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ABSTRACT

Missions such as forest fire monitoring, military surveillance and infrastructure monitoring are

referred to as persistent monitoring missions. These missions rely heavily on continual data collec-

tion from various locations, referred to as targets. In this dissertation, we consider a framework in

which data is collected from the targets with the aid of unmanned aerial vehicles (UAVs). A UAV

makes a physical visit to the targets for data collection, and immediately transmits the collected

data to a base station for further analysis. Typically, the duration of these monitoring missions is

long, and the monitoring vehicles are required to stay in flight for extended periods of time. There-

fore, the batteries powering the UAVs must be recharged regularly at a recharging station/depot.

From utilitarian and economic points of view, an efficient execution of these missions calls for

two requisites: 1) minimizing the time delay between successive data collections at targets; 2)

maximizing the total charge/energy drawn from batteries.

The maximum time delay between successive data collections at any target is characterized by

a function referred to as the walk revisit time, or simply the revisit time. Given a set of targets and

a UAV tasked with monitoring the targets, the charge capacity of the battery powering the UAV can

be surrogated by the number of visits the UAV can make to the targets without requiring a recharge.

To minimize the wastage of energy resources, a charge penalty is imposed on the visits that are

unutilized before each recharge. The aim of this work is to find optimal routes for the UAV(s) to

visit the targets such that the sum of the revisit time and the charge penalty is minimized.

The optimal route planning problem is determined by a number of factors such as the number of

UAVs used for monitoring, the aerial platform on which the monitoring UAVs are built, the location

of their depots, relative importance of the targets being monitored, etc. In this dissertation, we

focus on equally weighted targets and address four different variants of the problem, all of which

are computationally extremely challenging. The variants considered are the following: 1) single

UAV with no motion constraints and the depot located at one of the targets; 2) single UAV with

curvature constraints on its path and the depot located at one of the targets; 3) single UAV with no
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motion constraints and its depot stationed at a location different from that of the targets; 4) multiple

UAVs with no motion constraints with their depots located at the targets.

This dissertation builds on the results of Variant 1; specifically, the characterization of the opti-

mal solutions proved in this dissertation is the main contribution of this dissertation; it lends itself

to a new formulation of the same problem that results in significant computational savings. The

structural characterization also holds for Variant 2. Inspired by this result, conjectures are provided

for the structure of optimal solution for variant 3 and is backed up by extensive numerical simula-

tions. Variant 3 can also be perceived as a special case of targets with different weights/priorities,

and therefore, the results developed in this dissertation can potentially be extended to solve a few

special cases of the general problem involving arbitrarily weighted targets.
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1. INTRODUCTION AND LITERATURE REVIEW

Persistent monitoring missions such as infrastructure monitoring, military surveillance and en-

vironmental monitoring [1, 2, 3] predominantly rely on continual data-collection for detecting

emergent events such as the formation of cracks in bridges, the onset of forest fires, etc. Based on

the mission under consideration and the environment being monitored, certain locations are chosen

for data collection; these locations are referred to as targets. The type of data collected from the

targets could range from visual images to infrared signals.

Ideally, for an instant detection of the events, sensors necessary for data collection could be

deployed at the targets. However, the use of stationary sensors is not recommended due to several

reasons: 1) the cost required to install sensors at the target locations is usually high, which further

increases with the increase in the number of targets; 2) the targets are often inaccessible by humans

either due to their remote location, or the safety hazards involved in the mission (for example,

military surveillance); 3) even if the targets are accessible, the operational costs could be high due

to the need of a human visit to the targets to replace the batteries of sensors; 4) there could be

issues related to data transmission due to dense vegetation cover for example. So, there is a need

for an effective monitoring technique that is easy, safe, and inexpensive.

For this reason, we consider a framework in which data is collected with the aid of unmanned

aerial vehicles (UAVs) that are powered by batteries and equipped with the necessary data col-

lection sensors. These UAVs make physical visits to the targets to collect data and immediately

transmit the collected data to a base station. At the base station, the data is processed and presented

to a human operator for examination [4], who then makes critical decisions required for the suc-

cessful execution of the mission. Due to the persistent nature of the mission, the UAVs are required

stay in flight for an extended duration and their batteries must be regularly recharged/replaced at a

depot [3].

From utilitarian and economic points of view, an efficient execution of these missions calls

for two requisites: 1) minimizing the time delay between successive data collections at targets;
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2) maximizing the total charge/energy drawn from batteries. The aim of this work is to plan an

optimal sequence of targets to be visited by the UAV such that the above stipulations are met. The

UAVs follow these routes (sequences of visits) repeatedly to persistently monitor the targets. The

criteria determining optimal routes will be elaborated further in the subsequent sections.

1.1 Revisit Time

A timely detection of emergent events is key for the success or failure of persistent monitoring

missions; for example, an early detection and subsequent regulation of a forest fire could poten-

tially save thousands of lives, millions of acres of land, and billions of dollars. To facilitate such a

timely detection, it is of utmost importance to minimize the time between successive visits to the

targets. To enable this, we define the maximum time elapsed between successive visits to a target

as the revisit time of the target or simply the target revisit time (t.r.t), and the maximum of this

value over all the targets as the walk revisit time, or simply the revisit time. One of the objectives

of this work is to find routes that yield the minimum revisit time.

In certain applications, some targets may have a higher priority and demand a higher frequency

of monitoring. In such cases, the targets are assigned weights based on the information expected

to be gained from monitoring the targets or the chances of detecting events at the targets. Then, the

target revisit times are multiplied by the weights of their corresponding targets, and the maximum

weighted t.r.t over all the targets is referred to as the weighted revisit time. The objective in the

presence of targets with different weights is to minimize the weighted revisit time.

1.2 Battery Charge Utilization

As the batteries powering the UAVs have finite charge capacities, they must be recharged /

replaced regularly at a depot. Therefore, optimal sequences of visits to targets depend directly

on the charge capacity of the batteries. Due to the persistent nature of the considered missions,

the number of such rechargings∗ required is high. For this reason, it is important to maximize

∗Here, we use the term recharging to indicate one of the following: replacing the discharged battery with a fully
charged one, if the battery is either rechargeable or of the use-and-throw type; recharging the battery at the depot if it
is of the rechargeable type.
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the charge utilized before every recharging, while ensuring that the lifespan of batteries is not

compromised due to restrained or excessive discharging. If the batteries are of use-and-throw

type, they must be discharged to the maximum extent before being replaced. If the batteries are

of rechargeable type, there is an optimum range of charge-discharge percentage within which they

must be operated. Accordingly, to avoid excessive discharging and untimely recharging, we strictly

do not allow the batteries to be discharged beyond a certain percentage, and we impose a penalty

for recharging the batteries earlier than they must be.

1.2.1 Proxy for Battery Charge Capacity

To enforce this penalty, it is important to model the charge utilization of batteries; however, this

is not a simple task. While the actual amount of power utilized by a UAV depends on its distance

and/or duration of its travel, a number of external factors such as wind and ambient tempera-

ture also influence the exact amount of power utilized. Therefore, the task of accurately tracking

the battery charge consumption based on the route traversed by a UAV is non-trivial. Even if a

comprehensive model considering the above factors is available, it renders the subsequent routing

problem intractable. For these reasons, we adopt a simple, yet practical approach to model the

battery charge consumption similar to those used in [5, 6, 7]. Suppose a UAV is assigned a set of n

targets for monitoring. Then, in the adopted model, the charge capacity of a battery powering the

UAV is surrogated by the number of visits the vehicle can make to the targets before the battery

must be either recharged or replaced. Note that here a visit is defined as the act from traveling

between two different targets (i.e., each visit has different ‘to’ and ‘from’ targets). If a UAV travels

from target i to target j, j 6= i, then it is said to have made a visit to j from i. For convenience, the

reference to the ‘from’ target is dropped, and the UAV is said to have made a visit to j.

We assume that the batteries have enough fuel capacity to allow the UAV to visit each assigned

target at least once before recharging. Let’s say that a UAV can make V visits to the assigned targets

before requiring a recharge. Then the assumption is that V ≥ n. Based on the knowledge of target

locations, the value V can be easily estimated. The estimation procedure and the practicality of

this approach will be discussed next.
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1.2.2 Estimation of the Number of Visits Available for a UAV

To estimate the number of visits V , one can first begin with a rough estimate and compute a

corresponding optimal route to the assigned set of targets; the procedure for computing optimal

routes will be discussed later in the dissertation. Based on the time/distance required by the UAV

to traverse this route, the actual amount of battery charge utilized can be estimated. Depending

on whether this estimate exceeds or falls short of the battery charge capacity, one can update the

estimated value of V and re-solve the problem. This process can be repeated iteratively till the

estimate is either satisfactory or cannot be further updated. Because the number V (corresponding

to a given set of targets) obtained by this procedure holds information about when the battery gets

discharged, it is a practical/reasonable proxy for battery charge capacity, rather than one whose

sole purpose is to simplify the route planning problem.

1.2.3 Charge Penalty on Unutilized Visits & Constraints on UAV Routes

With the number of visits established as the proxy for the battery charge capacity, excessive

discharging is strictly disallowed, whereas wastage of resource (charge or battery’s lifespan) is

discouraged by penalizing the number of visits unutilized before recharging the battery at the

depot.

Let us suppose that the UAV is actually recharged at the end of every k (n ≤ k ≤ V ) visits.

Note that k is different from V ; the former is the number of visits after which the UAV is actu-

ally recharged, whereas the latter indicates the maximum number of visits the UAV is allowed to

make to the targets by a fully charged battery. Then, the UAV starts the monitoring process by

departing from the depot with a fully charged battery. It then makes visits to different targets till

the completion of k − 1 visits. The kth visit of the UAV is made back to the depot for recharging.

It is assumed that the UAV visits all the assigned targets in this sequence of k visits; it is therefore

tacitly assumed that k ≥ n. This sequence of k visits is referred to a walk with k visits, and it is

repeated a number of times till the completion of the mission to ensure persistent monitoring

Because V − k visits are unutilized after every recharge, and it leads to wastage of resources, a
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charge penalty is imposed on these visits in the objective function. The charge penalty correspond-

ing to a walk with k visits is given by mµ(V − k), where m is the number of times the walk is

repeated in the mission, and µ indicates the relative cost of the penalty in the objective function.

1.3 Problem of Interest and its Determinants

Given a set of targets to be monitored, a fleet of UAVs to monitor the targets and the fuel

capacities of the UAVs, the problem of interest is to find walks for the UAVs such that the sum

of the weighted revisit time (the maximum weighted t.r.t over all the targets) and the total charge

penalty (sum of the charge penalties over all the UAVs) is minimized. That is, the problem involves

finding: an assignment of the targets to the UAVs, the number of visits after which each UAV must

be recharged, and sequences in which the assigned targets must be visited by the UAVs to minimize

the sum of the revisit time and the charge penalty.

Optimal solutions to this problem are determined by a number of factors such as the number

of UAVs used for monitoring, the type of these UAVs, locations of recharging stations (depots) of

the UAVs, the relative importance of the targets, etc.

1.3.1 Relative Importance of Targets

As mentioned in Section 1.1, targets could possess different weights/importance, thereby de-

manding different frequencies of monitoring. Nonetheless, even for the special case where all the

targets have equal weights, the problem of interest is computationally very challenging and has a

number of rich variants. Throughout this dissertation, we focus on the equally-weighted-targets

case and its different variants. The theme of the dissertation is the development of efficient tech-

niques to expeditiously solve these variants. The results developed in this work could potentially

be used to systematically include targets with unequal weights and ultimately develop efficient

procedures to solve the general problem with arbitrarily weighted targets. We support this claim

by considering a variant of the equally-weighted-targets case that can be perceived as a special

case of the problem with unequally weighted targets.

Note: From here on, whenever the targets under consideration have equal weights, we use the term
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revisit time instead of the term weighted revisit time, as they are interchangeable.

1.3.2 Number of UAVs

The minimum revisit time achievable, given a set of targets and the weights of the targets,

depends firstly on the number of UAVs used for monitoring. Based on this number, we classify the

optimal route planning problem into two classes: 1) persistent monitoring with a single UAV; 2)

persistent monitoring using multiple UAVs.

1.3.2.1 Single UAV

When a single UAV is used for monitoring, finding an optimal target assignment is trivial,

as the only solution is to assign all the targets that need to be monitored to the UAV. Let’s say

that the charge capacity of the UAV corresponding to this set of targets is V visits. Then, the

problem of interest reduces to determining the optimal number of visits after which the UAV must

be recharged, say k visits, where n ≤ k ≤ V , and its corresponding optimal sequence of visits to

the targets. It will later be seen that this problem is NP-Hard, and the ability to solve it rests on the

solvability of a sub-problem in which k is given and one needs to compute an optimal sequence

of k visits. An efficient approach to solve the sub-problem ensures that the master problem of

finding the combination of an optimal k and its corresponding optimal sequence of visits can be

solved easily. Throughout this dissertation, we focus on developing methods to efficiently solve

sub-problems of such kind for different variants of the master problem.

1.3.2.2 Multiple UAVs

When multiple UAVs are used for monitoring, a number of questions need to be addressed: do

all the UAVs start from the same depot? are multiple UAVs allowed to visit the same target? if

so, are the UAVs allowed to visit the same target either simultaneously or with a small time gap

between their individual visits? Even for the simpler case where each UAV starts from a different

depot and each target is allowed to be visited by only one UAV, the problem is computationally

intractable. This is mainly because of the difficulty involved in finding an optimal assignment of

targets to the UAVs. Not only is the number of possible assignments combinatorially large, but also
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there is coupling involved between different solution components; a target assignment determines

the number of visits allowed for a UAV to its assigned set of targets, which in turn determines

an optimal sequence of visits for the UAV. Though the availability of a target assignment reduces

the problem to individually solving a set of single UAV routing problems, finding an optimal

assignment is non-trivial. In this dissertation, we present an efficient formulation to obtain feasible

solutions to the problem based on the results developed for the single UAV case.

1.3.3 Types of UAVs (Curvature Constraints)

The next factor influencing optimal routes to targets is the aerial platform on which the UAV(s)

used for monitoring are built. Different platforms impose different constraints on the UAVs, which

impact their minimum travel times between the targets. The type of UAV(s) chosen for monitoring

depends on the environment in which the vehicles are required to operate and the nature of the

monitoring mission.

Based on their aerial platforms, UAVs can broadly be classified into four types: 1) single-rotor

UAVs; 2) multi-rotor UAVs; 3) fixed-wing UAVs; 4) hybrid vertical take-off and landing (VTOL)

UAVs. Out of these, multiple-rotor UAVs and fixed-wing UAVs are most commonly used for

persistent surveillance missions and are considered here. Single-rotor UAVs are less stable in air

(hence, unsuitable for tasks such as high quality photography) and difficult to control compared to

multiple rotor UAVs. They are also considered unsafe for certain missions due to their long blades.

Hybrid VTOL UAVs are still under development, and there are a very few of them available in

market currently.

1.3.3.1 Multi-Rotor UAVs

Multi-rotor UAVs are lifted and propelled by multiple rotors. By changing the relative speeds

of these rotors, multi-rotor UAVs can be easily maneuvered and are capable or moving in any

direction. Their easy maneuverability allows the usage of simple kinematic models for route plan-

ning purposes (especially for planning sequences of visits to targets). Here, we consider one such

model in which the assumptions are that the UAV can make sharp turns and can travel at a constant
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speed for a majority of its flight. We also assume that the travel times of these UAVs between the

targets satisfy the triangle inequality, i.e., the time taken to travel from target p to target r via target

q is no lesser than the time take for the UAV to travel directly from target p to r.

Multi-rotor UAVs are relatively less expensive compared to their fixed-wing counterparts and

are well suited for persistent monitoring over small areas. However, their flight time is relatively

low compared to fixed-wing UAVs and must be recharged more often. Moreover, they are more

vulnerable (in terms of stability) to winds, making them less suitable for operating in environments

with strong winds.

1.3.3.2 Fixed-Wing UAVs

Fixed-wing UAVs are similar to traditional aircrafts in that they have two wings that help

in lifting the UAV off the ground. The energy required to keep these vehicles in flight is low.

Therefore, they can fly for longer durations without being recharged and are suitable for large

scale monitoring missions. Besides, they are more resilient (in terms of stability) to strong winds

compared to multi-UAV rotors, making them well-equipped for working in harsh environments.

Generally, for route planning problems, fixed-wing UAVs are modeled using a kinematic model

referred to as the Dubins model. Dubins model is known to produce near-feasible paths for fixed-

wing UAVs. In this model, the following assumptions are made on UAVs: 1) UAVs can only

travel forward; 2) they travel at a constant speed; 3) their minimum turn radii are constrained.

These constraints require the UAV to maintain the same heading angle while entering and leaving

a target. So, designing a feasible route for these UAVs involves determining the angles at which

the UAVs make visits to the targets, in addition to finding sequences in which these visits are

made. This makes the optimal-route-planning problem computationally difficult, as the number of

allowable heading angles at each target is infinite, and the minimum travel times between a given

pair of targets depends on the angles of arrival and departure of the UAV at these targets.

In this work, we present techniques to obtain near-optimal solutions and tight lower bounds to

the problem, by allowing only a finite number of apriori chosen heading angles at the targets. With

the increase in the number heading angles allowed at each target, the upper and lower bounds get
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closer.

1.3.4 Depot Location

Frequent recharging needs of UAVs make the location of their depots an important factor in

determining optimal sequences of their visits to the targets. We categorize the depot locations into

two classes: 1) depot is placed at one of the targets; 2) depot is at a location different from that of

the targets.

1.3.4.1 Depot at a Target

The rationale behind setting a depot at one of the targets is to save valuable monitoring time by

eliminating the need for traveling to a different location just for the sake of refueling. This case is

suitable for civilian missions, where at least one of the targets is accessible for the installation of

the depot.

Suppose the depot is setup at target d, a target that is assigned to the UAV. Let the UAV be

recharged after every k visits. Then, the monitoring process is carried out as the following: The

UAV starts from the depot with a fully charged battery and begins the data collection process by

collecting data from target d. Then, it makes data collection visits to different targets such that data

is collected from every target at least once by the time it completes k − 1 visits. The kth visit is

made back to the depot for recharging. Note that the UAV is allowed to make re-visits to target d

for data collection, but it is not recharged at the depot till the completion of k visits. As soon as the

UAV is recharged, it collects data from target d and repeats the walk of k visits till the completion

of the mission.

For the problem variants considered in this work where depot(s) is (are) placed at a target

(targets), the time required for recharging the UAV is assumed to be negligible compared to the

travel times between the targets.

1.3.4.2 Depot not at a Target

In certain non-civilian missions such as military surveillance, it is not possible to set up a depot

at the targets either due to safety concerns or inaccessibility of the targets. In such cases, one

9



is forced to install depots (the depot) at locations (a location) different from the targets. Then,

assuming that the UAV is recharged after every k visits, the route taken by the UAV is of the

following form: the UAV starts from the depot with a fully charged battery. Then, it makes data

collection visits to different targets such that data is collected from every target by the end of k− 1

visits. The kth visit of the UAV is made back to the depot for recharging. Here, note that the depot

is only visited after every k visits. This sequence of k visits, which is referred to as a walk with

k visits, is repeated a desired number of times till the completion of the mission. In this case, we

consider (do not neglect) the time required for recharging the vehicle.

1.3.5 Problem Variants Addressed

Taking the above discussed determinants into consideration, we address 4 different problem

variants in this dissertation. The variants are delineated by the following combination of the deter-

minants:

1. Single UAV, no curvature constraints, depot at a target, equally weighted targets.

2. Single UAV, with curvature constraints, depot at a target, equally weighted targets.

3. Single UAV, no curvature constraints, depot not at a target, equally weighted targets. This

variant, can also be perceived as a special case of the weighted-targets version problem, with

one of the targets (which is the depot) having a very low priority.

4. Multiple UAVs with depots at targets, no curvature constraints, equally weighted targets.

All the above variants consider targets with equal weights. We also make a common assumption

that the travel times between the targets satisfy the triangle inequality, i.e., the time taken to travel

from target i to target k is no more than that taken to travel from target i to some other target j and

then from target j to target k.

1.3.5.1 Single UAV without Curvature Constraints and Depot at a Target

In this variant, a set of n equally weighted targets are monitored by a UAV that has no curvature

constraints. The recharging depot of the UAV is setup at one of the targets. Given that the fuel

10



capacity of the UAV is V visits to these targets, the problem of interest is to find an optimal number

of visits k, k ≥ n, after which the UAV is recharged, and a corresponding optimal walk with k

visits. As mentioned in 1.3.2.1, this problem is computationally challenging (NP-Hard), and the

ability to solve this problem is dependent on the solvability of a sub-problem, where k is given. For

a given k, the charge penalty is fixed, and the problem reduces to finding a walk with k visits that

provides the least revisit time. Such a walk is referred to as an optimal walk with k visits, denoted

byW∗(k), and the least revisit time is referred to as the optimal revisit time for k visits, denoted by

R∗(k). This sub-problem is referred to as the Persistent Monitoring Problem (PMP). Developing

efficient techniques for solving the PMP will be the focus of Chapter 2. With an efficient method

available to solve the PMP, the master problem of determining the combination of an optimal k

and its corresponding optimal walk with k visits can be solved easily as will be shown in Section

2.9. The results developed in Chapter 2 are pivotal, and will be used throughout the dissertation

for expeditiously solving other variants of the PMP.

1.3.5.2 Single UAV with Curvature Constraints and Depot at a Target

This variants considers the case in which the monitoring vehicles have curvature constraints.

We primarily consider the UAV to satisfy the Dubins model; however, the results developed in this

variant also hold true for other models such as Reeds-Shepp model. Similar to the above variant,

here, n equally weighted targets are given, and the depot is assumed to be installed at one of the

targets. This variant is addressed in Chapter 3, where the main focus is to efficiently solve the

sub-problem in which the UAV is given to be recharged after every k(≥ n) visits, and the objective

is to find a walk that provides the least revisit time. This sub-problem is referred to as the Dubins

Persistent Monitoring Problem (DPMP).

1.3.5.3 Single UAV without Curvature Constraints and Depot Not at a Target

While this variant also involves persistent monitoring of n equally weighted targets using a

single UAV, the UAV’s depot is not restricted to be placed at one of the targets. In the analysis of

this variant, we only consider the case where the UAV has no curvature constraints, because the
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extension to the Dubins model is similar to that considered in Chapter 3. As opposed to the above

variants, here we also consider the time required to recharge the UAV at the depot.

Given that the UAV is recharged after every k visits, k ≥ n + 1 visits, the objective here is to

find a walk with the minimum revisit time. It is to be noted that a feasible walk allows the UAV

to visit the depot only during its kth visit. It is also to be noted that the objective function is the

maximum of the t.r.t of only the targets and not the depot; however, the times taken to travel to

and from the depot, and the time taken to recharge the UAV at the depot influence the objective

function. In this variant, an optimal walk with k visits is denoted by WD∗(k), and the optimal

revisit time is denoted byRD∗(k).

As the depot is visited exactly once in a walk, it can also be treated as a target with a very low

priority at which the depot is located. Then, the problem can be treated as a special case of the

weighted-targets case, and the objective is to minimize the weighted revisit time of the walk.

1.3.5.4 Multiple UAVs without Curvature Constraints and Depots at Targets

This variant considers the chase in which n equally weighted targets are monitored bymUAVs,

where m ≤ n. The monitoring vehicles are assumed to have no curvature constraints and have dis-

tinct depots, each of which is located at one of the targets. Due to the modeling and computational

difficulties involved in solving the general route planning problem, here we consider a special case

of the problem in which each target is visited by exactly one UAV. Given a restriction on the com-

bined fuel capacities of the UAVs in terms of the total number of visits they can make, the objective

here is to find walks for multiple UAVs such that the revisit time is minimized. In this work, we

develop a formulation to obtain feasible solutions to the problem.

1.4 Computational Difficulty

The optimal routing problem considered here falls under the class of challenging combinatorial

optimization problems such as the Traveling Salesman Problem (TSP). The problem considered

here is computationally at least as difficult to solve as the famous TSP, which is NP-Hard. We

establish this difficulty by considering the simplest of the aforementioned problem variants, i.e.,
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the single-UAV variant with no curvature constraints; the argument holds irrespective of the depot

location.

In this variant, the problem involves finding both an optimal number of visits after which

the UAV must be recharged, say k visits, and its corresponding optimal sequence of visits. As

mentioned above, the ability to solve this problem is dependent on that of its sub-problem PMP, in

which k is given and one needs to determine an optimal walk with k visits. Upon examination, it

can be seen that for the special case when k = n, each target is visited exactly once in the walk,

and the UAV returns to the depot from which it started the walk. Moreover, it turns out that the

revisit time of a walk in this case is equal to its travel time, i.e., the time taken by the UAV to

traverse through the sequence specified by the walk. Therefore, when k = n, PMP is equivalent to

the TSP, making the problem under consideration NP-Hard.

Besides, for a general k, modeling the revisit time is non-trivial; it typically involves nonlinear

constraints, thereby adding to the complexity of the problem. We present a preliminary formulation

for solving the PMP for a general k in Section 2.2. Numerical simulations performed using this

formulation suggest that it is increasingly difficult to solve the problem in its present form with the

increase in both the number of targets and the number of visits made by a UAV before recharging.

Figure 1.1 shows this increasing trend of the average computation time with the number of visits in

the walk for 8-target instances; the average was taken over 50 instances. For instances with higher

number of targets, the problem was unsolvable in a practical amount of time; the computation time

for a 20-target instance with 21 visits was 165,273 seconds (on a Mac Pro with 8-Core Intel Xeon

E5 processor @3 GHz and 32 GB RAM), which is approximately 2 days.

Other variants of the problem are at least as difficult as the PMP. The DPMP involves finding

both optimal sequences of visits and the optimal heading angles at which these visits are made.

It is a generalization of the Dubins Traveling Salesman Problem (DTSP). The multiple UAV case

considered in this work is a generalization of the min-max TSP [8]. Both DTSP and min-max TSP

are known to be computationally very challenging.
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Figure 1.1: Plot showing the average time for computing optimal PMP walks using the MBLP
formulation for 50 instances with 8 targets.

1.5 Contributions

The main contribution of this dissertation is a rigorous analysis of the structure of optimal

solutions to the PMP. This analysis leads to the development of efficient formulations for PMP,

resulting in significant savings in the computational effort required to solve the problem. Using the

results of this analysis, we develop an ILP formulation that offers noteworthy improvement in the

computation time required find optimal PMP solutions. This improvement for 8-target instances

discussed in Section 1.4 is shown in Figure 1.2. More so, the average computation time for 20-

target instances that were not solvable in reasonable time with the MBLP formulation was 0.14

seconds with the proposed ILP formulation. Additionally, we utilize the aforementioned results to

develop a 1.5-approximation algorithm (an approximation algorithm with an approximation factor

of 1.5) for the PMP using the aforementioned results.

The results presented for the PMP also extend to the case with curvature constraints. For this

case, we develop a formulation that produces near-optimal solutions and tight lower bounds. Con-

sidering the computational difficulty in solving the formulation, we develop preliminary heuristics

that are based on independently solving the sequencing and selection (of optimal heading angles)
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Figure 1.2: Plot showing a comparison of the average computation times using the MBLP and the
ILP, for 50 instances containing 8 targets

problems to obtain feasible routes.

For the case with a separate depot, the structure of optimal solutions was much more involved

and difficult to be deciphered. For this variant, we present a set of conjectures that were inspired

by the results developed for the earlier variants. These conjectures, if were to be true, lead to an ex-

peditious computation of optimal solutions. The conjectures are supported by extensive numerical

simulations performed over 350 randomly generated instances.

The multiple UAV variant remains intractable due the difficulty involved in both modeling

and solving the problem. In Chapter 5, we consider a special case of the problem and develop a

formulation to quickly compute feasible solutions to the problem.

1.6 Literature Review

The revisit time objective was first proposed in [9] for a multi-agent patrolling problem; the

author discussed several issues arising in multi-agent systems, proposed various multi-agent archi-

tectures, and different efficiency criteria to evaluate them. Since then, the revisit time criteria had

been studied in a handful of articles, [10, 11, 12, 13, 14, 15, 16]. The problem of patrolling or

persistent monitoring is different from the regular graph exploration problems due to its repetitive
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nature. Hence, the techniques from coverage or search problems cannot be directly applied here.

For the same reason, optimal persistent monitoring routes must account for vehicle’s fuel capacity.

However, fuel constraints have not received as much attention in the literature as they deserve.

For the ideal case of unlimited fuel capacity, the problems considered in [10, 11, 12] take a

form similar to the one considered herein (i.e., walks). In [10], the author considered the problem

of monitoring equally weighted targets using multiple UAVs; due to its computational difficulty,

the scope of the work was limited to heuristics. In [11], the problem of monitoring targets with dif-

ferent priorities/weights using a single UAV (with unlimited fuel capacity) was considered. Targets

with different weights require different frequencies of monitoring, and the routing objective was to

minimize the maximum weighted target revisit time. In this work, [11], authors proved that opti-

mal infinite walks (optimal walks with unlimited fuel capacity) can be constructed by continuously

repeating a finite walk (walk with a finite fuel capacity, as considered herein). They also provided

two polynomial time approximation algorithms for the problem; the approximation factors were

log n, where n is the number of targets, and log ρ, where ρ is the ratio of maximum and minimum

weights of the targets. In [12], the authors posed the problem as a Mixed Integer Linear Program

(MILP) and proposed an iterative sub-optimal scheme. The proposed scheme was observed to

provide good quality solutions, at an order of magnitude faster than the optimal scheme.

While the vehicle routes in this work were described using walks, [13, 14, 15] considered other

graph topologies. In [13, 14], the focus was on developing multi-agent patrolling strategies, based

on optimal TSP tours for a single vehicle; while [13] considered the case of equally weighted

targets, [14] considered the weighted case. Nevertheless, restricting a vehicle’s route to TSP tours

has two major drawbacks: 1) for a vehicle to revisit a target, it must visit all other targets assigned

to it, 2) incomplete fuel usage could lead to sub-optimal vehicle routes (penalty for imprudent

refueling). In [15], without reference to fuel constraints, the problem of multi-agent patrolling

was considered for various graph topologies. For the case of cyclic roadmaps, the authors proved

that the problem is NP-hard, and proposed the first constant factor approximation algorithm for

the problem; the approximation ratio is 8. In the current work, we consider fuel constraints into
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the problem, and provide tightest possible bounds for monitoring equally weighted targets using

a single vehicle. These results were used to develop good quality heuristics and approximation

algorithms. The complete list of contributions of this work were presented in Section 1.5.

In other related work, [17, 18, 19, 20, 21] adopted an optimal control framework for a problem,

where the uncertainty of information at a target increases with the time since the previous visit to it,

and reduces with the time spent at the target. In this problem, as opposed to minimizing the maxi-

mum uncertainty over the targets, the objective is to minimize the aggregated uncertainty. For the

case of one-dimensional spaces, [17] the problem was reduced to a parametric optimization prob-

lem that is non-convex. The decisions of the problem involve direction switching locations for the

vehicles and the dwell times at these locations. [18] extends this work to a 2-dimensional spaces,

by choosing elliptical trajectories for the vehicles. Other heuristic algorithms for this problem

were presented in [19, 20, 21]. In [22], the authors considered a multi-agent continuous coverage

problem, with severely degraded communication; a global representation of the environment is not

available to the vehicles. Here, the number of visits made to each target is decided based on a

pre-specified frequency distribution. This is not an appropriate criteria for a persistent monitoring

setting, as a high number of visits to a target does not guarantee low target revisit time (duration

between those visits could be high). While the aforementioned articles considered the problem

of designing vehicle trajectories, [16] considered fixed trajectories; the focus was on developing

velocity controllers for the vehicles, to achieve the minimum revisit time.
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2. SINGLE VEHICLE PERSISTENT MONITORING PROBLEM∗

In this chapter, we consider the case in which a set of equally weighted targets are monitored

using a single UAV. The UAV is assumed to have no curvature constraints and can make sharp

turns similar to a multi-rotor UAV. We begin the chapter with the statement of the PMP in Section

2.1. Then, we present a preliminary MBLP formulation for solving the PMP and show that the

computation time required to solve this formulation is huge. To address the need for efficient

techniques to solve the problem, in Section 2.4, we present a set of results characterizing the

structure of optimal PMP solutions. These results lead to the development efficient formulations

and approximation algorithms for the PMP, which are presented in Sections 2.5 to 2.8. We conclude

this chapter in Section 2.9 by demonstrating the utility of the results developed in this chapter in

solving the master problem, which involves finding both the optimal number of visits after which

the UAV must be recharged, and its corresponding optimal sequence of visits.

2.1 Problem Statement

Let the targets (nodes) to be visited be denoted by the set T = {1, 2, · · · , n}. The travel times

between any two distinct targets u, v (u 6= v) in T be denoted by c(u, v) > 0. We assume that the

targets are of equal priorities, and the travel times between them satisfy the triangle inequality, i.e.,

c(u, v) + c(v, w) ≥ c(u,w) for all u, v, w ∈ T .

The UAV tasked with monitoring the targets must be recharged after every k visits. The UAV

visits the targets in the order specified by the sequence W  =  (v1, v2, · · ·  , vk+1) (such that v i ∈  T

for i = 1, · · · , k + 1); this sequence is repeated after every k visits. Here, we assume k ≥ n, which

allows each target to be visited at least once and some targets to be visited multiple times in a cycle

of k visits. Due to repetition of nodes, this sequence is referred to as a walk. The node v1 is the

∗Copyright 2019 IEEE. Parts of this chapter have been reprinted with permissions from Sai Krishna Kanth Hari, 
Sivaku-mar Rathinam, Swaroop Darbha, Krishna Kalyanam, Satyanarayana G. Manyam, and David Casbeer, 
"Efficient Com-putation of Optimal UAV Routes for Persistent Monitoring of Targets [23]", ICUAS 2019 and Sai 
Krishna Kanth Hari, Sivakumar Rathinam, Swaroop Darbha, Krishna Kalyanam, Satyanarayana G. Manyam, and 
David Casbeer, "Bounding Algorithms for Persistent Monitoring of Targets using Unmanned Vehicles [24]", ICUAS 
2019. 
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first or starting node of the walk from which the vehicle starts its mission, and is not counted in the

number of visits made to targets. The node vk+1 is the last visited target in the walk.

We assume that the vehicle starts from and returns to the depot (chosen as of one the targets),

after every k visits. Consequently, we have v1 = vk+1, and a walk with the same initial and terminal

node is referred to as a closed walk. Note that a visit is counted only if a vehicle travels between

two distinct targets. Therefore, we have vi 6= vi+1 for i = 1, · · · , k. Moreover, the vehicle must

visit all the targets in a walk of k visits. In contrast with the graph-theoretic terminology[25], we

use the term closed walk differently to refer to a walk (a) with the same initial and terminal nodes,

(b) in which every target is visited at least once and (c) successive visits correspond to distinct

targets. Since we primarily deal with only closed walks in this dissertation, we use the terms walk

and closed walk interchangeably when the context is clear.

For the purpose of illustration, consider Figure 2.1, which shows a closed walk of eight visits

to five targets. Since a closed walk is continuously repeated after every k visits (in Figure 2.1,

k = 8), it is often depicted using a cyclic representation as shown in Figure 2.2. The total time

required to traverse through all the nodes in a walk is referred to as the travel time of the walk.

5

3
1

4

2

Depot

Figure 2.1: Graphical representation of a walkW(8) = (5, 1, 4, 2, 5, 3, 4, 2, 5) with 8 visits

Given a walk W(k) of k visits, the revisit time of a target d ∈ T , denoted by RT (d,W), is

the maximum time taken between successive visits to the target, when the walk is repeated. For

example, consider the walk shown in Figure 2.3. Target 2 is visited twice in the walk. Times

between successive visits to target 2 are t1 = c(2, 5) + c(5, 1) + c(1, 4) + c(4, 2) and t2 = c(2, 5) +
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Figure 2.2: A cyclic representation of the walk W(8) = (5, 1, 4, 2, 5, 3, 4, 2, 5) (shown in Figure
2.1) with node 5 as the depot

c(5, 3) + c(3, 4) + c(4, 2). Hence, the revisit time for target 2 is max {t1, t2}. Similarly, the

revisit time of target 4 is max {t3, t4} where t3 = c(4, 2) + c(2, 5) + c(5, 1) + c(1, 4) and t4 =

c(4, 2) + c(2, 5) + c(5, 3) + c(3, 4). The maximum revisit time over all the targets is defined as the

revisit time of the walk or walk revisit time, which is denoted by R(W(k)). Note that if a target is

visited exactly once in a walk, it has the maximum revisit time which is also equal to the travel time

of the walk. Therefore, in the example considered above, R(W(k)) = RT (1,W) = RT (3,W), as

targets 1 and 3 are visited exactly once in the walk.

Using the aforementioned notation, the problem is stated as follows: Given k ≥ n allowed

visits for a UAV, find a closed walk of k visits with the minimum walk revisit time.

2.2 Mixed Binary Linear Program (MBLP) Formulation

In this section, the PMP is modeled as a mixed binary linear program. Suppose the set of n

targets to be monitored is given by N and the following data is available:

Input Data:

d : A target which is also a depot.

cij: Time taken by the UAV to travel target i to target j.

k : Number of visits after which the UAV must be refueled (k ≥ n).

Then, a feasible walk and its revisit time are modeled using three sets of decision variables.
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Figure 2.3: Figure depicting the revisit times of targets 2 and 4 in the walk W(8) considered in
Figure 2.1

Decision Variables:

xijv =


1, if the vth visit in the walk is from target i

to target j;

0, otherwise.

f iv: Continuous variable indicating the time elapsed since the previous visit (in the walk)∗ to

target i ∈ N , after the completion of vth visit in the walk.

ziv: Continuous variable used to reset the value of f iv to zero, after every visit to target i.

With the first set of binary variables, i.e., xvij , a feasible walk with k visits is modeled using the

following degree constraints:

2.2.1 Degree Constraints

The UAV starts from the depot during its first visit, and returns to the depot for its kth visit.

∗Here, the walk is considered in a cyclic manner, i.e., the first visit to target i in the walk is preceded by the last
visit to target i in the walk
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∑
j∈N

xd,j1 =
∑
l∈N

xl,dk = 1. (2.1)

Every visit of the UAV must be between two distinct targets, i.e., no self-loops are allowed.

xiiv = 0, ∀i ∈ N , v ∈ {1, . . . , k}. (2.2)

Also, for every visit, the UAV has exactly one ’from’ target and one ’to’ target.

∑
i∈N

∑
j∈N

xijv = 1, ∀v ∈ {1, . . . , k}. (2.3)

If the UAV visits target i for its (v − 1)th visit, then it must leave the target for its vth visit.

∑
l∈N

xliv−1 =
∑
j∈N

xijv , ∀i ∈ N , v ∈ {2, . . . , k}. (2.4)

Each target must be visited at least once :

∑
v∈{1,...,k}

∑
j∈N

xijv ≥ 1, ∀i ∈ N . (2.5)

These constraints model a feasible walk with k visits, which is then repeated for persistence.

Next, we model the revisit time of the walk.

2.2.2 Walk Revisit Time

The time between consecutive visits to a target i is modeled with the help of two sets of con-

tinuous variables, f iv and ziv. After every visit v in the walk, f iv captures the time elapsed since the

previous visit to target i. Unless the (v − 1)th visit in the walk is to target i, the value f iv is higher

than f iv−1 by the amount of time required by the UAV to make its vth visit.

If the (v − 1)th visit in the walk is to target i, then the time accumulation restarts from 0, and
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the value f iv is simply equal to the time taken by the UAV to make its vth visit.

The mathematical model capturing this idea takes the form of equations (2.6) and (2.7). Here,

to accurately model the time accumulation and resetting, a third set of variables ziv is used. ziv

equals f iv−1 if the v − 1th visit of the vehicle is to target i, and equals zero otherwise (see equation

(2.6)).

ziv−1 = f iv−1
∑
l∈N

xliv−1, ∀i ∈ N , v ∈ {2, . . . , k}. (2.6)

f iv − f iv−1 + ziv−1 =
∑
i∈N

∑
j∈N

xijv c(i, j), ∀i ∈ N , v ∈ {2, . . . , k}. (2.7)

In constraint 2.7, if the (v−1)th visit in the walk is to target i, ziv−1 negates the time accumulated

till the v − 1th visit; else, ziv−1 is zero, and the time accumulation continues.

Recall that this walk of k visits is repeated a number of times, for persistent monitoring. So,

the kth visit in the walk is following by the 1st in the next cycle of the walk. Moreover, the kth visit

in the walk is to the depot d. So, zik is given by

zik =


f ik, i = d,

0, i 6= d.

Consequently, the time accumulation for the first visit in the sequence takes the following form:

f i1 − f ik =
∑
j∈N

xd,j1 c(d, j), ∀i ∈ N\{d}. (2.8)
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f i1 =
∑
j∈N

xd,j1 c(d, j), i = d. (2.9)

Once the time accumulation in a walk is modeled, the maximum time between successive

revisits to a target is the target revisit time. For target i, the target revisit time is simply given by

max
v∈{1,...,k}

{f iv}. Then, the walk revisit time is given by max
i∈N ,v∈{1,...,k}

{f iv} :.

So, the optimization problem modeling the PMP can be posed as

(L1) : min max
i∈N ,v∈{1,...,k}

{f iv}, (2.10)

subject to constraints (2.4)-(2.3) and (2.6)-(2.9).

This can be recast as a Mixed Binary Linear Program (MBLP) as follows:

2.2.3 Recasting as MBLP

The objective function can be re-written in terms of a variable mrt that acts as a proxy for the

maximum revisit time among all the targets, as follows:

f iv ≤ mrt, ∀i ∈ N , v ∈ {1, . . . , k}. (2.11)

Correspondingly, the objective (2.10) can be changed to

R∗(k) = minmrt, (2.12)

subject to constraints (2.4)-(2.3), (2.6)-(2.9), and (2.11).

Note that the constraints (2.6) are bilinear as they involve product of f iv−1 and xliv−1. These

constraints can be linearized using the standard big-M procedure [26].

24



After linearization of constraints (2.6), they can be replaced with the following constraints:

ziv−1 ≤M
∑
l∈N

xl,iv−1, ∀i ∈ N , v ∈ {2, . . . , k}, (2.13)

ziv−1 ≥ f iv−1 −M
(

1−
∑
l∈N

xl,iv−1

)
,∀i ∈ N , v ∈ {2, . . . , k}, (2.14)

ziv−1 ≤ f iv−1, ∀i ∈ N , v ∈ {2, . . . , k}, (2.15)

ziv−1 ≥ 0 ∀i ∈ N , v ∈ {2, . . . , k}. (2.16)

The recast MBLP can be described with the objective given by (2.12), subject to linear constraints

given by (2.4)- (2.3), (2.7)-(2.9), (2.11), and (2.13)-(2.16).

2.2.4 Computation Time for Solving the PMP Using the MBLP Formulation

To demonstrate the performance of the MBLP formulation, numerical simulations were per-

formed on a number of randomly generated instances and implemented in CPLEX; the number

of targets in the instances varied from n = 5 to n = 20. These simulations were performed on

MacBook Pro with 16 GB RAM and Inter Core i7 processor with a processor speed of 2.5 GHz.

There were 50 instances with n = 8. For each instance, starting from k = n(= 8), the time

required to compute an optimal walk with k visits was computed; the exercise was repeated for

incremental values of k. Then, for each k, the average computation time over all the 50 instances

was computed, and is plotted in Figure 2.4. As mentioned in Section 1.4, average computation

times were observed to increase with the number of visits. Beyond a certain number of visits, it

was practically impossible to compute an optimal walk.

Furthermore, for instances with higher number of targets, say n = 10 and 20, computing op-

timal walks for even small number of visits is extremely difficult. To get a perspective, for an

instance with 20 targets, the time expended for computing an optimal walk with 21 visits was

165,273 seconds, which is approximately 2 days. For larger k, the problem is intractable. Hence-

forth, the formulation is not scalable, and there is a need for better methods to compute optimal

PMP walks. Towards this end, we set to analyse the structure of optimal solutions to the problem.
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Figure 2.4: Average computation time for the MBLP, over 50 instances containing 8 targets

2.3 Terminology

In this section, we introduce the terminology required for understanding the structure of opti-

mal walks.

Cyclic Permutation: Cyclic permutation of a walk chooses an intermediate target in the sequence

of visits as the first element of the sequence, retaining the order of visits. For example, cyclic

permutation of a walk W = (d, v1, . . . , vr−1, vr, vr+1, . . . , vk−1, d), with respect to node vr is

(vr, vr+1, . . . , vk−1, d, v1, . . . , vr−1, vr); it is denoted by C(W , vr). Note that performing a cyclic

permutation does not change the revisit time of the walk.

Concatenation: Concatenation of closed walksW1 = (d, v1, · · · , vk, d) andW2 = (d, u1, · · · , ul, d)

is defined as W1 ◦ W2 := (d, v1, · · · , vk, d, u1, · · · , ul, d). Figure 2.5 shows a walk obtained by

concatenating two smaller walks. The concept of concatenation is helpful in the construction of

feasible walks with larger number of visits. It is easy to see that concatenating a walk with itself

any number of times does not change the revisit time of any target.
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(a) Concatenation of two walks with 5 visits each to form a larger walk
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(b) A walk with 10 visits obtained by concatenation the above two walks

Figure 2.5: Concatenation of two walks with 5 visits each to form a walk with 10 visits.

Shortcut Walk: Given a closed walkW , removal of a visit to any target u ∈ W is referred to as

shortcutting a visit to u fromW . In this chapter, we refer to a shortcut walk ofW as a closed walk

obtained by shortcutting visits fromW while retaining the last visit to each target. For example,

W(8) = (5, 1, 4, 2, 5, 3, 4, 2, 5) (shown in Figure 2.1) is a closed walk with 8 visits with two visits

to each of targets 2, 4 & 5, and one visit to each of targets 1 & 3. A shortcut walk (5, 1, 4, 3, 4, 2, 5)

ofW(8) is obtained by shortcutting the first visit to targets 2 & 5, and retaining the other visits to

all the targets in the order they appear inW(8), as shown in Figure 2.6. We remind the readers that

shortcutting the last visits to targets 2, 4 & 5 or the only visits to targets 1 & 3 is not permitted by

the definition.

Subwalk: A contiguous subsequence of a walk is referred to as its subwalk. A subwalk need not

span all the targets, and need not have the same initial and terminal nodes. For example, consider

the walkW(8) shown in Figure 2.7. The contiguous subsequences (2,5,1,4), (2,5,3) are subwalks
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Figure 2.6: A shortcut walkW(6) obtained by shortcutting visits to targets 2 and 5 from the walk
W = (5, 1, 4, 2, 5, 3, 4, 2, 5)

ofW(8).

If the terminal node of a subwalk S1 = (d, v1, . . . , vl) is the initial node of another subwalk

S2 = (vl, vl+1, . . . , vq), they can be concatenated as S1 ◦ S2 = (v1, . . . , vl, . . . , vq). Note S2 ◦ S1
may not be possible unless vq = d.

Closed Subwalk: A subwalk with the same initial and terminal nodes is referred to as a closed

subwalk. Similar to subwalks, a closed subwalk need not span all the targets, and hence need not

be a walk. Figure 2.7 shows a closed subwalk ofW(8) with target 5 as its initial and terminal nodes.

Travel Time of a Subwalk: Given a subwalkWc := (v1, · · · , vk), the time taken for the vehicle

to traverse through all the nodes inWc is defined as the travel time of the subwalk, and is denoted

by T (Wc). That is, T (Wc) =
∑k−1

i=1 c(vi, vi+1).

Terminus: In some closed subwalks, the end node is not visited in between; we refer to such an

end node as a terminus. For example, (5, 1, 4, 2, 5), (5, 3, 4, 2, 5) are closed subwalks ofW(8) with

node 5 as their terminus.

Decomposition of a walkW(k) with respect to a node v: Suppose v is visited r times in a walk

W(k) = (d = v1, v2, . . . , vk1 , . . . , vk2 , . . . , vkr , . . . , v1 = d), i.e., vi 6= v except for vk1 = vk2 =
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Figure 2.7: Figure depicting subwalks and closed subwalks ofW(8) = (5, 1, 4, 2, 5, 3, 4, 2, 5), the
walk that is shown in Figure 2.1

. . . = vkr = v; the decomposition ofW(k) with respect to v is defined as:

W(k) = (v1, . . . , vk1)︸ ︷︷ ︸
S1

◦ (vk1 , . . . , vk2)︸ ︷︷ ︸
W1

◦ (vk2 , . . . , vk3)︸ ︷︷ ︸
W2

◦

. . . ◦ (vkr−1 , . . . , vkr)︸ ︷︷ ︸
Wr−1

◦ (vkr , . . . , v1)︸ ︷︷ ︸
S2

,

whereW1, . . . ,Wr−1 are subwalks with v as terminus and S1,S2 are subwalks with different initial

and terminal nodes.

Revisit time of a Walk: To compute the revisit time of a given walkW , choose any node v ∈ W

and let v be visited r times inW . The cyclic permutation C(W , v) can be decomposed into r closed

subwalks (W1 ◦ W2 · · · ◦ Wr) with each of them having v as its terminus. The revisit time of v in

W is

RT (v,W) := max
1≤i≤r

T (Wi).
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The revisit timeR(W) of a given walkW is max1≤v≤nRT (v,W).

Binding Subwalk: LetW(k) denote a feasible solution andW∗(k) represent an optimal solution

to the PMP. A closed subwalk,Wb, of a walkW is called a binding subwalk, if

• it has a terminus, say target d, and

• T (Wb) = R(W).

It is easy to see that RT (d,W) = T (Wb) = R(W).

2.4 Structure of Optimal PMP Walks∗

First, we show that any binding subwalk of an optimal walk must contain visits to all the targets.

Lemma 2.4.1. LetWb be a binding subwalk ofW∗(k) for k ≥ n. Each target is visited at least

once inWb.

Proof. If a target u is not visited in Wb, then the revisit time for u must be greater than the time

required to traverseWb as shown in Figure 2.8. This is because we can find a subwalkW ′b with u as

its terminus that containsWb. However, this contradictsWb being a binding subwalk. Therefore,

each target must be visited at least once inWb.

This result leads to a lower bound on the optimal revisit time. In the following lemma, we

prove that the optimal revisit time is lower bounded by the cost of an optimal TSP tour over the

targets.

Lemma 2.4.2. R(W∗(k)) ≥ R(W∗(n)) = TSP ∗ where TSP ∗ denotes the cost of an optimal

TSP tour visiting all the n targets.
∗The proofs presented in this section also appear in the arxiv preprint [27]
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If u is not visited in Wb,
T (Wb1) > T (Wb). This is
a contradiction, since Wb is
a binding subwalk.

T = {1, 2, . . . , u, . . . , n}

Figure 2.8: A subwalkWb (shown in yellow) with a missing node u cannot be binding, since there
exists another subwalkW ′b (with u as its terminus) with a larger travel time

Proof. Any feasible solution to the TSP is also a feasible solution to the persistent surveillance

problem with n visits where each target is visited exactly once, and vice versa. Therefore,R(W∗(n)) =

TSP ∗.

From Lemma 2.4.1, for k > n, each target is visited at least once in a binding subwalk Wb.

Shortcut any target that is visited more than once in Wb to obtain a tour, Wtour. As the travel

times satisfy the triangle inequality, short cutting any visit will not increase the revisit time, i.e.,

T (Wb) ≥ R(Wtour). Therefore,R(W∗(k)) = T (Wb) ≥ R(Wtour) ≥ TSP ∗.

In some cases, this lower bound can be tightened, especially when the number of visits, k, is

not an integral multiple of n.

Lemma 2.4.3. Consider a walk W(k) with k ≥ n visits. One can express k in the quotient-

remainder form as pn + q, where p, q ∈ Z+, p ≥ 1, and 0 ≤ q ≤ n − 1. Then, W(k) con-

tains a closed subwalkWs with a terminus, with at least n + d q
p
e visits. Consequently, R∗(k) ≥

R∗(n+ d q
p
e).
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Proof. Suppose the maximum number of visits in a closed subwalk with a terminus is at most

n + d q
p
e − 1. Then, we show that each target must be visited at least p + 1 times in W(k) as

follows: In any given walk, the maximum number of visits between consecutive revisits to a target

is lower bounded by the average number of visits between consecutive revisits to the same target.

If a target v is visited at most p times, the maximum number of visits between consecutive revisits

to v is at least pn+q
p

(> n + d q
p
e − 1). However, if each target is visited at least p + 1 times, the

total number of visits in the walk, k, is at least (p+1)n > pn+q, which contradicts the hypothesis.

Hence, there exists a closed subwalk Ws with a terminus, that has at least n + d q
p
e visits.

Without loss of generality, one can assume that Ws spans all the targets. (If not, one can find a

target u /∈ Ws, such that it is the terminus of another closed subwalk that containsWs and spans

all the targets). By definition, R(W(k)) ≥ T (Ws), and from triangle inequality, it follows that

T (Ws) ≥ R∗(n+ d q
p
e). Therefore,R(W(k)) ≥ R∗(n+ d q

p
e). Since this is true for any walk with

k visits, we haveR∗(k) = R(W∗(k)) ≥ R∗(n+ d q
p
e).

Remark: If p ≥ n − 1, it is clear that q 6= 0 ⇒ d q
p
e = 1 and consequently, if k is not an integral

multiple of n and p ≥ n− 1, we haveR∗(k) ≥ R∗(n+ 1). We will use this fact in Theorem 2.

In the subsequent sections, we will construct feasible walks by concatenating smaller walks in

such a way that the maximum revisit time equals the lower bound found in this section, thereby

demonstrating optimality. The key result in the next section is that concatenating a binding subwalk

with some of its shortcut walks and subsequently replacing the binding walk with the concatenated

walk is not going to increase the maximum revisit time. This result is important in that walks with

higher number of visits can be constructed without increasing the maximum revisit time.

32



2.4.1 Properties of Concatenating Feasible Solutions

The procedure to extend a walk into a larger feasible solution is given by the following lemma,

and is depicted in Figure 2.9.

Theorem 2.4.4. Given a walkW , letWb be its binding subwalk, and S1, S2 be its subwalks such

thatW = S1 ◦ Wb ◦ S2. LetW ′b be a closed subwalk obtained by shortcutting visits fromWb, but

retaining the last visits to targets. Let a closed walk W̄ be formed by concatenatingW withW ′b as

follows: W̄ = S1 ◦Wb ◦W ′b ◦ S2. Then,R(W̄) = R(W).

u

u
u

d

d

u

u

u

d

d

Wb W ′
b

u

d

u

u

u
d

u

u

d

uWb

W ′
b

u

Figure 2.9: A closed walkW is shown on the left, with its binding subwalkWb colored yellow. A
subwalkW ′b (colored orange) is constructed fromWb, by shortcutting visits to target u (retaining
the last visit to u). Figure on the right shows the concatenated walk W̄ , as discussed in Theorem
2.4.4.

Proof. See Appendix A.
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Next, we present two lemmas involving the cyclic permutation and concatenation of walks.

The first of the two deals with the revisit time of a closed walk concatenated with itself an arbitrary

number of times.

Lemma 2.4.5. Let a closed walk W̄ be formed by concatenating W(k) with itself p times as

follows:

W̄ :=W(k) ◦ · · · ◦ W(k)︸ ︷︷ ︸
p times

.

Then, for any node vr

• C(W̄ , vr) = C(W(k), vr) ◦ · · · ◦ C(W(k), vr)︸ ︷︷ ︸
p times

.

• RT (vr, W̄) = RT (vr,W(k)),

and thusR(W̄) = R(W(k)).

Proof. See Appendix A.

The next lemma involves concatenating a walk with its shortcut walk and is crucial for piecing

together smaller feasible walks to build a bigger walk while not increasing the maximum walk

revisit time.

Lemma 2.4.6. LetW(k) be a closed walk with n+ 1 ≤ k ≤ 2n−1 visits, and d be a target that is

visited exactly once inW(k). LetW(k− 1) be a walk formed by shortcutting a revisit fromW(k).

Consider a closed walk W̄ formed by concatenatingW(k) for q (≥ 1) times andW(k − 1) for p

times as follows:

W̄ :=W(k) ◦ .. ◦W(k)︸ ︷︷ ︸
q times

◦W(k − 1) ◦ .. ◦W(k − 1)︸ ︷︷ ︸
p times

,
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Then,

C(W̄ , d) = C(W(k), d) ◦ · · · ◦ C(W(k), d)︸ ︷︷ ︸
q times

◦

C(W(k − 1), d) ◦ · · · ◦ C(W(k − 1), d)︸ ︷︷ ︸
p times

.

Proof. See Appendix A.

Remark: This lemma can be used to construct a feasible walk with K visits as follows: Let

K = rn + s for some integers r > 1, s ≥ 0 and n being the number of targets. If K ≥ n(n− 1),

then K = rn+ s, where r ≥ n− 1, s ∈ {0, 1, 2, . . . , n− 1}. Set k = n+ 1, p = s and q = r − s

so that pk + q(k − 1) = p(n + 1) + q(n) = (p + q)n + p = rn + s = K; using the above

lemma, one can construct a feasible walk for K visits from the feasible walk of n + 1 visits and

its shortcut walk of n. The following lemma shows that building such a bigger walk can be done

without increasing the maximum walk revisit time.

Lemma 2.4.7. LetW∗(k) be an optimal solution with n + 1 ≤ k ≤ 2n− 1 visits, andW(k − 1)

be a shortcut walk ofW∗(k). Let a closed walk W̄ be formed by concatenatingW∗(k) for q (≥ 1)

times andW(k − 1) for p times as follows:

W̄ :=W∗(k) ◦ .. ◦W∗(k)︸ ︷︷ ︸
q times

◦W(k − 1) ◦ .. ◦W(k − 1)︸ ︷︷ ︸
p times

,

Then the maximum revisit time for W̄ is equal toR(W∗(k)) i.e.,

R(W̄) = R(W∗(k)).
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Proof. Since k ≤ 2n − 1, there is at least one node, d, in W∗(k) that is visited exactly once.

Consider a cyclic permutation C(W∗(k), d) of W∗(k). Let a closed walk Wq be formed by con-

catenating C(W∗(k), d) for q times as follows:

Wq = C(W∗(k), d) ◦ .. ◦ C(W∗(k), d)︸ ︷︷ ︸
q times

.

From Lemma 2.4.5 it follows that R(Wq) = R(C(W∗(k), d)) = R(W∗(k)). As d is visited ex-

actly once inW∗(k), we have T (C(W∗(k), d)) = R(C(W∗(k), d)). Moreover, d is the terminus of

C(W∗(k), d). Therefore, C(W∗(k), d) is a binding subwalk of itself. Because T (C(W∗(k), d)) =

R(C(W∗(k), d)) = R(Wq), C(W∗(k), d) is also a binding subwalk ofWq.

Now consider W(k − 1), which is formed by shortcutting a revisit from W∗(k). Note that d

is visited exactly once in W(k − 1). C(W(k − 1), d), is a shortcut walk of C(W∗(k), d), which

is a binding subwalk ofWq. It follows from Theorem 2.4.4 that the revisit time of a walk formed

by concatenating Wq with C(W(k − 1), d), is R(W∗(k)). Since R(Wq ◦ C(W(k − 1), d)) =

R(W∗(k)), C(W∗(k), d) is also a binding subwalk ofWq ◦ C(W(k − 1), d). Therefore, concate-

natingWq ◦ C(W(k− 1), d) with C(W(k− 1), d) does not change the revisit time, and the process

can be repeated for any number of times (say p). Hence, ifWp is defined as,

Wp = C(W(k − 1), d) ◦ .. ◦ C(W(k − 1), d)︸ ︷︷ ︸
p times

,

we have R(Wq ◦ Wp) = R(W∗(k)). From Lemma 2.4.6,Wq ◦ Wp is a cyclic permutation of W̄ ,

and thusR(W̄) = R(Wq ◦Wp) = R(W∗(k)).

With this, we have enough tools to analyze the properties of optimal revisit time. To study the

properties of optimal solutions, we split the number of visits into 3 categories: n ≤ k ≤ 2n − 1,

2n ≤ k < n2−n and k ≥ n2−n. We begin with the case, k ≥ n2−n, and prove that the optimal

revisit time is a periodic function of k with a period n.
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2.4.2 Bi-modal Property of Optimal Revisit Time

The focus of this subsection is to prove the main result of this chapter, that after a finite number

of visits (k ≥ n2 − n), the optimal revisit is bi-modal with a period n. The two values it takes are:

TSP ∗ when k is an integral multiple of n, and R(W∗(n + 1)) when k is not an integral multiple

of n.

Lemma 2.4.8. R(W∗(k)) = TSP ∗ for k = pn where p is any positive integer.

Proof. Consider the walk W := W∗(n) ◦ · · · ◦ W∗(n)︸ ︷︷ ︸
p times

. W is feasible to the problem with pn

visits. Using Lemma 2.4.5, R(W) = R(W∗(n)) = TSP ∗. Therefore, from Lemma 2.4.2, it

follows thatW is also an optimal solution to the problem with pn visits.

Lemma 2.4.9. R(W∗(k)) ≤ R(W∗(n+ 1)) for k > n2−n and k is not an integral multiple of n.

Proof. Consider the optimal walkW∗(n+ 1) with n+ 1 visits. Since exactly one target is visited

twice inW∗(n+ 1), shortcut one of the visits to this target to get a new walkW . Let k = np+ q,

p ≥ n − 1 and 1 ≤ q ≤ n − 1. Consider the following feasible solution to the problem with k

visits:

W̄ =W∗(n+ 1) ◦ · · · ◦ W∗(n+ 1)︸ ︷︷ ︸
q times

◦W ◦ · · · ◦ W︸ ︷︷ ︸
(p−q) times

.

Note that the total number of visits in W̄ is q(n + 1) + (p − q)n = np + q = k. Using Lemma

(2.4.7), we obtainR(W̄) = R(W∗(n+ 1)). Therefore,R(W∗(k)) ≤ R(W̄) ≤ R(W∗(n+ 1)).

Theorem 2.4.10. For k ≥ n2 − n, the optimal revisit time for the persistent surveillance problem

can be only one of two values, i.e.,

R(W∗(k)) =


R(W∗(n)), k = pn, p is an integer,

R(W∗(n+ 1)), otherwise.
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Proof. The theorem follows from Lemmas (2.4.8) and (2.4.9), and the remark following Lemma

(2.4.3).

2.4.3 Monotonicity of Optimal Revisit Time

In this subsection, we show that the optimal revisit time is a monotonic function of the number

of visits, for n ≤ k ≤ 2n− 1.

Lemma 2.4.11. R(W∗(k)) ≤ R(W∗(k + 1)) for n ≤ k ≤ 2n− 2.

Proof. Consider the optimal solutionW∗(k + 1). As k + 1 ≤ 2n− 1, there is at least one node in

W∗(k + 1) that is visited exactly once. Let d denote one of these nodes. Since d is visited exactly

once, RT (d,W∗(k + 1)) = R(W∗(k + 1)). Also, as k + 1 > n, there is at least one node (say

u) that is visited more than once inW∗(k + 1). Shortcut one of the revisits to u fromW∗(k + 1)

to obtain a feasible walk W to the problem with k visits. As the travel times satisfy the triangle

inequality, RT (d,W) ≤ RT (d,W∗(k + 1)). Therefore, R(W∗(k)) ≤ R(W) = RT (d,W) ≤

RT (d,W∗(k + 1)) ≤ R(W∗(k + 1)).

2.4.4 Bounds on Optimal Revisit Time

In this subsection, we provide a procedure to construct feasible walks for the case 2n < k <

n2 − n, using the optimal solutions for n < k ≤ 2n − 1. The revisit times of these walks match

the lower bounds presented earlier in this section, proving optimality of the constructed solutions.

Lemma 2.4.12. Let k > n be not an integral multiple of n, i.e., k = pn + q for some integers

p ≥ 1, 1 ≤ q ≤ n− 1. ThenR(W∗(k)) ≤ R(W∗(n+ d q
p
e)).

Proof. It is sufficient to construct a feasible solution W̄ with k visits, such thatR(W̄) = R(W∗(n+

d q
p
e)). Consider an optimal walk W∗(n + d q

p
e) with n + d q

p
e visits, and a corresponding walk

W(n+ b q
p
c) with n+ b q

p
c visits as follows:
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1. W(n+ b q
p
c) is obtained by shortcutting a visit to a repeated target if q 6= p.

Let q = ps+ r for some integers s ≥ 1 and 0 ≤ r ≤ p− 1. For the sake of convenience, let us

refer toW∗(n+ d q
p
e) asW∗, andW(n+ b q

p
c) asW . Then, a feasible solution to the problem can

be constructed by concatenatingW∗(n+ d q
p
e) times andW(n+ b q

p
c) times as follows:

W̄ :=W∗ ◦ · · · ◦ W∗︸ ︷︷ ︸
r times

◦W ◦ · · · ◦ W︸ ︷︷ ︸
(p−r) times

.

Note that the total number of visits in W̄ is r(n+ d q
p
e) + (p− r)(n+ b q

p
c) = np+ q = k; the

equality can be inferred from the following cases:

1. If q = p, d q
p
e = b q

p
c = 1. Hence, r(n+ d q

p
e) + (p− r)(n+ b q

p
c) = pn+ p = pn+ q.

2. If q < p, we have r = q, d q
p
e = 1 and b q

p
c = 0. Therefore, r(n+ d q

p
e) + (p− r)(n+ b q

p
c) =

q(n+ 1) + (p− q)n = pn+ q.

3. If q > p, we have d q
p
e = s + 1 and b q

p
c = s. Hence, r(n + d q

p
e) + (p − r)(n + b q

p
c) =

r(n+ s+ 1) + (p− r)(n+ s) = pn+ ps+ r = pn+ q.

Since n+d q
p
e ≤ 2n−1, from Lemmas 2.4.5 and 2.4.7, we can concludeR(W̄) = R(W∗(n+d q

p
e)).

Theorem 2.4.13. For any given number of visits k ≥ n,R∗(k) = R∗(n+d q
p
e), where k = pn+ q,

p ≥ 1, 0 ≤ q ≤ n− 1 and p, q ∈ Z+.

Proof. The theorem follows from Lemmas 2.4.12, 2.4.3 and 2.4.8.

A consequence of this result is that one needs to solve at most n distinct problems to construct

optimal walks for any given k ≥ n.

We conclude this section with another general result that holds for any k ≥ n. Given an optimal

walkW∗(k) with k visits, one can construct a feasible walk with k + n visits without increasing

the revisit time; this can be achieved by concatenating a walk with a shortcut version of its binding

subwalk (as shown in Figure 2.10). As a consequence, the optimal revisit time for k + n visits is
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upper bounded by the same for k visits; this provides a monotonically non-increasing subsequence.

Corollary 2.4.13.1 (of Theorem 2.4.4). The optimal revisit time for a PMP with k visits is an upper

bound to the same with k + n visits. That is,R(W∗(k + n)) ≤ R(W∗(k)), ∀k ≥ n.

Proof. Consider an optimal walkW∗(k) with k ≥ visits, and any of its binding subwalk, sayWb.

Figure 2.10 showsWb (colored yellow). LetW ′b be formed by shortcutting all except the last visits

to targets fromWb, such that it has exactly n visits. W ′b is shown in Figure 2.10 (colored orange).

Now form a closed walk W̄(k + n) with k + n visits, by inserting W ′b in W∗(k), right next to

Wb as shown in Figure 2.10. From Theorem 2.4.4, we have R(W̄(k + n)) = R(W∗(k)). Since

R(W̄(k + n)) is a feasible solution to the problem with k + n visits, the optimal revisit time for a

problem with k + n visits is at mostR(W∗(k)), i.e.,R(W∗(k + n)) ≤ R(W∗(k)).
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ū

d

d

Wb
W ′

b

d

u

u

ū
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Figure 2.10: Figure showing construction of a solution to the problem with k + n visits, given an
optimal solution for the problem with k visits.

Based on these results, a typical plot of the optimal revisit time against the number of visit takes
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the form of Figure 2.11. A key result proved above is that an optimal walk with k ≥ 2n visits can

be determined by computing only one of the following n solutions: W∗(n) toW∗(2n − 1). This

result is computationally beneficial due to two reasons. Firstly, it is simpler to compute optimal

solutions with smaller number of visits. Secondly, for n ≤ k ≤ 2n − 1, the revisit time of a

walk is equal to its travel time (see the discussion above Figure 2.3). So, a simpler formulation

can be employed for the computation of optimal walks. Such a formulation, and its advantages are

discussed in the following section.

2.5 Integer Linear Program (ILP) Formulation

An Integer Linear Program (ILP) is presented for computing an optimal PMP walk with k visits

when n ≤ k ≤ 2n−1. These solutions can be extended to construct optimal walks for any number

of visits (i.e., for k ≥ 2n) using the results from the previous section. The formulation utilizes the

fact that the travel time of a walk is equivalent to its revisit time, for the case n ≤ k ≤ 2n − 1.

Hence, the objective of the formulation is to find a walk with the least revisit time.

The benefits of this formulation are twofold: 1) constraints modeling the revisit time (refer

to the MBLP formulation of [27]) that contribute overly to the computational difficulty can be

circumvented; 2) an optimal route with the least travel time can be computed relatively quickly,

due to the extensive research done on TSPs.

This formulation is interwoven with the graphical representation of the walk, in contrast to the

cyclic representation used for the MBLP formulation. Consider a directed graph G with no self

loops, such that its vertices represent the targets, edges represent the paths connecting the targets,

and edge weights represent the travel times of these paths. Then, the decision variables of the

formulation are the number of times each edge is utilized in a walk. A feasible solution is a sub-

graph satisfying the degree and connectivity requirements of a walk. The number of edges in the

subgraph is equal to the number of visits in the walk.

The integer linear program for finding an optimal walk with n ≤ k ≤ 2n − 1 visits can be

formulated as follows:

41



0 5 10 15 20 25 30 35

# of Visits of Walk

38

40

42

44

46

48

50

52

54

O
p
ti

m
al

 R
ev

is
it

 T
im

e

(a) Four equally weighted targets
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(b) Five equally weighted targets
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(c) Six equally weighted targets

Figure 2.11: The optimal revisit time as a function of the number of visits in the walk.
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2.5.1 Nomenclature

Sets

T : Set of all the targets to be monitored (set of vertices of G).

E : Set of all edges in the graph G connecting any two targets in T .

δ−(i): Set of all incoming edges to target i, ∀i ∈ T , i.e., δ−(i) = {(j, i) ∈ E : j ∈ T \ i}.

δ+(i): Set of all outgoing edges from target i, ∀i ∈ T , i.e., δ+(i) = {(i, j) ∈ E : j ∈ T \ i}.

Data

cij: Time taken by the UAV to travel along an edge (i, j) ∈ E (i.e., from target i to target j).

Decision Variables

xij: Integer variable (non-negative) indicating the number of times edge (i, j) ∈ E appears in the

walk.

2.5.2 Optimization Problem

Objective

The objective here is to minimize the total travel time of the walk, that is,

Minimize
∑

(i,j)∈E

cijxij (2.17)

Constraints

To ensure the resulting sub-graph is a feasible walk, degree and connectivity constraints are

imposed. First and foremost, the number of edges in the solution must be equal to the number of

visits in the walk.
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• Total number of edges in the walk is k,

∑
e∈E

xe = k. (2.18)

Next, each vehicle must be monitored/visited at least once. Hence, the number of incoming

edges to a target i ∈ T must be at least 1.

• Each target must be visited at least once,

∑
e∈δ−(i)

xe ≥ 1,∀i ∈ T . (2.19)

Whenever the vehicle enters (travels to) a target, it must also leave the target. In other words,

the number of incoming and outgoing edges must be equal at every target i ∈ T .

• In-degree must be equal to the out-degree at every target,

∑
e∈δ−(i)

xe =
∑

e∈δ+(i)

xe,∀i ∈ T . (2.20)

As the vehicle visits each target at least once, every subset of targets must have at least one

outgoing edge. In simple terms, for the resulting sub-graph to be a feasible walk, it must be

connected. These constraints can be modeled as follows, for every subset S of T :

• ∑
e∈{(i,j):i∈S,j∈T \S}

xe ≥ 1,∀S ⊂ T , S 6= φ. (2.21)

The objective function (2.17), together with constraints (2.18) - (2.21), forms the Integer Linear

Program.

Commercial solvers such as CPLEX and Gurobi can be employed to solve the MIP. However, it

is to be noted that the number of connectivity constraints is exponential (2n−2); including all such

constraints renders the optimization problem intractable. To circumvent this issue, we implement
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these constraints in a "lazy" way. That is, we first solve a relaxed sub-problem by disregarding

the connectivity constraints. If the solution to the sub-problem is a connected sub-graph, then it

is also the desired optimal walk. If the resulting sub-graph is disconnected, then the sub-problem

is re-solved by adding a connectivity constraint that is violated. This process is repeated until the

resulting solution is a connected sub-graph.

Here, a violated connectivity constraint is identified by find a minimum weighted cut in the

obtained sub-graph. If the weight of the minimum cut is zero, then the sub-graph is disconnected

(note that the travel times are positive). The lazy addition of the violated cuts to the problem, can

be easily implemented using the ’lazycut’ feature in JuMP (a Julia package).

2.5.3 Obtaining a feasible walk from the ILP formulation

As discussed earlier, for n ≤ k ≤ 2n − 1, the travel time of a walk is equal to its revisit time.

Therefore, any sequence of visits containing exactly the same edges as in the obtained connected

sub-graph, is an optimal walk. Moreover, it is known that at least one target is visited exactly once

in this walk. Such a target has exactly one incoming and one outgoing edge in the sub-graph. Let

target i be visited exactly once. Then, one can always find a sequence of visits such that the vehicle

starts from target i, traverses through all the directed edges specified by the sub-graph, and returns

to target i only at the end. Such a sequence of visits is an optimal walk with k visits, and can be

depicted using the cyclic representation. As the starting target for this walk is i, one can simply

perform a cyclic permutation to obtain a desired starting target. As mentioned in section 2.3, revisit

time of a walk is not affected by cyclic permutations.

Once an optimal walk with n ≤ k ≤ 2n − 1 visits is obtained, it can be used to construct

optimal walks with larger number of visits, i.e., k ≥ 2n.

2.6 Construction of Optimal Solutions for k ≥ 2n

The construction procedure is elucidated using an illustrative instance consisting of 5 targets.

The coordinates of the targets are shown in Figure 2.12.

Here, since n = 5, we first compute optimal solutions with 5 to 9 visits, and then utilize these
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Figure 2.12: Figure showing the coordinates of 5 targets, in the illustrative example considered in
Section 2.6

solutions to construct optimal walks with a larger number of visits, i.e., for k ≥ 10. Optimal walks

W∗(5), W∗(6), W∗(7), W∗(8) and W∗(9) are computed using the ILP formulation presented in

Section 2.5. The obtained optimal walks for this instance are: W∗(5) = (1, 2, 5, 3, 4, 1),W∗(6) =

(1, 2, 5, 3, 4, 2, 1), W∗(7) = (1, 2, 5, 3, 5, 4, 2, 1), W∗(8) = (1, 2, 5, 3, 5, 3, 4, 2, 1) and W∗(9) =

(1, 2, 5, 3, 5, 3, 5, 4, 2, 1).

From each of W∗(6), W∗(7), W∗(8) and W∗(9), a revisit is shortcut if possible (adhering

to the rules discussed in section 2.3) to form its corresponding shortcut walk; let the shortcut

walks beWs(5) = (1, 5, 3, 4, 2, 1),Ws(6) = (1, 2, 3, 5, 4, 2, 1),Ws(7) = (1, 2, 5, 3, 5, 4, 2, 1) and

Ws(8) = (1, 2, 3, 5, 3, 5, 4, 2, 1) respectively. Note that these shortcut walks contain at most one

less visit than their original walks, and the visit that is shortcut is arbitrarily chosen. W∗(5) is not

shortcut, as it has no revisits (repeated visits).

Given any k (≥ n), it can be expressed as pn+ q, where p, q ∈ Z+, p ≥ 1, and 0 ≤ q ≤ n− 1.

For ease of understanding, we consider 3 cases: 1) q = 0, 2) 0 < q ≤ p and 3) q > p.

First, consider the case when q = 0. Notice here that k is an integral multiple of n, i.e.,

k = pn. In this case, an optimal solution with k visits can be simply constructed by concatenating

W∗(n) with itself for p times (i.e., concatenating p copies of W∗(n)). For example, consider
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k = 15. Then, k can expressed as 3(5). Hence, an optimal walk with 15 visits is given by

W∗(15) =W∗(5) ◦W∗(5) ◦W∗(5) (see Figure 2.13).

1
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53
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1

2

53
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W∗(5)

Figure 2.13: Figure showing the construction of optimal walks when k is an integral multiple of n;
when n = 5 and k = 15, an optimal walk is given byW∗(15) =W∗(5) ◦W∗(5) ◦W∗(5)

Next, consider the case 0 < q ≤ p; it can be observed that d q
p
e is always 1 (and hence n+d q

p
e =

n+ 1). Therefore, the construction procedure requires the computation of onlyW∗(n+ 1). Next,

a revisit fromW∗(n + 1) is shortcut to form a shortcut walkWs(n) with n visits. Subsequently,

an optimal walk with k visits is constructed by concatenatingW∗(n + 1) for q times, andWs(n)

for p− q times, as follows:

W̄ :=W∗(n+ 1) ◦ · · · ◦ W∗(n+ 1)︸ ︷︷ ︸
q times

◦Ws(n) ◦ · · · ◦ Ws(n)︸ ︷︷ ︸
(p−q) times

.

For example, consider k = 21, which can be expressed as 4(5) + 1. That is, p = 4 and

q = 1. Hence, optimal walk with 21 visits can be obtained by concatenating W∗(6) and its

shortcut walk Ws(5) as follows: W∗(21) = W∗(6) ◦ Ws(5) ◦ Ws(5) ◦ Ws(5). Note that since

q = 1 and p−q = 3 the concatenation involves 1 copy ofW∗(6) and 3 copies ofWs(5). Similarly,

k = 23 can be expressed as 4(5) + 3. So, an optimal walk with 23 visits is given by W∗(23) =

W∗(6) ◦W∗(6) ◦W∗(6) ◦Ws(5), as q = 3 and p− q = 1.

Here, it is worth noticing that when k ≥ n(n − 1), we have p ≥ n − 1, and q is no more than

p. So, the construction procedure falls in one of the above two cases. One only needs to compute

W∗(n+ 1) when k is not an integral multiple of n, andW∗(n) when k is an integral multiple of n.

47



1

5

34

2
W(5)

1

2

5

3

4

2

W∗(6)

1

5

34

2
W(5)

1

5

34

2
W(5)

(a) W∗(21) =W∗(6) ◦Ws(5) ◦Ws(5) ◦Ws(5)

1

5

34

2
W(5)

1

2

5

3

4

2

W∗(6)

1

2

5

3

4

2

W∗(6)

1

2

5

3

4

2

W∗(6)

(b) W∗(23) =W∗(6) ◦W∗(6) ◦W∗(6) ◦Ws(5)

Figure 2.14: Figures showing the construction of optimal walks for the case 0 < q ≤ p.

This explains the bi-modal property of the revisit time for k ≥ n(n− 1).

When q > p, the construction procedure still involves concatenation of p smaller walks. How-

ever, the number of visits in the smaller walks is higher than n + 1. Given k = pn + q visits,

one needs to compute an optimal walk with n + d q
p
e visits; let it be W∗(n + d q

p
e). Note that

n+ 1 ≤ n+ d q
p
e ≤ 2n− 1.

To make the construction process clearer, we express q as sp+r, where s ≥ 1 and 0 ≤ r ≤ p−1

and consider 2 sub-cases.

First, consider the sub-case where r = 0; that is, q is a multiple of p. Then, an optimal walk of

k visits is simply given by

W∗(k) :=W∗(n+ dq
p
e) ◦ · · · ◦ W∗(n+ dq

p
e)︸ ︷︷ ︸

p times
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For example, consider k = 14. Then, it can be expressed as 2(5) + 4. Here, q(= 4) > p(= 2), and

q is a multiple of p. So, an optimal walk with 14 visits is given byW∗(14) =W∗(7) ◦W∗(7).

Next, consider the sub-case where r 6= 0, i.e., q is not an integral multiple of p. Then, shortcut

a revisit from W∗(n + d q
p
e) to form Ws(n + b q

p
c). Note that when q is not a multiple of p,

n+ b q
p
c = n+ d q

p
e − 1. Then, an optimal walk with k visits is given by

W∗(k) :=W∗(n+ dq
p
e) ◦ · · · ◦ W∗(n+ dq

p
e)︸ ︷︷ ︸

r times

◦Ws(n+ bq
p
c) ◦ · · · ◦ Ws(n+ bq

p
c)︸ ︷︷ ︸

(p−r) times

.

For example, consider k = 13. Then, it can be expressed as 2(5) + 3. Then, p = 2 and q = 3,

n+ d q
p
e = 7 and n+ b q

p
c = 6. Also, when q is expressed as sp+ r ( i.e., 3 = 1(2) + 1 ), we have

s = r = 1. So, an optimal walk with 13 visits is given byW∗(13) =W∗(7) ◦Ws(6).

Using this procedure, optimal walks for any given k ≥ 2n can be constructed by computing

only one of {W∗(n), . . . ,W∗(2n− 1)}; the ILP formulation can be employed for quick computa-

tion of the same.

2.7 Computation Time with the ILP formulation

The strength of the theoretical results (presented in Section 2.4) and the ILP formulation (pre-

sented in Section 2.5) are demonstrated through numerical simulations performed on 250 instances.

The number of targets in the instances varied from 5 to 20. For each of n = 5, 8, 10, 15 & 20, fifty

instances (i.e., co-ordinates of the targets) were randomly generated. Then, the ILP formulation

was employed to compute optimal walks with n ≤ k ≤ 2n− 1 visits.

For each n, the average computation times (average over all the 50 instances) were plotted

against the number of visits; these plots for n = 8, 15 and 20 are shown in Figures 2.16, 2.17 and

2.18 respectively.
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Figure 2.15: Figures showing the construction of optimal walks for the case q > p

For instances with n = 8, optimal solutions were computed using both ILP and MBLP for-

mulations; the computation times are plotted in Figure 2.16. From the figure, it can be clearly

seen that the performance of the ILP formulation is significantly better, compared to the MBLP

formulation. The maximum and average computation times over k = n to k = 2n− 1 visits were

merely 0.038 and 0.036 seconds respectively for the ILP, compared to the values of 843.250 and

150.051 seconds for the MBLP.

Decisively, for larger values of n (10, 15 & 20), while the MBLP was interminable, the ILP

provided optimal solutions within a fraction of a second.
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Figure 2.16: Plot showing a comparison of the average computation times using the MBLP and
the ILP, for 50 instances containing 8 targets

14 16 18 20 22 24 26 28 30
5.2

5.4

5.6

5.8

6

6.2

·10−2

# visits in the walk (k)

A
ve

ra
ge

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
s)

Figure 2.17: Average computation time for the ILP, over 50 instances containing 15 targets

2.8 1.5-Approximation Algorithm

We present a 1.5-approximation algorithm for an optimal PMP walk with k visits, where

n ≤ k ≤ 2n − 1. The algorithm is inspired by the famous Christofide’s algorithm for the sym-

metric TSP. Consider an undirected complete graph G with: 1) no self loops, 2) vertices of G
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Figure 2.18: Average computation time for the ILP, over 50 instances containing 20 targets

representing the set of all targets T , 3) edges E of G representing paths connecting the targets,

and 4) edge weights representing Euclidean distances (travel times) between the targets. Then, the

approximation algorithm involves four steps:

1. Construct an optimal 1-tree Q over T ; Q has exactly n edges and spans T .

2. Add k − n copies of the least cost edge (from the set E) to Q, to form Qk. Let the set of odd

degree vertices of Qk be O.

3. Find a minimum-weight perfect matching, P , on O. Add the edges of P to Qk to form a

walk (Eulerian)Wpc .

4. Shortcut the required number of edges from Wpc to form Wc(k), the desired walk with k

edges.

Each of the above steps can be performed in polynomial time. We show that the approximation

ratio of this algorithm is 1.5. First, we begin with the fact that the cost (travel time) of an optimal

1-tree serves as a lower bound to the optimal TSP cost [28], i.e., T (Q) ≤ R∗(n). Using this fact,

we show that the cost of Qk is no more than R∗(k). To prove this, we present two intermediate

results.
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First, we show that any walk W (Eulerian and connected) with more than n visits can be

shortcut. We consider two cases: 1) all targets are visited more than once in W , 2) at least one

target is visited exactly once inW .

All targets are visited more than once inW: Consider an arbitrary visit ofW , and label it as v. If

the ‘from’ target of v and the ‘to’ target of the next visit in the walk are different, then shortcut the

visit v. If they are the same, shift the label v to the next visit in the walk, and repeat the process till

a visit is shortcut. If all the visits are exhausted, then it implies that only two targets are repeated

inW , contradicting the fact that every target is visited at least once in a walk.

At least one target is visited exactly once inW .: Consider a target that is visited exactly once. La-

bel the visit to that target as v. If the ‘from’ target of v is visited more than once, then shortcut

the visit preceding v. If the ‘from’ target of v is visited exactly once, then shift the label v to the

preceding visit in the walk and repeat the process till a visit is shortcut. If none of the visits can be

shortcut, it implies that every target is visited exactly once, contradicting the assumption that there

are more than n visits in the walk.

Next, we show that R∗(n) + (k − n)cmin ≤ R∗(k), where cmin is the cost of the least cost

edge of E . We show this by contradiction. LetW∗(k) be an optimal walk with k visits. Suppose

R∗(k) < R∗(n) + (k − n)cmin. If k = n, we have k − n = 0 and R∗(k) < R∗(n), leading to a

contradiction. If k > n, shortcut k − n edges from W∗(k) to form Ws(n), a walk with n visits.

Then, T (Ws(n)) + (k− n)cmin ≤ T (W∗(k)) = R∗(k) < R∗(n) + (k− n)cmin. This implies that

T (Ws(n)) < R∗(n), i.e., there exists a tour/walkWs(n) with n visits and a travel time less than

the optimal TSP cost. This provides a contradiction. Therefore,R∗(n) + (k − n)cmin ≤ R∗(k).

From the above result it follows that the cost of Qk is no more than R∗(k). This is because

T (Qk) = T (Q) + (k− n)cmin and T (Q) ≤ R∗(n). So, T (Qk) ≤ R∗(n) + (k− n)cmin ≤ R∗(k).

Even though Qk has k edges, it is not necessarily Eulerian due to the possibility of the presence of

odd degree vertices. However, the number of such odd degree vertices is even [29]. So, one can

construct a minimum-weight perfect matching P on O (the set of all odd degree vertices of Qk) to

form an Eulerian walkWpc.
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The cost ofWpc is at most 3
2
R∗(k), i.e., T (Wpc) ≤ 3

2
R∗(k). This follows from the following

facts: 1) the cost of P is no more than half the cost of an optimal TSP tour [30], i.e., T (P ) ≤ R∗(n),

2) R∗(n) ≤ R∗(k), 3) T (Q) ≤ R∗(k) and 4) T (Wpc) = T (Qk) + T (P ). However, the number

of edges inWpc could be more than k. Nonetheless, becauseWpc is Eulerian, it can be shortcut a

required number of times to form a feasible walk,Wc(k), with k edges/visits. For the reason that

Wc(k) is a shortcut walk ofWpc, we have T (Wc(k)) ≤ T (Wpc) ≤ 3
2
R∗(k), and because n ≤ k ≤

2n − 1, the revisit time ofWc(k) is equal to its travel time. Therefore, R(Wc(k)) ≤ 3
2
R∗(k) and

the proposed algorithm has an approximation ratio of 1.5.

2.9 Solving the Master Problem

The main problem of interest in persistent monitoring missions is the following: given that the

UAV can be recharged after at most V visits, find: 1) an optimal n ≤ k ≤ V after which the UAV

must be recharged; and 2) a walk with k visits that has the least revisit time. PMP answers the

second question. With efficient techniques available (presented above) to solve PMP , the master

problem can be solved easily by computing optimal PMP routes for each k in the range n ≤ k ≤ V ,

and picking the k with the least objective value (sum of the revisit time and charge penalty).

2.9.1 High Charge Penalty

When the relative cost of penalty, µ, high, it is optimal to utilize all the V visits, thereby

avoiding a large penalty. In such a case, an optimal solution to the master problem is given by

k = V andW∗(V ).

2.9.2 Low Charge Penalty

Whenmµ is low, optimum k is the largest k(≤ V ) for whichR∗(k) = R∗(n) (this is because of

the initial monotonicity of the optimal revisit time). IfR∗(n+1) > R∗(n), i.e., if the monotonicity

is strict, then optimal k is the largest integral multiple of n that is less than V . As a consequence,

it is profitable to merely repeat an optimal TSP solution.
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2.9.3 Comparable Charge Penalty

When the charge penalty is comparable to optimal revisit times, one needs to compare objective

values for at most n distinct values, i.e., for V − n + 1 ≤ k ≤ V . Optimal k is the one with the

leastR∗(k) + µ×m× (V − k). This result follows from Corollary 2.4.13.1.
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3. PERSISTENT MONITORING PROBLEM WITH MOTION CONSTRAINTS

Persistent monitoring of vast areas, especially those with harsh environmental conditions, en-

tails greater challenges such as increased recharging needs of the UAVs and the susceptibility of

monitoring vehicles to strong winds. This problem can be tackled by the use of Fixed-wing UAVs,

which are known for their long flight times and resilience to strong winds. However, these vehi-

cles are not easily maneuverable; they cannot make sharp turns, can move only forward, and have

constraints on their minimum turn radii. For route planning purposes, the motion of these vehicles

is typically modeled by a set of kinematic constraints referred to as Dubins model. This model

is known to produce near-feasible paths for Fixed-wing UAVs. In Dubins model, the following

assumptions are made on the UAVs: 1) they travel at a constant speed; 2) they cannot move back-

wards; 3) their minimum turn radii are constrained. To satisfy this model, the angle at which the

UAV enters a target must be the same as the angle at which it leaves the target.

These motion constraints add an additional layer of complexity to the optimal route planning

problem, as one needs to choose not only the sequence in which the targets are visited by the UAV,

but also the angle at which the targets are visited by the monitoring vehicle. Both target locations

and arrival angles influence the travel times between targets. Given the location information of

a pair of targets and the angle at which the UAV visits those targets, the problem of finding the

shortest path (and hence the minimum travel time in this case) between the targets that satisfies

the above described motion constraints was solved by an American mathematician Lester Dubins.

According to his work presented in [31], such an optimal path between the targets consists of

at most three components: 1) a straight line segment, referred to as S; 2) a left turn with the

minimum turn radius, referred to as L; and 3) a right turn with the minimum turn radius, referred

to as R. Specifically, an optimal path between a pair of targets is given by at least one of the

following combinations of the above mentioned components: LRL, RLR, LSL, LSR, RSL, RSR.

For example, LRL indicates that the vehicle must first take a left turn with the minimum turn

radius, followed by a right turn with the minimum turn radius, followed again by a left turn with
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the minimum turn radius. Using this result, for a given UAV, one can calculate the minimum travel

time between a given pair of targets, provided the angles of arrival/departure at the targets are

known.

Given the additional layer of complexity introduced by motion constraints, the computational

difficulty in finding optimal routes for this variant is expected to be higher than that of the primary

version considered in Chapter 2. Before discussing the computational aspects of this variant, let us

first revisit the notion of a walk and the criteria of optimality for this case.

3.1 Problem Statement

In this variant, similar to Chapter 2, a walk consists of a set of visits. However, in ad-

dition to the indices of the targets that are visited, every visit also comprises of the angle at

which the UAV visits the target. Accordingly, a walk with k visits takes the form Wdb(k) =

{t0(h0), t1(h1), t2(h2), . . . , tk(hk)}, where: ti, i = {1, . . . , k}, represents the target that is visited

at the end of the ith visit; hi indicates the heading angle at which target ti is visited by the UAV at

the end of the ith visit; and t0(h0) = tk(hk). With this notion of a walk, the definitions of the target

revisit time and walk revisit time remain unchanged, and the problem of interest can be stated as

the following:

Given that the UAV is recharged at the end of every k visits, find a walk with k visits that satisfies

the motion constraints and minimizes the (walk) revisit time.

As we consider the Dubins model to represent the motion constraints, we refer to this problem

as the Dubins Persistent Monitoring Problem (DPMP). Nonetheless, the results developed in this

Chapter can also be applied to other models such as Reeds-Shepp model that is suitable for ground

robots.

3.2 Structure of Optimal DPMP Walks

Next, we examine the applicability of the computation-time-saving results developed in Section

2.4 to the current problem variant. It is to be noted that all the results of Section 2.4 extend directly

to the case with asymmetric travel times. For these results to hold true for the current variant, one
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only needs to show that the Dubins travel times (travel time for optimal Dubins paths between target

pairs) satisfy the triangle inequality. From the discussion in the second paragraph of this chapter, it

is known that an optima Dubins path from target i to target k and that from target j to l take one of

the aforementioned forms, i.e., LRL RSL etc. Let the minimum time required by a Dubins vehicle

(a vehicle that satisfies the Dubins model) to travel from a given target i with a heading angle p

to another target j with a heading angle q be denoted by c(i, p, j, q). Suppose these times do not

satisfy the triangle inequality, i.e., for three distinct targets i, j and l and corresponding heading

angles of p, q and r for the vehicles at the targets, we have c(i, p, j, q) + c(j, q, l, r) < c(i, p, l, r).

Then, it implies that there exists a curvature constrained path from i to l via target j that is not

of the aforementioned form ( because the path contains more than three different components; for

example, the path can take the form LRL+RSL with components) with a time time less than the

minimum Dubins travel time from target i to target l. This is contradictory to the Dubins results

presented in [31]. Therefore, the Dubins travel times satisfy the triangle inequality.

As a consequence, one only needs to solve the DPMP for n base cases, i.e.., from n to 2n− 1

visits, to completely determine optimal solutions for any given k ≥ n. Additionally, for n ≤

k ≤ 2n − 1, it is enough to compute walks with the least travel time, which is relatively easier to

compute compared to walks with the least revisit time, as observed in Chapter 2.

3.3 Generalized PMP: Near-Optimal DPMP Walks

Despite the computational savings achieved from the above results, finding optimal DPMP

walks remains challenging. The main difficulty arises from the availability of infinite number

of heading (arrival/departure) angles for the UAV choose from, for every visit to a target. To

circumvent this challenge, we consider a simplied version of this problem, in which the UAV is

allowed to visit a target at only a finite number of apriori chosen heading angles. We propose a

mathematical framework in the form of the Generalized Persistent Monitoring Problem (GPMP)

[32] to solve this simplified version.

In GPMP, each target is assumed to be made up of several sub-targets, which could represent

either different heading angles or other selection decisions available at the target. Given n ≤ k ≤
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2n − 1 visits, the objective of GPMP is to find a sequence of k visits to these sub-targets such

that : 1) the UAV starts from the (sub-target chosen as the) depot for the first visit, and returns to

the depot at the end of the kth visit; 2) every visit of the UAV is made to exactly one sub-target;

3) no visit is made between sub-targets corresponding to the same target; 4) at least one sub-

target corresponding to every target is visited; and 5) the travel time of the obtained sequence is

minimized.

GPMP is useful not only for obtaining feasible walks for DPMP (see Subsection 3.3.1), but also

for developing lower bounds to the problem (see Subsection 3.3.2)). Numerical simulations pre-

sented at the end of this section (Subsection 3.3.4) suggest that the feasible DPMP walks obtained

by this method are near-optimal.

3.3.1 Feasible DPMP Walks

To obtain feasible DPMP walks, the UAV is allowed to visit the targets only at apriori chosen

heading angles as shown in Figure 3.1; however, the angle at which the UAV arrives at a target must

be the same as the angle at which it departs from the target to make its next visit. This simplified

version of the problem can be recast as a GPMP, where each heading angle allowed at a target is

considered as its sub-target; each sub-target has a unique tuple of the allowed heading angle and

the coordinates of its target. The travel times between sub-targets of different targets are given by

the Dubins result presented at the beginning of this chapter.

Solving the GPMP using these travel times provides an optimal walk in which the UAV is

allowed to arrive at exactly one sub-target at the end of a visit and requires the UAV to depart from

the sub-target to make its next visit. This translates to a feasible DPMP walk in which the UAV

visits a target at one of the allowed heading angles and departs from the target at the same angle

for its next visit. same angle for its next visit.

Remark: As a matter of fact, when the travel times between sub-targets are given by the Dubins-

result (and hence satisfy the triangle inequality), solving the GPMP with an objective of minimiz-

ing the revisit time yields walks that have a structure similar to that of optimal DPMP walks (refer

to Section 3.2. While these results are not presented in this dissertation, the idea of these proofs
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can be found in [32].

1 2

3

45

Allowed heading angles at target 1 - Target

Figure 3.1: To obtained feasible walks, the UAV is allowed to visit the targets only at certain apriori
chosen heading angles indicated by the arrows. In the figure, each target is allowed to be visited at
one of the indicated heading angles. Once data is collected, the UAV must leave the target at the
same heading angle chosen for visiting the target.

3.3.2 Lower Bounds to DPMP

Lower bounds to DPMP are obtained by solving a relaxed version of the problem. The bounds

obtained by solving a simple relaxation, in which the arriving and departing angles of the UAV at

a target are allowed to take any two values, are weak. Instead, we consider a relaxation in which

the set of all heading angles allowed at a target (typically [0, 2π]) is partitioned into disjoint sectors

(of heading angles) as shown in Figure 3.2; the union of all the sectors corresponding to a target

span the set of all heading angles allowed at the target.

In the considered relaxation, the angle of arrival of the UAV at a target is allowed to be different

from the angle of its departure from the target during its next visit; however, these angles are

restricted to lie in the same sector. Therefore, each visit of the UAV reduces to picking exactly one

sector of angles at which it can arrive at the target. Nonetheless, the departure angle of the UAV

for the next visit must lie in the same sector. Therefore, this problem can be modeled as a GPMP
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- Target
Permissible sectors of heading angles at target 1

1
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45

Figure 3.2: To obtain lower bounds to the DPMP, the entering and departing angles of the UAV at
a target are reestricted to lie in the same sector. In the figure each target has 4 sectors of allowable
heading angles.

with sub-targets representing the sectors of angles allowed at the targets.

Travel times between these sub-targets are obtained as solutions to the Dubins-Interval Problem

[33]. Given two distinct targets and a sector of allowable angles at each target, the Dubins-Interval

Problem provides the minimum travel time required by the UAV (with motion constraints) to travel

between the targets with the angles of arrival/departure restricted to the given sectors.

Note that these travel times need not satisfy the triangle inequality. To see this, consider three

three sub-targets i, j and k corresponding to different targets. The UAV traveling directly from i

to j must satisfy the motion constraints and is therefore not allowed to make sharp turns along its

path. However, if the UAV travels from i to j and then j to k, it is allowed to make a sharp turn after

its visit to j. This is because the angles of arrival and departure are allowed to be different (though

they lie in the same sector). For this reason, the results of 3.2 do not apply to this relaxation.

However, lower bounds are required only for the case where n ≤ k ≤ 2n − 1. So, the current

procedure can be employed to obtained lower bounds for the DPMP.
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3.3.3 Formulations to Solve GPMP

In this subsection, we present two different formulations to solve the GPMP. In the first for-

mulation, the modeling of a feasible GPMP walk is similar to that of a feasible PMP walk in the

MBLP formulation. That is, each visit in the walk is modeled using a separate graph, the vertices

of which represent the sub-targets, and the edges represent the paths connecting the sub-targets.

On the other hand, the modeling of a feasible GPMP walk in the second formulation is analogous

to that of a feasible PMP walk in the ILP formulation. All the visits in the walk are modeled using

a single graph allowing edges to be picked multiple times. While the connectivity of the walk in

the first formulation follows from the flow constraints between successive visits, the connectivity

constraints in the second formulation must be explicitly formulated and are exponential in number.

3.3.3.1 Formulation I

Sets:

T : Set of all targets to be monitored.

Hi : Set of all sub-targets corresponding to target i ∈ T .

N : Set of all sub-targets (corresponding to all the targets), i.e., N = {(i, p) | ∀i ∈ T , p ∈ Hi}.

Data:

ci,p,j,q: Minimum time required by the UAV to travel from sub-target p ∈ Hi of target i to sub-

target q ∈ Hj of target j, j 6= i.

k : Number of visits in the walk (n ≤ k ≤ 2n − 1 for this formulation). d: Target at which the

depot is located. dp: Sub-target of target d corresponding to the depot.

Decision Variables:

xi,p,j,qv =


1, if the vth visit in the walk is from sub-target p ∈ Hi of target i ∈ T

to sub-target q ∈ Hj of target j(6= i) ∈ T ;

0, otherwise.
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Minimize
∑
i∈T

∑
p∈Hi

∑
j(6=i)∈T

∑
q∈Hj

k∑
v=1

ci,p,j,q x
i,p,j,q
v

Constraints:

The UAV starts from its depot (sub-target dp of target d) to make its first visit.

∑
j∈T \d

∑
q∈Hj

xd,dp,j,q1 = 1. (3.1)

The UAV returns to its depot for its kth visit.

∑
i∈T \d

∑
p∈Hi

xi,p,d,dpk = 1. (3.2)

If the v − 1th visit of the UAV is made to sub-target q of target j, then its vth visit must be made

from the same sub-target (i.e., the UAV must leave the sub-target for its next visit).

∑
i∈T \j

∑
p∈Hi

xi,p,j,qv−1 =
∑
l∈T \j

∑
r∈Hl

xj,q,l,rv , ∀j ∈ T , q ∈ Hj, v ∈ {2, . . . , k}. (3.3)

Every target must be visited at least once in a walk of k visits.

k∑
v=1

∑
p∈Hi

∑
j∈T \i

∑
q∈Hj

xi,p,j,qv ≥ 1, ∀i ∈ T . (3.4)

Every visit has a single ‘to’ and a single ‘from’ sub-target. In other words, every visit corresponds

to a single edge in the graph.

∑
i∈T

∑
p∈Hi

∑
j∈T \i

∑
q∈Hj

xi,p,j,qv = 1, ∀v ∈ {1, . . . , k}. (3.5)
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3.3.3.2 Formulation II

Decision Variables:

xi,p,j,q : Integer variable indicating the number of times edge (i, p, j, q) appears in the walk,

where i ∈ T , p ∈ Hi, j(6= i) ∈ T , q ∈ Hj.

yi,p =


1, if the sub-target p ∈ Hi of target i ∈ T is picked ;

0, otherwise.

Objective:

Minimize
∑
i∈T

∑
p∈Hi

∑
j(6=i)∈T

∑
q∈Hj

ci,p,j,q x
i,p,j,q

Constraints:

The sub-target corresponding to the depot is visited at least once.

∑
j∈T \d

∑
q∈Hj

xd,dp,j,q ≥ 1. (3.6)

The number of times the UAV visits a sub-target must be equal to the number of times the UAV

leaves the sub-target.

∑
i∈T \j

∑
p∈Hi

xi,p,j,q =
∑
l∈T \j

∑
r∈Hl

xj,q,l,r, ∀j ∈ T , q ∈ Hj. (3.7)

Every target is visited at least once.

∑
p∈Hi

∑
j∈T \i

∑
q∈Hj

xi,p,j,q ≥ 1, ∀i ∈ T . (3.8)

The total number of edges in the graph is equal to the number of visits made by the UAV before
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every recharging, which is equal to k.

∑
i∈T

∑
p∈Hi

∑
j∈T \i

∑
q∈Hj

xi,p,j,q = k. (3.9)

The purpose of next two constraints is to find out if a sub-target is visited; this is done through a

binary variable associated with each sub-target. This information is required for modeling connec-

tivity constraints (3.12), which ensure that the resulting walk is a connected graph.

If the number of outgoing edges from a sub-target p of target i is zero, then the variable yi,p takes

the value zero, suggesting that the sub-target is not visited.

∑
j∈T \i

∑
q∈Hj

xi,p,j,q ≥ yi,p, ∀i ∈ T , p ∈ Hi. (3.10)

If the number of outgoing edges from sub-target p of target i is at least one, then the sub-target is

picked, and the variable yi,p takes the value 1. The constant M indicates the maximum number of

outgoing edges possible from a sub-target, which is the minimum of k − n+ 1 and k/2.

∑
j∈T \i

∑
q∈Hj

xi,p,j,q ≤M yi,p, ∀i ∈ T , p ∈ Hi. (3.11)

With the help of the above two constraints, the connectivity constraints can be modeled as the

following:

∑
(i,p)∈S

∑
(j,q)∈N\S, j 6=i

xi,p,j,q ≥ yi,p + yj,q − 1, ∀S ⊂ N , 2 ≤ |S| ≤ k − 2. (3.12)

The number of constraints given by (3.12) is exponential.

3.3.4 Numerical Simulations

In this section, we evaluate the quality of upper and lower bounds provided by the GPMP

through numerical simulations performed on a set of instances with the help of the above two

formulations. For each instance, upper and lower bounds to DPMP were obtained by allowing
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discrete heading angles and sectors of heading angles at the targets respectively. The number

of the discrete heading angles or sectors at each target were gradually increased to observe the

convergence of these bounds.

The summary of the simulations are illustrated through a sample instance with 5 targets. The

number of discretizations at each target was increased from 4 to 32, and for each discretization,

bounds were computed by varying the number of visits in the walk from 5 to 9. Figure 3.5 shows

the plot of these upper ( in blue) and lower bounds (in red) against the number of visits for different

number of discretizations. From the plot, it can clearly be seen that the upper bounds decrease and

the lower bounds increase with the number of discretizations. Similarly, bounds were computed

for 24 other instances with 5 targets, and the average percentage gap between the upper and lower

bounds were plotted against the number of visits in the walk for different number of discretizations,

as shown in Figure 3.5. From the figure, it is evident that after a certain number of discretizations,

the percentage gap between the bounds are very less (within 1% here). This suggests that the

feasible DPMP walks obtained by solving the GPMP are near-optimal. Figure 3.3 shows a feasible

walk obtained by solving the GPMP. For the rest of this chapter, we focus on the GPMP.

Numerical simulations suggest that the formulations pressented in 3.3.3 for solving the GPMP

do not scale well for larger instances. The computation time required for solving the problem to

optimality increases rapidly with the increase in the number of targets and discretizations. Even

with the number of discretizations as small as 8, several instances with 15 targets were not solvable

within a day ∗.

Unlike the trend observed in Chapter 2, here, the computational performance of even formu-

lation II, which was based on the ideas from the ILP formulation for PMP, was poor. In fact, for

most of the instances, formulation I, which was based on the MBLP formulation for PMP, was

observed to perform better. This can be attributed to the big-M involved in formulation II, which

leads to weak LP-relaxations. So, there is a need to develop algorithms to efficiently compute

feasible solutions to the GPMP.
∗All the simulations were performed on a Mac Pro (8-Core Intel Xeon E5 processor @3 GHz, 32 GB RAM) with

the help of the Gurobi solver [34]
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Figure 3.3: A feasible DPMP walk with 7 visits to 4 targets obtained by solving the GPMP
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Figure 3.4: Plot showing the upper bounds (UB) and lower bounds (LB) for a 5-target instance of
the DPMP. The bounds get closer with the increase in the number of sub-targets.
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Figure 3.5: Plot illustrating the decrease in the average percentage gap between the upper and lower
bounds for DPMP with increase in the number of sub-targets. The plot corresponds to instances
with 5 targets, and the bounds are obtained by solving GPMPs.

3.4 Heuristics to Solve GPMP

Here, we present two algorithms to quickly compute feasible solutions to the GPMP. Both the

algorithms are based on independently solving the sequencing and the (heading angle) selection

problem.

3.4.1 4.56-Approximation Algorithm (AH)

In the first algorithm, an initial sequence of visits to targets is obtained via the 1.5-approximation

algorithm for solving the PMP (using Euclidean distances between the targets), which was pre-

sented in Section 2.8. Once a sequence of visits is obtained, a set of heading angles corresponding

to the sequence is chosen such that the (travel) time required for the UAV to traverse the route

specified by the combination of the sequence and heading angles is minimized. The steps of this

algorithm can be implemented in polynomial time, and for convenience, this algorithm is referred

to as AH.

To provide a guarantee on the quality of solutions obtained using this algorithm, we make

a reasonable assumption that the targets are not too close, i.e., the Euclidean distance between
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every pair of targets is at least twice the minimum turning radius. Under this practical assumption,

the Dubins distances (travel time) between any two targets with any combination of arrival and

departure angles at the targets is at most π + 1 − tan−1(2) times the Euclidean distance (travel

time) between the targets [35]. Therefore, the proposed algorithm has an approximation rato of

3
2
(π + 1− tan−1(2)) ≈ 4.56.

3.4.2 Optimal PMP + Heading angles (OH)

In the second algorithm, an optimal PMP walk with the desired number of visits is used as an

elementary sequence of visits. Even though optimal PMP walks are not guaranteed a polynomial

computation time, for all practical purposes, they can be computed swiftly using the ILP formula-

tion presented in 2.5. For the obtained sequence of visits, similar to AH, a set of heading angles

that provide the least travel time is selected. For convenience, this algorithm is referred to as OH.

3.5 Comparision of the Heuristics

In this section, we compare the above two algorithms against the optimal GPMP values that

are obtained by solving the above formulations. For the comparision, only the instances for which

optimal GPMP values were computable upto at least 8 discretizations of heading angles were

utilized. For each instance, both AH and OH were implemented in Julia [36] with the aid of the

NetworkX package [37] for 4 and 8 heading angles and by varying the number of visits in the

walk from n to 2n − 1. The minimum turn radius was varied from 3% to 30% of the maximum

Euclidean distance between the targets. For all instances with the same number of targets and the

same percentage of minimum turn radius, the average percentage gap of the values obtained from

AH and OH with respect to the optimal GPMP values were computed for 4 and 8 discretizations,

and plotted against the number of visits in the walk. Sample plots with 3% turn radius are shown

in Figures 3.6, 3.7 and 3.8 for 5, 8 and 15 targets respectively.

The plots suggest that when the minimum turn radius is low, the values provided by algorithms

that are based on independently solving the sequencing and selection problems are very close to

optimal GPMP values. For large number of discretizations, the average percentage gap with OH
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was observed to be within 5 % of optimal GPMP solutions. The reason for this closeness is that

when the minimum turn radius is low, the travel times between the targets are very close to the

Euclidean travel times, and optimal sequences obtained by solving the PMP are also optimal for

GPMP.

However, when the minimum turn radius is high, the same trend is not expected to repeat.

Sample plot for 5-target instances with a turn radius of 30 % of the maximum travel times between

the targets is shown in Figure 3.9. From the plot it can be seen that the average percentage gap

was around 20 to 30 % away from optimal GPMP solutions. So, in practice, when the minimum

turn radius is high, it is not enough to independently solve the sequencing and selection problems

once. However, one can explore algorithms that are based on iteratively solving the selection and

sequencing problems.
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Figure 3.6: Plot showing the average % gap in revisit times of walks obtained using AH and
OH algorithms with respect to that of an optimal GPMP walk, for instances with 5 targets 3 %
minimum turn radius
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4. PERSISTENT MONITORING PROBLEM WITH A SEPARATE DEPOT

In many applications, the targets are not accessible for humans due to either the safety hazards

involved or the remoteness of the targets. In such cases, depot(s) of the monitoring UAV(s) must

be stationed at location(s) different from that of the targets. Here, we consider such a case where a

set of equally weighted targets are monitored using a single UAV that has no curvature constraints,

and the depot of the UAV is not located at the targets.

In this case, the UAV starts the monitoring mission from the depot with a fully charged battery.

Suppose it is given that the UAV makes k visits to the given set of targets. Then, the vehicle makes

data collection visits to different targets such that every target is visited at least once by the end of

k−1 visits. The kth visit is then made to the depot for recharging. As soon as the UAV is recharged

at the depot, this sequence of k visits is repeated. Similar to the above chapters, this sequence is

referred to as a walk with k visits. Note that here a depot can be visited only at the end of every k

visits, and cannot be visited in between. To differentiate routes of this case from that of previous

cases, we denote a walk with k visits byWD(k).

The revisit time of WD(k) is obtained as the maximum t.r.t (target revisit time) over all the

targets in the walk (it does not include the t.r.t of the depot), and it is denoted by RD(WD(k)).

Unlike the previous chapters, the problem considered here accounts for the time taken to recharge

the UAV at the depot. The optimal route planning problem considered in this chapter is referred to

as PMPd and can be stated formally as the following:

Given n targets and that the UAV monitoring them makes k visits, k ≥ n+1 (one extra visit for

the depot), to the targets before recharging at the depot, find a walk with k visits that provides the

least revisit time. Such a walk is referred to as the optimal walk and denoted byWD∗(k), and the

minimum revisit time is referred to as the optimal revisit time and denoted by RD∗(k). Suppose

that the travel time from any target i ∈ T to the depot is denoted by c(i, d) and that from the depot

to target i is given by c(d, i). Then, rc, the time taken to recharge the UAV at the depot, can be

included into the problem by simply replacing c̄(i, d) by c(i, d) + rc
2

and c̄(i, d) by c(i, d) + rc
2

, for
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all i ∈ T .

By solving this problem, the master problem of finding an optimal k and its corresponding

optimal walk can also be solved easily as discussed in Section 2.9. Besides, by considering the

depot as a target with a very low priority, solutions to this problem can also be considered as

solutions for the case with unequally weighted targets. This is because, the depot is visited only

once in the walk, and its t.r.t, even if considered, is negligible due to its low priority/weight.

The focus of this chapter is to examine the structure of optimal solutions to the PMPd, as

done in Chapter 2 for PMP. We give a first glimpse of this structure through plots of the optimal

revisit times versus the number of visits in the walk. Then, we compare these plots with that of the

PMP considered in Chapter 2, and present conjectures on the structure of optimal PMPd solutions.

These conjectures are supported by numerical simulations performed over 350 instances.

4.1 Optimal Revisit Time

PMPd was implemented using a formulation similar to the MBLP for the PMP, with the help of

Gurobi solver on several instances. For each instance, the problem was solved for different number

of visits starting from k = n + 1 upto a value for which an optimal solution was computable in

a reasonable time. For these instances, the value of optimal revisit time was plotted against the

number of visits in the walk. Based on their asymptotic trends, the plots can be grouped into three

categories: Unimodal, Bimodal and Trimodal. Sample plots for each of this category are shown

in Figures 4.1, 4.2 & 4.3 for instances with 5 targets and a depot. Before discussing the criteria

determining the asymptotic structure of the plot, we present a comparison of the properties of the

optimal revisit time of PMPd with that of the PMP. Here, we refer to an optimal TSP tour over the

targets and the depot by TSPd, and its cost by TSP ∗d .

4.1.1 Similarities with PMP

The optimal revisit time for PMPd has the following similarities with that of PMP:

• for any k such that k ≥ n + 1, the optimal revisit time is lower bounded by TSP ∗d , i.e.,
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RD∗(k) ≥ TSP ∗d . Equality holds for k = pn+ 1, where p is a positive integer;

• for n+ 1 ≤ k ≤ 2n,RD∗(k) is a monotonically increasing function of k;

• beyond certain value of k,RD∗(k) is a periodic function of k with a period n.

Note however that the threshold after which the optimal revisit time is periodic is different from

that of PMP .

4.1.2 Dissimilarities with PMP

Unlike that in PMP, the structure of optimal revisit time in PMPd is not independent of the

location of the targets. Firstly,RD∗(k) can take more than n+1 distinct values. Secondly,RD∗(k)

is not necessarily bimodal for large values of k. Its asymptotic properties are dependent on the

location of the depot relative to that of the targets. Simulations suggest that the optimal revisit

time obtained by solving the PMP over only the targets,R∗(.), aids in determining the asymptotic

structure of the optimal revisit time for PMPd over the targets and the depot. In particular, the

value ofR∗(t+1) relative to that ofRD∗(n+1) andRD∗(n+2) determine the number of distinct

values taken byRD∗(k) asymptotically.

Note that R∗(n + 1) is the optimal value of a PMP walk with n + 1 visits to n targets, that is,

one target is visited twice, while the rest are visited exactly once. On the other hand, RD∗(k) is

the optimal value of a PMPd-walk with n + 1 visits to n targets and a depot. Here, every target,

in addition to the depot, is visited exactly once. The number of distinct values RD∗(k) takes

asymptotically can be determined as the following:

1. R∗(n+ 1) ≤ RD∗(n+ 1): Unimodal (one value);

2. RD∗(n+ 1) ≤ R∗(n+ 1) ≤ RD∗(n+ 2): Bimodal (two values);

3. RD∗(n+ 2) ≤ R∗(n+ 1): Trimodal (three values).

Besides, the minimum number of visits at which the periodic trend of RD∗(k) beings was

observed to be different for different instances. However, a general number that works for all the
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instances is n(n + 1) + 1 visits, i.e., for k ≥ n(n + 1) + 1, RD∗(k) was observed to be periodic

irrespective of its precise asymptotic structure.
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Figure 4.1: Figure illustrating the plot of the optimal revisit time against the number of visits in the
walk for an instance with 5 targets and a depot. For this instance, optimal revisit time takes exactly
one value asymptotically

Analogous to the utility of optimal revisit time of PMP in determining the structure of that of

PMPd, optimal PMP walks are useful in discerning the structure of optimal PMPd solutions.

4.2 Structure of Optimal PMPd walks

Similar to the construction of optimal PMP walks presented in Chapter 2, the construction of

optimal PMPd walks involves operations such as concatenation and cyclic permutation on certain

elementary walks. However, the elementary walks used for the construction are not just restricted

to optimal PMPd walks with small number of visits, but also include corresponding optimal PMP

walks with small number of visits. Before discussing the construction procedure for the asymptotic
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Figure 4.2: Figure illustrating the plot of the optimal revisit time against the number of visits in
the walk for an instance with 5 targets and a depot. For this instance, optimal revisit time takes two
different values asymptotically

case, here we present the elementary walks required for the same.

4.2.1 Elementary Walks

Three main elements required for the construction of optimal PMPd walks for the asymptotic

case are:W∗(n+1), an optimal PMP walk with n+1 visits to n targets;WD∗(n+1) or (TSPd), an

optimal PMPd walk with n+1 visits to n targets and a depot, andWD∗(n+2), an optimal PMPd

walk with n+2 visits. These elements can be shortcut in different ways to form walks with smaller

number of visits. The elementary walks and their shortcut versions can be concatenated in certain

combinations to obtain optimal PMPd walks with large number of visits. Next, the shortcut walks

required for the construction will be presented, followed by the construction procedure.

First, the shortcut walks obtained fromWD∗(n+2) will be presented. InWD∗(n+2), exactly

one target is visited twice. A walk obtained by shortcutting a visit to this target is denoted by
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Figure 4.3: Figure illustrating the plot of the optimal revisit time against the number of visits in the
walk for an instance with 5 targets and a depot. For this instance, optimal revisit time takes three
values asymptotically

SWD. Unlike the convention considered in Chapter 2, here, even though the depot is visited

exactly once, we consider shortcutting the visit to the depot. Such a walk obtained by shortcutting

(removing) the visit to the depot fromWD∗(n + 2) is denoted byWSD. Note however that the

depot can only be shortcut if the targets visited before and after the depot in the walk are different.

So, it is not always possible to constructWSD fromWD∗(n + 2) . We also consider a shortcut

walk in which both the depot and the re-visit to a target are shortcut. This walk is denoted by

SWSD. Note that unlike WSD, it is always possible to construct SWSD by first shortcutting

the repeated visit and then shortcutting the visit to the depot. WD∗(n + 2) and its corresponding

modified walks are depicted in Figure 4.4 for a sample instance.

Next, we consider secondary walks obtained fromW∗(n+1). This walk has a repeated visit to

exactly one target. A walk obtained by shortcutting a repeated visit to the target is denoted by SW .

In the construction procedure to be discussed, one often needs a walk with n + 1 visits with the
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least travel time such that n visits are made to n targets and one visit is made to the depot. While

TSPd serves this purpose, in certain cases, one requires a walk with the same sequence of visits

as that inW∗(n + 1) except for its revisit. For this reason, we consider a walk that is obtained by

adding a depot to SW . This walk is denoted by SWAD, and it is obtained by inserting a visit to

the depot in SW such that the increase in this travel time is the minimum. This can be performed

in polynomial time. Simulations suggest that for the cases in which the use of SWAD is proposed,

its cost is no more than that of TSPd. The walkW∗(n+ 1) and its corresponding modified walks

are depicted in Figure 4.5 for a sample instance.
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Figure 4.4: Elementary walks obtained by modifyingWD∗(n + 2), which are useful in the con-
struction of optimal solutions for PMPd in the asymptotic case

Lastly, we consider a shortcut walk of TSPd that is obtained by shortcutting the visit to the de-

pot; we denote this shortcut walk by TSPshort. With these components, optimal PMPd walks for

the asymptotic case can be constructed according to the procedure presented in the next subsection.
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Figure 4.5: Elementary walks obtained by modifyingW∗(n+ 1), which are useful in the construc-
tion of optimal solutions for PMPd in the asymptotic case

4.2.2 Conjectures on the Construction Procedure

Simulations indicate that the construction of optimal solutions for the asymptotic case can be

categorized into 4 cases, and the categorization is based on questions such as: whetherR∗(n+1) ≤

RD∗(n+ 1), whether one can shortcut the visit to the depot fromWD∗(n+ 2) to form a feasible

walk, and whetherR∗(n+ 1) ≤ RD∗(n+ 2).

In all the four cases, when the number of visits k is one more than an (positive) integer multiple

of n, an optimal walk can be constructed by concatenating exactly one copy of TSPd with the

required number of copies of TSPshort such that the total number of visits is k. The construction

procedure for any other k will be discussed in the next few paragraphs.

The first case corresponds to the scenario in which R∗(n + 1) ≤ RD∗(n + 1). In this case,

the optimal revisit time is asymptotically unimodal, and it takes the value TSP ∗d . An optimal

walk when the number of visits is one more than an integer multiple of n follows from the above
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paragraph. For other values of k, the construction procedure is identical to that of the upcoming

cases.

The second case arises whenR∗(n+1) > RD∗(n+1) and the visit to the depot inWD∗(n+2)

can be shortcut to form a feasible walk. That is, the targets that are visited before and after the visit

to the depot are different. In this case, the optimal revisit time is asymptotically bimodal. When

k 6= pn + 1 for some p ∈ Z+, an optimal walk can be constructed by concatenating exactly one

copy of SWD, with the required number of copies of SWSD andWSD to complete k visits. The

sequence SWD covers the visit to the depot and has the same cost as TSPd.

The next case arises when bothR∗(n+1) > RD∗(n+1) and the visit to the depot inWD∗(n+

2) cannot be shortcut to form a feasible walk. That is, the targets that are visited before and after the

visit to the depot are the same. In such a situation, one needs to verify ifR∗(n+1) ≤ RD∗(n+2).

If it is true, the optimal revisit time is asymptotically bimodal. When k 6= pn + 1 for some

p ∈ Z+, an optimal walk can be constructed by concatenating one copy of SWAD with the

required number of copies ofW∗(n+ 1) and SW .

The final case arises whenRD∗(n+2) ≥ R∗(n+1) > RD∗(n+1) and the depot inWD∗(n+

2) cannot be shortcut to form a feasible walk. In this case, the optimal revisit time is asymptotically

trimodal; that is, it takes three different values. When k is of the form pn + 1 for some p ∈ Z+,

an optimal walk can be constructed as discussed at the beginning of this subsection. Otherwise,

depending on the value of k, an optimal walk can be constructed either by concatenating one copy

ofWD∗(n + 2) with the required number of copies of SWSD, or by concatenating one copy of

SWAD with the required number of copies ofW∗(n+ 1) and SW .

Note that in all the cases, the starting targets in all the walks being concatenated must be

the same. In order to ensure this, one must start with an appropriate cyclic permutation of an

elementary walk and then construct its corresponding secondary walks. Once a walk with the

required number of visits is constructed, it can be cyclically permuted such that the concatenated

walk starts and ends at the depot. This construction procedure is summarized in the following

flowchart (see Figure 4.6) .
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Figure 4.6: Flowchart explaining the construction of optimal walks for PMPd for large number of
visits.
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5. MULTI-UAV PERSISTENT MONITORING PROBLEM

In this chapter, we consider the case in which multiple UAVs are employed for monitoring the

targets. Typically, multiple UAVs are used when either the minimum revisit time attainable with

the help of a single UAV is unsatisfactory or the targets necessitate the use of UAVs with different

capabilities. While multiple UAVs facilitate an efficient monitoring of targets, they render the route

planning problem intractable. Firstly, modeling target revisit times is difficult as one needs to keep

track of visits made to a target by different UAVs. Secondly, when multiple UAVs share the same

depot, their visits to the depot for recharging must be scheduled such that they do not coincide.

We restrict the scope of this chapter to the case in which the UAVs have separate depots that

are setup at the targets, and all the targets have equal weights. In this case, each UAV is required

to visit at least two targets, but every target is allowed to be visited by a single UAV. The extension

of this work to the case with depots installed at locations different from that of the targets is

similar to the extension for the single UAV case considered in 4 and is omitted here. Even for

this special case, the problem remains computationally challenging due to the coupling between

different components of the solution; a target assignment determines the number of visits allowed

for a UAV to its assigned set of targets, which in turn determines an optimal sequence of visits

for the UAV. Once a target assignment is available, its corresponding optimal solutions can be

computed in a split second using the methods presented in Chapter 2; however, finding an optimal

target assignment is non-trivial.

Here, we make use of the techniques presented in earlier chapters to devise an approach to

obtain feasible walks for multiple UAVs. This approach is built on two elementary ideas. Firstly,

the number of visits allowed for each UAV to its assigned set of targets is not known; however,

one can estimate the total number of visits a single UAV can make to the set of all targets with

a charge capacity that is equivalent to that of all the UAVs combined. Suppose this estimate is k

visits. Then, the sum of the number of visits allowed for each UAV to its assigned set of targets

(before recharging) is set to k. Secondly, as observed in Chapter 2, constraints modeling the revisit
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time add to the computational difficulty of the problem. To circumvent this, the number of visits

allowed for each UAV to its set of targets is restricted; if a UAV is assigned ni targets, then the

number of visits the UAV is allowed to these targets (before recharging) is at most 2ni − 1. With

this restriction, the objective reduces to simply minimizing the maximum of the travel times of all

the UAVs. Note that this modified problem is a generalization of the min-max TSP, and is referred

to as the Multiple Vehicle Persistent Monitoring Problem (MV-PMP). A formulation to obtained

optimal solutions to MV-PMP is presented below. The formulation builds on the ILP formulation

presented in Chapter 2 for the single vehicle case.

5.1 Formulation

In this formulation, routes of the UAVs are modeled on a complete graph G, the vertices of

which represent the targets, and edges represent the paths connecting the targets. This formulation

is a generalization of the commonly used formulations for the min-max TSP [38].

Sets:

T : Set of all targets to be monitored.

E : Set of all paths connecting the targets, i.e., E = {(i, j) : i ∈ T , j ∈ T }.

V: Set of all vehicles, i.e., V = {1, 2, · · · ,m}. Note that |V| ≤ |T |.

δ−(S): Set of all incoming edges to a set S, S ⊆ T , of vertices,

i.e., δ−(S) = {(i, j) ∈ E : i /∈ S, j ∈ S}.

δ+(S): Set of all outgoing edges to a set S, S ⊆ T , of vertices,

i.e., δ+(S) = {(i, j) ∈ E : i ∈ S, j /∈ S}.

Data:

c(i, j): Time taken by a UAV to travel between two different targets i ∈ T and j ∈ T . All the

UAVs are assumed to be homogeneous and have same travel times.

Decision Variables:

xe,v: Non-negative integer variable indicating the number of times edge e ∈ E appears in the walk

of vehicle v ∈ V .

kv: Non-negative integer variable indicating the number of visits after which UAV v ∈ V is
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recharged.

ai,v =


1, if target i ∈ T is assigned to UAV v ∈ V ;

0, otherwise.
.

Objective:

The objective is to minimize the maximum travel time over that of all the UAVs.

Minimize max
v∈V

∑
e∈E

ce ∗ xe,v.

Constraints:

The sum of the number of visits made by each UAV to its assigned set of targets before it is

recharged at its depot is equal to k, which is the number of visits a single UAV with a charge

capacity equal to that of all the UAVs combined can make to the set of all targets.

∑
v∈V

kv = k. (5.1)

Every target is assigned to a single UAV.

∑
v∈V

ai,v = 1; ∀i ∈ T . (5.2)

The number of visits made by a UAV indexed by v before it is recharged at its depot is kv

∑
e∈E

xe,v = kv; ∀v ∈ V (5.3)

If a target is assigned to a UAV, then it is visited at least once by the UAV.

∑
e∈δ−({i})

xe,v ≥ ai,v; ∀i ∈ T , v ∈ V . (5.4)

The next two constraints ensure that if a target is not picked, the number of times the UAV en-
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ters/leaves the target is zero. However, we require two constraints two obtain a tighter bound on

this number, if the target is assigned to the UAV. The maximum number of times a UAV visits

a target assigned to it is no more than half the total number of visits made by the UAV before

recharging. ∑
e∈δ−({i})

xe,v ≤
1

2
∗ kv ∗ ai,v; ∀i ∈ T , v ∈ V . (5.5)

The number of times a UAV indexed v visits a target assigned to it is also no more than kv −∑
j∈T aj,v + 1. Heree,

∑
j∈T aj,v indicates the is the number of targets assigned to the UAV.

∑
e∈δ−({i})

xe,v ≤ (kv −
∑
j∈T

aj,v + 1) ∗ ai,v; ∀i ∈ T , v ∈ V . (5.6)

The number of times a UAV enters a target must be equal to the number of times it departs from

the target. In other words, the number of outgoing edges at a vertex must be equal to its number of

incoming edges. ∑
e∈δ−({i})

xe,v =
∑

e∈δ+({i})

xe,v; ∀i ∈ T , v ∈ V . (5.7)

Every target is visited at least once.

∑
v∈V

∑
e∈δ−({i})

xe,v ≥ 1; ∀i ∈ T . (5.8)

Route corresponding to any vehicle cannot have sub-tours over any subset of targets.

∑
e∈δ−(S)

xe,v ≥ ai,v; i ∈ S, S ⊆ T , ∀v ∈ V . (5.9)

For simplicity of the formulation, we restrict the number of visits made by a UAV before recharging

to be at most one less that twice the number of targets assigned to it.

2 ∗
(∑
i∈T

ai,v
)
− 1 ≥ kv; ∀v ∈ V . (5.10)
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6. SUMMARY AND FUTURE WORK

In this dissertation, we considered an optimal route planning problem that arises in persistent

monitoring missions. The problem involves finding a route for UAVs to persistently monitor a

given set of targets such that the sum of the maximum weighted revisit time over all the targets and

the penalty of wasting the residual charge in the batteries (powering the UAVs) is minimized.

The dissertation begins with the simplest case of monitoring a set of equally weighted targets,

one of which is a recharging station (depot), using a single UAV that has no curvature constraints.

Even for the simplest case, the problem is computationally challenging, and in fact, it is a general-

ization of the notorious Traveling Salesman Problem. A naive formulation developed for solving

the problem by modeling the revisit time for walks did not scale well with the problem size. The

main contribution of this dissertation is a rigorous analysis of the structure of optimal solutions

to the problem. The results of this analysis led to the development of efficient formulations and

algorithms to solve the problem expeditiously. With the help of these results, several other variants

of the problem were addressed.

The first extension was to the case in which the UAV has curvature constraints. In this variant,

the problem additionally involves finding the heading angles at which the UAV arrives/departs

at the targets for each visit. The aforementioned results characterizing the structure of optimal

solutions extend directly to this variant. However, despite the applicability of the above results,

finding optimal solutions to this problem remains challenging. For this variant, we provided two

formulations that provide both lower bounds and near-optimal feasible solutions to the problem.

Due to the computational difficulty involved in solving the formulation for larger instances, we

also developed two preliminary algorithms that are based on independently solving the sequencing

and the heading angle selection problem.

The next variant considered the case in which the targets were not accessible for the installation

of a recharging station (depot). The routes considered in this case are slightly different from the

earlier ones, as the UAV is allowed to visit the depot exactly once in a walk, specifically, after
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exhausting the charge in its batteries. Additionally, this variant also considers the time required for

recharging the UAV at the depot. So, the above results do not directly extend to this case. However,

based on the insights gained from the above variants and rigorous examination of optimal walks,

we presented certain conjectures on the asymptotic structure of optimal walks for this variant.

These conjectures were backed by extensive numerical simulations, and if proved to be true, they

lead to efficient formulations for solving the problem similar to the ILP for solving the PMP.

This variant can also be considered as a special case of the unequally weighted targets by

treating the depot as a target with very low priority. In this manner, the variant stands as a transition

point from the case of equally weighted targets to the general case of weighted targets. Thus, the

ideas developed in this dissertation can potentially be used to understand the general problem of

weighted targets. Towards this end, we performed some simulations with two different weights for

the targets, one of them being very high compared to the other. In other words, the simulations

contain certain very-high-priority targets and certain very-low-priority targets. The optimal revisit

times for an instance with 4 targets are plotted against the number of visits in Figures 6.1, 6.2

and 6.3. Figure 6.1 shows the plot for 1 high priority target, Figure 6.2 shows the plot for 2 high

priority targets, and Figure 6.3 shows the plot for 3 high priority targets.

Clearly, the optimal revisit time continues to be asymptotically periodic for the considered

weights. A similar pattern was observed for 24 other instances with 4 targets. However, it can

be seen that the minimum revisit time achievable is no longer the optimal TSP cost. In fact,

for the general case of arbitrary weights, the minimum revisit time can occur after an arbitrarily

large number of visits [16]. For this reason, the general case of arbitrary weights is extremely

challenging, and as of now, it remains unsolved.

Another challenging problem considered in this work was that of monitoring targets with mul-

tiple UAVs. In the presence of multiple UAVs, it is difficult not only to solve the route planning

problem, but also to model it. When a target is visited by multiple UAVs, it is difficult to keep track

of the time between revisits made by different UAVs. When multiple UAVs compete for recharging

at the same depot, their visits must be scheduled such that they do not coincide. Even when every
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Figure 6.1: Optimal revisit time plotted against the number of visits in the walk for an instance
with 4 targets. One of the targets in the instance has a very high priority compared to the others.
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Figure 6.2: Optimal revisit time plotted against the number of visits in the walk for an instance
with 4 targets. Two of the targets in the instance have a priority that is very high compared to the
other two.

target is allowed to be visited by a single UAV, it is challenging to find an optimal assignment of

targets to the UAVs. In this dissertation, based on the insights gained from the earlier cases, we de-
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Figure 6.3: Optimal revisit time plotted against the number of visits in the walk for an instance with
4 targets. Three targets in the instance have a priority that is very high compared to the remaining
target.

veloped a formulation to obtained feasible walks for multiple UAVs. However, the broad problem

of finding optimal routes in the presence of multiple UAVs remains open.
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APPENDIX A

ADDITIONAL PROOFS

Theorem 2.4.4: Given a walk W , let Wb be its binding subwalk, and S1, S2 be its subwalks

such thatW = S1 ◦Wb ◦ S2. LetW ′b be a closed subwalk obtained by shortcutting visits fromWb,

but retaining the last visits to targets. Let a closed walk W̄ be formed by concatenating W with

W ′b as follows: W̄ = S1 ◦Wb ◦W ′b ◦ S2. Then,R(W̄) = R(W).

Proof. Let target d be the terminus ofWb; then d is also the terminus ofW ′b, as shown in Figure

A.1. By definition, T (Wb) = RT (d,W) = R(W). SinceW ′b is formed by shortcutting visits from

Wb, we have T (W ′b) ≤ T (Wb) = RT (d,W). Now consider the closed walk W̄ = S1◦Wb◦W ′b◦S2.

One can see that RT (d, W̄) = max{RT (d,W), T (W ′b)} = RT (d,W) = R(W).

u

u
u

d

d

u

u

u

d

d

Wb W ′
b

u

d

u

u

u
d

u

u

d

uWb

W ′
b

u

Figure A.1: A closed walkW is shown on the left, with its binding subwalkWb colored yellow. A
subwalkW ′b (colored orange) is constructed fromWb, by shortcutting visits to target u (retaining
the last visit to u). Figure on the right shows the concatenated walk W̄ , as discussed in Theorem
2.4.4.
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It is now sufficient to show that for any target u 6= d, RT (u, W̄) ≤ R(W). Consider a decom-

position of W̄ with respect to u. If u is visited r times in W̄ , then there exists a decomposition

C(W̄ , u) = W̄1 ◦ · · · ◦ W̄r,

such that u is the terminus of W̄1, . . . , W̄r. According to the above decomposition, the revisit

time of u in W̄ can be expressed as RT (u, W̄) = max{T (W̄1), . . . , T (W̄r)}, and only one of the

following cases hold for every 1 ≤ i ≤ r:

1. W̄i is a closed subwalk ofW ,

2. W̄i is a closed subwalk ofW ′b,

3. W̄i is a closed subwalk ofW ◦W ′b, but is not a subwalk of eitherW orW ′b,

4. W̄i is a closed subwalk ofW ′b ◦W , but is not a subwalk of eitherW orW ′b.

In case 1, by definition, T (W̄i) ≤ R(W). Similarly, in case 2, we have T (W̄i) ≤ T (W̄ ′b) ≤

T (W̄b) = R(W). To show T (W̄i) ≤ R(W) for cases 3 and 4, we consider decompositions ofWb

andW ′b with respect to their last visists to u as discussed below.

Wb is decomposed with respect to its last visit to u as:

Wb = Sb1 ◦ Sb2 ,

such that the last visit to u inWb appears as the last node of Sb1 and the first node of Sb2 , and d is

the first node of the subwalk Sb1 , and the last node of the subwalk Sb2 .

Similarly,W ′b is decomposed with respect to the last visit to u as:

W ′b = Ŝb1 ◦ Ŝb2 ,
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such that the last visit to u inW ′b appears as the the last node of Ŝb1 , but the first node of Ŝb1 , and

d is the first node of Ŝb1 and the last node of Ŝb2 .

Since W ′b is formed by shortcutting visits from Wb, but retaining the last visit to u, we have

T (Ŝb1) ≤ T (Sb1), and T (Ŝb2) ≤ T (Sb2).

Consider case 3; W̄i has its initial node inW , and terminal node inW ′b. By construction,Wb

precedesW ′b in W̄ . Moreover, from Lemma 2.4.1, u is visited inWb. Therefore, the first node of

W̄i is inWb, and the last node of W̄i is inW ′b. So, as shown in Figure A.2, W̄i can be decomposed

with respect to d as:

W̄i = S̄i1 ◦ S̄i2 ,

where S̄i1 is a subwalk of Wb with u and d as its first and last nodes respectively, and S̄i2 is a

subwalk ofW ′b with d and u as its first and last nodes respectively.

By construction, S̄i1 = Sb2 , and S̄i2 is a subwalk of Ŝb1 . Thereby, we have T (S̄i1) = T (Sb2),

and T (S̄i2) ≤ T (Ŝb1) (note that equality holds whenW ′b is formed by shortcutting all visits to u ex-

cept for the last visit to it). Thereby, it follows that T (W̄i) = T (S̄i1)+T (S̄i2) = T (Sb2)+T (Ŝb1) ≤

T (Sb2) + T (Sb1) = T (Wb) = R(W).

Consider case 4; the first node of W̄i is inW ′b, and the last node of W̄i is inW . Then, as shown

in Figure A.3, W̄i can be decomposed with respect to d as:

W̄i = S̄i1 ◦ S̄i2 ,

where S̄i1 is a subwalk of W ′b with u and d as its first and last nodes respectively, and S̄i2 is a

subwalk ofW (or S2) with d and u as its first and last nodes respectively.

By construction, S̄i1 = Ŝb2 and T (S̄i1) = T (Ŝb2). Therefore, T (W̄i) = T (S̄i1) + T (S̄i2) =

T (Ŝb2) + T (S̄i2) ≤ T (Sb2) + T (S̄i2) ≤ RT (u,W) ≤ R(W). Note that the second inequality

follows from the fact that Sb1 ◦ S̄i2 is a closed subwalk ofW with u as its terminus.
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Hence, we proved that for any arbitrary node u 6= d, RT (u, W̄) ≤ R(W), and RT (d, W̄ =

R(W). So, by definition,R(W̄) = RT (d, W̄ = R(W).

d

u

u

u
d

u

u

d

uWb

W ′
b

u

Sb1

Sb2 Ŝb1

W̄i

Ŝb2

S̄i1 S̄i2

Figure A.2: A closed walk W̄ , and its corresponding subwalks as in case 3 of Theorem 2.4.4.

d

u

u

u
d

u

u

d

u

u W ′
b

Sb1

Sb2
Ŝb1

W̄i

Ŝb2

S̄i1

S̄i2

Wb

Figure A.3: A closed walk W̄ , and its corresponding subwalks as in case 4 of Theorem 2.4.4.

Therefore, we proved that RT (u, W̄) ≤ R(W). Since u is arbitraty, this is true for all the

targets, and we have, R(W̄) ≤ R(W). This together with R(W̄) ≤ R(W) proved above implies

R(W̄) = R(W).
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Lemma 2.4.5: Let a closed walk W̄ be formed by concatenatingW(k) with itself p times as follows:

W̄ :=W(k) ◦ · · · ◦ W(k)︸ ︷︷ ︸
p times

.

Then, for any node vr

• C(W̄ , vr) = C(W(k), vr) ◦ · · · ◦ C(W(k), vr)︸ ︷︷ ︸
p times

.

• RT (vr, W̄) = RT (vr,W(k)),

and thusR(W̄) = R(W(k)).

Proof. LetW = (v1, v2, . . . vk, v1) with vr being an intermediate node. Then,

W̄ = (v1, v2, . . . , vk︸ ︷︷ ︸
1

, v1, v2, . . . , vk︸ ︷︷ ︸
2

, . . . , v1, v2, . . . , vk︸ ︷︷ ︸
p

, v1).

Clearly, then

C(W̄ , vr) = (vr, vr+1, . . . , vk, v1, v2, . . . , vr−1︸ ︷︷ ︸
1

,

vr, vr+1, . . . , vk, v1, v2, . . . , vr−1︸ ︷︷ ︸
2

,

...

vr, vr+1, . . . , vk, v1, v2, . . . , vr−1︸ ︷︷ ︸
p

, vr)

= C(W , vr) ◦ C(W , vr) ◦ · · · ◦ C(W , vr)︸ ︷︷ ︸
p times

.

Let vr be visited l times inW . Then there exist closed subwalksW1,W2, . . .Wl with vr as a

terminus such that

C(W(k), vr) =W1 ◦W2 ◦ . . . ◦Wl.
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Hence,

C(W̄ , vr) =W1 ◦W2 ◦ . . . ◦Wl︸ ︷︷ ︸
1

◦

W1 ◦W2 ◦ . . . ◦Wl︸ ︷︷ ︸
2

◦

...

W1 ◦W2 ◦ . . . ◦Wl︸ ︷︷ ︸
p

.

By definition, we have

RT (vr, C(W̄ , vr)) = max
1≤i≤l

T (Wi), and

RT (vr, C(W(k), vr)) = max
1≤i≤l

T (Wi).

=⇒ RT (vr, C(W̄ , vr)) = RT (vr, C(W(k), vr)),∀vr ∈ T .

Hence, by definition,

RT (vr, W̄) = RT (vr, C(W̄ , vr)) = RT (vr, C(W(k), vr)) = RT (vr,W(k)), ∀vr ∈ T .

Therefore,

R(W̄) = R(W(k)).

Lemma 2.4.6: LetW(k) be a closed walk with n+ 1 ≤ k ≤ 2n− 1 visits, and d be a target that is

visited exactly once inW(k). LetW(k− 1) be a walk formed by shortcutting a revisit fromW(k).

Consider a closed walk W̄ formed by concatenatingW(k) for q (≥ 1) times andW(k − 1) for p

times as follows:

W̄ :=W(k) ◦ .. ◦W(k)︸ ︷︷ ︸
q times

◦W(k − 1) ◦ .. ◦W(k − 1)︸ ︷︷ ︸
p times

,

Then,
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C(W̄ , d) = C(W(k), d) ◦ · · · ◦ C(W(k), d)︸ ︷︷ ︸
q times

◦ C(W(k − 1), d) ◦ · · · ◦ C(W(k − 1), d)︸ ︷︷ ︸
p times

.

Proof. Let W(k) = (v1, v2, . . . vr . . . vk, v1), with v1 as the initial node and let vr = d. We may

constructW(k − 1) by shortcutting a node vs fromW(k), where 1 ≤ s( 6= r) ≤ k.

Consider the case s > r. Then,

W(k) = (v1, v2, . . . , vr−1, d, vr+1, . . . , vs . . . vk, v1),

andW(k − 1) = (v1, v2, . . . , vr−1, d, vr+1, . . .

, vs−1, vs+1, . . . , vk, v1).

Their cyclic permutations with d as the terminus are:

C(W(k), d) = (d, vr+1, . . . , vs . . . vk, v1, . . . , vr−1, d),

and C(W(k − 1), d) = (d, vr+1, . . . , vs−1, vs+1, . . . , vk, v1, . . . , vr+1, d).

Then,

C(W(k), d) ◦ · · · ◦ C(W(k), d)︸ ︷︷ ︸
q times

◦ C(W(k − 1), d) ◦ · · · ◦ C(W(k − 1), d)︸ ︷︷ ︸
p times

=
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(d, vr+1, . . . , vs, . . . , vk, v1, . . . , vr−1,︸ ︷︷ ︸
1

...

d, vr+1, . . . , vs . . . vk, v1, . . . , vr−1,︸ ︷︷ ︸
q

d, vr+1, . . . , vs−1, vs+1, . . . , vk, v1, . . . , vr−1,︸ ︷︷ ︸
1

...

d, vr+1, . . . , vs−1, vs+1, . . . , vk, v1, . . . , vr−1, d).︸ ︷︷ ︸
p

Now consider

W̄ :=W(k) ◦ .. ◦W∗(k)︸ ︷︷ ︸
q times

◦W(k − 1) ◦ .. ◦W(k − 1)︸ ︷︷ ︸
p times

= (v1, v2, . . . , vr−1, d , vr+1, . . . vs . . . vk,︸ ︷︷ ︸
1

...

(v1, v2, . . . , vr−1, d, vr+1, . . . vs . . . vk, v1)︸ ︷︷ ︸
p

(v1, v2, . . . , vr−1, d, vr+1, . . . vs−1, vs+1 . . . vk, )︸ ︷︷ ︸
1

...

v1, v2, . . . , vr−1,d, vr+1, . . . vs−1, vs+1 . . . vk, v1)︸ ︷︷ ︸
q

.
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A cyclic permutation of W̄ , with its first visit to d (circled) as the initial node can be written as,

C(W̄ , d) =

(d, vr+1, . . . , vs . . . vk, v1, . . . , vr−1,︸ ︷︷ ︸
1

...

d, vr+1, . . . , vs . . . vk, v1, . . . , vr−1,︸ ︷︷ ︸
q

d, vr+1, . . . , vs−1, vs+1, . . . , vk, v1, . . . , vr−1,︸ ︷︷ ︸
1

...

d, vr+1, . . . , vs−1, vs+1, . . . , vk, v1, . . . , vr−1, d).︸ ︷︷ ︸
p

Hence, it can be seen that

C(W̄ , d) = C(W(k), d) ◦ · · · ◦ C(W(k), d)︸ ︷︷ ︸
q times

◦ C(W(k − 1), d) ◦ · · · ◦ C(W(k − 1), d)︸ ︷︷ ︸
p times

.

The same can be shown for the case s < r, by considering a permutation of W̄ with the last

visit to d (shown in bold) as its initial node.
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