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ABSTRACT 

Novel Nanomaterial Ink Coating Method for Functional 3D-Printed Parts 

 

 

Alex Strasser and Aaron G. Moran 

Department of Chemical Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Micah J. Green  

Department of Chemical Engineering 

Texas A&M University 

 

 

Nanocomposites have many useful and functional properties, yet additive manufacturing has 

only recently begun to take advantage of many of these properties. This work details a 

nanomaterial ink coati ng method for 3D printer filament to produce functional 3D-printed parts. 

This method allows 3D-printed parts to have full functionality that is not possible with 

conventional 3D printing methods, only previously simulated by surface modification.. 

Additionally, since nanomaterials should be used in a cost-effective and property-enhancing 

manner, maximum loading parameters are shown to prevent “streaking” of carbon nanotubes in 

the part, which leads to property degradation and printer malfunction. Our method, which 

represents a large advance in additive manufacturing technology, is applicable to seemingly all 

nanomaterials capable of withstanding typical extrusion temperatures. 
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NOMENCLATURE  

 

PLA  Poly-lactic Acid 

 

CNT  Carbon Nanotube 

 

3D-Printing Three-Dimensional Printing 

 

AM  Additive Manufacturing 

 

FDM  Fused Deposition Modeling 
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CHAPTER I 

INTRODUCTION 

 

Nanocomposites have many useful and functional properties, yet additive manufacturing has 

only recently begun to take advantage of many of these properties. The practice of thermoplastic 

3D printing has been well-established and is constantly being expanded and explored.[1] 

Nanotechnology has also been recently exploding, piquing the interest of many research 

groups.[2] However, the combination of these two fields, functional nanomaterials 3D-printing, 

has not been as large, but is beginning to be realized.[3-5] In this thesis, we demonstrate a novel 

nanomaterial ink coating method for 3D-printer (fused-deposition modeling) filaments that 

maximizes use of nanomaterials while minimizing nozzle clogging issues. This method 

distributes nanomaterials as a thin coating around the filament, but not dispersed throughout the 

entirety of the filament, which is the typical nanofiller routine.[6] The typical nanofiller, such as 

silica beads, carbon fiber, carbon nanotubes, or graphene, uses much more nanomaterials by 

comparison and is more difficult to print due to nozzle clogging issues.[4, 7, 8] This coating 

takes advantage of the fact that the interfacial properties of the 3D-printed layers dominate the 

overall mechanical and electrical properties of the printed part.[9] This method localizes 

nanomaterials to filament interfaces which allow nanomaterial-induced functional properties that 

persist after printing. Therefore, this method can be used to realize multiple functional properties 

depending on the nanomaterial used. We examine the effects of ink (and film) composition on 

the coating and printing of nanomaterial-coated filaments and demonstrate that this works for a 

variety of nanomaterials. There is a tradeoff between (i) insufficient nanomaterial present for 

functional properties and (ii) too much nanomaterial affecting print quality. 
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Typically, the focus of the combination of 3D-printing and nanomaterials has been using 

nanofillers to either improve mechanical or electrical properties,[4, 7, 8, 10, 11] using 

nanomaterials such as carbon fiber, carbon nanotubes, metallic nanoparticles, or ceramic 

nanofillers. Nanocomposites can also be used for EMI shielding.[12] The nanofillers are spread 

(ideally) homogenously throughout the print filament, which is both more costly and ineffective 

compared to nanomaterials highly concentrated at the interfacial layers.[9] Localizing 

nanomaterials to layer interfaces minimizes cost and maximizes effective use of the 

nanomaterial. This localization is important because the desired functional property can often be 

realized with surface modification, which means that nanomaterials can be used only where 

needed to achieve the same desired effect. The weak point of 3D-printed parts is still the 

interfaces, independent of the nanofiller used. Interfaces dominate properties, so our method uses 

the interfaces to help maximize properties and use less material.[9] We show correct coating and 

printing parameters to optimize the process. We also show maximum nanomaterial loading 

parameter space for printing.  

Nanofillers are also notoriously difficult to print with. Using this novel ink coating method 

allows ease of printing that is not seen when a filament is filled with another material. This 

method may be applied to all nanomaterials capable of withstanding extrusion temperatures. This 

method allows the printing of functional 3D-printed parts, with properties post-print comparable 

to pre-print values.  
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CHAPTER II 

METHODS  

 

Ink Preparation 

Preparing a CNT-Polylactic acid (PLA) or other nanomaterial-PLA ink has been a standard 

process that our research group has done for multiple years. There are two important parameters 

to consider when making an ink: the solids concentration, defined as milligrams (mg) of solids 

per milliliter (mL) of solvent, and the weight percentage of nanomaterial. The first step we take 

in preparing an ink is to add PLA (Essentium Engineering Grade PLA, 1.75 mm) to a glass bottle 

with the proper amount of chloroform. Chloroform is used because of PLA’s great solubility in 

chloroform. The polymer solution is then placed in a 2.8 L Fischer Scientific bath Ultra-sonicator 

to expedite dissolution. After the PLA has completely dissolved, the CNTs are added to the 

solution. It is important to note that one needs to measure the amount of nanomaterial properly 

so that the desired functional properties are not lost during post-processing steps. Lastly, the 

solution is then placed in a Q-Sonica Q700 ultra-tip sonicator with a quarter-inch micro-tip and 

is then sonicated on a basis of 30 minutes for every 50 mL of solution. Because these are not 

colloidal dispersions, but are CNTs dispersed in a polymer solution, the CNTs can crash out of 

solution within a short period of time. We suggest to perform coating within 48 hours of the 

ink’s preparation. 
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Ink Coating 

 

Figure 1. Schematic of coating process. 

 

Once the ink has been made, the PLA filament is coated with the goal of printing a functional 

3D-printed part. As seen above in Figure 1, neat PLA filament is fed into a coating apparatus 

built in our lab. While feeding the filament from one side, it is then pulled out the other side at a 

slow, constant rate. Through this process the ink is exposed to a shear rate of approximately 400 

s-1 in order to replicate ink rheology measurements. However, problems may arise during the 

coating method. The main problem is the amount of time the filament is coated. If the filament is 

pulled out too fast, there is a possibility of having a non-uniform coating, resulting in a loss of 

the nanomaterial’s properties. In contrast to a fast draw rate, a slow draw rate could degrade the 

PLA. This is due to the fact that chloroform is present in the ink, which dissolves PLA. Because 

of this, longer exposure time to the ink would result in a coated, yet degraded piece of filament. 

It can be seen that the draw rate during the coating process affects the success of printing a 
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functional 3D-printed parts. Ultimately it was found that a draw rate of approximately 400 s-1 led 

to a uniform coating and lack of dissolved filament. For this paper, inks used for filament coating 

were at constant solids concentration, 50 mg mL-1, and varied weight percents. 

Ink Characterization 

Cup-and-bob rheology was performed on the inks using Anton-Paar MCI300 rheometer.  

Rheology was performed several inks varying solids content. Four milliliters of ink were 

measured and poured into the cup and loaded into the rheometer. The sample's potential 

hysteresis was erased by running a constant pre-shear of 400 s-1 for 30 seconds.  The sample was 

then engaged in logarithmic shear ramp from 0.1 s-1 to 400 s-1 with viscosity measurements being 

taken every 5 seconds for a series of 20 intervals.  

Printing Process 

3D-printing was done on a Stacker 3D-printer. PLA was printed at 250 C, with a heated bed 

temperature of 60 – 70 C.  Samples printed were built in the positive z-direction. The samples 

consisted of an extruded rectangle, with 1 layer around the edge and a hollow center. Figure 2 

shows the setup of the 3D-printer.    

 

Figure 2: Stacker 3D-printer setup. The print bed is a heated aluminum print bed. The setup is controlled by a laptop to the left. 
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(1) 

Electrical Characterization 

A four point probe was used to characterize the DC conductivity of both pre-printed filament and 

the printed 3D objects. The samples were placed on a four-point-probe stand (from Lucas Labs) 

and measured through a differential voltage system (Keithley 2000 digital multimeter, two 

Keithley 6514 electrometers with a current source from a Keithley 6221). Volume resistivity 

(inversely conductivity) was calculated through the given formula: 

𝜌 =
𝜋

ln 2
∙
𝑉

𝐼
∙ 𝑡 ∙ 𝑘 

where ρ is volume resistivity, V is V is the voltage measured in volts, I is the current measured in 

amps, t is thickness measured in meters, and k is a correction factor based on the ratio between 

the thickness of the sample to the probe spacing. It was found that this correction factor is 

approximately 1. Currently we use the thickness as calculated in Sweeney et al. [9] for both the 

pre- and post-print structures. 
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CHAPTER III 

RESULTS 

Ink Coating Analysis 

Cup and bob rheology confirmed the expected increase in viscosity with an increasing solids 

content of the filament. Figure 3 shows the shear thinning behavior of the ink as shear rate 

increases.  It makes sense that an increasing amount of polymer, PLA, would increase the 

viscosity of a PLA-CHCl3 solution.   

Figure 3: Solids content vs Shear Rate for Ink Rheology 

The rheology of the ink coating is important to the printability of the part as well as the 

functionality. The CNT wt% was kept consistent because CNT wt% typically has less flexibility 

of range in industrial applications. Material applications will normally require a specific CNT 
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wt% to get the desired functional properties, and the solids content of polymer composites can be 

more easily varied.  

Concerns with 3D-Printing 

There are many concerns we have observed in our study that affect the quality of the print, and 

we address several of these concerns subsequently. As with all chemical reactions, the rate of 

polymer degradation will increase with temperature as it follows an Arrhenius trend.[13], which 

is why printing above recommended temperatures causes problems. In the case of PLA, the 

degradation mechanism is primarily the hydrolysis of the ester linkage within the polymer.[13] 

As a result of this, degradation products may build up within the nozzle and eventually begin to 

clog it. Furthermore, these degradation products are more thermally resistant and will require a 

heavier cleaning process to remove them. This degradation problem applies to all polymers 

printed via fused deposition modeling. Clogging may also arise from nanomaterial flow within 

the coating. Ways to address clogging may be through using a blowtorch on the nozzle, a fiber 

on the range of 100-500 microns (depending on the size of the nozzle) to push out material, or 

cleaning filament (e.g. eSun Cleaning Filament). We also have observed inhomogeneous flow 

while printing our CNT-coated material. We believe this to be derived from two different issues: 

one resulting from a clogged nozzle, as previously discussed, and the other from high loadings of 

CNTs within the coating. The reason for this would be due to different melt rheological 

properties between the coating and the neat filament. This will be discussed later. Lastly, we 

found that bed adhesion is crucial when printing a part, for if the initial extruded material does 

not adhere to the bed then the entire print will not be successful. A heated bed greatly increases 

adhesion as it allows for polymer mobility rather than the freezing of chains as extruded material 

comes into contact with a cold bed. This is why most recommended bed temperatures are at or 
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above the Tg of the thermoplastic. In addition to a heated bed, we observed that laying a solution 

of polymer also aided with bed adhesion. This is a result of cohesion between printed polymer, 

PLA in our case, and the deposited PLA solution on the bed.  

3D-Printing Results 

Figure 4. Side-by-side comparison of 3D printed wall from neat PLA and CNT-coated PLA. a) neat PLA 3D-printed wall. b) 

CNT-coated PLA 3D-printed wall. c) and d) are images from optical microscopy of these 3D-printed walls. 

Figure 4 shows a comparison a neat PLA print and a 15 wt% CNT-PLA print. This figure shows 

that our nanomaterial ink coating method can successfully be used to print with nanomaterials 

without the negative “streaking” effects. Similar to our conductivity and coating analysis, we 

studied the effect of coated material during 3D-printing through the use of CNT-coated PLA. As 

seen in the conductivity analysis, decreasing CNT wt % in the coating results in lower filament 

conductivity. However, there is a tradeoff between nanomaterial loading and print quality. While 

the increase in CNT loading would make the printed part more conductive, the higher loading 
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would lead to significant differences between the melt rheological properties of the coating and 

the neat filament. Because of this, “streaking” will occur. We define streaking as inhomogeneous 

flow during the printing process that results in a non-uniform part. Consequently, streaking could 

result in uneven functionality within a part since some interfaces may have nanomaterial while 

others may not. 

Figure 5: Images a-d show examples of streaking throughout printed layers. These layers were printed using 10 wt% CNT-PLA 

filament and images were taken under a 5X optical microscope. These layers are 0.25 mm tall. 

Figure 5 shows examples of streaking in a 10 wt% CNT-coated filament. This occurred in the 

upper region of the printed part, but Figure 6 shows that inhomogeneities are present throughout 

the part, not just limited to “streaking.” This shows that printing is difficult with high weight 

percent CNT loadings.   



14 

Figure 6: Examples of minor inhomogeneities from printing high weight percent CNT-PLA. Examples a) and b) were printed 

with 10 wt% CNT-PLA filament.  

Overall, we show the capability of printing homogeneous structures using proper CNT loading 

and printing parameters, and we also show the dangers of high weight percent loading resulting 

in “streaking.” 

Electrical Characterization 

Pre-printed Filament Characterization 

Upon measuring the volume resistivity of the filament, conductivity was then plotted against 

CNT wt%. The weight percent’s in the coating varied from 2.5, 5, 10, and 15 wt%.  

Figure 7: DC conductivity of Pre-printed CNT-PLA filament. 

a) b) 
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Figure 7 shows that after 5 wt% the conductivity begins to plateau with increasing CNT wt

%. This is expected due to coated filament samples being above percolation, meaning that 

the addition of CNTs in the coating will not significantly change the conductivity.[14]  

Post-Printed Part Characterization 

Table 1: Post-print Conductivity of PLA 

Sample Neat PLA 5 wt% CNT-PLA 10 wt% CNT-PLA 15 wt% CNT-PLA 

Pre-Print 

Conductivity 

(S/m) 

N/A 1.13 x 102 1.24 x 102 1.58 x 102 

Post-Print 

Conductivity 

(S/m) 

2.78 x 10-8 6 x 10-6 7.5 x 10-6 0.47 

Table 1 shows a correct trend of increasing conductivity with increasing wt%, which is what we 

expected. These results compare successfully to the pre-print conductivity. However, there is a 

significant drop in conductivity between pre- and post-print. Brandon et al. showed that there 

should not be such a loss of conductivity, so more studies are needed to further quantify and 

explain this reduction in conductivity. However, the 15 wt% clearly shows the feasibility of 

making conductive 3D-printed parts with this ink coating method.  
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Figure 8: Post-print Conductivity of CNT-PLA Filament 

Figure 7 demonstrates the proper increasing trend of the printed part conductivity with increasing 

weight percent. Figure 8 shows a visual representation of both the pre- and post-print 

conductivity and their differences.  

Figure 9: Overall electrical conductivity of CNT-PLA filaments 

The graph shows orders of magnitude difference in the pre- and post-print conductivity of 

samples, which was not expected. More work is needed to identify and solve this problem. 
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CHAPTER IV 

FUTURE WORK 

Conductivity Change Analysis 

Our work did not demonstrate similar conductivity (same order of magnitude) between pre- and 

post-printed samples of CNT-PLA filament. However, it was shown in Sweeney et al. [9] that 

post-printed parts still had high conductivity, as proven by its continued microwave-

receptiveness. We aim to fix the issue either with the measurement itself or processing errors to 

maintain the same order of magnitude conductivity between pre- and post-printed samples. We 

hope to conclude exactly how 3D-print processing affects conductivity and other functional 

properties with our nanomaterial ink coating method. 

Melt Rheological Studies 

To properly predict the pattern of streaking that occurs during printing high nanomaterial loading 

filaments, we will need to gather data on melt rheological behavior of the CNT-PLA coatings. 

By comparing melt behavior of the coatings to neat polymer, we can determine whether CNT 

loadings truly affect melt behavior to cause such a problem like streaking. This study would 

allow us to further improve the printing process and discussion on streaking. 

Additional Nanomaterial Applications 

In addition to carbon nanotubes, this ink coating method is applicable to other nanomaterials. We 

plan to demonstrate the extension of this method to graphene, silver nanowires, and boron nitride 

nanosheets. Graphene can be used as a strain-sensor to be able to detect when a printed part 

reaches a critical strain. This possibility stems from graphene’s piezoelectric properties [15] that 

will be taken advantage of embedded in a 3D-printed part. With silver nanowires’ high 
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conductivity,[16] we should be able to print transparent, conductive traces based on the electrical 

conductivity of silver nanowires. 
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CHAPTER IV 

CONCLUSION 

A novel nanomaterial ink coating method was presented that maximizes nanomaterial use and 

reduces cost of achieving functional 3D-printed parts. We show maximal loading case 

parameters for a homogenous printed part as well as the consequences for exceeding these 

maxima. We demonstrate this “streaking” effect at 10 wt% CNT-coated filament. There is more 

work to be done, such as explaining the drop in conductivity, using melt rheological properties to 

predict printing behavior, and applying this method to other nanomaterials and other 

functionalities. 
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