gt+1 ⊗ R̃t,xx)δxt

Balancing the first and the second order terms result in the following equations:

Gt = Lt +Gt+1At (2.7)

Pt = Ltt + Aᵀ
tPt+1At −Kᵀ

t StKt +Gt+1 ⊗ R̃t,xx (2.8)

Note that Pt being the hessian of the cost-to-go function (which is scalar) is a symmetric matrix. In

essence, the key step in the proof of proposition-1 is in realizing that when the nominal trajectory

is optimal, the term corresponding to the open-loop control trajectory (Rūt +Bᵀ
tG

ᵀ
t+1) vanishes in

deriving an expression for perturbed control (δut) as shown in equation (2.6) and thereafter. This

means that the dependency of the perturbed variables in the design of the nominal trajectory is nul-

lified, resulting in equations (2.2) and (2.3). It may be noted here that equation (2.2) corresponds to

the co-state equation following the first order optimality conditions over an optimal nominal trajec-

tory, whereas equation (2.3) is a discrete time dynamic Riccati-like equation dictating the feedback

law design. The consequence of the above result is that the second order sensitivity matrix in the

expansion of the cost, Pt which determines the feedback gain Kt, doesn’t influence the first or-

der sensitivity matrix Gt (the co-state) that determines the optimal open-loop sequence. Thus, the

decoupling between the nominal and linear feedback holds true. In other words, the design of an

optimal control policy in a fully-observed problem as in (2.1) can be decoupled into the design of

an open-loop deterministic nominal (x̄t, ūt) and then a linear feedback law whose coefficients can

be extracted through a recursive backpropagation of (2.2) and (2.3), but which is nonetheless near

optimal to second order (O(ε2dT )) as we shall show below.

Step A. Let the optimal deterministic feedback law for the deterministic system (ε = 0) be given

by: ut(xt) = ūt + Ktδxt + R(δxt). The result above gives us the recursive equations required
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to solve for ūt in terms of Gt, and Kt in terms of Pt. Consider the truncated linear feedback

law, i.e., ul
t(xt) = ūt + Ktδxt. Now, we shall apply the control laws ut(.) and ul

t(.) to the

stochastic system (ε 6= 0) and compare the closed loop performance. It can be shown that the state

perturbations from the nominal under the optimal deterministic law evolve according to δxt+1 =

Ātδxt+BtR(δxt)+St(δxt)+ε
√
dTωt, while that under the truncated linear law evolves according

to δxl
t+1 = Ātδx

l
t + St(δx

l
t) + ε

√
dTωt, where Āt = At +BtKt is the linear closed loop part, and

St(.) are the second and higher order terms in the dynamics. The closed loop cost-to-go under the

full deterministic feedback law is then given by: J̄k(xk) = E[
∑N

t=k c(x̄t, ūt) +C1
t δxt +Ht(δxt)],

and that for the truncated linear law is given by: J̄ lk(xk) = E[
∑N

t=k c(x̄t, ūt) +C1
t δx

l
t +Ht(δx

l
t)],

where C1
t is the first order coefficient of the step cost expansion that depend only on the nomi-

nal (x̄t, ūt), and Ht(.) denote second and higher order terms of the expansions. Then J̄k(xk) −

J̄ lk(xk) =
∑N

t=k E[C1
t (δxt − δxl

t)]︸ ︷︷ ︸
T1

+
N∑
t=k

E[Ht(δxt)−Ht(δx
l
t)]︸ ︷︷ ︸

T2

. Consider the deviation between

the two closed loops δxt−δxl
t = Āt(δxt−δxl

t)+BtRt(δxt)+St(δxt)−St(δxl
t), where note that

||Rt(δxt)|| = O(ε2dT ), as are ||St(δxl
t)|| and ||St(δxt)|| since they consist of second and higher

order terms in the feedback law and the dynamics respectively, when ε
√
dT is small. Therefore, it

follows that the closed loop state deviation between the full deterministic and the truncated linear

law is ||δxt− δxl
t|| = O(ε2dT ). Further, it is also true that δxt and δxl

t are both O(ε
√
dT ). Hence,

using the above it follows that terms T1 +T2 is O(ε2dT ). Therefore, it follows that the difference in

the closed loop performance of the full deterministic feedback law and the truncated linear feed-

back law is |J̄k(xk)− J̄ lk(xk)| = O(ε2dT ).

Step B: Now, we shall establish the closeness of the optimal stochastic closed loop and the stochas-

tic closed loop under the truncated linear feedback law. First, we recount a seminal result due to

Fleming [38] regarding the "goodness" of the deterministic feedback law for the stochastic system.

Fleming considered the continuous time SDE: dx = f̄(x)dt+ g(x)udt+ εdw. Let the cost-to-go

of the optimal stochastic closed loop be given by J̄ ε(t,x), and let the cost-to-go of the closed loop

under the deterministic law be given by J̄(t,x). Then, it is shown that the functions J̄ ε and J̄ have
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the following perturbation expansion in terms of ε: J̄ ε = ϕ + ε2θ + ε4χ,and J̄ = ϕ + ε2θ + ε4χ′,

where ϕ, θ,χ and χ′ are functions of (t,x). Therefore, it follows that the difference in the closed

loop performance between the optimal stochastic and optimal deterministic law when applied to

the stochastic system is O(ε4)!

If we adapt this result to our discrete time case with a time discretization dT , where O(dT 2) is

negligible, then the difference between the true stochastic closed loop performance and that under

the deterministic optimal law, |J εt (xt)− Jt(xt)| = O(ε4dT ). Thus, using the above result and the

result form step A, it follows that difference between the closed loop performance of the truncated

linear feedback law and that of the optimal stochastic closed loop, |J εt (xt)− J lt(xT)| = O(ε2dT )

at the least. This establishes the near optimality of the truncated linear feedback loop.

A note on comparison with ILQG/DDP: The condition in (2.2) is precisely when the ILQG/

DDP algorithms are deemed to have converged. However, that does not imply that the feedback

gain at that stage for ILQG/ DDP is the same as that in Eq. (2.3), and in fact, the feedback gains of

ILQG/ DDP are different from that in (2.3) as we shall see in our examples. The basic idea in the

development above is to design an open loop optimal sequence, and then design a feedback gain

according to (2.3), it is in this second step that we differ from ILQG/ DDP (which are methods to

get open loop optimal sequences and make no claims about the feedback gains).

2.4.2 Trajectory-optimized Perturbation Feedback Control (T-PFC)

In this section, we formalize the Trajectory-optimized Perturbation Feedback Control (T-PFC)

method based on the decoupling principle of the previous section.

2.4.2.1 Nominal Trajectory Design

The optimal nominal trajectory can be designed by solving the deterministic equivalent of

problem (2.1), which can be formulated as an open-loop optimization problem as follows:

min
ǔ

[
CN(x̄N) +

N−1∑
t=0

Ct(x̄t, ūt)
]

s.t x̄t+1 = f(x̄t) + g(x̄t)ūt
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where, ǔ = {ū0, ū1, ..ūN−1}. This is a design problem that can be solved by a standard NLP

solver. The resultant open-loop control sequence together with a sequence of states obtained

through a forward simulation of noise-free dynamics constitute the nominal trajectory.

Constraints on the state and the control can be incorporated in the above problem as follows:

State constraints: Nonlinear state constraints such as obstacle avoidance can be dealt by imposing

exponential penalty cost as barrier functions. Obstacles can be circumscribed by Minimum Volume

Enclosing Ellipsoids (MVEE) [39] that enclose a polygon given its vertices. Such kind of barrier

functions can be formulated by [39] [40]: Cobs(x̄t) =
∑n

m=1 Γm exp(−ρm(x̄t−cm)ᵀEm(x̄t−cm)),

where, cm and E correspond to the center and geometric shape parameters of the mth ellipsoid re-

spectively. Γm and ρm are the scaling factors. Obstacles are assimilated into the problem by adding

Cobs(x̄t) to the incremental cost Ct(x̄t, ūt).

Control bounds: Control bounds can safely be incorporated while designing the optimal nominal

trajectory as hard constraints in the NLP solver. In this case, the constraints are linear in control

inputs and let us assume they are of the form Ftūt +Ht ≤ 0. The modified incremental cost

function can be written as C ′t(x̄t, ūt) = Ct(x̄t, ūt) + µt(Ftūt +Ht), where µt is a lagrange mul-

tiplier for the aforementioned linear constraint. The first order condition (2.5) is then modified to

Rtūt +Bᵀ
tG

ᵀ
t+1 + F ᵀ

t µ
ᵀ
t = 0 using KKT conditions [41], which upon utilizing in the derivation of

expression for δut nullifies the influence of µt. Hence, equations (2.2), (2.3) and (2.5) will remain

the same.

2.4.2.2 Linear Feedback Controller Design

Given a nominal trajectory (x̄, ū), a linear perturbation feedback controller around it is de-

signed by pre-computing the feedback gains. The sequence of Kt is determined by a backward

pass of Gt and Pt as described by (2.2) and (2.3). The linear feedback control input is given by

δut = Ktδxt. Hence, ut = ūt + δut = ūt + Kt(xt − x̄t) forms the near-optimal online control

policy. Algorithm-1 outlines the complete T-PFC algorithm.

Re-planning: At any point of time during the execution, if the cost deviates beyond a threshold

from the nominal cost i.e, CTh, a re-planning can be initiated.
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Algorithm 1: T-PFC
Input: Initial State - x0, Goal State - xf , Time-step ∆t, Horizon - N , System and
environment parameters - P;
t← 0;
/* Run until the current state is in ε proximity to the goal

*/
while ‖xt − xf‖ < ε do

/* Plan at t = 0 and re-plan when the cost deviation exceeds
a threshold or if not within the goal proximity at
t = N − 1.*/

if t == 0 or Cost fraction > CTh or t == N-1 then
/* Open-loop sequence */
(x̄t:N−1, ūt:N−1)←Plan(xt,P ,xf )
/* Closed-loop parameters */
Compute parameters:{Pt:N−1, Gt:N−1, Kt:N−1}

end if
Policy evaluation: ut ← ūt +Kt(xt − x̄t)
Process: xt+1 ← f(xt) + g(xt)ut + εωt

t← t+ 1
end while

2.5 Example Applications

This section demonstrates T-PFC in simulation with three examples. The Gazebo [42] robotics

simulator is used as a simulation platform in interface with ROS middleware [43]. Numerical op-

timization is performed using the Casadi [44] framework employing the Ipopt [45] NLP soft-

ware. A feasible trajectory generated by the non-holonomic version of the RRT algorithm [5] is

fed into the optimizer for an initial guess. Simulations are carried out in a computer equipped with

an Intel Core i7 2.80GHz octa-core processor. The results presented in each example are averaged

from a set of 100 Monte Carlo simulations for a range of tolerable noise levels ε. The proposed

approach has been implemented to the problem of motion planning under process noise in the dy-

namical model to obtain the cost plots and then simulated in a physics engine on a realistic robot

model for further analysis.

Noise characterization: Process noise is modeled as a standard Brownian noise added to the sys-

tem model with a standard deviation of ε
√
dT . Since it is assumed to be additive Gaussian and
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i.i.d. (even w.r.t. the noise in other state variables), it could account for various kinds of uncertain-

ties including that of parametric, model and the actuator. ε is a scaling parameter that is varied to

analyze the influence of the magnitude of the noise. Other case-specific parameters are provided

in Table II.

For simulation, we use realistic physical robot models in a physics engine in an obstacle-filled

environment along with moderate contact friction (µ = 0.9) and drag, which are unaccounted for

in our system model. Apart from this model uncertainty, we also introduce actuator noise through

an additive Gaussian of standard deviation εσt, where σt is ‖us‖∞.

2.5.1 Car-like Robot

A 4-D model of a car-like robot with its state described by (xt, yt, θt, φt)
ᵀ is considered. For

a control input constituting of the driving and the steering angular velocities, (ut, wt)
ᵀ, the state

propagation model is as follows:

ẋ = u cos(θ), θ̇ =
u

L
tan(φ)

ẏ = u sin(θ), φ̇ = ω

Fig. 4 shows an example path taken by a car-like robot in an environment filled with 8 obstacles

enclosed in MVEEs. Plots in Fig. 2.3 indicate the averaged magnitude of both the nominal and the

total control signals at ε = 0.25. The standard deviation of the averaged total control sequence, in

both plots, from the nominal is less than one percent of it.

2.5.2 Car-like Robot with Trailers

With n trailers attached to a car-like robot, the state of a car-like-robot is augmented by n

dimensions, each additional entry describing the heading angle of the corresponding trailer. In the
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./figures/T-PFC/control_plot_car.pdf

(a)

./figures/T-PFC/control_plot_trailer.pdf

(b)

Figure 2.2: Optimal nominal and total control inputs (averaged) at ε = 0.25 for (a) a car-like robot and (b)
car with trailers

./figures/T-PFC/rviz_color_car.png

(a) Rviz trajectory

./figures/T-PFC/car_world.png

(b) Robot’s world in Gazebo

Figure 2.3: Motion Planning of a car-like robot using T-PFC for an additive control noise of standard
deviation = 25% of the norm of saturation controls i.e, ε = 0.25. The axes along and perpendicular to the
robot’s trajectory are indicated in red and green colors respectively.
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current example, n = 2 trailers are considered and their heading angles are given by [5]:

θ̇1 =
u

L
sin(θ − θ1)

θ̇2 =
u

L
cos(θ − θ1)sin(θ1 − θ2)

Hence, the robot has six degrees of freedom. Its world is considered to be composed of four

obstacles as shown in Fig. 2.4. The robot, its environment and its trajectory shown are at ε = 0.25.

./figures/T-PFC/rviz_color_trailer.png

(a) Rviz trajectory

./figures/T-PFC/trailers_world.jpg

(b) Robot’s world in Gazebo

Figure 2.4: Motion planning of a car with trailers using T-PFC for an additive control noise of standard
deviation set to 25% of the norm of saturation controls i.e, ε = 0.25. The axes along and perpendicular to
the robot’s trajectory are indicated in red and green colors respectively.

2.5.3 3D Quadrotor

The 12 DOF state of a Quadrotor comprises of its position, orientation and corresponding

rates - (xt, θt,vt, ωt)
ᵀ. Forces and torques in its body frame are external inputs in the equations

below. However, in the real world (and also in Gazebo simulation shown here) the control input

is typically fed into the motors. Hence, we consider rotor velocities as the control input, which can

be obtained by a linear transformation of forces and torques in body frame. The state propagation
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./figures/T-PFC/quadrotor.png ./figures/T-PFC/rviz_quadrotor.png

Figure 2.5: (a) Quadrotor’s world in Gazebo - green boxes represent its initial and final positions respec-
tively. (b) Example trajectory in rviz

model is then given by the following [46]:

ẋt = vt,

v̇t = g +
1

m
(RθtFbt − kdvt)

θ̇t = J−1
w ωt,

ω̇t = I−1
c (τt − ωt × Icωt)

Simulations are performed using an AR.drone model [47] in an environment containing a cylindri-

cal obstacle as shown in Fig. 2.5.

Table 2.1: Average run-time of algorithms in seconds

Robot type MPC T-LQR ILQG T-PFC
Car-like 447.89 4.48 161 4.52

Car with trailers 384.42 4.11 146 4.24
Quadrotor 71 3.33 49 3.5
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./figures/T-PFC/cost_vs_epsilons_car_updated.png

(a) Cost comparison

MS-Thesis/figures/T-PFC/rp_car_2.pdf

(b) No. of replannings for ε > 0.25

Figure 2.6: (a) Cost evolution over a feasible range of ε for a car-like robot, where ε is a measure of the
noise in the system. Note that the performance of T-PFC is close to NMPC for a wide range of noise levels,
while T-PFC takes approximately 100× less time to execute (see Table I). (b) No. of re-plannings for above-
moderate noise levels in the car-like robot simulation in gazebo using T-PFC is still around 8 times less than
NMPC. Note that the re-planning for T-PFC starts at 2 = 0.25, whereas the no. of re-plannings for NMPC is
always its horizon i.e, 229.

./figures/T-PFC/cost_vs_epsilon_car_w_trailers_updated.png./figures/T-PFC/cost_vs_epsilons_quad_2.png

Figure 2.7: Cost evolution over a feasible range of ε for (a) car with trailers robot and (b) 3D Quadrotor.
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Table 2.2: Simulation Parameters

Car-like Car with trailers Quadrotor
x0 (0, 0, 0, 0)ᵀ (0, 0, 0, 0, 0, 0)ᵀ (0, 0, 0.08, 0,

0, 0, 0, 0, 0, 0, 0, 0)′

xf (5, 5, 0, 0)ᵀ (5, 6, 0, 0, 0, 0)ᵀ (2.6, 2.4, 1.75,
0, 0, 0)ᵀ

N,∆t 229, 0.1s 180, 0.1s 60, 0.1s
Control u1

s =(0.7,−0.7) u1
s =(0.7,−0.7) u1

s = (20,−20)
bounds u2

s =(−1.3, 1.3) u2
s =(−1.3, 1.3) ui

s = (1,−1)
i = 2, 3, 4

2.6 Discussion and Comparison of Methods

This section empirically details the implications of the decoupling principle and the T-PFC

from the examples in the previous section. Further, we make a comparison here with the Non-

linear MPC (NMPC) [32], T-LQR [35] and ILQG [11]. Average cost incurred, rate of re-planning

and time-taken for an execution are chosen as the performance criteria.

Nonlinear MPC: A deterministic NMPC is implemented with a typical OCP formulation, by re-

solving it at every time-step. The NMPC variant implemented here is summarized in Algorithm-2.

The prediction horizon is taken as N − i at the ith time-step. In other words, planning is performed

all the way till the end rather than for next few time-steps as in typical MPC. This is done for two

reasons:

(1) The control sequence obtained this way is equivalent to the deterministic optimal control law

that includes higher order terms of feedback control. We wish to juxtapose it with T-PFC that only

has a linear feedback (first-order).

(2) Due to high penalty cost of multiple barrier functions, the optimizer is prone to failures with

smaller prediction horizons. Also, by the above arrangement, it follows from Bellman’s Principle

of Optimality that the predicted open-loop control input will be equal to the optimal feedback

policy [32]. Therefore, this also results in nominal stability.
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Algorithm 2: NMPC
Input: Initial State - x0, Goal State - xf , Horizon - N , System and environment parameters
- P;
t← 0;
while t < N do

(x̄t:N−1, ūt:N−1)← Plan(xt,ut, N − t,xf ,P) ;
Process: xt+1 ← f(xt) + g(xt)ūt + εωt

t← t+ 1 ;
end while

T-LQR: T-LQR is implemented using the same nominal cost as T-PFC. However, the cost param-

eters of the LQR are tuned entirely separately from the nominal cost [35].

ILQG: ILQG is initiated with the same initial guess as the above three methods. Since the cost

contains exponential terms from the barrier functions, it is crucial to carefully choose right param-

eters for regularization and line search. Regularization is performed by penalizing state deviations

in a quadratic modification schedule and an improved line search, both as mentioned in [11]. The

feedback gains computed at the final iteration is used for feedback control against noise on top of

the resulting open-loop trajectory.

Comparison: From Fig. 2.6 and 2.7, the average cost incurred for the systems in each simulation

via T-PFC is close to that incurred through an NMPC approach. In other words, the cost accumu-

lated by our perturbation linear feedback approach is nearly the same as that accumulated by an

optimal deterministic control law over the feasible range of ε for T-PFC. T-LQR being based on the

first order cost approximation, the cost rapidly diverges with increase in the noise level as reflected

in Figs. 2.6 and 2.7. On the other hand, as ILQG doesn’t make any claims regarding feedback, it is

expected and is also clear from the same plots that the performance deteriorates rapidly with noise.

Table 2.1 shows the average time taken to execute an episode with each of the algorithms with

no intermediate re-planning. The total execution time taken by NMPC is nearly 100 times the

T-PFC in the most complex of the examples considered. The low online computational demand

of T-PFC makes it scalable to implement in systems with higher dimensional state-space. ILQG,

although has near-second order convergence property, is slower than NLP solver-based methods
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such as T-PFC and T-LQR. This is because ILQG is derived from the quadratic approximation of

the cost-to-go function and hence is slower for non-quadratic costs and highly nonlinear systems.

Another challenging aspect in the implementation of NMPC is generating initial guesses for

online optimization. With a number of obstacle constraints or barrier functions, the NMPC opti-

mizer fails to converge to a solution with trivial initializations and even with warm-starting, more

so at higher noise levels. In contrast, T-PFC typically solves the optimization problem only once

and hence, a one-time initialization is sufficient for the execution. Fig. 2.6 (b) shows the average

rate of re-planning for example-1. Until ε = 0.25, no re-planning was necessary in the example of

a car-like robot. From Fig. 2.6 (b), it is evident that even at above-moderate levels of noise, the

re-planning frequency is still eight times lesser than that required for an NMPC.

Unlike T-LQR, T-PFC also handles the residual second order terms of cost-to-go as well as

system dynamics. This way, tuning is also bypassed as the feedback adapts itself according to

the nominal cost. In contrast, T-LQR can apply aggressive controls during feedback depending on

LQR parameter-tuning. T-PFC in an attempt to reduce the overall cost, generates smooth and small

controls relative to its nominal. This is noticeable in Fig. 2.2. Also, this fact plays an advantage

when the nominal control is on the constraint boundary and it is undesirable for the perturbation

control to deviate significantly from the nominal.

The advantage of decoupling between the optimal nominal and the perturbation feedback law

is clear when compared with ILQG. Parameter tuning in ILQG for regularization and line-search

involves trial and error regulation and is often time consuming to searching for the right set of

parameters to every given system, especially when the cost function is non-quadratic and non-

polynomial. On the other hand, an NLP solver (using, say, interior-point methods) can be conve-

niently used in a black box fashion in perturbation feedback approaches such as T-PFC (or even

T-LQR) without needing any fine-tuning to result in a deterministic control policy.

Small noise assumption: Though the theory is valid for small noise cases i.e, for small epsilons,

empirical results suggest a greater range of stability i.e, stability holds even for moderate levels of

noise. As long as the noise falls in this range, a precise knowledge of the magnitude of noise is
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irrelevant as T-PFC is insensitive to noise levels.

Is deterministic NMPC necessary? Since the MPC framework is broad and there are several ad-

hoc techniques that could efficiently solve NMPC, answering this question requires a much deeper

analysis. However, our central observation is that the T-PFC (and even T-LQR) method has near

identical performance with deterministic NMPC in problems that mandate long horizons. They

are also orders of magnitude computationally efficient, both according to the decoupling theory,

as well as empirically, based on the problems that we have considered here. In such cases, why

not use perturbation feedback techniques instead of NMPC at least until the noise levels predicate

frequent re-planning?
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3. D2C : DECOUPLED DATA BASED APPROACH FOR LEARNING TO CONTROL

NONLINEAR DYNAMICAL SYSTEMS

3.1 Introduction

Controlling an unknown dynamical system adaptively has a rich history in control literature

[1] [48]. This classical literature provides rigorous analysis about the asymptotic performance and

the stability of the closed loop system. Classical adaptive control literature mainly focuses on

non-stochastic systems [49] [50]. Stochastic adaptive control literature mostly addresses tractable

models like linear quadratic regulator (LQR) where Riccati equation based closed form expres-

sions are available for the optimal control law. Optimal control of an unknown nonlinear dynamical

system with continuous state space and continuous action space is a significantly more challeng-

ing problem. Even with a known model, computing an optimal control law requires solving a

dynamic programming problem. The ‘curse of dimensionality’ associated with dynamic program-

ming makes solving such problems computationally intractable, except under special structural

assumptions on the underlying system. Learning to control problems where the model of the sys-

tem is unknown also suffer from this computational complexity issues, in addition to the usual

identifiability problems in adaptive control.

Last few years have seen significant progresses in deep neural netwoks based reinforcement

learning approaches for controlling unknown dynamical systems, with applications in many areas

like playing games [51], locomotion [20] and robotic hand manipulation [52]. A number of new al-

gorithms that show promising performance are proposed [22] [21] [53] and various improvements

and innovations have been continuously developed. However, despite excellent performance on a

number of tasks, reinforcement learning (RL) is still considered very data intensive. The training

time for such algorithms are typically really large. Moreover, high variance and reproducibility

issues on the performance are also reported [54]. While there have been some attempts to improve

the sample efficiency [55], a systematic approach is still lacking.
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This chapter proposes a novel decoupled data based control (D2C) algorithm for learning to

control an unknown nonlinear dynamical system. The approach introduces a rigorous decoupling

of the open loop (planning) problem from the closed loop (feedback control) problem. This de-

coupling allows us to come up with a highly sample efficient approach to solve the problem in a

completely data based fashion. Our approach proceeds in two steps: (i) first, we optimize the nom-

inal open loop trajectory of the system using a blackbox simulation model, (ii) then we identify

the linear system governing perturbations from the nominal trajectory using random input-output

perturbation data, and design an LQR controller for this linearized system. We show that the per-

formance of D2C algorithm is approximately optimal, in the sense that the decoupled design is near

optimal to second order in a suitably defined noise parameter. Moreover, simulation performance

suggests significant reduction in training time compared to other state of the art algorithms.

3.2 Related Work

The solution approaches to the problem of controlling an unknown dynamical systems can be

divided into two broad classes, (i) model-based methods and (ii) model-free methods.

In the model-based methods, many techniques [56] rely on a discretization of the underlying

state and action space, and hence, run into the curse of dimensionality, the fact that the computa-

tional complexity grows exponentially with the dimension of the state space of the problem. The

most computationally efficient among these techniques are trajectory-based methods such as dif-

ferential dynamic programming (DDP) [26] [27] which linearizes the dynamics and the cost-to-go

function around a given nominal trajectory, and designs a local feedback controller using DP. The

iterative linear quadratic Gaussian (ILQG) [11] [57], which is closely related to DDP, considers

the first order expansion of the dynamics (in DDP, a second order expansion is considered), and

designs the feedback controller using Riccati-like equations, and is shown to be computationally

more efficient. In both approaches, the control policy is executed to compute a new nominal tra-

jectory, and the procedure is repeated until convergence.

Model-free methods, more popularly known as approximate dynamic programming [58] [37]

or reinforcement learning (RL) methods [13], seek to improve the control policy by repeated in-
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teractions with the environment, while observing the system’s responses. The repeated interac-

tions, or learning trials, allow these algorithms to compute the solution of the dynamic program-

ming problem (optimal value/Q-value function or optimal policy) without explicitly constructing

the model of the unknown dynamical system. Standard RL algorithms are broadly divided into

value-based methods, like Q-learning, and policy-based methods, like policy gradient algorithms.

Recently, function approximation using deep neural networks has significantly improved the per-

formance of reinforcement learning algorithm, leading to a growing class of literature on ‘deep re-

inforcement learning’. Despite the success, the amount of samples and training time required still

seem prohibitive. On the other hand, works such as [59] demonstrated that simple policies such as

the ones with linear parameterization showed a promising performance comparable to benchmark

results obtained by policies represented using deep neural networks. This chapter presents our

D2C method and carries a detailed analysis with some benchmark deep RL results along the same

line specifically aiming to focus on aspects such as simplicity, data efficiency, reliability of training

and reproducibility of results.

The rest of the chapter is organized as follows. In section 3.3, the basic problem formulation

is outlined. In subsection 3.4.1, a decoupling result which solves the MDP in a “decoupled open

loop-closed loop " fashion is briefly summarized. In subsection 3.4.4, we propose a decoupled data

based control algorithm, with discussions of implementation problems. In section 3.5, we test the

proposed approach using four typical benchmarking examples with comparisons to a state of the

art RL technique.

3.3 Problem Formulation and Preliminaries

3.3.1 Problem Description

Consider the following discrete time nonlinear stochastic dynamical system:

xt+1 = h(xt,ut,wt), (3.1)
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where xt ∈ X ∈ Rnx , ut ∈ U ∈ Rnu are the state measurement and control vector at time k,

respectively. The process noise wt is assumed as zero-mean, uncorrelated Gaussian white noise,

with covariance W .

The optimal stochastic control problem is to find the the control policy πo = {πo1, πo2, · · · , πoT−1}

such that the expected cumulative cost is minimized, i.e.,

πo = arg min
π

J̃π(x), where,

J̃π(x) = Eπ

[
T−1∑
t=1

c(xt,ut) + cT (xT)|x1 = x

]
, (3.2)

ut = πt(xt), c(·, ·) is the instantaneous cost function, and cT (·) is the terminal cost function. In the

following, we assume that the initial state x1 is fixed, and denote J̃π(x) simply as J̃π.

If the function h(·, ·, ·) is known exactly, then the optimal control law πo can be computed

using dynamic programming method. However, as noted before, this can be often computationally

intractable. Moreover, when h is unknown, designing an optimal closed loop control law is a much

more challenging problem. In the following, a data based decoupled approach is proposed for

solving (3.2) when h is unknown.

3.4 Methodology

The central idea of our approach is that rather than directly finding the closed loop control law

which requires solving a dynamic programming problem, we aim to address the original stochastic

control problem in a “decoupled open loop - closed loop” fashion. In this approach: i) we solve an

open loop deterministic optimization problem to obtain an optimal nominal trajectory in a model-

free fashion, and then ii) we design a closed loop controller for the resulting linearized time-varying

system around the optimal nominal trajectory, in a model-based fashion. This ‘divide and conquer’

strategy can be shown to be extremely effective. In this context, our major contributions are: 1)

we show a near optimal parameterization of the feedback policy in terms of an open loop control

sequence, and a linear feedback control law, 2) we show rigorously that the open loop and closed

loop learning can be decoupled, which 3) results in the D2C algorithm that is highly data efficient
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when compared to state of the art RL techniques. This chapter is a rigorous extension of our

preliminary work [60, 61], in particular, it includes a stronger decoupling result, and an extensive

empirical evaluation of the D2C algorithm with state of the art RL implementations on standard

benchmark problems.

3.4.1 A Near Optimal Decoupling Principle

We first outline a near-optimal decoupling principle in stochastic optimal control that paves the

way for the D2C algorithm described in Section 3.4.4.

We make the following assumptions for the simplicity of illustration. We assume that the

dynamics given in (3.1) can be written in the form

xt+1 = f(xt) +Bt(ut + εwt), (3.3)

where ε < 1 is a small parameter. We also assume that the instantaneous cost c(·, ·) has the

following simple form,

c(x,u) = l(x) +
1

2
uTRu. (3.4)

It is worth emphasizing that these assumptions such as quadratic control cost and affine in control

dynamics are purely for the simplicity of treatment. These assumptions can be omitted at the cost

of increased notational complexity.

3.4.2 Linearization w.r.t. Nominal Trajectory

Consider a noiseless version of the system dynamics given by (3.3). We denote the “nominal”

state trajectory as x̄t and the “nominal” control as ūt where ut = πt(xt), where π = (πt)
T−1
t=1 is a

given control policy. The resulting dynamics without noise is given by x̄t+1 = f(x̄t) +Btūt.

Assuming that f(·) and πt(·) are sufficiently smooth, we can linearize the dynamics about the
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nominal trajectory. Denoting δxt = xt − x̄t, δut = ut − ūt, we can express,

δxt+1 = Atδxt +Btδut + St(δxt) + εwt, (3.5)

δut = Ktδxt + S̃t(δxt), (3.6)

whereAt = ∂f
∂x
|x̄t , Kt = ∂πt

∂x
|x̄t , and St(·), S̃t(·) are second and higher order terms in the respective

expansions. Similarly, we can linearize the instantaneous cost c(xt,ut) about the nominal values

(x̄t, ūt) as,

c(xt,ut) = l(x̄t) + Ltδxt +Ht(δxt)+

1

2
ūTt Rūt + δut

TRūt + δut
TRδut, (3.7)

cT (xT) = cT (x̄T) + CT δxT +HT (δxT), (3.8)

where Lt = ∂l
∂x
|x̄t , CT = ∂cT

∂x
|x̄t , and Ht(·) and HT (·) are second and higher order terms in the

respective expansions.

Using (3.5) and (3.6), we can write the closed loop dynamics of the trajectory (δxt)
T
t=1 as,

δxt+1 = (At +BtKt)︸ ︷︷ ︸
Āt

δxt + {BtS̃t(δxt) + St(δxt)}︸ ︷︷ ︸
S̄t(δxt)

+εwt, (3.9)

where Āt represents the linear part of the closed loop systems and the term S̄t(.) represents the

second and higher order terms in the closed loop system. Similarly, the closed loop incremental

cost given in (3.7) can be expressed as

c(xt,ut) = {l(x̄t) +
1

2
ūTt Rūt}︸ ︷︷ ︸

c̄t

+ [Lt + ūTt RKt]︸ ︷︷ ︸
C̄t

δxt

+ (Ktδxt + S̃t(δxt))
′R(Ktδxt + S̃t(δxt))︸ ︷︷ ︸

H̄t(δxt)

. (3.10)

37



Therefore, the cumulative cost of any given closed loop trajectory (xt, ut)
T
t=1 can be expressed

as,

Jπ =
T−1∑
t=1

c(xt,ut = πt(xt)) + cT (xT)

=
T∑
t=1

c̄t +
T∑
t=1

C̄tδxt +
T∑
t=1

H̄t(δxt), (3.11)

where c̄T = cT (x̄T), C̄T = CT .

We first show the following result.

Lemma 1. The state perturbation equation δxt+1 = Ātδxt + S̄t(δxt) + εwt given in (3.9) can be

equivalently characterized as

δxt = δxl
t + ¯̄St, δx

l
t+1 = Ātδx

l
t + εwt (3.12)

where ¯̄St is an O(ε2) function that depends on the entire noise history {w0,w1, · · ·wt} and δxl
t

evolves according to the linear closed loop system.

Proof is provided in the appendix- A.0.1 [62].

Using (3.12) in (3.11), we can obtain the cumulative cost of any given closed loop trajectory

as,

Jπ =
T∑
t=1

c̄t︸ ︷︷ ︸
J̄π

+
T∑
t=1

C̄tδxt
l

︸ ︷︷ ︸
δJπ1

+
T∑
t=1

H̄t(δxt) + C̄t
¯̄St︸ ︷︷ ︸

δJπ2

. (3.13)

Now, we show the following important result.
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Proposition 1.

J̃π = E[Jπ] = J̄π +O(ε2),

Var(Jπ) = Var(δJπ1 )︸ ︷︷ ︸
O(ε2)

+O(ε4).

From (3.13), we get,

J̃π = E[Jπ] = E[J̄π + δJπ1 + δJπ2 ],

= J̄π + E[δJπ2 ] = J̄π +O(ε2), (3.14)

The first equality in the last line of the equations before follows from the fact that E[δxt
l] = 0,

since its the linear part of the state perturbation driven by white noise and by definition δx1
l =

0.The second equality follows form the fact that δJπ2 is an O(ε2) function. Now,

Var(Jπ) = E[Jπ − J̃π]2

= E[J̄π0 + δJπ1 + δJπ2 − J̄π0 − δJ̃π2 ]2

= Var(δJπ1 ) + Var(δJπ2 ) + 2E[δJπ1 δJ
π
2 ]. (3.15)

Since δJπ2 is O(ε2), Var(δJπ2 ) is an O(ε4) function. It can be shown that E[δJπ1 δJ
π
2 ] is O(ε4) as

well (proof is given [62]). Finally Var(δJπ1 ) is an O(ε2) function because δxl is an O(ε) function.

Combining these, we will get the desired result.

The following observations can now be made from Proposition 1.

Remark 1 (Expected cost-to-go). Recall that ut = πt(xt) = ūt +Ktδxt + S̃t(δxt). However, note

that due to Proposition 1, the expected cost-to-go, J̃π, is determined almost solely (within O(ε2))

by the nominal control action sequence ūt. In other words, the linear and higher order feedback

terms have only O(ε2) effect on the expected cost-to-go function.
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Remark 2 (Variance of cost-to-go). Given the nominal control action ūt, the variance of the cost-

to-go, which is O(ε2), is determined overwhelmingly (within O(ε4)) by the linear feedback term

Ktδxt, i.e., by the variance of the linear perturbation of the cost-to-go, δJπ1 , under the linear

closed loop system δxl
t+1 = (At +BtKt)δx

l
t + εwt.

3.4.3 Decoupled Approach for Closed Loop Control

Proposition 1 and the remarks above suggest that an open loop control super imposed with a

closed loop control for the perturbed linear system may be approximately optimal. We delineate

this idea below.

Open Loop Design. First, we design an optimal (open loop) control sequence ū∗t for the noise-

less system. More precisely,

(ū∗t)
T−1
t=1 = arg min

(ũt)T−1
t=1

T−1∑
t=1

c(x̄t, ũt) + cT (x̄T), (3.16)

x̄t+1 = f(x̄t) +Btũt.

We will discuss the details of this open loop design in Section 3.4.4.

Closed Loop Design. We find the optimal feedback gain K∗t such that the variance of the

linear closed loop system around the nominal path, (x̄t, ū
∗
t), from the open loop design above, is

minimized.

(K∗t )T−1
t=1 = arg min

(Kt)
T−1
t=1

Var(δJπ1 ),

δJπ1 =
T∑
t=1

C̄txt
l,

δxt+1
l = (At +BtKt)δxt

l + εwt. (3.17)

We now characterize the approximate closed loop policy below.
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Proposition 2. Construct a closed loop policy

π∗t (xt) = ū∗t +K∗t δxt, (3.18)

where ū∗t is the solution of the open loop problem (3.16), and K∗t is the solution of the closed loop

problem (3.17). Let πo be the optimal closed loop policy. Then,

|J̃π∗ − J̃πo| = O(ε2).

Furthermore, among all policies with nominal control action ū∗t , the variance of the cost-to-go

under policy π∗t , is within O(ε4) of the variance of the policy with the minimum variance.

We have

J̃π
∗ − J̃πo = J̃π

∗ − J̄π∗
+ J̄π

∗ − J̃πo

≤ J̃π
∗ − J̄π∗

+ J̄π
o − J̃πo

The inequality above is due the fact that J̄π∗ ≤ J̄π
o , by definition of π∗. Now, using Proposition

1, we have that |J̃π∗ − J̄π
∗| = O(ε2), and |J̃πo − J̄π

o | = O(ε2). Also, by definition, we have

J̃π
o ≤ J̃π

∗ . Then, from the above inequality, we get

|J̃π∗ − J̃πo| ≤ |J̃π∗ − J̄π∗|+ |J̄πo − J̃πo | = O(ε2)

A similar argument holds for the variance as well.

Unfortunately, there is no standard solution to the closed loop problem (3.17) due to the non

additive nature of the cost function Var(δJπ1 ). Therefore, we solve a standard LQR problem as a

surrogate, and the effect is again one of reducing the variance of the cost-to-go by reducing the

variance of the closed loop trajectories.

Approximate Closed Loop Problem. We solve the following LQR problem for suitably defined
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cost function weighting factors Qt, Rt:

min
(δut)Tt=1

E[
T−1∑
t=1

δxt
TQtδxt + δut

TRtδut + δxT
TQT δxt],

δxt+1 = Atδxt +Btδut + εwt. (3.19)

The solution to the above problem furnishes us a feedback gain K̂∗t which we can use in the place

of the true variance minimizing gain K∗t .

Remark 3. Proposition 1 states that the expected cost-to-go of the problem is dominated by the

nominal cost-to-go. Therefore, even an open loop policy consisting of simply the nominal control

action is within O(ε2) of the optimal expected cost-to-go. However, the plan with the optimal

feedback gain K∗t is strictly better than the open loop plan in that it has a lower variance in terms

of the cost to go. Furthermore, solving the approximate closed loop problem using the surrogate

LQR problem, we can expect a lower variance of the cost-to-go function as well.

3.4.4 D2C : Decoupled Data-based Control

This section presents the decoupled data-based control (D2C) algorithm formalizing the ideas

from the previous section. First, it solves a model-free deterministic optimization problem to

obtain the optimal nominal sequence. Then, a linear feedback controller is designed to track the

open-loop trajectory. To summarize, D2C has three primary steps as follows:

1. Solve for the open-loop control sequence by using information from multiple episodic roll-

outs of the system in a simulator followed by gradient descent.

2. Linearize the system around the optimal nominal trajectory and obtain the parameters of the

resulting linear time-varying system, also called as system identification.

3. Design an LQR controller that tracks the optimal nominal control sequence. The linear

feedback law combined with the open-loop control sequence constitutes the policy.

Each of the above steps are described in detail as follows:
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3.4.4.1 Open-loop Optimal Trajectory

A first order gradient descent based algorithm is proposed here for solving the open loop op-

timization problem given in (3.16), where the underlying dynamic model is used as a blackbox,

and the necessary gradients are found from a sequence of input perturbation experiment data using

standard least square.

Denote the initial guess of the control sequence as U (0) = {ū(0)
t }Tt=1, and the corresponding

states X (0) = {x̄(0)
t }Tt=1. The control policy is updated iteratively via

U (n+1) = U (n) − α∇U J̄ |X (n),U(n) , (3.20)

where U (n) = {ū(n)
t }Tt=1 denotes the control sequence in the nth iteration, X (n) = {x̄(n)

t }Tt=1

denotes the corresponding states, and α is the step size parameter. As J̄ |X (n),U(n) is the expected

cumulative cost under control sequence U (n) and corresponding states X (n), the gradient vector is

defined as

∇U J̄ |X (n),U(n) =

(
∂J̄
∂u1

∂J̄
∂u2

· · · ∂J̄
∂uT

)
|X (n),U(n) , (3.21)

which is the gradient of the expected cumulative cost w.r.t the control sequence after n iterations.

The following paragraph elaborates on how to estimate the above gradient.

Let us define a rollout to be an episode in the simulation that starts from the initial settings to

the end of the horizon with a control sequence. For each iteration, multiple rollouts are conducted

sequentially with both the expected cumulative cost and the gradient vector updated iteratively

after each rollout. During one iteration for the control sequence, the expected cumulative cost is

calculated as

J̄ |j+1

X (n),U(n) = (1− 1

j
)J̄ |jX (n),U(n) +

1

j
(J |X j,(n),Uj,(n)), (3.22)

where j denotes the jth rollout within the current iteration process of control sequence. J̄ |jX (n),U(n)
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is the expected cumulative cost after j rollouts while J |X j,(n),Uj,(n) denotes the cost of the jth roll-

out under control sequence U j,(n) and corresponding states X j,(n). Note that U j,(n) = {ū(n)
t +

δu
j,(n)
t }Tt=1 where {δuj,(n)

t }Tt=1 is the zero-mean, i.i.d Gaussian noise added as perturbation to the

control sequence U (n).

Then the gradient vector is calculated in a similar sequential manner as

∇U J̄ |j+1

X (n),U(n) = (1− 1

j
)∇U J̄ |jX (n),U(n) +

1

jσδu
(J |X j,(n),Uj,(n) − J̄ |

j+1

X (n),U(n))(U
j,(n) − U (n)),

where σδu is the variance of the control perturbation and∇U J̄ |j+1

X (n),U(n) denotes the gradient vector

after j rollouts. Note that after each rollout, both the expected cumulative cost and the gradient

vector are updated. The rollout number m in one iteration for the control sequence is decided

by the convergence of both the expected cumulative cost and the gradient vector. After m roll-

outs, the control sequence is updated by equation (3.20) in which ∇U J̄ |X (n),U(n) is estimated by

∇U J̄ |mX (n),U(n) . Keep doing this until the cost converges and the optimized nominal control se-

quence is {ū∗t}Tt=1 = {ū(N−1)
t }Tt=1.

Higher order approaches other than gradient descent are possible. However, for a general

system, the gradient descent approach is easy to implement. Also it is memory efficient and highly

amenable to parallelization as a result of our sequential approach.

3.4.4.2 System Identification

Closed loop control design specified in (3.17) or the approximate closed loop control design

specified in (3.19) requires the knowledge of the parameters At, Bt, 1 ≤ t ≤ T, of the perturbed

linear system. We propose a linear time variant (LTV) system identification procedure to estimate

these parameters.

First start from perturbed linear system given by equation (3.19). Using only first order infor-

mation and estimate the system parameters At, Bt with the following form

δxt+1 = Âtδxt + B̂tδut, (3.23)
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rewrite with augmented matrix

δxt+1 = [Ât | B̂t]

δxt

δut

 , (3.24)

Now write out their components for each iteration in vector form as,

Y = [δx0
t+1δx

1
t+1 · · · δxN−1

t+1 ],

X =

δx0
t δx1

t · · · δxN−1
t

δu0
t δu1

t · · · δuN−1
t

 ,
Y = [Ât | B̂t]X, (3.25)

where N is the total iteration number. δxn
t+1 denotes the output state deviation , δxn

t denotes

the input state perturbations and δun
t denotes the input control perturbations at time t of the nth

iteration. All the perturbations are zero-mean, i.i.d, Gaussian random vectors whose covariance

matrix is σI where I is the identity matrix and σ is a scalar. Note that here one iteration only has

one rollout.

The next step is to apply the perturbed control {ū∗t + δun
t }Tt=1 to the system and collect input-

output experiment data in a blackbox simulation manner.

Using the least square method Ât and B̂t can be calculated in the following procedure

Y X ′ = [Ât | B̂t]XX
′, (3.26)

As the perturbations are zero-mean, i.i.d, Gaussian random noise, XX ′ = σNI . Remember N is
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the total iteration number. Then

[Ât | B̂t] =
1

σN
Y X ′

=
1

σN
[δx0

t+1δx
1
t+1 · · · δxN−1

t+1 ]



(δx0
t )′ (δu0

t )′

(δx1
t )′ (δu1

t )′

...
...

(δxN−1
t )T (δuN−1

t )T


(3.27)

The calculation procedure can also be done in a sequential way similar to the update of the

gradient vector in the open-loop optimization algorithm. Therefore it is highly amenable to paral-

lelization and memory efficient.

3.4.4.3 Design of the Linear Feedback Law

Given the parameter estimate of the perturbed linear system, we solve the closed loop control

problem given in (3.19). This is a standard LQR problem. By solving the Riccati equation, we can

get the closed-loop optimal feedback gain K∗t . The details of the design is standard and is omitted

here.

3.4.4.4 D2C Algorithm: Summary

The Decoupled Data Based Control (D2C) Algorithm is summarized in Algorithm 3.

3.5 Discussion and Comparison of Methods

In this section, we compare the D2C approach with the well-known deep reinforcement learn-

ing algorithm - Deep Deterministic Policy Gradient (DDPG) [20]. For the comparison, we evaluate

both the methods in the following three aspects:

• Data efficiency in training - the amount of data sampling and storage required to achieve a

desired task.

• Robustness to noise - the deviation from the predefined task due to random noise in process

in the testing stage.
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Algorithm 3: D2C Algorithm
1) Solve the deterministic open-loop optimization problem for optimal open loop nominal
control sequence and trajectory ({ū∗t}Tt=1, {x̄∗t}Tt=1) using gradient descent method (Section
3.4.4.1).
2) Identify the LTV system (Ât, B̂t) via least square estimation (Section 3.4.4.2).
3) Solve the Riccati equations using estimated LTV system equation for feedback gain
{K∗t }Tt=1.
4) Set t = 1, given initial state x1 = x̄∗1 and state deviation δx1 = 0.
while t ≤ T do

ut = ū∗t +K∗t δxt,

xt+1 = f(xt) +Bt(ut + εwt),

δxt+1 = xt+1 − x̄∗t+1 (3.28)

t = t+ 1.
end while

• Ease of training - the challenges involved in training with either of the data-based ap-

proaches.

3.5.1 Tasks and Implementation

We tested our method with four benchmark tasks, all implemented in MuJoCo simulator [63]:

Inverted pendulum, Cart-pole, 3-link swimmer and 6-link swimmer [64]. Each of the systems and

their tasks are briefly defined as follows:

1. Inverted pendulum : A swing-up task of this 2D system from its downright initial

position is considered.

2. Cart-pole : The state of a 4D under-actuated cart-pole comprises of the angle of the pole,

cart’s horizontal position and their rates. Within a given horizon, the task is to swing-up the

pole and balance it at the middle of the rail by applying a horizontal force on the cart.

3. 3-link Swimmer : The 3-link swimmer model has 5 degrees of freedom and together

with their rates, the system is described by 10 state variables. The task is to solve the planning

and control problem from a given initial state to the goal position located at the center of the
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ball. Controls can only be applied in the form of torques to two joints. Hence, it is under-

actuated by 3 DOF.

4. 6-link Swimmer : The task with a 6-link swimmer model is similar to that defined in the

3-link case. However, with 6 links, it has 8 degrees of freedom and hence, 16 state variables,

controlled by 5 joint motors.

5. Fish : The fish model moves in 3D space, the torso is a rigid body with 6 DOF. The system

is described by 26 dimensions of states and 6 control channels. Controls are applied in the

form of torques to the joints that connects the fins and tails with the torso. The rotation of

the torso is described using quaternions.

D2C implementation is done in three stages corresponding to those mentioned in the previous

section and ‘MuJoCo Pro 150’ is used as the environment for simulating the blackbox model. An

off-the-shelf implementation of DDPG provided by Keras-RL [65] library has been customized

for our simulations. It may be noted that the structure of the reward function is formulated to

optimize the performance of DDPG and hence, different from that used in D2C. However, the

episode length (or horizon) and the time-discretization step is held identical. Although continuous

RL algorithms such as DDPG learn the policy and thereby interpolating it to the entire state space,

we consider the task-based experiments in a finite limited time-frame window approach. Training

is performed until the neural networks’ loss is converged. Hence, though the episodic reward does

seem to converge earlier, that itself may not indicate that the policy is converged.

For fair comparison, ‘Episodic reward/cost fraction’ is considered with both methods. It is

defined as the fraction of reward obtained in an episode during training w.r.t the nominal episodic

reward (converged reward). Note that the words ’reward’ and ’cost’ are being used interchangeably

due to their different notions in optimal control and RL literature respectively, though they achieve

the same objective. For simplicity, one is considered the negative of the other.

3.5.2 Performance Comparison

Data-efficiency: As mentioned above, an efficient training is one that requires minimal data
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sampling in order to achieve the same behavior. One way of measuring it is to collate the times

taken for the episodic cost (or reward) to converge during training. Plots in Fig. 3.1 show the

training process with both methods on the systems considered. Each plot shows the training curve

of one experiment. The curve marked as original is the actual training curve reflecting the original

reward data. The one marked as filtered is the curve after smoothing out the spikes to show better

view of the reward trend as the training goes. Table 3.1 delineates the times taken for training

respectively. As the system identification and feedback gain calculation in case of D2C take only

a small portion of time, the total time comparison in (Table 3.1) shows that D2C learns the optimal

policy substantially faster than DDPG and hence, has a better data efficiency.

Robustness to noise: As with canonical off-policy RL algorithms, DDPG requires that an

exploration noise be added to the policy, during training. Given that the training adapts the policy

to various levels of noise, combined with hours of intense training and a nonlinear policy output,

it is expected that it is more robust towards noise as is evident from Figs. 3.2 (c) and 3.2 (d).

However, from plots in Figs. 3.2 (a) and (b), it is evident that in some systems the performance

of D2C is on par with or better than DDPG. It may also be noted that the error variance in D2C

method increases abruptly when the noise level is higher than a threshold and drives the system

too far away from the nominal trajectory that the LQR controller cannot fix it. This could be

considered as a drawback for D2C. However, it must be noted that the range of noise levels (up

until 100 % of the maximum control signal) that we are considering here is far beyond what is

typically encountered in practical scenarios. Hence, even in swimmer examples, the performance

of D2C is tolerable to a reasonable extent of noise in the system. This is further demonstrated in

Fig. 3.3. Here we compared the episodic cost during testing between the open-loop policy applied

along and the closed-loop policy. In the first case, the nominal control solution from open-loop

optimization is applied without the feedback control. So the perturbation drives the model off the

nominal trajectory and increases the episodic cost as the noise level increases. It can be noted that

when the D2C closed-loop policy is applied, the episodic cost is much smaller in the entire range

of noise level we considered, which shows a great improvement compared to the open-loop policy
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and proves the robustness of our method. Moreover, in the D2C column of Table 3.1, it is shown

that the more than ninety percent of total training time is consumed in the open-loop training part.

Therefore, in the implementation of D2C, most of the training time is cost in the MPC style open-

loop optimization whereas the closed-loop part makes a great improvement in performance within

a small time budget.

Ease of training: The ease of training is often an ignored topic in analyzing a reinforcement

learning (RL) algorithm. By this, we mean the challenges associated with its implementation.

As with many RL algorithms that involve neural networks, DDPG has no guarantees for policy

convergence. As a result, the implementation often involves tuning a number of hyper-parameters

and a careful reward shaping in a trial and error fashion, which is even more time-consuming given

that their successful implementation already involves significant time and computational resources.

To elucidate the ease of training from an empirical perspective, the exploration noise that is

required for training in DDPG mandates the system to operate with a shorter time-step than a

threshold, beyond which the simulation fails due to an unbearable magnitude of control actions

into the system. For this, we train both the swimmers in one such case (with ∆t = 0.01 sec)

till it fails and execute the intermediate policy. Fig. 3.4 shows the plot in the testing-stage with

both methods. It is evident from the terminal state mean-squared error at zero noise level that

the nominal trajectory of DDPG is incomplete and its policy failed to reach the goal. The effect is

more pronounced in the higher-dimensional 6-link swimmer system (Fig. 3.4b), where the DDPG’s

policy can be deemed to be downright broken. Note, from Table 3.1, that the systems have been

trained with DDPG for a time that is more than thrice with the 3-link swimmer and 4 times with the

6-link swimmer. On the other hand, under same conditions, the seamless training of D2C results

in a working policy with even greater data-efficiency.
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Table 3.1: Simulation parameters and training outcomes

System Steps per Time- Training time (in sec.)
episode step D2C

(in sec.) Open- Closed- DDPG
loop loop

Inverted 30 0.1 12.9 < 0.1 2261.15
Pendulum
Cart pole 30 0.1 15.0 1.33 6306.7

3-link 1600 0.005 7861.0 13.1 38833.64
Swimmer 800 0.01 4001.0 4.6 13280.7*

6-link 1500 0.006 9489.3 26.5 88160
Swimmer 900 0.01 3585.4 16.4 15797.2*

Fish 1200 0.005 6011.2 75.6 124367.6

MS-Thesis/figures/DDPG/Swimmer_3_link/testing_mse_swimmer_001_noise_d2c_ddpg.png

(a) 3-link Swimmer

MS-Thesis/figures/DDPG/Swimmer_6_link/testing_mse_001_d2c_ddpg_swimmer6.png

(b) 6-link Swimmer

Figure 3.4: D2C vs DDPG at ∆t = 0.01s

3.5.3 Reproducibility

Reproducibility is still a major challenge that the field of reinforcement learning (RL) is yet to

overcome. Despite a significant progress in recent times, the difficulty in reproducing the results of

the existing work made the reports of improvements over state-of-the-art RL methods questionable.

In the recent years, people have realized this problem and some have conducted research on
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the challenges caused by reproducibility, proper experimental techniques and reporting proce-

dures [54]. According to their work, the reproducibility of RL can be affected by extrinsic fac-

tors like hyperparameters or code base and intrinsic factors such as effects of random seeds or

non-determinism in benchmark environments. In order to fairly compare different methods and

confirm improvements, the effects of some factors mentioned above can be eliminated by optimiz-

ing the parameters, running more trials and reporting all the parameters and experimental setup.

Despite this, the effects of random seeds still adds randomness in parameter tuning and makes the

procedure more time consuming. In alignment with their proposed reporting procedures, we test

the reproducibility of our method by conducting multiple training sessions with the same hyper-

parameters. Fig. 3.5 shows the mean and the standard deviation of the episodic cost data during

training run 16 times each. For the inverted pendulum model and the cart-pole model, the results

of all the training experiments are almost the same. Even for more complex model like the 6-link

swimmer and the fish, the training is stable and the variance is small. Fig. 3.6 compares D2C with

DDPG in the 3-link swimmer environment. Both algorithms run 4 repeated training experiments.

It is evident that the variation of D2C is small and stable through out the training whereas DDPG

has a large variance even after it seems to be converged (note that the variable on y-axis is not the

absolute cost, but is scaled w.r.t. averaged cost during testing). After they both converge, the vari-

ation of D2C is still smaller than DDPG. It is evident that given the set of hyperparameters, D2C

always results in the same policy (with a very small variance) unlike the results of the baseline RL

algorithms also reported in [66]. This shows that D2C is more reliable and stable in training, thus

has an advantage in reproducibility. This is an important feature in parameter tuning as the effects

of changed parameters can be clearly demonstrated which makes selecting the best parameter set

more efficient. Finally, in the spirit of reproducibility, our hyperparameters are reported for each

example in the appendix and our codebase can be accessed from our repository by clicking here.
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figures/D2C/d2c_openloop_invertedpendulum.png

(a) Inverted Pendulum - D2C

figures/D2C/d2c_openloop_cartpole.png

(b) Cart-Pole - D2C

./figures//DDPG/Inverted_pendulum/training_cost_fraction.png

(c) Inverted Pendulum - DDPG

./figures//DDPG/Cart_pole/training_reward_fraction.png

(d) Cart-Pole - DDPG

./figures//D2C/d2c_openloop_swimmer6.png

(e) 6-link Swimmer - D2C

./figures//D2C/d2c_openloop_fish.png

(f) Fish - D2C

./figures//DDPG/Swimmer_6_link/swimming_6_training_reward.png

(g) 6-link Swimmer - DDPG

./figures//DDPG/Fish/Fish_episodic_reward.png

(h) Fish - DDPG

Figure 3.1: Episodic reward fraction vs time taken during training
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MS-Thesis/figures/DDPG/Inverted_pendulum/testing_terminal_mse_D2C_DDPG.png

(a) Inverted Pendulum

MS-Thesis/figures/DDPG/Cart_pole/terminal_mse_D2C_DDPG.png

(b) Cart-Pole

MS-Thesis/figures/DDPG/Swimmer_6_link/swimmer_6_terminal_mse_D2C_DDPG.png

(c) 6-link Swimmer

MS-Thesis/figures/DDPG/Fish/Terminal_error_fish.png

(d) Fish

Figure 3.2: Terminal MSE vs noise level during testing
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./figures//D2C/clop_pendulum.png

(a) Inverted Pendulum

./figures//D2C/clop_cartpole.png

(b) Cart-Pole

./figures/D2C/clop_swimmer6.png

(c) 6-link Swimmer

./figures//D2C/clop_fish.png

(d) Fish

Figure 3.3: Averaged episodic reward fraction vs noise level during testing for D2C
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MS-Thesis/figures/D2C/multicost_pendulum.png

(a) Inverted Pendulum

MS-Thesis/figures/D2C/multicost_cartpole.png

(b) Cart-Pole

MS-Thesis/figures/D2C/multicost_swimmer6.png

(c) 6-link Swimmer

MS-Thesis/figures/D2C/multicost_fish.png

(d) Fish

Figure 3.5: Averaged episodic reward fraction vs time taken during training for D2C

MS-Thesis/figures/D2C/multicost4_swimmer3.png

(a) D2C openloop training

MS-Thesis/figures/DDPG/Swimmer_3_link/swimmer_3_reproducibility.png

(b) DDPG training

Figure 3.6: Averaged episodic reward fraction vs time taken during 4 training sessions for a 3-link
swimmer for D2C vs DDPG
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4. D2C 2.0 : MODEL-FREE DDP-BASED APPROACH FOR FASTER OPEN-LOOP

TRAJECTORY COMPUTATION

4.1 Introduction

Previous chapter introduced a model-free algorithm called as ‘D2C’, whose action policy is a

combination of an optimal nominal trajectory and a linear feedback law wrapped around it. It is

evident from the outcome of the simulations and their analysis that the majority of the algorith-

mic run time is spent on computing for the open-loop sequence. In retrospect, one conspicuous

observation that stood out was the slow convergence of the episodic cost. This is expected given

the fact that the algorithm involved gradient descent, which, by its nature, is first-order convergent.

Current chapter deals with an alternative method to obtain the open-loop trajectory using a for-

mulation based on an existing model-based algorithm called ‘Differential Dynamic Programming’

(DDP) [26]. The chapter re-derives DDP first and describes a sample-efficient way to compute

model parameters based on the formulation of DDP. It is then followed by example applications,

comparison with the original D2C and a discussion on the merits and demerits of the approach.

4.2 Related Work

Differential Dynamic Programming (DDP) is a class of iterative algorithms for trajectory opti-

mization. First proposed by D.Q. Mayne in 1966 [26], one salient aspect of DDP is that it exhibits

quadratic convergence for a general non-linear optimal control problem and can be solved in a

single step for linear systems. The derivation is similar to the Newton’s method for optimiza-

tion problems. In spite of its origins in 60s, it gained popularity only in the last decade due to

the success of the modified algorithm called ILQR [3]. Though DDP (theoretically) guarantees a

quadratic convergence, some of the terms in it involve computing second order derivatives of the

system dynamical models. Since the dynamical models of most systems are multi-valued vector

functions and their second order derivatives being third order tensors, DDP in its original form

was not effective for practical implementation. ILQR [3][11] dropped these terms and introduced
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regularization schemes [12] to handle the absence of these computationally expensive terms. This

resulted in a faster but also stable convergence to the optimal solution. We take advantage of these

properties in the formulation of open-loop trajectory design in the current chapter.

Finite difference method is a popular way to numerically estimate the Jacobians (and even the

Hessians) of a function. Typically, a forward Euler scheme is chosen to independently determine

each element (i.e, gradient) in a Jacobian matrix. Spall introduced the ‘Stochastic Perturbation

Method for Efficient Optimization’ (SPSA) [67] method that only evaluates the function twice to

calculate the Jacobian of the cost function. In this chapter, a similar formulation is derived to

compute the Jacobians online through the least squares method in a central-difference scheme.

4.3 Preliminaries

Let xt ∈ X ∈ Rnx represent the state of a system and ut ∈ X ∈ Rnu be the control signal at

time t respectively. Let us define the notion of a ‘nominal’ trajectory as follows - any trajectory

(state and control sequence) that is feasible (for example, by satisfying the kinematic constraints

for a non-holonomic system) for the given system is called as a nominal trajectory. Let us represent

the nominal trajectory variables with bars over them i.e, x̄t and ūt, both at time t. So, the nominal

trajectory is given by, Tnominal = {x̄0:N, ū0:N−1}.

Let f : Rnx ×Rnu → Rnx denote the state transition model of the system. Let πt : Rnx → Rnu

be the policy to be applied on the system. Let lt : Rnx×Rnu → R be the incremental cost function.

Let V πt
t : Rnx → R represent the cost-to-go function under the policy πt andQπt

t : Rnx×Rnu → R

be the corresponding action-value function, both at time t. Finally, let us distinctly denote the

optimal variables with by having ∗ in their subscripts. In other words, T∗nominal = {x̄∗0:N, ū
∗
0:N−1}

is the optimal nominal trajectory, π∗t is the optimal policy, V ∗t (.) is the optimal cost-to-go function

and Q∗t (.) is the corresponding action-value function. The following equations present some of the

important relations between the defined variables (assuming a deterministic system and hence, a

deterministic policy):

V πt
t (x̄t) = Qπt

t (x̄t, πt(x̄t)) (by definition) (4.1)
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V ∗t (x̄t) = min
ūt

Q∗t (x̄t, ūt) = min
πt

Qπt
t (x̄t, πt(x̄t)) (by definition) (4.2)

Figure 4.1 illustrates an arbitrary nominal trajectory and the converged optimal trajectory in

DDP for a car-like robot’s motion planned from (x0, y0, θ0, φ0)T = (0, 0, 0, 0)T to (xN , yN , θN , φN)T =

(5, 5, 0, 0)T , where N is the length of the horizon, (x, y) denoting the 2D position and (θ, φ) being

the heading and the steering angles respectively.

MS-Thesis/figures/ddp_trajectories.PNG

Figure 4.1: Illustration of a sub-optimal nominal trajectory and an optimal trajectory (obtained after con-
vergence) in DDP. The start and the goal locations are marked in blue heptagrams.

4.4 Methodology

This section presents a comprehensive derivation of the model-free DDP-based algorithm. It

starts by revisiting the basic derivation of DDP/ILQG [26] [11] [12] [68]. The derivation is fol-

lowed by a preliminary analysis to later propose a sample-efficient approach to solve for the Jaco-

bians in context of DDP. The final equations resulted in DDP are straightforward on a theoretical

front. However, that is practical for implementation only when supplemented by a right selection

of regularization scheme, line search mechanism and initialization. These are discussed later in the
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section which is then followed by a subsection on linear feedback design and how it fits within the

framework of D2C.

4.4.1 Revisiting the Derivation of DDP

Let us initialize with an arbitrary policy πt. Evaluating this policy on the system (also referred

to as ‘forward pass’ later) results in Tnominal = {x̄0:N, ū0:N−1}, where x̄0 is the given initial state

of the system and ūt = πt(x̄t). Let xt = x̄t + δxt be a small deviation from the nominal state

x̄t and the corresponding control be ut = ūt + δut. For simplicity of notation, Qπt
t (). is being

replaced byQt in the following derivation. By Taylor’s expansion around (x̄t, ūt) up to two orders,

we obtain the following:

Qt(xt,ut) = Qt(x̄t + δxt, ūt + δut)

= Qt(x̄t, ūt) +

[
Qxt Qut

]δxt

δut

+
1

2

[
(δxt)

ᵀ δut
ᵀ

]Qxtxt Qxtut

Qutxt Qutut


δxt

δut


(4.3)

where, Qxt = ∂Qt
∂xt


(x̄t,ūt)

, Qut = ∂Qt
∂xt


(x̄t,ūt)

, Qxtxt = ∂2Qt
∂xt∂xt


(x̄t,ūt)

, Qutut = ∂2Qt
∂ut∂ut


(x̄t,ūt)

,

Qutxt = ∂2Qt
∂ut∂xt


(x̄t,ūt)

and Qxtut = ∂2Qt
∂xt∂ut


(x̄t,ūt)

. Please note that the notation for Qt(.) has not

been changed in spite of the quadratic approximation, for simplicity of notations.

Now, given Tnominal, we look for an incremental control law, δut, that minimizes Qt(xt,ut). In

other words, solve for δut such that min
δut

Qt(x̄t + δxt, ūt + δut). Ideally, if the structure of the

Q-function is known, we could try to solve for a δut that will directly result in T∗nominal from

Tnominal, just in one step. However, for a general Qt, this is not directly solvable. But, since we

consider the local quadratic approximation as in equation (4.6), we can solve for δut that will

improve the nominal trajectory, in each iteration, reaching towards the optimal nominal trajectory.

This is similar to Newton’s method for root-finding.

min
δut

Qt(x̄t + δxt, ūt + δut) =⇒ ∂Qt

∂δut

= 0 (4.4)
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Solving equation (4.4) results in an incremental linear control law δut = Ktδxt + kt, where,

Kt = −Q−1
utut

Qut and kt = −Q−1
utut

Qutxt .

δut = Ktδxt + kt =⇒ ut = ūt +Kt(xt − x̄t) + kt

=⇒ πt(xt) = πt(x̄t) +Kt(xt − x̄t) + kt

(4.5)

Substituting the new policy from equation (4.5) in the Q function results in the following:

Qt(xt, πt(xt)) = Qt(x̄t, ūt) +

[
Qxt Qut

] δxt

Ktδxt + kt

+

1

2

[
δxt

T (Ktδxt + kt)
T

]Qxtxt Qxtut

Qutxt Qutut


 δxt

Ktδxt + kt

 .
= (Qt(x̄t, ūt) + kTt Qututkt)+

(Qxt +QutKt + kTQxtut + kTt QututKt)δxt+

1

2
(δxt)

T (Qxtxt +QxtutKt +KT
t Qutxt +KT

t QututKt)δxt.

(4.6)

The above equation inherently assumed that Qutxt = Qxtut (since Qt(.) is assumed to be con-

tinuous) and a well-known property that if A and B are arbitrary matrices such that their product,

AB, is a scalar, then, AB = (AB)T = BTAT .

From equation (4.1), we know that Qt(xt,ut) = Qt(xt, πt(xt)) = Vt(xt). Also, by definition,

Vt(xt) = lt(xt,ut) + Vt+1(f(xt)). By Taylor’s expansion of Vt(.) around (x̄t, ūt), we obtain the
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following:

Qt(xt,ut) = lt(xt,ut) + Vt+1(f(xt))

= l̄t + Vt+1(f(x̄t)) + (lxt + fTxt
V ′xt+1

)δxt + (lut + fTut
V ′xt+1

)δut+

1

2
δxt

T (lxtxt + fTxt
V ′xt+1xt+1

fxt + V ′xt+1
⊗ fxtxt)δxt+

δut
T (lutxt + fTut

V ′xt+1xt+1
f ′xt

+ V ′xt+1
⊗ futxt)δxt+

1

2
δut

T (lutut + fTut
V ′xt+1xt+1

fut + V ′xt+1
⊗ futut)δut,

(4.7)

where, V ′xt+1
= ∂Vt+1

∂xt+1


(x̄t+1,ūt+1)

, V ′xt+1xt+1
= ∂2Vt+1

∂2xt+1


(x̄t+1,ūt+1)

, lxt = ∂lt
∂xt


(x̄t,ūt)

, lut = ∂lt
∂ut


(x̄t,ūt)

,

lutut = ∂2lt
∂2ut


(x̄t,ūt)

, fxt = ∂f
∂xt


(x̄t,ūt)

, fut = ∂f
∂ut


(x̄t,ūt)

, fxtxt = ∂2f
∂2xt


(x̄t,ūt)

, futut = ∂2f
∂2ut


(x̄t,ūt)

and futxt = ∂2f
∂xt∂ut


(x̄t,ūt)

. Note the ‘prime’ here over ‘V ’ indicates Vt+1 i.e, at a time-step higher.

This is a slight abuse of notation to avoid populating its subscript with a number of variables. From

equation (4.7) and (4.6), we have :

Qxt = lxt + fTxt
V ′xt+1

Qut = lut + fTut
V ′xt+1

Qxtxt = lxtxt + fTxt
V ′xt+1xt+1

fxt + V ′xt+1
⊗ fxtxt

Qutxt = lutxt + fTut
V ′xt+1xt+1

fxt + V ′xt+1
⊗ futxt

Qutut = lutut + fTut
V ′xt+1xt+1

fut + V ′xt+1
⊗ futut

(4.8)

⊗ in the above equation denotes tensor product, as the second order derivatives of dynam-

ics following it are third order tensors. Now, the difference between DDP and ILQR/ILQG is in

whether or not these terms are included. Though they make the equations complete, it is later

found that computing them is expensive and given the quadratic approximation, ignoring them, in

fact, makes the convergence towards the solution faster.
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4.4.1.1 Regularization

The computation of Kt and kt in the equation (4.5) require an inversion of the Qutut matrix.

Since the derivation is based upon the quadratic approximation of the Q function, Qutut is not

guaranteed to be positive semi-definite. Qutut being negative definite is worse than slower descent

in the cost, because that implies the problem is ill- posed and the algorithm cannot proceed from

this point. In order to deal with it, [11] introduced two following different fixes:

• The Levenberg-Marquardt trick: replacing Qutut with Qutut + (ε− λmin(Qutut)Inu×nu ,

where λmin(Qutut) is the minimum eigenvalue of Qutut and ε > 0.

• performing the eigenvalue decomposition such that V is the eigenvector matrix and D is the

diagonal matrix filled with corresponding eigenvalues. Then,Qutut = V DV T . By replacing

the diagonal elements in D smaller than ε with ε > 0, the inversion of Qutut is simply given

by Q−1
utut

= V D−1V T .

[12] proposed an improved regularization scheme over the Levenberg-Marquardt scheme. It

penalizes deviations from the states rather than the controls. Even as µ increases, this scheme

ensures that the new trajectory is well within the vicinity of the previous trajectory. Hence, this

scheme is followed in the current implementation. The updated Qutxt and Qutut are shown in the

algorithm 5. It is to be noted that adding extra terms in the Q function equations such as above,

alters the value of the cost-to-go, V and its derivatives w.r.t. xt. It is reflected in the corresponding

equations in algorithm 5. µ is initialized with a small positive constant and increased by a factor

when Qutut is negative definite, until Qutut is positive definite. The implementation follows the

quadratic modification schedule proposed in [12].

4.4.1.2 Line Search

The backward pass step results in an open-loop parameter kt and a feedback parameter Kt

for the forward pass in the next iteration. In a general nonlinear system, the new policy obtained

could cause the new trajectory to substantially deviate from the previous trajectory and might result
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in the divergence of the cost. This can be precluded by introducing a scaling parameter α that is

multiplied with kt. α can be varied by verifying if the new cost is within a predetermined bound and

backtracking accordingly. Current implementation follows the line search scheme of [12], where

the new trajectory is deemed to be acceptable if it satisfies the following criteria: An estimate of

the expected total-cost reduction in the line-search is given by

∆cost(α) = α

N−1∑
t=1

kTt Qut +
α2

2

N−1∑
t=1

kTt Qututkt

(cost(Tnew)− cost(Tcurrent))
∆cost(α)

< c,

where c is a constant parameter that can be tuned for a given system and α (although this is rare in

practice). If this is not satisfied, we backtrack i.e, reduce α and re-iterate through the same step as

done above.

Now, the advantage with the above result w.r.t. making it model-free is that the equations

involved in it are explicit in system dynamics and their gradients. Hence, in order to make it a

model-free algorithm, it is sufficient if we could explicitly obtain the estimates of Jacobians and

Hessians. A sample-efficient way of doing it is described in the next subsection.

4.4.2 Estimation of Jacobians and Hessians in a Model-free Setting

We make a preliminary analysis on the number of evaluations required in the above algorithm.

If the horizon is ‘h’ and the number of iterations required to converge are ‘n’, the algorithm requires

us to estimate each of the fxt , fut , fxtxt , futxt and futut ‘nh’ times.
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f(x̄t + δxt, ūt + δut) = f(x̄t, ūt) +

[
fxt fut

]δxt

δut

+
1

2

[
δxt

T δut
T

]fxtxt fxtut

futxt futut


δxt

δut

+

O(‖δxt‖3 + ‖δut‖3)

f(x̄t − δxt, ūt − δut) = f(x̄t, ūt)−
[
fxt fut

]δxt

δut

+
1

2

[
δxt

T δut
T

]fxtxt fxtut

futxt futut


δxt

δut

+

O(‖δxt‖3 + ‖δut‖3)

Subtracting the above equations on both sides results in the following :

f(x̄t+δxt, ūt+δut)−f(x̄t−δxt, ūt−δut) = 2

[
fxt fut

]δxt

δut

+O(‖δxt‖3+‖δut‖3) (4.9)

Multiplying by
[
δxt

T δut
T

]
on both sides to the above equation:

f(x̄t + δxt, ūt + δut)− f(x̄t − δxt, ūt − δut)

[
δxt

T δut
T

]
= 2

[
fxt fut

]δxt

δut

[δxt
T δut

T

]
+

O(‖δxt‖4 + ‖δut‖4)

= 2

[
fxt fut

]δxtδxt
T δxtδut

T

δutδxt
T δutδut

T

+

O(‖δxt‖4 + ‖δut‖4)

Assuming that

δxtδxt
T δxtδut

T

δutδxt
T δutδut

T

 is invertible (which will later be proved to be true by making

some assumptions!), let us perform inversions on either sides of the above equation as follows:
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f(x̄t + δxt, ūt + δut)− f(x̄t − δxt, ūt − δut)

[
δxt

T δut
T

]δxtδxt
T δxtδut

T

δutδxt
T δutδut

T


−1

=

2

[
fxt fut

]
+O(‖δxt‖2 + ‖δut‖2)

=⇒[
fxt fut

]
=

1

2

[
f(x̄t + δxt, ūt + δut)− f(x̄t − δxt, ūt − δut)

] [
δxt

T δut
T

]δxtδxt
T δxtδut

T

δutδxt
T δutδut

T


−1

+

O(‖δxt‖2 + ‖δut‖2)

(4.10)

Equation (4.10) is a way to solve for Jacobians, fxt and fut , simultaneously. It is noted that the

above formulation requires only 2 evaluations of f(.), given the nominal state and control (x̄t, ūt).

The remaining terms (also, the error in the evaluation) are of the order that is quadratic in δxt and

δut. The following extends equation (4.10) to be used in practical implementations (sampling).

We are free to choose the distribution of δxt and δxt. As mentioned before, let us assume both

are i.i.d. Gaussian distributed random variables with zero mean and a standard deviation of σ. This

ensures that

δxtδxt
T δxtδut

T

δutδxt
T δutδut

T

 is invertible. More on the advantage of using this distribution

will be elaborated in the next paragraph. Let ‘n′s be the number of samples for each of the random

variables, δxt and δut, as δXt =

[
δx1

t δx2
t . . . δxns

t

]
and δUt =

[
δu1

t δu2
t . . . δuns

t

]
,

respectively. Then
[
fxt fut

]
is given by the following :
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[
fxt fut

]
=

(f(x̄t + δx1
t , ūt + δu1

t )− f(x̄t − δx1
t , ūt − δu1

t ))T

(f(x̄t + δx2
t , ūt + δu2

t )− f(x̄t − δx2
t , ūt − δu2

t ))T

...

(f(x̄t + δxns
t , ūt + δuns

t )− f(x̄t − δxns
t , ūt − δuns

t ))T



T

[
δXt

T δUt
T

]δXtδXt
T δXtδUt

T

δUtδXt
T δUtδUt

T


−1

(4.11)

Let us consider the terms in the matrix

δXtδXt
T δXtδUt

T

δUtδXt
T δUtδUt

T

 :

δXtδXt
T =

[
δx1

t δx2
t . . . δxns

t

]


δx1
t
T

δx2
t
T

...

δxns
t
T


=

ns∑
i=1

δxt
iδxt

iT

Similarly, δUtδUt
T =

∑ns
i=1 δut

iδut
iT , δUtδXt

T =
∑ns

i=1 δut
iδxt

iT and δXtδUt
T =

∑ns
i=1 δxt

iδut
iT .

From the definition of sample variance, we can write the above matrix as

δXtδXt
T δXtδUt

T

δUtδXt
T δUtδUt

T

 =

∑ns
i=1 δxt

iδxt
iT

∑ns
i=1 δxt

iδut
iT∑ns

i=1 δut
iδxt

iT
∑ns

i=1 δut
iδut

iT


≈

σ2(ns − 1)Inx 0nx×nu

0nu×nx σ2(ns − 1)Inu

 = σ2(ns − 1)I(nx+nu)×(nx+nu)

Given that we have high enough number of samples ‘ns’ (typically, 30 to 40 is sufficient), the above

approximation holds good. Since the inversion of an identity matrix is trivial and always exists,

this means, the above matrix is invertible in equation (4.11). Thus, one can calculate fx and fu this
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way during the backward pass. The entire algorithm to determine the optimal nominal trajectory

in a model-free fashion is summarized together in Algorithm 4, Algorithm 5 and Algorithm 6.

Algorithm 4: Open-loop trajectory optimization via model-free DDP

Input: Initial State - x0, System and cost parameters - P;
/* Initialize the iteration number, k, to 1.*/
k ← 1
forward_pass_flag = true
/* Run until the difference in costs between subsequent
iterations is less an ε fraction of the former cost.*/

while k == 1 or (cost(Tknom)/cost(Tk−1
nom)) < 1 + ε do

/*Each iteration has a backward pass followed by a forward
pass.*/

{kk0:N−1, K
k
0:N−1}, backward_pass_success_flag = Backward Pass(Tknominal, P)

if backward_pass_success_flag == true then
Tk+1
nominal, forward_pass_flag = Forward Pass(Tknominal, {kk0:N−1, K

k
0:N−1}, P)

while forward_pass_flag == false do
Tk+1
nominal, forward_pass_flag = Forward Pass(Tknominal, {kk0:N−1, K

k
0:N−1}, P)

Reduce α from P .
end while

end if
else

/* Regularization step */
Increase µ from P .

end if
k ← k + 1
T∗nominal ← Tk+1

nominal

end while
return T∗nominal

4.5 Example Applications

This section presents the results concerning the implementation of D2C-2.0 described in the

previous sections of this chapter. The algorithm has been implemented on the systems that are

chosen in the previous chapter. This is in order to be able to perform a comprehensive comparison

with them, as shown in the next section. To recall from the previous chapter, the following are the

systems and their tasks : pendulum swing up, cart-pole swing up and motion planning of a 3-link
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Algorithm 5: Backward Pass

Input: Nominal trajectory - Tknominal, previous iteration policy parameters -
{k0:N−1, K0:N−1}, horizon - N and system and cost parameters - P;
/* Backward pass starts from the final time-step i.e, N-1.*/
t← N − 1
Compute VxN

and VxNxN
using boundary conditions.

/*Keep a copy of the previous policy gains.*/
k_old← k0:N and K_old← K0:N .
while t >= 0 do

/*Obtain the Jacobians from the simulator rollouts as shown
in equation (4.11):*/
fxt , fut ← model_free_jacobian(x̄t, ūt)
/*Obtain the partials of the Q function as follows:*/

Qxt = lxt + fTxt
V ′xt+1

Qut = lut + fTut
V ′xt+1

Qxtxt = lxtxt + fTxt
V ′xt+1xt+1

fxt

Qutxt = lutxt + fTut
(V ′xt+1xt+1

+ µInx×nx)fxt

Qutut = lutut + fTut
(V ′xt+1xt+1

+ µInx×nx)fut

if Qutut is positive-definite then

kt = −Q−1
utut

Qut ,

Kt = −Q−1
utut

Qutxt .

end if
else

/*If Qutut is not positive-definite, then, abort the
backward pass.*/

return {k_old,K_old}, false.
end if
/*Obtain the partials of the value function Vt as
follows:*/

Vxt = Qxt +KT
t Qututkt +KT

t Qut +QT
utxt

kt,

Vxtxt = Qxtxt +KT
t QututKt +KT

t Qutxt +QT
utxt

Kt.

t← t− 1
end while
k_new = k0:N−1

K_new = K0:N−1

return {k_new,K_new}, true.

69



Algorithm 6: Forward Pass

Input: Nominal trajectory - Tknominal, previous iteration policy parameters -
{k0:N−1, K0:N−1} and system and cost parameters - P;
/* Unpack the previous nominal trajectory.*/
{xprev

t ,uprev
t } ← Tknominal

/* Initialize time to 0.*/
t← 0;
while t < N do

/*α is the line-search parameter.*/
/*Simulate one step forward in a simulator.*/

ut = uprev
t + αkt +Kt(xt − xprev

t )

xt+1 = simulate_forward_step(xt,ut)

t← t+ 1
end while
Tk+1
nominal← {x0:N,u0:N−1}

if Tk+1
nominal is an acceptable new nominal trajectory from Tknominal then
return Tk+1

nominal, true.
end if
else

return Tknominal, false.
end if
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swimmer, 6-link swimmer and fish. Figure 4.2 shows the open-loop training plots for each of the

systems. As each iteration corresponds to an episode of training, each training plot comprises of

averaged episodic costs over 5 trials of training.

MS-Thesis/figures/D2C-2/pendulum_episodic_cost_training_ol.png

(a) Pendulum swing-up

MS-Thesis/figures/D2C-2/acrobot_avg_episodic_cost.png

(b) Acrobot swing-up

MS-Thesis/figures/D2C-2/swimmer_episodic_cost_training.png

(c) 3-link swimmer motion planning

MS-Thesis/figures/D2C-2/fish_episodic_cost_training.png

(d) Fish motion planning

MS-Thesis/figures/D2C-2/cartpole_episodic_cost_training_ol.png

(e) Cart-pole swing-up

MS-Thesis/figures/D2C-2/swimmer6_episodic_cost_training.png

(f) 6-link swimmer motion planning

Figure 4.2: Training for the optimal policy in D2C - 2.0
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4.6 Discussion and Comparison of Methods

It is already discussed on how D2C fares well w.r.t. DDPG in training time. In order to

have a fair comparison between the original D2C and D2C-2.0, the same cost function is used.

A consequence of this is that it will not result in the best performances for each of the methods.

Rather, we are interested in analyzing the performances under an arbitrary cost function which

performs the requisite task.

Table 4.1: Comparison of the simulation parameters and training outcomes of D2C-2.0 with other
baselines

System State Control Steps per Time- Training time (in sec.)
dimen- dimen episode step D2C
-sion -sion (in sec.) Open- Closed- DDPG D2C-

loop loop 2.0
Inverted 2 1 30 0.1 12.9 < 0.1 2261.15 0.33

Pendulum
Cart pole 4 1 30 0.1 15.0 1.33 6306.7 1.62

3-link 10 2
Swimmer 800 0.01 4001.0 4.6 38833.64 186.2

6-link
Swimmer 16 5 900 0.01 3585.4 16.4 88160 127.2

Fish 27 5 1200 0.005 6011.2 75.6 124367.6 54.8

Table 4.1 shows the training time comparing the original D2C, a state-of-the-art reinforcement

learning (DDPG) and D2C-2.0. Note that this is different from the training time of D2C shown in

table 3.1. This is because, as emphasized in the previous paragraph, D2C presented in the previous

chapter and that in the current chapter are different implementations. Now, comparing D2C-2.0

with the original D2C, it is evident from the table that for simple and lower dimensional systems

such as pendulum and cart pole the policy can be almost calculated online (parallelization could

make it much more faster). It is due to the tendency of DDP to quickly converge if the linearization

of system models has bigger basin of attraction (such as pendulum, which is, in fact, almost often
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considered to be linear about its rest position). Whereas for a higher dimensional system such as

in the case of a robotic fish, D2C-2.0 took 311 seconds while the original D2C took around 6096

seconds, which is approximately 20 times faster. The table makes it evident that D2C-2.0 clearly

exhibits a faster convergence property.

A major reason behind the performance differences stems from their formulation. D2C is

based on gradient descent which is a linearly convergent algorithm. It is a generic way of solving

an optimization problem that doesn’t take advantage of the structure in the problem. In other

words, it is a direct method. On the other hand, the equations involved in D2C-2.0 arise from the

optimality conditions that inherently exploit the recursive optimal structure in the problem. It is

identical to the Newton’s method and hence, exhibits near second order convergence properties.

Moreover, the equations are explicit in the Jacobians of the system model. As a result, it is being

possible to solve for it independently and in a sample efficient manner, at every time-step of each

iteration.

Another notable advantage comes from the fact that though this is a second order convergence

based method, we are ignoring the second order derivatives of the dynamical model. Earlier,

it is noted that this is a conscious decision that is observed to drastically improve the speed of

convergence in case of model-based problems, provided it is sufficiently compensated with the

regularization and line search schemes. Hence, we don’t need to account for such computationally

intensive variables.

Now, as mentioned in the related work section of this chapter, earlier works have attempted

to tackle the idea of model-free ILQR and have mostly confined to finite-differences for Jacobian

computation. Table 4.2 shows the comparison of per-iteration computational times between ‘finite-

differences’ and ‘linear least squares with central difference formulation’. It is clearly evident that,

as the dimension of the state space increases, the method of finite-differences requires many more

function evaluations, and hence, our LLS-CD method is much more efficient.

To end the discussion on the global vs local policy approximation dilemma (while comparing

with DDPG), how well deep RL methods interpolate their policy to the entire continuous state
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Table 4.2: Comparison of the computational times (in sec.) per iteration in seconds (averaged over
5 runs).

System FD LLS-CD
Inverted

Pendulum 0.017 0.033
Cart pole 0.0315 0.0463
Acrobot 0.554 0.625
3-link

Swimmer 4.39 1.86
6-link

Swimmer 14.43 1.278
Fish 34.75 2.74

and action spaces remains an open question. Now, consider that the results shown in the Table

4.1 are based on serial implementations on an off-the-shelf computer and D2C-2.0 can be highly

parallelizable. By looking at the order of magnitude of numbers in the same table, we expect with

reasonable augmentation of computational power by parallelization, D2C-2.0 could offer a near-

real time solution in high dimensional problems. In such cases, one could rely on the near-optimal

policy described in this paper for low noises, and re-solve for the open-loop trajectory online by

the approach presented in this paper along with the attendant feedback, whenever the noise takes

the method out of the region of attraction of the linear feedback policy. This will be our motivation

for the future work.

74



5. CONCLUSIONS

It is established that in a fully-observed scenario, a deterministic action policy can be split into

an optimal nominal sequence and a feedback that tracks the nominal in order to maintain the cost

within a tube around the nominal. As a result, we proposed the ‘T-PFC’ algorithm. It is shown to

be maintaining low cost, has low online computation and hence, faster execution. This makes our

approach tractable in systems with higher dimensional states. Like NMPC, the nominal trajectory

design of T-PFC also allows for the inclusion of constraints as described. We have empirically

shown that the overall control signals are very close to the saturation boundary, if not with-in,

when the nominal is at saturation. Also, T-PFC works with minimal number of re-plannings even

at medium noise levels, as against to the traditional principle of deterministic NMPC to re-plan

in a recurrent fashion irrespective of the noise levels. Coming to its limitations, the following are

noteworthy:

• T-PFC assumes a control-affine system and the cost to be in a specific form. Though many

robotic systems are affine in controls, methods like T-LQR have an edge by considering a

general nonlinear system.

• Though T-LQR does not fare well on the cost incurred, it offers a flexibility to tune the

feedback parameters according to ones needs, even if that means sacrificing the optimality.

Future model-based works can focus on overriding the assumptions made w.r.t. the system

model and the form of the cost function. Another important direction could be to exploring this

idea of decoupling to partially-observed systems and also dealing with nonlinear hard inequality

constraints.

In the context of model-free data-based solutions, we proposed a near-optimal control algo-

rithm under fully observed conditions from an alternative theoretical perspective and showed that

our method is able to scale-up to higher dimensional state-space without any knowledge about the

system model. Due to sequential calculation used in the open-loop optimization and the system
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identification, it is shown that D2C is memory efficient and also convenient for parallelization. We

tested its performance and juxtaposed them with a state-of-the-art deep RL technique - DDPG.

From the results, our method has conspicuous advantages over DDPG in terms of data efficiency

and ease of training. The robustness of D2C is also better in some cases, but has scope for further

development by employing more sophisticated feedback methods and ensuring that the data effi-

ciency is not compromised. We also believe further drastic reduction in the planning time can be

achieved by parallelization and a more sophisticated parametrization of the open loop problem.

It is evident from the simulations that methods such as D2C are able to achieve their goals

accurately whereas DDPG consumes inordinate amount of time in ‘fine-tuning’ their behavior

towards the goal. However, we also note that, by doing this, DDPG is tentatively exploring over

the entire state-space and can result in a better generic policy. Another drawback with D2C over

canonical RL algorithms is that the cost could be stuck in a local minimum, whereas DDPG due

to the nature of stochastic gradient descent in training neural networks, can potentially reach the

globally optimal solution. Nevertheless, this approach is rather aimed to signify the potential of

decoupling based approaches such as D2C in a reinforcement learning paradigm and recognizes

the need for more hybrid approaches that complement the merits of each.

A closer inspection into the D2C algorithm revealed that there is a great scope to improve

the computational efficiency in the design of the open-loop plan. Hence, as a sequel to the D2C

algorithm, we proposed the D2C-2.0 algorithm which, as the simulation results show, drastically

reduced the run-time of the algorithm as a whole. In fact, in simpler problems such as the pendulum

and the cart-pole swing-up, the algorithm run truly online, which means we have a global feedback

solution (not to be confused with the globally optimal solution). However, it should be noted that

the same formulation that resulted in the faster (second-order) convergence is likely to slow down

with the increasing state dimension beyond a threshold. This is due to the presence of large number

of variables that are of polynomial order in the state dimension. Also, the algebraic expressions

involved in each iteration, for example, the computation of the model’s Jacobians or the inversion

of large matrices are expected to scale up poorly. In such instances, it might be worth revisiting
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the original way of solving for the open-loop trajectory. This is an interesting problem to explore

for the future work. Problems with very high dimensions can be found in non traditional sub-

disciplines of robotics such as tensegrity structures. Another direction could be to make use of

the third order tensor terms in the formulation of DDP for rapid convergence. In other words, it

is clear from the behavior of the training plot in D2C-2.0 that the first few iterations witness a

drastic reduction in the cost, while the remaining iterations are spent in ‘fine-tuning’. To apply the

second-order convergence property throughout training, it may be worth investigating the utility of

the second order derivatives of the model.
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APPENDIX A

A.0.1 Proof of Lemma 1

We proceed by induction. The first general instance of the recursion occurs at t = 3. It can be

shown that:

δx3 = (Ā2Ā1(εw0) + Ā2(εw1) + εw2)︸ ︷︷ ︸
δxl3

+

{Ā2S̄1(εw0) + S̄2(Ā1(εw0) + S̄2(Ā1(εw0) + εw1 + S̄1(εw0))}︸ ︷︷ ︸
¯̄S3

. (A.1)

Noting that S̄1(.) and S̄2(.) are second and higher order terms, it follows that ¯̄S3 is O(ε2).

Suppose now that δxt = δxl
t + ¯̄St where ¯̄St is O(ε2). Then:

δxt+1 = Āt+1(δxl
t + ¯̄St) + εwt + S̄t+1(δxt),

= (Āt+1δx
l
t + εwt)︸ ︷︷ ︸

δxl
t+1

+ {Āt+1
¯̄St + S̄t+1(δxt)}︸ ︷︷ ︸

¯̄St+1

. (A.2)

Noting that S̄t+1 is O(ε2) and that ¯̄St+1 is O(ε2) by assumption, the result follows.

A.0.2 Lemma 2

Lemma 2. Let δJπ1 , δJπ2 be as defined in (3.13). Then, E[δJ1δJ2] is an O(ε4) function.

In the following, we suppress the explicit dependence on π for δJπ1 and δJπ2 for notational

convenience. Recall that δJ1 =
∑T

t=0 c
x
t δx

l
t, and δJ2 =

∑T
t=0 H̄t(δxt) + cxt

¯̄St. For notational

convenience, let us consider the scalar case, the vector case follows readily at the expense of more

elaborate notation. Let us first consider ¯̄S2. We have that ¯̄S2 = Ā2S̄1(εw0) + S̄2(Ā1(εw0) + εw1 +
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S̄1(εw0)). Then, it follows that:

¯̄S2 = Ā2S̄
(2)
1 (εw0)2 + S̄

(2)
2 (Ā1εw0 + εw1)2 +O(ε3), (A.3)

where S̄(2)
t represents the coefficient of the second order term in the expansion of S̄t. A similar

observation holds for H2(δx2) in that:

H̄2(δx2) = H̄
(2)
2 (Ā1(εw0) + εw1)2 +O(ε3), (A.4)

where H̄(2)
t is the coefficient of the second order term in the expansion of H̄t. Note that εw0 = δxl

1

and Ā1(εw0) + εw1 = δxl
2. Therefore, it follows that we may write:

H̄t(δxt) + Cx
t

¯̄St =
t−1∑
τ=0

qt,τ (δx
l
τ )

2 +O(ε3), (A.5)

for suitably defined coefficients qt,τ . Therefore, it follows that

δJ2 =
T∑
t=1

H̄t(δxt) + Cx
t

¯̄St

=
T∑
τ=0

q̄T,τ (δx
l
τ )

2 +O(ε3), (A.6)

for suitably defined q̄T,τ . Therefore:

δJ1δJ2 =
∑
t,τ

Cx
τ (δxl

τ )q̄T,t(δx
l
t)

2 +O(ε4). (A.7)

Taking expectations on both sides:

E[δJ1δJ2] =
∑
t,τ

Cx
τ q̄T,tE[δxl

τ (δx
l
t)

2] +O(ε4). (A.8)
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Break δxl
t = (δxl

t − δxl
τ ) + δxl

τ , assuming τ < t. Then, it follows that:

E[δxl
τ (δx

l
t)

2] = E[δxl
τ (δx

l
t − δxl

τ )
2] + E[(δxl

τ )
3]

+2E[(δxl
t − δxl

τ )(δx
l
τ )

2]

= E[(δxl
τ )

3], (A.9)

where the first and last terms in the first equality drop out due to the independence of the increment

(δxl
t − δxl

τ ) from δxl
τ , and the fact that E[δxl

t − δxl
τ ] = 0 and E[δxl

τ ] = 0. Since δxl
τ is the state

of the linear system δxt+1 = Ātδx
l
t + εwt, it may again be shown that:

E[δxlτ ]
3 =

∑
s1,s2,s3

Φτ,s1Φτ,s2Φτ,s3E[ws1ws2ws3 ], (A.10)

where Φt,τ represents the state transitions operator between times τ and t, and follows from

the closed loop dynamics. Now, due to the independence of the noise terms wt, it follows that

E[ws1ws2ws3 ] = 0 regardless of s1, s2, s3.

An analogous argument as above can be repeated for the case when τ > t. Therefore, it follows

that E[δJ1δJ2] = O(ε4).

A.0.3 DDPG Algorithm

Deep Deterministic Policy Gradient (DDPG) is a policy-gradient based off-policy reinforce-

ment learning algorithm that operates in continuous state and action spaces. It relies on two func-

tion approximation networks one each for the actor and the critic. The critic network estimates

the Q(s, a) value given the state and the action taken, while the actor network engenders a policy

given the current state. Neural networks are employed to represent the networks.

The off-policy characteristic of the algorithm employs a separate behavioural policy by intro-

ducing additive noise to the policy output obtained from the actor network. The critic network

minimizes loss based on the temporal-difference (TD) error and the actor network uses the deter-

ministic policy gradient theorem to update its policy gradient as shown below:
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Table A.1: D2C parameters

System Std of Stepsize Cost parameters*

noise
Q Qt R

Inverted 0.0005 0.00018 0 700 0
Pendulum
Cart pole 0.07 0.005 10 (200, 100, 0

500, 100)
3-link 0.2 0.022 2.5 2000 0.001

Swimmer
6-link 0.2 0.018 2 200 0.001

Swimmer
Fish 0.05 0.0004 0.3 260 0.1

* Q is the incremental cost matrix, Qt is the terminal cost matrix and
R is the control cost matrix, all of which are diagonal matrices. If
the diagonal elements have the same value, only one of them is pre-
sented in the table, otherwise all diagonal value are presented. The
cost function structure is specified in the openloop training code on
our github repository.

Critic update by minimizing the loss:

L =
1

N
Σi(yi −Q(si, ai|θQ))2

Actor policy gradient update:

∇θµ ≈
1

N
Σi∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

The actor and the critic networks consists of two hidden layers with the first layer containing

400 (’relu’ activated) units followed by the second layer containing 300 (’relu’ activated) units.

The output layer of the actor network has the number of (’tanh’ activated) units equal to that of the

number of actions in the action space.

Target networks one each for the actor and the critic are employed for a gradual update of

network parameters, thereby reducing the oscillations and a better training stability. The target

networks are updated at τ = 0.001. Experience replay is another technique that improves the
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stability of training by training the network with a batch of randomized data samples from its

experience. We have used a batch size of 32 for the inverted pendulum and the cartpole examples,

whereas it is 64 for the rest. Finally, the networks are compiled using Adams’ optimizer with a

learning rate of 0.001.

To account for state-space exploration, the behavioural policy consists of an off-policy term

arising from a random process. We obtain discrete samples from Ornstein-Uhlenbeck (OU) process

to generate noise as followed in the original DDPG method. The OU process has mean-reverting

property and produces temporally correlated noise samples as follows:

dxt = Θ(µ− xt)dt+ σdW

where Θ indicates how fast the process reverts to mean, µ is the equilibrium or the mean value and

σ corresponds to the degree of volatility of the process. Θ is set to 0.15, µ to 0 and σ is annealed

from 0.35 to 0.05 over the training process.
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