High Reliability Pistons for Reciprocating Compressors in High Wear Situations.

Andreas Brandl, John Ladd HOERBIGER Service Inc.

Houston, TX

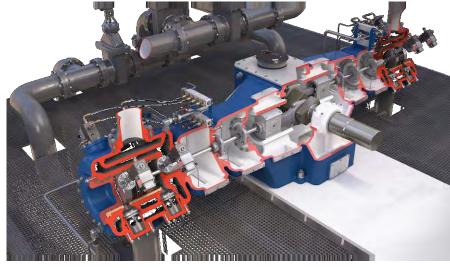
TURBOMACHINERY

& PUMP SYMPOSIA

Authors

Andreas Brandl is the Engineering Manager at HOERBIGER Service Inc. in Houston, TX. His work focuses on Reciprocating Compressors for the Oil & Gas and Chemical/Petrochemical industry. Before coming to Texas he was working in the corporate R&D department for HOERBIGER in Austria. Andreas earned his Master's degree in mechanical engineering at the Vienna University of Technology and his MBA at the Jones Graduate School of Business at Rice University.

John Ladd is a Solutions REE Engineer and Compressor Analyst at HOERBIGER Service Inc. in Houston, TX. His primary role is conducting comprehensive technical evaluations of reciprocating compressors to identify and quantify unit improvements in reliability, efficiency, and environmental soundness. Prior to his current role John earned his Master's in mechanical engineering at Colorado State University with a focus on legacy integral pipeline compressors.



1	Introduction
2	Problem Statement
3	Failure analysis
4	Recommended Changes
5	Summary

Introduction – Compressor Cylinder

Cut through a two-throw compressor

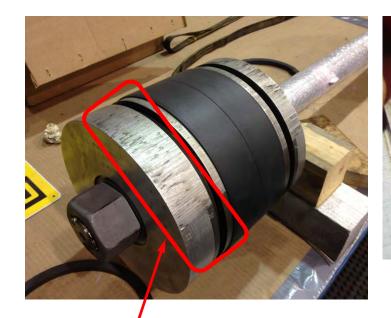
Six throw compressor

Piston rings: Sealing Rider bands: Weight

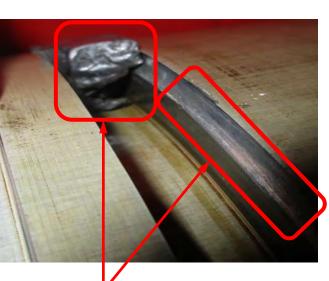
Cut through compressor cylinder

1	Introduction
2	Problem Statement
3	Failure analysis
4	Recommended Changes
5	Summary

Non-Lube Ethylene: Only 6 months run time

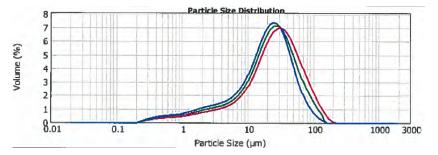

		NATE AND TRANS
- Security		· WW
	Contraction of the second of t	

Gas Composition	mol %
Ethylene+Acetylene	45.334
Methane	23.306
CO2	21.191
Oxygen	8.761
Nitrogen	1.293
Molecular Mass [kg/mol]	25.8
Isentropic Exponent []	1.25


Compressor Data (Non-Lube)	Stage 1
2 x Stage 1 dia [in]	16.5
2 x Stage 2 dia [in]	10
Stroke [in]	9
Piston Rod dia [in]	2.5
Speed [rpm]	440
Driver Power [hp]	500
Suction Pressure Stg 1 [psig]	14
Disch. Pressure Stg 1 [psig]	65
Suction Pressure Stg 2 [psig]	62
Disch. Pressure Stg 2 [psig]	255
Avg Piston Speed [ft/min]	660

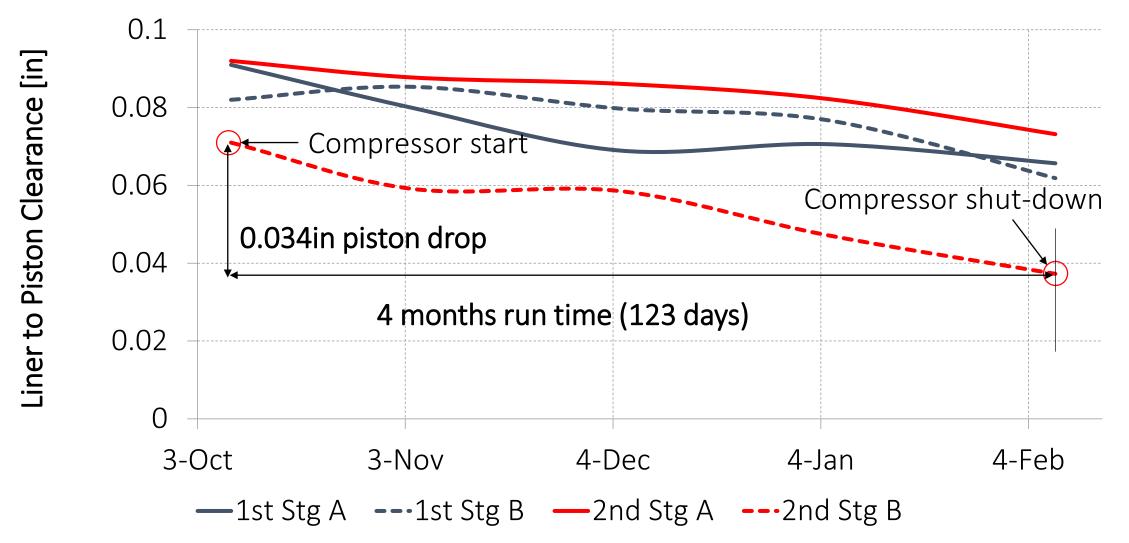
URBOMACHINERY & PUMP SYMPOSIA

Shut down due to rider band wear every 6 months.



Piston wear marks indicate that rider band wear is a reoccurring problem

Broken piston rings and worn piston ring groove


> Worn piston rings, particles embedded in rings

Particle size distribution

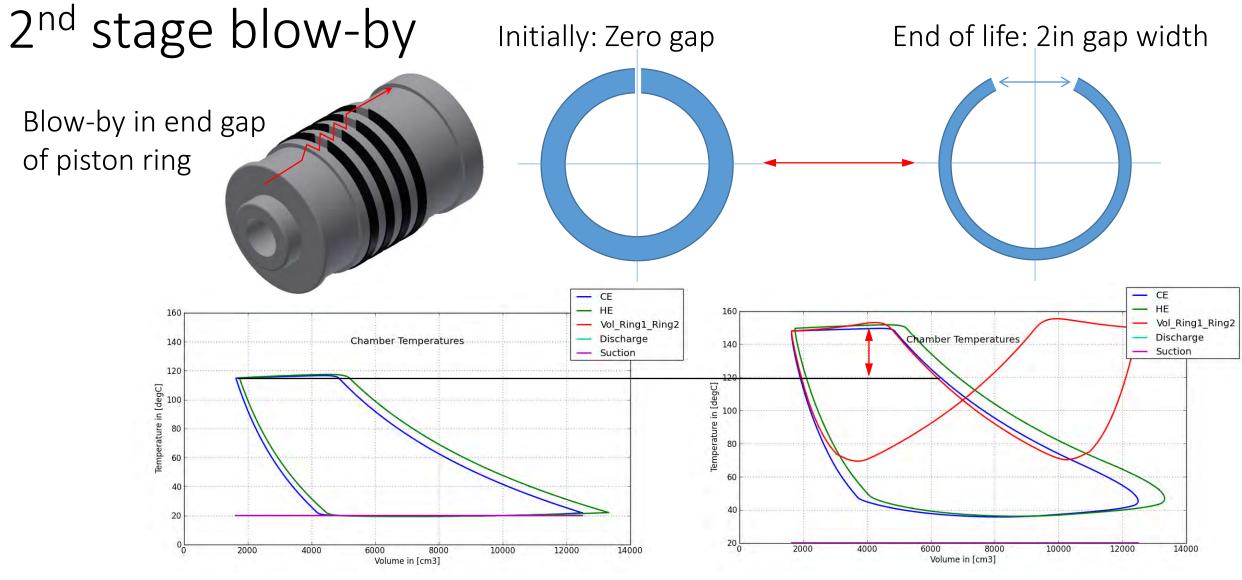
Max run time: 6 months

TURBOMACHINERY & PUMP SYMPOSIA

1	Introduction
2	Problem Statement
3	Failure Analysis
4	Recommended Changes
5	Summary

Bottle neck analysis

- 2.8psi contact loading (Stage 2 rider)
- Wear rate: 0.01in per month
- Average piston velocity: 660ft/min
- Wear coefficient: 0.528 [1e-6m/(bar m/s hr)]


Order of magnitude higher than what it should be

Explains the broken or even missing rings

	Contact pressure [psi]	Available wear thickness [in]	Wear Progress
Stage 1 Rider	2.6	0.083	30%
Stage 2 Rider	2.8	0.074	36%
Stage 1 Ring	9	0.4161)	21%
Stage 2 Ring	35.2	0.339 ¹⁾	100%

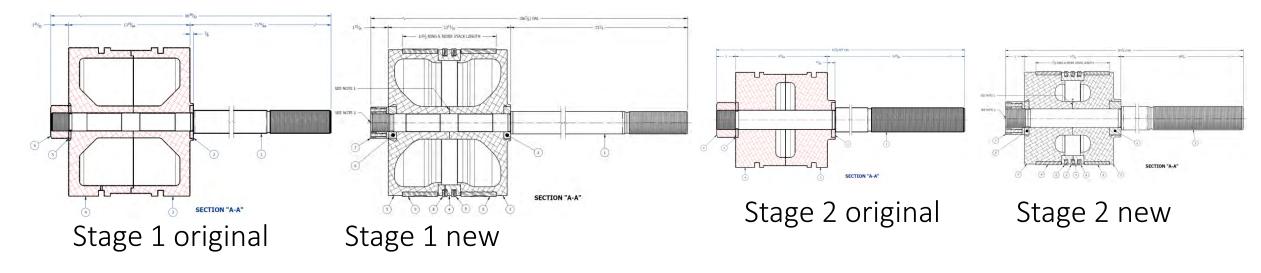
¹⁾ Min radial ring thickness is 2 x liner to piston gap

REOMACHINERY & PUMP SYMPOSIA

54°F Temp increase; 20% capacity losses

TURBOMACHINERY & PUMP SYMPOSIA

Summary of findings and recommendations


- Reason for shut-down: Rider band wear (1st and 2nd stage). Monitored via rod drop indicator.
- Ring inspection shows that rider bands and piston rings are wearing heavily.
- The wear coefficient is an order of magnitude higher than what it should be.
- Particles are present and can be found embedded in the rings.
- A blow-by analysis shows that the 2nd stage piston rings are the first ones to reach the wear limit. The impact of the blow-by is not extremely critical.

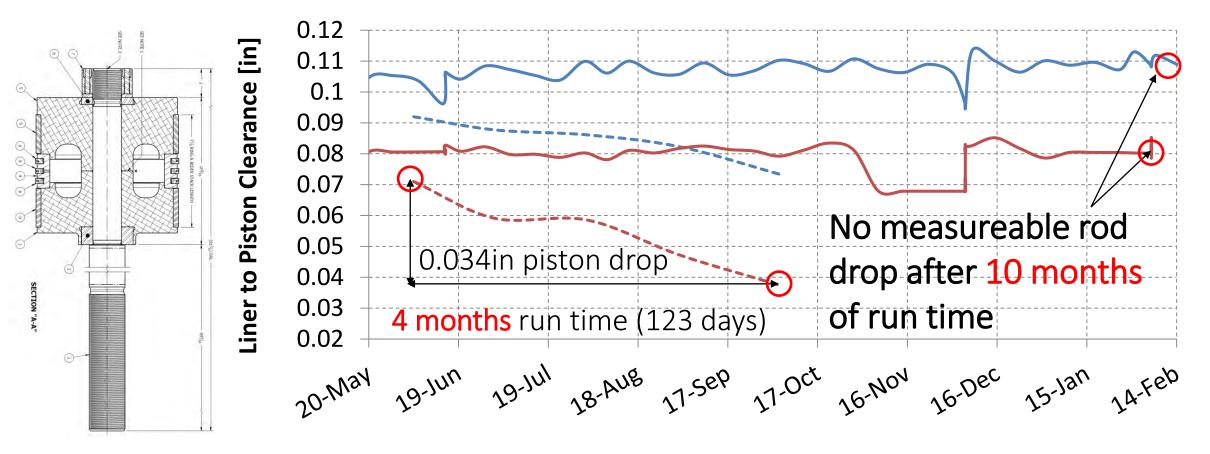
Problem	Solution			
Rider band wear	Reduce contact pressure, increase wear thickness, material			
Piston ring wear	Number of piston rings, piston ring design, material			
Piston groove wear	Piston material			
Particles	Outboard riders with faces grooves			

1	Introduction
2	Problem Statement
3	Failure Analysis
4	Recommended Changes
5	Summary

New piston design for optimized run-time

	Piston rings	# of rings	Rider rings	# of riders	Rider Location
Original (1 st and 2 nd stage)		2		2	Inboard
Upgraded (1 st and 2 nd stage)		2 (Stg 1) 3 (Stg 2)		2	Outboard

TURBOMACHINERY & PUMP SYMPOSIA


Expected impact of recommended changes

SYMPOSIA

	Contact pressure [psi]	Available wear thickness [in]	Wear Progress Original	Wear Progress Upgraded	Calculated increase of run time
Stage 1 Rider	1.5	0.083	30%	15%	201%
Stage 2 Rider	2.3	0.074	36%	26%	140%
Stage 1 Ring	4.5	0.416	21%	10%	200%
Stage 2 Ring	11.7	0.339	100%	33%	300%

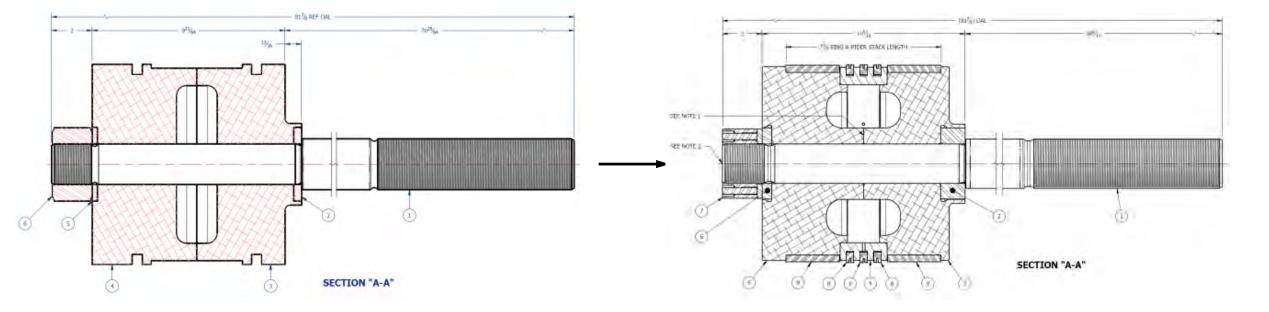
Impact of material change and susceptibility to particles is hard to quantify and is not included in these estimates

Performance of new design

--- 2nd Stg A Original --- 2nd Stg B Original — 2nd Stg A Upgrade — 2nd Stg B Upgrade

亏 TURBOMACHINERY & PUMP SYMPOSIA

1	Introduction
2	Problem Statement
3	Failure Analysis
4	Recommended Changes
5	Summary



Summary – Application of high performance pistons

- Lifetime can be maximized by optimizing all relevant parameters of pistons / cylinder rings:
 - Contact pressure.
 - Ring design.
 - Available wear thickness.
 - Number of rings.
 - Location of ring.
- Blow-by simulation is required to optimize the design parameters.
- For non-lube machines especially, a design optimization should be considered.
- Lifetime increase of a factor of three has been demonstrated.

Thank you for your attention

"Making pistons more reliable by quantifying blow-by and wear in the engineering phase!"

andreas.brandl@hoerbiger.com

