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ABSTRACT1 

Metabolic and innate immune signaling pathways have co-evolved to elicit coordinated 

responses. However, dissecting the integration of these ancient signaling mechanisms remains a 

challenge. Using Drosophila, we uncovered a role for the innate immune transcription factor NF-

κB/Relish in governing lipid metabolism during metabolic adaptation to fasting. We found that 

Relish is required to restrain fasting-induced lipolysis, and thus conserve cellular triglyceride 

levels during metabolic adaptation, through specific repression of ATGL/Brummer lipase gene 

expression in adipose (fat body). Fasting-induced changes in Brummer expression and, 

consequently, triglyceride metabolism are adjusted by Relish-dependent attenuation of FoxO 

transcriptional activation function, a critical metabolic transcription factor. Relish limits FoxO 

function by influencing fasting-dependent histone deacetylation and subsequent chromatin 

modifications within the Bmm locus. These results highlight that the antagonism of Relish and 

FoxO functions are crucial in the regulation of lipid metabolism during metabolic adaptation, 

which may further influence the coordination of innate immune-metabolic responses.

1 Reprinted with permission from Molaei, M., C. Vandehoef, and J. Karpac, "NF-kappaB Shapes Metabolic 
Adaptation by Attenuating Foxo-Mediated Lipolysis in Drosophila." Dev Cell, 2019. 49(5): p. 802-810 e6. Copyright 
2019 Elsevier.  
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1. INTRODUCTION AND LITERATURE REVIEW

1.1  Immunometabolism 

1.1.1 Integration of innate immune and metabolic systems 

Starvation and infection are two ancient stressors in multicellular organisms. In a natural 

environment, organisms are inevitably exposed to various pathogens and stressors while they strive 

to obtain nutrients from their environment. Therefore, while the metabolic system is trying to 

maintain energy homeostasis through gaining nutrients from the environment and turning them 

into building blocks, or energy, the immune system works to fight against microorganisms and 

other stressors (Wang et al., 2019).  

Metabolism can be divided into catabolism and anabolism. Catabolism generates energy 

by breaking down energy storage and metabolites, while anabolism is the energy-consuming 

biosynthetic process. Biological functions depend on primarily anabolic or catabolic metabolism 

that are integrated and overlapped. Immune responses are energy-costing (highly energy-

consuming) processes. Therefore, immune inputs (pathogens) lead to a shift in metabolism toward 

immune response and away from reproduction and growth. It is known that immune responses 

require anabolism that is activated by inflammation. Metabolism can be reprogrammed in immune 

cells based on the required response (Loftus and Finlay, 2016; Wang et al., 2019). For example 

memory and naïve T-cells mainly rely on catabolism, however after immune stimulation effector 

T-cells and macrophages rely on anabolism to provide proper immune responses (Dominguez-

Andres et al., 2018). Therefore, metabolism needs to be under precise control in immune cells in 
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order to maintain a proper immune response. On the other hand, metabolic organs need to maintain 

energy homeostasis and storage in order to provide energy resources for immune cells while still 

maintaining the function of other tissues through proper allocation of energy. Therefore, immune 

and metabolic system have coevolved in order to maintain the whole body homeostasis and 

promote growth and reproduction (Hotamisligil, 2017a; Loftus and Finlay, 2016; Wang et al., 

2019).  

Indeed, during the course of evolution, multicellular organisms have developed a 

crosstalk/cross-regulation of immune and metabolic systems to be able to coordinate responses to 

both infections (immune input) and nutrition availability (metabolic input). A complex interaction 

between immune and metabolic systems in cellular, tissue and whole-body levels is critical to 

maintaining body homeostasis and proper biological function (Wang et al., 2019) (Figure 1.1).  

Figure 1.1 Integration of innate immune and metabolic pathways 

Immunometabolism is the study of the interaction of immune and metabolic systems and 

can be broken down into two main subcategories: systemic (whole-body) metabolism and cellular 
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bioenergetics. Previously, immunometabolism was mainly focused on how inflammation can 

cause metabolic disease. However, recently this growing field includes a variety of topics such as 

M1-M2 macrophages switch and their role in inflammation, metabolism in immune cells, the role 

of immune cells and signaling in dictating systemic and cellular metabolism, allocation of energy 

and metabolites during immune responses, cellular and molecular mechanism of immune and 

metabolic crosstalk, and eventually the role of epigenetics in the regulation of both immune and 

metabolic systems (Guzik and Cosentino, 2018; Hotamisligil, 2017a; Loftus and Finlay, 2016; 

Shakespear et al., 2011; Sohrabi et al., 2018; Wang et al., 2019). 

The crosstalk between innate immune and metabolic pathways is an intriguing section of 

immunometabolism studies. Researchers have uncovered that these pathways share some 

regulatory points and axes that allow the bi-directional regulation of these pathways and play role 

in the integration of innate immune and metabolic systems (Murray et al., 2015; Odegaard and 

Chawla, 2013; Osborn and Olefsky, 2012). In addition, some molecules have reported to act as 

“immunometabolic factors”, directly linking metabolism and immunity, such as MEF2 and Lime 

in Drosophila.  

MEF2 is reported as an immune-metabolic switch in Drosophila. It is required for anabolic 

function and immune response. Under normal conditions, it is phosphorylated and involved in the 

expression of lipogenic and glycogenic genes. However, upon infection, dephosphorylated MEF2 

enhances the expression of antimicrobial peptides (Clark et al., 2013).  

Recently, Mihajlovic et al. have identified a Drosophila gene named Lime (Linking 

Immunity and Metabolism, CG18446) as a new immunometabolic factor. This protein is expressed 
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in larval plasmatocyte and the fat body and links hemocyte development with systemic metabolism 

in Drosophila (Mihajlovic et al., 2019). 

While innate immune and metabolic pathways are under precise regulation, some factors 

such as gene mutation, over nutrition, high fat or high sugar diet may lead to misregulation of these 

pathways and eventually, promote the development of disorders such as inflammation, obesity, 

insulin resistance, Type 2 diabetes, and fatty liver (Baker et al., 2011; Cai et al., 2005; Chen et al., 

2015; Glass and Olefsky, 2012; Guzik and Cosentino, 2018; Hotamisligil, 2017a, b; Norata et al., 

2015; Odegaard and Chawla, 2013). Therefore, uncovering the molecular mechanism of 

immunometabolism crosstalk and particularly the molecular nodes that play major roles in the 

regulation of both pathways is critical for understanding the origin of the disease. Indeed, 

uncovering the molecular mechanism of bi-directional regulation of innate immune and metabolic 

systems, will help us to better understand the underlying mechanisms of immune and metabolic 

disorders and eventually may provide new ideas for designing therapeutic intervention in order to 

treat metabolic disorders such as obesity, and insulin resistance (Figure 1.2). 

Figure 1.2 Mis-regulation of innate immune and metabolic pathways 
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NF-κB transcription factors/pathway appear to serve as one of immunometabolic factors 

involved in the coordination of metabolism and immunity. In both mammals and flies, the NF-κB 

signaling pathway, main regulators of innate immunity, are also known as an indirect regulator of 

metabolism through their effect on inflammation which may lead to insulin resistance and type 2 

diabetes (Chen et al., 2015; Galenza and Foley, 2019). Furthermore, some direct regulation of 

metabolic genes (such as GLUT3 and SCO2) by NF-κB (Mauro et al., 2011) as well as interaction 

of NF-κB with other metabolic transcription factors are reported (Oeckinghaus et al., 2011) 

(explained more in section 1.4). However, more studies are required to uncover the role of NF-κB 

signaling pathway in the regulation of metabolism. 

1.1.2 Inflammation and obesity: The role of macrophages 

Macrophages are the major immune cells residing in adipose tissue. The adipose tissue 

macrophages (ATMs) play role in adipose tissue health and disease. These cells have been 

implicated to obesity-induced inflammation and subsequently, insulin resistance. Obesity is 

considered as an imbalance in the ratios of M1/M2 macrophages. M1 macrophages are pro-

inflammatory, classically activated, with higher abundance in obesity and are stimulated by TLR 

agonist, IFN-γ, and TNF-α. These macrophages secrete pro-inflammatory cytokines such as IL-1 

β, TNF-α, IL-6, IL-12 and IL-23 and, therefore are responsible for the promotion of inflammation 

(Boutens and Stienstra, 2016).  
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 M2 macrophages are anti-inflammatory, alternatively activated and are stimulated by 

PPAR-γ2 agonists, IL-4, IL-10, and IL-13. These macrophages help with the resolution of 

inflammation by secreting anti-inflammatory cytokines such as IL-10. They are also involved in 

wound healing and tissue remodeling. In the lean state, M2 anti-inflammatory macrophages are 

dominant in adipose tissue. The M2 phenotype is maintained by secretion of IL-10 and IL-4 from 

eosinophils and Tregs, which also are located in lean adipose tissue (Kraakman et al., 2014; 

Lumeng et al., 2007).  

Obesity acts as cellular stress for adipose tissue and results in the recruitment of monocytes 

to the adipose tissue and differentiation into M1 pro-inflammatory macrophages through secretion 

of pro-inflammatory cytokines and chemokines. M1 macrophages contribute to the onset of 

inflammation by producing cytokines, cytokine receptors and activation of signal transducers and 

activators of transcription 1 (STAT1) and interferon regulatory factor (IRF). The cytokines 

secreted by macrophages may be released into circulation and therefore, work in an endocrine 

manner. This may lead to the development of systemic inflammation and eventually insulin 

resistance. Obesity is also associated with a shift in other immune cells, characterized by a decrease 

in the number of eosinophils and regulatory T cells (Tregs) and increase in effector T cells and B 

cells. B cells, in turn, facilitate M1 polarization by activating T cells (Eguchi et al., 2013; 

Kraakman et al., 2014; Lumeng et al., 2007).  

2 PPARs (peroxisome proliferator activated receptor) are ligand regulated transcription factors and involved 
in the expression of metabolic genes. These nuclear receptor family play role in the regulation of lipid metabolism by 
controlling beat-oxidation, fatty acid synthesis and ketogenesis. PPAR-γ is linked to adipocyte differentiation and 
hypertrophy as well as glucose and lipid metabolic disorders in cancer and inflammation conditions. 
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Additionally, macrophages in adipose tissue are involved in lipid buffering during 

lipolysis. During fasting-induced lipolysis, macrophages infiltrate adipose tissue and adopt an anti-

inflammatory phenotype. These macrophages uptake excessive adipocyte-released lipids and 

release them gradually into the bloodstream (Kosteli et al., 2010).   

Also, there is evidence of the regulatory role of macrophages in lipolysis and 

thermogenesis during cold exposure. Therefore, macrophages are involved in adjusting to 

environmental challenges such as fasting and cold exposure (Nguyen et al., 2011; Rao et al., 2014) 

Similar to mammals, starvation leads to enhanced differentiation of hematopoietic cells 

(immune cell progenitors) and infiltration of hemocytes (macrophages) to the fat body (adipose 

tissue) in Drosophila (Shim et al., 2012).  

Interestingly, recently, it is shown that metabolic intermediate metabolites of TCA cycle 

and cholesterol synthesis pathway (altered cellular metabolism), induced by a stimulus such as B-

glucan  (allergen from Candida albicans) results in metabolic and epigenetic reprogramming of 

immune cells/macrophages and therefore, establishing trained innate immunity (TI) (Dominguez-

Andres et al., 2018; Sohrabi et al., 2018). 

1.1.3 Insulin resistance 

Obesity-induced inflammation is a major cause of insulin resistance. Adipose tissue 

macrophages (ATMs) play an important role in the onset of insulin resistance through the 
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induction of JNK3 and IKK/NF-κB pathway and production of pro-inflammatory cytokines 

(McNelis and Olefsky, 2014). Chronic overnutrition, saturated fatty acids, and high sugar diet act 

as metabolic inputs that can activate NF-κB signaling pathway through TLR2 and TLR4 receptors. 

NF-κB then induces the expression of inflammatory cytokines such as IL-6 and TNF-β. These 

cytokines promote systemic inflammation and eventually insulin resistance. For example, TNF-α 

can promote phosphorylation of insulin receptor substrate (IRS-1 and 2) through activation of JNK 

as well as the IKK complex (an upstream component of NF-κB pathway which is required for the 

activation of NF-κB molecule). IRS-1 phosphorylation (at Ser 307) in turn blocks insulin signaling 

and causes insulin resistance. JNK can also activate activator protein 1 (AP1) transcription factor 

and lead to impaired insulin pathway, but the mechanism is not fully understood (Cai et al., 2005; 

Henstridge et al., 2012; Rui et al., 2001; Tarantino and Caputi, 2011). 

IL-6 can decrease the expression of glucose transporter- 4 (GLUT-4) and IRS-1 through 

activation of JAK-STAT signaling pathway (a cytokine-activated pathway involved in cell 

proliferation, differentiation, and apoptosis).  This decrease leads to less sensitivity to insulin. In 

addition, muscle IL-6 can induce the expression of TLR-4 which is the receptor involved in the 

NF-κB pathway. (Kim et al., 2013; Lukic et al., 2014). 

Furthermore, insulin resistance is accompanied by increased release of FFAs which in turn 

may promote the accumulation of lipids in cardiac and liver and development of heart and liver 

3  JNK (c-Jun N-terminal kinase) is a serine/threonine protein kinase, which belongs to MAPK family. This 
pathway play role in inflammation, cell proliferation and differentiation, migration, apoptosis and glucose metabolism. 
TNF-alpha, UV, IL-1 beta, and endoplasmic reticulum stress are activators/inducers of JNK. 
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disease (Gao et al., 2004; Guzik and Cosentino, 2018; Norata et al., 2015; Osborn and Olefsky, 

2012).  

Similar to mammals, Drosophila can develop both systemic and tissue-specific insulin 

resistance in response to a high sugar diet (HSD). In both mammals and flies, obesity-induced 

insulin resistance leads to more infection susceptibility. This effect in Drosophila is associated 

with regulation of insulin receptor (InR) in the fat body. Activation of insulin signaling can reduce 

immune response (expression of AMP genes), while the host resistance and expression of immune 

genes are increased upon insulin signaling inactivation (Musselman et al., 2018). Studies in 

Drosophila have linked insulin resistance to Imd/Relish (NF-κB) pathway. Fat boy PGRP-SB2 (a 

negative regulator of Imd/Relish pathway) downregulation can protect flies against obesity-

induced insulin resistance (Musselman et al., 2017, 2018). 

1.2 Adipose tissue and lipolysis in mammals: The role of ATGL and FoxO 

Adipose tissue consists of lipid-laden adipocytes, also other cell types such as fibroblasts, 

and a variety of immune cells particularly macrophages. This dynamic tissue undergoes major 

changes according to nutritional and immune inputs, and play a major role in both immune 

response and metabolic homeostasis (Rosen and Spiegelman, 2014).  

In general, multicellular organisms can be in two different stages: growth/reproduction or 

maintenance. When nutrients are abundant, organisms are in growth/reproduction stage and 

anabolic metabolism is dominant. Maintenance has two different types. Under food scarcity, 

organisms undergo dormancy, which relays on energy-preserving catabolic metabolism. The 
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second type of maintenance is defense, which happens in response to infection or injury and 

requires anabolic metabolism (Wang et al., 2019).  

Under food scarcity, adipose tissue plays a critical role in energy homeostasis and catabolic 

metabolism required for dormancy. Adipocytes contain lipid droplets (LDs) which are the major 

storage of triglycerides (TAGs). Hydrolysis of these lipids during catabolic state provides fatty 

acids and glycerol, which will be taken up by energy-consuming organs. Fatty acids which are the 

products of lipolysis are not only essential energy substrates but also, are required for synthesis of 

membrane lipids and serve as ligands in signaling pathways such as immune (NF-κB) pathway 

(Rosen and Spiegelman, 2014). Therefore, lipolysis is crucial for maintaining whole-body 

homeostasis and requires precise regulation in various levels such as transcriptional and 

posttranslational regulation of enzymes, interaction of pathways and transcription factors, and the 

regulation of TFs expression and activity. Indeed, misregulation of the lipolysis due to 

misregulation of genes, factors, enzymes or other proteins involved in this process may lead to 

several pathologies including fatty liver, obesity diabetes, and heart disease (Arner et al., 2011).  

Adipose triglyceride lipase (ATGL or PNPLA2) and hormone-sensitive lipase (HSL, 

encoded by Lipe gene) are two major lipases involved in the hydrolysis of triglycerides (TAGs) 

and diglycerides (DAGs) (Schweiger et al., 2006). In the linear classical lipolysis pathway, TAGs 

are first broken down to DAGs and fatty acids by ATGL (and to a lower degree by HSL) on lipid 

droplet’s surface. Next, the activated HSL (phosphorylated) cleaves DAGs to MAGs and fatty 

acids. The last step is the hydrolysis of monoacylglycerol (MAGs) by monoglyceride lipase 

(MGL) (Figure 1.3). Recently, it has been shown that under HSL-deficiency, an alternative 

pathway promotes lipolysis. In this non-linear (cyclic) pathway, ATGL transfers one fatty acid of 
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DAG to another DAG by its trans-acylation activity that is enhanced by high concentration of 

DAGs. This results to generation of one TAG and one DAG, thus, allows the lipolysis to continue 

(Zhang et al., 2019). 

ATGL (also called desnutrin or PNPLA2) was discovered in 2004 as the major lipase 

initiating hydrolysis of TAGs, and the rate-limiting enzyme in the lipolysis process. It is reported 

that ATGL possesses phospholipase 2 activity and acylglycerol transacylase activities, in addition 

to its TAG hydrolyze activity. Nevertheless, these enzymatic activitie are not significant compared 

to the TAG hydrolysis activity, and their physiological effects are not well understood (Notari et 

al., 2006; Taschler et al., 2015; Zhang et al., 2019).  

This enzyme is expressed in several tissues such as skeletal muscle, liver, heart, lung, 

retina, testes, pancreas, small intestine and immune cells at low levels. The higher protein levels 

are reported in brown and white adipose tissue. Association of ATGL with several physiological 

function and pathologies including obesity, thermogenesis, liver disease, heart disease, and cancer-

associated cachexia, and type 2 diabetes, have been reported, which highlights the importance of 

the precise regulation of this lipase (Ahmadian et al., 2011; Schoenborn et al., 2006; Taschler et 

al., 2015; Zhang et al., 2016).  
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Figure 1.3 Triglyceride hydrolysis in lipid droplets. 

In fact, the regulation of ATGL is at both transcriptional and post-transcriptional levels. 

Protein kinase A (PKA) and adenosine monophosphate (cAMP)-activated protein kinase (AMPK, 

a metabolic enzyme, which enhances O2 consumption, glucose metabolism and fatty acid 

oxidation) are two major enzymes involved in the post-translational regulation of ATGL protein. 

PKA and AMPK both can enhance ATGL hydrolysis activity in mice by phosphorylation of its 

Ser406 residue (Ahmadian et al., 2011; Kim et al., 2016; Pagnon et al., 2012). Notably, AMPK 

and PKA are also involved in the regulation of HSL (Kim et al., 2016).  

Perilipins (lipid droplet associated proteins) are other factors linked to ATGL post-

transcriptional regulation. In adipose tissue, PLIN1 withholds ATGL co-activator (CGI-58, also 

known as alpha/beta-hydroxylase domain containing 5 (ABHD5)), and therefore, limits ATGL-

mediated lipolysis under basal condition (by restricting the access of lipases to LDs). 

Phosphorylation of PLIN 1 by PKA result to release of CGI-58 as well as recruitment of HSL to 

lipid droplet surface, hence promotes lipolysis (Miyoshi et al., 2007).   
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Fat-specific protein 27 (FSP27) (co-localized with perilipins in LDs) is implicated in 

abiogenesis and formation of LDs in adipose tissue and negatively regulates lipolysis (Puri et al., 

2007). In vivo analysis using human adipocytes has shown that FSP 27 can decrease ATGL-

mediated lipolysis through physical interaction with ATGL protein (Grahn et al., 2014). 

Several factors are involved in the transcriptional regulation of ATGL gene depending on 

different inputs/stimulus, such as starvation or growth hormones.  

PPAR-γ positively regulates ATGL gene expression during adipogenesis via abolishing 

the inhibitory effect of SP1 (Kim et al., 2006; Roy et al., 2017). STAT5 is another positive 

transcriptional regulator of ATGL in adipose tissue in basal condition (Kaltenecker et al., 2017).  

It is shown that leptin4-induced lipolysis is accompanied by increased number of ATGL 

protein, as well as, increased lipid droplet-localization of ATGL, suggesting that leptin is a positive 

regulator of ATGL lipase activity (Koltes et al., 2017).  

However, starvation/fasting is a major factor that induces the upregulation of ATGL gene 

in adipose tissue, in order to promote lipolysis and provide energy for energy usage organs. It is 

well established that during fasting transcription of ATGL gene is induced by Forkhead O1 

(FoxO1) transcription factor (Chakrabarti and Kandror, 2009; Zhang et al., 2016). 

Forkhead subclass O transcription factor family are major regulators of body homeostasis 

and are involved in several biological processes such as apoptosis, autophagy, oxidative stress 

response, cell cycle, metabolism and immunity (Xing et al., 2018). In mammals, this family 

consists of 4 members: FoxO1 (FKHR), FoxO3a (FKHRL1), FoxO4 and FoxO6. FoxO1 and 

4 Leptin is an adiponectin secreted by adipose tissue. It works as an inhibitor of food intake and inducer of 
lipolysis. 
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FoxO3a are expressed in almost all tissues. FoxO4 has high expression in muscle, kidney and 

colorectal tissues. FoxO6 is primarily expressed in brain and liver. FoxO1 is considered as a 

representative member of the family, with essential transcriptional regulatory function. FOXO2 is 

identified as a homolog of FOXO3, and FOXO5 is only expressed in Danio rerio (FoxO3b). 

Drosophila carries only one FoxO gene, called dFoxO (Vihervaara and Puig, 2008). All FoxO 

molecules contain a forkhead domain (conserved DNA binding domain), nuclear localization 

signal (NLS), transactivation domain and nuclear export signal (NES) (Wang et al., 2014). 

Several molecules, factors, and pathways are involved in the regulation of FoxO 

transcription factor activities in response to a various stimulus or environmental changes, including 

PI3K/Akt, JNK, p300-CBP (HAT complex), sirtuins, ubiquitin E3 ligase, and micro-RNAs. These 

pathways and molecules can affect FoxO activity through regulation of its abundance, post-

translational modifications, nuclear-cytoplasmic shuttling, and subcellular localization. Variety of 

post-transcriptional modifications can occur on FoxO molecules, which lead to inhibition or 

induction of FoxO activity. Altogether, these post-modifications are called “FoxO code” and 

include phosphorylation, ubiquitination, acetylation/deacetylation, arginine methylation, and O-

GlcNAcylation (Brown and Webb, 2018; Xing et al., 2018).  

Akt is one of the major regulators of FoxO1 activity. In response to insulin signaling 

(nutrient abundance), Akt can phosphorylate FoxO1 molecule. This phosphorylation inhibits 

FoxO1 function by exporting and retaining it in the cytosol. Indeed, NES signal promotes cytosolic 

export of phosphorylated FoxO1. Afterward, phosphorylated FoxO1 is anchored in the cytosol by 

14-3-3 protein and ultimately will be degraded due to interaction with ubiquitin E3 ligase. Akt-

mediated phosphorylation of FoxO can be induced by insulin and insulin-like growth factor (IGF) 
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receptor/PI3K pathways. Conversely, PTEN mediates inhibition of Akt and results in subsequent 

activation of FoxO1 (Brown and Webb, 2018; Chakrabarti and Kandror, 2009).  

Regulation of FoxO1 through acetylation/deacetylation is more controversial. 

Interestingly, it is shown that both acetylation and deacetylation can activate FoxO function 

depending on the target gene, tissue, and environmental stimulus. In response to oxidative stress, 

CBP/p300 acetylates FoxO. Acetylation can be reversed by sirtuin, which is a NAD-dependent 

histone deacetylase (class III HDAC). SIRT1 is one of the regulators of longevity and homeostasis 

in response to caloric restriction. It is shown that deceased SIRT1 activity is associated with 

enhanced expression of PEPCK and IGFB1 (insulin-like growth factor binding protein 1) by FoxO. 

However, other studies have demonstrated that CBP-dependent acetylation of FoxO can inhibit its 

transcriptional activity in response to oxidative stress. Also, this repression can be alleviated by 

SIRT1 (Chakrabarti et al., 2011; Mihaylova et al., 2011). In addition, recently Lo et al. have 

discovered that SIRT1 activation results in activation of FoxO and subsequent induction of ATGL 

expression (lipolysis) through SIRT1/AMPK/FoxO1/ATGL pathway (Lo et al., 2019). 

Another study has shown that acetylation of FoxO3a decreases its transcriptional activity 

and nuclear localization in skeletal muscle. Indeed, skeletal muscles have basal FoxO activity. This 

activity is enhanced upon nutrient deprivation via HDAC1 and HDAC2 activity (Beharry et al., 

2014). 

Although some researchers have suggested that AMPK can positively regulate FoxO and 

therefore promotes lipolysis through PPAR-α/AMPK/FoxO1/ATGL pathway (Chen et al., 2012a) 

and SIRT1/AMPK/FoxO1/ATGL pathways (Lo et al., 2019), there are still some debates on how 
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AMPK affects FoxO function (Ahmadian et al., 2011; Chakrabarti et al., 2011; Daval et al., 2005; 

Gaidhu et al., 2009; Lo et al., 2019).  

1.3 Drosophila as a model organism 

1.3.1 Fat body  

In the past decades, Drosophila has emerged as an important animal model to study 

immunometabolism. In addition to some advantages that this model organism provides such as 

high fecundity, remarkable genetic toolboxes, and ease of culture, it is well known that 

fundamental components and protein domains, as well as the foundation of immune and metabolic 

pathway, are conserved between mammals and flies. For example, insulin and insulin-like peptide 

(IIS), and target of rapamycin (TOR) pathways are similar between flies and mammals (Galenza 

and Foley, 2019; Musselman and Kuhnlein, 2018). Also, Drosophila’s Toll and Imd immune 

pathways share striking similarities with mammalian innate immune signaling pathways (Buchon 

et al., 2014; Hultmark, 2003).  

Furthermore, insects possess a special tissue named fat body. Fat body in flies is equivalent 

to mammalian adipose tissue. Interestingly, this tissue also carries out some of the functions of 

vertebrate liver and immune system, and therefore, is involved in nutrient sensing, fat and glycogen 

storage, lipid metabolism and immune response. It is the main energy storage organ and provides 

a systemic immune response to pathogens by secreting antimicrobial peptides (AMPs). It can also 

sense different nutritional inputs (amino acids, lipids, glucose) and remotely control brain (Insulin-

producing cells, IPCs) by secreting fat body signals (FBSs) such as unpaired 2 (Upd2) and 

CCHamid-2 (CCHa2) and is considered as the major endocrine organ in flies. According to 
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changes in energy demands, this tissue can produce various proteins, lipids, and carbohydrates, 

synthesize or hydrolyze TAGs, trehalose, and glycogen.  In other words, this tissue has an 

integrated function of liver, adipose tissue and immune system before these systems have evolved 

into more complicated systems, and are assigned to more specified, complex organs in mammals 

(Arrese and Soulages, 2010; Li et al., 2019).  

Combining the features of the liver, immune system and adipose tissue, the fat body plays 

a crucial role in the coordination of metabolic and immune pathways in response to nutritional and 

immune inputs. Therefore, this tissue provides a unique model to study the integration and 

coordination of immune and metabolic pathways/systems in one relatively simple tissue compared 

to extremely complicated, multi-tissue system in mammals (Dionne, 2014; Musselman et al., 

2018).   

In adult flies, the fat body is located in the abdomen and head (Figure 1.4). Similar to 

mammalian adipocytes, the fat cells within the flies’ fat body are full of lipid droplets (LDs) under 

normal/fed conditions. Lipid droplets are dynamic organelles consist of a hydrophobic lipid core 

surrounded by a hydrophilic outer structure. Triglycerides (TAGs) are the main lipids in the 

hydrophobic core of LDs and are considered as the major source of energy storage in both flies 

and mammals. In addition to TAGs, ipid droplets contain other esterified lipids such as cholesterol. 

The outer hydrophobic layer is composed of a single layer of phospholipids, which is decorated 

by several lipid droplet-associated proteins. TAGs are not only the major form of stored lipids but 

also play an important role in whole-body functions by providing structural lipids and signaling 

ligands (like FFAs) (Arrese et al., 2014). It is shown that the proper metabolism of TAGs is 

required for oogenesis and embryogenesis of Drosophila. In larva and adult flies, TAG storage in 
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the fat body is the main source of energy during non-feeding stage/food scarcity (Canavoso et al., 

2001; Kuhnlein, 2012). Furthermore, the excessive carbon gained through food will turn into 

TAGs. This process prevents cytotoxicity imposed by lipotoxic or glucotoxic metabolic 

intermediates (Musselman et al., 2013; Zechner et al., 2017). The function and metabolism of 

TAGs are similar in Drosophila and mammals, therefore Drosophila has emerged as a useful 

model organism to study lipid metabolism.  

Figure 1.4 The location of the fat body in adult Drosophila.  (A) Schematic diagram of fat body, 
brain, heart and intestine in adult Drosophila. (B) Fat body-induced GFP in the right panel. A dissected fat body is 
shown at the top right of the panel. 

A

B
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1.3.2 Triglyceride metabolism in flies 

After a meal, dietary TAGs are digested to fatty acids in the midgut lumen of flies. 

Enterocytes can absorb fatty acid from the lumen. These cells also produce de-novo fatty acids 

from acety-CoA precursors. This lipogenesis process requires several enzymatic reactions. First, 

an enzyme called ACC converts acetyl-CoA to malonyl-CoA. Subsequently, malonyl-CoA 

produces fatty acid during a reaction mediated by FASN enzyme. In the enterocytes, the fatty acids 

from diet or de-novo synthesis turn into TAG or DAGs. TAGs play as energy storage in 

enterocytes and will be broken up to DAGs and fatty acid when required. DAGs are exported to 

the hemolymph in order to transport to other tissues such as fat body (Heier and Kuhnlein, 2018). 

Indeed, the majority of circulating lipids in flies are in the form of DAG and attached to Lpp 

(Drosophila lipoprotein) (Palm et al., 2012) .  

The fat body can perform both lipolysis and lipogenesis, according to nutritional condition. 

As mentioned before, TAGs in the fat body are packed into LDs. In Drosophila, several LD-

associated proteins have been reported to be involved in the regulation of TAG metabolism, 

including Brummer (Bmm), lipid storage droplet-1 (Lsd1 or PLIN1) and Lipid storage droplet-2 

(Lsd2 or PLIN 2) (both belong to perilipin family) (Arrese and Soulages, 2010).  

 It is shown that Plin1 and Plin2 play an opposite and redundant role in Drosophila 

lipolysis. Plin1 is mainly expressed in the fat body and typically is associated with enhanced 

lipolysis. More precisely, in large lipid droplets, Plin1 promotes lipolysis. Phosphorylation of Plin1 

stimulates lipolysis through AKH/AKHR/PKA pathway and, therefore promotes lipolysis by HSL. 

It is shown that mutation of Plin1 results in impaired lipolysis and promotes obesity. However, in 

small lipid droplets, it can prevent lipolysis. Plin 2 inhibits lipolysis mediated by Bmm. Therefore, 
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it promotes lipid accumulation. This protein is detected in the fat body during larval development 

and is required for the storage of fat (Bi et al., 2012).  

Brummer (Bmm) is the orthologue of mammalian ATGL and act as the major triglyceride 

lipase in both mammals and flies. It promotes lipolysis by hydrolyzing TAGs to DAGs and plays 

critical role in the regulation of systemic TAG levels in adult flies. It is shown that mutation of 

Bmm leads to impaired lipid homeostasis. Increases in Bmm/ATGL lead to increases in lipolysis 

and decreases in fat storage, and decreases in Bmm/ATGL limit lipolysis and lead to obesity 

(Gronke et al., 2005). Also, Bmm-HSL double mutant flies promotes obesity in flies (Gronke et 

al., 2005; Gronke et al., 2007). 

The DAGs produced by Bmm can be exported to peripheral tissues or undergo the second 

and third hydrolysis (possibly catalyzed by HSL) to produce more fatty acids and glycerol. Later 

on, fatty acids undergo β-oxidation to produce acetyl-CoA. β-oxidation of flies requires several 

enzymes such as Pdgy (activates FAs by adding CoA) and Yip2 (thiolase, acety-CoA 

acyltransferase). Acetyl-CoA then enters the citric acid cycle to produce NADH and FADH2.

Eventually, these coenzymes fuel electron chain in order to generate ATP required for 

physiological processes of cells. In addition to Bmm/ATGL and HSL flies have some proteins 

with predicted lipase activity such as Lip4 and CG5966. It is shown that these predicted lipases 

are expressed in the fat body. However, their physiological function and roles are not fully 

understood (Heier and Kuhnlein, 2018). 

Similar to mammals, TAG metabolism in flies is also regulated by hormonal pathways, 

including insulin and adipokinetic hormone (Akh). Drosophila carries several insulin-like peptides 

(Dilps). Dilps are produced by IPCs insulin-producing cells (IPCs) located in the brain (Figure 
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1.4) and can stimulate insulin receptor (InR). The insulin pathway is conserved between flies and 

mammals in both components and functions. Stimulation of InR by Dilps results to activation of 

PI3K92E (orthologue of mammalian PI3K), and subsequently activation of Akt1. Akt is involved 

in phosphorylation and regulation of several downstream proteins. One of the major targets of 

Akt1 is dFoxO transcription factor. Akt inhibits dFoxO function by phosphorylation and 

cytoplasmic retention of this TF, while insulin pathway is induced. Upon, starvation, when insulin 

signaling is reduced, the inhibitory effect of Akt on FoxO is removed, therefore, FoxO can 

translocate into the nucleus. As in mammals, FoxO can induce the expression of several metabolic 

genes in response to dietary deprivation, including Bmm/ATGL (Figure 1.5). This process allows 

the breakdown of TAGs to FFAs and DAGs. Fatty acids later undergo β- oxidation and eventually 

provide ATP for the organism (Varma et al., 2014; Vihervaara and Puig, 2008). 

Akh is a glucagon-like peptide in Drosophila and can stimulate lipolysis (TAG 

mobilization). Neuroendocrine cells in the corpora cardiaca5 (CC) secret this hormone to 

hemolymph (Kim and Rulifson, 2004; Park et al., 2011). Fat body cells carry G protein-coupled 

Akh receptors (AkhR). Activation of the AkhR receptor transfers the signal to the variety of 

downstream targets (transcription factors, kinases, and lipid droplet associated proteins) through 

G protein/cAMP/PKA pathway. This pathway is involved in the regulation of lipolysis by 

phosphorylation of Plin1 in flies. Phosphorylation of Plin1, in turn, facilitates the activity of HSL 

and results in the induction of lipolysis (Figure 1.6) (Lee et al., 2018b; Musselman and Kuhnlein, 

2018; Patel et al., 2005). 

5 Corpoa cardiaca (CC) consist of neuroendocrine cells and serve as functional orthologues of vertebrate 
pancreatic α-calls. It is involved in systemic glucose homeostasis.  
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AkhR can also, turn on PLC which results in increased Ca2+ through several enzymes and 

mediators. It has been shown that this increase in CA2+ promotes TAG hydrolysis by the 

mechanism that is not understood. It is known that knocking down the Akh or AkhR causes 

obesity. Double mutation of Bmm/ATGL and AkhR promotes extreme obesity and defective lipid 

mobilization. Therefore, AkhR and Bmm both can promote lipolysis by different mechanisms 

(Gronke et al., 2007; Sajwan et al., 2015). Notably, studies suggest that there are some interactions 

between Akh and insulin pathways (Kim and Neufeld, 2015; Rajan et al., 2017). Furthermore, Akh 

can regulate the expression of Bmm by removing the inhibitory effect of Sik3 on HDAC4, which 

allows the nuclear localization of HDAC4 (Choi et al., 2015). HDAC4 is the activator of FoxO 

transcription factor. Therefore, Akh stimulation can indirectly increase the expression of 

Bmm/ATGL in flies (Wang et al., 2011) (Figure 1.6).  

Figure 1.5 Regulation of Bmm/ATGL by insulin and FoxO. 
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Similar to mammals, high sugar diet leads to obesity and insulin resistance in Drosophila. 

During lipogenesis in fat body, the excessive dietary glucose can turn into acetyl- CoA that is the 

precursor of fatty acids and eventually produces TAG. This process protects flies against the 

harmful effect of excessive glucose (Musselman et al., 2013).  

In Drosophila adults and larva there are cluster and ribbons of oenocytes in-between fat 

boy cells. Oenocyts are involved in fatty acids and hydrocarbon metabolisms. In larva, the very-

long-fatty acids produced by oenocytes are required to waterproof the lining of tracheal. In adults, 

they are involved in desiccation resistance and pheromonal communications by producing 

cuticular hydrocarbons (Makki et al., 2014). Some studies suggest that oenocytes are hepatocyte-

like cells that are involved in the regulation of lipid mobilization under starvation, acting 

downstream of the fat body. Interestingly, these cells develop large lipid vesicles upon starvation 

or local activation of Bmm/ATGL-mediated lipolysis, while under the fed condition they are 

almost empty of lipids (Arquier and Leopold, 2007; Gutierrez et al., 2007; Makki et al., 2014).  

Figure 1.6 Hormonal regulation of TAG metabolism. 
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1.3.3 Innate immunity in flies 

As opposed to vertebrates that possess both innate and adaptive immunity, insects only rely 

on innate immunity to combat infection. In Drosophila, epithelia provide the first barrier against 

infection. Insects also have chitin (polymer of N-acetyl-glucosamine) based layer 

(exoskeleton/cuticle) that covers external surfaces of their body (including tracheal tubes, foregut, 

and hindgut) and provides the first physical protective barrier against microorganisms. The second 

layer of protection in epithelia is chemical barrier. In the digestive tract of Drosophila, reactive 

oxygen species (ROS) cooperate with antimicrobial peptides (AMPs) to eliminate infection.  The 

release of nucleotide uracil (U) by invading bacteria leads to induction of dual oxidase (DUOX) 

which is the first line of defense against enteric infection. DUOX is a member of NADPH oxidase 

family and can eliminate many of bacteria by producing microbicidal ROS (this process consumes 

NADPH). The basal levels of DUOX in gut kill yeast in the taken food while retaining the 

microbiota (Lemaitre and Hoffmann, 2007).  

Interestingly, it is shown that enteric infection induces a metabolic reprogramming in the 

intestine, promoting lipolysis and limiting lipogenesis. This infection-induced lipolysis provides 

NADPH required for sustained DUOX activity and therefore, allows maintaining the immune 

response in the gut during enteric infection (Lee et al., 2018a).  

Those microorganisms that overcome the epithelial barrier and enter the body cavity 

(hemocoel) encounter humoral and cellular immune responses.  The cellular response of insect 

includes phagocytosis, melanization, and coagulation. Drosophila contains three different cell type 

(hemocytes) involved in immunity: plasmocytes, crystal cells, and lamellocytes. All these cells 
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have functional and morphological characteristic similar to vertebrate myeloid lineage (Lemaitre 

and Hoffmann, 2007).  

Plasmatocytes are the majority of hemocytes (90-95%), they are round cells enriched in 

endoplasmic reticulum and lysosome. These cells are equivalent to mammalian macrophages and 

their major role in phagocytosis of dead cells, debris and invading pathogens. They are also 

involved in encapsulation and coagulation of foreign bodies (microbes) and produce AMPs (Gold 

and Bruckner, 2015). Furthermore, during infection, plasmatocytes can secrete Upd-3 (Drosophila 

cytokine implicated to septic injury) and therefore, activate JAK/STAT pathway, which is also 

linked to immune response against wasp infection (Dostert et al., 2005; Woodcock et al., 2015; 

Yang and Hultmark, 2017). 

Another mechanism of defense in flies is RNA interference. This pathway is involved in 

the antiviral immunity against double stranded RNA viruses. In this pathway, double-stranded 

viral RNA is first cleaved by Dicer-2, then loaded onto Argonaute (AGO2), and eventually, 

targeted to degradation. This pathway provides a specific response to viruses and is required for 

removing viruses. (Galiana-Arnoux et al., 2006) Interestingly, it is shown that in mosquitos the 

RNAi pathway can lead to production of Vago molecules. Vago in turn induces JAK/STAT 

pathway, through an unknown receptor, and provides immunity in un-infected cells by induction 

of Vir-1 and some other uncharacterized antiviral factors (Paradkar et al., 2012).   

Two major immune pathways conduct the humoral immunity of Drosophila: Imd and Toll 

(Figure 1.7). Induction of these pathways by various pathogens (gram-positive, gram-negative, or 

fungus) leads to activation of NF-κB transcription factors family. Drosophila genome encodes 

three NF-κB proteins. Dorsal, DIF (dorsal-related immunity factor) and Relish. All these proteins 



26 

contain a Rel homology domain (REL or RHD), which is conserved in mammals and flies, and 

Nuclear localization signal (NLS). Dif and Dorsal are 70kD proteins. Their REL homology domain 

has 45% similarities with their mammalian counterparts c-REL, Rel A, and Rel B (REL subfamily 

of NF-κB family) (Gilmore, 2006; Meng et al., 1999).  

Dif and Dorsal both are involved in Toll pathway and under normal conditions are retained 

in cytoplasm by a protein named Cactus. Cactus is a 54kDa protein carrying ankyrin inhibitory 

repeats and is the orthologue of mammalian IκBs (inhibitor of NF-κB). Relish is a 100 kDa protein. 

The C-terminal of Relish contains ankyrin repeats, REL-49, which is similar to cactus and 

mammalian IκBs and inhibits nuclear localization of N-terminal REL homology domain (REL-

68). Relish has the most similarities to mammalian p100 and p105 NF-κB family members (NF-

κB subfamily of NF-κB family) (Gilmore, 2006; Stoven et al., 2000). A proteolytic cleavage 

removes C-terminal and results in its activation of Relish upon infection (Hultmark, 2003).  

In non-infected cells, NF-κB TF family are retained in the cytosol by conserved ankyrin 

repeats (in cactus or Rel-49). Upon infection, degradation/cleavage of ankyrin repeats allows the 

release and nuclear translocation of NF-κB TFs. In the nucleus, NF-κB TFs induce transcription 

of multiple antimicrobial peptides (AMPs) (Hetru and Hoffmann, 2009). AMPs are secreted to 

hemolymph and play crucial role in host defense. Each organism has a repertoire of AMPs that 

may act on pathogen cell walls or intracellular compartments. Insects possess two major groups of 

AMPs: alpha-helical cecropin that fights against Gram-negative bacteria, and disulfide-bridge 

defensins that are effective on gram-positive bacteria. Drosophila melanogaster also produces 

drosomycin (Drs) which is an antifungal peptide (Lemaitre and Hoffmann, 2007).  
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In Drosophila, fungi and gram-positive bacteria (and gram-negative bacteria to a lower 

degree) activate Toll pathway (named after transmembrane receptor Toll) through spätzle cytokine 

(a neurotrophin-like cytokine that acts as Toll receptor ligand). Upon sensing nonself-components 

such as YS type peptidoglycan or β-glucan by peptidoglycan recognition receptors (PPARs), a 

protease cascade converts pro-spätzle to active spätzle that can bind to Toll receptor. Through 

several mediator/adaptors including MyD88, activation of Toll receptor leads to phosphorylation 

and degradation of Cactus inhibitory protein (homologous of mammalian IκB, NF-κB inhibitor). 

The degradation of cactus allows the Dif/Dorsal NF-κB transcription factor to translocate to the 

nucleus. In the nucleus Dif/Dorsal can bind to corresponding Dif/Dorsal target genes including 

drosomycin (Drs), defensin (Def) and several other AMPs and upregulate their transcription 

(Valanne et al., 2011) (Figure 1.7A).  

Imd pathway (named after immune deficiency (Imd) gene) is activated by gram-negative 

bacteria as well as some gram-positive bacteria. In this pathway, PGRPs (peptidoglycan 

recognition protein) can sense meso-diaminopimelic acid (DAP)-type peptidoglycan that presents 

in cell wall of the most gram-negative bacteria. PGRP-LC is a transmembrane receptor that senses 

poly peptidoglycans (poly PGN). While PGRP-LE is an intracellular receptor that can respond to 

monomeric peptidoglycan (Royet, 2004). PGRP receptors activation initiate the activation and 

nuclear localization of NF-κB Relish Transcription factor. This process involves several molecules 

such as immune deficiency (Imd) and Fas-associated protein with dead domain (FADD) mediators, 

dead –related ced-3/Nedd2-like (DREDD) caspase, TAK1 associated binding protein 1 (TAB2), 

transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) and inhibitor of κB kinase (IKK) 

complex/signalosome (Myllymaki et al., 2014).  
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PGRP receptors bind to Imd mediator upon infection. Imd is itself associated with FADD 

mediator and DREDD caspase. Dredd can cleave Imd. Then, the cleaved Imd promotes the 

recruitment of TAB1/TAK1 complex and activation of TAK1. In fact, Activation of TAK1 and 

IKK signalosome requires the activity of FADD and DREDD caspase. TAK1 (along with E3 

ubiquitin ligase Uev1A/Ubc13) activates IKK (IκB kinase) complex. IKK complex/signalosome 

consist of IKK-β (Ird5) which is a kinase, and its regulatory subunit, IKK-γ (Key or Kenny). IKK-

β (Ird5) promotes proteolytic cleavage of ankyrin repeats of NF-κB Relish by Dredd caspase, 

through phosphorylation of ankyrin repeats presents in inactive form of NF-κB Relish (Stoven et 

al., 2000). Cleaved NF-κB Relish (Rel-68) then can translocate into the nucleus, where it can bind 

to NF-κB response elements and induce the expression of several AMPs including diptericin (Dpt) 

and drosocin (Dro) (Myllymaki et al., 2014) (Figure 1.7B).  

Imd and Toll pathway are conserved and have remarkable similarities to mammalian 

TLR/IL-1R (interlukin-1 receptors) and TNFR (TNF-α receptor) pathways (Hetru and Hoffmann, 

2009).  

Fat body is defined as the main tissue secreting AMPs into hemolymph (systemic immune 

response) via activation of Imd and Toll pathways. However, Imd pathway is also described in 

other tissues such as gut, trachea, and brain. Activation of Dredd (independent of upstream 

signaling) in the brain, leads to Relish-mediated-AMP production that can be involved in 

neurodegeneration. In the gut, several negative regulators such as Pirk (interacts with the receptor 

and Imd) and Caudal (Cad, intestinal homeobox gene) prevent extensive activation of Imd pathway 

which might be mediated by gut microbiota. These negative regulators play an important role in 
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maintaining immune tolerance in the gut. However, pathogens are still capable of inducing Imd 

pathway due to producing more PGN (Kleino et al., 2008; Ryu et al., 2008).  

Figure 1.7 Innate immune signaling pathways in Drosophila. 

1.4 NF-κB signaling pathway 

1.4.1 An overview  

The NF-κB signaling pathway is the main regulator of innate immunity in both mammals 

and flies (Silverman and Maniatis, 2001). In addition to immune response, this pathway plays role 

in the regulation of different processes such as promotion of cell proliferation, inhibition of 

apoptosis, cell migration and invasion, and metabolism (Gilmore, 2006).  

Mammalian genomes carry five different NF-κB proteins: RelA (p65), RelB, c-Rel, NF-

κB1 (p105/p50) and NF-κB2 (p100/p52) (Tieri et al., 2012). Drosophila genome encodes only 3 
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types of NF-κB molecules: Relish, Dorsal and Dif. Relish has similarities to mammalian p105 and 

p100. Indeed, they all carry ankyrin inhibitory repeats and undergo a proteolytic cleavage prior to 

nuclear localization. While Dorsal/Dif shares more similarities with RelA (p65), RelB, c-Rel. All 

NF-κB molecules carry conserved Rel-homology domain which is required for DNA binding and 

dimerization (Hetru and Hoffmann, 2009). These molecules can shape varieties of dimers. 

However, the most common type of dimers in mammals are p50/RelA and p52/RelB (Gilmore and 

Wolenski, 2012). 

NF-κB pathway can be induced by several stimuli such as bacteria, viruses, oxidative stress 

(ozone, hydrogen peroxide, butyl peroxide), physical stress, physiological stress (hyperglycemia, 

hyperoxia), cytokines, physiological mediators (L-glutamate, lysophosphatidylcholine), DNA 

damage, and growth factors. NF-κB transcription factors have more than 150 target genes 

including cytokines, chemokines, antioxidant and stress response genes, immune receptors and 

growth factors (Pahl, 1999; Tieri et al., 2012). However, clearly, not all of these genes are 

expressed in all cells. This can be due to combinatorial response of promoter/enhancer regions as 

well as selective activation/dimerization and binding of NF-κB proteins. In addition, other factors 

and regulators such as TFs and epigenetic modifications assist NF-κB in the regulation of genes. 

Regulation of many of NF-κB target genes requires the collaboration of NF-κB with another 

transcription factor. Several studies have reported co-regulation of NF-κB target genes with STAT, 

AP1, and IRFs (Grivennikov and Karin, 2010; Oeckinghaus et al., 2011; Zhong et al., 2006).  

Induction of pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) by 

different NF-κB ligands leads to the activation of NF-κB signaling pathway. For example, LPS of 

gram-negative bacteria can activate TLR4, which is a receptor involved in NF-κB classical 
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pathway. This signal is transferred to IKK complex through several mediators including MyD88. 

IKK complex consists of three subunits: IKKα and IKKβ are regulatory subunits, while IKKγ (also 

known as NEMO) serves as catabolic subunits and has protein phosphorylation activity. IKK (IκB 

kinase) activates NF-κB TFs by phosphorylation of IκB α inhibitory protein (containing Ankyrin 

repeats). This phosphorylation leads to degradation of IkB α protein and therefore, allows the 

release and nuclear translocation of NF-κB TF (Gilmore and Wolenski, 2012)(Figure 1.8). 

Figure 1.8 Classical NF-κB signaling pathway in mammals. 

1.4.2 NF-κB signaling pathway and metabolism 

An overwhelming number of studies have demonstrated that NF-κB pathway can affect 

metabolism in both health and disease condition. Most of the reported cases are through the role 
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of NF-κB in the inflammation and insulin resistance (Baker et al., 2011; Tornatore et al., 2012). 

However, recently, more direct mechanisms of the interaction of NF-κB pathway and metabolic 

system have reported. Some of these studies are discussed here. 

Insulin resistance: NF-κB pathway can act as a nutritional sensor. Induction of NF-κB 

pathway by fatty acids, chronic overnutrition or high sugar diet, IL-1, TNF-α, or LPS lead to the 

expression of inflammatory cytokines including TNF-α and IL-6. These inflammatory cytokines 

then reduce insulin sensitivity by phosphorylation of insulin receptor (IRS) (Tornatore et al., 

2012).  Additionally, IL-6 can decrease the expression of glucose transporter- 4 (GLUT-4) and 

IRS-1 through activation of JAK-STAT signaling pathway (a cytokine-activated pathway involved 

in cell proliferation, differentiation, and apoptosis). This decrease leads to less sensitivity to 

insulin. Also, in muscle IL-6 can induce the expression of TLR-4 which is the receptor involved 

in the NF-κB pathway (Chen et al., 2015; Henstridge et al., 2012; Kim et al., 2013; Lukic et al., 

2014). 

Toll-like receptors (TLRs) play an important role in obesity- and diet-induced insulin 

resistance. These upstream receptors of NF-κB signaling pathway can be activated by several 

ligands including pattern-associated molecular receptors (PAMPs), endogenous ligands (saturated 

fatty acids, Ox-LDL) and LPS. Induction of TLR4 with fatty acids has been linked to insulin 

resistance-associated inflammation. This effect is through increasing the expression of IKKβ (IĸB 

kinase), NF-κB TFs and pro-inflammatory mediators such as MCP1, IL-6, and IL-1β in adipose 

tissue macrophages. These changes lead to induction of M1 macrophages phenotype and 

eventually development of insulin resistance. The increased levels of TLR4 and TLR2 mRNA as 
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well as increased TLR4 signaling has been reported in obesity and type 2 diabetes (Jialal et al., 

2014; Lee et al., 2003; Yin et al., 2014) 

Similar to mammals, Drosophila can develop both systemic and tissue-specific insulin 

resistance in response to high sugar diet (HSD). In both mammals and flies, obesity-induced 

insulin resistance leads to more infection susceptibility. This effect in Drosophila is associated 

with regulation of insulin receptor (InR) in the fat body. Activation of insulin signaling can reduce 

immune response (AMP gene expression), while the host resistance and expression of immune 

genes are increased upon insulin signaling inactivation (Musselman et al., 2018).  

Studies in Drosophila have linked insulin resistance to Imd/Relish pathway. 

Downregulation of PGRP-SB2 (negative regulator of Imd/Relish pathway) in the fat body can 

protect flies against obesity-induced insulin resistance (Musselman et al., 2017, 2018).  

Mitochondrial function: Several studies have linked NF-κB to metabolism through 

regulation of mitochondrial function. Indeed, NF-κB plays role in creating a balance between 

glycolysis and oxidative phosphorylation. Interestingly, a crosstalk between NF-κB and p53 in the 

context of metabolism in cancer cells has been reported. For example, it is shown that NF-κB can 

upregulate expression of synthesis of cytochrome c oxidase 2 (SCO2), a subunit of complex IV of 

the electron chain in mitochondria. This upregulation stimulates mitochondrial respiration (Mauro 

et al., 2011). However, in P53 deficient cells, NF-κB facilitates glycolysis through induction of 

GLUT3 (SLC2A3). GLUT3 expression leads to enhanced glucose uptake and glycolytic flux. It 
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also inhibits oxidative phosphorylation and promotes the development of Warburg effect6. In 

addition, during a positive feedback loop, produced O-linked β-N-acetyl glucosamine activates 

IKKβ/NF-κB pathway (Johnson and Perkins, 2012; Johnson et al., 2011; Mauro et al., 2011).  

In the context of cancer, NF-κB also is linked to cachexia. Cancer cachexia is a 

multifactorial wasting syndrome characterized by anorexia and weight loss. It is shown that 

attenuation of NF-κB activity ameliorates cachexia in cancerous mice by decreasing IL-6 and 

TNF-α activity (Kuroda et al., 2007; Zhou et al., 2003). 

NF-κB and lipid metabolism: NF-κB is involved in the regulation of lipid metabolism 

through its effect on PPAR-γ7. NF-κB can inhibit PPAR-γ activity through several mechanisms. It 

is shown that chronic activation of NF-κB results in suppression of expression of PPAR-γ gene 

(decreased transcription) (Nunn et al., 2007). On the other hand, acute activation of NF-κB leads 

to activation of TNF-α which in turn inhibits PPAR-γ transcriptional activity by recruiting HDAC3 

to the nucleus. HDAC3 is one of the co-repressors of PPAR-γ transcriptional activity. Therefore, 

translocation of HDAC3 can decrease the function of this PPAR-γ without affecting its DNA 

binding affinity (Gao et al., 2006). Additionally, fatty acids can modulate NF-κB pathway through 

TLR 2 and TLR4 receptors (Lee et al., 2003; Yin et al., 2014). 

6 Warburg effect is the usage of glycolysis (glucose fermentation/anaerobic metabolism) to produce energy 
(even when oxygen is available) rather than oxidative phosphorylation which is used by other normal cells. Indeed, 
this seems to favor and provide benefits for the development of cancer.  

7 PPAR-γ is linked to adipocyte differentiation and hypertrophy as well as glucose and lipid metabolic 
disorders in cancer and inflammation conditions. This nuclear receptor decreases the production of pro-inflammatory 
cytokines and NFkB transcriptional activity. It also, can increase the expression of IRS proteins, therefore, limits 
inflammation and improve insulin sensitivity.  
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1.4.3 NF-κB and regulation of gene expression 

NF-κB transcription factors are involved in both activation and repression of genes. More 

than 150 target genes are reported for NF-κB transcription factors. In addition to direct regulation 

of the genes, these TFs can also affect expression of more genes through crosstalk with other 

pathways and signaling molecules. Also, combinatorial regulation of genes with other TFs are 

reported. For example, it is shown that NF-κB pathway can interaction with STAT3, p53, IRF, 

NRF2, JNK, WNT, and notch (Oeckinghaus et al., 2011). These crosstalk and co-regulations allow 

more complex and precise regulation of genes in different cell types and tissues according to 

different inputs, and create a complex NF-κB interactome (Oeckinghaus et al., 2011; Taniguchi 

and Karin, 2018; Tieri et al., 2012).  

NF-κB TFs also contribute to the regulation of the genes via expression or repression of 

miRNAs (Boldin and Baltimore, 2012; Mann et al., 2017; Markopoulos et al., 2018). This effect 

on miRNA levels can be direct or indirect (through induction of other inhibitors). For example, it 

is shown that NF-κB can regulate expression of let-7 miRNA (inhibitor of IL-6 mRNA) indirectly 

through expression of Lin-28B. Lin-28B is an inhibitor of Let-7 expression. It can also regulate 

Let-7 at posttranscriptional level (Iliopoulos et al., 2009).  

Another level of complexity of NF-κB interactome has arisen from recruitment and 

utilization of coactivators and corepressors. These coregulators of transcription are molecules that 

lack DNA-binding activity/specificity. Therefore, they need to bind to special chromatin 

modifications or transcription factors or other regulatory proteins in order to play their role in the 

regulation of the target genes. Several coactivators and corepressors assist NF-κB in the regulation 

of different genes.  Examples of coactivators are P300/CBP, p/CA and p160 proteins (SRC 1-3). 
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These coactivators facilitate transcription by opening chromatin structure, which is induced by 

their histone acetylation activity. It is known that acetylation of histones is associated with open 

chromatin and increased expression of the genes (Gao et al., 2005).  

Amongst co-repressors there are HDAC1-3 (class I histone deacetylases), SMRT and 

NCoR. These corepressors can shape different complexes such as HDAC1/SMRT and 

HDAC3/NCoR. In flies, SMRTER (EcR-interacting protein) is functional homolog of vertebrates 

SMRT and NCor co-repressors. SMRTER forms a complex with Sin3A repressor, which in turn 

interacts with Rpd3 (HDAC1). These co-repressors are involved in the repression of NF-κB target 

genes through catalyzing histone deacetylation at regulatory regions of genome (Ashburner et al., 

2001).  

In contrast to histone acetylation, non-acetylated histones are representative of compact 

regions of genome with none or less transcription. Furthermore, these regions are usually 

characterized by DNA hyper-methylation (epigenetic mark involved in regulation of genes) at 

CpG islands too (Gao et al., 2005; Guzik and Cosentino, 2018; Shakespear et al., 2011). 

Notably, in addition to histones, some non-histone proteins are the targets of HDACs. 

Several studies have shown that HDACs are involved in the regulation of immune and metabolic 

pathways (Shakespear et al., 2011; Toubal et al., 2013). For example, HDAC2 and HADC3 are 

reported to be involved in the regulation of inflammatory genes. Indeed, HADC3 contributes to 

the expression of inflammatory cytokines in macrophages. It is shown that HDAC3-deficient 

macrophages are unable to induce some of inflammatory cytokines. This effect is due to loss of 

expression of IFN-β (Chen et al., 2012b). In contrast, HDAC2 (recruited by Tet2) acts as a 

repressor of inflammation via inhibiting IL-6 pro-inflammatory cytokine (Zhang et al., 2015). 
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Interestingly, a study in mouse using NF-κB p65 mutant (carrying alanine instead of serine 

at position 276) has shown that unphosphorylated NF-κB p65 contributes to the repression of the 

genes that are not normally regulated by this transcription factor. In fact, this unphosphorylated 

NF-κB binds to NF-κB binding motif and recruits HDAC3 instead of CBP/p300, which results in 

the direct repression of NF-κB target genes as well as, epigenetically repression of some other 

genes, such as pax6 (Dong et al., 2008).  

Related to infection, it is shown that NF-κB is involved in the HDACs-dependent 

repression of mir-424 and mir-503 in response to microbial challenge. Upon C. parvum infection, 

NF-κB and HDAC1/2 are recruited to the promoter region of mir-424 and mir-503. This results in 

a decrease in histone acetylation and therefore, decrease in the expression of these genes (Zhou et 

al., 2013).  

Another example of NF-κB/HDAC1-dependent repression is reported in IL-1β-mediated 

repression of gastrin, which is an acid modifying hormone in the intestine.  In IL-1β-untreated 

AGS cell (human gastric cancer cell line), NF-κB (p50/p65 dimer) can activate the expression of 

gastrin by recruitment of p300 coactivator. However, after IL-1β treatment, NF-κB inhibits 

expression of gastrin by recruiting HDAC1/NcoR corepressors rather than p300 (Datta De et al., 

2013).  

Recruitment of HDACs in order to repress the expression of NF-κB target genes might be 

indirect and through other factors. For example, in Drosophila it is shown that pickle (an IκB 

protein) can bind to Relish homodimer at the promoter region of some immune genes and repress 

their expression by recruiting HDAC1(upd3). This inhibitory effect of pickle on immune genes is 
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important in maintaining proper immune response in the gut while preventing the over-activation 

of immune genes which might be harmful for the organism (Morris et al., 2016).  

Similarly, in mammals it is reported that IĸBα (an upstream component of NF-κB pathway) 

can mediate translocation of HDAC3 in response to TNF-α induction. This recruitment of HDAC3 

inhibits the transcriptional activity of PPARɣ without affecting its DNA binding affinity (Gao et 

al., 2006).  

Notably, it has been shown that different genes are regulated by different corepressors or 

coactivators and not all factors are involved in the regulation of a single gene. In addition, 

corepressors and coactivators might be recruited to promoter simultaneously and in oscillation 

trend. Furthermore, the repression of genes by transcription factors is context-dependent. This 

allows the precise and specific regulation of NF-κB target genes in different tissues (van Dijk et 

al., 2017). 

1.5 Summary 

Starvation and infection are two primitive challenges in multicellular organisms. In order 

to combat these ancient stressors, organisms have developed integrated and co-regulated innate 

immune and metabolic signaling pathways. The crosstalk between these systems is vital to 

maintain homeostasis while encountering different immune or metabolic stressors. While these 

pathways share regulatory axes and nodes in order to coordinate their responses, misregulation of 

these pathways arisen from over-nutrition or mutation may lead to the development of pathologies 

such as systemic inflammation, obesity, insulin resistance, and fatty liver.  
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Many studies have linked NF-κB signaling pathway, the main regulator of innate immunity 

in both mammals and flies, to metabolism, particularly through its role in inflammation. In 

addition, recently, some studies provide more evidence on the more intimate relationship and direct 

regulation of metabolic genes by NF-κB transcription factors, such as its role in regulation of 

GLUT3 and SCO2. Altogether, these studies provide evidence that NF-κB serves as a central node 

in the bidirectional communication of innate immune and metabolic pathways. Therefore, there is 

a critical need to further uncover tissue and cell-autonomous mechanism by which NF-κB may 

affect metabolic homeostasis.  

However, due to the extreme complexity of immune and metabolic pathways, uncovering 

the underlying mechanism is difficult in mammals. Herein, Drosophila melanogaster has emerged 

as an invaluable model organism to study the integration of innate immune and metabolic systems. 

While innate immune and metabolic pathways are more primitive in flies compared to mammals, 

they still share conserved fundamental components and domains. Furthermore, fat body 

(equivalent to mammalian adipose tissue and liver) in Drosophila carries on both innate immune 

and metabolic function. Therefore, this tissue provides a unique model to study the integration of 

these pathways.  

My research aimed to first, explore the effect of NF-κB on lipid homeostasis, and 

subsequently, uncover the potential tissue and cell-autonomous mechanism of this effect. 

Uncovering this effect and mechanism will help us to better understand the underlying mechanism 

of NF-κB-associated disease, and eventually, will open new avenues for innovation of medications 

aimed to target proper molecules in order to cure these disorders. 
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2. MATERIALS AND METHODS8

2.1 Drosophila Husbandry and Strains 

A detailed list of fly strains used for these studies is provided in Table 2.1. All flies were 

reared on standard yeast and cornmeal-based diet at 25°C and 65% humidity on a 12 hr light/dark 

cycle, unless otherwise indicated. A standard lab diet (cornmeal-based) for rearing was made with 

the following protocol: 14g Agar/165.4g Malt Extract/ 41.4g Dry yeast/ 78.2g Cornmeal/ 4.7ml 

propionic acid/ 3g Methyl 4-Hydroxybenzoate/ 1.5L water. 

In order to standardize metabolic results, 2-3 days after eclosion, mated adult flies were 

placed on a simple sugar-yeast (SY) diet for 5 days. The standard SY diet was made with the 

following protocol: 1.0g agar/10g sucrose/ 10g yeast/ 0.3 ml propionic acid/ 100 ml water/ 1.5 mL 

Methyl 4-Hydroxybenzoate. Ingredients were combined, heated to at least 102°C, and cooled 

before pouring. The high sugar diet (Figure 3.2B) was prepared as follows: 1.5 g agar/30 g 

sucrose/10 g yeast/0.3 ml propionic acid/100 ml water. 

For RU486 food, RU486 or vehicle (ethanol 80%) was mixed with food (SY diet), resulting 

in a 200 uM concentration of RU486 in the food, unless otherwise indicated. 

All experiments presented in the results were done utilizing female flies 7 days old post-

eclosion (following dietary protocol referenced above) with the exception of data from males (also 

7 days old post-eclosion) presented in Figure 3.7. 

8 Reprinted with permission from Molaei, M., C. Vandehoef, and J. Karpac, "NF-kappaB Shapes 
Metabolic Adaptation by Attenuating Foxo-Mediated Lipolysis in Drosophila." Dev Cell, 2019. 49(5): p. 802-810 
e6. Copyright 2019 Elsevier. 
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The UAS-RelishRNAi (both trangenic lines), UAS-FoxORNAi, UAS-KennyRNAi, UAS-

DreddRNAi, UAS-BmmRNAi, UAS-PGRP-LCRNAi, UAS-PGRP-LERNAi, CGGal4, PplGal4, and 

HmlGal4 lines used throughout the paper were backcrossed 8-10X into the w1118 background that 

was used as a control strain. The ebony mutation/marker eS was removed from the relE20 mutant 

background, with the relE20 mutation finally outcrossed into a wild-type (OreR) background.  

The efficiency of transgenic RNAi lines UAS-RelishRNAi (VDRC: 108469 (KK) and 

VDRC: 49413 (GD)), UAS-KennyRNAi (VDRC: 7723 (GD)) and UAS-DreddRNAi (VDRC: 104726 

(KK)) were confirmed in this study. The efficiency of transgenic RNAi lines UAS-FoxORNAi 

(VDRC: 106097 (KK)), UAS-BmmRNAi (VDRC: 37877 (GD)), UAS-PGRP-LCRNAi (VDRC: 

101636 (KK)), UAS-PGRP-LERNAi (VDRC: 23664 (GD)), and UAS-Rpd3RNAi (TRiP: 36800) 

were confirmed in previous studies.  

Table 2.1 The list of fly lines used in this study 
Fly Line Source Identifier 
D. melanogaster:  w1118 Bloomington 

Drosophila Stock 
Center 

BDSC: 3605; FlyBase: 
FBst0003605 

D. melanogaster:  w*; P{ppl-GAL4.P}2 Bloomington 
Drosophila Stock 
Center 

BDSC: 58768; FlyBase: 
FBst0058768 

D. melanogaster: UAS- luciferase RNAi 
(y1v1; P{TRiP.JF01355}attP2) 

Bloomington 
Drosophila Stock 
Center 

BDSC: 31603; FlyBase: 
FBst0031603 

D. melanogaster: w*;; FoxOΔ94/TM6B, Tb1
(w1118; FoxOΔ94/TM6B, Tb1)

Bloomington 
Drosophila Stock 
Center 

BDSC: 42220; 
FlyBase: FBst0042220 

D. melanogaster:  UAS-FoxO RNAi
(y1w*; P{KK108485}VIE-260B)

Vienna Drosophila 
RNAi Center 

VDRC: 106097; FlyBase: 
FBst0477923 

D. melanogaster: w*; P{CG-GAL4.A} (Hennig et al., 2006) N/A 
w*;; relE20, es Bloomington 

Drosophila Stock 
Center 

BDSC: 9457; 
FlyBase: FBst0009457 

D. melanogaster:  w-; UAS-Relish
(w1118; P{UAS-Rel.His6}2; l(3)**/TM3, Sb1)

Bloomington 
Drosophila Stock 
Center 

BDSC: 9459; 
FlyBase: FBst0009459 

w-;; FoxOw24 / TM3 (Weber et al., 2005) N/A 
y1w-; TubGeneSwitch/ CyO (Sykiotis and 

Bohmann, 2008) 
N/A 

http://flybase.org/reports/FBti0163688.html
http://flybase.org/reports/FBal0018607.html
http://flybase.org/reports/FBal0018607.html
http://flybase.org/reports/FBti0130444.html
http://flybase.org/reports/FBal0018607.html
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Table 2.1 Continued 

Fly Line Source Identifier 
w*; UAS FLAG-Rel 68 
(w*; P{UAS-FLAG-Rel.68}i21-B; TM2/TM6C, Sb1) 

Bloomington 
Drosophila Stock 
Center 

BDSC: 55778; 
FlyBase: FBst0055778 

D. melanogaster: UAS-Bmm RNAi (GD)
(w*; P{GD5139}v37877)

Vienna Drosophila 
RNAi Center 

VDRC:37877; 
FlyBase: FBst0462214 

D. melanogaster: UAS-Key RNAi (GD)
(w*; P{GD1249}v7723)

Vienna Drosophila 
RNAi Center 

VDRC:7723; 
FlyBase: FBst0470808 

D. melanogaster: UAS-Dredd RNAi (KK)
(P{KK110428}VIE-260B)

Vienna Drosophila 
RNAi Center 

VDRC: 104726; 
FlyBase: FBst0476565 

D. melanogaster: UAS-Rel RNAi (GD)
(w*; P{GD1199}v49413)

Vienna Drosophila 
RNAi Center 

VDRC:49413; 
FlyBase:FBst0468440 

D. melanogaster: UAS-Rel RNAi (KK)
(w*; P{KK109851}VIE-260B)

Vienna Drosophila 
RNAi Center 

VDRC: 108469; 
FlyBase: FBst0480279 

D. melanogaster: UAS-Rpd3 RNAi
(y1 sc* v1; P{TRiP.GL01005}attP40) 

Bloomington 
Drosophila Stock 
Center 

BDSC: 36800; 
FlyBase: FBst0036800 

OreR (Oregon-R-C) Bloomington 
Drosophila Stock 
Center 

BDSC: 5 

w1118; Bmm_Int_Δ1-RFP This study N/A 
w1118; Bmm_Int_WT-RFP This study N/A 
D. melanogaster: UAS-PGRL-LC RNAi (KK)
(P{KK105287}VIE-260B)

Vienna Drosophila 
RNAi Center 

VDRC: 101636; 
FlyBase: FBst0473509 

D. melanogaster: UAS-PGRL-LE RNAi (GD)
(w1118; P{GD14089}v23664)

Vienna Drosophila 
RNAi Center 

VDRC: 23664; 
FlyBase: FBst0455134 

D. melanogaster: UAS-Sir2 RNAi (GD)
(w1118; P{GD11580}v23201)

Vienna Drosophila 
RNAi Center 

VDRC: 23201; 
FlyBase: FBst0454875 

D. melanogaster: UAS-AMPKalpha RNAi (GD)
(w1118; P{GD736}v1827)

Vienna Drosophila 
RNAi Center 

VDRC:1827; 
FlyBase: FBst0453086 

D. melanogaster: w*; Hml-Gal4 (Delta)
(w1118; P{Hml-GAL4.Δ}2)

Bloomington 
Drosophila Stock 
Center 

BDSC: 30139;  
FlyBase: FBst0030139 

2.2 Generation of Transgenic Flies 

To create transgenic flies carrying Brummer/NF-κB expression reporters (Bmm_Int_WT-

RFP and Bmm_Int_Δ1-RFP), 300 bp of Bmm/ATGL locus containing κB binding site was 

selected. The DNA fragment carrying wild-type or mutated (6 bp deletion) κB binding site were 

synthesized using gBlock technology (Integrated DNA Technology) and cloned into a ϕ31-based 

http://flybase.org/reports/FBal0018186.html
http://flybase.org/reports/FBti0092736.html
http://flybase.org/reports/FBal0018186.html
http://flybase.org/reports/FBti0082250.html
http://flybase.org/reports/FBal0018607.html
http://flybase.org/reports/FBal0017656.html
http://flybase.org/reports/FBti0146548.html
http://flybase.org/reports/FBti0084051.html
http://flybase.org/reports/FBti0080887.html
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DsRed (Chatterjee and Bohmann, 2012).T4 plasmid reporter system. Finally, the constructs were 

injected into w-, attP40 embryos (Rainbow Transgenic Flies, Inc) (Table 2.5). 

Bmm/ATGL intronic region containing wild type κB binding site: 

GCATGCACGCATTGAATTGAATTTTATTGATAAGCTTGTTTGCGTTTGTAGGT

CGCTAGGAAGTCAATGGGGATCTTTCATAATTGACTGCGATAGTGTGTGTGTGTTTT

TGGGCGTGTTTGTCCAATTTCGAAGGGGGCTCGTCCCATCCGCTCAAAAGAAAACTG

CGGCGCAGTTGAAAAACCTTACGAAAACAGAAAAACAAGTTTCGTATGCCCGGGAC

AACGCACTTTTGTAAAGCGGCACCCGAATATATGGGCAAATGGTTGGGCACAGCGG

TGGGTATATGAATAGCAACGCAGTCCGAAAACATTTCATCAAACTCGAG 

Bmm/ATGL intronic region containing mutant κB binding site: 

GCATGCACGCATTGAATTGAATTTTATTGATAAGCTTGTTTGCGTTTGTAGGT

CGCTAGGAAGTCAATGTTTCATAATTGACTGCGATAGTGTGTGTGTGTTTTTGGGCG

TGTTTGTCCAATTTCGAAGGGGGCTCGTCCCATCCGCTCAAAAGAAAACTGCGGCGC

AGTTGAAAAACCTTACGAAAACAGAAAAACAAGTTTCGTATGCCCGGGACAACGCA

CTTTTGTAAAGCGGCACCCGAATATATGGGCAAATGGTTGGGCACAGCGGTGGGTA

TATGAATAGCAACGCAGTCCGAAAACATTTCATCAAACTCGAG 

2.3 de novo Lipid Synthesis Analysis 

After 5 days of feeding on standard diet, 200 female flies were transferred to a bottle 

containing standard diet with 2µCi of 14C-labeled glucose (thatched into the top of food). After 1.5 

hrs or 16 hrs feeding, total lipid was extracted from 5 flies for each sample (Fed samples). The 
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other half were transferred to starvation vials (water only) and total lipids were extracted 

immediately after 12 hrs of fasting (Fasted samples). For extraction of total lipids, 5 flies for each 

sample were homogenized in 2 ml Folch reagent (CHCl3: MeOH 1:1 v/v). Then, 0.4 mL of cold 

0.1 M KCl was added, thoroughly mixed by 1 min vortexing and then spun down at 3000 rpm, 

4°C for 5 min. The lower phase was transferred to a glass tube and dried down. Dried lipids were 

re-suspended in 3 ml of scintillation fluid and CPM was counted using a liquid scintillation 

analyzer (Packard- 2500 TR). Fed samples were indicative of the rate of incorporation of glucose 

into lipids and Fasted samples were indicative of the breakdown of the labeled lipids. 

2.4 Analysis of Gene Expression 

Total RNA from the whole bodies or dissected fat body/carcass (with all of the eggs and 

intestines removed) of flies were extracted using Trizol and complementary DNAs were 

synthesized using Superscript III (Invitrogen). Quantitative Real-Time PCR (qRT-PCR) was 

performed using SYBR Green, the Applied Biosystems StepOnePlus Real-Time PCR system, and 

the primer sets described in Table 2.2. Results are the average ± standard error of at least three 

independent biological samples, and quantification of gene expression levels calculated using the 

ΔCt method and normalized to actin5C expression levels. 

2.5 Metabolite Measurements 

For triglyceride (TAG) assays, five beheaded adult females were homogenized in 200 µl 

of PBST (PBS, 0.1% Tween 20) and heated at 70°C for 5 min to inactivate endogenous enzymes.  

Samples were centrifuged at 4000 rpm for 3 min at 4 °C and 10 uL of the cleared extract were 
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used to measure triglycerides (StanBio Liquicolor Triglycerides Kit) or protein concentrations 

(Bio-Rad Protein Assay Kit) according to the manufacturer instructions. TAG levels were 

normalized to weight or protein levels depending on genotype (some genotyped reveal drastic 

changes in wet weight after starvation that limits interpretation of normalized metabolite data). 

Note: The kit measures glycerol cleaved from TAG and diacylglycerol (DAG), as well as minimal 

amounts of free glycerol; the majority of neutral lipids extracted from whole flies are TAG. 

The levels of free fatty acids (FFAs) were measured using the  Free Fatty Acid 

Quantification Kit (Sigma-Aldrich), following the manufacturer’s instruction. Metabolite samples 

preparation was the same as described for TAG measurements.  

Table 2.2 List of primer used in qRT-PCR 
Gene Forward Reverse 

Relish CATCAGGAGACAGAGCGTGA CCGACTTGCGGTTATTGATT 
Kenny TGACAAGGTCAACCAAACCA CCTGCTCCTTTAGCCTGATG 
Dredd CAGGAGATCCACTTCGCTTC CGACTGCTGGTTATCCGATT 
Brummer CAATAAGGGTCTGGCCAACTGGAT TAAGTCCTCCACCATTACTCTGGC 
dHSL ATGAGTGGCTTTCCCAACTG CATGGCTTCGTTGGATAACA 
dLip4  TGGATAGCTCAGCCACTT GCGGGTATATCATGCTTTCC 
CG5966 CTGCAATCACATTCGCAGTC TGCTCCTGGTAATCCTCCTG 
YIP2 CGGTCTTAAGGGTGAGCAA ACATTACGGGCAATGAAAGG 
dACC CTATCGCTATGGTTACCTGCCGTA AACATGATCTGTGTGCCACCCAA 
dFASN1 TGATGGCCGGTATTCTGGAAGAGA ATTGCTCATCAGCTCAGCGAACCT 
Dipt TTCATTGGACTGGCTTGTGCCTTC TGAGGCTCAGATCGAATCCTTGCT 
Drs AAGTACTTGGCCCTCTTCGCT TCCTTCGCACCAGCACTTCAGACT 

FoxO TCTCGCCGAACTCAGTAACC CCTCCAGGCATTGTCCTATC 

Thor CACTTGCGGAAGGGAGTACG TAGCGAACAGCCAACGGTG 

Actin5c CTCGCCACTTGCGTTTACAGT TCCATATCGTCCCAGTTGGTC 
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2.6 Oil Red O staining 

Intestines and fat body/carcasses (with all of the eggs and intestines removed) of flies were 

dissected in PBS and fixed in 4% paraformaldehyde for 20 min, then washed twice with PBS, 

incubated for 20 min in fresh Oil Red O solution (6 ml of 0.1% Oil Red O in isopropanol and 4 ml 

distilled water, and passed through a 0.45 µm syringe), followed by rinsing with distilled water. 

Bright-field images were collected using a Leica M165 FluoCombi stereoscope system (utilizing 

a single focal plane) and processed using Leica software and Adobe Photoshop. Note: Contrast 

(red – neutral lipids vs. yellow/black – cuticle) was enhanced using Adobe Photoshop (equal for 

all images) in order to better visualize the red stain. 

2.7 Nile Red staining 

Fat body/carcasses were dissected in PBS (with all of the eggs and intact intestines 

removed) and fixed in 4% paraformaldehyde for 20 min. Fixed carcasses were then washed twice 

with PBS, incubated for 30 min in fresh Nile Red solution with DAPI (1µl of 0.004% Nile Red 

Solution in 500 µl PBS), followed by rinsing with distilled water. Confocal images were collected 

using a Nikon Eclipse Ti confocal system (utilizing a single focal plane) and processed using 

Nikon software and Adobe Photoshop. 

2.8 Immunostaining and Microscopy 

Flies were dissected in PBS and fat body/carcasses were fixed with 4% paraformaldehyde 

containing 0.1% Tween-20 and 0.1% Triton X-100 for 10 min at room temperature, washed 2 

times with PBS containing 0.1% Triton X-100 (PBST) and then blocked in blocking buffer (PBST 
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containing 0.1% BSA and 0.0025 Sodium Azide) for 1 h. The primary antibody Rabbit anti-Relish 

(RayBiotech, RB-14-0004) (1:500) was applied overnight at 4°C. Alexa Fluor 488-conjugated 

anti-Rabbit IgG antibody (Jackson Immunoresearch, 1:500) was incubated for 2 h at room 

temperature. Hoechst was used to counterstain DNA. Confocal images were collected using a 

Nikon Eclipse Ti confocal system (utilizing a single focal plane) and processed using the Nikon 

software and Adobe Photoshop. 

2.9 Feeding Behavior 

The CAFE assay was performed as follows: Briefly, a single fly was transferred from SY 

standard food to vials filled with 5 ml of 1.5% agar that maintains internal humidity and serves as 

a water source. Flies were fed with 5% sucrose solution and maintained in 5 ul capillaries (VWR, 

#53432-706). After twelve hours habituation, the old capillaries were replaced with a new one at 

the start of the assay. The amount of liquid food consumed was recorded after 24 hr and corrected 

on the basis of the evaporation (typically < 10% of ingested volumes) observed the identical vials 

without flies.  

Feeding assays on blue dye-labeled food were performed as follows: 30 flies were 

transferred from standard food to vials filled with identical medium containing 0.5% brilliant blue. 

Feeding was interrupted after 1h and 5 flies each were transferred to 50 µl 1 x PBS containing 

0.1% Triton X-100 (PBST) and homogenized immediately. Blue dye consumption was quantified 

by measuring the absorbance of the supernatant at 630 nm (A630). Various amounts of dye-

containing food were weighed, homogenized in PBST, and measured (A630) in order to create a 

standard curve used to quantify blue dye food consumption of flies. 
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2.10 Chromatin Immunoprecipitation (ChIP) 

Approximately 100 adult female flies (5-10 days old post-eclosion) were ground in liquid 

nitrogen then homogenized and cross-linked (10 minutes at RT) in 600 uL of 1xPBS containing 

1% formaldehyde, 1mM PMSF and 1x Protease Inhibitor cocktail (Thermo Scientific). The 

homogenate was centrifuged for 20 min at 12000 x rpm (4o C). The pellet was washed twice by 

resuspending in 600 uL of 1x PBS containing 1mM PMSF and 1x Protease Inhibitor cocktail and 

centrifuged at 12000 x rpm for 20 min (4o C). To lyse tissue and cells, the pellet was resuspended 

in 600 uL of RIPA buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.1% SDS, 0.1% Na-

Deoxycholate, 1% Triton X-100, 1mM PMSF and 1x Protease Inhibitor cocktail) then incubated 

at RT for 30 min. 

The chromatin was sheared to 500-1000 bp DNA fragments using a Diagenode sonicator 

(20 min sonication, highest power, 30 sec sonication, 30 sec rest). After sonication, the sheared 

chromatin was centrifuged for 20 min at 12000x rpm, 4o C. The supernatant was collected, 

aliquoted, snap-frozen, and stored at -800 C.  

For immunoprecipitation, 40 uL of protein A magnetic beads (Thermos Scientific) were 

conjugated (4 hours incubation at 40 C) with 10 uL of Normal Goat Serum (Rockland, used as 

control), 10 uL of Rabbit anti-Relish (RayBiotech, RB-14-0004), or 2 uL of anti-Histone H3 

(acetyl 9) antibody (abcam, ab4441). After applying beads to the magnet and removing 

supernatant, 100 uL of chromatin was diluted 1:10 with dilution buffer (20 mM Tris-HCl, pH 8, 2 

mM EDTA, pH 8, 150 mM NaCl, 1% Triton X-100) and incubated overnight with beads. Beads 

were washed with following buffers at 4o C, for 10 min each: 2x with 1mL of RIPA buffer + 1mM 
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PMSF + 1x protease inhibitor; 2x with 1mL of RIPA buffer + 0.3 M NaCl; 2x with 1mL of LiCl 

buffer (0.25 M LiCl, 0.5% Triton X-100, 0.5% NADOC); 1x with 1 mL of 1x TE + 0.2 Triton X-

100; 1x with 1mL of 1x TE. 

To reverse crosslink, beads were re-suspended in 100uL of 1x TE + 3 uL 10% SDS + 5 uL 

of 20mg/mL Proteinase K (VWR) and incubated at 65o C overnight. Beads were applied to the 

magnet and supernatant was transferred to a PCR purification column (Qiagen PCR purification 

kit) to purify DNA. To prepare Input (chromatin extract without Immunoprecipitation), 10 uL of 

chromatin extract were incubated with proteinase K then applied to PCR purification column. For 

all Immunoprecipitated (IP) and Input samples, DNA was eluted in 30 uL of water, and 2uL of 

that was used as template for qRT-PCR (see Table S2 for primer sets). The upstream region of the 

actin5c gene (Act5CP) and Normal Goat Serum were used as controls.  

To assess enrichment, %Input was calculated first (between ChIP DNA and input DNA for 

each primer set). Then the fold change in enrichment was calculated by dividing %Input of each 

primer set to %Input of a negative control primer set designed for Drosophila (Drosophila 

Negative Control primer set 1, Active Motif, 71028). 

Table 2.3 List of primers used in ChIP analysis 
Gene Forward Reverse 
R1 (Bmm locus) GCTTGTTTGCGTTTGTAGGTC TTCGAAATTGGACAAACACG 
R2 (Bmm locus) TGTCGCTGACAATCAAAAGC TTCTGGGTGGAGTTTGGAAC 
Act5cP AACCCCCAAATTGAATCACA GAGAATTTCCTCCGCAACTG 

DiptP AAGAAAGATCCCCTGGTGGT TTTTATAGGCCGCTTTCCAA 
FR1 (Bmm locus) CACCGCGCCGCAATGAATGTATAA TTCAATCACTGTTTGTCGGTCGGC 
Drosophila 
Negative Control 
Primer Set 1 Active Motif 71028 
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2.11 Generating Germ-Free Animals 

Female adult flies were fed Penicillin/Streptomycin for 5 days to remove bacteria from the 

gut. Then single flies were washed with 70% ethanol (to remove bacteria from cuticle), dried 

completely and ground in 200 uL of sterile LB broth and quickly spun down. 10 uL of the 

supernatant was cultured on Nutrient agar plates. Colonies were counted after 2 days incubation 

at 29o C.  

2.12 Starvation Sensitivity Analysis 

Adult flies (20-25 flies per vial/cohort) were provided with only water (absolutely no food) 

on filter paper with a KimWipe, ensuring water was present throughout the analysis. The number 

of dead flies in each vial was recorded every 12 hours, and data is presented as the mean survival 

of cohorts. 

2.13 Septic/Systemic Infection Assay 

To induce systemic infection, 5-10 days adult female flies of indicated genotypes were 

pocked in their thorax with a sterilized tungsten needle dipped into a concentrated overnight 

culture of Ecc15 (Erwinia carotovora carotovora 15, gram-negative bacteria, OD600 ~ 300). The 

pocked flies were incubated at 25o C and total RNA and metabolite samples were collected from 

the whole body of flies at 16 hours and 40 hours after septic infection, as well as from unchallenged 

flies. Heat-killed bacteria were inactivated by incubating a 1 mL aliquot of the bacterial suspension 

at 65o C for 20 mins before poking. 
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2.14 Quantification and Statistical Analysis 

All p-values were calculated using the Student’s t test with unpaired samples. All error bars 

represent standard error. 

2.15 Key resources, reagents and services 

Table 2.4 List of antibodies used for ChIP and immunostaining assays 
Antibody Source Identifier 
Normal Goat serum Rockland B304 
Anti-Relish RayBiotech RB-14-0004 
Anti-Histone H3 (acetyl K9) abcam ab4441 
Alexa Flour 488-conjugated Anti-Rabbit IgG Jackson 

Immunoresearch 
119191 

Anti-dFoxO (Kang et al., 2017) N/A 

Table 2.5 Software and services 
Software and services Source Identifier 
FlyBase https://flybase.org/ 
gBlock Gene Fragments Integrated DNA Technology https://www.idtdna.com/pages 
DNA Sequencing Eton Bioscience https://www.etonbio.com/ 
Transgenic Flies Rainbow Transgenic Flies https://www.rainbowgene.com/ 
Clover Software (Frith et al., 2004) N/A 

Table 2.6 List of equipment 
Equipment and other Source Identifier 
StepOnePlus Real-Time PCR systems Applied Biosystems N/A 
Leica M165FC system Leica N/A 
Nikon Eclipse Ti confocal system Nikon N/A 
Capillaries VWR 53432-706 
Bioruptor/sonicator Diagenode UCD-200 
96-well EIA/RIA plate VWR 29442-322 
Pierce Protein A magnetic beads Thermo Fisher 

Scientific 
88845 
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Table 2.7 List of chemicals, peptides and recombinant proteins 
Chemicals, Peptides, and Recombinant Proteins Source Identifier 
14C-labeled Glucose (Glucose, D-[14C(U)]) PerkinElmer NEC042X050UC 
Alexa Fluor 488 Phalloidin Thermo Fisher Scientific A12379 
DAPI  (4’,6-Diamidino-2-Phenylindole, 
Dihydrochloride) 

Thermo Fisher Scientific D1306 

Drosophila Agar, Type II Genesee 66-103
Malt Extract Genesee 62-110
Inactive Dry yeast Genesee 62-106
Cornmeal Genesee 62-101
Propionic acid VWR TCP0500-500mL 
Methyl 4-Hydroxybenzoate VWR 97061-946 
Sucrose VWR 97063-788 
Folch reagent This paper N/A 
Trizol Life Technologies 15596018 
Superscript III Reverse Transcriptase Life Technologies 18080-044 
iTaq Universal SYBR Green Supermix Biorad 1725121 
DreamTaq PCR Master Mix Thermo Fisher Scientific K1081 
Sph I-HF New England BioLab R3182S 
Xho I New England BioLab R0146S 
CutSmart Buffer New England BioLab B7202S 
T4 DNA Ligase New England BioLab M0202T 
RNase A QIAGEN 19101 
Oil Red O abcam ab150678 
Nile Red Life Technologies N1142 
Phosphoric acid VWR 97064-780 
Brilliant blue Sigma-Aldrich B0149 
Protease Inhibitor Cocktail Thermo Fisher Scientfic 78440 
Proteinase K VWR 0706 
LB Agar BD 244520 
LB Broth BD 244620 
LiCl Amresco 0416-100G 
KCl J.T.Baker 3052-01 
CaCl2 Macron 4160-12 
PMSF Thermo Fisher Scientific 36978 
Sodium Deoxycholate Alfa Aesar (by Thermo Fisher 

Scientific) 
J622-88 

Penicillin/ Streptomycin Gibco 15140-122 
Ampicillin Sigma-Aldrich A0166 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwiE_qfn2o7UAhVD5yYKHc3QCokQFghYMAM&url=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsial%2Fb0149%3Flang%3Den%26region%3DUS&usg=AFQjCNHpTz5i9tfkqpxERZv8Y2EJK4zbMA&sig2=3VFygJxd-07_LXP21kf4oQ
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3. RESULTS9

3.1 Relish Function in Fat body Directs Lipid Metabolism in Response to Metabolic 

Adaptation 

In order to explore mechanistic connections between NF-κB and various metabolic control 

networks, we first assessed lipid homeostasis in Drosophila lacking functional Relish (utilizing 

the relE20 allele) independent of pathogenic infection. Relish is similar to mammalian p100/p105 

NF-κB proteins and contains a Rel-homology domain (N-terminal, involved in DNA binding and 

dimerization, as well as ankyrin repeats (C-terminal) (found in mammalian inhibitory IκBs) 

(Buchon et al., 2014; Hetru and Hoffmann, 2009). During ad libitum feeding, NF-κB/Rel mutant 

adult female flies (relE20 / relE20) had significantly less organismal triglycerides (TAGs) compared 

to genetically matched controls (either OreR or relE20 / + heterozygote flies, 7 days old post-

eclosion; (Figure 3.1A) and (Rynes et al., 2012)). 

However, these changes in TAG correlated with decreases in acute and chronic feeding 

(Figure 3.2A), and can be rescued by high-calorie (sugar) diets (Figure 3.2B), suggesting that 

steady-state differences in lipid homeostasis are potentially driven by changes in feeding behavior. 

Assaying the major fat storage tissues, we also found that TAG level reduction in mutant 

animals correlates with strong, but variable, decreases in neutral lipid content in fat body/adipose, 

but not in the intestine (Figure 3.3 and (Kamareddine et al., 2018)).  

9 Reprinted with permission from Molaei, M., C. Vandehoef, and J. Karpac, "NF-kappaB Shapes Metabolic 
Adaptation by Attenuating Foxo-Mediated Lipolysis in Drosophila." Dev Cell, 2019. 49(5): p. 802-810 e6. Copyright 
2019 Elsevier. 
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Figure 3.1 Relish-dependent changes in lipid metabolism and survival in response to 
fasting. (A) Total triglyceride (TAG) levels of whole flies (OreR (WT-wild type) control, relE20/+ (heterozygote 
control), or relE20/relE20 (mutant) genotypes) before and after fasting (20 hours). n = 4-5 samples. (B) Starvation 
resistance of female flies. n = 5 cohorts (total 87-95 flies). The red arrow indicates time-point of fasting assays. (C) 
Oil Red O (ORO) and (D) Nile red stain of dissected carcass/ fat body before and after fasting (20 hours). Nile red 
(neutral lipids; red) and DAPI (DNA; blue) detected by fluorescent histochemistry. All bars and line graph markers 
represent mean±SE. All flies were 7 days old post-eclosion. 

Since ad libitum effects on lipid homeostasis appear to correspond with feeding deficits 

(i.e. are potentially indirect), we next assayed changes in fat metabolism in Relish mutant animals 

during metabolic adaptation to fasting. relE20/relE20 mutant flies are sensitive to starvation 

compared to control flies (Figure 3.1B). Furthermore, Relish-deficient animals display accelerated 

decreases in organismal TAG levels during acute fasting (at time-points before significant death 

occurs), while controls flies show little to no change at these same time-points (always comparing 

within sibling genotypes, Figure 3.1A). These changes in TAG levels correlate with a strong 
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reduction of stored neutral lipids/lipid droplets in carcass fat body (Figure 3.1C-D), suggesting 

that there is enhanced or accelerated lipid breakdown during metabolic adaptation in these animals. 

Figure 3.2 Feeding behavior and the effect of diet(A)Relish-dependent changes in feeding behavior. 
relE20/relE20 (mutant) female flies display decreases in food intake using both the Blue Dye feeding assay (n=3-6 
cohorts of 5 flies, measured ZT(8-10) after 1.5 hours feeding) and the CAFE assay (n=7 samples measured after 24 
hours and 48 hours); compared to relE20/+ controls. Note: relE20/relE20 mutant show stronger decreases in acute 
food intake (Blue Dye, 1.5 hours) as opposed to chronic (CAFE, 48 hours). (B) Relish-dependent (relE20/relE20 
mutant) changes in total triglyceride (TAG) levels (whole flies) during ad libitum feeding (compared to relE20/+ 
controls) can be minimized by feeding a high calorie/high sugar diet (n = 5 samples). Bars represent mean ± SE. All 
flies were 7 days old post-eclosion. 

Figure 3.3 Relish-dependent changes in lipid content in fat body compared to intestine.  Oil 
red O (ORO) neutral lipid stain in dissected (A) fat body/carcass and (B) intestine from relE20/relE20 (mutant) 
female flies compared to relE20/+ control flies. Images from intestine taken from anterior midgut. Note: 
relE20/relE20 mutant show variable decreases in lipid storage in fat body, but not in the intestine. Percentages 
represent relative contribution of mild (top panel) or strong (bottom panel) lipid storage defects from 45 unique fat 
body/carcass dissections from multiple, independent experiments. All flies were 7 days old post-eclosion. 
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Since Relish in involved in the immune response against infection, we measured TAGs 

levels in both standard reared flies and germ-free reared flies. relE20/relE20 mutant flies had less 

organismal TAGs level compared to control flies (relE20/+) in both standard and germ-free 

conditions. However, there was no significant difference between standard and the germ-free 

condition within the control or within mutant groups, suggesting that Reslih-dependent changes in 

TAGs levels are not due to microbial dysbiosis (Figure 3.4).  

Figure 3.4 The effect of microbial dysbiosis on lipid content of flies. Relish-dependent changes in 
triglyceride levels during ad libitum feeding are not caused by microbial dysbiosis. Colony forming units (CFU per 
fly, n = 4) and total triglyceride (TAG) levels of whole flies (n = 4 samples) in standard rearing conditions (Std.) or 
germ-free rearing conditions (GF); genotypes relE20/+ (control) or relE20/relE20 (mutant). Bars represent mean ± 
SE. All flies were 7 days old post-eclosion. 

The insect fat body acts as a key sensor to link nutrient status and energy expenditure, and as such 

is the major lipid depository (mainly triglycerides) that combines energy storage, de novo 

synthesis, and breakdown functions of vertebrate adipose and hepatic tissues (Arrese and Soulages, 

2010; Canavoso et al., 2001; Kuhnlein, 2012). This tissue is also essential for Toll and Relish 

mediated innate immune responses to bacterial infection (Buchon et al., 2014; Hetru and 



57 

Hoffmann, 2009; Lemaitre and Hoffmann, 2007). Critically, fat body is integral to properly 

balance lipid catabolism and anabolism in order to modulate organismal energy homeostasis 

(through lipid supply to other tissues) in response to metabolic or dietary adaptation (Arrese and 

Soulages, 2010; Kuhnlein, 2012). Expression of full-length Relish in fat body (CGGal4>UAS-

Rel) can rescue reduced starvation survival rates and the accelerated loss of lipid storage in relE20 

/ relE20 mutant flies during fasting ( 

Figure 3.5). These data suggest that Relish function in fat body is required to acutely maintain lipid 

homeostasis throughout the course of metabolic adaptation.  

Figure 3.5 Re-expressing Relish in fat body of Relish-deficient flies restores metabolic 
adaptation responses.(A) Starvation resistance of female flies (CGGal4/+; relE20/+ (control), CGGal4/+; 
relE20/relE20 (mutant), or CGGal4/UAS-Rel; relE20/relE20 (Rescue)). n = 5 cohorts (total 79-98 flies). The red arrow 
indicates time-point of fasting assays. (B) Total TAG levels of whole flies (n = 4-5 samples) and (C) ORO stain of 
dissected carcass/ fat body before and after fasting (20 hours). All bars and line graph markers represent mean±SE. 
All flies were 7 days old post-eclosion. 

To further confirm an autonomous and potentially direct role for Relish in the regulation 

of fasting-mediated changes in lipid metabolism, we inhibited Relish specifically in fat body (using 

multiple, independent RNAi lines; UAS-RelRNAi KK and GD). First, we examined the efficiency 

of these RNAi lines using a Tubulin-GeneSwitch-Gal4 (TubGS, a ubiquitous driver that is induced 
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by RU486 drug). Flies carrying RNAi lines (TubGS>UAS-RelRNAi KK and UAS-RelRNAi GD) had 

lower levels of Relish mRNA compared to control flies (TubGS> W1118), confirming that these 

RNA lines can efficiently attenuate Relish activity (Figure 3.6A).  

Attenuating Relish in fat body of female flies (CGGal4>UAS-RelRNAi) leads to starvation 

sensitivity, as well as accelerated loss of organismal TAG levels and fat body lipid storage in 

response to fasting (compared to control flies (CGGal4>w1118) (Figure 3.6B-D). As expected, 

fasting-induced changes in fat body lipid storage occur before significant decreases in total TAG 

levels of whole animals are observed (Figure 3.6). 

The observed phenotypes were confirmed with an independent fat body driver (PplGal4; 

Figure 3.6E-G), and similar results were found utilizing males (Figure 3.7) but not when utilizing 

another immune cell (hemocyte) driver (HmlGal4Figure 3.8). Conversely, over-expressing full-

length Relish (CGGal4>UAS-Rel) or a constitutively active N-terminal fragment (CGGal4>UAS-

Rel.68) in fat body significantly limits fasting-mediated decreases in lipids compared to controls 

(CGGal4>+ (W1118) (Figure 3.9).  

In order to confirm that observed lipid phenotypes are due to attenuation of Relish activity, 

and not the mere effect of different genetic background of fly lines, we performed additional 

control experiments.  Organismal TAG levels, as well as starvation sensitivity of UAS-RelRNAi 

KK/+ and UAS-RelRNAi GD/+ flies, were similar to control (+/+ (W1118)), ruling out the effect 

of genetic background or or UAS-Rel NAi transgenes on the lipid homeostasis. (Figure 3.10).  
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Figure 3.6 Relish function in fat body directs lipid metabolism in response to metabolic 
adaptation. (A) UAS-Rel RNAi efficiency. Changes in relish transcription (measured by qRT-PCR in whole 
flies) upon ubiquitous Relish depletion (RNAi line v108469-KK and v49413-GD) using Tubulin-GeneSwitch-Gal4 
(TubGS) after 5 days feeding RU486; compared to controls (TubGS>+(w1118)). n = 4 samples. (B-D) Changes in 
lipid metabolism and survival upon Relish depletion (RNAi lines v108469-KK and v49413-GD) in fat body 
(CGGal4). (B) Starvation resistance of female flies. n = 6 cohorts (total 139-149 flies). The red arrow indicates time-
point of fasting assays. (C) Total TAG levels of whole flies (n = 4-5 samples) and (D) ORO stain of dissected 
carcass/ fat body (only RNAi v108469-KK shown) before and after fasting (64 and/or 90 hours). (E-G) Changes in 
lipid metabolism and survival upon Relish depletion (RNAi lines v108469-KK and v49413-GD) in fat body 
(PplGal4). (E-F) Starvation resistance of female flies. n = 6 cohorts (total 110-141 flies). (G) Oil Red O (ORO) 
neutral lipid stain of dissected carcass/ fat body before and after fasting (72 hours). All bars and line graph markers 
represent mean±SE. All flies were 7 days old post-eclosion. 
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Figure 3.7 Changes in lipid metabolism and survival upon Relish depletion in fat body of 
male flies. (A) Starvation resistance of male flies. n = 5 cohorts (total 90-95 flies). (B) Total triglyceride (TAG) 
levels of whole male flies (n=5 samples, before and after fasting (48 hours)). All bars and line graph markers 
represent mean±SE. All flies were 7 days old post-eclosion. 

Figure 3.8 Absence of changes in lipid metabolism and survival upon Relish depletion in 
hemocytes of female flies.(A) Starvation resistance of female flies. n = 4 cohorts (total 77-80 flies). (B) Total 
triglyceride (TAG) levels of whole male flies (n=3 samples, before and after fasting (90 hours)). All bars and line 
graph markers represent mean±SE. All flies were 7 days old post-eclosion 
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Figure 3.9 Changes in fasting-induced lipid metabolism upon Relish over-expression. (A) 
Full-length Relish (UAS-Rel) and (B) The tagged N-terminal active fragment (UAS-FLAG-Rel.68)) in fat body 
(CGGal4). Total TAG levels of whole female flies (n=5 samples, before and after fasting (108 hours)). Control 
genotype CGGal4/+ (w1118). Bars represent mean ± SE. All flies were 7 days old post-eclosion. 

Figure 3.10 UAS-Rel RNAi transgenes alone do not affect fasting-induced triglyceride 
metabolism or survival during metabolic adaptation. (A-B) Total TAG levels of whole female flies 
(n=5 samples, before and after fasting (90 hours)) and (C-D) starvation resistance of female flies (n = 5 cohorts, total 
89-96 flies) from UAS-Rel RNAi/+(w1118) and +/+(w1118) female siblings. All bars and line graph markers represent
mean±SE. All flies were 7 days old post-eclosion.

Furthermore, attenuation of upstream components of the Relish signaling pathway 

phenocopies these Relish loss-of-function effects on lipid metabolism during metabolic adaption 

(Figure 3.11). Relish is governed by conserved regulators TAK1 and the IKK (IκB Kinase) 
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signalosome (which consists of homologs of both IKKβ (Drosophila Ird5) and IKKϒ/NEMO 

(Drosophila Kenny (key)) (Ganesan et al., 2011; Hetru and Hoffmann, 2009)), while the apical 

caspase DREDD is required for the proteolytic cleavage of the IkB domain, allowing for nuclear 

translocation (Hetru and Hoffmann, 2009).  

First, we assessed the efficiency of UAS-KeyRNAi and UAS-DREDDRNAi in attenuating the 

correspondence mRNA level (same method that was used for UAS-RELRNAi lines) (Figure 3.11A) 

Inhibiting Kenny or DREDD in fat body of female flies (CGGal4>UAS-DREDDRNAi or 

KeyRNAi) leads to starvation sensitivity, as well as the accelerated loss of organismal TAG levels 

and fat body lipid storage in response to fasting (compared to control flies (CGGal4>w1118, Figure 

3.11B-E). Similarly, attenuating upstream receptors usually required for NF-κB/Relish activation 

(PGRP family members PGRP-LC (trans-membrane) or PGRP-LE (cytoplasmic)) also leads to 

decreased lipid storage in fat body after starvation (Figure 3.11F), suggesting that at least part of 

the canonical innate immune pathway is required for these metabolic phenotypes. 

Taken together, these data show that Relish can autonomously regulate lipid metabolism 

in fat body during metabolic adaptation, and suggest that Relish may direct specific metabolic 

responses to control the breakdown of triglycerides.  
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Figure 3.11 The effect of upstream components of Relish/Imd pathway on lipid metabolism 
in response to metabolic adaptation.(A) RNAi efficiency. Changes in kenny or dredd transcription 
(measured by qRT-PCR in whole flies) upon ubiquitous depletion (Kenny (Key) RNAi line v7723-GD and Dredd 
RNAi line v104725-KK) using Tubulin-GeneSwitch-Gal4 (TubGS) after 5 days feeding RU486; compared to 
controls (TubGS>+(w1118)). n = 4 samples. (B-E) Changes in lipid metabolism and survival upon Kenny or Dredd 
depletion (RNAi lines v7723-GD (Key) and v104726-KK (Dredd)) in fat body (CGGal4) of female flies. (B-C) 
Starvation resistance of female flies. n = 7 cohorts (total 140-149 flies). (D) Total triglyceride (TAG) levels of whole 
female flies (n=5 samples, before and after fasting (90 hours)) and (E) Oil Red O (ORO) neutral lipid stain of 
dissected carcass/ fat body before and after fasting (72 hours). Control genotype CGGal4/+ (w1118). (F) Changes in 
lipid metabolism upon PGRP-LC or PGRP-LE depletion (RNAi lines v101636-KK (LC) and v23664-GD (LE)) in 
fat body (CGGal4) of female flies. Oil Red O (ORO) neutral lipid stain of dissected carcass/ fat body before and 
after fasting (64 and 90 hours). Control genotype CGGal4/+ (w1118). Bars and line graph markers represent mean ± 
SE. All flies were 7 days old post-eclosion. 
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3.2 Relish Controls Fasting-induced Lipolysis and Bmm Triglyceride Lipase Gene 

Expression 

Properly balancing energy homeostasis in response to metabolic adaptation depends on the 

ability to coordinate storage, breakdown, and mobilization of lipids, primarily TAG. This 

coordination requires precise control of metabolic response networks, including changes in 

metabolic gene expression. To determine potential mechanisms by which the Relish transcription 

factor could direct cellular triglyceride metabolism during fasting, we assayed transcriptional 

changes of various metabolic genes related to lipid catabolism or anabolism in Relish-deficient 

animals (a subset is shown in Figure 3.12).  

Figure 3.12 Relish-dependent changes in the expression of metabolic genes in response to 
metabolic adaptation. Drosophila HSL (dHSL), lip4, CG5966, bmm, YIP2 (yippee interacting protein 
2/thiolase), ACC (acetyl-CoA carboxylase), and FASN1 (fatty acid synthase) transcription (measured by qRT-PCR 
in whole flies) before and after fasting (20 hours). relE20/+ (heterozygote control), or relE20/relE20 (mutant) 
genotypes. n = 3 samples. Bars represent mean ± SE. All flies were 7 days old post-eclosion. 

Specifically, we identified the lipase Brummer (Bmm) as being regulated by Relish (Figure 

3.12 and Figure 3.13A). Bmm is the Drosophila homolog of mammalian adipose triglyceride 
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lipase (ATGL), an enzyme that is critical for lipolysis (Gronke et al., 2005). Bmm plays an 

essential and conserved role in TAG breakdown, and subsequently fatty acid mobilization, from 

lipid droplets in fat storage tissues during metabolic adaptation (Gronke et al., 2007). In control 

flies, bmm transcription is mildly induced during acute fasting, but in relE20 / relE20 mutant flies 

bmm expression is strongly up regulated (from whole flies). These Relish-dependent changes in 

bmm transcription appear unique, as Relish-deficiency does not impact fasting-induced changes in 

other lipases such as Drosophila hormone-sensitive lipase (dHSL), Drosophila lipase 4 (dLip4) or 

CG5966 (Figure 3.13A).  

In addition, similar results were found in dissected fat body with specific attenuation of 

NF-κB/Relish in this same tissue (CGGal4>UAS-RelRNAi KK, Figure 3.13B-C).  These results 

suggest that Relish function is required to repress or limit Bmm expression in response to 

metabolic adaptation, and subsequently restrain triglyceride breakdown.  

To correlate this difference in gene expression to differences in lipolysis, we next employed 

an assay to measure dynamic changes in lipid content based on the incorporation of radiolabeled 

glucose (14C-glucose) into lipids during fatty acid synthesis in vivo.  After acute feeding (1.5 hours) 

of a diet containing 14C-glucose, Relish mutant flies show drastic changes in glucose-incorporation 

(synthesis) that is likely due to changes in feeding behavior (Figure 3.13D and Figure 3.2). Sixteen 

hours of feeding minimized these differences in synthesis, and subsequent analysis of newly 

synthesized 14C-labeled lipids during fasting showed an increased rate of breakdown in relE20 / 

relE20 mutant flies (47% in mutants compared to 20% in controls, Figure 3.13D). This change in 

the rate of breakdown correlated with increases in free fatty acids (Figure 3.13E).  
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Figure 3.13 Relish controls fasting-induced triglyceride lipase Bmm transcription and 
lipolysis. (A) Drosophila HSL, lip4, CG5966, and bmm transcription (measured by qRT-PCR in whole flies, 
plotted as fold induction (20 hours fasted/fed) of relative expression). relE20/+ (heterozygote control), or relE20/relE20 
(mutant) genotypes. n = 3 samples. (B-C) Changes in lip4, CG5966, and bmm transcription (measured by qRT-PCR 
in dissected carcass / fat body, plotted as fold induction (64 hours fasted/fed) of relative expression) upon Relish 
depletion (RNAi line v108469-KK) in fat body (CGGal4). (C) Relative expression values (from (B)) for bmm 
transcription. n = 3-4 samples. (D) Quantification of lipid breakdown. Incorporation of 14C-labeled glucose into total 
lipids (from whole flies) from labeled-glucose fed (1.5 hours or 16 hours) or fasted (20 hours) flies are shown. 
Percent change in loss of 14C-labeled lipids after fasting is also shown. n = 3-4 samples. (E) Free fatty acid (FFA) 
levels measured in whole flies before and after fasting (20 hours). n = 4 samples. (F-G) Attenuating Bmm (RNAi 
line v37877) in fat body (CGGal4) of Relish-deficient flies restores metabolic adaptation responses. (F) Total TAG 
levels of whole flies (n = 3-4 samples) and (G) Oil Red O stain of dissected carcass/ fat body before and after fasting 
(20 hours, CGGal4/+; relE20/+ (control), CGGal4/+; relE20/relE20 (mutant),  or CGGal4/UAS-Bmm RNAi; 
relE20/relE20 (Rescue)). Bars represent mean ± SE. All flies were 7 days old post-eclosion. 

Finally, genetically attenuating Bmm lipase in fat body (CGGal4>UAS-BmmRNAi, 

(Baumbach et al., 2014)) can rescue the accelerated loss of lipid storage/triglycerides in relE20 / 

relE20 mutant flies during fasting (Figure 3.13F-G).  
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These data collectively reveal that Relish function is required to limit fasting-induced Bmm 

gene expression and subsequently restrain triglyceride lipolysis during metabolic adaptation. 

Following these results, we wanted to further explore the mechanism by which the Relish 

transcription factor can context-dependently attenuate Bmm expression. Utilizing Clover (Cis-

element OVERrepresentation) software (Frith et al., 2004), we identified conserved NF-κB DNA 

binding motifs (κB sequence sites identified as GGG R N YYYYY, (Busse et al., 2007)) 

throughout the first intron of the Bmm locus (Fig. 3.14A).  

To assess binding, we used a previously characterized Relish antibody to perform 

chromatin immunoprecipitation (ChIP)-qPCR experiments (Ji et al., 2016). Relish binding in fed 

or fasted wild type flies is significantly enriched (compared to IP’s using serum controls) at binding 

motif(s) approximately 1 kB downstream from the transcriptional start site (R1, Figure 3.14A).   

We also cloned this putative Bmm regulatory region upstream of RFP in order to generate 

in vivo expression reporters (individual transgenic flies carrying either a wild type reporter 

(endogenous locus, Bmm_Int_WT-RFP) or a reporter with a deletion in the Relish DNA binding 

site (Bmm_Int_Δ1-RFP), Figure 3.14B). While the unaltered region only slightly influenced RFP 

reporter activity in fed or fasted conditions, eliminating the Relish binding site leads to minimal 

enhanced reporter activity under fed conditions and strong increases in RFP activity during fasting 

(primarily in fat body of carcass and head, Figure 3.14B). Thus, this Relish binding site within the 

first Bmm intron acts as an important regulatory region to limit induced gene expression.  
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Figure 3.14 Relish binds to the regulatory region in Bmm locus.  (A) Schematic shows Bmm locus 
(focusing on first intron proximal to transcription start site) and putative NF-κB/Rel binding motifs (identified by 
Clover). R1 and R2 represent regional target sites (and corresponding primer sets) tested in ChIP-qPCR analysis. 
The histogram represents ChIP-qPCR analysis of Relish binding to the Bmm locus (compared to the Actin5c 
promoter (Act5cP) and the Diptericin promoter (DiptP) in fed or fasted (20 hours) conditions. ChIP-qPCR analysis 
with normal goat serum (NGS) is included as a control. Plotted as fold change (FC) of indicated PCR primer sets 
compared to a negative control (NC) primer set.  n = 3 biological replicates. (B) Requirement of Bmm locus Rel 
binding site in limiting induced gene expression measured by RFP fluorescence in transgenic flies carrying indicated 
reporters (during fed and fasted (48 or 72 hours) conditions). Bars represent mean ± SE. All flies were 7 days old 
post-eclosion. 

Relish binding at this region is similar in fed and fasted states (Figure 3.14A). We also did 

not find any evidence of classical Relish transcriptional activation function during acute fasting. 

First, innate immune target gene expression (Drosomycin and Diptericin) and Relish DNA binding 

to innate immune gene promoters (Diptericin) were not changed during fasting (Figure 3.15A and 

Figure 3.14A). Second, metabolic adaptation did not significantly alter nuclear localization of 

Relish in fat  body (Figure 3.15B). Thus, in order to explore how Relish limits or represses fasting-

induced Bmm expression, despite its constitutive binding to DNA and distinct from its 

transcriptional activation function, we assessed histone/chromatin changes in Relish-deficient 

flies.  Histone deacetylases (HDACs) have been shown to accumulate in the nucleus during 

metabolic adaptation, influencing gene expression in a fasting-dependent manner through 
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chromatin regulation and transcription factor deacetylation (Mihaylova et al., 2011; Nakajima et 

al., 2016; Wang et al., 2011). Furthermore, previous studies have linked interactions of NF-κB 

transcription factors and HDACs with NF-κB-dependent transcriptional repression (Ashburner et 

al., 2001; Dong et al., 2008; Morris et al., 2016). We thus hypothesized that Relish might repress 

Bmm gene expression through influencing histone modifications during fasting, when histone 

modifiers (such as HDACs) in the nucleus are elevated. Using ChIP-qPCR, we monitored histone 

3 lysine 9 acetylation (H3K9ac, a post-translational modification generally associated with 

transcriptional activation) at this Bmm regulatory region in Relish-deficient animals and controls. 

During feeding, there is no change in H3K9ac enrichment at this locus between genotypes (Fig. 

3C). However, during fasting relE20 / relE20 mutant flies display a significant enrichment (compared 

to controls) of H3K9ac at the site of Relish binding (Figure 3.16A), indicative of promoter or 

enhancer activation. Analysis of modEncode ChIP-Seq. databases associated with histone 

modifications (in adult female flies) also revealed that this site is generally enriched for other 

modifications linked to gene expression regulation (such as H3K27ac, H3K4me3, and H3K4me1), 

further indicating that this locus is an important regulatory region (Contrino et al., 2012). 

Additionally, inhibiting a single HDAC in fat body (Rpd3 (Drosophila HDAC1), CGGal4>UAS-

Rpd3RNAi) can drive small, but significant, increases in fasting-induced Bmm transcription (from 

whole flies,Figure 3.16B) and accelerate fat body lipid usage (Figure 3.16C). 

Taken together, these data show that Relish can bind to a putative regulatory region within 

the Bmm locus during both feeding and fasting. In response to fasting, the presence of Relish can 

influence fasting-dependent histone acetylation and chromatin changes that are consistent with 

transcriptional repression.  
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Figure 3.15 Relish transcriptional activation function is not elevated during fasting. (A) 
Drosophila drs (Drosomycin) and dipt (Diptericin) transcription (measured by qRT-PCR in whole flies) before and 
after fasting (20 hours). relE20/+ (heterozygote control), or relE20/relE20 (mutant) genotypes. n = 4 samples. (B) 
Relish immunostaining in carcass/fat body before and after fasting (20 hours; OreR female flies). Stained with anti-
Rel and nuclei visualized with DAPI (blue). Weak Rel signal is detected in the nucleus during fed and fasted 
conditions, however, the staining is slightly more perinuclear during ad libitum feeding (upper right panel). Bars 
represent mean ± SE. All flies were 7 days old post-eclosion. 

3.3 FoxO and Relish Antagonism Dictates Fasting-induced Bmm Transcription and 

Lipolysis 

The unique ability of Relish to limit or repress fasting-induced Bmm transcription 

correlates with attenuation of H3K9ac at Bmm regulatory regions. We thus hypothesized that 

Relish binding to the Bmm locus leads to fasting-dependent chromatin changes, which 

subsequently limit transcription activation function of other factors that are induced during 

metabolic adaptation (Figure 3.17A). We assessed various metabolic transcription factors and 

found that FoxO, a critical regulator of lipolysis and catabolism in general, is required for Relish-

dependent changes in ATGL/Bmm expression during metabolic adaptation (Figure 3.18). Firstly, 

FoxO (of which there is a single ortholog in Drosophila) is activated during metabolic adaptation 

and required for fasting-induced ATGL/Bmm expression across taxa, including in the fly fat body 
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(Figure 3.18C-D (from dissected fat body) and (Chakrabarti and Kandror, 2009; Kang et al., 2017; 

Wang et al., 2011)). 

Figure 3.16 Relish regulates Bmm expression though modifying histone acetylation of Bmm 
regulatory region. (A) ChIP-PCR analysis of H3K9ac enrichment in R1/Relish-binding region of the Bmm 
locus in wild type (WT; OreR) and relE20/relE20 (mutant) genotypes before and after fasting (20 hours). n = 3 
biological replicates. (B) Changes bmm transcription (measured by qRT-PCR in whole flies) before and after fasting 
(20 hours) upon Rpd3 depletion (RNAi line TRiP 36800) in fat body (CGGal4). Controls are a genetically matched 
RNAi targeting luciferase. n = 4-6 samples. (C) Changes in lipid metabolism upon Rpd3 depletion (RNAi TRiP 
36800) in fat body (CGGal4) of female flies. Oil Red O (ORO) neutral lipid stain of dissected carcass/ fat body 
before and after fasting (30 hours). Control genotype CGGal4>UAS-Luciferase RNAi (slight variation in control 
phenotype after fasting is highlighted with two independent images). Bars represent mean ± SE. All flies were 7 
days old post-eclosion. 
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Figure 3.17 Putative model highlighting the integration of Relish (Rel) and other fasting-
induced transcription factors (TF) 

Figure 3.18 Upregulation of Bmm in response to fasting is FoxO-dependent. (A-B) Changes in 
bmm transcription (measured by qRT-PCR in whole flies) upon fat body-specific depletion of Drosophila (A) 
AMPKα (RNAi line v1827-GD) and (B) Sir2 (homolog of SIRT1; dSir2 RNAi line v23201-GD) using S106-
GeneSwitch-Gal4 after 5 days feeding RU486; compared to controls (mock (EtOH) treated siblings) before and after 
fasting (90 hours). n = 4-5 samples. (C-D) Changes in bmm transcription (measured by qRT-PCR in whole flies or 
dissected fat body) before and after fasting (64 hours) in (C) FoxO mutant (w1118;; FoxO24/FoxOΔ94) and control 
(w1118) genotypes, as well as upon (D) FoxO depletion (RNAi line v106097) in fat body (CGGal4). n = 4 samples. 
Bars represent mean ± SE. All flies were 7 days old post-eclosion. 

Full Relish/FoxO double mutant animals (using the FoxO24 allele) are synthetic lethal 

during metamorphosis (relE20, FoxO24 / relE20, FoxO24, Figure 3.19A). However, simply reducing 
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FoxO gene-dose in NF-κB/Relish mutant flies (relE20, FoxO24 / relE20) completely rescues fasting-

dependent increases in Bmm expression (from whole flies), starvation survival rates, and increases 

in lipolysis (accelerated loss of lipid storage) in Relish-deficient flies during metabolic adaptation 

(Figure 3.19B-D). Furthermore, attenuating FoxO specifically in fat body (CGGal4>UAS-

FoxORNAi, (Zhao and Karpac, 2017)) rescues the enhanced depletion of triglycerides/lipid storage 

and starvation sensitivity associated with relE20 / relE20 mutant flies during fasting (Figure 3.19E-

G).  

Molecular analysis of FoxO transcription activation function also showed that FoxO 

binding to the Bmm promoter is slightly, but significantly, elevated in Relish-deficient flies only 

during fasting (Figure 3.20A), while the expression of FoxO is not Relish dependent (3.20B). 

FoxO transcription activation function is thus required for Relish-dependent changes in lipid 

metabolism, highlighting that Relish/FoxO integration and antagonism is critical to maintain 

triglyceride metabolism throughout the course of metabolic adaptation.  



74 

Figure 3.19 FoxO and Relish antagonism dictate fasting-induced Bmm transcription and 
lipolysis. (A) Percent eclosion of adult animals of indicated mutants / double mutants. n = 67-90 animals. (B) 
Changes in bmm transcription (measured by qRT-PCR in whole flies) before and after fasting (20 hours) in controls 
(relE20/+ and relE20, FoxO24/+), mutant (relE20/relE20) and mutant with reduction in FoxO gene dose (relE20, 
FoxO24/relE20) genotypes. n = 3 samples. (C) Starvation resistance of Relish-deficient female flies with reduction in 
FoxO gene dose (n = 4 cohorts (total 68-78 flies)), and (D) ORO stain of dissected carcass/ fat body before and after 
fasting (20 hours). (E-G) Attenuating FoxO (RNAi line v106097) in fat body (CGGal4) of Relish-deficient flies 
restores metabolic adaptation responses. (E) Starvation resistance of female flies (CGGal4/+; relE20/+ (control), 
CGGal4/+; relE20/relE20 (mutant), or CGGal4/UAS-FoxO RNAi; relE20/relE20 (Rescue)). n = 6 cohorts (total 117-140 
flies). The red arrow indicates time-point of fasting assays. (F) Total TAG levels of whole flies (n = 5 samples) and 
(G) ORO stain of dissected carcass/ fat body before and after fasting (20 hours).
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Figure 3.20 Binding of FoxO TF to Bmm locus is enhanced upon fasting. (A) Schematic shows 
Bmm locus (focusing on the upstream promoter and first intron proximal to transcription start site), as well as FoxO 
and NF-κB/Rel binding motifs. FR1 represents regional target site of FoxO binding (and corresponding primer set) 
tested in ChIP-qPCR analysis. The histogram represents ChIP-qPCR analysis of FoxO binding to the Bmm 
promoter/locus in fed (left panel) and fasted (20 hours; right panel) conditions. ChIP-qPCR analysis with normal 
goat serum (NGS) is included as a control. Plotted as fold change (FC) of indicated PCR primer sets compared to a 
negative control (NC) primer set.  n = 3 samples. (B) Drosophila FoxO transcription (measured by qRT-PCR in 
whole flies) before and after fasting (20 hours). relE20/+ (heterozygote control), or relE20/relE20 (mutant) 
genotypes. n = 3 samples. All bars and line graph markers represent mean±SE. All flies were 7 days old post-
eclosion. 
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4. CONCLUSIONS AND FUTURE DIRECTION

This study aimed to uncover the role of Relish innate immune transcription factor, the 

orthologue of mammalian NF-κB, in the control of cellular lipid homeostasis. Our lipid analysis 

and starvation sensitivity assays (Figures 3.1, 3.5 and 3.6) revealed that Relish in the fat body plays 

an important role in the regulation of lipid homeostasis during metabolic adaptation. More 

precisely, Relish prevents excessive triglyceride hydrolysis during fasting and therefore, is 

required for maintaining lipid storage in fat body. Consistent with our findings, the effect of Relish 

on the triglyceride content of flies was previously reported by Rynes et al. (Rynes et al., 2012). 

NF-κB signaling pathway is also linked to lipid metabolism in mammals, through its regulatory 

effect on PPAR-ɣ10 (Gao et al., 2006; Kim et al., 2006; Nunn et al., 2007). However, it is not clear 

whether NF-κB can directly affect lipid storage/content in mammals. Also, we would like to 

mention that the methods used in our study (TAGs measurement kit, ORO and Nile staining 

(described in sections 2.5-7)) are incapable of distinguishing the different types of TAGs (different 

number of carbon, short-chain versus long-chain, and saturated versus unsaturated fatty acids) or 

other esterified lipids such as cholesterol. Therefore, a future direction would be performing 

lipidomics analysis in order to explore how elevated Bmm expression in Relish deficient flies may 

influence specific types of TAGs or other esterified lipids. This analysis can be particularly 

important to determine whether there is a Relish-dependent change in the amount of signaling 

lipids stored in the lipid droplets such as eicosanoids. 

10 PPARɣ is a major regulator of lipid metabolism. A study suggested that it is involved in transactivation of 
ATGL. 
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Our feeding behavior assays (Figure 3.2) suggested that Relish positively impacts appetite. 

In mammals, several studies have also linked NF-κB pathway to the regulation of feed intake. 

However, in contrast to our results, mammalian studies have highlighted the anorexic effect of 

NF-κB. For example, upregulation of IL-1 α and IL-1β, both targets of NF-κB transcription factor, 

is associated with anorexia in cancer, a condition in which NF-κB is elevated and promotes 

inflammation (Gupta et al., 2011). In addition, it is known that activation of NF-κB in 

hypothalamus (by LPS or leptin) leads to anorexia through induction of POMC (pro-

opiomelanocortin, a precursor of anorexigenic melanocortin) (Jang et al., 2010). In central nervous 

system (CNS), MyD88, an upstream component of NF-κB pathway, is responsible for inhibition 

of leptin in response to diet-induced obesity (Kleinridders et al., 2009). Similarly, 

overnutrition/obesity-induced TLR signaling in adipose tissue leads to disruption of leptin 

function11 through IKKβ (Baker et al., 2011). This controversial observation might be due to the 

effect of upregulated NF-κB in disease condition (obesity, inflammation, and cancer in mammalian 

studies) versus the steady-state function of NF-κB in healthy organisms under normal conditions 

(our study). In other words, NF-κB pathway may promote or inhibit appetite according to the 

organism's condition and tissue. Another possible explanation is the diverged mechanism of food 

intake in mammals and flies due to the more complexity of organs in mammals.  

Transcriptional analysis of several lipases and rescue experiments (Figures 3.12 and 3.13) 

provided evidence that inhibitory effect of Relish on fasting-induced lipolysis is through specific 

repression of Bmm, the orthologue of mammalian ATGL lipase. ATGL/Bmm is the major 

11 Leptin inhibits food intake/appetite through its effect on hypothalamus. 
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triglyceride lipase, initiating and rate-limiting component of the lipolysis process in both mammals 

and flies (Gronke et al., 2005; Schreiber et al., 2019). It is shown that decreased activity of this 

lipase leads to increased fat storage and obesity, and enhanced activity is associated with weight 

loss and lean animals (Gronke et al., 2007; Haemmerle et al., 2006). Thus, it is quite possible that 

the dramatic decrease in lipid storage observed upon fasting in our study is due to overexpression 

of Bmm in Relish-deficient flies.  

Interestingly, the maximum of only two-fold induction of Bmm expression was observed 

in our study (Figures 3.12, and 3.13), which led to a dramatic decrease in lipid content of Relish 

deficient flies (Figures 3.1, 3.5, 3.6, and 3.13). These results suggest that Bmm is a non-processive 

enzyme with a tight threshold of induction, and requires precise regulation in order to maintain 

lipid homeostasis. Therefore, Relish might be required to limit the gene inducibility of Bmm. 

Further research needs to determine whether Relish plays role in limiting the gene inducibility of 

other metabolic genes with a tight induction threshold. 

Transcription binding site analysis (using clover software), in vitro transcription reporter 

assay (using transgenic flies), ChIP assays (using Relish and H3K9Ac antibodies) (Figures 3.14 

and 3.16) and analysis of Bmm expression in HDAC1-attenuated flies (Figure 3.16) revealed that 

NF-κB  binds to a region within the first intron of Bmm gene in both fasted and fed condition. 

Furthermore, upon fasting, Relish can repress the expression of Bmm by decreasing the acetylation 

of Histone 3 at Lysine 9 (H3K9Ac)12  within Bmm locus, likely through recruiting Rpd3 

(Drosophila HDAC1). In line with our results, previous studies demonstrated that NF-κB could 

12 An epigenetic marker that is associated with open chromatin and enhanced expression of genes. 
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repress the expression of genes by recruiting HDACs (histone acetylases). These HDACs act as 

co-repressors of NF-κB transcription factors (Gao et al., 2005). For instance, NF-κB/HDAC1 can 

repress the expression of mir-424, mir-503, and gastrin (Datta De et al., 2013; Zhou et al., 2013). 

In addition, IκBα (upstream component of NF-κB pathway) can inhibit PPAR-γ activity by 

promoting nuclear translocation of HDAC3 in response to TNF-α. Indeed, the inhibition of PPAR-

γ by TNF-α is not through decreasing the DNA binding activity of this TF but through IκBα-

dependent translocation of HDAC3 (Gao et al., 2006).  

Dong et al. reported that un-phosphorylated NF-κB /p65 represses the expression of genes 

by recruiting HDAC1. They proposed a model in which un-phosphorylated NF-κB has the ability 

to bind to NF-κB binding motif but is inefficient at recruiting CBP/p300 coactivator. Instead, it 

recruits HDAC1, which leads to the repression of a subset of genes (Dong et al., 2008). Their 

model, in fact, has some similarities to our observations. In our study, NF-κB/Relish binds to the 

Bmm region in both fed and fasted conditions; however, binding of Relish does not impose any 

detectable positive regulation during feeding/basal condition. Although our analysis using 

upstream components of Relish pathway (Figure 3.11) suggest that proteolytic cleavage of Relish 

is required for its effect on lipid metabolism, the Relish antibody used in this research (Table 2.4) 

can detect both cleaved and un-cleaved form of Relish (Figure 3.14A). Therefore, we are not able 

to determine if Relish attached to Bmm locus is the active cleaved form capable of inducing gene 

expression or not. 

Some studies have reported the assisted-recruitment and/or function of HDAC1. For 

instance, in Drosophila recruitment of HDAC1 to the promoter of Relish target genes is mediated 

by an IκB protein named pickle (Morris et al., 2016). Moreover, it is shown that HDAC1 can make 
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a complex with SMRT (Gao et al., 2005). Hence, future studies should investigate whether Relish 

directly recruits HDAC1 or some other proteins such as pickle are involved as well. Also, if 

HDAC1/Rpd3 creates a complex with SMRTE (orthologue of mammalian SMRT). 

While we only assessed the H3K9 acetylation state of Bmm locus, and its regulatory effect 

on Bmm expression, analysis of modEncode ChIP-Seq. database (Contrino et al., 2012) suggests 

that other epigenetic markers such as H3K27ac, H3K4me3, and H3K4me1 might be involved in 

the regulation of Bmm as well. Additionally, non-acetylated histones are usually characterized by 

DNA hyper-methylation at CpG islands (Gao et al., 2005; Guzik and Cosentino, 2018; Shakespear 

et al., 2011). Thus, researchers may further examine the effect of these epigenetic markers, in order 

to better understand the complexity of Bmm transcription. 

Analysis of the mRNA level of Bmm in response to attenuation of different metabolic 

factors/TFs (figure3.18) combined with the results of our rescue experiments (figure3.19) provided 

evidence that Relish antagonizes FoxO transcriptional activity on Bmm locus. FoxO is a major 

metabolic transcription factor. Induction of ATGL and Bmm by FoxO in response to starvation is 

previously stablished (Chakrabarti and Kandror, 2009; Zhang et al., 2016). Furthermore, similar 

to our findings, previous researches have demonstrated that regulation of many of NF-κB target 

genes requires the collaboration of NF-κB with another transcription factors such as STAT, AP1, 

and IRFs (Grivennikov and Karin, 2010; Oeckinghaus et al., 2011; Zhong et al., 2006). 

Our research shows that the deacetylation of Bmm locus, likely by HDAC1 leads to limited 

FoxO-mediated transcription. The association of FoxO TFs and HDACs has been reported in 

previous studies, although not in the same context and direction. For example, HDAC4 acts as a 

coactivator of FoxO in response to fasting-induced Akh signaling. Association of FoxO with 
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HDAC4 promotes expression of Bmm and lipolysis in flies (Choi et al., 2015; Wang et al., 2011). 

In mammalian skeletal muscles, HDAC1 and HDAC2 deacetylate FoxO3a. This deacetylation 

results in enhanced nuclear localization and transcriptional activity of FoxO3a and promotes 

muscle atrophy (Beharry et al., 2014). While these researches are not in the same direction and 

context of our study, they still highlight the importance of HDACs in the regulation of FoxO 

transcriptional activity. These differences in the function of HDAC1 are likely due to acetylation 

of FoxO proteins versus histones located at FoxO target genes as well as, tissue and gene 

specificity of FoxO-dependent transcription. Furthermore, it is plausible that this opposite function 

of HDAC1 is required for the proper balancing of FoxO function.  

Researchers have indicated that AMPK and SIRT1 may serve as upstream regulators of 

FoxO and ATGL (Chen et al., 2012a; Lo et al., 2019). However, we did not observe the AMPK-

dependent or dSir2 (orthologue of SIRT1)-dependent changes in bmm expression upon fasting 

(Figure 3.18). Additionally, the expression of Lip4 (Figures 3.12 and 3.13), another FoxO target 

gene, as well as FoxO TF itself (Figure 3.20) were not Relish-dependent. Collectively, these data 

confirm that firstly, Relish represses Bmm expression by limiting FoxO-dependent transcription, 

and secondly, this effect of Relish is not due to decreasing global activity of FoxO but more likely 

through local chromatin/histone modifications at Bmm locus. Having that said, it is known that 

NF-κB TFs also contribute to the regulation of the genes via expression or repression of miRNAs 

(Boldin and Baltimore, 2012; Mann et al., 2017; Markopoulos et al., 2018). Therefore, the question 

remains if Relish regulates Bmm by induction of a specific miRNA in addition to histone 

acetylation.  
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Our research revealed that Relish regulates expression of Bmm, which is a FoxO target 

gene.  Interestingly, FoxO transcription factor is also involved in the regulation of immune genes 

independent of infection and according to energy (Wang et al., 2014). Indeed, FoxO can induce 

expression of Relish, Dredd, Key (Dredd and Key are upstream components of Relish pathway), 

and some Relish-target AMPs. The promoter of these AMPs carries FoxO binding motif, which 

allows regulation of these immune genes by FoxO and according to nutritional condition (Becker 

et al., 2010; Li et al., 2012; Varma et al., 2014). In addition, in the intestine of flies, FoxO can 

repress PGRP-SC2, which is the inhibitor of Imd/Relish pathway (Guo et al., 2014). This function 

of FoxO is important in maintaining immune homeostasis while the organism is facing energy 

changes. Collectively, our study, combined with previous reports regarding the effect of FoxO on 

immunity, suggests that FoxO and Relish collaboration is required to maintain both immune and 

lipid homeostasis. However, future studies need to explore whether other metabolic FoxO target 

genes are regulated by Relish.  

Another intriguing question that might be addressed in the future is how the organism may 

benefit from the inhibitory effect of NF-κB on lipolysis. It is known that fatty acids act as an 

inducer of NF-κB pathway (Lee et al., 2003; Yin et al., 2014). Therefore, one plausible answer is 

that NF-κB indeed tries to block a positive feedback loop, and therefore prevents inflammation 

and avoids spending of energy on immune response during fasting, when, in fact, energy is more 

required for dormancy (energy-preserving catabolic metabolism). While our current data is not 

supporting this hypothesis, since we did not observe upregulation of Dpt during acute fasting 

(Figure 3.15), this hypothesis might still be valid during chronic low energy intake, or in regard to 

other targets of Relish.  
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Triglyceride form the main part of lipid droplets. During fasting, triglycerides in the lipid 

droplets undergo hydrolysis to provide energy for energy-consuming organs. In addition to TAGs, 

lipid droplets contain esterified lipids such as cholesterol and are sites for synthesis and/or storage 

of eicosanoids and some other signaling lipids as well as some transcription factors. Interestingly, 

these dynamic organelles also serve as a repertoire of antiviral and antibacterial proteins and 

therefore, play a role in immune responses (Arrese et al., 2014; den Brok et al., 2018; Welte, 2015). 

Our data demonstrated that attenuation of Relish function leads to less and smaller lipid droplets 

in the fat body of adult flies (Figure 3.1D). Thus, one can argue that Relish strives to maintain the 

immune function, as well as the potential signaling transduction function of lipid droplets by 

repressing fasting-induced lipolysis. In order to better dissect the role of Relish in signaling and 

distinguish the immune and metabolic function of this transcription factor, we are considering two 

approaches. Firstly, as previously mentioned, performing lipidomic and proteomic analysis of lipid 

droplets will help to determine whether there is a change in the amount of signaling molecules 

(protein or lipids) that reside in the lipid droplets. Secondly, we are planning to create transgenic 

flies with a mutated NF-κB binding site at Bmm locus, using CRISPR/Cas9 technology. 

Afterward, we will examine the effect of this single mutation at the Bmm locus on immunity of 

flies. Using this approach would be extremely beneficial for distinguishing the immune and 

metabolic effects of Relish-dependent repression of Bmm expression.  

In summary, using Drosophila we uncovered a role for the innate immune transcription 

factor Relish in governing lipid metabolism during metabolic adaptation. Relish is required to limit 

triglyceride hydrolysis during fasting and therefore, maintains lipid storage. Figure 4.1 represents 

our proposed model for the regulation of Bmm by FoxO and Relish. In this model, Relish binds to 
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Bmm locus in both fed and fasted conditions. Upon fasting Relish inhibits FoxO-dependent 

transcription of Bmm by recruiting HDAC1 and modifying histone acetylation state of Bmm locus. 

Lastly, we would like to mention that conservation of fundamental components of innate 

immune and lipid metabolism system (such as NF-κB, FoxO, and ATGL), as well as the existence 

of NF-κB binding motif within mice ATGL locus, suggest that similar mechanism is involved in 

the regulation of lipolysis in mammals. However, due to more complexity of pathways and organs 

in mammals, our model cannot be simply generalized to mammalian systems. Therefore, more 

studies need to be done in order to investigate the involvement of the same mechanism in the 

regulation of lipid metabolism in mammals. In addition, studying different species that are between 

Drosophila and mammals in the phylogenetic tree (such as fish, amphibians, and bird) may provide 

a better insight into the coevolution of immune and metabolic pathways and the conservation of 

the particular mechanism discovered in our study.  
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Figure 4.1 Upon fasting, Relish inhibits FoxO-mediated expression of Bmm through the 
recruitment of HDAC1. 



86 

REFERENCES 

Ahmadian, M., Abbott, M.J., Tang, T., Hudak, C.S., Kim, Y., Bruss, M., Hellerstein, M.K., Lee, 
H.Y., Samuel, V.T., Shulman, G.I., et al. (2011). Desnutrin/ATGL is regulated by AMPK and is
required for a brown adipose phenotype. Cell Metab 13, 739-748.

Arner, P., Bernard, S., Salehpour, M., Possnert, G., Liebl, J., Steier, P., Buchholz, B.A., Eriksson, 
M., Arner, E., Hauner, H., et al. (2011). Dynamics of human adipose lipid turnover in health and 
metabolic disease. Nature 478, 110-113. 

Arquier, N., and Leopold, P. (2007). Fly foie gras: modeling fatty liver in Drosophila. Cell Metab 
5, 83-85. 

Arrese, E.L., Saudale, F.Z., and Soulages, J.L. (2014). Lipid Droplets as Signaling Platforms 
Linking Metabolic and Cellular Functions. Lipid Insights 7, 7-16. 

Arrese, E.L., and Soulages, J.L. (2010). Insect fat body: energy, metabolism, and regulation. 
Annual review of entomology 55, 207-225. 

Ashburner, B.P., Westerheide, S.D., and Baldwin, A.S., Jr. (2001). The p65 (RelA) subunit of NF-
kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to 
negatively regulate gene expression. Mol Cell Biol 21, 7065-7077. 

Baker, R.G., Hayden, M.S., and Ghosh, S. (2011). NF-kappaB, inflammation, and metabolic 
disease. Cell Metab 13, 11-22. 

Baumbach, J., Hummel, P., Bickmeyer, I., Kowalczyk, K.M., Frank, M., Knorr, K., Hildebrandt, 
A., Riedel, D., Jackle, H., and Kuhnlein, R.P. (2014). A Drosophila in vivo screen identifies store-
operated calcium entry as a key regulator of adiposity. Cell Metab 19, 331-343. 

Becker, T., Loch, G., Beyer, M., Zinke, I., Aschenbrenner, A.C., Carrera, P., Inhester, T., Schultze, 
J.L., and Hoch, M. (2010). FOXO-dependent regulation of innate immune homeostasis. Nature
463, 369-373.

Beharry, A.W., Sandesara, P.B., Roberts, B.M., Ferreira, L.F., Senf, S.M., and Judge, A.R. (2014). 
HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci 
127, 1441-1453. 

Bi, J., Xiang, Y., Chen, H., Liu, Z., Gronke, S., Kuhnlein, R.P., and Huang, X. (2012). Opposite 
and redundant roles of the two Drosophila perilipins in lipid mobilization. J Cell Sci 125, 3568-
3577. 



87 

Boldin, M.P., and Baltimore, D. (2012). MicroRNAs, new effectors and regulators of NF-kappaB. 
Immunol Rev 246, 205-220. 

Boutens, L., and Stienstra, R. (2016). Adipose tissue macrophages: going off track during obesity. 
Diabetologia 59, 879-894. 

Brown, A.K., and Webb, A.E. (2018). Regulation of FOXO Factors in Mammalian Cells. Curr 
Top Dev Biol 127, 165-192. 

Buchon, N., Silverman, N., and Cherry, S. (2014). Immunity in Drosophila melanogaster--from 
microbial recognition to whole-organism physiology. Nat Rev Immunol 14, 796-810. 

Busse, M.S., Arnold, C.P., Towb, P., Katrivesis, J., and Wasserman, S.A. (2007). A kappaB 
sequence code for pathway-specific innate immune responses. EMBO J 26, 3826-3835. 

Cai, D., Yuan, M., Frantz, D.F., Melendez, P.A., Hansen, L., Lee, J., and Shoelson, S.E. (2005). 
Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-
kappaB. Nat Med 11, 183-190. 

Canavoso, L.E., Jouni, Z.E., Karnas, K.J., Pennington, J.E., and Wells, M.A. (2001). Fat 
metabolism in insects. Annu Rev Nutr 21, 23-46. 

Chakrabarti, P., English, T., Karki, S., Qiang, L., Tao, R., Kim, J., Luo, Z., Farmer, S.R., and 
Kandror, K.V. (2011). SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of 
ATGL. J Lipid Res 52, 1693-1701. 

Chakrabarti, P., and Kandror, K.V. (2009). FoxO1 controls insulin-dependent adipose triglyceride 
lipase (ATGL) expression and lipolysis in adipocytes. The Journal of biological chemistry 284, 
13296-13300. 

Chatterjee, N., and Bohmann, D. (2012). A versatile PhiC31 based reporter system for measuring 
AP-1 and Nrf2 signaling in Drosophila and in tissue culture. PLoS One 7, e34063. 

Chen, L., Chen, R., Wang, H., and Liang, F. (2015). Mechanisms Linking Inflammation to Insulin 
Resistance. Int J Endocrinol 2015, 508409. 

Chen, W.L., Chen, Y.L., Chiang, Y.M., Wang, S.G., and Lee, H.M. (2012a). Fenofibrate lowers 
lipid accumulation in myotubes by modulating the PPARalpha/AMPK/FoxO1/ATGL pathway. 
Biochem Pharmacol 84, 522-531. 

Chen, X., Barozzi, I., Termanini, A., Prosperini, E., Recchiuti, A., Dalli, J., Mietton, F., Matteoli, 
G., Hiebert, S., and Natoli, G. (2012b). Requirement for the histone deacetylase Hdac3 for the 
inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A 109, E2865-
2874. 



88 

Choi, S., Lim, D.S., and Chung, J. (2015). Feeding and Fasting Signals Converge on the LKB1-
SIK3 Pathway to Regulate Lipid Metabolism in Drosophila. PLoS Genet 11, e1005263. 

Clark, R.I., Tan, S.W., Pean, C.B., Roostalu, U., Vivancos, V., Bronda, K., Pilatova, M., Fu, J., 
Walker, D.W., Berdeaux, R., et al. (2013). MEF2 is an in vivo immune-metabolic switch. Cell 
155, 435-447. 

Contrino, S., Smith, R.N., Butano, D., Carr, A., Hu, F., Lyne, R., Rutherford, K., Kalderimis, A., 
Sullivan, J., Carbon, S., et al. (2012). modMine: flexible access to modENCODE data. Nucleic 
Acids Res 40, D1082-1088. 

Datta De, D., Datta, A., Bhattacharjya, S., and Roychoudhury, S. (2013). NF-kappaB mediated 
transcriptional repression of acid modifying hormone gastrin. PLoS One 8, e73409. 

Daval, M., Diot-Dupuy, F., Bazin, R., Hainault, I., Viollet, B., Vaulont, S., Hajduch, E., Ferre, P., 
and Foufelle, F. (2005). Anti-lipolytic action of AMP-activated protein kinase in rodent 
adipocytes. J Biol Chem 280, 25250-25257. 

den Brok, M.H., Raaijmakers, T.K., Collado-Camps, E., and Adema, G.J. (2018). Lipid Droplets 
as Immune Modulators in Myeloid Cells. Trends Immunol 39, 380-392. 

Dionne, M. (2014). Immune-metabolic interaction in Drosophila. Fly (Austin) 8, 75-79. 

Dominguez-Andres, J., Joosten, L.A., and Netea, M.G. (2018). Induction of innate immune 
memory: the role of cellular metabolism. Curr Opin Immunol 56, 10-16. 

Dong, J., Jimi, E., Zhong, H., Hayden, M.S., and Ghosh, S. (2008). Repression of gene expression 
by unphosphorylated NF-kappaB p65 through epigenetic mechanisms. Genes Dev 22, 1159-1173. 

Dostert, C., Jouanguy, E., Irving, P., Troxler, L., Galiana-Arnoux, D., Hetru, C., Hoffmann, J.A., 
and Imler, J.L. (2005). The Jak-STAT signaling pathway is required but not sufficient for the 
antiviral response of drosophila. Nat Immunol 6, 946-953. 

Eguchi, J., Kong, X., Tenta, M., Wang, X., Kang, S., and Rosen, E.D. (2013). Interferon regulatory 
factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage 
polarization. Diabetes 62, 3394-3403. 

Frith, M.C., Fu, Y., Yu, L., Chen, J.F., Hansen, U., and Weng, Z. (2004). Detection of functional 
DNA motifs via statistical over-representation. Nucleic Acids Res 32, 1372-1381. 

Gaidhu, M.P., Fediuc, S., Anthony, N.M., So, M., Mirpourian, M., Perry, R.L., and Ceddia, R.B. 
(2009). Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white 
adipocytes: novel mechanisms integrating HSL and ATGL. J Lipid Res 50, 704-715. 



89 

Galenza, A., and Foley, E. (2019). Immunometabolism: Insights from the Drosophila model. Dev 
Comp Immunol 94, 22-34. 

Galiana-Arnoux, D., Dostert, C., Schneemann, A., Hoffmann, J.A., and Imler, J.L. (2006). 
Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat 
Immunol 7, 590-597. 

Ganesan, S., Aggarwal, K., Paquette, N., and Silverman, N. (2011). NF-kappaB/Rel proteins and 
the humoral immune responses of Drosophila melanogaster. Curr Top Microbiol Immunol 349, 
25-60.

Gao, Z., Chiao, P., Zhang, X., Zhang, X., Lazar, M.A., Seto, E., Young, H.A., and Ye, J. (2005). 
Coactivators and corepressors of NF-kappaB in IkappaB alpha gene promoter. J Biol Chem 280, 
21091-21098. 

Gao, Z., He, Q., Peng, B., Chiao, P.J., and Ye, J. (2006). Regulation of nuclear translocation of 
HDAC3 by IkappaBalpha is required for tumor necrosis factor inhibition of peroxisome 
proliferator-activated receptor gamma function. J Biol Chem 281, 4540-4547. 

Gao, Z., Zhang, X., Zuberi, A., Hwang, D., Quon, M.J., Lefevre, M., and Ye, J. (2004). Inhibition 
of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 
adipocytes. Mol Endocrinol 18, 2024-2034. 

Gilmore, T.D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 
6680-6684. 

Gilmore, T.D., and Wolenski, F.S. (2012). NF-kappaB: where did it come from and why? Immunol 
Rev 246, 14-35. 

Glass, C.K., and Olefsky, J.M. (2012). Inflammation and lipid signaling in the etiology of insulin 
resistance. Cell Metab 15, 635-645. 

Gold, K.S., and Bruckner, K. (2015). Macrophages and cellular immunity in Drosophila 
melanogaster. Semin Immunol 27, 357-368. 

Grahn, T.H., Kaur, R., Yin, J., Schweiger, M., Sharma, V.M., Lee, M.J., Ido, Y., Smas, C.M., 
Zechner, R., Lass, A., et al. (2014). Fat-specific protein 27 (FSP27) interacts with adipose 
triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J Biol 
Chem 289, 12029-12039. 

Grivennikov, S.I., and Karin, M. (2010). Dangerous liaisons: STAT3 and NF-kappaB 
collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21, 11-19. 



90 

Gronke, S., Mildner, A., Fellert, S., Tennagels, N., Petry, S., Muller, G., Jackle, H., and Kuhnlein, 
R.P. (2005). Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell 
Metab 1, 323-330. 

Gronke, S., Muller, G., Hirsch, J., Fellert, S., Andreou, A., Haase, T., Jackle, H., and Kuhnlein, 
R.P. (2007). Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS 
biology 5, e137. 

Guo, L., Karpac, J., Tran, S.L., and Jasper, H. (2014). PGRP-SC2 promotes gut immune 
homeostasis to limit commensal dysbiosis and extend lifespan. Cell 156, 109-122. 

Gupta, S.C., Kim, J.H., Kannappan, R., Reuter, S., Dougherty, P.M., and Aggarwal, B.B. (2011). 
Role of nuclear factor kappaB-mediated inflammatory pathways in cancer-related symptoms and 
their regulation by nutritional agents. Exp Biol Med (Maywood) 236, 658-671. 

Gutierrez, E., Wiggins, D., Fielding, B., and Gould, A.P. (2007). Specialized hepatocyte-like cells 
regulate Drosophila lipid metabolism. Nature 445, 275-280. 

Guzik, T.J., and Cosentino, F. (2018). Epigenetics and Immunometabolism in Diabetes and Aging. 
Antioxid Redox Signal 29, 257-274. 

Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., Heldmaier, 
G., Maier, R., Theussl, C., Eder, S., et al. (2006). Defective lipolysis and altered energy metabolism 
in mice lacking adipose triglyceride lipase. Science 312, 734-737. 

Heier, C., and Kuhnlein, R.P. (2018). Triacylglycerol Metabolism in Drosophila melanogaster. 
Genetics 210, 1163-1184. 

Hennig, K.M., Colombani, J., and Neufeld, T.P. (2006). TOR coordinates bulk and targeted 
endocytosis in the Drosophila melanogaster fat body to regulate cell growth. J Cell Biol 173, 963-
974. 

Henstridge, D.C., Bruce, C.R., Pang, C.P., Lancaster, G.I., Allen, T.L., Estevez, E., Gardner, T., 
Weir, J.M., Meikle, P.J., Lam, K.S.L., et al. (2012). Skeletal muscle-specific overproduction of 
constitutively activated c-Jun N-terminal kinase (JNK) induces insulin resistance in mice. 
Diabetologia 55, 2769-2778. 

Hetru, C., and Hoffmann, J.A. (2009). NF-kappaB in the immune response of Drosophila. Cold 
Spring Harb Perspect Biol 1, a000232. 

Hotamisligil, G.S. (2017a). Foundations of Immunometabolism and Implications for Metabolic 
Health and Disease. Immunity 47, 406-420. 

Hotamisligil, G.S. (2017b). Inflammation, metaflammation and immunometabolic disorders. 
Nature 542, 177-185. 



91 

Hultmark, D. (2003). Drosophila immunity: paths and patterns. Curr Opin Immunol 15, 12-19. 

Iliopoulos, D., Hirsch, H.A., and Struhl, K. (2009). An epigenetic switch involving NF-kappaB, 
Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693-706. 

Jang, P.G., Namkoong, C., Kang, G.M., Hur, M.W., Kim, S.W., Kim, G.H., Kang, Y., Jeon, M.J., 
Kim, E.H., Lee, M.S., et al. (2010). NF-kappaB activation in hypothalamic pro-opiomelanocortin 
neurons is essential in illness- and leptin-induced anorexia. J Biol Chem 285, 9706-9715. 

Ji, Y., Thomas, C., Tulin, N., Lodhi, N., Boamah, E., Kolenko, V., and Tulin, A.V. (2016). Charon 
Mediates Immune Deficiency-Driven PARP-1-Dependent Immune Responses in Drosophila. 
Journal of immunology 197, 2382-2389. 

Jialal, I., Kaur, H., and Devaraj, S. (2014). Toll-like receptor status in obesity and metabolic 
syndrome: a translational perspective. J Clin Endocrinol Metab 99, 39-48. 

Johnson, R.F., and Perkins, N.D. (2012). Nuclear factor-kappaB, p53, and mitochondria: 
regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci 37, 317-324. 

Johnson, R.F., Witzel, II, and Perkins, N.D. (2011). p53-dependent regulation of mitochondrial 
energy production by the RelA subunit of NF-kappaB. Cancer Res 71, 5588-5597. 

Kaltenecker, D., Mueller, K.M., Benedikt, P., Feiler, U., Themanns, M., Schlederer, M., Kenner, 
L., Schweiger, M., Haemmerle, G., and Moriggl, R. (2017). Adipocyte STAT5 deficiency 
promotes adiposity and impairs lipid mobilisation in mice. Diabetologia 60, 296-305. 

Kamareddine, L., Robins, W.P., Berkey, C.D., Mekalanos, J.J., and Watnick, P.I. (2018). The 
Drosophila Immune Deficiency Pathway Modulates Enteroendocrine Function and Host 
Metabolism. Cell Metab. 

Kang, P., Chang, K., Liu, Y., Bouska, M., Birnbaum, A., Karashchuk, G., Thakore, R., Zheng, W., 
Post, S., Brent, C.S., et al. (2017). Drosophila Kruppel homolog 1 represses lipolysis through 
interaction with dFOXO. Sci Rep 7, 16369. 

Kim, J., and Neufeld, T.P. (2015). Dietary sugar promotes systemic TOR activation in Drosophila 
through AKH-dependent selective secretion of Dilp3. Nat Commun 6, 6846. 

Kim, J.Y., Tillison, K., Lee, J.H., Rearick, D.A., and Smas, C.M. (2006). The adipose tissue 
triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-alpha in 3T3-L1 
adipocytes and is a target for transactivation by PPARgamma. Am J Physiol Endocrinol Metab 
291, E115-127. 

Kim, S.J., Tang, T., Abbott, M., Viscarra, J.A., Wang, Y., and Sul, H.S. (2016). AMPK 
Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty 
Acid Oxidation within Adipose Tissue. Mol Cell Biol 36, 1961-1976. 



92 

Kim, S.K., and Rulifson, E.J. (2004). Conserved mechanisms of glucose sensing and regulation 
by Drosophila corpora cardiaca cells. Nature 431, 316-320. 

Kim, T.H., Choi, S.E., Ha, E.S., Jung, J.G., Han, S.J., Kim, H.J., Kim, D.J., Kang, Y., and Lee, 
K.W. (2013). IL-6 induction of TLR-4 gene expression via STAT3 has an effect on insulin 
resistance in human skeletal muscle. Acta Diabetol 50, 189-200. 

Kleino, A., Myllymaki, H., Kallio, J., Vanha-aho, L.M., Oksanen, K., Ulvila, J., Hultmark, D., 
Valanne, S., and Ramet, M. (2008). Pirk is a negative regulator of the Drosophila Imd pathway. J 
Immunol 180, 5413-5422. 

Kleinridders, A., Schenten, D., Konner, A.C., Belgardt, B.F., Mauer, J., Okamura, T., Wunderlich, 
F.T., Medzhitov, R., and Bruning, J.C. (2009). MyD88 signaling in the CNS is required for
development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10, 249-
259.

Koltes, D.A., Spurlock, M.E., and Spurlock, D.M. (2017). Adipose triglyceride lipase protein 
abundance and translocation to the lipid droplet increase during leptin-induced lipolysis in bovine 
adipocytes. Domest Anim Endocrinol 61, 62-76. 

Kosteli, A., Sugaru, E., Haemmerle, G., Martin, J.F., Lei, J., Zechner, R., and Ferrante, A.W., Jr. 
(2010). Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. 
J Clin Invest 120, 3466-3479. 

Kraakman, M.J., Murphy, A.J., Jandeleit-Dahm, K., and Kammoun, H.L. (2014). Macrophage 
polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage 
function? Front Immunol 5, 470. 

Kuhnlein, R.P. (2012). Thematic review series: Lipid droplet synthesis and metabolism: from yeast 
to man. Lipid droplet-based storage fat metabolism in Drosophila. J Lipid Res 53, 1430-1436. 

Kuroda, K., Nakashima, J., Kanao, K., Kikuchi, E., Miyajima, A., Horiguchi, Y., Nakagawa, K., 
Oya, M., Ohigashi, T., and Murai, M. (2007). Interleukin 6 is associated with cachexia in patients 
with prostate cancer. Urology 69, 113-117. 

Lee, J.Y., Ye, J., Gao, Z., Youn, H.S., Lee, W.H., Zhao, L., Sizemore, N., and Hwang, D.H. (2003). 
Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and 
phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem 278, 
37041-37051. 

Lee, K.A., Cho, K.C., Kim, B., Jang, I.H., Nam, K., Kwon, Y.E., Kim, M., Hyeon, D.Y., Hwang, 
D., Seol, J.H., et al. (2018a). Inflammation-Modulated Metabolic Reprogramming Is Required for 
DUOX-Dependent Gut Immunity in Drosophila. Cell Host Microbe 23, 338-352 e335. 



93 

Lee, P.T., Lin, G., Lin, W.W., Diao, F., White, B.H., and Bellen, H.J. (2018b). A kinase-dependent 
feedforward loop affects CREBB stability and long term memory formation. Elife 7. 

Lemaitre, B., and Hoffmann, J. (2007). The host defense of Drosophila melanogaster. Annu Rev 
Immunol 25, 697-743. 

Li, S., Yu, X., and Feng, Q. (2019). Fat Body Biology in the Last Decade. Annu Rev Entomol 64, 
315-333.

Li, Z., Zhang, H., Chen, Y., Fan, L., and Fang, J. (2012). Forkhead transcription factor FOXO3a 
protein activates nuclear factor kappaB through B-cell lymphoma/leukemia 10 (BCL10) protein 
and promotes tumor cell survival in serum deprivation. J Biol Chem 287, 17737-17745. 

Lo, M.C., Chen, J.Y., Kuo, Y.T., Chen, W.L., Lee, H.M., and Wang, S.G. (2019). Camptothecin 
activates SIRT1 to promote lipid catabolism through AMPK/FoxO1/ATGL pathway in C2C12 
myogenic cells. Arch Pharm Res. 

Loftus, R.M., and Finlay, D.K. (2016). Immunometabolism: Cellular Metabolism Turns Immune 
Regulator. J Biol Chem 291, 1-10. 

Lukic, L., Lalic, N.M., Rajkovic, N., Jotic, A., Lalic, K., Milicic, T., Seferovic, J.P., Macesic, M., 
and Gajovic, J.S. (2014). Hypertension in obese type 2 diabetes patients is associated with 
increases in insulin resistance and IL-6 cytokine levels: potential targets for an efficient preventive 
intervention. Int J Environ Res Public Health 11, 3586-3598. 

Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007). Obesity induces a phenotypic switch in 
adipose tissue macrophage polarization. J Clin Invest 117, 175-184. 

Makki, R., Cinnamon, E., and Gould, A.P. (2014). The development and functions of oenocytes. 
Annu Rev Entomol 59, 405-425. 

Mann, M., Mehta, A., Zhao, J.L., Lee, K., Marinov, G.K., Garcia-Flores, Y., Lu, L.F., Rudensky, 
A.Y., and Baltimore, D. (2017). An NF-kappaB-microRNA regulatory network tunes macrophage
inflammatory responses. Nat Commun 8, 851.

Markopoulos, G.S., Roupakia, E., Tokamani, M., Alabasi, G., Sandaltzopoulos, R., Marcu, K.B., 
and Kolettas, E. (2018). Roles of NF-kappaB Signaling in the Regulation of miRNAs Impacting 
on Inflammation in Cancer. Biomedicines 6. 

Mauro, C., Leow, S.C., Anso, E., Rocha, S., Thotakura, A.K., Tornatore, L., Moretti, M., De 
Smaele, E., Beg, A.A., Tergaonkar, V., et al. (2011). NF-kappaB controls energy homeostasis and 
metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13, 1272-1279. 

McNelis, J.C., and Olefsky, J.M. (2014). Macrophages, immunity, and metabolic disease. 
Immunity 41, 36-48. 



94 

Meng, X., Khanuja, B.S., and Ip, Y.T. (1999). Toll receptor-mediated Drosophila immune 
response requires Dif, an NF-kappaB factor. Genes Dev 13, 792-797. 

Mihajlovic, Z., Tanasic, D., Bajgar, A., Perez-Gomez, R., Steffal, P., and Krejci, A. (2019). Lime 
is a new protein linking immunity and metabolism in Drosophila. Dev Biol 452, 83-94. 

Mihaylova, M.M., Vasquez, D.S., Ravnskjaer, K., Denechaud, P.D., Yu, R.T., Alvarez, J.G., 
Downes, M., Evans, R.M., Montminy, M., and Shaw, R.J. (2011). Class IIa histone deacetylases 
are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607-
621. 

Miyoshi, H., Perfield, J.W., 2nd, Souza, S.C., Shen, W.J., Zhang, H.H., Stancheva, Z.S., Kraemer, 
F.B., Obin, M.S., and Greenberg, A.S. (2007). Control of adipose triglyceride lipase action by
serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J
Biol Chem 282, 996-1002.

Morris, O., Liu, X., Domingues, C., Runchel, C., Chai, A., Basith, S., Tenev, T., Chen, H., Choi, 
S., Pennetta, G., et al. (2016). Signal Integration by the IkappaB Protein Pickle Shapes Drosophila 
Innate Host Defense. Cell Host Microbe 20, 283-295. 

Murray, P.J., Rathmell, J., and Pearce, E. (2015). SnapShot: Immunometabolism. Cell Metab 22, 
190-190 e191.

Musselman, L.P., Fink, J.L., Grant, A.R., Gatto, J.A., Tuthill, B.F., 2nd, and Baranski, T.J. (2017). 
The relationship between immunity and metabolism in Drosophila diet-induced insulin resistance. 
Mol Cell Biol. 

Musselman, L.P., Fink, J.L., Grant, A.R., Gatto, J.A., Tuthill, B.F., 2nd, and Baranski, T.J. (2018). 
A Complex Relationship between Immunity and Metabolism in Drosophila Diet-Induced Insulin 
Resistance. Mol Cell Biol 38. 

Musselman, L.P., Fink, J.L., Ramachandran, P.V., Patterson, B.W., Okunade, A.L., Maier, E., 
Brent, M.R., Turk, J., and Baranski, T.J. (2013). Role of fat body lipogenesis in protection against 
the effects of caloric overload in Drosophila. J Biol Chem 288, 8028-8042. 

Musselman, L.P., and Kuhnlein, R.P. (2018). Drosophila as a model to study obesity and metabolic 
disease. J Exp Biol 221. 

Myllymaki, H., Valanne, S., and Ramet, M. (2014). The Drosophila imd signaling pathway. J 
Immunol 192, 3455-3462. 

Nakajima, E., Shimaji, K., Umegawachi, T., Tomida, S., Yoshida, H., Yoshimoto, N., Izawa, S., 
Kimura, H., and Yamaguchi, M. (2016). The Histone Deacetylase Gene Rpd3 Is Required for 
Starvation Stress Resistance. PLoS One 11, e0167554. 



95 

Nguyen, K.D., Qiu, Y., Cui, X., Goh, Y.P., Mwangi, J., David, T., Mukundan, L., Brombacher, 
F., Locksley, R.M., and Chawla, A. (2011). Alternatively activated macrophages produce 
catecholamines to sustain adaptive thermogenesis. Nature 480, 104-108. 

Norata, G.D., Caligiuri, G., Chavakis, T., Matarese, G., Netea, M.G., Nicoletti, A., O'Neill, L.A., 
and Marelli-Berg, F.M. (2015). The Cellular and Molecular Basis of Translational 
Immunometabolism. Immunity 43, 421-434. 

Notari, L., Baladron, V., Aroca-Aguilar, J.D., Balko, N., Heredia, R., Meyer, C., Notario, P.M., 
Saravanamuthu, S., Nueda, M.L., Sanchez-Sanchez, F., et al. (2006). Identification of a lipase-
linked cell membrane receptor for pigment epithelium-derived factor. J Biol Chem 281, 38022-
38037. 

Nunn, A.V., Bell, J., and Barter, P. (2007). The integration of lipid-sensing and anti-inflammatory 
effects: how the PPARs play a role in metabolic balance. Nucl Recept 5, 1. 

Odegaard, J.I., and Chawla, A. (2013). The immune system as a sensor of the metabolic state. 
Immunity 38, 644-654. 

Oeckinghaus, A., Hayden, M.S., and Ghosh, S. (2011). Crosstalk in NF-kappaB signaling 
pathways. Nat Immunol 12, 695-708. 

Osborn, O., and Olefsky, J.M. (2012). The cellular and signaling networks linking the immune 
system and metabolism in disease. Nat Med 18, 363-374. 

Pagnon, J., Matzaris, M., Stark, R., Meex, R.C., Macaulay, S.L., Brown, W., O'Brien, P.E., 
Tiganis, T., and Watt, M.J. (2012). Identification and functional characterization of protein kinase 
A phosphorylation sites in the major lipolytic protein, adipose triglyceride lipase. Endocrinology 
153, 4278-4289. 

Pahl, H.L. (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 
18, 6853-6866. 

Palm, W., Sampaio, J.L., Brankatschk, M., Carvalho, M., Mahmoud, A., Shevchenko, A., and 
Eaton, S. (2012). Lipoproteins in Drosophila melanogaster--assembly, function, and influence on 
tissue lipid composition. PLoS Genet 8, e1002828. 

Paradkar, P.N., Trinidad, L., Voysey, R., Duchemin, J.B., and Walker, P.J. (2012). Secreted Vago 
restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. 
Proc Natl Acad Sci U S A 109, 18915-18920. 

Park, S., Bustamante, E.L., Antonova, J., McLean, G.W., and Kim, S.K. (2011). Specification of 
Drosophila corpora cardiaca neuroendocrine cells from mesoderm is regulated by Notch signaling. 
PLoS Genet 7, e1002241. 



96 

Patel, R.T., Soulages, J.L., Hariharasundaram, B., and Arrese, E.L. (2005). Activation of the lipid 
droplet controls the rate of lipolysis of triglycerides in the insect fat body. J Biol Chem 280, 22624-
22631. 

Puri, V., Konda, S., Ranjit, S., Aouadi, M., Chawla, A., Chouinard, M., Chakladar, A., and Czech, 
M.P. (2007). Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride
storage. J Biol Chem 282, 34213-34218.

Rajan, A., Housden, B.E., Wirtz-Peitz, F., Holderbaum, L., and Perrimon, N. (2017). A 
Mechanism Coupling Systemic Energy Sensing to Adipokine Secretion. Dev Cell 43, 83-98 e86. 

Rao, R.R., Long, J.Z., White, J.P., Svensson, K.J., Lou, J., Lokurkar, I., Jedrychowski, M.P., Ruas, 
J.L., Wrann, C.D., Lo, J.C., et al. (2014). Meteorin-like is a hormone that regulates immune-
adipose interactions to increase beige fat thermogenesis. Cell 157, 1279-1291.

Rosen, E.D., and Spiegelman, B.M. (2014). What we talk about when we talk about fat. Cell 156, 
20-44.

Roy, D., Farabaugh, K.T., Wu, J., Charrier, A., Smas, C., Hatzoglou, M., Thirumurugan, K., and 
Buchner, D.A. (2017). Coordinated transcriptional control of adipocyte triglyceride lipase (Atgl) 
by transcription factors Sp1 and peroxisome proliferator-activated receptor gamma (PPARgamma) 
during adipocyte differentiation. J Biol Chem 292, 14827-14835. 

Royet, J. (2004). Drosophila melanogaster innate immunity: an emerging role for peptidoglycan 
recognition proteins in bacteria detection. Cell Mol Life Sci 61, 537-546. 

Rui, L., Aguirre, V., Kim, J.K., Shulman, G.I., Lee, A., Corbould, A., Dunaif, A., and White, M.F. 
(2001). Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via 
distinct pathways. J Clin Invest 107, 181-189. 

Rynes, J., Donohoe, C.D., Frommolt, P., Brodesser, S., Jindra, M., and Uhlirova, M. (2012). 
Activating transcription factor 3 regulates immune and metabolic homeostasis. Mol Cell Biol 32, 
3949-3962. 

Ryu, J.H., Kim, S.H., Lee, H.Y., Bai, J.Y., Nam, Y.D., Bae, J.W., Lee, D.G., Shin, S.C., Ha, E.M., 
and Lee, W.J. (2008). Innate immune homeostasis by the homeobox gene caudal and commensal-
gut mutualism in Drosophila. Science 319, 777-782. 

Sajwan, S., Sidorov, R., Staskova, T., Zaloudikova, A., Takasu, Y., Kodrik, D., and Zurovec, M. 
(2015). Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in 
Drosophila. Insect Biochem Mol Biol 61, 79-86. 

Schoenborn, V., Heid, I.M., Vollmert, C., Lingenhel, A., Adams, T.D., Hopkins, P.N., Illig, T., 
Zimmermann, R., Zechner, R., Hunt, S.C., et al. (2006). The ATGL gene is associated with free 
fatty acids, triglycerides, and type 2 diabetes. Diabetes 55, 1270-1275. 



97 

Schreiber, R., Xie, H., and Schweiger, M. (2019). Of mice and men: The physiological role of 
adipose triglyceride lipase (ATGL). Biochim Biophys Acta Mol Cell Biol Lipids 1864, 880-899. 

Schweiger, M., Schreiber, R., Haemmerle, G., Lass, A., Fledelius, C., Jacobsen, P., Tornqvist, H., 
Zechner, R., and Zimmermann, R. (2006). Adipose triglyceride lipase and hormone-sensitive 
lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281, 40236-
40241. 

Shakespear, M.R., Halili, M.A., Irvine, K.M., Fairlie, D.P., and Sweet, M.J. (2011). Histone 
deacetylases as regulators of inflammation and immunity. Trends Immunol 32, 335-343. 

Shim, J., Mukherjee, T., and Banerjee, U. (2012). Direct sensing of systemic and nutritional signals 
by haematopoietic progenitors in Drosophila. Nat Cell Biol 14, 394-400. 

Silverman, N., and Maniatis, T. (2001). NF-kappaB signaling pathways in mammalian and insect 
innate immunity. Genes Dev 15, 2321-2342. 

Sohrabi, Y., Godfrey, R., and Findeisen, H.M. (2018). Altered Cellular Metabolism Drives Trained 
Immunity. Trends Endocrinol Metab 29, 602-605. 

Stoven, S., Ando, I., Kadalayil, L., Engstrom, Y., and Hultmark, D. (2000). Activation of the 
Drosophila NF-kappaB factor Relish by rapid endoproteolytic cleavage. EMBO Rep 1, 347-352. 

Sykiotis, G.P., and Bohmann, D. (2008). Keap1/Nrf2 signaling regulates oxidative stress tolerance 
and lifespan in Drosophila. Dev Cell 14, 76-85. 

Taniguchi, K., and Karin, M. (2018). NF-kappaB, inflammation, immunity and cancer: coming of 
age. Nat Rev Immunol 18, 309-324. 

Tarantino, G., and Caputi, A. (2011). JNKs, insulin resistance and inflammation: A possible link 
between NAFLD and coronary artery disease. World J Gastroenterol 17, 3785-3794. 

Taschler, U., Schreiber, R., Chitraju, C., Grabner, G.F., Romauch, M., Wolinski, H., Haemmerle, 
G., Breinbauer, R., Zechner, R., Lass, A., et al. (2015). Adipose triglyceride lipase is involved in 
the mobilization of triglyceride and retinoid stores of hepatic stellate cells. Biochim Biophys Acta 
1851, 937-945. 

Tieri, P., Termanini, A., Bellavista, E., Salvioli, S., Capri, M., and Franceschi, C. (2012). Charting 
the NF-kappaB pathway interactome map. PLoS One 7, e32678. 

Tornatore, L., Thotakura, A.K., Bennett, J., Moretti, M., and Franzoso, G. (2012). The nuclear 
factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol 
22, 557-566. 



98 

Toubal, A., Treuter, E., Clement, K., and Venteclef, N. (2013). Genomic and epigenomic 
regulation of adipose tissue inflammation in obesity. Trends Endocrinol Metab 24, 625-634. 

Valanne, S., Wang, J.H., and Ramet, M. (2011). The Drosophila Toll signaling pathway. J 
Immunol 186, 649-656. 

van Dijk, D., Sharon, E., Lotan-Pompan, M., Weinberger, A., Segal, E., and Carey, L.B. (2017). 
Large-scale mapping of gene regulatory logic reveals context-dependent repression by 
transcriptional activators. Genome Res 27, 87-94. 

Varma, D., Bulow, M.H., Pesch, Y.Y., Loch, G., and Hoch, M. (2014). Forkhead, a new cross 
regulator of metabolism and innate immunity downstream of TOR in Drosophila. J Insect Physiol 
69, 80-88. 

Vihervaara, T., and Puig, O. (2008). dFOXO regulates transcription of a Drosophila acid lipase. J 
Mol Biol 376, 1215-1223. 

Wang, A., Luan, H.H., and Medzhitov, R. (2019). An evolutionary perspective on 
immunometabolism. Science 363. 

Wang, B., Moya, N., Niessen, S., Hoover, H., Mihaylova, M.M., Shaw, R.J., Yates, J.R., 3rd, 
Fischer, W.H., Thomas, J.B., and Montminy, M. (2011). A hormone-dependent module regulating 
energy balance. Cell 145, 596-606. 

Wang, Y., Zhou, Y., and Graves, D.T. (2014). FOXO transcription factors: their clinical 
significance and regulation. Biomed Res Int 2014, 925350. 

Weber, K., Johnson, N., Champlin, D., and Patty, A. (2005). Many P-element insertions affect 
wing shape in Drosophila melanogaster. Genetics 169, 1461-1475. 

Welte, M.A. (2015). Expanding roles for lipid droplets. Curr Biol 25, R470-481. 

Woodcock, K.J., Kierdorf, K., Pouchelon, C.A., Vivancos, V., Dionne, M.S., and Geissmann, F. 
(2015). Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced 
lifespan in Drosophila fed a lipid-rich diet. Immunity 42, 133-144. 

Xing, Y.Q., Li, A., Yang, Y., Li, X.X., Zhang, L.N., and Guo, H.C. (2018). The regulation of 
FOXO1 and its role in disease progression. Life Sci 193, 124-131. 

Yang, H., and Hultmark, D. (2017). Drosophila muscles regulate the immune response against 
wasp infection via carbohydrate metabolism. Sci Rep 7, 15713. 

Yin, J., Peng, Y., Wu, J., Wang, Y., and Yao, L. (2014). Toll-like receptor 2/4 links to free fatty 
acid-induced inflammation and beta-cell dysfunction. J Leukoc Biol 95, 47-52. 



99 

Zechner, R., Madeo, F., and Kratky, D. (2017). Cytosolic lipolysis and lipophagy: two sides of the 
same coin. Nat Rev Mol Cell Biol 18, 671-684. 

Zhang, Q., Zhao, K., Shen, Q., Han, Y., Gu, Y., Li, X., Zhao, D., Liu, Y., Wang, C., Zhang, X., et 
al. (2015). Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-
6. Nature 525, 389-393.

Zhang, W., Bu, S.Y., Mashek, M.T., I, O.S., Sibai, Z., Khan, S.A., Ilkayeva, O., Newgard, C.B., 
Mashek, D.G., and Unterman, T.G. (2016). Integrated Regulation of Hepatic Lipid and Glucose 
Metabolism by Adipose Triacylglycerol Lipase and FoxO Proteins. Cell Rep 15, 349-359. 

Zhang, X., Zhang, C.C., Yang, H., Soni, K.G., Wang, S.P., Mitchell, G.A., and Wu, J.W. (2019). 
An Epistatic Interaction between Pnpla2 and Lipe Reveals New Pathways of Adipose Tissue 
Lipolysis. Cells 8. 

Zhao, X., and Karpac, J. (2017). Muscle Directs Diurnal Energy Homeostasis through a Myokine-
Dependent Hormone Module in Drosophila. Curr Biol 27, 1941-1955 e1946. 

Zhong, B., Tien, P., and Shu, H.B. (2006). Innate immune responses: crosstalk of signaling and 
regulation of gene transcription. Virology 352, 14-21. 

Zhou, R., Gong, A.Y., Chen, D., Miller, R.E., Eischeid, A.N., and Chen, X.M. (2013). Histone 
deacetylases and NF-kB signaling coordinate expression of CX3CL1 in epithelial cells in response 
to microbial challenge by suppressing miR-424 and miR-503. PLoS One 8, e65153. 

Zhou, W., Jiang, Z.W., Tian, J., Jiang, J., Li, N., and Li, J.S. (2003). Role of NF-kappaB and 
cytokine in experimental cancer cachexia. World J Gastroenterol 9, 1567-1570. 


	NF-ĸB/Relish and the control of CELLULAR triglyceride metabolism in Drosophila melanogaster
	ABSTRACT0F
	DEDICATION
	ACKNOWLEDGEMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION AND LITERATURE REVIEW
	1.1  Immunometabolism
	1.1.1 Integration of innate immune and metabolic systems
	1.1.2 Inflammation and obesity: The role of macrophages
	1.1.3 Insulin resistance

	1.2 Adipose tissue and lipolysis in mammals: The role of ATGL and FoxO
	1.3 Drosophila as a model organism
	1.3.1 Fat body
	1.3.2 Triglyceride metabolism in flies
	1.3.3 Innate immunity in flies

	1.4 NF-κB signaling pathway
	1.4.1 An overview
	1.4.2 NF-κB signaling pathway and metabolism
	1.4.3 NF-κB and regulation of gene expression

	1.5 Summary

	2. MATERIALS AND METHODS7F
	2.1 Drosophila Husbandry and Strains
	2.2 Generation of Transgenic Flies
	2.3 de novo Lipid Synthesis Analysis
	2.4 Analysis of Gene Expression
	2.5 Metabolite Measurements
	2.6 Oil Red O staining
	2.7 Nile Red staining
	2.8 Immunostaining and Microscopy
	2.9 Feeding Behavior
	2.10 Chromatin Immunoprecipitation (ChIP)
	2.11 Generating Germ-Free Animals
	2.12 Starvation Sensitivity Analysis
	2.13 Septic/Systemic Infection Assay
	2.14 Quantification and Statistical Analysis
	2.15 Key resources, reagents and services

	3. RESULTS8F
	3.1 Relish Function in Fat body Directs Lipid Metabolism in Response to Metabolic Adaptation
	3.2 Relish Controls Fasting-induced Lipolysis and Bmm Triglyceride Lipase Gene Expression
	3.3 FoxO and Relish Antagonism Dictates Fasting-induced Bmm Transcription and Lipolysis

	4. CONCLUSIONS AND FUTURE DIRECTION
	REFERENCES



