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ABSTRACT 

The recent developments in machine learning have shown its applicability in 

numerous real-world applications. However, building an optimal machine learning 

pipeline requires considerable knowledge and experience in data science. To address this 

problem, many automated machine learning (AutoML) frameworks have been proposed. 

However, most of the existing AutoML frameworks treat the pipeline generation as a 

black-box optimization problem. Thus, failing to incorporate basic heuristics and human 

intuition. Furthermore, most of these frameworks provide very basic or no feature 

engineering abilities. To tackle these challenges, in this thesis, we propose an automated 

framework to generate end-to-end machine learning pipelines. By survey of 100s of 

Kaggle kernels and extensive experimentation, we finalized a set of heuristics which 

enhances the pipeline optimization problem. We also implemented a system to automate 

feature engineering, which could generate 100s of features to produce better representation 

of the data. Additionally, the framework provides interpretations about why certain 

models and features were selected by the system. This would help the users to further 

improve the pipeline. Finally, our experimentation shows consistent performance across 

various datasets. 
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1. INTRODUCTION  

In recent years, Machine Learning has been successfully used in many real-world 

applications. From Finance, Marketing, Advertisement to Healthcare, there are numerous 

use-cases of these techniques. The widescale applications and promising results have led 

to the proliferation of the libraries, providing out of the box implementation of various 

machine learning algorithms and techniques. Libraries such as Scikit-learn [1], XGBoost 

[2], Light-GBM [3] and frameworks like TensorFlow [4], PyTorch [5] are extensively 

used to develop machine learning solutions. However, generating an optimal machine 

learning pipeline takes a lot more than using these algorithms. It requires a significant 

amount of skills and experience. A typical workflow involves repeated rounds of feature 

extraction, feature selection, model development, benchmarking, hyper-parameter tuning, 

etc. Moreover, for every change in data distribution, this process needs to be repeated. 

These challenges led to the rise of the automated machine learning (AutoML) systems, 

which try to address this repetitive nature of work and reduce the entry barriers to the 

people with minimal data science experience. 

In this thesis, we propose a framework to automate the end-to-end process of 

generating machine learning pipelines. Given a tabular dataset and time budget, our 

framework aims to come up with the machine learning pipeline with the optimal 

performance for the given task. 

We envision this framework to be useful for two types of user groups: basic users 

and machine learning experts. The basic users could make use of its intuitive interface to 

easily generate a well-performing model for their data and desired task. On the other hand, 
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machine learning experts could use our system to automate and simplify parts of their 

workflow. 

Imagine a scenario where a data scientist is developing a stock trade prediction 

model. It is unknown before-hand which methods would work the best. He would need to 

spend hours to develop the pipelines, benchmark and tune them for the optimal 

performance. Moreover, different stocks may have different data distributions as well as 

different features associated with them. This would require him to re-do most of his work 

for each one of them. Our system could help by providing a decent baseline to start the 

development. It could give insights about which models and features perform the best and 

consequently help him further tune the performance. More importantly, when developing 

models for the other stocks, based on his experience, he could specify a better hyper-

parameter search space and configuration. Thus, overall our system could help him 

improve the predictive performance at the same time significantly reducing the workload. 

1.1. Objectives 

The major goal of our framework is to automate the problem of generating 

machine learning pipelines for tabular datasets for the tasks of classification and 

regression. Additionally, it should satisfy the following objectives: 

1.1.1. User-friendly Design 

One of the major goals of our framework is to provide a simple and intuitive 

interface to the user. The user should be able to use the library with few simple lines of 

code without needing to spend hours learning its APIs. Additionally, it should be flexible 

enough to accommodate various user needs. If a user comes with a preferable pre-existing 
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workflow for the given problem, then he should be able to extend that to our framework 

without significant overhead. 

1.1.2. Good Baseline Performance 

In many machine learning applications especially in the domains such as finance 

or healthcare, the predictive performance of the model is very important. Even the small 

improvements in the performance could be worth thousands of dollars. Therefore, our 

framework should be consistently able to produce good baseline performance across 

various real-world problems. 

1.1.3. Automated Feature Engineering 

Feature engineering is the process of using domain knowledge of the data to create 

features that make machine learning algorithms work [6]. However, creating useful 

features from the data requires a good deal of experience and deep understanding of the 

data. Our framework aims to simplify the process by going through multiple steps of 

feature generation and feature selection to provide a set of useful features. These features 

can be used by the framework to improve its performance or by the user to include in his 

workflow.  

1.1.4. Interpretability 

In addition to generating an optimal machine learning pipeline, our framework 

should also provide the user with few key insights about which models/features perform 

well for the given task. This could help the user to further improve the performance by 

better tuning the search space and focusing on better set of features. 
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2. RELATED WORK 

 

Over the years, various methods have been proposed to automate the complete 

machine learning pipeline or the parts of it. Most of the previous work has been focused 

on treating the automated machine learning as an optimization problem to find the best 

model and hyper-parameter settings. Moreover, in recent years, a considerable amount of 

attention has been given to topics such as Neural Architecture Search and Automated 

Feature Engineering. In the following sections, we would briefly explain the previous 

work in each of these aspects. 

2.1. Model and Hyperparameter Optimization 

The automated model and hyperparameter search methods intend to tune the 

hyper-parameters and the models to build the entire machine learning pipeline 

automatically. Various optimization methods such as Bayesian Optimization, 

Evolutionary Algorithms, Random Search, etc. are used for this purpose.  

Auto-WEKA [20] is one of the first AutoML platforms. It is based on the WEKA 

[8] models and uses SMAC [10] (a variant of Bayesian Optimization) for optimizing the 

hyper-parameters. auto-sklearn [7] uses Scikit-learn models along with SMAC based 

optimization. It tunes the entire pipeline of preprocessors and models using conditional 

hyperparameter spaces. It also uses the meta-learning to warm start the search, based on 

the dataset properties. On the other hand, TPOT [12] uses evolutionary algorithms along 

with the Scikit-learn models. H2O AutoML [14] uses the random search-based 
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optimization followed by stacked ensembles to enhance the performance. A brief 

comparison of each of these platforms along with our framework is given in Table 1 [19]. 

 

Table 1 Reprinted from [19]: Comparison of AutoML tools 

  

2.2. Automated Feature Engineering 

Automated Feature Engineering aims to generate informative and discriminative 

features from the given data, followed by selecting the most useful ones for the model. 

Feature engineering requires human insight and good understanding of the data. 

Therefore, it is very difficult to automate. There are only a handful number of frameworks 

which support automated feature engineering. FeatureTools [9] is an open-source 

framework based on Python. It automatically generates features by applying feature 

transformation operations, such as mean or sum. AutoCross [15] is an automatic feature 

crossing framework by 4Paradigm. It uses cross-product of categorical features to 

automatically capture interactions between them, which is followed by beam search to 

find the optimal feature set. 

In our experience, FeatureTools is more relevant for the relational databases and 

cannot generate many meaningful features for flat tabular datasets. While AutoCross 

works on tabular datasets, it mainly focuses on generating high order cross features and 

therefore is computationally expensive. 
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2.3. Neural Architecture Search 

Due to the recent widespread success of deep learning, there has been a growing 

amount of interest in automating the search and design of the neural network structures. 

NAS [16], NASNet [17], ENAS [13], DARTS [11], AutoKeras [18] are few of the 

examples of using AutoML for deep learning.  Due to the high computational cost and 

lower interpretability of the deep neural networks, we limit our focus on the traditional 

machine learning models. Therefore, further discussion of these techniques is out of the 

scope for this work.
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3. PROPOSED FRAMEWORK 

In this section, we propose an automated machine learning framework for tabular 

datasets in order to satisfy the objectives we discussed earlier: (1) intuitive user interface 

(2) good baseline performance (3) automated feature engineering and (4) interpretations 

of the feature/model selection. 

 

Figure 1 The architecture of the proposed framework 

 

The general architecture of the framework is shown in Figure 1. Similar to the most 

machine learning algorithms, the framework operates in three phases. First, during the 

initialization phase, it takes-in the configuration parameters from the user, validates them 

and defines the components and their search spaces accordingly. Next, during the training 

phase, it takes the training data and target labels as input, runs the optimization to find the 

best set of components for the pipeline. Finally, during the test phase, it takes in the test 

data and make predictions using the previously trained pipeline. For each of these phases, 
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our framework provides an intuitive single line interface. Thus, a user can use the 

framework with just 3 lines of code without spending a lot of time in learning the APIs. 

Our framework consists of 5 major components: Data resampling, Feature 

engineering, Model selection, Optimization technique, and Ensembling. In the following 

sections, we would explain each of these components in further details. 

3.1. Data Resampling 

Oftentimes for the classification problems, the training data contains an 

imbalanced distribution of the classes. Most of the machine learning models have a bias 

towards the majority class, which makes them overlook the instances of the minority class. 

Thus, the model fails to correctly classify the minority class samples from the test data. 

To address this problem, we use the following resampling techniques to equally represent 

the minority classes: 

1. Up-sampling: This technique randomly samples the minority classes with replacement 

and adds duplicate instances to the dataset. This process is repeated until the desired class 

ratio is achieved. This technique is effective only when the imbalance ratio is low. For the 

higher levels of imbalance, adding duplicate instances will cause the model to overfit to 

the repeated samples. Therefore, we use this technique only when the ratio of the number 

of majority class samples to the number of minority class samples is less than 2.  

2. Data Augmentation: When the imbalance ratio is higher, instead of duplicating the 

minority samples, it is preferred to add artificial samples that are representative of the 

minority class. To do so we use the Synthetic Minority Oversampling Technique 

(SMOTE) algorithm [24]. The simplified pseudocode of the algorithm is shown in  Figure 
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2. For every sample in the minority class, its K nearest neighbors are found. Then, one of 

the samples and its nearest neighbor are selected randomly. Next, the vector difference 

between the sample and its neighbor are multiplied by a random number between 0 and 1. 

A new sample is generated by adding this scaled difference to the selected sample point. 

This process is repeated until the desired class ratio is achieved. 

 

Figure 2 SMOTE algorithm 

 

3.2. Feature Engineering 

Good features can significantly improve the predictive performance. Therefore, 

feature engineering is one of the most important parts of a machine learning pipeline. It 

roughly consists of basic preprocessing, feature generation and feature selection. 

3.2.1. Basic Preprocessing 

Most machine learning models require clean numeric data. However, in real-world 

scenarios, the data is often messy with categorical variables, missing values, outliers, etc. 

There are a variety of techniques available to deal with each of these aspects. The right set 

of preprocessing techniques depends on many factors including the data distribution, 
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model type, task type, evaluation metric, etc. It is challenging to select an optimal subset 

from such a wide range of options. Therefore, based on the heuristics, we designed a 

search space of various preprocessing operators for categorical encoding, missing value 

imputations and outlier handling. The list of some of these preprocessing operators is 

given in Table 2. We then use the optimization methods to select from this space, the 

optimal set of preprocessing operations applicable to the given scenario. 

 

Table 2 List of basic preprocessing operations 

 

3.2.2. Feature Generation 

Feature generation is the process of transforming and combining the data to create 

useful features. Based on the inspiration from the Deep Feature Synthesis [9] and 

AutoCross [15], we designed a system to generate features in an automated manner. The 

process relies on the observation that the most common features can be generated by 

sequentially applying a list of simple data-agnostic operations. These operations could be 

considered as the building blocks of the feature engineering. Therefore, we implemented 

our feature engineering technique using many such basic operations called primitives. 

Primitives are the simple computations that can be applied on a single column (first order) 

or multiple columns (second order).  
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3.2.2.1. First-Order Primitives 

These primitives are applied directly to the single column (or feature) of the data 

and output the transformed version of it. For example, a label encoder takes as an input a 

feature column and maps each of the feature value to a numeric value. In similar manner, 

the first order primitives map one feature to one or many features. Most of the pre-

processing, feature generation, and feature selection methods in our framework are 

implemented using the first order primitives.  

3.2.2.2. Second Order Primitives 

Very often the target depends not only on a single feature but also on interactions 

between two or more of them. Second order features try to find the simple interactions 

between two (or more) columns by combining them based on the defined aggregation 

strategy. The examples of some of these aggregation strategies are mean, common count 

or max. Table 3 provides an example of calculating a second order primitive. In this 

example, ‘Genre’ and ‘Country’ are categorical feature whereas the ‘Duration’ is a 

numerical feature. To generate categorical-categorical (cat-cat) interaction (‘Genre-

Country’), we use ‘common count’ as the aggregation strategy. Thus, we count the number 

of common occurrences for the different values of the input features. The set (‘Sci-Fi’, 

‘Japan’) occurs twice in the dataset, so its corresponding value is set to 2 whereas the rest 

of the combinations are mapped to 1. Similarly, to find categorical-numerical (cat-num) 

interaction, we use the ‘mean’ as the aggregation strategy. So, for ‘Genre-Duration’ 

feature, we take the mean of all the values of ‘Duration’ for the given value of ‘Genre’. 
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Thus, the value for the records corresponding to ‘Sci-Fi’ are mapped to 190 (i.e. mean of 

180, 190, 200) and ‘Action’ are mapped to 110. 

Second order features are useful as they may capture better correlation with the 

target. For example, in our case, the target is ‘Y’ whenever ‘Genre-Country’ is high and 

vice versa. In this way, cross features often help to improve its prediction power of the 

model by capturing the complex relationship between features. 

 

 

Table 3 Example of the second order primitives 

 

Based on the data types and the properties of the feature columns, we apply a list 

of these first and second order primitives. This process generates 100-1000s of features, 

many of which are filtered using the feature selection methods. The list of some of the 

first order (single column) and second order (cross column) primitives is shown in Table 

4. 
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Table 4 List of feature primitives 

 

3.2.3. Feature Selection 

Feature selection is the process of finding a feature subset, which will be most 

informative to the model. Any machine learning model is as good as the data input to it. 

Irrelevant or mutually correlated features can negatively affect the performance of the 

model, as the model can overfit to these irrelevant features. Additionally, reducing the 

number of features can save the computational and memory requirements of the model. 

Especially for our framework, as we use automated feature engineering to generate a lot 

of features, a good feature selection technique is essential to select the most useful ones 

and filter out the rest. However, finding a perfect subset of features is an NP hard problem, 

so instead we approximate using greedy selection methods. 

We propose a two-step feature selection algorithm which uses univariate feature 

selection method to filter out the basic uninformative features followed by a feature 

importance method to remove the features with low feature important score.  
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Step 1: Univariate Selection: First we remove the features with very low variance 

(constant value) or extremely high variance (almost all different values). Next, we 

calculate the Pearson correlation score of each of the features with the target. Finally, 

based on the threshold, we remove the features with low correlation score. 

Step 2: Feature Importance: We train a Light-GBM model on all of the features 

remaining after the first step. We use the trained model’s feature importance scores, to 

find which features are more useful. We normalize these scores by dividing them by their 

mean. The features with the importance score below the threshold are filtered out. 

The complete procedure is explained in Figure 3: 

 

Figure 3 Two-step feature selection method 

 

3.3. Model Selection 

A single machine learning model cannot perform well for every scenario. Every 

model has its strengths and weaknesses. For example, linear models are very good at 

differentiating between linearly separable classes. Random Forests on the other hand can 
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learn complex decision boundaries but often overfit the linearly separable cases. Table 5 

[26] shows a very general comparison of strengths and weaknesses of various model types. 

 

Table 5 Reprinted from [26]: Comparison of model types 

 

We envision our platform to perform consistently across various practical 

problems, therefor we selected number of different models in our optimization search 

space. Moreover, as different types of models do good in different scenarios, we selected 

diverse set of estimators from various model families. The list of supported models is 

shown in Table 6. 

 

Table 6 List of supported models 

 

3.4. Optimization Techniques 

At its core, every AutoML system can be considered as an optimization problem 

to find the best settings for the pipeline viz. model, hyper-parameters and feature 

engineering components. In this section we would review the optimization techniques 

used by our framework. There are various optimization strategies such as Grid Search, 
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Random Search, Bayesian Optimization, Genetic Algorithms, Reinforcement Learning 

etc. Each of them has many variations. We compared many of these methods based on 

their predictive performance with respect to the time budget. Based on our 

experimentation, we shortlisted following two options to be used for our framework: 

3.4.1. Random Search 

The random search samples the hyper-parameters randomly without replacement 

and evaluates them on the cross-validation data. In spite of being an extremely simple 

strategy, it tends to provide fairly good performance even in the case of small time-

budgets. For 𝑛 independent random samples, the probability of finding the top 𝑘 percentile 

solution is greater than or equal to 1 −  (1 − 𝑘)𝑛. Therefore, with only 100 trials, there is 

0.9945 probability to find the top 5% of the hyper-parameter settings. The probability 

increases exponentially with the increase in the number of trials. Moreover, one does not 

need to maintain the history of trials. It is enough to store only the best setting found. Thus, 

the strategy requires 𝑂(1) memory and is easy to restart without maintaining a state. 

3.4.2. Bayesian Optimization 

Bayesian optimization is a well-known technique to find optimal values for non-

convex black box functions. The advantage of Bayesian technique is that it makes the 

smarter choices for the hyper-parameter search based on the history. It builds a 

probabilistic surrogate model which tries to approximate the objective function based on 

the hyper-parameters. It then uses an acquisition function to sample a set of hyper-

parameter values. The true objective function is evaluated using these hyper-parameters 

which in turn are used to update the surrogate model. This process is repeated until the 
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maximum number of iterations are reached. Finally, the optimal hyper-parameters are 

selected based on the surrogate model. 

For our framework we use a variant of Bayesian optimization, which is based on 

Tree Parzon Estimator (TPE) proposed by Bergstra et al [27]. One disadvantage of 

Bayesian optimization is that it generally takes longer to converge. Therefore, when the 

time budget it low we use random search and in case of higher time budget we warm-start 

the Bayesian optimization with the random search, which can lead to faster convergence. 

3.4.3. Multi-Step Hyper-Parameter Search 

For optimizing a machine learning pipeline, one needs to optimize each of its 

component, along with their individual hyper-parameters. This makes the search space is 

exponentially large. Optimizing over this huge hierarchical search space requires 

significant time and computational budget. Therefore, to reduce the computational 

complexity, we take a greedy approach and do the optimization in multiple steps. 

Step 1 Feature Optimization: In this step, we focus on optimizing the feature 

engineering parameters. Thus, we limit our search space to the all of the feature 

engineering parameters along with only the small number of base models from each model 

family. We then optimize over this smaller search space to select the best K feature 

engineering parameters. 

Step 2 Combined Optimization:  In this step, we combine the top K feature 

engineering parameters found in step 1, along with the complete model hyper-parameter 

space. We again optimize over this combined search space to pick the best pipeline/s. 
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This greedy approach allows us to partly decouple the optimization of feature 

engineering parameters and the model hyper-parameters. This significantly reduces the 

computational complexity of the optimization. 

3.5. Ensembling 

Ensembling can be defined as the meta learning algorithm which combines several 

machine learning models into one predictive model. Almost in every Kaggle competition 

the better use ensembling is the differentiating factor between the top performing solutions 

and the others. In machine learning, ensembling techniques have been extensively used to 

reduce bias, reduce variance or to improve the predictive performance of the model. With 

proper implementation, ensembling can also provide a form of regularization and prevent 

the models from overfitting. For ensembling to be effective, the base models should not 

be correlated with each other and there should be no data leakage between the base models 

and the ensembling algorithm. 

Therefore, to implement ensembling we need to make two major choices: (1) How 

should we select the base estimators? and (2) Which ensembling technique should be 

used? We will explain each of them in the following sections: 

3.5.1. Strategies to Select Base Estimators 

In spite of the performance gains, training and predictions of the ensembling is 

computationally expensive. Therefore, we need to select only a few base models. We 

explored following strategies for selecting the K base models for the ensembling: 
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3.5.1.1. Top-K Estimators 

This strategy sorts the search trials based on their performance and selects the top 

K estimators. While it picks the best performing estimators, it fails to provide diversity 

because very often the top search trials come from the same type of estimator. 

3.5.1.2. Random Selection 

It uses random selection with replacement to pick the models for ensembling. 

While this achieves diversity, when the K is low, it often ends up with many weak 

estimators. Thus, this strategy is most useful for constructing a large ensemble. 

3.5.1.3. Diverse Selection 

This strategy sorts the search trials and groups them based on the estimator family. 

It then picks equal number of best estimators from each estimator family. This ensures 

diversity as well as strong base estimators for the ensemble. In our experience, this strategy 

leads to the better performance even for a small or medium sized ensemble. 

 Therefore, by default we use the ‘diverse selection’ strategy to select up to 50 

models for ensembling. For the number of base models higher than 200, we switch to 

‘random selection’ strategy. 

3.5.2. Ensembling Techniques 

Once we finalize the base models, we combine the predictions of the base models 

by stacking them together in an array of size: number of samples x number of base 

estimators. Each entry in the array is a prediction made by a given estimator on a given 

data sample. There are many techniques to train the ensembling algorithm such as 
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bagging, boosting, ensemble selection [21] etc. In our case, the base models are 

heterogeneous, therefore following two strategies work the best: 

3.5.2.1. Rank Ensembling 

Rank ensembling makes predictions by combining the results of the base model 

by a defined aggregation operation such as majority voting or averaging. It is one the most 

basic and yet useful techniques for ensembling. It is very convenient as it does not require 

any training for the ensembling algorithm. During prediction phase it simply applies the 

aggregation operation across multiple base models. 

3.5.2.2. Stacking 

Stacking considers the base pool of predictions as features and learns a meta-

estimator to combine these predictions. It was proposed by Wolpert [25] and has been 

widely popularized after the Netflix Prize competition, where it was used as the important 

winning strategy by the top teams. For our framework, we use Light GBM models as meta-

estimator. 

To avoid any sort of data leakage, we divide the training data in two parts: train 

data and holdout data. The base estimators are trained only on the train data and the 

stacking meta estimator is trained on the predictions made by the base estimators on the 

holdout data. This practice is also known as blending. To further optimize the results, we 

also do hyper-parameter optimization for the meta-estimator (Light-GBMs). 
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4. EXPERIMENTS AND RESULTS 

In this section we perform experiments on real world datasets, to show the efficacy 

of our proposed framework. We would like to answer the following questions in this 

section: (1) How to effectively evaluate the performance of an AutoML framework? (2) 

How well does our framework compare with other AutoML frameworks across various 

types of datasets? (3) How efficient is our framework with respect to the allocated time 

budget? (4) Which components of the framework contribute the most towards the 

performance? (5) Can the framework provide interpretations about which features, and 

models should be selected? 

To answer these questions, we design an elaborate experimental setup along with 

the choices of datasets and evaluation metrics. Then, we compare the overall predictive 

performance of our framework with two well-known AutoML frameworks: auto-sklearn 

and H2O AutoML. Next, we compare the performance of these 3 frameworks across 

various time budgets to see their efficiency. Then, we run an ablation study to compare 

the performance benefits of using feature engineering and ensembling for our framework. 

Finally, we show the methods provided by our framework to interpret the features, models 

and hyper-parameters of the pipeline. 

4.1. Experimental Setup 

Benchmarking the performance of an automated machine learning system has many 

challenges. Many of these challenges are also applicable to the general machine learning 

systems, however due to the data driven nature of AutoML systems, they are even more 

prominent to them. 
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First, there is a significant amount of variance in the performance of the same 

AutoML system in different trial runs. Most of the components of the machine learning 

pipeline such as the optimization techniques, models, cross-validation, sampling etc. have 

some amount of randomness involved. Thus, the overall performance of the system could 

vary across runs. To minimize this problem, we fixed the random seed for Python, NumPy 

and all of the other modules used. Moreover, to avoid overfitting to a single random seed, 

we tested the performance across 5 different seeds. 

Second, the time and computational budget plays a very important role. Some 

AutoML systems converge faster whereas others converge slower but give better 

performance. Therefore, it is difficult to estimate the appropriate budget to make a fair 

comparison. Comparing to the evaluation framework used by other works [7, 20] and 

considering the practical constraint we fixed out budget to be 30 mins for each run. 

Finally, we need to ensure that each experiment is run on the same dataset and 

similar train/test splits. Therefore, we used the OpenML [23] APIs to define a uniform 

interface, which can fetch the datasets, extract the feature type information and provide 

the train/test splits. This guarantees the consistency in terms of using the same dataset 

across various runs. 

4.1.1. Dataset Selection 

A good automated machine learning system should perform well on diverse 

practical scenarios. The datasets chosen for the experimentation should be representative 

of various real-world problems. Therefore, to find such representative datasets, similar to 

[19], we used the following approach: 
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First, we should avoid very easy datasets. Some of the datasets are so easy that 

even an untuned Random Forest could give a comparable performance. These kinds of 

datasets make it unclear if the difference in performance is due to the choice of technique 

or the natural variance between the methods. Therefore, we tried to limit the number of 

such datasets. 

Next, there should be diversity in terms of the task type and data type distribution. 

We considered different scenarios with the varying number of features/samples, number 

of categorical/numerical columns, number of missing values etc. 

Finally, the datasets should be representative of the real-world scenarios. 

Therefore, except for a few famous artificial datasets such as ‘kr-vs-kp’ we mostly picked 

the real-world datasets. 

Based on the above considerations, we selected 21 datasets for classification and 

11 datasets for regression from various sources such as Kaggle, UCI [28], KDD contests 

and OpenML [23], etc. We plan to add more datasets with further diversity to ensure 

consistent results across datasets. 

Table 7 and Table 8 show the list of the datasets selected for classification and regression 

respectively along with their attributes: 
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Table 7 List of classification datasets 

 

 

Table 8 List of regression datasets 

 

4.1.2. Evaluation Metrics 

The choice of evaluation metric affects how one interprets the performance of 

different AutoML systems. For example, in case of highly imbalanced classes, if only the 

accuracy was to be evaluated, then the system which exclusively predicts the majority 

class could perform better. In real-life scenario, the evaluation metrics are chosen based 

on the use-case at hand. However, it is almost impossible to guess it beforehand. For the 
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benchmarking purposes, we need to use an evaluation metric which can act as a good 

proxy for the practical scenario. Based on the survey of the similar works [7, 20], we 

finalized the following evaluation metrics for our experiments.  

Classification: Balanced Accuracy, AUC ROC. 

Regression: Mean Absolute Error (MAE), R2 score. 

4.2. Results 

4.2.1. Overall Performance 

To evaluate the overall performance of our framework, we tested it on the list of 

datasets, for the time budget of 30 mins. To account for the variance in the results, we 

repeated the experiments 5 times, with different seeds. The final score was calculated by 

using the median of the performances across these 5 runs. We compare the performance 

of our framework with two other AutoML frameworks viz. auto-sklearn and H2O 

AutoML. 

For classification, we used balanced accuracy as an evaluation metric. Table 9 

shows the performance scores of each framework for classification. The best performing 

AutoML framework is underlined. As it can be seen, our framework performs the best on 

14 out of 21 datasets for classification. Even when it does not perform the best, the score 

is within 2-3% range of the best performance. 
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Table 9 Overall performance for classification (balanced accuracy) 

 

  

Table 10 Overall performance for regression (MAE) 

 

The performance results for regression are shown in Table 10. In case of 

regression, our framework performs the best in 9 out of 11 datasets. Even in the rest 2 
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datasets, its performance is very close to the best. Thus, the experiment demonstrates how 

our framework shows consistent performance in both classification as well as regression. 

4.2.2. Efficiency with Respect to Time-Budget 

For an AutoML system, in addition to the performance, it is also important to 

consider the time taken for the optimization. In this experiment, we compare the 

performance of the 3 AutoML systems with respect to the different time budgets. We run 

each of the framework from the beginning for the time budgets of 1, 2, 4, 8, 16, 30, 60 and 

120 min for 2 different datasets: ‘sick’ and ‘kropt’. The comparison is plotted in Figure 4 

and Figure 5. 

 

Figure 4 Performance w. r. t. time budget ('sick' dataset) 
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Figure 5 Performance w. r. t. time budget ('kropt' dataset) 

 

As it can be seen, our framework achieves a decent performance in lesser time as 

compared to the other two. In case of ‘kropt’ dataset, where it performs as good as H2O 

AutoML, our framework achieves it in 30 min mark, as compared to 120 min. In our 

opinion, this can be partly attributed to the multi-step hyper-parameter optimization 

technique, which greedily optimizes the feature engineering and model selection in 

multiple steps. 

4.2.3. Evaluation of the Pipeline Components 

To evaluate the importance of feature engineering and ensembling for our 

framework, we performed an ablation study on 5 different datasets. First, we evaluated the 

complete framework. Next, we evaluated it again, removing the ensembling.  Finally, we 

removed both ensembling and feature engineering only keeping the basic preprocessing 
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to encode the categorical values and impute the missing values. The comparison can be 

seen in Table 11. 

 

Table 11 Comparative evaluation of the pipeline components 

 

As we can see, except for Dataset 179, both ensembling and feature engineering 

resulted in performance gains. Even in case of the dataset 179, the performance drop due 

to ensembling is negligible (0.004). Overall, on an average, the ensembling leads to about 

2% increase in the balanced accuracy whereas the feature engineering leads to over 3% 

increase. The similar trend is observed with the other datasets as well. 

4.2.4. Interpretability of AutoML System 

In this section, we will show how our framework can provide the interpretations 

of various models, features and hyper-parameters selected in the pipeline. This is partly 

inspired by ATMSeer [29], which is an interactive tool to visualize and refine AutoML 

search space. Interpretability of AutoML framework is very helpful to the expert users, 

who could use these interpretations to further tune the search space and design an even 

better pipeline. Our framework provides interpretations for four different aspects: pipeline, 

model, feature and hyper-parameters. Figure 6 shows an example of interpretations for 

each of these aspects. 
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Figure 6 Example of the interpretations provided by the framework 

 

First, on the pipeline level, the framework provides the leaderboard for every 

pipeline tried during the optimization. It includes the cross-validation score of the pipeline 

along with the model and list of hyper-parameters. This gives a high-level overview of the 

performance across various instances of pipelines. 

Second, on the model level, the framework can show the distribution of scores for 

each model type. It provides an insight about the mean and variance in the performance 

of each model types. For the example in Figure 6, Light-GBM consistently provides the 

best performance. On the other hand, the performance of KNNs varies significantly. 

Third, on the feature level, the framework can provide feature importance scores 

for every feature generated. These scores are same as the ones used by the feature selection 

method. They provide some intuition on which features are more useful to the model. An 
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expert user can use this understanding to further tune the feature engineering and create 

more useful features. 

Finally, on the hyper-parameter level, the framework can provide the spread of the 

cross-validation scores for the range of values of the given hyper-parameter. This is useful 

to roughly find the optimal range of hyper-parameter values, for the given problem. 
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5. CONCLUSIONS AND FUTURE WORK 

In this thesis, we proposed an automated framework to generate end-to-end 

machine learning pipelines. The framework is intuitive and provides a simple to use 

interface. For every component of the AutoML systems, we surveyed and benchmarked 

various techniques to find the best set of heuristics. These heuristics combined with the 

optimization methods allowed the framework to achieve comparable performance across 

various datasets. We also implemented a method to automate feature engineering, which 

could generate 100s of features to provide better representation of the data. Finally, our 

framework provides interpretation scores for the AutoML process, which provides the user 

some explanation on which models and features perform the best for the given problem. 

This work would be extended by assembling it into an open source package, 

AutoKaggle. This would make these techniques easily accessible for the use of wider 

audience. Another natural extension would be to support more tasks such as time series 

analysis or anomaly detection and more types of datasets such as multi-entity datasets. 

Both of these lines of work are really important as most of the data in finance and medical 

field contains time series data and are in the form of relational tables. Finally, more work 

can be done to improve the interpretability of the AutoML system. Currently, our 

framework provides importance scores for various model and features combinations. In 

addition to this, it would be helpful to provide a graphical interface to guide user at each 

step of the process. 
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