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ABSTRACT 

 

Predicting the radiative properties of porous media is highly important in many 

engineering applications (e.g. additive manufacturing).  The radiative properties of packed 

beds highly depend on the geometry and configuration of the structures and the types of 

materials. The conventional method of computing these properties is through Monte Carlo 

ray tracing (MCRT) simulations which yield statistical approximations through random 

sampling of light beams traversing in the porous medium. In ray tracing, numerous light 

bundles are simulated traveling in random packed beds which are computationally 

structured via a discrete element model (DEM) of particle settlement simulation. The 

geometric complexity of porous medium poses computational challenges in both ray 

tracing and DEM simulations. As a result, MCRT calculations are extremely time-

consuming and difficult to setup/program.  

In this work, we demonstrate that machine learning (ML) techniques can be used 

to expedite the process of estimating the radiative properties of porous media. ML methods 

are used in two ways to this aim: 

1) As predicative models to directly estimate the radiative properties as functions 

of the medium geometry and configuration parameters. Specifically, we use neural 

networks (NN) to predict the radiative properties of the media using supervised learning 

where the labeling data is collected using ray tracing. The out-sample prediction can be 

carried out without the execution of MCRT simulations. We demonstrate that the trained 
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NN models predict transmittivity of random packed beds with improved efficiency and 

preserved accuracy. 

2) As characterization models to summarize and parameterize the statistical 

geometric properties of random beds which would lead to generation of surrogate 

penetration length distribution (PLD) functions. PLD is the distribution of probable 

extinction-free paths in the void between particles and is essential to MCRT simulations. 

Fast generation of surrogate PLDs essentially obviates the need for cumbersome DEM 

calculations thus leading to efficient approximate calculations of the radiative properties. 

ML techniques such as Gaussian Process (GP) modeling can be used for geometric 

characterization. Coupling ray tracing with the GP model transforms the randomness of 

the sphere packing into random light travel trajectories in the MCRT simulation. Without 

DEM simulations, The MCRT coupled with GP model accurately calculates radiative 

absorptivity. 
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NOMENCLATURE 

 

D Particle diameter 

e Output error vector 

𝐸 regularized sum of squared error 

𝑓 transfer function 

𝑖 layer index 

𝐼 light intensity 

ℓ penetration length 

𝐿 bed height 

𝑀 number of network layers 

𝑛 unit surface normal vector. 

𝑁 number of folds 

𝑟 particle radius 

𝑅 number of neuron in hidden layer 

𝑆𝑛 normalized transmissivity 

𝑊 weight matrix 

𝐯 vector form of the weight matrix  

𝐲𝟎 input vector 

𝐲𝐢 output of ith layer of neural network 

𝛽 extinction coefficient 

𝜀 the surface emissivity of the particles 
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𝜑 Bayesian regularization parameters 

λ wavelength 

p percentile for penetration length 

l penetration length 

α absorptivity 

θ incident angle of ray 

n refractive index, a+bi 

x0 center coordinate of particle 

x1 start point of incident ray 

x2 end point of incident ray 

u directional cosine of incident ray 

n unit surface normal vector 

𝛾, 𝜃 directional cosines 

h basis function 

𝜎2 noise variance 

𝜃 kernel parameter 

𝑘 covariance function 

L resubstitution loss 

Cu Copper 

SS Stainless steel 

Ag Silver 

PMMA Polymethyl methacrylate 
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Al2O3 Aluminium oxide 

ZnO Zinc oxide 
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CHAPTER I  

INTRODUCTION*  

 

Thermal radiation is an important heat transfer mechanism in many engineering 

applications involving dispersed media operating at elevated temperatures. The following 

sections illustrate why thermal radiation in porous media is important and provide  three 

relevant applications. We then define the main technical problem that this dissertation is 

trying to solve and lay out the approaches that will follow.  

1.1 Motivation 

Porous metals are widely used in aerospace applications ranging from aircraft to 

space instrument packages. Porous structures in metal can add unique characteristics to its 

original values. This uniqueness can allow long term service in filtration, flow control, or 

thermal management. The objective in these applications is the production of robust 

porous materials that function in a predictable and consistent manner over extensive 

periods of time in hostile environments. Among many others, one possible operation 

condition can be exposure to elevated temperatures ranging from 1600°F to 2000°F. In 

this case, the effect of thermal radiation should be investigated to optimize the design of 

porous metal components to achieve the best possible performance. 

 

*Parts of this chapter’s text is borrowed from the authors published paper, “A data driven artificial neural 

network model for predicting radiative properties of metallic packed beds,” by Kang HH, Kaya M, and 

Hajimirza S, 2019. Journal of Quantitative Spectroscopy and Radiative Transfer 226, 66-72, Copyright 

2019 by Elsevier. No permission is required. 
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Since many porous metals are manufactured via powder based sintering 

technology nowadays, the characterization of thermal radiation in porous media also 

serves a critical benefit to the optimization of 3D printing process. Additive manufacturing 

(AM) is a transformative approach to industrial production that increases digital flexibility 

and efficiency. AM includes technologies that grow three-dimensional objects one 

superfine layer at a time. Each successive layer bonds to the preceding layer of melted or 

selectively melted material. In selective laser sintering (SLS), laser is used to selectively 

fuse layering material. Multiple layering materials exist for SLS applications, such as 

metals, polymers, ceramics, composites, and even edibles. The study of laser interactions 

with these materials is of particular interest to selective laser sintering (SLS) development. 

The sintering process is characterized by a number of parameters, including the powder 

material, the layer thickness and porosity, the laser beam size and profile, and the laser 

scan speed. Reliable process modelling is very useful for determining the optimal 

parameters and anticipating possible problems in the build process.  

1.2 Problem 

Two major transport mechanisms in a randomly packed bed of spheres are 

conduction through the solid contact between spheres, and radiative transfer through the 

voids. However, these two processes can be decoupled effectively and considered 

separately [1]. The objective of this study is to develop a prediction model to characterize 

the radiative heat transfer process through the randomly packed bed of spheres.  

The existence of multiple dependencies in this problem makes modelling complex. 

Firstly, the radiation in porous media largely depends on geometric properties of porous 
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media. Porous media can be made of particles or cavities with irregular shapes. These 

forms can be made naturally or artificially. For example, sands, sea bubbles, and animal 

bones are natural forms. Pebbles in PBR and AM layering powders are artificial forms. 

The size of elements can be different as well. For instance, elements in each PBR and AM 

powder bed have centi-meter and micro-meter scale, respectively. In addition, elements in 

porous media can have different size distribution and porosity. Along with bulk dimension 

of porous media, these geometric parameters are essential in radiative heat analysis 

because a heat interaction in porous media changes depending on which phases radiation 

interacts with.  

Secondly, Radiative conductivity (thermal conductivity due to photon transport) 

of porous media can change significantly with temperature.  Also, if temperature gradient 

is large inside the pores. The radiative properties prediction becomes difficult.  

Thirdly, the optical properties of porous media elements change with material and 

radiation wavelength. The surface of an element in porous media shows a distinct spectral 

dependence to radiation. For simplicity,  opaque, semitransparent, or transparent surface 

assumption are widely used in many studies. An opaque surface does not allow 

transmission and absorbs a given fraction of the thermal radiation a blackbody surface 

would absorb.  The radiation on an opaque surface is independent of radiation wavelength. 

Meanwhile, the radiation on semitransparent or transparent surface partially transmits 

through the surface and experiences refractions. Instead of the three surface assumptions 

above, the Fresnel equation can be used to account for wavelength, angular, and 

polarization dependency [2]. Radiative reflection on a particle surface can be interpreted 
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in different ways as well. Specular (mirror like) or diffuse reflection can be assumed. 

Otherwise, more complex consideration such as anisotropic scattering distributions or 

directional surface properties should be considered. In case that particle size or 

interspacing are too small compared to radiation wavelength, a near field effect should be 

considered in radiative heat analysis. If optical thickness of porous media is too thin, a 

diffuse model is not valid because absorption is highly nonuniform [3]. If the thickness is 

too thick, accurate calculation is difficult because of weak intensity of transmission 

through porous media [4]. 

Lastly, other heat transfer phenomenon and mass transfer can occur 

simultaneously. For instance, the pore structure of powders changes drastically in actual 

laser sintering process. Particles’ shapes and size distribution also changes due to melting 

and rearrangement. There could also be a phase change such as metal evaporation. For 

this study, steady packed bed models with perfect sphere particles is used and temperature 

independence is assumed. 

1.3 Literature review 

The problem of thermal radiation in dispersed (porous) media has been studied for 

decades. Most of the early studies (e.g. [5], [6],[7]) experimentally determined the 

effective radiative properties of isothermal packed beds of semitransparent and opaque 

particles. The absorptance of material is the ratio of the absorbed radiation to the incident 

radiation, and the reflectance is the ratio of reflected radiation to the incident radiation. In 

the experiments, the radiation reflected by the powder is generally measured with photo-

receiver and integrating sphere. Then absorptance is calculated by subtracting reflectance 
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from unity. In general, the absorptance depends on the laser wavelength, material 

properties, geometric properties, ambient gas, temperature, etc. 

Due to difficulties in direct measurement of the radiative properties, analytical or 

numerical approaches are commonly used to approximate the radiative properties. When 

the dispersed media is statistically homogeneous and isotropic, the classical radiative 

transfer equation (RTE) is used, while for poly-dispersed or anisotropic particles 

generalized RTE is suggested [8]. RTE is generally solved by means of Monte Carlo Ray 

Tracing (MCRT) simulations [4], [9], [10] since there is no explicit solution for most 

problems. Depending on the problem, different physical phenomena are involved in the 

MCRT framework. For example, the interface of the porous medium can be treated as 

opaque [10] or semitransparent [11] depending on the material type, which introduces 

refraction, internal scattering, absorption, and possibly emission. Furthermore, the 

interference effect among scattered waves (i.e. dependent scattering) is accounted in cases 

where particles are closely packed or relatively small compared to wavelength of radiation 

source [12], [13]. The prediction of absorption for layering materials used in AM is a 

useful application of ray tracing approaches. An initial ray tracing model for this 

application is developed by Wang et al [14]. Later, the angular and polarization 

dependence of the absorption of incident rays is added to the model [2]. Although 

numerical calculation of absorption through ray tracing is generally accurate, the 

computation can be exhaustive if the background geometry is too complex to model or 

perform ray tracing. 
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Geometric characteristics of porous medium change the scheme of heat transfer 

and accurate realization of porous medium is critical in MCRT simulation. The 

implementation of MCRT requires a numerical procedure for simulated generation of 

random porous media platform, which is called the packing algorithm. Various types of 

packing algorithm have been recommended and used (see e.g. [15], [16]). Some recent 

works such as that of Tancrez and Taine [17] have recommended using alternative 

statistical methodologies based on the Monte Carlo scheme to determine the radiative 

properties of computer generated structures [17], [18] and real porous media obtained by 

tomography [19]–[21]. This statistical method was generalized by Chahlafi et. al. [22] in 

the work of radiative heat transfer modelling for statistically anisotropic porous media 

with non-Beerian homogenized phases. 

MCRT simulations require intense computational resources. The source of high 

computational cost is the iterative simulation process on dispersed media with complex 

geometry and/or large numbers of particles. This computational cost can hinder an 

exhaustive procedure to solve an inverse problem in which a specific geometry is sought 

for a given radiative property or to control radiative power such as SLS. In order to 

overcome the computational barrier, several researchers have suggested using alternative 

analytical formulations. For instance, Randrianalisoa and Baillis have done rigorous work 

on analytical formulation of radiative properties of statistically isotropic and homogeneous 

dispersed media [23]. Dombrovsky and Baillis introduced user-friendly and easy to 

implement approaches to apply analytical solutions to practical engineering problems 

[24]. Nevertheless, the scopes of the solutions these methods offer is limited. MCRT 
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remains a widely used method for modeling thermal radiation in dispersed media, as it 

provides accurate estimations in spite of intense simulation times [25]. 

The prediction of absorption for powders used in AM is a useful application of this 

approach. An initial ray tracing model for this application was developed by Wang et al 

[14]. Later, the angular and polarization dependence of the absorption of incident rays was 

added to the model [2]. Although numerical calculation of absorption through ray tracing 

is generally accurate, the computation can be exhaustive if the background geometry is 

too complex to model or perform ray tracing. 
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1.4 Monte Carlo ray tracing 

The Monte Carlo method is a numerical technique based on the statistical 

characteristics of physical processes. At first, this approach was developed to analyze the 

potential behavior of nuclear weapons as a replacement of difficult experiments and 

inaccurate approximation models available at that time [26]. Sufficient random sampling 

of individual neutron behavior in simulation and analyzing observed behaviors of neutrons 

allowed approximation of the average behavior of the weapon.  

The Monte Carlo method is an effective solution to radiative heat transfer studies. 

The radiative heat transfer equations (RTE) are complex and difficult to solve. If complex 

physical effects such as spatial variation of properties are involved in radiative transfer, 

deterministic mathematical models become inapplicable. In addition, various degrees of 

approximation is inevitable to solve the RTE and exact analytical solutions to RTE are not 

available except for simplified choices of geometries. Meanwhile, the Monte Carlo 

method can account for all important effects in a radiative transfer simulation without 

incorporating a degree of approximation. 

In ray tracing, two important rules are all rays travelling in a system must obey the 

laws governing radiation and every event must be independent of the preceding events. 

Random porous media geometry or radiation trajectory can ensure the event independence 

in ray tracing. This randomization can be done by using a uniform set of random numbers 

in the range between 0 and 1. If the probability of any event is known, a random choices 

from this distribution can be made by applying Eq. (1). 
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 𝑅 = ∫ 𝑑𝑃(𝜉∗)
𝝃

𝝃∗=−∞

. 
( 1 ) 

The typical characteristics of Monte Carlo analysis are observed in ray tracing as 

well. First, the approximation becomes more accurate as more samples are included in the 

simulation. The second characteristic is that accuracy tends to depend on the square root 

of the increase in sample packet number. For example, running four times the number of 

packets in simulation will reduce uncertainty by one-half. 

Using the Monte Carlo method, physical relations that are repeated replace a 

degree of mathematical sophistication. As a result, complicated radiative heat transfer 

problems can be easily programmed. However, ray tracing may require lengthy 

computational time depending on the complexity of the problems.  
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1.5 Neural networks 

A neural network (NN) models desired output as a nonlinear function of linear 

combinations extracted from input. The operation of forming nonlinear functions of linear 

combinations generates a surprisingly large class of models. Thus, a large class of 

nonlinear statistical models and learning methods are in NN category. This generality has 

drawbacks. Multi-faceted interconnections between input and output make interpretation 

of the fitted model difficult. A NN model can perform well for prediction but it is hard to 

come up with comprehensible model for the data. 

In this study, the single hidden layer back-propagation network is covered. A NN 

is a two-stage regression or classification model, typically represented as Figure 1. 

Derived features 𝑍𝑚 are created from linear combinations of the inputs, and then the target 

𝑌𝑘 is modeled as a function of linear combinations of the 𝑍𝑚. Hidden and output layers 

can have bias unit which captures the intercepts 𝛼0𝑚 and 𝛽0𝑘 in Eq (2). 

 

𝑍𝑚 =  𝜎(𝛼0𝑚 +  𝛼𝑚
𝑇 𝑋), 𝑚 = 1, … , 𝑀, 

𝑇𝑘 =  𝛽0𝑘 + 𝛽𝑘
𝑇𝑍, 𝑘 = 1, … , 𝐾, 

𝑓𝑘(𝑋) =  𝑔𝑘(𝑇), 𝑘 = 1, … , 𝐾, 

 
( 2 ) 

The activation function 𝜎 checks the Y value produced by a neuron and decide 

whether outside connections should consider this neuron as activated or not. The 

hyperbolic function in Figure 2 is a popular activation function because of many benefits. 

First, the hyperbolic function is nonlinear in nature and the combinations of this function 
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are also nonlinear. This characteristic of the hyperbolic function allows stacked layers in 

a NN architecture. Another advantage of this activation function is that the output of the 

activation function is in range from 0 to 1. Thus, activations bound in a range and do not 

bound off to infinity. In addition, the hyperbolic function enables an analog activation with 

smooth gradient unlike binary activations. However, the Y values tend to respond very less 

to changes in X towards either end of the hyperbolic function. The gradient at the region 

is small and it gives rise to a problem of  “vanishing gradients”. When the activations 

reach near the horizontal part of the curve, gradient is small or vanished. Due to vanished 

gradient, the network refuses to learn further or is drastically slow. 

Figure 1 Diagram of single hidden-layer neural network 
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The hidden units in the middle of the network are not directly observed but 

compute the derived features 𝑍𝑚. If 𝑍𝑚 is considered as a basis expansion of inputs 𝑋, the 

neural network is just a standard linear model. Various techniques are available to enhance 

over the basis expansion. 

One of important process in NN modelling is fitting neural networks. The neural 

network model is composed of unknown parameters, often called weights, and values for 

them should be optimized so that the model fit the training data well. For regression, sum-

of-squared errors is used as the measure of fit (error function).  

Figure 2 Hyperbolic function 
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 𝑅(𝜃) =  ∑ ∑(𝑦𝑖𝑘 − 𝑓𝑘(𝑥𝑖))2

𝑁

𝑖=1

𝐾

𝑘=1

 
( 3 ) 

Typically the global minimizer of 𝑅(𝜃) is not desired due to overfitting. Instead 

some regularization is required through either using penalty term or indirect early stopping. 

The gradient descent is commonly used to minimize 𝑅(𝜃). 

Using errors from the current model at the output and hidden layer units, the 

following back-propagation equations can be solved with two-pass algorithm. 

 𝑠𝑚𝑖 =  𝜎′(𝛼𝑚
𝑇 𝑥𝑖) ∑ 𝛽𝑘𝑚𝛿𝑘𝑖

𝐾

𝑘=1

 
( 4 ) 

The forward pass computes the predicted values 𝑓𝑘̂(𝑥𝑖) by applying Eq (2) with the current 

weights. The backward pass back-propagates the computed errors 𝛿𝑘𝑖  via Eq (4) and 

calculate the errors 𝑠𝑚𝑖. Next, the gradients are updated with computed errors. This two-

pass procedure is famously known as back-propagation.  

The back-propagation process is simple and happens locally. However, back-

propagation is not preferred in many times due to its slow process. Second-order 

techniques such as Newton’s method are not attractive as well due to the same reason. 

Instead, conjugate gradients and variable metric methods can be used for fitting. These 

allow faster convergence without explicit computation of the second derivative matrix. 
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1.6 Gaussian process 

A Gaussian process (GP) is a generalization of the Gaussian probability 

distribution. While a probability distribution describes random variables which are scalars 

or vectors (for multivariate distributions), a stochastic process governs the properties of 

functions. Assuming a function as a very long vector, each entry in the vector specifies 

the function value f(x) at a particular input x. These infinite dimensional objects in the 

vector impose computational problems. Using the properties of the function only at a finite 

number of points, the inference in the Gaussian process provides the same answer as if 

infinite points are taken all into account. One of the main attractions of the Gaussian 

process framework is precisely that it unites a sophisticated and consistent view with 

computational tractability. 

A GP model is kernel-based probabilistic model [27]. A GP can predict the value 

of a response variable 𝑦𝑛𝑒𝑤, given the new input vector 𝑥𝑛𝑒𝑤, and the training data. A 

linear regression model is of form: 

 𝑦 =  𝑥𝑇𝛽 +  𝜖 
( 5 ) 

Where 𝜖 ~ 𝑁(0, 𝜎2). The error variance 𝜎2 and the coefficients 𝛽 are estimated from the 

data. The cores of GP model are latent variables 𝑓(𝑥𝑖)  from GP and explicit basis 

functions. Latent variables are inferred from other observed variables. The covariance 

function of the latent variables explains the smoothness of the response and basis functions 

map original feature space into new feature space. Based on data observations, this basis 

function condition the GP prior and produce the GP posterior. 
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CHAPTER II  

RADIATIVE PROPERTIES PREDICTION* 

 

This chapter demonstrates that machine learning methods can be reliably used to 

predict radiative properties of dispersed media, i.e. packed beds, as a function of packed 

bed geometry and material properties. The computationally expensive Monte Carlo ray 

tracing (MCRT) method, which is widely used in this context, is replaced by Neural 

Networks (NN). We demonstrate that the data-driven surrogate prediction works 

accurately and generally. The results of both MCRT and NN models agree well with each 

other and with previously measured literature results. We also measure the uncertainty of 

the NN results using statistical methods. It is recommended that the developed model be 

used for efficient inverse problems and optimizations in relevant future work. 

2.1 Physical model 

In this study, a physical system with monodispersed spherical particles randomly 

packed in a semi-infinite bed is considered. The particle packing procedure is modeled via 

the open source Discrete Element Method (DEM) particle simulation software called 

MFix. This simulation provides the location of the randomly packed particles in the bed 

to be used in MCRT simulations. In this study, we first compute the penetration length 

distribution via MCRT simulation, and then use this distribution in additional MCRT 

 

*Reprinted with permission from "A data driven artificial neural network model for predicting radiative 

properties of metallic packed beds." by Kang HH (the thesis author), Kaya M, and Hajimirza S, 2019. 

Journal of Quantitative Spectroscopy and Radiative Transfer 226, 66-72, Copyright 2019 by Elsevier. No 

permission is required. 
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simulations to calculate other radiative properties of the media. This approach provides 

additional computational efficiency since the complete set of particle location information 

is not stored during simulations [28]. 

2.2 Penetration length probability distribution function 

The penetration distance (ℓ) in a dispersed medium is defined as the distance that 

a light bundle travels in the void before hitting a particle surface. Pre-calculation of the 

probability distribution function of ℓ increases computational efficiency as described in 

the next section. The characterization of the probability function requires extinction 

coefficient (𝛽) approximation based on the Beer-Lambert Law [29]: 

Figure 3 Monte Carlo simulation for penetration depth distribution 
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 𝐼𝑙 = 𝐼𝑜 exp (− ∫ 𝛽
𝓵

0

𝑑ℓ). 
( 6 ) 

where 𝐼𝑜 is the initial amount of energy of the light bundle and 𝐼𝑙  is the amount of energy 

that remains in the light bundle after the light travels a distance ℓ. The distributions of 𝛽 

and ℓ are equivalent. More details can be found in the reference [28]. 

The penetration depth ℓ calculation starts with randomly selecting a base sphere 

and a random (emission) point on its surface. Then a light bundle is sent through a random 

direction. This light bundle is traced from random emission points to extinction points 

where it loses energy due to interaction with a particle (Figure 3). Spheres on the ray 

projection are found by evaluating perpendicular distances between the projection of ray 

and all sphere centers, then selecting the one closest to the emitting sphere to calculate a 

penetration length as shown in Figure 4. This procedure is repeated 5,000 times to achieve 

the penetration depth distribution. It is also possible to express the probability distribution 

as the cumulated probability distribution using standard statistical relations. The resulting 

probability function and comparison with the literature [28] are shown in Figure 5. ℓ/𝑟 is 

the ratio of the penetration distance to particle radius. A light bundle is most likely to travel 

to a distance of approximately half of a sphere radius, and only 1% of the overall light 

bundles can travel more than 4.4 times the sphere radius. It is worth mentioning that ray 

tracing methods are valid only when geometric optics laws are applicable, which is the 
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case when the particle dimensions are much larger than the radiation wavelength (𝜋𝐷/𝜆 ≫

1) [30]. In the present study, a packed bed of mono-sized spherical particles with a 

diameter and average packing clearance much larger than operating wavelength is 

considered. Additionally, the particles and the void are assumed to be opaque and 

transparent, respectively. 

 

 

 

Figure 4 The closest particle selection for penetration length sampling 
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2.3 Monte Carlo ray tracing simulation for radiative properties 

The MCRT simulation statistically approximates the transmissivity of a random 

packed bed characterized by a particle radius, height of packed bed, and surface emissivity. 

In simulation, the random packed bed structure is gradually constructed as a light bundle 

travels through the bed using penetration depth distribution (i.e. the simulation does not 

preset the structure before light travel simulation). The light bundle transmits through 

vacuum void in the bed and experiences absorption and scattering due to metal particles. 

This simultaneous process of structure formation and ray tracing reduces the 

Figure 5 Penetration distance probability validation (modified from [6]) 
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computational cost significantly. With sufficient iterations, the transmissivity of the bed 

can be statistically determined for given input parameters. 

An iteration loop starts with emitting a light bundle from the origin. The location 

of a sphere hit by the light bundle is determined by a randomized approach which includes 

a random penetration distance and random direction cosines. A penetration distance drawn 

randomly from the cumulative density function in Figure 5 gives the magnitude of the 

Figure 6 Random particle center selection in ray tracing 
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direction vector, and the directional cosines are calculated from the random angles, 𝑅𝛾 γ 

and 𝑅𝜃θ, as follows: 

 𝛾 = sin−1(𝑅𝛾
0.5) 

( 7 ) 

 

 𝜃 = 2𝜋𝑅𝜃 . 
( 8 ) 

Once the collision point is determined based on the emission point and the 

direction vector, the center coordinates of the sphere is chosen randomly from Eq. (7). and 

Eq. (8). The possible centers form a hemisphere pointing in the direction of incident light 

from the collision point (see Figure 6). The impenetration constraint between spheres is 

considered to prevent overlapping. Applying gray surface assumption, a fraction of light 

bundle energy, namely (1 − 𝜖)𝐸, is attenuated at a collision point. 𝐸 represents the light 

bundle energy. The light bundle is reflected specularly after collision. A reflection angle 

is calculated from the following Eq. (9).  

 𝑢𝑗
′ = 𝑢𝑗 − 2𝑛𝑗 ∑ 𝑛𝑘𝑢𝑘

3

𝑘=1

,     𝑗 = 1,2,3 
( 9 ) 

where 𝑢𝑗 is the direction cosine of the incident ray and 𝑛𝑗 is the component of the unit 

surface normal vector. With newly calculated directional cosines, the light bundle 

propagates to a next position determined by a new randomly drawn penetration distance. 

This process continues until one of three conditions is met: (1) light scatters back below 

the reference origin, (2) it passes over the top boundary of the packed bed, or (3) it loses 

its entire energy within the bed. The normalized transmission is approximated by dividing 
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the total energy of bundles passed through the packed bed by the total energy of light 

bundles emitted in the bed. 

2.4 Neural network based surrogate modelling 

Surrogate modeling has been proposed to replace simulations which demand high 

computational costs with faster approximate alternatives. When the objective is to design 

and optimize a structure, it is required to solve an inverse problem to find the desired input 

parameters. That in turn requires many number of successive simulations to be carried out, 

thus the computation cost is significantly high. A surrogate model can decrease the 

computational cost by approximating the complicated relationship between inputs and 

outputs as a response surface. This surface is a predetermined function or distribution 

which maps the input space to the output. There are many different surrogate modeling 

approaches available in the literature. The most common ones are polynomial regression, 

Neural Networks (NN) and Gaussian Process (GP). Among the many available options, 

NN has the ability to approximate almost every function with arbitrary degrees of 

nonlinearity and high generalization capability [31]. A brief explanation of NN is 

presented in the next section. 

NN is a machine learning tool inspired from the neuron connections in the human 

brain. It transfers information (the input vector) to output through a series of functional 
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operations. These operations are performed in so-called neurons, which are connected to 

each other in parallel and in series. The parallel connected neurons constitute a layer of 

NN, while layers are connected in series. In general, two layers are enough for accurate 

and general prediction of most functions [32]. In a two-layer configuration (see Figure 7), 

the last layer is called the output layer, in which the number of neurons must be equal to 

the number of function outputs. The other layer is called the hidden layer. The number of 

neurons in the hidden layer is determined by NN training and construction, which will be 

explained in the sequel. The output of NN is calculated from 

Figure 7 Configuration of a two-layer neural network 
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𝐲𝐢 = 𝑓𝑖(𝑊𝑖𝐲𝐢−𝟏), ∀1 ≤ 𝑖 ≤ 𝑀 

𝐲𝟎 = [𝜀, 𝐷, 𝐿, 1]𝐓, 
( 10 ) 

where 𝐲0 is the input vector, 𝑀 is the number of network layers, 𝑖 is the layer index, 𝑊 is 

the coefficient matrix determined as a result of NN training, and 𝐲𝐢 and 𝑓𝑖 are the output 

and the transfer function of the 𝑖𝑡ℎ layer, respectively. Variations of Sigmoid function are 

the most commonly used transfer functions. In the present study, tan-sigmoid is used in 

both layers as the transfer function. NN is trained in order to minimize the regularized sum 

of squared error: 

 𝐸(𝐯) = 𝜑1𝐞𝐓𝐞 + 𝜑2𝐯𝐓𝐯, 
( 11 ) 

where 𝐞 = 𝐭 − 𝐲𝐌 is the output error vector and 𝐯 is the vector form of the weight matrix 

W. The term 𝐞𝐓𝐞 controls the quality of the fit and the 𝐯𝐓𝐯 term is added to the cost 

function in order to obtain a smoother function response thus avoiding overfitting. 𝜑1 and 

𝜑2  are the Bayesian regularization parameters set iteratively [31]. The details of 

backpropagation NN training can be found in [31], [33]. In the present study, the input 

consists of the physical parameters, namely the surface emissivity of the particles 

𝜖, particles diameter 𝐷 and bed height 𝐿. A constant bias is also always included in the 

input vector as scalar 1 as well as in the hidden layer during training. Validation set refers 

to the additional set of input-output pairs which provide intuition about the future (out-

sample) performance of the NN. During training, 𝐸𝑣𝑎𝑙(𝐯) is recorded at every iteration, 

and once 𝐸𝑣𝑎𝑙  starts increasing, training is terminated. The number of neurons in the 

hidden layer is determined by a similar procedure. Training is repeated for different 
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numbers of neurons, and the least number of neurons providing the smallest validation 

error is selected [34]. Among the available options [35], cross validation (CV) obtains an 

unbiased approximation and is a common method of choice. In CV, the data is divided 

into N folds, and training is done N times by using (N-1) folds in training, and 1-fold in 

validation. 

3-𝑅-1 NN model of transmitted power of a packed bed is trained following the 

procedure explained in the previous section. Here, 3 refers to the number of inputs, 𝑅 is 

the number of neurons in the hidden layer and 1 represents the number of outputs. Inputs 

Figure 8 Variation of training and validation error  
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for the training set are generated uniformly within the ranges presented in Table 1 and the 

target outputs are obtained by performing MCRT simulations for the corresponding inputs. 

It is important to note that the ratio of the bed height to particle diameter (𝐷/𝐿) is set to 

not exceed 12 in input set generation. This restriction excludes infinitesimally small 

transmission output in training data, and eventually prevents undesirable uncertainty in 

NN models. 

 

Table 1 Upper and lower bounds for the training set 

Parameter 𝜀  𝐷 [cm] 𝐿 [cm] 

Lower Bound 0 0 0 

Upper Bound 1 3 36 

 

In general, there is a trade-off between the generalization of the regression model 

and the number of required computations in surrogate modeling. To increase the accuracy 

and reliability, increasing the number of data seems to be the best option. However, data 

acquisition computational time also increases with more data, which is a drawback. 

Therefore, an adaptive sampling procedure is employed during the training, which calls 

for the sequential increase of sampled data to be used in training. As a result, a total of 

800 data is obtained and the data is divided into 4 folds where training with CV can be 

done. The sufficient number of neurons in the hidden layer (𝑅) is determined such that the 

smallest resulting network with smallest validation error is obtained, as demonstrated in 
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Figure 8. The corresponding sum of squared errors for each value of 𝑅 is plotted in error 

bar format (mean and standard deviation) for all 4 training instances. 

2.5 Results and discussion 

In this section, the MCRT solver for predicting transmissivity of packed beds is 

validated with previous MCRT models and experimental studies. Accuracy and 

computational efficiency of NN models are then investigated. Finally, uncertainties in 

both MCRT and NN model are analyzed to provide directions in further development. 

Normalized transmission is calculated with respect to bed height, given surface emissivity 

of 0.4 and sphere diameter of 0.476 cm for the sake of validation and comparison with 

previously existing literature results. A total of 5000 energy bundles are emitted in MCRT. 

Figure 9a shows the comparison of transmission values obtained from the current MCRT 

model with those of previous studies. The output of NN model is compared with results 

of MCRT simulation in order to validate the performance of trained neural networks in 

Figure 9b. 30 different NN models were generated to quantify the uncertainty using the 

same number of neurons in the hidden layer (𝑅 = 5) and data set. The mean values align 

well with MCRT simulation output, but extra work is required to reduce variances between 

different networks. Active learning is one possible way to can improve generalization in 

neural network training by pointing out good examples from training data sets [36]. 

Another possible solution is to introduce uncertainty estimators in optimization cycles 

[37]. The performances of both MCRT and NN models were plotted with logarithmic scale 

on the y-axis which makes interpretation of the uncertainties more difficult. The alignment 

in each plot suggests two models have close power law relationships. However, this 
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agreement is necessary but not sufficient to prove both power law relationships because it 

cannot rule out alternate functional forms [38]. In this regard, more rigorous uncertainty 

analysis is required and new models coming after future accuracy improvements should 

be evaluated in careful manner. 

 

Figure 9 MCRT validation and NN accuracy performance (modified from [3] & [6]) 

 

  

(a) (b) 
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The most expensive process of ray tracing simulation is tracing the successive 

light-particle interactions. In other words, the CPU time of MCRT simulation largely 

depends on how many collisions a ray makes with particles in each travel. A ray is more 

likely to travel longer in packed beds with taller heights. Indeed, Figure 10 shows the 

increase in computation time with respect to bed height, and Figure 11 supports the 

dependency of CPU time to number of light-particle interactions in simulations. However, 

the computation time appears to stop increasing at some point. As the depth of bed 

increases, the number of rays transmitted through a packed bed decreases. Instead, more 

energy is either scattered or absorbed by particles. Thus, the difference in the transmission 

output is no longer statistically significant after that critical point. Having said that, the 

Figure 10 Average MCRT computation time as a function of bed height (3 samples) 
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determination of this convergence point can be helpful to efficiently obtain training sets 

sufficient data points and partially reduce errors in trained networks. 

The processing time required to predict transmission values of 100 uniformly 

distributed random input parameters is generally less than 24 hours. In neural network 

training, the search time of weight and bias for neurons in a hidden layer varies with 

network structure, training data set, target error tolerance, step size, number of steps, 

randomness in search process, computing power, etc. The trainings in this study are 

processed with 5 neurons in a hidden layer, 200 training data, and 500 search iterations. 

A prediction is made by the trained surrogate model in around 10 seconds. The 

specification of computer used for training can be found at the end of paper. It is important 

to note that the cumulative probability density function is formulated in the current study 

Figure 11 Average number of particle-light reflections 
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to statistically determine penetration distance in simulations. This function is implemented 

in the ray tracing algorithm to reduce computational cost of building the random geometry 

using DEM. If multiple random packed bed structures are used instead of the probability 

model, the time required to generate these structures should also be considered. Although 

the trained NN model makes accurate approximations with excellent computational 

efficiency, the demanding works involved in obtaining training data should not be omitted. 

Consequently, efficient surrogate modelling is essential to make machine learning 

approaches more viable for practical applications. 

The law of large numbers is the basis of Monte Carlo method and it is an essential 

tool to determine how many samples are needed for reliable Monte Carlo results. The 

number of lights in MCRT simulation should be enough to guarantee stable long-term 

results for the averages of total energy transmitted through packed beds. For this reason, 

the effect of the number of rays on transmission output is investigated by running MCRT 

simulations with 10 different iteration numbers at three bed depths. The results of the 

convergence study in Figure 12 concludes that 5000 number of rays is enough in the 

simulation at all tested depths. The mathematical formulation of direct MCRT is relatively 

simple. The method can handle wide ranges of solid materials and complex geometries of 

dispersed media. However, the discrepancy between MCRT simulations and experiment 

emphasizes the importance of developing more realistic tools. The deviation between 

MCRT and experiment results of [39] can occur due to a variety of reasons such as 
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inaccurate material property information in the literature, and additional assumptions of 

MCRT such as specular surface, temperature, and wavelength independence. The present 

MCRT simulation is repeated 30 times to obtain uncertainty metrics. The error is more 

significant at bed heights where negligible transmission can occur. The comparison of 

overall transmission is essential, since the transmission of a packed bed is directly related 

to the radiative properties of the structure, such as absorption coefficient, scattering 

coefficient, and radiative conductivity. 

 

Figure 12 MCRT convergence study 
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CHAPTER III  

GAUSSIAN PROCESS MODEL COUPLED WITH MCRT 

 

This chapter focuses on the method of coupling MCRT model with predictive 

Gaussian process (GP) to enhance the predictability of radiative properties in the presence 

of particle size polydispersity. A physical model of porous media used in MCRT 

simulations is generally built via a Discrete Element Model (DEM) particle settlement 

simulation. The DEM simulation can provide high fidelity models for various porous 

structures from dilute to packed media. However, the computational modelling becomes 

challenging when dealing with large numbers of particles in large-scale MCRT 

simulations. Machine learning models offer viable approaches to overcome this challenge 

in computational modelling. A specific porous medium geometry can be described as a 

probability distribution of lengths travelled by rays in the medium without radiative 

extinction (i.e. penetration lengths). Gaussian Process model is used to learn the 

relationship between geometric parameters of porous medium and penetration length 

probability distribution function. To establish the credibility of study, probability function 

from the Gaussian process is tested for the absorption calculation of layering powders used 

in 3D printing. The test results prove that the proposed machine learning model effectively 

assists MCRT simulations to calculate particulate absorption as a function of geometric, 

optical, and material properties. 
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3.1 Ray tracing simulation with polarization effect 

 As mentioned in the previous section, ray tracing can be used to statistically 

approximate radiative properties such as absorptance which is the ratio of absorbed to the 

incident radiation. In principle, tracking a sufficient number of random rays traveling in a 

porous structure can accurately approximate statistical characteristics of the radiative heat 

transfer process. Figure 13 shows an example of simulated laser rays interacting with 

stainless steel powder and substrate. Light energy bundles emitted from a certain height 

Figure 13 Repeated random sampling of rays emitted to stainless steel powders 
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with a specified beam profile are traced iteratively. Each tracing simulation is a loop with 

the two termination conditions:  (1) all the energy in a ray is depleted (absorption) or (2) 

the ray leaves system (scattering). This conditional tracking loop includes the following 

operations. At every point, it is determining which particle will next interact with the light 

ray based on a minimum distance criterion. At each interaction with the solid, a light 

energy bundle has varying power depending on particle material, radiation wavelength, 

and incident angle. The power can be calculated by combining the perpendicular (S) and 

parallel (P) components of the electric fields using the Fresnel equations at the interface  

of solid-void [3], [4]: 

 𝛼𝑝(𝜃) =  1 − |
𝑛2𝑐𝑜𝑠 𝜃 − (𝑛2 − 𝑠𝑖𝑛2𝜃)1/2

𝑛2𝑐𝑜𝑠 𝜃 + (𝑛2 − 𝑠𝑖𝑛2𝜃)1/2
|

2

 
( 12 ) 

 

 𝛼𝑠(θ) =  1 − |
cos 𝜃 − (𝑛2 − 𝑠𝑖𝑛2𝜃)1/2

cos 𝜃 + (𝑛2 − 𝑠𝑖𝑛2𝜃)1/2
|

2

 
( 13 ) 

After each interaction, the next direction of light energy bundle is determined 

assuming specular reflection. If an incident ray hits a substrate, the probability of 

reflection is calculated and the process is continued in the case of reflection. Absorptance 

is the ratio of total energy deposited into powder beds to the total emitted energy. There 

are two main factors to consider vis-à-vis the computational efficiency of ray tracing, 

namely the computational modelling of powder bed geometry and the simulation of the 

ray tracing procedure for numerous particles. To overcome these challenges, efficient 
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abstraction of powder geometry and implementation of abstracted geometry in ray tracing 

simulations are necessary. 

3.2 Computational model of powder geometry 

Computational modeling of a porous media structure is essential in ray tracing and 

subsequent heat radiation analysis. Although a 3D picture of porous media geometry can 

Figure 14 Sequential settling of individual rigid particles in MFIX 
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be obtained via computed tomography techniques, simulated structures are advantageous 

in ray tracing because of simple construction and detailed geometric information. In the 

current work, all geometry models are computationally generated by using an open-source 

software called MFIX [5]. A discrete element model (DEM) in MFIX simulates the slow 

sequential settling of individual rigid particles from dilute suspension into a randomly 

packed assemblage as seen in Figure 14. 

Simulations are limited to two-phase flows consisting of dispersed solid particles 

with varying size and density in a gas phase. The presence of embedded particles in a 

carrier phase inherits random nature to two-phase flows. Lagrangian-Eulerian (LE) 

statistical description is implemented for meaningful characterization [6], [7]. In LE 

representation, a carrier phase is treated as a continuum. A set of conservation equations 

such as mass and momentum balances is applied for carrier phase modeling. MFIX takes 

volume and ensemble statistical averaging approaches to obtain the continuum 

conservation equations [8]–[10]. Conversely, the dispersed phase is treated as being made 

of discrete entities. Each distinct solid phase is characterized by a unique particle size 

distribution. In actual simulations, the solid phase is represented by actual individual 

particles and the collisions are directly resolved using the soft-sphere based on a spring-

dashpot model [11].  

In the overall workflow of MFIX, DEM solutions are coupled with a 

computational fluid dynamics (CFD) solver to solve granular flows in continuum fluid. 

Once the coupling is enabled, at a certain CFD time step, the conservation equations are 

solved iteratively by the CFD solver, and the calculated drag forces and fluid-solid 
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momentum transfer are passed to the DEM solvers. Then, multiple DEM time steps are 

carried out to integrate the equations of motion associated with the particles for the given 

contact and drag forces.  

Additionally, advanced development is available in MFIX to enable particle-size 

polydispersity [12]. Newly added arrays assign each solid particle a unique phase index 

depending on its diameter, which helps in phase-specific physical properties of the 

particles to be retrieved and employed in the subsequent computation of particle contact 

forces. These properties include material density, Young’s modulus, coefficient of 

friction, and coefficient of restitution. In particular, arrays with a size of the total particle 

number save the diameter of each particle in the system. The phase index of each particle 

is assigned based on its physical properties instead of its diameter. The change of data 

structure for saving and retrieving an individual particle diameter affects a number of 

subroutines which utilize the array as input for subsequent calculations. The subroutines 

include particle force/torque calculation, solid–gas momentum transfer calculation, grid 

cell locator and neighbor locator. Size distribution of the solid phase can be assigned for 

both initial condition and mass-in-flow boundary conditions. By specifying this 

information, the simulation of complex multiphase flow can be processed during which 

additional solids are injected into the system. 

The end result of these assignments and procedures are the locations and sizes of 

numerous particles. Ray tracing simulations use this information to perform heat analysis. 

With a large and complex geometry background, the computational load increases as 

polynomial function of system configuration size. Therefore, the probability distribution 
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of penetration length (the distribution of probable extinction-free paths between solid 

elements) is used to abstract out and summarize the geometric information. This 

distribution is closely related to the radiative properties of a particulate geometry [13]. 

Any porous media geometry can be expressed by this probabilistic model regardless of 

size and complexity. The ray tracing simulation calculates how far rays emitted from 

randomly selected particles can travel in porous media without experiencing extinction.  

The particles which have six contacts to adjacent particles are only picked for meaningful 

Figure 15 Penetration length probability density function 
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statistical results. Figure 15 shows two penetration length probability density functions for 

powder models with monodisperse and polydisperse particles. 

3.3 Machine learning based geometry abstraction 

Computing penetration length probability density functions entail complex 

geometry modelling and ray tracing. Machine learning models can be used to learn how a 

probability distribution function of penetration length changes as a function of geometric 

parameters. The objective of this implementation is to test the feasibility of machine 

learning in mapping the large-scale Cartesian based geometry data to simple distribution 

functions of the penetration length. Once successfully learned, the models can generate 

the probability functions without demanding heavy computations. Considering high 

complexity in the mapping between powder geometry and a desired probability functions, 

Gaussian Process (GP) is a suitable choice for geometry abstraction. 

The GP training characterizes basis function coefficients, 𝛽, the noise variance, 

𝜎2, and the kernel parameter, 𝜃. The GP regression model is equivalent to 

 

𝑃(𝑦|𝑓, 𝑋) ~ 𝑁(𝑦|𝐻𝛽 + 𝑓, 𝜎2𝐼) 

𝑋 =  (

𝑥1
𝑇

𝑥2
𝑇

⋮
𝑥𝑛

𝑇

) , 𝑌 =  (

𝑦1

𝑦2

⋮
𝑦𝑛

) , 𝐻 =  (

ℎ(𝑥1
𝑇)

ℎ(𝑥2
𝑇)

⋮
ℎ(𝑥𝑛

𝑇)

) , 𝑌 =  (

𝑓(𝑥1)

𝑓(𝑥2)
⋮

𝑓(𝑥𝑛)

) 
( 14 ) 

 

The joint distribution of latent variables in GP regression model is as follows: 



 

 41 

 𝑃(𝑓|𝑋) ~ 𝑁(𝑓|0, 𝐾(𝑋, 𝑋)) 
( 15 ) 

 where 𝐾(𝑋, 𝑋) is the matrix of covariance function𝑘(𝑥, 𝑥′). 𝑘(𝑥, 𝑥′) is parameterized by 

𝜃. Input sets are made of two size distribution parameters and percentile of penetration 

length.  

 𝑥 =  (

𝑅𝑚𝑒𝑎𝑛
𝑇

𝑅𝑆𝑇𝐷
𝑇

𝑝𝑇

) , 𝑦 =  𝑙 
( 16 ) 

 

3.4 Modified ray tracing 

In order to efficiently utilize probabilistic models obtained from Gaussian Process, 

the ray tracing model must be modified algorithmically [4], [40]. The proposed model still 

focuses on absorption calculation based on statistical sufficient ray tracing. However, the 

memory of particle coordinates is no longer required to trace a ray. Instead, random angles 

and penetration length distribution are used to create probable paths of rays in a specific 

powder geometry. This change transforms the form of randomness from random sphere 

packing to random trajectories of traveling light. In simulation, the random packed bed 

structure is gradually constructed as a light bundle travels through the bed using 

penetration length distribution. The light bundle transmits through vacuum void in the bed 

and experiences absorption and scattering due to particles. These simultaneous processes 

of structure formation and ray tracing reduce computation cost significantly.  

An iteration loop in modified ray tracing starts with emitting a light bundle 

downwards from a certain height. The first interaction with solid phase occurs at a 
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predetermined powder bed height. From the interaction point, a center coordinates of 

interacting particle is chosen randomly as explained before in section 2.3. The attenuation 

of light bundle energy at the interaction point is calculated with Fresnel equations instead 

of using gray surface assumption. By adapting the Fresnel equations, the simulation model 

can account for the angular and polarization dependency of the absorption of incident rays. 

After the energy attenuation calculation, the specularly reflected light bundle heads to the 

next interaction point. The direction of this reflected ray is calculated as the same, but the 

magnitude is randomly assigned from the penetration length probability function 

generated by GP model. The stop conditions for a iteration loop is same as those described 

Figure 16 Modified ray tracing simulation 
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in section 2.3, but the first scatter back condition is no longer applicable due to a substrate 

at the bottom boundary. Any radiation ray that hits the substrate is specularly reflected 

with attenuated radiation energy and the iteration loop continues until one of the two 

conditions met. The normalized absorptivity is approximated by dividing the total energy 

of bundles accumulated to solid phase, by the total energy of light bundles emitted in the 

bed. Figure 16 shows a sample run of modified ray tracing simulation.  

 

Figure 17 (a) Absorptivity comparison (b) Ray tracing performance 
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3.5 Results and discussion 

The performance of ray tracing is evaluated by comparing results with those of the 

literature. Figure 17(a) shows total absorptivity of monodisperse and polydisperse powder 

bed, calculated from the ray tracing without the modifications. Materials for both powder 

models are stainless steel. Thus, the gap between two absorptivity values is derived from 

geometric distinction between the two models. The last two values in Figure 17(b) 

represent absorptivities of polydisperse powder model determined from a literature study 

[41]. These two numerical and experimental results confirm the validity of the proposed 

ray tracing model. After sufficient penetration lengths are obtained from two powder 

models, the averages of two penetration sets are calculated, which are 0.716cm and 

0.747cm for monodisperse and polydisperse particles, respectively. These results indicate 

that rays are more likely to experience more scattering within polydispersity particles. Due 

to increased light trapping, higher absorptivity is observed for polydisperse particles as 

seen in Figure 17(a). 

A GP model is trained to predict a penetration length probability function given a 

geometric input set. Figure 18 shows the comparison between true response and predicted 

response.  To measure the improbability of a curve fit in GP model, regression loss on the 

training data is computed. The type of regression loss used here is re-substitution loss. The 

loss output, L = 0.0055, demonstrates that the fit is good and only few outliers exist. Thus, 

the use of this GP model is justifiable. 
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The trained GP model is coupled with the modified ray tracing to generate random 

penetration lengths. Then, the performance of the modified ray tracing model is analysed 

by comparing results with the original ray tracing and the literature. Table 2 lists six 

materials popularly used in AM industry. Each material has distinct optical properties. 

Along with material information, Table 2 shows absorptivity of each material, calculated 

by the two ray tracing methods. The two absorptivity output sets agree well with each 

other. In addition, no significant deviations exist between modified ray tracing output and 

the literature values. Consequently, the GP model is successfully applied and preserves 

the computational accuracy. To evaluate the efficiency of the proposed modified ray 

Figure 18 Performance of trained GP model 
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tracing approach, CPU times of the two models are computed and compared. Both 

simulations have the same settings so that the difference in results can only be attributed 

to algorithms discrepancies. Specifically, ZnO is used as the layering material and 5000 

rays are emitted. The resulting CPU times for original ray tracing and modified ray tracing 

model are 9.72 sec. and 276.66 sec., respectively. One possible reason the modified model 

takes more time than the original model is the iterative neighbour searches required for 

the impenetration constraint. However, if the computation cost of geometry modelling is 

considered, the modified ray tracing approach is significantly more efficient that the 

conventional models. Specifically, the CPU time for computational modelling of 

polydisperse powder model was 2.526 days. This exhaustive cost was avoided by using 

geometric GP model. 

 

Table 2 Absorptivity calculations  of AM materials (modified from [2] & [7]) 

 

Material 
Refractive index (n) Absorptivity (𝛼) 

Re Im Ray tracing Modified Literature [2], [7] 

Cu 0.35 6.97 0.13 0.14 0.17 

SS 3.27 4.48 0.62 0.6 0.6 

Ag 0.23 7.09 0.12 0.12 0.13 

PMMA 1.4831 57.4 0.02 0.03 0.06 

Al2O3 1.7579 0 0.969 0.95 0.96 

ZnO 1.998 0 0.953 0.93 0.94 
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CHAPTER IV  

CONCLUSION 

 

A NN model was developed for the purpose of predicting radiative transmission 

through randomly packed beds. The MCRT simulation was used a limited number of times 

to collect training data required for the NN regression. During training, the link weights 

are adjusted iteratively so that the overall error of the network is minimized for each 

training example. The performance of trained NN model was measured in terms of 

regularized sum of squared errors. The regularized sum of squared errors were minimized 

to 0.005 and 0.0025 for validation and training error, respectively. The results of NN-

based transmission prediction made a good agreement with the results from previously 

measured literature results. Depending on the geometry of packed bed, the CPU time 

required for a MCRT simulation ranges from 5 to 20 minutes. Meanwhile, with training, 

the NN model took around 10 seconds in average to calculate transmittivity. All CPU time 

calculations do not include the cost of the computational modelling of packed bed 

geometry. However, the cost of packed bed modelling is significant in terms of 

computational efficiency. Thus, as a second purpose of ML implementation, a GP model 

was developed to abstract each complex particulate geometry into a particular probability 

function of penetration length. The coupling of GP model with ray tracing enabled 

accurate and efficient prediction of six AM powder absorptivity calculations. A ray tracing 

algorithm was modified to achieve efficient coupling. The calculation errors between 

original ray tracing and coupled ray tracing model ranged from 1.96% to 7.69% and the 
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errors between coupled ray tracing and literature results ranged from 1.05% to 21.4%. 

With the same input setting, the CPU time for a ray tracing calculation increased by 27.5% 

after coupling. However, the coupled ray tracing model is still more efficient than the 

original ray tracing model if the cost of packed bed geometry modelling is considered.  
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[19] S. Haussener, W. Lipiński, J. Petrasch, P. Wyss, and A. Steinfeld, “Tomographic 

characterization of a semitransparent-particle packed bed and determination of its 

thermal radiative properties,” J. Heat Transfer, vol. 131, no. 7, 2009. 
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