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ABSTRACT 

 

The white-tailed deer (WTD) breeding and hunting industry is a large and 

growing industry with an economic impact of over a billion dollars in Texas alone. The 

increasing number of deer in captive breeding facilities results in increased veterinary 

drug use on deer. However, drugs can act differently even among similar species so 

further information on drug use in deer would help managers and veterinarians make 

more sound decisions when using drugs in deer. Two examples of novel extra-label drug 

use in WTD are studied, evaluated, and explained. Tulathromycin is a macrolide 

antibiotic used commonly to treat livestock, including deer, with bacterial respiratory 

infections, often delivered subcutaneous (SQ) or intramuscular (IM). Since it is 

logistically difficult to put hands on a WTD, even in most captive breeding situations, a 

study was conducted to evaluated tulathromycin as a candidate for remote-delivery dart 

(RDD) in WTD. Twelve WTD were darted with CO2 powered RDD projectors to 

administer 2.5 mg/kg of tulathromycin IM. Blood was then collected nine times over 30 

days and the serum concentration for each sample was quantified in order to determine 

the pharmacokinetics of tulathromycin in each deer. Overall tulathromycin was poorly 

absorbed, reached low mean peak concentrations, had a high bioavailability, and an 

extremely long elimination half-life. The results indicated that darting with 

tulathromycin is an unpredictable means of administration and may not reach therapeutic 

concentrations. Flunixin meglumine (FM), a non-steroidal anti-inflammatory drug 

(NSAID), was also evaluated for extra-label use in WTD in a case study with 72 WTD 
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in South Texas. Texas Parks and Wildlife has seen anecdotal evidence of FM effectively 

reducing the body temperature of hyperthermic animals during game captures. Three of 

the deer in the case study became severely hyperthermic and the FM was tested in 

conjunction with cold water enemas. With over half of the 72 deer being hyperthermic, 

and three severely hyperthermic, a 100% post 30-day survival is strong evidence of the 

effect of FM. 
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CHAPTER I  

INTRODUCTION 

The White-Tailed Deer Breeding Industry 

The white-tailed deer (WTD) (Odocoileus virginianus) breeding and hunting 

industry is a rapidly growing economic portion of the agriculture industry in Texas and 

the United States (Anderson et al., 2008; Earle, 2016; NADeFA, 2019). This is most 

likely correlated to the fact that the WTD are the number one sought after big game 

animal in North America, with over 5.6 million WTD harvested across the U.S. and over 

722,000 harvested in Texas in the 2016-17 hunting season alone (QDMA, 2018). This is 

part of the $380 million dollar industry in Texas that contributes over a billion dollars of 

economic impacts within the state (Anderson et al., 2008). The increasing number of 

captive WTD means increased handling and an increased use of veterinary drug on 

WTD. This is nearly always done extra-label by utilizing information about a drug from 

similar species in order to make assumptions on dosing. When handling free range or 

captive game animals like WTD, there is an increased chance of trauma, stress, and 

related pathologies (ie. CM, hyperthermia) (Berringer et al., 1996; Kreeger and Arnemo, 

2018). It is also well understood that increased population density, as in the case of 

WTD breeding pens, amplifies the potential for the spread of contagious infections. 

Coincidentally, Haigh et al. (2005) found that trauma and bacterial infections 

(necrobacillosis and pneumonia) are the leading causes of morbidity and mortality in 

captive WTD. 
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Stress-Induced Hyperthermia  

When capturing wildlife, two of the biggest concerns are arguably stress-induced 

hyperthermia and capture myopathy (CM). Hyperthermia is a major concern when 

capturing and immobilizing wildlife because of the potential neurological effects and 

associated morbidity and mortality. When body temperature increases, so does metabolic 

oxygen demand of the animal, which can lead to hypoxemia if ventilation does not 

sufficiently increase (Caulkett and Arnemo, 2014). When mammals become severely 

hyperthermic, the blood-brain barrier can break down, causing subsequent cephalic 

edema (Sharma and Hoopes, 2003). Heat-damaged cells also begin leaking potassium 

and damaged proteins into the interstitial space which can overwork the liver, clog 

glomeruli in the kidneys, and cause hyperkalemia resulting in irreversible damage 

(Cooper, 1996). Temperatures greater than 2°C (3.6°F) above normal body temperatures 

(BT) are considered hyperthermic, which in ruminants is assumed to be approximately 

38.5°C (101.4°F); 40.6°C (105°F) is considered the threshold for hyperthermia in 

cervids (Kreeger and Arnermo, 2018; Wolf et al., 2004).  

Contributing Factors 

Factors frequently cited as contributors to hyperthermia when capturing wildlife 

include, but are not limited to, the drug combination used for immobilization, high 

ambient temperatures (AT) during the capture, the method of capture used, the amount 

of energy physically exerted by the animal during the capture event, the stress placed on 

the animal, and the onset of CM.  
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Certain immobilizing drugs can inhibit or alter thermoregulation and cause 

respiratory depression, which increases the potential for hypoxia and exacerbates 

thermoregulation issues in animals that rely on panting as ungulates do (Kock and 

Burroughs, 2012; Kreeger and Arnemo, 2018; Young, 1979). The effect of AT on 

capture-induced hyperthermia is relatively insignificant at mild AT’s (<24°C/<75°F) 

(Beringer et al. 1996). However, as AT’s increase, capture-induced hyperthermia and 

CM occurs more frequently so it is recommended that capture events take place in 

temperatures less than 25°C (77°F) to reduce the risk (Beringer et al., 1996; Ko and 

Krimins, 2014; Kock and Burroughs, 2012; Kreeger and Arnemo, 2018; Paterson, 2014). 

The method of capture goes more along with the amount of physical exertion and stress 

that the animal is put through during the capture. However, chemical immobilization as a 

method of capture (as stated earlier) can also inhibit normal physiological 

thermoregulation (Kreeger and Arnemo, 2018).  

The stress and physical exertion an animal endures during a capture event are 

most likely to impact the rate of hyperthermia and CM (Beringer et al., 1996; Kreeger 

and Arnemo, 2018). When muscle fibers contract and energy is expended, heat is 

produced. If a wildlife capture event induces a large amount of physical exertion, long 

chases, or prolonged struggling, BT will increase (Beringer et al., 1996; Meyer et al., 

2008). The link between hyperthermia and CM is incompletely understood (Williams 

and Thorne, 1996). However, anecdotal evidence suggests that CM exacerbates 

hyperthermia and vice versa (Kreeger and Arnemo, 2018; Paterson, 2014; Williams and 

Thorne, 1996). 
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Capture Myopathy and the Relation to Hyperthermia 

CM is a non-infectious disease induced by prolonged psychological and 

physiological stress and extended periods of physical exertion that results in muscle 

necrosis and occasionally organ failure (Kreeger and Arnemo, 2018; Paterson, 2014). 

Other names for the condition are: exertional myopathy, exertional rhabdomyolysis, 

transport myopathy, capture disease, cramp, overstraining disease, myodegeneration and 

spastic paresis due to the nature of the disease and the situations in which it is most 

commonly associated. CM can occur in most animal species but ungulates, especially 

WTD, seem to be more susceptible than other mammals (Beringer et al., 1996; Paterson, 

2014; Williams and Thorne, 1996). Deaths from CM can occur within hours of a capture 

event and as far out as a month. The pathogenesis of the disease is not well understood 

according to Kreeger and Arnemo (2018). However, there are certain commonalities in 

CM cases including myoglobinuria from skeletal muscle lysis and subsequent 

myoglobin release, extremely elevated levels of creatine kinase, and occasionally organ 

failure in chronic cases (Paterson, 2014). Skeletal muscle degradation is most likely due 

to sympathetically-induced overexertion during extreme stress, which increases BT and 

subsequently causes further harm to the organs and muscles. There is no cure for CM 

and often, the damages that result from of severe hyperthermia and CM are irreversible. 

White muscle syndrome (WMS) is another non-infectious disease that appears 

similar to capture myopathy during post-mortem analyses because of the pathological 

changes to the muscles in the diseased animals (Kreeger and Arnemo, 2018; Paterson, 

2014). However, the source of the diseased state is nutritional rather than stress related. 
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WMS occurs because of a deficiency of the trace element selenium, but it is more 

common in avian species than ruminants (Williams and Thorne, 1996; Ohlendorf, 1996). 

Treatment  

Since both CM and hyperthermia are associated with elevated BT, constant 

temperature monitoring is important and thresholds should be established before the 

capture so proper treatment can take place. Treatment for hyperthermia and CM are 

essentially palliative and restorative with a focus on keeping the animal calm and 

comfortable while restoring physiological norm.  

Hyperthermia can occur for many reasons, but the commonality in cases is the 

thermoregulatory center of the brain, the hypothalamus. Prostaglandins are released 

during cellular damage, regardless of cause, which cross the blood-brain barrier (BBB) 

and bind to the hypothalamus. This triggers a fever-like immunological response and 

allows the BT to rise. When stress and injury occur during capture, prostaglandins are 

released, potentially exacerbating capture-induced hyperthermia.  

Flunixin meglumine (FM) (Banamine®) is a nonsteroidal anti-inflammatory drug 

(NSAID) associated with the inhibition of prostaglandin synthesis. There is some 

physiological argument that stress hyperthermia works similar to that of a fever; where 

BT increases through a negative feed-back system to a higher set-point by 

thermogenesis, thermo-conservation, and decreased heat dissipation (Briese and 

Cabanac, 1991). A study in dairy cattle conducted by Soto et al. (2003) showed that 

inhibition of prostaglandin synthesis with FM did not actually reduce BT. Furthermore, a 

similar study in broilers found that there was no statistical difference in blood 
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concentration of prostaglandin when treated with FM (Oliver and Birrenkott 1982). The 

broiler study did, however, find that treatment of FM significantly increased survival of 

hyperthermia in broilers compared to those that did not receive treatment. Little is 

known about the exact physiological pathways in which FM reduces BT, but anecdotal 

evidence supports its use in treating hyperthermia and increasing survival. Texas Parks 

and Wildlife Department (TPWD) found that the use of FM for pronghorn capture in the 

Texas Panhandle for relocation to the Trans-Pecos Region of Texas not only reduced 

BT, but also had a much better survival rate than the pronghorn released without the 

treatment (B. Dittmar, pers. comm). He further explained that FM is administered to 

bighorn sheep during capture events in the Black Gap WMA in western Texas for 

effective BT reduction. 

Drug Delivery Methods 

When the label of an approved drug is created, it includes a specified route of 

administration (ROA). The ROA of a drug is important because different routes and 

delivery methods can significantly impact the pharmacokinetics (PK) of a drug. PK is 

how a drug moves through the body in terms of absorption, distribution, metabolism, 

and elimination. The ROA can also sometimes alter the pharmacodynamics (PD) of a 

drug in a body. PD is the effect the drug on a body; there must be the appropriate 

receptors in order for a drug to bring about an effect in a body (Sherwood and Ward, 

2019).  

There are numerous routes in which a drug can be administered to a body. These 

include, but are not limited to: oral or per oz (PO), intravenous (IV), intramuscular (IM), 
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subcutaneous (SQ), transdermal (TD), inhalation, etc. (Sherwood and Ward, 2019). 

When administering drugs to wildlife, IM, SQ, and IV are the most common methods. 

IV is normally only given when a rapid response is desired because the absorption rate 

of IV is essentially 100% and IV requires a hand injection to insure the placement of the 

needle. IM is frequently the ROA when delivering chemical immobilization drugs such 

as those discussed previously and it is often done so via remote-delivered dart (RDD) IM 

injection (Kreeger and Arnemo, 2018). Antibiotics can, in some cases, be given orally 

over feed but are often administered with a hand injection SQ or IM, with animals rarely 

dosed via RDD projector. 

Remote-Delivered Dart Injection 

Often times, captive deer breeding ranches do not have handling facilities to 

work deer and rely on chemical immobilization to conduct “hands-on” work. These 

chemical immobilants are often delivered IM via RDD from a dart gun. Chemical 

immobilization drugs are not the only drugs given with IM darts though; it is possible to 

give vaccines, antibiotics, and other drugs as well. The equipment used to project these 

flying syringes varies, as well as the darts, are available on the market (Dan Inject, 2016; 

Pneu Dart, 2019).  

Dart projectors can be complex rifle or pistol models powered by .22 caliber rifle 

blanks or CO2 cartages, or even as simple as blow guns powered by a deep forceful 

breath (Dan Inject, 2016; Kreeger and Arnemo, 2018; Pneu-Dart, 2019). All models 

have their pros and cons. Rifle models powered by .22 caliber blank shells with modified 

barrels are normally louder than CO2 powered, and though blanks with varying amounts 
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of gun-powder exist for different range shots, close shots are difficult and prone to 

bruising and even fractured bone from high dart impact velocities (Coetsee et al., 2018; 

Jessup, 2001; Kreeger and Arnemo, 2018; Rivera et al., 2019). This does however mean 

longer shots are possible, with some veterinarians comfortably shooting at 120+ m 

distances (D. Pretorius, pers. comm.) Dart projectors such as the X-Caliber from 

PneuDart cannot accurately shoot as far but have bleed valves in order to set the air 

pressure exact for each shot based on dart size and distance to the target. These CO2 

powered dart guns are ideal for close range shooting such as shots taken in deer breeding 

pens. They are also generally quieter which is highly desirable when darting around 

multiple animals in small spaces to reduce stress and panic. 

There are also a multitude of various syringe darts with different volume 

capacities, needle gages and lengths, barbed or barbless needles, end- or side-port, 

inertia driven injection or charged injection, etc. (Dan Inject, 2016; Kreeger and 

Arnemo, 2018; Pneu-Dart, 2019). Different darts are ideal for different situations. If a 

slow delivery is desired, a side port needle with an inertia driven delivery mechanism 

would be favorable to an end-port needle with a charge aided delivery (Cattet et al., 

2006). If longer shots are to be taken, smaller mass darts are favorable because they are 

more accurate and precise than larger darts (Cattet et al., 2006; Jessup, 2001; D. 

Pretorius, pers. comm.). The barbed or collared darts on the market may be selected to 

ensure a dart stays in the animal once it hits (for marking purposed when darting large 

numbers of animals and for validation of dose). The dart volume and needle size should 

be chosen based on the animal and drug that is being delivered. The volume of the dart 
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should be completely or nearly completely filled so there is no leakage from the dart or 

altered flight from air-spaces (Kreeger and Arnemo, 2016; Walter Cook, personal 

communication).  

Effect of Darting on Pharmacokinetics 

The injury that is accompanied by a RDD IM injection is dependent on the 

projector and dart used, and can alter the PK of a drug (Cattet et al., 2006; Coetzee et al., 

2018; Rivera et al. 2019). It has been scientifically shown that dart wounds can be 2x to 

3x the length of the dart needle, especially with rapid-injection dart with end-port 

needles (Cattet et al., 2006). For this reason, needle length is important and varies across 

species. Larger darts tend to cause more traumatic injury, even fracturing bone, when 

compared to smaller darts, which can likely be attributed to the kinetic energy traveling 

with an item of larger mass (Cattet et al., 2006; Jessup, 2001; D. Pretorius, pers. comm.). 

The introduction of foreign contaminated material is also consistently seen in dart 

wounds of bigger gauge needles which can result in infection and even mortality (Cattet 

et al., 2006). Barbed darts seem to cause more tearing when removed than barbless darts, 

however the barb opening up the dart wound to the external environment decreases the 

potential for anaerobic infections that are commonly associated with puncture wounds 

(W. Cook, pers. comm.). 

The trauma that is caused from the impact and injection from the dart generally 

results in bruising and localized inflammation (Coetzee et al., 2018). The swelling is 

caused by a slight increase in blood flow to the area with high densities of neutrophils 

coping with the damaged tissue and cells. This congregation of blood in the injured area 
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will in theory slow the absorption of the drug into circulation. If the absorption rate of 

the drug is altered enough and the body begins to metabolize and eliminate the drug at a 

fast-enough rate, the drug could begin to be cleared before fully absorbed (Coetzee et al., 

2018). This could potentially decrease the drug peak concentration (Cmax) and possibly 

result in plasma or tissue concentrations that are below the minimum inhibitory 

concentration (MIC) required to combat pathogens, in the case of antimicrobials. 

Dart placement on an animal can also drastically affect the PK of a drug (Kreeger 

and Arnemo, 2018). The ideal shot location for an IM RDD is in a major muscle group 

such as the shoulder, rump, or neck for rapid absorption (Kreeger and Arnemo, 2018). If 

a dart is injected into a really fatty area such as the tail-head, absorption can be 

dramatically reduced. If a dart ends up in coming in contact with bone, it could result in 

a plugged needle and either an incomplete or non-existent dose of drug, prolonging any 

effects. There are also obvious issues that accompany extremely poorly placed shots 

(head, distal limb, etc.), however the trauma that results in these situations is normally of 

greater concern that drug dose (or lack there-of). 

There is also the possibility that a RDD fails on impact either by bouncing of the 

animal, breaking on impact, or getting clogged before delivering a complete dose. This 

dart failure was shown by Coetzee et al. (2018) and Rivera et al. (2019) when 4 and 3 of 

15 RDD darts from an air-powered projector failed to deliver a full dose. This can be 

problematic in that it is sometimes difficult to tell when dart failure occurs. Furthermore, 

though the altered concentrations are a misrepresentation of a fully functioning IM darts 
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on a drug’s PK, the lower systemic concentrations of drugs that result from incomplete 

dosing depict the true efficacy of the RDD’s as a delivery method.  

Tulathromycin (Draxxin) 

Tulathromycin (TUL) is a semi-synthetic, macrolide antibiotic from the subclass 

triamilide (Evans, 2005; Papich, 2016). The trade name is Draxxin, produced by Zoetis 

(Kalamazoo MI) mostly for the FDA approved treatment of cattle and domesticated pigs 

infected with respiratory infection, cattle with interdigital necrobacillosis, and cattle with 

keratoconjunctivitis (Pfizer, 2005; Villarino et al., 2013). Macrolides are particularly 

useful at treating lower respiratory infections because of their affinity for pleural tissue 

and tendencies to accumulate in such tissue (Evans, 2005; Frank et al., 1992; Papich, 

2016; Villarino et al., 2013). However, TUL is often used off-label for other species and 

treatment protocols foreign to those described on the approved label use. Through 

experimental trials, TUL has been shown to be efficacious in the approved livestock 

(swine and cattle) against pathogens such as M. haemolytica, P. multocida, T. pyogenes, 

F. necrophorum, Histophilus somni, Actinobacillus pleuropneumoniae, Bordetella 

bronchisepticum, and Mycoplasma spp. (Pfizer, 2005). TUL has also been shown to be 

efficacious in vitro and in several other animal species against dozens of various 

pathogens (Carlson et al., 2010; Silva et al., 2018; Venner et al., 2007; Villarino et al., 

2015). 

Many of the pathogens significant in livestock respiratory diseases are also 

important causative agents of respiratory disease in cervids such as WTD (Dyer et al., 

2004; Haigh et al., 2005; Palmer, 1999; Tell et al., 2011). This means that many of the 
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drugs used to combat these pathogens as well as information about effective treatments 

can also be extrapolated to use in WTD.  

Bronchopneumonia is, as explained prior, a serious source of morbidity and 

mortality of captive WTD in North America (Haigh et al., 2005; Hattel et al., 2004). M. 

haemolytica, T. pyogenes, and P. multocida, three of the most commonly identified 

pathogens in WTD pneumonia, are all susceptible to and frequently treated by 

veterinarians with TUL (Haigh et al., 2005; Palmer, 1999; Tell et al., 2011). There has 

been some emergence of antimicrobial resistance to macrolides, including TUL; though 

it seems to be minimal in most cases, there are increasing reports (Alexander et al., 

2013; Desmolaize et al., 2011; Hariharan et al., 2016; Kadlec et al., 2011; Olsen et al., 

2013; Rajamanickam et al., 2019; Timsit et al., 2017; Woolems et al., 2018). 

Methods of Delivering Tulathromycin 

TUL’s approved label ROA include IM in domesticated swine and SQ in cattle 

via hand injection (Pfizer, 2005). However, alternative routes and delivery methods can 

be utilized extra-label while still providing at least some degree of protection against 

foreign microbials. Some proposed extra-label alternatives to the approved ROA’s 

include oral via gavage, IV hand injection, and IM via RDD injection and the approved 

ROA’s in alternative species (Abo-El-Sooud et al., Alexander et al., 2018; 2012; Amera 

et al., 2012; Angen et al., 2008; Bachtold et al., 2015a,b; Clothier et al., 2010;  Coetzee 

et al., 2018; Cook et al., 2016; Gáler et al., 2004; Grismer et al., 2013; Huang et al., 

2012; Mackay et al., 2019; Rivera et al., 2019; Romanet et al., 2012; Scheuch et al., 

2007; Tohamy et al., 2011; Wang et al., 2011; Yang et al., 2013; Venner et al., 2010; 
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Zhao et al., 2018). Although, technically the use of a drug in any species other than those 

approved, for any reason besides the intended approved purposes, and by other ROA’s is 

considered extra-label (e-CFR, 2019).  

The serum Cmax following an IM dose of TUL ranges from as low as 240 ng/mL 

and 330 ng/mL in foals and Holstein calves, respectively, with a 2.5 mg/kg dose, to as 

high as 1080 ng/mL in guinea pigs dosed with only 1 mg/kg (Venner et al., 2010; Zhao 

et al., 2018). IM TUL serum Cmax values tended to be as good or better than the FDA 

approved SQ cattle results (Abo-El-Sooud et al., 2012; Amer et al., 2012; Huang et al. 

2012; Venner et al., 2010; Zhao et al., 2018). Even when the IM injection comes from a 

RDD, the PK was relatively unaffected in cattle (Coetzee et al., 2018; Rivera et al., 

2019). 

 There were, however, indications of bruising, stress, and inflammation following 

a dart injection of TUL such as increases in creatine kinase in response to damaged 

tissues compared to other ROA’s (Coetzee et al., 2018; Rivera et al., 2019). There was 

also a notable increase in cortisol shortly after drug administration with RDD compared 

to SQ injections indicating acute stress (Coetzee et al., 2018). Even with alterations in 

the PK and slight decreases in the concentration of tulathromycin, a comparative study 

showed the Cmax following administration with RDD to be very comparable to, and even 

slightly higher than on average, administration via SQ (Rivera et al., 2019). 

Regardless of the ROA, TUL has a very long half-life (t1/2) compared to other 

antimicrobials as well as other macrolides (Foster et al., 2016; Villarino et al., 2013). In 

its approved label uses, the t1/2 of TUL in bovine and swine is 54-80 hrs and 90-158 hrs, 
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respectively (Gáler et al., 2004; Huang et al., 2012; Papich, 2016). Two wild ruminants 

observed had longer serum t1/2 of TUL than the studies over domesticated animals 

(Bachtold et al., 2015a,b). WTD resulted in a terminal t1/2 of TUL ranging from 151-454 

hrs; the average was approximately 281 hrs per t1/2 (Bachtold et al., 2015a). 

Besides dose, time, and ROA, other factors can influence the PK of a drug. Mzyk 

et al. (2018) demonstrated that age can be an impactful variable in the PK of a drug. This 

is likely due to the direct relationship between age and the increase in body fat content. 

Continuously, a similar argument could likely be made to explain why certain animal 

species, even between ruminants, metabolize and eliminate TUL at different rates. 

Pregnancy did not seem to dramatically affect the t1/2 of TUL considering sheep 

pregnant during treatment displayed t1/2 consistent with other ruminants (110.8 hrs) 

(Mackay et al., 2019). 

The t1/2 of a drug in tissue, especially in the case of macrolides such as TUL in 

lung tissue, can often be substantially greater than the plasma t1/2, lasting upwards of 6 to 

8 days (Papich, 2016). This is due to a reduced amount of TUL in the blood steam; the 

same blood stream that is responsible for transporting chemicals to the liver for 

metabolization and transporting metabolites to the kidney to be filtered as urine. The 

delayed t1/2 requires longer established withdrawal periods (WP) to insure the 

elimination of all drug residues before human consumption. 

The area under the serum or tissue concentration-time curve (AUC) of TUL is 

what is used to identify the bioavailability of the drug following a particular ROA. 

Bioavailability is defined as the ratio of active drug in the system to the amount of drug 
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delivered in the dose (Trepanier, 2013). TUL generally has an extremely high 

bioavailability (Abo-El-Sooud et al., 2012; Amera et al., 2012; Pfizer, 2005). WTD 

seemed to struggle with bioavailability of TUL following a SQ injection, harboring a 

low mean serum AUC (Bachtold et al., 2015a). Furthermore, Wang et al. (2011) found 

that bioavailability of TUL given by oral dose via gavage in swine was significantly 

lower (51.1±10.2%) than other IV and IM studies. 

Mechanisms of Action (MOA)  

TUL, being a triamilide macrolide, is slightly lipophilic and tends to have a 

higher affinity toward lipid-based tissues including body fat and lungs especially 

(Carbon, 1998; Evans, 2005; Papich, 2016; Villarino et al., 2013). Since the drug also 

contains a slight positive charge, it is most efficacious in an environment that is neutral 

to very slightly basic in pH (~7.4–8.0) (Evans, 2005). These characteristics of TUL 

enable it to be very effective against gram-negative bacteria (Hariharam et al., 2016; 

Papich, 2016; Song et al., 2016). TUL is considered to be a bacteriostatic antimicrobial, 

meaning it inhibits further growth of bacteria in order for the natural immune system to 

catch up rather than killing the bacteria (Maglio et al., 2003). That does not mean, 

however that TUL cannot have bactericidal (“bacteria killing”) effect; in fact, at high 

enough doses, TUL can act as a bactericidal antimicrobial (Maglio et al., 2003). Like 

many other macrolides, TUL binds to the bacteria’s ribosomal subunits, generally at the 

ribosomal 50s subunit, which inhibits the production of bacterial proteins and retards 

bacterial growth (Papich, 2016). TUL is a bit unique in that its’ efficacy is considered 

both time-dependent and concentration-dependent (Frank et al., 1992; Maglio et al., 
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2003). This means that the longer the drug interacts with bacteria the more effective it is 

and the higher the concentration of the drug the more effective it is. There is also some 

speculation that the macrolides, including TUL as well as other drugs with similar 

MOA’s, interact with the ribosomal 23S subunit, which is why mutations in genes 

associated with the 23S ribosomal binding site mutations in bacteria are correlated multi-

drug resistance (MDR) (Olsen et al., 2014).  

There has also been shown in multiple studies, the anti-inflammatory effect TUL 

has on an infection (Fischer et al., 2010, 2014; Rajamanickam et al., 2019). TUL is 

absorbed into the blood stream and makes its way into neutrophils and macrophages, 

essentially using these as transport vessels to the infection site (Frank et al., 1992; 

Kadlec et al., 2011). Once at the infection site, aside from its antimicrobial effects, TUL 

reduces inflammation through increased leukocyte apoptosis and a reduction in two key 

proinflammatory precursors, leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) 

(Fischer et al., 2010, 2014). Both work by inducing the expression of multiple cytokines, 

including interleukin-8 (IL8) which is a strong chemoattractant for white-blood cells. 

The inhibition of LTB4 is at least in part, caused by TUL’s effect on phospholipases A2 

(PLA2) and D (PLD), which were correlatively reduced with the introduction of TUL 

(Fischer et al., 2014). PLA2 plays an important role in the release of arachidonic acid 

that lead to the production of immunomodulators such as leukotrienes, prostaglandins, 

and lipoxins; of which, a notable increase in lipoxin 4 (LX4) was also seen in association 

with TUL (Fischer et al., 2014). The apoptotic reaction is enzyme-dependent on caspase-

3, which induces apoptosis in cells through an extrinsic death receptor Fas pathway or 
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intrinsic mitochondrial pathway; the exact pathway activated by TUL is unknown 

(Fischer et al., 2010). There was also in vitro evidence of TUL dependent apoptosis of 

neutrophils, however there was no apoptotic effect in fibroblasts, epithelial, or 

endothelial cells (Fischer et al., 2010). Drugs used for treatments similar to TUL, such as 

penicillin G, oxytetracycline, and ceftiofur, did not induce any apoptosis in neutrophils 

(Fischer et al., 2010). Apoptosis is intentionally programmed cell death while necrosis is 

cellular death caused by a diseased state (Poon et al., 2014). Prolonged inflammation can 

be damaging to tissues so the ability for the body to induce cellular death is pertinent in 

alleviating inflammation and restoring the body to homeostasis (Poon et al., 2014). 

 

Maximum Residue Limits and Withdrawal Periods 

A residue limit is the maximum amount of chemical measured in parts per 

million (ppm) that is safe for human consumption (Cattet, 2003). For TUL, the residue 

limit is 5.5 ppm (Cook et al., 2016). Using the label recommended dose and ROA in 

cattle and swine, the WP established were 18 days in cattle and 5 days in pigs in order 

for the injection site to drop below the legal residue limit (Pfizer, 2005). When measured 

in WTD, Cook et al. (2016) found that although TUL was detectable at 31 days post-

injection following IM injection, the residue level was below the legal limit at the first 

blood draw on day 11 post-injection. SQ injections of TUL in WTD resulted in lung 

tissue residues 56 days post injection (Bachtold et al., 2015a). 
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Conclusion of Literature Review 

With the steadily increasing number of WTD breeders in Texas and the United 

Stated, there is a corelated increase in the use of veterinary drugs on deer in order to 

comply with animal husbandry laws and in attempt to protect economic investments 

(Earle, 2016; Anderson et al., 2008; QDMA, 2018). Unfortunately, it is often logistically 

difficult to administer hand-delivered injections, especially to WTD on ranches that lack 

restraint facilities (Coetzee et al., 2018). Capture of the animals, frequently by using 

chemical immobilizing drugs from a RDD, must otherwise take place to handle them 

which adds unnecessary stress, exacerbates the potential for injury, and is significantly 

more expensive. These cons can be minimized through monitoring and often the issues 

stemming from the immobilization cocktail and/or capturing event can be alleviated with 

other pharmaceuticals and precautionary techniques, however the risks are still much 

greater when an animal is captured. This leads WTD managers and veterinarians to 

deliver drugs extra-label legally without knowing the true consequences of RDD on the 

PK of the drug in the animals. Based on information from several studies, it is 

understood that there is some alteration in the absorption and subsequent PK of drugs 

following RDD administration, however it varies from drug to drug (Cattet et al., 2006; 

Coetzee et al., 2018; Rivera et al., 2019; V. Fajt, pers. comm.). Being as TUL is a 

frequently used veterinary drug to treat bacterial pneumonia, the fact that pneumonia is 

one of the leading causes of morbidity and mortality among captive WTD, and that TUL 

has been shown to be efficacious when administered via IM RDD in other ruminants, the 
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validation of RDD as a viable means of delivery of TUL for WTD seems to be a starting 

point to fill the knowledge gap. 
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CHAPTER II  

TREATMENT OF SEVERE HYPERTHERMIA IN CAPTIVE WHITE-TAILED 

DEER (ODOCOILEUS VIRGINIANUS) WITH FLUNIXIN MEGLUMINE 

Introduction 

Hyperthermia is a major concern when capturing and immobilizing wildlife 

because of the potential neurological effects and associated morbidity and mortality. 

When BT increases, so does metabolic oxygen demand of the animal, which can lead to 

hypoxemia if ventilation does not sufficiently increase (Caulkett and Arnemo, 2013; 

Seal and Bush. 1987). When mammals become severely hyperthermic, the BBB can 

break down, causing subsequent cephalic edema (Sharma and Hoopes, 2003). Heat-

damaged cells also begin leaking potassium and damaged proteins into the interstitial 

space which can overwork the liver, clog glomeruli in the kidneys, and cause 

hyperkalemia resulting in irreversible damage (Cooper, 1996). BT greater than 2°C 

(3.6°F) above normal BT are considered hyperthermic, which mean approximately 

40.6°C (105°F) is considered the threshold for hyperthermia in cervids (Kreeger and 

Arnemo, 2018; Wolfe et al, 2004). Factors frequently cited as contributors to 

hyperthermia when capturing wildlife include, but are not limited to the drugs used 

during immobilization, the AT during captures, the methods of capture used and the 

subsequent stress and exertion caused on the animals, the onset of exertional myopathy 

(CM), and the species captured (Beringer et al., 1996; Ko and Krimins, 2014; Kock et 

al., 1987; Kock and Burroughs, 2012; Kreeger and Arnemo, 2018; Meyer et al., 2008; 
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Patterson, 2014; Williams and Thorne, 1986; Young, 1979). The link between capture 

myopathy and capture induced hyperthermia is incompletely known, however there is 

clear evidence that one exacerbates the other and vice versa, with no cure known for 

resulting damage. 

When immobilizing wildlife, constant BT monitoring is important and thresholds 

should be established before the capture so proper treatment can take place when BT rise 

to unacceptable levels. Treatment for hyperthermia and CM are essentially palliative and 

restorative with a focus on keeping the animal calm and comfortable while restoring 

physiological norm. The case report that follows describes an apparently effective 

treatment protocol for the control of capture-induced hyperthermia in three WTD on the 

Texas-Mexico Border. 

Case Reports 

On the 14th and 15th of May 2019 near Zepata, Texas, 72 captive WTD were 

captured for regulatory ante-mortem Chronic Wasting Disease (CWD) surveillance. The 

capture event took place between the hours of 7:00pm (5/14/19) and 4:00am (5/15/19) 

using chemical immobilization via remote delivered dart. Weather conditions during the 

capture were partly cloudy, no precipitation, muggy (humidity greater than 70%), and 

AT was in the range of 22.2°C to 31.6°C (72°F to 89°F) (WeatherSpark.com, 2019). The 

WTD surveyed consisted of bucks and does, all intact adults (>16 months), which were 

darted from the ground in their respective breeding pens using a Dan-Inject .22 blank 

powered rifle, modified to accept Pnue-Dart darts. The bucks and does were darted with 

2.0mL and 1.5mL of BAM® (Wildlife Pharmaceuticals, Inc., Windsor CO) respectively; 
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a premixed immobilization cocktail of butorphanol at 27.3 mg/mL (a mild opioid), 

azaperone at 9.1 mg/mL (a neuroleptic tranquilizer), and medetomidine at 10.9 mg/mL 

(an alpha-2 agonist). Animals were immobilized in groups of three to seven (regardless 

of sex and age), loaded on a flat-bed trailer and transported approximately 400m to the 

sampling station. 

Because these deer were being sampled for CWD surveillance to meet regulatory 

requirements, TPWD staff assisted by checking official unique identification numbers, 

tattoos, and owner ear tags to verify that 100% of the age-eligible WTD were tested. 

Tonsil biopsies were taken from every animal. WTD were immobilized for longer than 

ideal periods of time, sometimes upwards of 50 minutes, due to the nature of the 

surveillance program.  

Immediately upon arriving at the surveillance station, BT and respiration rate 

were evaluated and monitored approximately every 10 minutes until returned to pens. 

BT was monitored using an AmerisourceBergen® thermometer (Amerisource Bergen, 

Chesterbrook PA) inserted in the rectum. Regardless of BT, animals were intermittently 

sprayed with water. All 72 of the WTD that arrived to the survey station received FM 

(Bayer Corporation, Whippany NJ); if the rectal temperature was less than 40.56°C 

(105°F), 1.5mL of FM at 50 mg/mL was administered via IM injection in the rump, if 

the rectal temperature was greater than 40.56° (105°F), the same dose was administered 

via IV injection in the jugular vein. If rectal temperatures were over 41.67°C (107°F), a 

single cold-water enema was given in conjunction with the dose of FM as explained 

previously.  
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After samples were collected from the last deer in their respective immobilization 

group, all of the WTD received a SQ injection in the shoulder of Excede®  (Zoetis, 

Parsippany NJ) at 200 mg/mL and dosed at 1 mL/33 lbs and the group was transported 

back to their pen and reversed simultaneously with a dose 2 mL of Atipamezole with a 

concentration of 25 mg/mL (alpha-2 antagonist) per 1 mL of BAM® and 0.5 mL of 

Naltrexone with a concentration of 50 mg/mL (opioid antagonist). Over 50% of WTD 

had elevated BT (40.5°C+ or 105°F+) and required treatment to decrease BT; some 

required very aggressive treatments. 

Three WTD does arrived to the CWD sampling station with severe hyperthermia. 

The deer were all from different immobilization groups and were the only individuals in 

their respective group with such extreme BT. The BT of each of the three individuals 

were 42.78°C (109.0°F), 43.00°C (109.4°F), and 43.28°C (109.9°F). These animals were 

the first of their groups to be handled by the sampling team due to the severity of their 

BT. Reversal of the immobilizing agents was not an option due to the regulatory 

requirements that needed to be fulfilled. They were immediately given an IV dose of 1.5 

mL of FM in the jugular vein followed by two cold-water enemas and continuous 

external dousing with water on the axillary region, groin, and head. The enemas were 

16.9 fl oz refrigerated water bottles given one immediately after the other. The tail was 

held down tight against the anus for several minutes (2–4 mins) to ensure that most of 

the water given stayed in the animal rather than leaking out. BT could no longer be read 

with a rectal thermometer because the results would be skewed from the introduction of 
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cold water to via the rectum. However, all three WTD BT decreased subjectively (head 

and thoracic palpation) within 2–3 minutes.  

All 72 of the WTD surveyed responded quickly and positively to the treatment 

and survived more than 30 days and appear healthy; all of the WTD tested negative for 

CWD. The repercussions of the physiological damage associated with capture-induced 

stress and hyperthermia typically occur within a month (Paterson, 2014; Williams and 

Thorne, 1996). Therefore, it is reasonable to assume that any detrimental effects of the 

capture event would have occurred within 30 days and that any morbidity or mortality 

thereafter was most likely unrelated. 

Discussion 

Hyperthermia can occur for many reasons, but the thermoregulatory center of the 

brain, the hypothalamus, is always involved. Briese and Cabanac (1991) even assert that 

the manner in which hyperthermia works is physiologically similar to that of a fever. 

Prostaglandins are released during cellular damage, which cross the BBB and bind to the 

hypothalamus. This triggers a fever-like immunological response and allows the BT to 

rise. When stress and injury occur during capture, prostaglandins are released, 

potentially exacerbating capture-induced hyperthermia.  

FM, a common NSAID, is associated with the inhibition of prostaglandin 

synthesis. A study in dairy cattle conducted by Soto et al. (2003) indicated that inhibition 

of prostaglandin synthesis with FM did not actually reduce BT. Furthermore, a similar 

study in broiler chickens found that there was no statistical difference in blood 

concentration of prostaglandin when treated with FM (Oliver and Birrenkott, 1982). 



 

  25 

 

They did, however, find that treatment with FM significantly increased survival of post 

hyperthermia in broilers compared to those that did not receive treatment. Little is 

known about the exact physiological pathways in which FM reduces BT, but anecdotal 

evidence supports its use in treating hyperthermia and increasing survival. TPWD found 

that the use of FM during pronghorn capture in the Texas Panhandle for relocation to the 

Trans-Pecos Region of Texas not only reduced body temperatures, but also resulted in a 

better survival rate than in the pronghorn released without the treatment (B. Dittmar, 

pers. comm.). TPWD routinely administers FM to bighorn sheep during capture events 

in the Black Gap WMA in western Texas for effective BT reduction (Bob Dittmar, pers. 

comm.).  

[A proposed mechanism for hyperthermia-mitigating effects of FM in wildlife 

capture events follows.] Capture events are typically associated with some degree of 

physical exertion, trauma, and tissue damage (Brivio et al, 2015). Evidence suggests that 

both damage to tissue and stress from capturing can independently drive a febrile 

response by increasing thermogenesis and decreasing heat loss.  

The stress response is associated with tachycardia, increased metabolic rate, and 

increased muscle tone which serve to increase heat production while adrenergic 

vasoconstriction serves to reduce heat loss to the environment (Sherwood and Ward, 

2019). Additionally, adrenergic agonism at the hypothalamus stimulates non-shivering 

thermogenesis by brown adipose tissue (Bray, 2000). It is hypothesized by the authors 

that both handling-induced stress and direct adrenergic agonism by medetomidine would 

stimulate these mechanisms of heat production and inhibit of heat loss via decreased 
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dermal circulation. Though physiological changes resulting from stress and/or chemicals 

contribute to hyperthermia, it is likely that tissue damage and subsequent prostaglandins 

also play a major role.  

Prior to capture, animals often experience a period of heavy exertion, and 

sometimes trauma while trying to avoid capture (Seal and Bush, 1987). Regardless of the 

nature of damage, damaged cells lyse their products and agonize Toll-like receptors of 

immune cells, which then produce pro-inflammatory cytokines including Interleukin-1 

beta and Interleukin-6 (Lukens et al., 2012; Rani et al., 2017; Rock et al., 2010). These 

inflammatory signals interact with the hypothalamus and induce prostaglandin synthesis 

– specifically PGE2 (Coceani et al., 1986; Eskilsson et al., 2014). PGE2 then signals the 

hypothalamus to induce purposeful thermogenesis through increased muscle tension, 

non-shivering thermogenesis by brown adipose tissue, dermal and peripheral 

vasoconstriction, and increased metabolic rate (García-Alonso et al., 2016; Morrison, 

2016; Takahashi et al., 2013). FM stops the activation of PGE2 by inhibiting the enzyme 

cyclooxygenase-2 (Clark, 1979; Dannhardt and Kiefer, 2001; Samad et al., 2001). With 

decreased PGE2 levels, the thermogenic stimuli at the hypothalamus may decrease and 

subsequent heat production decreases while heat loss is allowed through dermal 

vasodilation. After FM has taken effect, other measures of cooling such as water enemas 

and physical wetting of the animal may be enhanced due to peripheral vasodilation at the 

gastrointestinal tract and skin respectively.  

BT of >41°C (>106°F) are considered by most veterinarians to be a medical 

emergency and are often associated with both immediate and delayed fatality (Kreeger 
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and Arnemo, 2018). Furthermore, the experience of the senior author is that animals 

with BT greater than 42.2°C (108°F), prior to the use of FM, seldom survived (W. Cook, 

pers. comm.). 

Conclusion 

This case report serves as further anecdotal evidence of: 1) the efficacy of FM for 

BT reduction in wild ruminants, most likely due to the immunologically-induced febrile 

response, and 2) an effective protocol for the treatment of severe hyperthermia in captive 

WTD capture events. The recommendations for the treatment of severe hyperthermia in 

WTD, which can most likely be extrapolated to other exotic and wild hoof-stock, is 

administration of FM, external cooling through direct water application, and delivery of 

cold water via rectal enema. 
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CHAPTER III  

TULATHROMYCIN AS A CANDIDATE FOR REMOTE DELIVERY 

INTRAMUSCULAR DART INJECTION IN WHITE-TAILED DEER (ODOCOILEUS 

VIRGINIANUS) 

Introduction 

WTD are an iconic North American big game species and are the most heavily 

sought-after big game species in the United States (QDMA, 2018). The WTD breeding 

and hunting industry is a $380 million industry in Texas alone, and over $1.2 billion 

across the United States (Anderson et al., 2008; Earle, 2016). One of the major issues 

faced by WTD breeders is death loss with bacterial pneumonia being one of the primary 

contributors in the United States and Canada (Haigh et al., 2005; Hattet et al., 2004). The 

pathogens often associated with the bronchopneumonia in ruminants, and WTD 

especially, are Trueperella pyogenes, Pasteurella multocida, Mannheimia haemolytica, 

Fusobacterium necrophorum and several other bacteria (Hattet et al., 2004; Palmer et 

al., 1999). TUL is a macrolide antibiotic frequently utilized by veterinarians to treat 

respiratory infections caused by these pathogens in livestock such as cattle and swine 

(Alexander et al., 2013; Evans, 2005; Kilgore et al., 2005). It is also used “extra-label” in 

other ruminants such as sheep, goats, and WTD (Bachtold et al., 2015; Clothier et al., 

2010; Cook et al., 2016; Washburn et al., 2007). This drug is generally administered via 

hand injection SQ or IM, although studies indicate efficacious treatment with RDD in 

cattle (Coetzee et al., 2018; Pfizer, 2005; Rivera et al., 2019).  

28 
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Often times, WTD breeders do not have working facilities and rely on dart guns 

to chemically immobilize deer for restraint. If an antibiotic could be delivered via dart 

gun and RDD injection, it would save ranchers money on immobilization drugs and 

reduce the risk of capture related injury and stress. However, there is concern is that the 

impact of the dart on the animal could affect the absorption of the drug and result in 

reduced therapeutic effects (Cattet et al., 2006; Coetzee et al., 2018). Though there is a 

wealth of information about delivering drugs with a remote delivered dart, there is little 

in the literature about the administration of antibiotics with RDD, especially in deer.  

Bachtold et al. (2015) has shown that TUL reaches therapeutic concentrations in 

lung tissue of WTD following SQ hand-injection. Furthermore, another study conducted 

by Cook et al. (2016) exhibited that the drug reaches significant concentrations in 

muscle and liver following IM hand injected administration. These are consistent with 

other findings that show TUL reaches therapeutic concentrations in various ruminants 

following multiple ROA (Alexander et al. 2013; Bachtold et al., 2015; Clothier et al., 

2010; Cook et al., 2016; Kilgore et al., 2005; Washburn et al., 2007). Data showed some 

changes in PK following an IM injection in cattle via RDD, however it did not seem 

dramatic in most cases (Coetzee et al., 2018; Fajt, pers. comm.; Rivera et al., 2019). 

Rivera et al. (2019) showed that RDD TUL resulted in Cmax values in cattle similar to 

those following SQ injections. However, Coetzee et al. (2018) illustrated issues with 

drug absorption and distribution in cattle TUL PK following RDD injection as well as 

indication of increased stress and inflammation to injection sight when using RDD. The 
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use of RDD for the administration of TUL has conceptually be proven, but never 

validated in WTD. 

 It was hypothesized that TUL could be a viable candidate for IM dart injection 

for the treatment of pneumonia in WTD. It was further hypothesized that there would 

likely be a notable, but insignificant, decrease in absorption of the drug due to bruising 

in the muscle from the impact of the RDD. This study was conducted to determine the 

PK of TUL administered via RDD IM injection.  

Materials & Methods 

This study was conducted by darting captive WTD with an IM dose of TUL, 

delivered via RDD, and measuring the serum concentration of TUL in each of the WTD 

at various time points over the course of approximately one month in order to gauge the 

therapeutic potential of the drug as well as decipher the effects of the delivery method on 

the PK in WTD. Twelve captive WTD, consisting of two bucks and ten does, were 

utilized as sample subjects in the study. The WTD were housed at the Winnie Carter 

Wildlife Center on the Texas A&M University (TAMU) campus, housed under the 

Animal Use Permit (AUP) 2018-0106 issued by the TAMU Institutional Animal Care 

and Use Committee (IACUC). Ages ranged from 1.5–10.5 years. The animals were 

broken into groups as follows: 3 does (Tag #’s 11, 17, and 25), 3 does (Tag #’s 21, 24, 

and NT), 4 does (Tag #’s 2, 66, 70, and 73), 1 buck (Tag #22), and 1 buck (Tag #72). 

The groups were created in order to minimize the number of WTD in a holding pen 

during the darting events as well as to reduce any aggression between deer because 

many of the deer came from different permanent housing pens. The division of does was 
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based on normal pen-mates while bucks were singled out to ensure no undesired mating 

and potential aggression that accompanies sexual drive. The study took place from 

January to February so AT would be below 77°F (as recommended by Beringer et al., 

1996, and Kreeger and Arnemo, 2018) in order to reduce the potential for capture-

induced hyperthermia or CM while handling deer. 

Initially, the WTD were run through a working pen system created specifically 

for working and moving cervids and fed into a squeeze chute, designed by Priefert 

Ranch Equipment, for WTD breeding facilities. Once WTD were in the squeeze cradle, 

they were blind folded with a size small deer blind-fold from the Texas Deer Association 

and manually restrained by four people so blood could be collected (Figure 1). One of 

the restrainers held the head with the nose pointed up at about a 60° angle from the 

ground while blood was collected from the jugular vein. Jugular venipuncture was done 

with an 18 ga needle and a 10 mL syringe used to draw approximately 10 mL of blood 

from each animal prior to administration of the drug to act as a negative control and 

baseline measurement for the WTD serum as well as to insure there was no TUL on 

board any of the animals in the study. The blind-fold was removed and the WTD were 

then released from the squeeze and directed to another chute with a scale. The weight of 

each WTD was collected in order to calculate the dose of TUL needed for each WTD 

based on a target dose of 2.5 mg/kg. They were then returned to their housing pens.  

The five groups were moved into their respective holding pens and darted with a dose of 

TUL (2.5 mg/kg) from a CO2 powered dart gun. The darting began with a Pneu Dart X-

Caliber CO2 rifle using either 1 cc, 1.5 cc, or 2 cc gel-collared IM dart with a ¾” end-
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port needle depending on the volume of TUL being administered. Darts were fired from 

a catwalk above the holding pens (approximately 12 feet above the ground) (Figure 2) 

with the desired dart site being in the gluteal muscles of the rump. Consequently, shot 

distances were close; ranging from 5 to 8 yards at an extreme angle (>45°). 

Five of the first seven Pneu darts shot resulted in partial or complete dart failure 

either by bursting on impact with the animal or failure due to darts bouncing off, both of 

which potentially resulting in incomplete doses or no dose at all. A projector switch was 

made and the remaining dart injections were delivered with a Dan Inject CO2 Injection 

Pistol shooting pressurized IM darts with 1.5” side-port needles. For the WTD that 

experience some form of dart failure, visual examination of the dart wound was 

conducted and one of the five deer with dart failure was re-dosed because there appeared 

to be drug on his fur, indicating an incomplete dose. The other four darts had no drug left 

in them and the charge was fired so the deer were assumed to have gotten a dose. 

Including re-dosing one buck WTD (Tag #22), a total of six Dan Inject darts were used. 

The time of administration was recorded for each dart fired as Time Zero of the study; 

the second dart time was Time Zero for the deer administered a second dose.  

Each deer was run through the chute system and into a Priefert squeeze chute in 

the same order in which they were darted for blood collections as previously described. 

Blood was collected in order to measure the concentration of the drug in each deer’s 

blood serum over time. This process was repeated for a total of nine blood draws from 

each WTD; one negative control (that took place previous to RDD injection as explained 

prior), and then one at 2h, 4h, 12h, 1d, 2d, 5d, 10d, 20d, and 30d (Table 1). Each WTD 
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was restrained for an average of 3 mins from start to finish when collecting blood so the 

restraint times were quick and stress on the animals was minimal. When released from 

the squeeze cradle, most deer walked away, seemingly unphased with few occasionally 

trotting down the alley back to their perspective group pen.  

During the course of the study, the twelve WTD were fed their usual diet and 

housed in their permanent housing pens. Approximately one hour prior to the scheduled 

blood drawing events, the WTD were moved into their respective group holding pens 

and prepared to be run through the working chutes. The entire process generally took 

about 2 hours to work and bleed all the deer, meaning most days in the holding pens 

were relatively short; except the first day of blood sampling post-darting, when four 

blood collections were scheduled in a 24-hour time period. 

After blood was collected, it was allowed to sit for about an hour before it was 

then spun in a centrifuge to separate the serum from the rest of the blood. The serum was 

then pipetted into cryo-vials for transportation to, and frozen storage in, the lab until the 

analysis using liquid chromatography (LC) tandem mass spectrometry (MS).  

In order to quantify the deer blood serum concentration of TUL, each sample 

underwent a multistep chemical process to clean, purify, and condition the sample for 

analysis using LC followed by tandem MS. The LC step is used to remove the drug from 

its background for a pure sample that can be quantitatively analyzed by the mass 

spectrometer. 

The LC process is initiated by conditioning the column with ~1 mL of methanol 

and ~1 mL of water. The column is comprised of a cotton filter than contains 
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SiC3H6SO2OH, which is slightly acidic (~pH 5). By first washing the column with 

methanol and water, the hydrogen is pulled off of the sulfonic acid group by hydrolysis, 

“conditioning” the column by creating a negative charge. Clenbuterol-d hydrochloride 

(CLEN) was added at a concentration of 50 ng/mL to the serum sample and mixed using 

a test tube vortex mixer for ~2 seconds. The CLEN works as the internal reference 

standard (IRS) for the quantitative analysis. Since the TUL administered to each WTD 

was at a concentration of 100 ng/mL, the observed ratio of CLEN to TUL in each sample 

can be compared to the base ratio (50:100 ng/mL) positive control in order to quantify 

the approximate TUL serum concentration of each sample. This solution is then applied 

to the conditioned column, along with another ~1 mL of water, ~0.4 mL of 1N acetic 

acid, and ~1 mL of methanol. The acetic acid is used to bring the sample solution pH to 

acidic conditions (~pH 5) by hydrogenating an amine group of the drugs (creating a 

positive charge). This allows for a cation exchange between the negatively charged 

sulfonic group in the cotton column and the positively charged amine group of each drug 

compound’s residues; fixing the tulathromycin and clenbuterol to the column and thus 

extracting them from the serum sample.  

Air is then passed through the column for 10 minutes to completely dry it before 

the column is washed. The column was washed with a solution of methanol, ethyl 

acetate, and ammonium hydroxide at a ratio of 50:50:4, respectively. The wash cleaves 

the ionic bond that was used to extract the TUL and CLEN from the WTD serum by 

bringing the pH back up to slightly basic conditions and releasing the drug residues into 

a drop. An addition of 0.1% formic acid is added to the sample drop in order to cleave 
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the residues into hydrolytic fragments that can be easily detected by the mass 

spectrometer. 

The mass-spectrometer is used to detect charges; with spikes indicating mass-

charges (m/z) that are specific to particular compounds or fragments of compounds. A 

positive peak around 403 m/z and 806 m/z is indicative of TUL fragments or the parent 

TUL molecule, respectively. Peaks around 158 m/z and 116 m/z point towards CLEN 

fragments and a peak around 276 m/z for CLEN. The height of the spike details the 

abundance of the compound associated with the spike. The abundance of each residue 

can be used to calculate the observed ratio of CLEN to TUL and compared to the base 

ratio for quantification of the concentration of TUL.  

The MS analysis determines the serum concentration at the exact time point that 

each blood sample was collected. A PK curve can then be created for each deer to 

illustrate the absorption and elimination of tulathromycin following the IM dart injection 

(Figure 3). The averages can then be calculated for the, Cmax, time of Cmax (tmax), t1/2, 

volume of distribution (Vd), and serum AUC. This will help the researchers determine: 

1) if tulathromycin reaches therapeutic concentrations following RDD IM injection and

2) how long the drug is protective if it is.

Results 

           The PK of TUL had some consequential differences when delivered via RDD. 

Though all twelve of the WTD in the study developed at least a detectable level of TUL in 

their serum, the Cmax reached in the group, as an average and within individuals, was 

significantly lower than the Cmax of other in the same and similar species (Table 2). The 
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Cmax among the WTD in the study ranged from 32 ng/mL to 242 ng/mL with a mean 

serum Cmax of 113.75 ng/mL (Table 3). Four individuals (Tag #’s 2, 22, 24, and 25) in 

the study that never developed significant TUL concentrations (Cmax ≤ 70 ng/mL) were 

all among the first seven darted with Pneu Dart products and all four experienced partial 

dart failure. This could account for the lower Cmax experienced for these four cases. 

When the four lowest Cmax values are removed, the mean Cmax increases to 

151.25 ng/mL which is likely more indicative of the PK of TUL administered via RDD 

in WTD.  The two animals that had the most comparable Cmax values to other ROA in 

same and similar species (Tag #17 = 229 ng/mL; Tag #72 = 242 ng/mL) are the most 

likely, if any, to reach therapeutic levels of TUL in lung or other tissues. 

The tmax, was calculated to occur around 4.03 ± 2.72 hours post dart injection, 

ranging from 1.5–11.9 hrs (Table 3). Based on the nature of the PK curves, there is a 

sharp rise to the Cmax as the drug is absorbed into the system. From the Cmax, metabolism 

of the drug begins to occur at a faster rate than absorption of the bolus, initiating the 

elimination process of the drug. This is indicated in the PK curve (Figure 4) by a sharp 

drop off that seems to asymptote out at a concentration of 0 ng/mL, modeling a sort of 

exponential decay. This is based on the idea of the t1/2 of the drug. The resulting PK 

analysis identified the t1/2 of TUL to be approximately 296.33 ± 224.16 hrs with an 

average clearance (λ) of about 0.003 ± 0.001 mL/hr. The t1/2 explains how long the 

animal takes to eliminate TUL to half of its initial concentration. Based on this idea, 

after the time period of five elimination half-lives, the drug concentration is essentially 

reduced by ~98%. 
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The bioavailability of TUL following IM administration via RDD can be 

interpreted by looking at the AUC. To calculated the true bioavailability of IM 

administered TUL as a percentage, one would need the AUC following an IV injection 

to compare that of the IM injection to, since IV is considered to be 100% bioavailable. 

However, since only the one ROA was used to administer TUL for PK monitoring, there 

is no area to compare with and the AUC must suffice to provide a relative means of 

assessing bioavailability. The AUC can be calculated as the true AUC observed AUCobs 

for the time points collected or as the AUC if the concentration trend line was 

extrapolated to infinity AUCinf. The mean AUCobs of TUL in WTD was calculated to be 

12,846 ± 10,354 ng·hr/mL from Time 0 until the last measured time point at day 30 

(~720 hrs). The AUCinf = 14,518 ± 10,473 ng·hr/mL, which was calculated with 16.8% ± 

14.2% extrapolation from the AUCobs. A trend of the elimination of the drug is used to 

estimate the continuation of PK curve until the drug is completely undetectable; this 

extrapolated PK curve is used calculate the AUCinf and the difference between the two 

AUC’s divided by the AUCinf, then multiplied by 100 is the percent of extrapolation. 

Discussion 

The mean Cmax of TUL (Cmax = 114 ng/mL) observed in WTD serum following 

an IM dose via RDD was significantly lower than other PK studies focusing on TUL. In 

other similar ruminants, the Cmax of serum following a hand delivered IM injection was 

330 ng/mL in Holstein calves and 730 ng/mL in goats (Amera et al., 2012; Tohamy et 

al., 2011). When bovids and caprids were administered similar doses via SQ hand 

injection, their blood Cmax’s were 377 ng/mL and 633 ng/mL, respectively (Nowakowski 
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et al., 2004). Bachtold et al. (2015) indicated WTD to reach adequate protective 

concentrations of systemic TUL following a hand injected bolus SQ, with the mean Cmax 

of the study WTD peaking around 359 ng/mL. Since the TUL SQ hand injection blood 

concentration results were comparable to their IM counterparts in other ruminants 

similar to WTD, it was expected that an IM injection in WTD would yield similar PK 

values in bioavailability and the mean Cmax. Furthermore, PK studies observing cattle 

following administration of 2.5 mg/kg dose of TUL via RDD showed little to no 

indication of altered PK, with a mean Cmax of 498 ng/mL (V. Fajt, pers. comm.). Rivera 

et al. (2019) had similar results with mean Cmax reaching around 755 ng/mL. However, 

the mean Cmax of TUL post IM injection via RDD in WTD serum peaked at less than a 

third of the SQ resultant Cmax in WTD serum in the study by Bachtold et al. (2015). Even 

the WTD that was re-dosed, which can be done safely with TUL because of its high 

therapeutic index, had a low Cmax. 

It is unclear what exactly caused the altered PK of TUL. However, there is 

reason to believe the use of an IM dart was a contributing factor considering Cook et al. 

(2016) determined the adequate absorption of TUL IM delivered via hand injection and 

Coetzee et al. (2018) showed altered PK of TUL in darted cattle. Cook et al. (2016) did 

not perform a PK study so there is no literature that discusses the serum concentration 

over time following IM hand injected TUL. They did measure drug residues in WTD 

blood and found 2.09 ppm (~2090 ng/mL) at 11 days, however this was in liver tissue 

and the distribution of TUL to certain tissues results in accumulation of the drug that are 

higher concentration than the plasma concentration (Cook et al., 2016). 
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The proximity of the darting distance is suspected to have been a contributing 

factor for both dart failure and poor serum Cmax among the WTD darted with RDD 

injected TUL. Partial or complete dart failure occurred in 5 of the first 7 dart fired from 

the Pneu Dart X-Caliber, which is highly uncharacteristic for this dart projector. The 

lowest distance setting the gun has is for a 5-yard shot and several shots were taken at 

this distance or slightly closer and at extreme angles. The shots had to be taken so 

closely because the holding pens were the only location the animals could be separated 

to reduce stress and fear when darting occurred. The pens were completely walled in 10 

ft high and were approximately 10’ x 10’ with a cat-walk running above the inside edge 

of each holding pen. The proximity of the target animals when darting could have simply 

been too close and beyond the minimum capabilities of the X-Caliber. 

The Dan Inject Remote Tranquilizer Pistol worked as an effective backup at such 

close distance shots. However, there was still significant force from the dart when it 

impacted the deer, similar to that of the X-Caliber but slightly less and with longer 

needles on the darts. The reduced mean WTD serum Cmax could have been a result of 

trauma and bruising from the force of the dart hitting the animal. Bruising, if significant 

enough, would result in an increased blood flow to the area resulting in redness and 

inflammation to heal the damaged tissue, but decreasing the absorption and distribution 

of the drug throughout the body. Close shots with an inability to decrease the CO2 

pressure past a certain minimum threshold, coupled with the extreme downward angles 

shots which exacerbate the dart velocity issue from the acceleration due to gravity is a 

recipe for higher dart impact velocities and increased dart site trauma. The dart failure 
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observed in which several Pneu Dart IM darts shattered on impact as well as the gel 

collar failure when the darts bounced off are also indicative of high dart impact 

velocities. The shot placement of all RDD’s was in the desired gluteal muscle group so it 

is unlikely that the poor absorption of the drug was a result of poor shot placement in fat, 

bone, or connective tissue. The shots conducted in the cattle darting study with TUL 

were taken around 25 ft which is further than all 12 darting events conducted in the 

present study in WTD (V. Fajt, pers. comm.). 

Regardless of the low average WTD serum Cmax (114 ng/mL), these results do 

not definitively indicate that TUL did not reach therapeutic levels in the lungs or other 

tissues. Since TUL, like other similar macrolides, tends to have a higher affinity for 

pleural and other fatty tissue, the drug accumulates the highest concentrations in the 

lungs (Carbon, 1998; Evans, 2005; Villarino et al., 2013). The MIC of TUL against most 

primary targets is around 1,000 ng/mL (for pathogens including P. multocida and M. 

haemolytica) while A. pyogenes is upwards of 4,000 ng/mL (Pfizer, 2005). Serum 

concentrations rarely get that high after a single dose, regardless of ROA, although 

tissues do. Cattle administered a hand delivered SQ labeled dose of TUL had a mean 

serum Cmax of about 377 ng/mL while the lung tissue samples revealed a mean Cmax of 

4,100 ng/mL (Nowakowski et al. 2004). Similarly, when Bachtold et al. (2015) hand 

delivered TUL SQ to WTD, the serum Cmax was 359 while the lung tissue Cmax was 

2,225 ng/mL. Respectively, WTD and cattle lung peak TUL concentrations were 6.2-

fold and 10.9-fold higher than their respective Cmax (Bachtold et al., 2015; Nowakowski 

et al., 2004). Although total lung tissue concentration does not truly indicate the 
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interalveolar concentration (IAC) and is where the drug concentration would need to be 

above the MIC threshold the be therapeutic against respiratory infections, it is a useful 

estimation of the IAC. Because of the variability and therefore lack of predictability, one 

cannot extrapolate the expected lung concentration based on the serum concentration. It 

is safe to assume that the lung Cmax is substantially greater than the serum Cmax based on 

the movement of macrolide through the body. 

Another possible contributor the comparatively low Cmax was the delay in blood 

sample collections after the darting events were completed. Time delays were created by 

the dart failures and equipment shifts mid-study as well as the difficulty involved in the 

learning curve of working hand raised deer through the chute system. These time delays 

resulted in the first blood drawing event, scheduled to take place one-hour post-injection, 

to actually take place around two-hours post-injection. The literature often describes the 

Cmax of serum, regardless of species to peak around the one-hour mark (Pfizer, 2005) So, 

it is possible that the first blood draw actually missed the peak of the concentration-time 

curve and caught a point in the rapid concentration decline associated with the beginning 

of the negative exponential curve depicting the drug metabolization and elimination. 

Overall the PK curve of TUL appears relatively normal, harboring what seems to 

be some “white noise” likely depicting the minor error in the analysis. The shape of the 

concentration-time curve of the drug illustrated the rapid absorption of TUL to the 

observed serum Cmax, where the drug is then shown to be metabolized an eliminated at a 

more rapid rate by the shift to rapid exponentially decline that seems to asymptote out at 

zero. The minor concentration spikes seen in the mean WTD serum TUL PK curve at the 
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48 hr (2 d) and 120 hr (5 d) time point are likely caused by the slight degree of error in 

the quantitative detection and/or analysis. The average concentration dip to 0 ng/mL at 

the 240 hr (10 d) time point is highly likely an inaccurate measurement since there were 

detectable levels of TUL of all samples following the 10 d blood draw (Figure 4). The 

serum samples collected were on day 10 were misplaced in a normal freezer for over a 

month, allowing the drug time to degrade beyond detectable levels due to improper 

storage and slightly negatively skewing the AUC. For this reason, the samples from this 

time point were eliminated in the PK analysis to increase the accuracy of the analysis. 

The prolonged elimination portion of the PK curve is indicative of the long t1/2 of 

macrolides, especially TUL which is notoriously long (Bachtold et al., 2015; Foster et 

al., 2016; Nowakowski et al., 2004; Papich, 2016; Villarino et al., 2013). The t1/2 of TUL 

in WTD serum (~281 hrs) was even longer than that seen in cattle, domestic pigs, and 

goats (~50–160 hrs) with little variation between SQ and IM injection (Bachtold et al., 

2015; Gáler et al., 2004; Huang et al., 2012; Papich, 2016).  The t1/2 of TUL in deer 

serum following RDD IM injection (296 hrs) was quite similar to the SQ injection t1/2 of 

TUL in deer serum. This alludes to the idea that the metabolism and elimination of TUL 

by WTD is not altered by IM injection or remote delivery there-of. The long t1/2 of TUL 

is likely in part due to the large Vd that is frequently recorded in PK analyses of TUL. 

The substantially longer t1/2 seen in both the present study and the study conducted by 

Bachtold et al. (2015) does not mean for certain, but rather is indication of, a larger Vd 

and can be used to assume little or no impact on the distribution of TUL in WTD. 
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To calculate the bioavailability of TUL in WTD following an IM injected 

administered via RDD, the AUCinf would be needed for an IV injection of the same drug 

and dose. The AUCinf of the IM RDD injection could be divided by the AUCinf of the IV 

injection in order to determine the percentage of the drug that was bioavailable to the 

WTD following the particular ROA. Since an IV PK curve was not obtained, the true 

bioavailability cannot be determined. However, it is reasonable to compare the AUCinf of 

TUL from other studies in species such as cattle, goats, and WTD using the same and 

alternative ROA in order to determine the relative bioavailability. When comparing the 

serum AUC of TUL in WTD from Bachtold et al. (2015a) and cattle serum AUC from 

Nowakowski et al. (2004) following SQ injection, WTD have a relative bioavailability 

of about 40.7%. The relative bioavailability of TUL in cattle after a dose from RDD 

injection compared to that of a SQ injection is about 156.6%. Similarly, in WTD when 

comparing the same two ROA’s, the relative bioavailability of TUL in deer serum is 

about 303.5% for RDD compared to SQ hand injection. Although there are apparent 

similarities in the changes in PK of TUL caused by darting in cattle and WTD, the 

bioavailability reached in deer is still lower with a relative bioavailability of only 77.2% 

compared to the bioavailability in cattle. This moderate similarity in the bioavailability 

of TUL between cattle and deer does not mean that deer reach moderately similar 

protective tissue concentrations because the Cmax for deer following RDD is only 15.1% 

of the Cmax reached in darted cattle. The similarity in serum AUC’s following darting in 

cattle and WTD can most likely be explained by the longer t1/2 noticed in WTD which 

means longer clearance of the drug from the animal and in turn more AUC. 
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The analytical methods used to determine and measure the serum of WTD for 

TUL was used similarly by Cook et al. (2016). This study serves to further validate the 

use of LC-MS/MS for the identification and quantification of macrolide drugs in WTD 

tissues, especially serum. 

Conclusion 

The use of RDD systems to administer drugs to livestock and wildlife has been 

an effective means for many drugs, including TUL in cattle (Coetzee et al., 2018; Rivera 

et al., 2019). TUL is a commonly used macrolide antibiotic utilized frequently by deer 

breeders to treat bacterial pneumonia. Using a RDD allows for ease of drug 

administration and cuts down on time and money for the ranch as well as stress and 

injury to the deer by eliminating the need for hands-on interaction. This study sought to 

determine whether or not the PK of TUL would be altered, and if so to what extent, 

when delivering the drug IM via RDD.  It was hypothesized that TUL PK would be 

minimally affected by the darts, however, there was significant decline in the Cmax 

noticed. It is likely that there is some misnomer in the data, likely caused in part by the 

proximity of darting distances. However, the data indicates that darting is an 

unpredictable and can potentially result in dosing that results in sub-therapeutic tissue 

concentrations which can lead to antimicrobial resistance and increased death loss. There 

were several individuals that had comparable serum Cmax to that of WTD administered 

TUL via SQ injection, but it was infrequent.  
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APPENDIX A 

 

Figure 1: Deer Restraint Chute and Blood Collection 

The squeeze chute designed by Priefert Ranch and Farm Equipment with a white-tailed 

deer does being manually restrained by several volunteers from the Winnie Carter 

Wildlife Center at Texas A&M University. Shown is Jake Ross restraining the head of 

the deer while Chase Nunez collects blood from the jugular vein. 

Figures
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Figure 2: Visualization of Darting from the Catwalk and One of the Darted White-Tailed 

Deer Buck Subjects 

Chase Nunez preparing to dart using the Pneu Dart X-Caliber CO2 powered dart gun 

from a catwalk that is 10 feet from the ground. Deer are being held in the 10’x10’ 

holding pens below and to the right and left of the walk. Directly below the catwalk is an 

alley that leads to the squeeze chute (partially visible behind Chase) where the blood 

collections took place before returning the deer to their respective pens. The right picture 

shows one of the bucks (Tag #72) with a Dan Inject dart in his left rump. The downward 

view on the buck in the photograph also shows the extreme angle from the catwalk to the 

target animal. This picture of the buck was taken almost one year after the study but 

darted with the same equipment in the same manner. He was de-antlered before the 

study began. 
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Figure 3: The Distribution of White-Tailed Deer Serum Concentrations of 

Tulathromycin Over 30 Days 

The serum concentration of each deer at each time point is represented by the deer 

respective dot color. The y-axis (vertical) describes the serum concentration in ng/mL 

while the x-axis (horizontal) represents the time lapse in hours. The sharp spike in 

concentration is representative of the raid absorption of tulathromycin followed by the 

gradual exponential decline as the drug is metabolized and eliminated. The spread of the 

concentrations at each time point shows how unpredictable remote-delivery darts can be. 
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Figure 4: The Mean Pharmacokinetic Curve of Tulathromycin in Deer Serum 

The figure above illustrates the mean pharmacokinetic curve of tulathromycin in white-

tailed deer serum following intramuscular injection via remote-delivered dart. The spikes 

in the curve after the initial peak concentration are likely “noise” in the analysis caused 

by the minor error in the analytical methods. The 240-hour time mark had an overall 

significant and likely unrepresentative dip that was a result of improper storage of the 

serum before analysis. When the results from the 240-hour blood draws are removed, 

there is a marked increase in the area under the serum concentration-time curve, 

indicated by the arrow.
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APPENDIX B 

Table 1: Serum Concentrations of Each White-Tailed Deer Blood Draw 

This table depicts the actual observed concentration of each deer for each blood draw. 

Notice the low serum concentrations across all twelve deer on the 240-hour time draw as 

well as the abnormal spike in Tag #2 at the 720-hour time draw. These outliers were 

excluded from the PK analysis to better the accuracy of the results. 

Table 2: Comparing the Pharmacokinetics of Tulathromycin in Other Studies 

The table above compares three pharmacokinetic value to other studies with 

tulathromycin in cattle subcutaneously (Nowakowski et al., 2004), cattle with remote 

delivery dart (Cattle RDD1- Coetzee et al., 2018), cattle with remote delivery dart 

(Cattle RDD2- Rivera et al., 2019), and goats subcutaneous (Goat SQ- Young et al., 

2010), and white-tailed deer subcutaneous (Bachtold et al., 2015a). 

Cattle SQ Cattle RDD1 Cattle RDD2 WTD SQ WTD RDD Goat SQ

AUCinf (ng·hr/mL) 12000 8433 18796 4883 14518 12500.00

Cmax (ng/mL) 377 270 756 359 114 633.00

t1/2 (hrs) 54 66 185 281 296 110.00

Tables
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Table 3: The Mean Pharmacokinetic Values of Tulathromycin in White-Tailed Deer 

Serum and Their Respective Standard Deviation 

 
The values above are the mean pharmacokinetic values of tulathromycin measured and 

calculated from the serum of the twelve deer in the study (excluding the data from the 

240-hour blood draw.) 

 

Average St. Deviation

Tmax (hrs) 4.03 2.72

Cmax (ng/mL) 113.75 71.56

λ (mL/hr 0.00 0.00

t1/2 (hrs) 296.3 224.3

AUCobs (ng·hr/mL) 12846 10354

AUCinf (ng·hr/mL) 14518 10473

AUC % Extrapolated 16.91 14.79




