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ABSTRACT 

The Mycobacterium tuberculosis twin-arginine translocation pathway. (May 2014) 
 

Meenakshi Manivannan 
Department of Molecular and Cellular Medicine 

Texas A&M Health Science Center 
 

Research Advisor: Dr. Siegfried Musser 
Department of Molecular and Cellular Medicine  

 

Mycobacterium tuberculosis (MTb) is the causative agent of tuberculosis. It is difficult to study 

biochemically because of its slow growth rate and its pathogenicity, which requires BSL3 

conditions. The twin-arginine translocation (Tat) pathway of MTb is essential for its growth and 

virulence1. The Musser lab has worked on the Escherichia coli Tat system for over 12 years and 

has developed numerous biochemical and biophysical assays. This expertise will now be applied 

toward the MTb Tat machinery. Our hypothesis is that the Tat system is a good drug target 

because it is essential for the growth and function of MTb. The proposed work seeks to express 

the MTb Tat proteins in E. coli to more easily functionally study the MTb Tat machinery. The 

major outcome of a successful project will be a functional in vitro MTb Tat transport assay that 

can be used for biochemical studies, and, in particular, for drug development.  
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NOMENCLATURE 

  

EDTA 

LB 

MTb 

IMV 

PCR 

SDS 

Ethylenediaminetetraacetic acid 
 
Luria-Bertani 

Mycobacterium tuberculosis 

Inverted Membrane Vesicles 

Polymerase Chain Reaction 

Sodium dodecyl sulfate 

TB Tuberculosis 

Tat Twin-arginine translocation 
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CHAPTER I 

INTRODUCTION 

 

Tuberculosis: an epidemic 

Tuberculosis is an airborne disease that predominantly affects the human respiratory system. 

About one-third of the world's population is infected with tuberculosis and in 2011, 9 million 

people became sick with tuberculosis worldwide (10,500 of which were reported in the United 

States)2. Most of the individuals afflicted by this disease reside in third world countries3. The 

Tuberculosis-causing bacteria Mycobacterium tuberculosis primarily targets the lungs; however, 

it is capable of spreading to the kidney, spine and even the brain. There are two primary types of 

tuberculosis-latent tuberculosis and tuberculosis disease. In latent tuberculosis, the tuberculosis 

bacteria live in the body but do not cause the individual to become sick because the individual’s 

immune system is capable of fighting off and preventing the bacteria from multiplying. The 

individual, at any time, can lose the ability to fight off the bacteria, causing full-blown 

tuberculosis disease. Tuberculosis disease is the state during which the individual’s body cannot 

control the growth of the multiplying tuberculosis bacteria. Individuals afflicted with this 

condition are typically infectious4. 

 

There has been an alarming increase in multi-drug resistance (MDR) strains of tuberculosis. 

Currently, MDR is defined as strains that are resistant to two out of the four most effective drugs 

(isoniazid and rifampin). Within the category of MDR strains, there is a subcategory known as 

extensively drug resistant (XDR) strains. These strains are not only resistant to isoniazid and 

rifampin, but also to fluoroquine and one out of three injectable anti-tuberculosis drugs such as 
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kanamycin, capreomycin and amikacin.  3.7% of individuals who are diagnosed with 

tuberculosis and 20% who have already been diagnosed with tuberculosis have MDR 

tuberculosis, which translates to about 630,000 individuals. Of all the individuals with MDR 

tuberculosis, approximately 9% have XDR tuberculosis. The alternatives for those with MDR 

strains are limited and are often harmful and require extensive procedures such as sputum culture 

conversion with 5 or 6 drugs. These treatment methods are much more expensive and time 

consuming than those with first-line drugs5. 

 

In recent decades, there has been a global decline in spending for research and the development 

of drugs. This is because of the limited economic payoff for pharmaceutical companies, which 

result in part from the high cost of research and clinical trials. There is little incentive to develop 

new drugs because of the drug resistance to new strains. Antibiotics are costly and time 

consuming to produce and by the time they are available to the market, there are few individuals 

to which the antibiotics will cater. Scientists are looking for drug targets that will work with 

multiple strains of TB. Third world countries are heavily affected, as they have limited resources 

to pay for drugs and have highly infected populations6. We believe that the TB Tat system is a 

target for new drug therapies.  

 

Twin Arginine Translocation Pathway 

The Tat pathway was first identified in the thylakoids of plant and was later found to be 

orthologous in gram-negative bacteria such as E. coli. The Tat pathway is said to be similar to 

the Sec pathway because they are both secretory pathways. Unlike the Sec pathway, the Tat 

protein transports folded proteins. In gram-negative bacteria, such as E. coli, the Tat system 
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usually secretes proteins to the periplasm; however in some cells, proteins can even be secreted 

extracellularly with the aid of other organelles. Also in E. coli, the Tat A proteins are said to be 

necessary for protein transport. The Tat system typically transports folded proteins, cofactors and 

virulence factors in numerous pathogens. The Tat system translocates proteins from the 

cytoplasm to the periplasm, the first step in secretion extra-cytoplasmically4. The Tat pathway is 

not found in any human cells and is known to secrete virulence factors4.  

 

E. coli is a good vector to incorporate in the MTb Tat proteins because of the similarity in amino 

acid sequence identity and similarities in shapes of the hydropathy plots. Figure 1 shows the 

amino acid sequence identities between MTb and E. coli Tat systems. The TatA, TatB, and TatC 

proteins have 29%, 32%, and 36% sequence identity, respectively. Figure 2 shows hydropathy 

plots that are similar in shape for Tat A, B and C. The similarities in amino acid positions make 

E. coli a good vector to express the MTb Tat proteins. Figure 3 shows the differences between 

the E. coli Tat system and the MTb Tat system. The order of the Tat proteins is different in E. 

coli versus in MTb. The MTb Tat proteins are controlled by two promoters, one for Tat A and 

Tat C and the other promoter controls the expression of Tat B. The MTb Tat proteins we have 

chosen to express in E. coli are controlled by two T7 promoters that can be induced with IPTG.  
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Figure 1: Amino Acid Sequences for TatA, TatB and TatC from E. coli and MTb.   
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Figure 2: Hydropathy plots for TatA, TatB and TatC from E. coli and MTb.  
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Figure 3: Gene organization of the Tat proteins in both MTb and E. coli. 

 

The Musser lab has substantial experience in the Tat transport and is ideally suited to develop an 

in vitro transport assay for the MTb Tat system. In particular, the Musser lab developed the first 

efficient in vitro Tat transport assay that uses overexpressed precursor protein. This assay has 

been used to determine the energetic requirements for transport, to characterize lipid and 

translocon-bound forms of the precursor protein, and to determine real-time interaction kinetics 

between the precursor protein and the Tat-BC receptor complex. This expertise will now be 

applied for the MTb Tat system1,6,8. 
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Objectives 

Based on work performed in Dr. Musser’s laboratory by multiple people, including myself, 

during the past summer, all three MTb Tat proteins (TatA, TatB and TatC) were expressed in E. 

coli.  We discovered that the Tat protein is partially complemented in E. coli. We consider two 

explanations for only the partial complementation: (i) The E. coli pre-SufI was not recognized by 

the MTb Tat machinery due to differences in signal peptide recognition; or (ii) MTb Tat proteins 

were not fully functional.  

  

Our goal is to build a tractable model system for in vitro biochemical study of the MTb Tat 

system. Since the MTb Tat system at least partially functionally replaces the E. coli Tat system, 

we know that it is at least partially active in E. coli. To test whether the incomplete 

complementation arises from substrate recognition (issue 1 above), we will use a model MTb Tat 

substrates BlaC and chimeric substrate plcB-BlaC, which are efficiently transported by the MTb 

Tat system9. A second explanation for the poor complementation observed thus far (issue 2), i.e., 

that the MTb Tat system is not fully functional in E. coli, is more challenging to address since 

numerous explanations are possible. The first issues we will address, if necessary, are: i) which 

of the three Tat proteins are inactive; and ii) can we increase functional incorporation by 

overexpression of E. coli SecYEG and/or YidC.  
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CHAPTER II 

METHODS 

 

Preparation of Strains.  E. coli strains CJMS2 pTB Tat ACB 28a, CJMS2 Tat ABC pET 28a, 

CJMS2 pET 28a have been described earlier (Reference 15). Overexpression cultures were 

grown in Luria-Bertani (LB) medium at 37°C supplemented with appropriate antibiotics6. Figure 

4 shows diagrams of the plasmids we constructed and used. 
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Figure 4: Plasmid Construction. 
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Creation of Inverted Membrane Vesicles (IMVs).  Creation of IMVs followed the protocol 

described earlier in reference 8. Cells were grown in LB medium overnight. E. coli strain cells 

were grown at 34°C whereas MTb strain cells were grown at 37°C. Cells were then subcultured 

and grown for around 5 hours. Cultures were then harvested by centrifugation at 4,000 g for 9 

minutes at 4°C. The pellet was then suspended in a buffer A (composed of Magnesium Sulfate, 

polyvinylpyrollidine, mannitol, DNase, RNAse, KCl, Tricine, lysozyme, EDTA, 1 mM MgSO4, 

0.5% polyvinylpyrrolidine, 450 mM mannitol, 2 mM DTT, 50 µg/ml DNase I, 10 µg/ml 

RNAase, 1 mM KCl, 100 mM Tricine, pH 7.5 with 0.4 mg/ml lysozyme, 0.5 mM EDTA, and 

protease inhibitors). This mixture was then cooled on ice for approximately 20 minutes and was 

then sedimented via centrifugation at 4,000 g for 10 minutes and resuspended in the Buffer A. 

The mixture was then passed through a French Pressure cell at high pressure to produce IMVs. 

The solution was centrifuged as explained above to remove unlysed cells and cell debris. The 

supernatant fraction was loaded over a 2.3M sucrose cushion and membranes were collected by 

ultracentrifugation at 108,000 g for 90 min at 4°C.  The IMVs collected from the interface were 

diluted with IMV dilution buffer in 1:3 dilution and then were centrifuged in an ultracentrifuged 

as described above for 30 min.  The IMV pellet was resuspended and finally stored in IMV 

storage buffer (1 mM KCl, 1 mM MgSO4, 2 mM DTT, and 10 mM HEPES, pH 7.0 with 2.2 M 

sucrose at -80°C for long-term storage in 50% glycerol)8.   

 

Light Microscopy. The morphology of E. coli stains in the absence and presence of the MTb Tat 

pathway was examined using light microscopy. The cells were viewed at a 100 X magnification 

using a Zeiss Axiovert 200 M microscope. 
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Western Blotting. The incorporation of MTb Tat proteins into the E. coli inner membrane was 

determined by Western blot analyses against MTb TatA, TatB and TatC using rabbit derived 

polyclonal antibodies. Goat polyclonal anti-rabbit IgG-HRP conjugate was used as the secondary 

antibody8. The cells were fractionated via centrifugation using ultracentrifuged at 50,000g for 10 

minutes to obtain portions of the total cell extract, cytoplasm, and inner membranes. 

 

Outer Membrane Integrity Assays. Sensitivity assays were used to determine the functional 

complementation of the E. coli Tat pathway by the MTb Tat pathway10. Sensitivity to EDTA and 

SDS were determined by culturing E. coli CJMS2 (pTB-Tat-ACB-28a) and CJMS2 (pET28a) on 

a soft agar plate in the presence of various concentrations of EDTA and SDS. Filter paper disks 

with various concentrations of EDTA and SDS were placed on the agar plate overnight.  

 

Overexpression of Tat Machinery. The Tat machinery was expressed in CJMS2 (pTB-Tat-

ACB-28a) in LB media with various concentrations of IPTG for a 5-hour growth period. 

Samples were then collected (1 ml/OD) and centrifuged for 4 minutes at 9,000 g. A Western blot 

was performed using the samples against MTb TatA and TatB antibodies. An IPTG induction 

time course was then performed by inducing strain with 100 µM IPTG. Samples were taken at 

one-hour increments for 9 hours (1 mL/OD). A Western blot was performed using the samples 

against MTb Tat A and Tat B antibodies. 
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In vivo Transport of B-lactamase. This sensitivity assay was performed in a similar manner to 

the EDTA and SDS sensitivity assays however we used the plasmids pPlcB-BlaC and pBlaC in a 

compatible plasmid. The E. coli CJMS2 (ΔTatABCDE) was used as a host while doing this 

assay. Disks are dipped in various concentrations of Ampicillin and grown on a lawn of E. coli 

culture. Cells are then grown at 37°C overnight.  

 

pre-SufI Binding Assay. The concentration of bound E. coli authentic Tat precursor pre-SufI 

(fluorescently labeled to Atto 565 dye) to E. coli and MTb Tat machinery were determined by 

performing a binding assay using IMVs. Standard in vitro translocation assays used a 35-µl 

reaction volume containing 50 nM pre-SufI and 4 mM NADH in Translocation Buffer (TB; 5 

mM MgCl2, 50 mM KCl, 200 mM sucrose, 57 µg/ml BSA, 25 mM MOPS, and 25 mM MES, 

pH 7.0). Solutions were prewarmed at 37°C for 5 min before the addition of IMVs (to a typical 

final concentration of A280 = 5). After a 30 min incubation at 37°C, reactions were quenched in 

an ice bath for 2 min. Samples were digested with 0.73 mg/ml proteinase K for 40 min at RT. 

Digestions were quenched with 68 mM PMSF, diluted twofold with 2× Gel Buffer (4% SDS, 

10% glycerol, 0.04% bromophenol blue, 0.4% β-mercaptoethanol, 10 M urea, and 200 mM Tris, 

pH 6.8), and incubated in a boiling water bath for 10 min. Samples were centrifuged briefly at 

16,000 g, and then were resolved by 8% SDS-PAGE with known standards. Gels were 

electroblotted onto PVDF membranes and immunoblotted with SufI antibodies and examined 

using a Bio-Rad phosphorimager12. 
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CHAPTER III 

RESULTS 

 

Project Design.  The first series of experiments performed was to see if the Tat system was 

functional in the E. coli vector. We performed a microscopy to show the role of the Tat proteins 

in the growth and cell division of the CJMS2 strain. We then progressed where the Tat proteins 

were located within E. coli and then progressed to show the role of Tat proteins in maintaining 

the cell wall integrity. We finally progressed to the most important issue, which is to find out if 

two authentic MTb Tat precursors BlaC and PlcB-BlaC can be efficiently transported by the 

MTb Tat pathway expressed in E. coli. 

 

Role of Tat Protein Incorporation within Inner Membrane. Tat machinery is imperative for 

the growth and development of cells1. As shown in Figure 5, in the absence of Tat machinery, 

cells grown are long, thin, unhealthy and not well divided. In the presence of Tat machinery, 

cells are well divided and appear healthier. This shows that Tat machinery is essential for the 

growth and development of bacteria. 
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Figure 5. Complementation of the E. coli Tat machinery by the MTb Tat pathway. 

 

 

Incorporation of Tat Proteins in the Inner Membrane: Cellular fractionation indicates that 

the MTb Tat proteins are incorporated into the inner membrane. Figure 6A shows the results 

obtained during the summer of 2013 and 6B shows the results obtained during the spring of 

2014. Figure 6B shows that Tat A and B were localized in the cytoplasm whereas Tat C was 

found in the inner membrane. This contradicts what was found previously. Further studies must 

be performed for conclusive results.  

 

 

 

 

 

 

 

 E. coli CJMS2 (pET 28a) E. coli CJMS2 (pTB-TatACB-28a) 
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T- Total Cell Extract 
L- Total Lysed Cell Extract 
S- Supernatant of Lysed Cell 
C- Cytoplasmic Fraction  
IMV- Inverted Membrane Vesicles (Inside out inner membranes) 

Figure 6. Western Blotting was used to confirm the presence of all three 
MTb Tat proteins within the cytoplasmic membrane (IMV lane). 
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EDTA SDS Sensitivity Assay: Some of the amodases transported by the Tat system, AMIA and 

AMIC, are involved in cell wall maintenance14.  Thus, Tat deficient strains have higher cell 

envelope permeability13, and thus are more susceptible to chemical reagents such as EDTA and 

SDS. Figure 7 shows that in the presence of Tat Machinery, colonies are formed in moderate 

amounts of EDTA; however, in the absence of Tat machinery, colonies are not formed. Figure 8 

shows that in large concentrations of EDTA and SDS, colonies cannot be formed, regardless of 

the presence of Tat machinery. This experiment was successful in showing that the MTb Tat 

machinery was at least partially functionally in E. coli because of the growth of colonies in the 

presence of ampicillin. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: EDTA Sensitivity Assay 

Tat - Tat + 
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IPTG Induction of Tat Machinery. The T7 promoter controls the Tat proteins incorporated 

into E. coli. IPTG can induce the T7 promoter, which allows that translocation of Beta 

Lactamase translocation across the inner membrane. As seen in Figure 9, a high concentration of 

IPTG causes the strain to not divide as well and inhibits growth rather than optimize it. The 

colony forming units are indicative of cell growth in the presence of IPTG.  A western blot 

analysis determined that the minimum concentration of IPTG required for induction is 100 µM. 

A western blot analysis also determined that strains must be grown at least 4-5 hours for ideal 

concentration of cell growth (Figure 10).  

 

 

Figure 8: Effect of SDS and EDTA on Growth 
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Figure 9: Effect of IPTG Induction on Cell Growth 

Figure 10: Time Course of IPTG 
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PreSufI Binding Assay. We have performed experiments to see if the E. coli Tat authentic 

precursor preSufI could be translocated across the membrane. We found that preSufI was better 

transported with authentic E. coli Tat machinery rather than the MTb Tat machinery (Figure 11). 

For this reason, we have decided to repeat the assay with purified BlaC protein, which is 

authentic to the MTb Tat system.  
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Figure 11: preSufI Binding Assay 
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CHAPTER IV 

CONCLUSIONS AND DISCUSSION 

 

The purpose of this experiment was to develop a tractable model organism in which we can 

characterize the MTb Tat system. The Tat machinery is essential for bacterial cell growth and 

development. Since we have previously discovered the MTb Tat system to partially function in 

E. coli, we have tried to develop a fully functional and complementary model. After discovering 

that the MTb Tat machinery was successfully expressed into E. coli, we determined the ideal 

concentration and time period for IPTG induction of the T7 promoter so that the Beta lactamase 

can be secreted into the inner membrane. In the presence of BlaC and Tat machinery, the cell 

becomes resistant to antibiotics such as ampicillin. This is imperative in showing that the Tat 

machine is functional after having been incorporated into E. coli.  

 

Currently we are working on growing strains that will transport BlaC and show resistance to 

ampicillin. This assay is performed in a manner similar to the EDTA and SDS sensitivity assays. 

Future plans of the lab include creating strains that incorporate both E. coli and TB Tat proteins 

to see if any of the TB Tat proteins is not functional in E. coli. We are also currently purifying 

the BlaC precursor so that we can use it for binding and protein transport assays. 

 

The CJMS2 strain we are working with can sometimes be problematic. Although the CJMS2 

strain has an IPTG inducible T7 promoter sequence, we are having trouble in testing function of 

the MTb Tat proteins when incorporated. For this reason, we will try to clone the MTb Tat 

proteins in the MC4100 wild type strain. This strain will have an arabinose induced promoter 
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sequence. The MTb Tat proteins will be arranged in a similar manner to the E. coli Tat proteins 

to hopefully yield a more successful transport assay.  

 

Creating a functional assay will serve as a target for drug testing. Inhibiting the TB Tat 

machinery will stop the growth and development of these cells. As the strains of tuberculosis 

become increasingly pathogenic, it is imperative that scientists for the drugs that are currently on 

the market. The TB Tat machinery serves as a potentially successful drug target.  
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