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ABSTRACT

Hagfishes are capable of not only forming knots, but also sliding them along the length of their

bodies. This remarkable behavior is used by the animal for a wide variety of purposes, such as

feeding and manipulation. Clearly of interest to biologists, this knotting behavior is also relevant

to other fields, such as bioinspired soft robotics. However, this knot-sliding behavior has been

challenging to model and has not been simulated on a computer. In this thesis, we present the

first physics-based simulation of the knot-sliding behavior of hagfish. We show that a contact-

based inverse dynamics approach works well for this challenging control problem, motivated by

the biological concept called “positive thigmotaxis,” the characteristics of organisms to be in direct

contact with other objects in the local environment.
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NOMENCLATURE

q Generalized position

q̇ Generalized velocity

f Force vector

h Time step
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1. INTRODUCTION*

Hagfishes are slime producing marine fish that commonly inhabit the ocean depths. They have 

incredible flexible bodies, which is best demonstrated by their abilities to tie their bodies to form 

knots and slide the knots along their bodies. Figure 1.1 shows this behavior. Several purposes for 

this behavior are described in the literature: they clean slime off their bodies [2]; extricate them-

selves from narrow spaces or avoid predators [3, 4]; and leverage retractile force to tear off chunks 

of food during feeding events [5].

Figure 1.1: The knotting behavior of hagfish.

The enhancement of feeding through leverage produced by knotting behavior is important, 

because hagfishes are agnathans, a primitive c lass1 of jawless fi sh. Hagfishes evolved prior to the

evolution of vertebrate jaws [6]. Nevertheless, hagfishes can remove considerable morsels while

scavenging carcasses. To achieve this, hagfish first embeds the teeth of an eversible toothplate into

the food item, such as decaying carcasses of whales. Next, it forms a knot around the tail, and

*Reprinted by permission from Springer Nature Customer Service Center GmbH: Springer Nature, Bioinspired 
simulation of knotting hagfish [1], 2019. Copyright 2019 Springer Nature Switzerland AG.

1Technically, a superclass.
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slides it anteriorly until a loop of a knot passes over the hagfish’s head. The loop is pressed up

against the food item, leveraging a powerful retractile force to tear out the morsel [7, 8].

Along with water snakes and eels, hagfishes are one of the three groups of aquatic craniates

that manipulate body knots [6, 8, 7]. Interestingly, unlike the others, which form relatively simple

knots, hagfishes are capable of tying a diversity of more complicated knots [9].

Hagfishes have shown extensive adaptations for creating and manipulating body knots. These

include:

1. Hagfishes do not have hard bones.2 Instead of vertebrae, a notochord, which is a flexible,

cartilaginous rod, extends down the length of the body and accounts for the majority of the

passive body stiffness [10]. It is assumed the core musculature forms a muscular hydrostat

that accounts for some of the active body stiffness.

2. The length of the hagfish body is typically over twenty times its width [6]. This extremely

elongated body enables the animal to knot itself into a knot.

3. Hagfish has extremely baggy, loose skin. The skin is loosely connected to the musculature

of the body wall, precluding tough skin. This enables more room for body maneuvers.

4. The hagfish skin lacks the outer layer, known as the stratum corneum, that produces scales

[11, 12]. This enables the animal to retain its smooth skin. Also, hagfishes have no fins or

other projections protruding from their bodies that may hinder their knot manipulations.

The hagfish body can be modeled as a large number of body segments connected with joints.

The neural inputs increase as the number of joints increases. Theoretically, this requires an enor-

mous amount of neural input, and such models and organisms are described as “hyper-redundant."

Neurally controlling such flexibility represents a problem, and the control of this flexibility has

been poorly understood by biologists [13, 14]. As a result, researchers have not only struggled

with discovering how hagfishes manipulate their bodies during the knot manipulation process, but
2Whether hagfishes were naturally invertebrate animals or vertebrate were lost during evolution, is still a contro-

versial topic.
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also with developing a computer simulation of knotting that is realistic and biologically informa-

tive.

Our key idea for developing a realistic hagfish simulation is based on a biological concept

called “positive thigmotaxis.” Positive thigmotaxis describes a characteristics of organisms to be

in direct physical contact with other objects in the local environment.3 From our collaborating

marine biologists’ observations, hagfishes also showed positive thigmotaxis. These animals prefer

to be pressed up against the edges or by others, rather than being alone. This trait may be due to

their poor eye sight. Although they have eye spots, hagfishes’ eyes are covered with tissue, which

make them virtually blind to its surroundings. They live in shallow burrows or crevices in the dark

zones of the ocean, or prefer to be tightly packed into cavities of whale carcasses [15, 4].

The positive thigmotaxic trait is more evident during the knot manipulation process. While

analyzing high speed videos of knotting hagfish, Haney [6] observed that hagfish exhibited positive

thigmotaxis during knot formation and manipulation. He also noticed that the types of knots that

hagfish can form depend on the number of body crossovers of the tail [16]. Interestingly, while

hagfish slides a given knot anteriorly or posteriorly along the body, the constituent crossovers,

which indicates places of crossing from one side to the other, did not change in relation to each

other. Motivated by this observation, we devised our contact-based inverse dynamics approach.

In this thesis, we present a novel graphics testbed for simulating a knotting hagfish that is

biologically informative. Our work has the following contributions.

1. While there are previous works on knot tying, there are no previous works related to knot

sliding. This makes our work the first demonstration of the knot forming and sliding behav-

ior.

2. We provide a simulation that is biologically informative to researchers. Often, it is difficult

to experiment with real hagfishes in their natural environment. This is due to their natural

habitat deep down in the oceans, and the complex procurement process. We used biometric

3Negative thigmotaxis is the opposite characteristic of wanting to be away from others.
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data that were collected from real-world hagfish, creating a simulation that biologists may

easily understand and use in experiments.

3. Our work is significant in that it has many possible applications areas, most notably, in soft

robotics [17]. One of the greatest tasks in current soft robotics research, is in controlling the

flexibility and pliancy of robots. We hope our work in knot control would further help in

designing and constructing more useful soft robots.

This thesis is organized as follows. In Chapter 2, the related works and background are pre-

sented, which is largely divided into 3 main groups: knotting behavior of hagfish; previous works

in computer graphics regarding rods and cables; and neural control problems in robotics. In Chap-

ter 3, we explain how the biometric data of real hagfish were collected, and the observations on

hagfish knot manipulation. The data was collected by our collaborators, using hands-on mea-

surements, and analyzing photographs and kinematic video. Based on collected data, Chapter 4

explains how we have created our simulation model. We use rigid bodies connected with joints.

Both bilateral and unilateral constraints are used to match the hagfish experiment video. In Chap-

ter 5, we present our novel method in knot sliding, contact-based inverse dynamics, inspired by

positive thigmotaxis. Our approach uses contacts as signals to make the bodies slide. We cast

this as a positive thigmotaxic4 constraint to our model. Our method enables us to control the knot

freely, such as tightening or loosening the knot. It is very simple, easy to use, and computationally

efficient. In Chapter 6, we present our results. Our contact-based approach proved to be effective,

where sliding motion was incredibly smooth and realistic. Also, from the positive thigmotaxic

force, we show several important observations that may be an important clue in finding out hagfish

muscle controls. Finally in Chapter 7, we conclude the thesis, by presenting our contributions and

future works.

4Thigmotaxic is the adjectival form of thigmotaxis.
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2. BACKGROUND*

2.1 Knotting Behavior of Hagfish

The knotting behavior of hagfish has been one of the key interests to biologists for a long time. 

One of the documents for this behavior was done by Adam [2]. By observing Myxine glutinosa, 

or Atlantic hagfish, Adam described how hagfish formed a knot to clean slime off from its body. 

He also observed that the direction of the knot sliding can be reversed. In other words, the hagfish 

knot can slide both toward the head, or toward the tail [2]. Ever since this discovery, previous 

works on hagfish knotting mainly focused on adaptive benefits of  the knotting behavior for their 

survival. These involved hagfishes using their knots to extricate themselves from burrows, escape 

from predators, pull preys out of holes in active predation, and break large chunks of food in 

feeding events [5, 7, 8, 4].

The emergence of works that looked into the biomechanisms of this knotting hagfish i s rel-

atively a recent phenomenon. Haney [6] not only organized rules for hagfish k notting, but also 

focused on different kinds of knots that hagfish c an f ormulate. H e o bserved t hat h agfishes are 

capable of forming not only simple overhand knots, but also other more complex knots, such as 

those of figure-8 or Miller-Institute.

While works of Haney mainly involved observing the knotting behavior, Evans et al. [18] ana-

lytically examined the hagfish body flexibility using biometric data collected from real-world hag-

fish. They quantified three-dimensional whole body flexibility of hagfish for applications in virtual 

simulations. They discovered that the flexibility trend may vary depending on views and skinning. 

Our simulation used their observations and biometric data in knotting behavior of hagfish.

2.2 Cable and Rod Simulation

Hagfish has a  t hin, elongated body that resembles rods or c ables. There exist numerous ap-

proaches for rods and cables in computer graphics, particularly in those of rigid body dynamics

*Reprinted by permission from Springer Nature Customer Service Center GmbH: Springer Nature, Bioinspired 
simulation of knotting hagfish [1], 2019. Copyright 2019 Springer Nature Switzerland AG.
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[19, 20, 21, 22, 23, 24]. In classical work of Baraff, he presents efficient method for computing

contacts and frictions on rigid bodies [25]. Other works involved combining rigid and deformable

bodies [26, 27, 28, 29, 30]. In our work, we used only rigid degrees of freedom, and deformed the

skin mesh using splines for contact handling.

For our simulator, we used the REDMAX method by Wang et al. [30]. REDMAX is a hybrid

model that is built using a combined reduced/maximal coordinates. The method is flexible and

efficient, and is highly effective for our hagfish simulation. Since hagfish possesses a smooth skin,

we exclude friction from our scope [31].

Several works were devoted for simulating knot tying. Phillips et al. [32] proposed a rope tying

system that can be used as a surgical simulator for medical surgeons. The rope was created using a

spline of linear springs. Focusing on real-time simulation, Brown et al. [33] proposed a simulator

in tying virtual, arbitrary knots. The knot tying process involved tying a knot around other objects,

with contact and friction along the objects. However, previous systems focused mainly on knot

tying, not knot sliding. Our work is different, in that we have come up with a method in knot

sliding simulation, which none of the previous physics-based approach made an attempt at.

2.3 Neural Control

The hagfish body has an extreme flexibility that represents a neural control challenge. If we rep-

resent our hagfish model as body segments connected with joints, it requires an enormous amount

of neural inputs to control flexibility. This hyper-redundancy problem becomes more severe as the

number of joints increases [6].

Although poorly understood by biologists in the past, several studies have begun to look into

this problem. This trend is most evident in robotics. Sumbre et al. [34] presented a motor primitive

of an octopus reaching its arm toward a 3D target point. These motor primitives may adapt to the

local environment. For example, when an octopus encounters a narrow hole, the motor primitives

would adapt to the constraint, enabling the octopus to successfully reach out through the narrow

space.

Motivated by biology, roboticists have worked on designing and constructing soft robots [17,

6



35, 13]. Soft robots are made of pliant materials, capable of adapting to their surroundings. Con-

trolling such flexibility and pliancy of robots is one of the most difficult tasks that soft robots face.

We expect our method to aid in designing and constructing more flexible and efficient soft robots.

Control signals are also of interest to the biomechanics and computer graphics communities.

In biomechanics, computed muscle controls were used to control signals of skeletal animals [36].

Similar methods have been proposed in computer graphics, such as controlling humanoids or hu-

man hands [37, 38]. However, previous works in neural controls did not consider knot forming or

sliding, which is our primary focus.
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3. BIOMETRIC DATA COLLECTION*

The biological data measurements for hagfish flexibility were performed by our collaborators in 

the Department of Biology at Valdosta State University [18, 6]. Although measuring the animal’s 

bending flexibility u sing c urvature w as d one b y o ur c ollaborators a t Valdosta S tate University, 

measuring bending limits in degrees was done by us through photographic analysis on images 

provided to us by our collaborators. Mostly, our simulation is based on their data and observations. 

For example, joint stiffness and damping was adjusted by us to approximate the behavior as much 

as possible. The manually adjusted parameters are listed in Table 6.1.

3.1 Hands-on Measurement

There are various species of hagfish, b ut f or o ur e xperiment, E ptatretus s toutii), o r Pacific 

hagfish, was c hosen. Our collaborators used 4  specimens, which were labeled as ES102, ES103, 

ES104, and ES105. The specimens were euthanized for measurement. For our specific hagfish 

simulation, data collected from specimen ES103 was used. The data of other specimens were 

indirectly used, such as the average twisting limit of the rest of the specimens. The complete list 

of the data can be found in Chapter 6.

3.1.1 Volume measurement

Unlike mass or length that can be obtained by direct measurement, our collaborators needed 

to perform volume measurement with care, because it was difficult to measure the hagfish volume 

directly. They divided the body length into 5 major segments with equal lengths. As can be seen in 

Figure 3.1, the hagfish was marked in 20% increments in length, resulting in marks at 20%, 40%, 

60%, and 80%.

Then, they assumed a simplified hagfish model consisting of 5 cylindrical objects (Figure 3.2). 

By measuring the circumference of each marked area, the radius was deduced to compute the

*Reprinted by permission from Springer Nature Customer Service Center GmbH: Springer Nature, Bioinspired 
simulation of knotting hagfish [1], 2019. Copyright 2019 Springer Nature Switzerland AG.
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Table 3.1: Parameters for simulation.

Data Values Unit
Bending stiffness (Universal) 1e-5 Ncm/rad
Bending stiffness (Revolute) 5e-5 Ncm/rad
Damping 1e-6 Ncm/rad/s

Figure 3.1: Pacific hagfish (Eptatretus stoutii was marked with 20% increments in length to mea-
sure the approximate volume.

volume of each cylinder. It should be noted that the measurement of the circumference at the 40%

mark, and the subsequent values depending on it, may contain a slight error. This is due to the

decay of the hagfish skin around that region. However, since the decay was limited to a small

range, the effect of the error on the final outcome is almost negligible.

3.1.2 Twisting Measurement

Longitudinal twisting limit data was collected by measuring the twist with the fixation of head

and tail, as shown in Figure 3.3. The twisting limit was measured for the whole, and the skinned.

Whole refers to a hagfish with its skin attached, and skinned refers to a hagfish with its skin re-

moved. The thickness of removed skin consisted of a few millimeters. The purpose was to test

whether there existed any influence of skin on hagfish body flexibility. Overall, the skinned hag-

fishes showed larger twisting flexibility, compared to the whole ones.

9



Figure 3.2: Hagfish body was simplified as a model which consists 5 cylindrical objects.

During the experiment, twisting limit data was not collected for ES103. Therefore for the

simulation, average whole twisting limit for the other 3 specimens were used instead. Nonethe-

less, based on the skinned body measurement data, it was safely assumed that average data was

applicable, since the differences among specimens was not large.

3.2 Photographic Analysis

The bending limit data were not collected at the time of the hands-on experiment. Therefore

this step was a post-hoc work, by using the means of analyzing photographs (Figure 3.3). Each

specimen was photographed on a copystand using a Sony α7s digital camera. It displayed dorsal,

ventral, and lateral bending. For our simulation, only the ventral bending data were used.

Before collecting the bending data from photographs, they analyzed the overall bending flex-

ibility of hagfishes using the curvature of a circle with radius R. Then, the curvature κ can be

Figure 3.3: Twisting and bending measurement.
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deduced using the following property:

κ =
1

R
. (3.1)

With an image processing tool FIJI (ImageJ implementation)1, they first found the best fitting

circle within the marked area of the hagfish body curve. Next, by using the radius of that circle,

they generated κ to see the relation of axis and flexibility [18]. The κ was used for analyzing the

flexibility, for helping us in choosing bending views. For the actual bending limit in degrees for

our simulation, we used a virtual protractor tool.

3.3 Kinematic Video Analysis

Figure 3.4: Hagfish video in restraint device [1].

It is a challenging task to observe and experiment with the knotting behaviors of hagfishes in

the natural environment, due to their native habitats in the deep sea. Therefore it is imperative

to design a hagfish restraint device, which facilitates controls over consistent hagfish knotting

behaviors. Haney created a custom restraint water tank, with a membrane with a hole on one side

of the tank [6] (Figure 3.4).

The membrane was used to fix the hagfish’s head while it is sedated. Once the anethesia wears

1https://fiji.sc/
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off, the hagfish would attempt to escape from the fixed membrane by knotting and leverage a force

on the plate wall. This enabled us to observe the hagfish’s knotting in a controlled environment, as

shown in Figure 3.4. This kinematic video was used for observations.

In our experience, a hagfish in an aquarium prefers to be pressed up against the edges or touch-

ing other hagfishes rather than be alone in the center. This interesting behavioral characteristic, or

positive thigmotaxis, was also observed in our experiment. Particularly, the tail exhibited the trait

of positive thigmotaxis, which played a crucial role during all stages of knot formulation.

Except analyzing the photographs to measure bending limits, the rest of the experiments were

exclusively done by our collaborators in the Department of Biology at Valodsta State University.

3.3.1 Rules for Knotting

Hagfish forms a knot using certain kinematic steps. The kinematic steps of knot formulations

are as follows. First, the tail will form a loop by curving it to make a contact with a more anterior

portion of the body. Then, the tail will follow the contour of the body surface in order to form one or

several crossovers. Finally the tail will insert into a loop and the knot is formed. Haney organized

these motion steps as (a) crossover, (b) tail wrap, and (c) tail insertion, which our simulation

follows suit [6].

During this process, the key feature that they noticed is that as the hagfish slides the given knot

anteriorly or posteriorly along the body, the constituent crossovers do not change in relation to

each other. This was an essential feature for a hagfish to successfully form a knot, and motivated

our idea of using positive thigmotaxis.

12



4. SIMULATOR*

4.1 Simulation Model

To model a hagfish, we use 100 rigid bodies and joints (Figure 4.1). Considering that a hagfish 

has a cartilaginous notocord, it may seem that using rigid bodies for the hagfish m odel i s not 

appropriate. However, since the cartilaginous notocord is inextensible, using rigid bodies is still 

reasonable.

The rigid bodies and joints were aligned along the X-axis. The bodies were connected with 

X-revolute joints and YZ-universal joints in an alternating fashion, as shown in Figure 4.2. A 

revolute joint, or also called a hinge joint, has one degree of freedom, which rotates along a single 

axis. In the case of universal joints, they have two degrees of freedom. Since bodies and joints 

were aligned along X-axis, this allowed the joint to bend in Y-axis and Z-axis, but twisting along 

X-axis. We applied our twisting limit data to revolute joints, and bending limit data to universal 

joints. Applying the joint limit data would have been challenging using spherical joints.

4.2 Constraints

We reproduced the hagfish e xperiment v ideo, b y g iving a  s et o f c onstraints t o o ur hagfish 

model. The constraints can be divided into two parts: bilateral constraints and unilateral con-

straints. Bilateral constraints are used to fix the hagfish head to the wall, and unilateral constraints 

are used for joint limits and contacts on the wall and self collisions. Figure 4.3 shows the visual ref-

erence of constraints. The red mark denotes the bilateral constraints, and the blue marks represent 

unilateral constraints.

We use forward Euler integration to advance the rigid bodies in time. We use different solvers, 

depending on the different types of constraints the model encountered.

*Reprinted by permission from Springer Nature Customer Service Center GmbH: Springer Nature, Bioinspired 
simulation of knotting hagfish [1], 2019. Copyright 2019 Springer Nature Switzerland AG.
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Figure 4.1: Hagfish model using rigid bodies [1].

Figure 4.2: Hagfish bodies connected with revolute joints and universal joints [1].

4.2.1 No Constraints

If there are no constraints, we solve the following linear system:

Mq̇ =Mq̇0 + hf, (4.1)

where M is the mass matrix, q̇ is the new velocity vector we are solving for, q̇0 is the velocity

from the last time step, h is the fixed time step, and f is the force vector. Here, force includes all

internal, external, and Coriolis forces. Once the velocities are computed, we update the positions

as

q = q0 + hq̇. (4.2)
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Figure 4.3: We use bilateral constraints to fix the head (red) and unilateral constraints for contact
with the wall and itself (blue).

4.2.2 Only Bilateral Constraints

If there exist only bilateral constraints, we solve the problem using a Karush-Kuhn-Tucker

(KKT) system [39]: M G>

G 0


q̇

λ

 =

Mq̇0 + hf

0

 , (4.3)

where G is the Jacobian of the bilateral constraints, and λ is the vector of Lagrange multipliers.

4.2.3 Bilateral and Unilateral Constraints

If there exist both bilateral and unilateral constraints, we solve the following quadratic program:

minimize
q̇

1

2
q̇>Mq̇ − q̇> (Mq̇0 + hf)

subject to Gq̇ = 0, Cq̇ ≥ 0,

(4.4)

where G and C each denotes the Jacobian matrices for bilateral and unilateral constraints. If the

system drifts away from the constraint manifold due to constraints enforced at the velocity level,

we stabilize the positions when necessary [40].
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(a) Catmull-Rom spline curve. (b) Broad-phase test. (c) Narrow-phase test.

Figure 4.4: Contact handling [1].

4.3 Contact Handling

Due to the fact that we are using contact signals inspired by positive thigmotaxis, collision

detection and contact handling are important aspects of our work. The contact handling steps are

visually shown in Figure 4.4.

4.3.1 Collision Detection

In order to detect the colliding bodies, first we fit a Catmull-Rom spline curve passing through

the center of each rigid body. This represents the cartilaginous notocord of the hagfish.

We create bounding spheres around the rigid bodies to perform broad-phase collision detection.

If there is indeed a collision in broad-phase, we perform a narrow-phase test, using Newton’s

method to find the accurate colliding points on the potentially colliding bodies.

4.3.2 Newton’s Method

When the bodies collide, we use Newton’s method to compute the collision points. This is

shown in Figure 4.4a. We use Newton’s method to compute the root of the following function:

f(si, sj) =

x′(si)>(x(sj)− x(si))
x′(sj)

>(x(sj)− x(si))

 =

0

0

 , (4.5)

where si and sj are spline parameters along the spline curve, x(si) and x(sj) are positions along

the curve, and x′(si) and x′(sj) are the corresponding tangents, respectively.
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Figure 4.5: Newton’s method [1].

Given that the spline parameters range from 0 to 1, we start our search from the middle, by

setting initial parameters si and sj both 0.5 before the search. Next we compute the colliding

points by iteratively checking whether the tangents are orthogonal to the vector between the two

positions (Equation 4.5), with a small tolerance threshold value.

These parameters are then used to compute colliding positions. Given that the radii of those

two bodies are ri and rj , we compare the sum of the radii and the distant between x(si) and x(sj)

as the following equation.

√
(x(si)− x(sj)) · (x(si)− x(sj)) <

√
(ri + rj)2 (4.6)

If the distance between those two colliding positions is less than the sum of the radii of the

two bodies (Equation 4.5), we can assume the narrow-phase collision has occurred. Thus we can

successfully handle self contacts.
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5. CONTROLLER*

The controller consists of two independent steps: forming the knot and sliding the knot. We 

use forward dynamics for forming the knot, and inverse dynamics for sliding the knot. Forward 

dynamics computes the motion based on the force, and inverse dynamics computes the force based 

on the motion.

5.1 Knot Forming

In order to form a knot, we use forward dynamics. We manually create a sequence of scripted 

forces. We use the aforementioned kinematic rules for knot formulation by Haney [6], which 

involves simple steps consisting of body crossover, tail wrap, and tail insertion. For each step, we 

apply forces on the terminal body of the hagfish model to achieve a  desired motion, as shown in 

Figure 5.1. We found only linear forces were enough to produce a knot. This method is rather time 

consuming and requires effort, but it is very intuitive and fairly easy to achieve reasonable results. 

Figure 5.2 visually shows our knot forming process.

5.2 Knot Sliding Problem

Unlike knot forming, however, there is no intuitive way to apply forces or torques to make the 

knot slide. This can be easily found with a real world experiment, as we show in Figure 5.3.

In this small experiment, we used various kinds of flexible, pliant strings and formed a simple 

knot. Then we used a long rod, such as a pencil, placed it into the knot, and dragged the knot in 

the direction which we would like the knot to slide. For some strings, we added soap to reduce 

friction, to reproduce the smooth surface of hagfish.

What we discovered was that regardless of strings or added soap, it was a very hard problem 

to slide the knot even with a very flexible string with minimal f riction. They either got stuck in 

the middle, or required an immense force, which often was tedious. This demonstrated that using

*Reprinted by permission from Springer Nature Customer Service Center GmbH: Springer Nature, Bioinspired 
simulation of knotting hagfish [1], 2019. Copyright 2019 Springer Nature Switzerland AG.
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Figure 5.1: Force applied on the terminal body [1].

Figure 5.2: The knot forming steps [1].

scripted forces would not work well for the knot sliding problem.

5.2.1 Contact-Based Inverse Dynamics

Inspired by positive thigmotaxis, our contact-based inverse dynamics approach proved to be

very effective for this problem.

Once we detect self collisions due to the knot formulation, we switch our controller from

forward dynamics to inverse dynamics. As mentioned earlier, in inverse dynamics, we compute

the forces and torques given a specified motion, and it can be cast as a constraint to be applied to

the motion [30]. We name our constraint as the positive thigmotaxic constraint.

For self-collision points, we require that the projection of the relative velocity between the two

contacting points onto the tangent direction to be greater than some value (Figure 5.4). Mathemat-

19



Figure 5.3: Real-world knot sliding experiment.

Table 5.1: Scalar parameter values for knot tightening and loosening [1]

Data Values Units
va, vb (tightening, head) 0.0, 0.0 cm/s
va, vb (tightening, tail) 0.5, 1.0 cm/s
va, vb (loosening, head) 1.0, 1.0 cm/s
va, vb (loosening, tail) 0.1, 1.0 cm/s

ically, this can be written as follows:

t>a (ẋa − ẋb) ≥ va

t>b (ẋb − ẋa) ≥ vb,

(5.1)

where ta and tb are the unit tangent vectors of the colliding rigid bodies (t = x′/‖x′‖), ẋa and

ẋb are the world velocities of the colliding points, and va and vb are scalar parameters to control

the sliding motion in tangential directions. These quantities can be computed as functions of

the current generalized positions and velocities, q and q̇ [30]. We add our positive thigmotaxic

constraint in the unilateral constraint matrix C.

5.2.1.1 Computations

Our approach may seem overly constrained and computationally expensive, because there exist

many self-collisions during a knotting process, which consists of a large portion of the animal’s
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Figure 5.4: Visual representation of contact-based inverse dynamics [1].

Figure 5.5: Applying thigmotaxic constraints.

body.

However, in our approach, we do not apply thigmotaxic constraints to every colliding point.

Instead, we sort the collisions by the parametric distance from the head, and apply the thigmotaxic

constraints to only the first and the last collisions, as shown in red in Figure 5.5.

In order to take this approach, we need to keep the tail straight, which is different from the

real-world hagfish video. If contacts are occurring in regions other than the knot itself, the sliding

motion will not activate properly. However since our main focus is to find a method that enables

knot sliding, rather than simply imitating the video, this is not a serious problem. Therefore, once

the knot forms, we pull on the tail by applying a small force to the distal rigid body.

5.2.1.2 Knot Controls

With our approach, now we are able to control the knot by manipulating the scalar parameters

of contact-based inverse dynamics in our method. In order to do this, we use two substeps: knot
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Figure 5.6: Thigmotaxic constraints for hagfish [1].

Figure 5.7: Knot tightening.

Figure 5.8: Knot loosening.
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tightening and knot sliding.

First, we can use different scalar parameters to tighten or loosen the knot. Figure 5.7 and

Figure 5.8 show two examples of how we can control the knots. In the first example, the tail

parameters are given higher values to pull the tail out, resulting in knot tightening (Figure 5.7).

On the other hand, in the second example, higher values are given to the head, for knot loosening

(Figure 5.8). The scalar parameter values are given in Figure 5.6.

Once the knot is tightened sufficiently, we set the parameters to have the same values. This

enables the knot to slide along its body toward the head effectively.

5.2.1.3 Positive Thigmotaxic Force

The forces computed by the inverse dynamics solver can be calculated with the Lagrange mul-

tipliers of the quadratic program. We divide the unilateral constraint Jacobian matrix C and La-

grange multiplier λ into three parts that correspond to joint limits, collisions, and thigmotaxis, as

the following:

C =


Climits

Ccollision

Cthigmo

 , λ =


λlimits

λcollision

λthigmo

 . (5.2)

Then we compute the inverse dynamics force from positive thigmotaxis as follows:

fthigmo =
1

h
C>

thigmoλthigmo. (5.3)
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6. RESULTS*

6.1 System Configuration

The simulator was implemented using C++, and the experiments were performed on a con-

sumer desktop with an Intel Core i7-7600 CPU 3.6 Ghz and 16 GB of RAM. For numerical com-

putations, we used Eigen for linear algebra, and Mosek for quadratic program.

6.2 Knot Sliding

Table 6.1 shows the biometric data of hagfish, a nd s calar p arameters o f o ur i nverse sliding 

motion. Figure 6.1 visually compares the sliding motion between our simulation and the real 

hagfish, which is restrained in a  custom t ank. As can be seen, our method simulates the sliding 

motion of knot realistically.

The knot sliding motion steps were largely divided into three steps. First, we used manually 

scripted forces to make an initial knot. Next, we tightened the knot using the scalar parameters 

shown in Table 6.1. We use higher scalar parameters in the tail and set the 0 values in the head, 

so to pull the tail out from the knot with stronger drive. And lastly, using the tightened knot, we 

slided the knot along the body toward the head, by setting the head and tail parameters to be the 

same value. The resulting motion is smooth and effective.

6.3 Analysis of Force

We generated positive thigmotaxic forces using Equation 5.2, in X-axis, Y-axis, and Z-axis, 

respectively. Figure 6.2 shows the details, using the X-axis graph. The horizontal axis represents 

the indices of joints. Here, 0 denotes the joint in the head of the hagfish, and 50 denotes the tail. 

The diagonal axis shows the increase in time, following the direction of the arrow. The vertical 

axis denotes the positive thigmotaxic force, computed by our inverse dynamics controller. It can 

be seen how thigmotaxic force changes as the knot slides along the body toward the head. The

*Reprinted by permission from Springer Nature Customer Service Center GmbH: Springer Nature, Bioinspired 
simulation of knotting hagfish [1], 2019. Copyright 2019 Springer Nature Switzerland AG.
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Figure 6.1: Comparison between our knotting hagfish with positive thigmotaxis and the actual
hagfish video [1].

Figure 6.2: The visual representation of graph coordinates.
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Table 6.1: Biometric data and inverse dynamics parameters [1].

Data Values Units
Length 42.4 cm
Mass 80 g
Circumference 5.6, 5.5, 5.6, 4.3 cm
Bending limit 21, 75, 45, 51 deg
Twisting limit 48 deg
va, vb (tightening, head) 0.0, 0.0 cm/s
va, vb (tightening, tail) 0.5, 2.0 cm/s
va, vb (sliding, head) 2.0, 2.0 cm/s
va, vb (sliding, tail) 2.0, 2.0 cm/s

Figure 6.3: The thigmotaxic force becomes zero [1].

generated force looks quite noisy, but this is a typical case for inverse dynamics.

From the plot of the force, we have discovered several interesting traits. First, as the knot

moves toward the head over time, the forces acting on the joints closer to the tail becomes zero

(Figure 6.3). This is an expected result, because once the knot passes through the joint, that joint

no longer needs to be controlled to move the knot. This trait can be seen in the red flat surface

regions of each graph.

Second, more force is required when the knot approaches closer to the head, as shown by the

yellow and blue regions in the graph. This is due to the fixation of head on the wall, which required

moving the knot the whole length from the head to the tail. This is interesting, because we can

extend our research to analyzing the retractile force that the hagfish knot is capable of. Biologists

may gain further understanding on how hagfishes exploits its knot, for example, in feeding events.
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Lastly, we have discovered that the forces rapidly change along the temporal dimension, but

they are smooth in spatial dimension. This implies the possibility that control signals may be

represented using a reduced set of basis, for example, using Fourier analysis, rather than exploiting

every individual segments. This may be an important clue in discovering hagfish muscle controls

on knot sliding motion.
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7. CONCLUSION*

7.1 Contributions

In this thesis, we presented a simulation technique for knot sliding. This is called contact-based 

inverse dynamics, and it was cast as positive thigmotaxic constraints, named after the biological 

concept where we found the inspiration.

We have the following significant contributions. First, most of all, we have successfully imple-

mented positive thigmotaxis, using our contact-based inverse dynamics. This allowed our hagfish 

model to slide the knot along the body, which none of the previous methods have achieved. Fur-

thermore, we were able to adjust the knot, by tightening it or loosening it effectively. This ability 

would further our understanding in finding the mechanisms involved in knot controls and other 

application areas.

Second, we designed and implemented a simulator that generates results that are biologically 

realistic and informative. Hagfish commonly are found deep down in the oceans, and procurement 

process is costly. This hindered hagfish researchers from experimenting with hagfish more freely. 

Our simulator used the biometric data collected from a real world hagfish. We hope our work will 

enable researchers to use our simulator for testing out functional hypotheses of hagfishes.

Third, our simulation has potential for future applications, most notably, in soft-robotics. The 

difficult task that soft robots face today is in how to control flexible and pliant parts. We hope our 

work will aid in opening up a new horizon in this field. For example, using our knot sliding scheme 

combined with application of frictional contacts around the objects, robots could deliver items by 

surrounding the object with a body knot, and slide the knot through narrow spaces or areas that are 

difficult to reach by human hands or typical traditional rigid robots [35, 13, 17].

7.2 Future Work

There are several features that we would like to develop as our future work.

*Reprinted by permission from Springer Nature Customer Service Center GmbH: Springer Nature, Bioinspired 
simulation of knotting hagfish [1], 2019. Copyright 2019 Springer Nature Switzerland AG.
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First, we would like to add contractile muscle fibers and use deformable flesh with continuum

mechanics. In our current simulation, we used rigid bodies and simple skin mesh for our hagfish

model. This agrees with hagfish trait, because hagfish body core can get quite stiff due to muscular

hydrostats. Still, hagfish retain bodies and skin that can be relatively soft and deformable. By

using muscle fibers and deformable flesh, we would be able to simulate a more realistic hagfish

with further accurate contact geometry.

Second, from the results of inverse dynamics force, we have discovered that the forces in spatial

dimensions are smooth. This implies that the activations in control signals can be represented using

a reduced basis. This is an important clue for our future work, for it implies we may find the hagfish

muscle controls during sliding the knot.

Third, so far, we have focused on forming the simplest overhand knot for sliding. However,

in reality, it has been observed that hagfish are capable of forming more complex knots, such as

figure-8, or Miller-Institute knots. We would like to manipulate different kinds of knots for sliding,

to further understand the knot controls.

Lastly, we would like to tie the initial knot by using control signals. Currently, we are using

scripted forces to formulate an initial knot. Although this is intuitive and easy to achieve a desired

motion, it is not only time consuming and takes a lot of effort, but it doesn’t fully represent the

knot formulation of real-world hagfish.
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