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ABSTRACT 

 

 Injury to cotton, Gossypium hirsutum L. (Malvaceae), by a complex boll-feeding 

sucking pests has increased substantially with the widespread adoption of transgenic Bt 

(Bacillus thuringiensis)-cotton. The resulting insecticide use decline has likely released 

plant bugs and stink bugs (Hemiptera: Miridae and Pentatomidae, respectively) formerly 

controlled by broad-spectrum insecticides. Injury from these bugs has been shown to cause 

decreased fruit retention, boll injury, lint and seed loss. Loss can be further magnified 

when bacterial boll rot is introduced during probing and feeding activity from insects. 

Several studies have shown boll injury to cotton by stink bugs and verde plant bug, and 

management guidance is available for a mixed complex of stink bugs and verde plant bug; 

however, less is known concerning the comparative boll injury, yield decline, and disease 

potential for these species and the degree they can be managed collectively or separately. 

 Therefore, the general goal of this dissertation was to characterize and compare the 

degree of boll injury, cotton boll rot, and yield depression across multiple insect species 

and cotton developmental periods to generate species-specific economic injury levels, and 

explore the impact of at least one environmental factor, water availability, on economic 

injury levels. 

  To do this, I first characterized species-specific boll injury and disease impacts on 

yield. This was achieved by plant caging experiments (Chapter II and III). Secondly, I 

determined the competency of the boll-feeding sucking pest, Creontiades signatus (verde 

plant bug) and its ability to acquire, transmit, and retain a cotton boll rotting bacteria 
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(Chapters IV), to complement past studies of stink bugs as cotton boll rot vectors. Finally, 

I determined the effect of photoperiod on the within-plant distribution of the boll-feeding 

sucking pest, Acrosternum hilare (green stink bug) (Chapter V). 

The results showed that boll injury and rot was apparent across a range of boll ages 

and water stress. Despite this variability, I found that subsequent yield decline attributed 

to insect feeding was seen primarily under water limiting conditions when plants were 

infested at mid-bloom. The green stink bugs were primarily distributed in the upper 

portions of the plant on first position bolls during the day. The results support the use of a 

common stink bug EIL where multiple species occur and a separate EIL for verde plant 

bug. 
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CHAPTER I  

INTRODUCTION 

 

Injury to cotton, Gossypium hirsutum L. (Malvaceae), by boll-feeding sucking 

pests has increased substantially with the widespread adoption of transgenic Bt (Bacillus 

thuringiensis)-cotton cultivars targeting lepidopteran pests (Allen et al. 2008, Luttrell et 

al. 2015). The resulting insecticide use decline has likely released plant bugs and stink 

bugs (Hemiptera: Miridae and Pentatomidae, respectively) formerly controlled by broad-

spectrum insecticides (Lu et al. 2010). Consistent with higher numbers of these pests, 

cotton boll injury due to plant bug and stink bug feeding has increased substantially during 

the last two decades in the southern United States, including Texas (Greene et al. 2001, 

Hopkins et al. 2009, Luttrell et al. 2015). 

A complex of boll-feeding sucking bugs in south Texas is composed of three 

representative stink bug species and one mirid species. Injury from the green stink bug, 

Acrosternum hilare (Say), and brown stink bug, Euschistus servus (Say) (Hemiptera: 

Pentatomidae), has been shown to cause decreased fruit retention, lint staining, lint loss, 

and seed loss (Greene et al. 2001). Loss can be further magnified when bacterial boll rot 

is introduced during probing and feeding activity from stink bugs (Medrano et al. 2015). 

Soybeans grown along the Texas Gulf Coast harbor the redbanded stink bug, Piezudorus 

guildinii (Westwood) (Hemiptera: Pentatomidae), which causes economic injury in 

soybean (Vyavhare et al. 2014). Redbanded stink bugs may move into developing cotton 

as soybean pods begin to senesce and injure cotton similar to other stink bugs (JPG, 



 

2 

personal observation). Historically, the southern green stink bug, green stink bug, and 

brown stink bug are known to be economic pests of cotton (McPherson et al. 2000). 

The verde plant bug, Creontiades signatus (Distant) (Hemiptera: Miridae), is a 

significant cotton pest in south Texas. Armstrong et al. (2013) demonstrated that the verde 

plant bug readily injured bolls <12-d-old from the first day of bloom (white flower), 

whereas older bolls incurred little or no injury in a no-choice test. When given a choice of 

varied-age squares and bolls on a branch, Brewer et al. (2012a) found that older squares 

and young bolls were preferred, which decreased boll retention and increased subsequent 

yield decline. Verde plant bug is the predominant mirid species of sucking bugs that occur 

throughout the Texas Gulf Coast cotton growing region (Brewer et al. 2012b). A related 

species, Creontiades distant (Stal) (Hemiptera: Miridae), is known to injure pre-bloom 

and early bloom cotton in Australia (Khan et al. 2006). 

Verde plant bug is also associated with cotton boll rot (Brewer et al. 2012b) and is 

a suspected vector of the disease based on similar insect-disease relationships previously 

documented for stink bugs (Medrano et al. 2007 and 2009). Armstrong et al. (2009) 

isolated bacteria associated with verde plant bug feeding injury on cotton bolls. Medrano 

et al. (2016) identified the bacteria Serratia marcescens as a boll rot pathogen isolated 

from bolls fed upon by verde plant bug. 

Serratia marcescens is an aerobic, motile bacterium widely recognized (Bull et al. 

2010) as an opportunistic, gram-negative bacillus, nosocomial pathogen classified as a 

member of the division klebsiella-enterobacter-serratia, which belongs to family 

Enterobacteriaceae. Serratia marcescens had been associated with cucurbit yellow vine 
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disease (Lukezic et al. 1982, Zhang et al. 2003) and confirmed pathogenic to a limited 

number of plant families. More recently Serratia marcescens has been shown pathogenic 

to plants infecting across multiple families spanning cucurbits, sunflower, alfalfa, and 

peppers (Bruton et al. 2003, Ignatov et al. 2016, Gillis et al 2014). 

Serratia marcescens was discovered by Bartolemeo Bizio, a young Italian 

pharmacist, in 1819 when he identified it as a cause of the bloody discoloration on 

cornmeal mush. Bizio, demonstrated that the "blood" was caused by a living organism, 

although at the time believed to be a fungus (Merlino 1924). He named the organism in 

honor of the Italian physicist, Serratia who invented the steam boat and marcescens, 

derived from the Latin word "to decay" since Bizio observed that the pigment deteriorated 

quickly, dissolving from a light-pink material into a purplish-red, viscous form. The ability 

to form pigment (prodigiosin) is characteristic of S. marcescens (Krieg et al.1984). The 

intensity of which ranges from dark red to pale pink, depending on the age of the colonies 

and its function still remains largely unknown but is thought to be a byproduct of other 

processes. More recently Tanaka et al. (2004) showed temperature-dependent prodigiosin 

production for a select strain. This novel activity was correlated to higher environmental 

temperatures, S. marcescens seems to suppress its own growth and the growth of other 

bacteria when exposed to elevated temperatures. 

Serratia marcescens has a predilection for growth on foodstuffs, especially of the 

starchy variety, where the pigmented colonies are easily mistaken for drops of blood 

(Klein, E., 1894, Gaughran et al. 1968). As early as the sixth century B.C., Pythagoras had 

noted the appearance of a bloody coloration on foodstuffs. Serratia marcescens was 
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originally considered to be an innocuous, nonpathogenic, saprophytic water organism, and 

it was often used as a biological marker because of its easily recognizable red colonies 

(Whalen, T.A., 1970, McEntegart et al. 1949, Burket et al. 1937). Serratia marcescens is 

widespread in the environment and the organism has been isolated from water, soil, 

sewage, foodstuffs and animals (Krieg et al.1984) but it is a rare cause of human disease. 

However, under experimental conditions, it is pathogenic for mice, rats, guinea pigs, 

hamsters, turtles and dogs (Hejazi et al. 1997). The Serratia species are occasionally 

recognized as a cause of hospital acquired infections such as urinary tract infections, 

respiratory tract infections and wound infections (Su et al. 2003, Khanna et al. 2013, Us 

et al. 2017). In the mid 1800’s the organism was referred to as Monas prodigiosus, or the 

"miracle bacterium," which was later modified to Bacillus prodigiosus. (Breed et al. 

1924). By the 1920's revision in the taxonomy of bacteria as well as the desire to recognize 

the work of Bizio eventually lead to the adoption of the original name proposed by Bizio, 

In the bacterial nomenclature, Serratia marcescens is now outranked in age only by the 

genera vibrio (1773) and polyangium (1809) making among the oldest recognized bacteria 

in the world (Yu 1979). 

Currently, management for verde plant bug in south Texas assumes that the boll 

rot pathogen is present and the insect is capable of transmitting the pathogen. The potential 

of economic damage is evaluated by checking for signs of internal feeding, including 

opening green bolls during field monitoring activities (Greene et al. 2001, Brewer et al. 

2013) The ability to breach the carpel wall may be associated with mouthpart morpholgy 

(Esquivel 2016) and possibly other factors. Variablity associated with boll rot disease 
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transmission is much less studied, limited primarily to the southern green stink bug Nizara 

viridula, (Medrano et al.2007). 

Unfortunately, early detection of cotton boll rot infection caused by S. marcescens 

and possibly vectored by verde plant bug is limited since there is an absence of external 

infection symptoms on immature green bolls, and likely no visible internal symptoms soon 

after infection as seen by boll rot bacteria vectored by stink bugs (Medrano et al. 2007). 

Known disease symptoms from cotton boll rotting bacteria introduced by stink bugs 

include discolored lint and necrotic seed that can be observed only when infected green 

bolls are cross-sectioned at least two weeks after initial infection or once mature bolls 

open (Medrano et al. 2007). If transmission potential can be authenticated, then insecticide 

use decision-making can be revisited and adjusted based on transmission and retention 

risk. 

In general, boll injury to cotton by stink bugs and the verde plant bug has been 

well documented, and management guidance is available for a mixed complex of stink 

bugs (Greene et al. 2001) and verde plant bug (Brewer et al. 2013). But less is known 

concerning the comparative boll injury and yield decline potential for these species and 

the degree they can be managed collectively or separately. Furthermore, plant water stress 

may change the sensitivity of cotton to injury by the sucking bug complex as seen for 

Lygus sp. (Hemiptera: Miridae) on cotton (Brewer et al. 2016). This is especially relevant 

in dryland growing conditions where seasonal rainfall greatly fluctuates, such as is often 

the case in south Texas (Brewer et al. 2016). 
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The management of stink bug infestations on cotton currently relies on use of 

insecticides when action or economic thresholds are exceeding based on visual sampling 

methods. Methods available include collecting green bolls (2.5 cm in diameter) for internal 

injury assessment (Toews et al. 2009) and sampling for stink bugs using a drop cloth 

(Reay-Jones et al. 2009), sweep net (Outward et al. 2008), or beat bucket (Pyke et al. 

1980). The sweep net has been found to be more effective at sampling nymphs, while the 

drop cloth was more effective at sampling adults (Reay-Jones et al. 2009). Conversely, the 

beat bucket has been found to effective at sampling all life stages, but efficiencies in its 

use are affected by plant growth stage. Sampling strategies that displace insects for density 

estimates are further complicated by the remarkable attachment ability of the stink bug 

with higher attraction forces (>40) greater than its body weight (Voigt et al. 2019). 

Monitoring plants for both detection and density estimation of stink bugs requires 

intensive and time-consuming sampling that may be affected by time of day and associated 

changes in within-plant distribution. Failure to account for such variation may affect the 

accuracy of detection and population density estimation efforts, with potentially negative 

management consequences particularly if numbers are underestimated. Biologists have 

used a wide variety of mark-release techniques to study animal distribution and movement 

(Southwood 1978). Rice et al. (2015) demonstrated that marking stink bugs with 

fluorescent powders and using UV LEDs light sources was a simple, nondestructive and 

effective technique for detecting otherwise difficult to observe aspects of stink bug 

distribution during nighttime field studies. Cabrera et al. (2016) reported the use of 
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markers of various colors and found no fitness cost or toxicity associated with the marking 

agent but noted variability in ability to observe different colors. 

 

Dissertation Research and Relevance 

 

The chapters in this dissertation detail insect derived boll damage, boll rot, and 

yield loss of boll-feeding stink bugs and plant bugs of South Texas. Three main objectives 

were entertained: (1) characterize and compare the degree of boll injury, cotton boll rot, 

and yield depression across multiple insect species and cotton developmental periods to 

generate species-specific economic injury levels (2) assess the verde plant bug’s capacity 

to introduce boll rot and, (3) assess the photoperiod-specific distribution of the green stink 

bug within in individual cotton plants.  

 The research presented in this dissertation aims to compare plant response from a 

complex of boll-feeding sucking bugs on cotton, and its broadest context to consider if 

comprehensive management is feasible. All of these species used occur along the Gulf 

coast region of Texas. Therefore Chapter 2 of this dissertation was to characterize and 

compare the degree of boll damage, boll rot, and yield depression as a result of feeding 

activity of three primary stink bugs and a plant bug occurring in Texas, and to calculate 

economic injury levels based on yield—insect density relationships (Pedigo et al. 1986, 

Benedict et al. 1989). Based on the results, the extent to which the members of this species 

complex can be managed individually versus jointly was considered. Caging studies were 

used to measure whole plant injury and yields (whole plant cages) under plant bug and 
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stink bug feeding pressure side-by-side to further define the critical period of insect 

management based on crop developmental stage. Whole plant cages will be used to 

characterize the effects of multiple insect species at various densities and period of bloom 

on yield. Further, I investigate the water limiting/ non-water limiting contrast through 

experimental manipulation of soil moisture by irrigation. The role of plant water-deficit 

stress on plant response and insect activity by species and density will be used to 

reevaluate economic injury levels based on yield-insect density relationships.  

 Chapter 3 investigates and compares fruit retention, boll injury, boll rot, and lint 

decline as a result of feeding activity on individual bolls varying in age. The same species 

were considered in this study as used in Chapter 2 in order to examine the extent that boll 

age sensitivity to feeding and species differences contribute to differences seen in boll 

injury, boll rot, and yield decline when cotton was infested at mid-bloom and late-bloom 

on whole plant cage experiments of Chapter 2. Single boll cages were stocked with 

individual species and were used compare side-by-side across multiple species and 

multiple boll ages. Here, boll injury can be fully characterized using single boll caging. 

In Chapter 4 I investigated verde plant bug disease transmission cycle as a model 

system to investigate pathogen transmission and retention over time to expand the work 

that showed an association of verde plant bug with bacterial rot (Chapter 2). The specific 

objectives of this study were to confirm pathogenicity and transmission of bacteria 

recovered from bolls fed on by verde plant bug exposed to the bacteria Serratia 

marcescens and examine disease retention as verde plant bug feeds on multiple bolls in a 

field setting. Verde plant bugs exposed and non-exposed (uninfected) were placed on 
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individual cotton bolls. These same insects were re-caged on new clean bolls to investigate 

if the vectors continue to transmit disease. After 2 weeks of boll growth in the field to 

allow disease development a portion of the bolls were inspected and photographed. 

Verification of boll rot pathogen introduction by the bugs and measurement of the severity 

of boll rot were done at the USDA ARS Cotton Pathology Unit in College Station using 

molecular techniques. 

The remainder of the research presented here is aimed at improving the accuracy 

and precision of insect detection methods. In Chapter 5, I conducted mark-release-observe 

experiments using a combination of fluorescent marking techniques and blacklight-aided 

visual observations to determine where (within-plant distribution) stink bugs infesting 

cotton are observed and whether these patterns are affected by photoperiod when sampling 

occurs. Field collected stink bugs were individually marked or left unmarked with 

fluorescent Sharpie markers and were released into interior experimental plots nested 

within a larger contiguous and uniform cotton fields at peak bloom and monitored to 

characterize the within-plant vertical distribution of the green stink bug. Stink bugs where 

monitored visually during day and night, aided by a handheld blacklight for nighttime 

observations. Within-cotton distribution insect observations were categorized by (i) plant 

section (i.e. bottom, middle, and top branches), (ii) fruiting positions and leaf surface, and 

(iii) concealed or exposed position on floral bracts and leaf surfaces. Specifically, I tested 

whether stink bugs were distributed evenly across plant sections, fruiting positions and 

leaf surfaces, and concealed or exposed orientation within in those categories, during 

daytime and nighttime observations. 
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Together, the objectives of this research will add to the overall understanding of 

plant response to a boll-feeding sucking bug complex in Texas cotton. Understanding the 

injury and disease potential for these important pest species has direct relevance to 

effective pest management. The second chapter documents species-specific susceptibility 

of cotton to members from the boll-feeding complex using whole plant caging experiments 

to generate economic injury levels. 

The third chapter documents species-specific susceptibility of varied-aged cotton 

bolls to select members of the boll-feeding complex using single boll caging experiments. 

Comparisons of fruit retention, boll injury, boll rot, and subsequent yield depression were 

used to further support experiments from Chapter 4. The fourth chapter used the verde 

plant bug and a known cotton boll rot pathogen as a model system for exploring disease 

transmission and retention. The fifth and final chapter explored the photoperiod-specific 

distribution of the green stink bug within in individual cotton plants. Taken together, these 

chapters combine elements of applied field ecology, modern vector competency 

experiments, and contemporary approaches to integrated pest management to provide a 

well-rounded examination of plant response to a complex of boll-feeding sucking bugs 

occurring on cotton. 
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CHAPTER II  

PLANT RESPONSE AND ECONOMIC INJURY LEVELS FOR A BOLL FEEDING 

SUCKING BUG COMPLEX ON COTTON* 

 

Introduction 

 

Injury to cotton, Gossypium hirsutum L. (Malvaceae), by boll-feeding sucking 

pests has increased substantially with the widespread adoption of transgenic Bt (Bacillus 

thuringiensis)-cotton cultivars targeting lepidopteran pests (Luttrell et al. 2015). The 

resulting insecticide use decline has likely released plant bugs and stink bugs (Hemiptera: 

Miridae and Pentatomidae, respectively) formerly controlled by broad-spectrum 

insecticides (Lu et al. 2010). Consistent with higher numbers of these pests, cotton boll 

injury due to plant bug and stink bug feeding has increased substantially during the last 

two decades in the southern United States, including Texas (Greene et al. 2001, Hopkins 

et al. 2009, Luttrell et al. 2015). 

A complex of piercing-sucking boll-feeding insects in south Texas is composed of 

three representative stink bug species and one mirid species. Injury from the green stink 

bug, Acrosternum hilare (Say), and brown stink bug, Euschistus servus (Say) (Hemiptera: 

Pentatomidae), has been shown to cause decreased fruit retention, lint staining, lint loss, 

and seed loss (Greene et al. 2001). Loss can be further managed when bacterial boll rot is  

*Reprinted with permission from “Plant response and economic injury levels for a boll feeding sucking bug 

complex on cotton” by Glover, J.P., M.J. Brewer, M.N. Parajulee, and G.A. Sword. 2019. Journal of 

Economic Entomology, In Press. Copyright [2019] by James P. Glover. 
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introduced during probing and feeding activity from stink bugs (Medrano et al. 2015). 

Soybeans grown along the Texas Gulf Coast harbor the redbanded stink bug, Piezudorus 

guildinii (Westwood) (Hemiptera: Pentatomidae), which causes economic injury in 

soybean (Vyavhare et al. 2014). Redbanded stink bugs may move into developing cotton 

as soybean pods begin to senesce and injure cotton similar to other stink bugs (JPG, pers. 

obs.). Historically, the southern green stink bug, green stink bug, and brown stink bug are 

known to be economic pests of cotton (McPherson et al. 2000). 

The verde plant bug, Creontiades signatus (Distant) (Hemiptera: Miridae), is a 

significant cotton pest in south Texas. Armstrong et al. (2013) demonstrated that the verde 

plant bug readily injured bolls <12-d-old from the first day of bloom (white flower), 

whereas older bolls incurred little or no injury in a no-choice test. When given a choice of 

varied-age squares and bolls on a branch, Brewer et al. (2012a) found that older squares 

and young bolls were preferred, which decreased boll retention and increased subsequent 

yield decline. Verde plant bug is also associated with cotton boll rot (Brewer et al. 2012b) 

and is a suspected vector of the disease based on similar insect-disease relationships 

previously documented for stink bugs (Medrano et al. 2009). Verde plant bug is the 

predominant mirid species of sucking bugs that occur throughout the Texas Gulf Coast 

cotton growing region (Brewer et al. 2012b). A related species, Creontiades distant (Stal) 

(Hemiptera: Miridae), is known to injure pre-bloom and early bloom cotton in Australia 

(Khan et al. 2006). 

In general, boll injury to cotton by stink bugs and the verde plant bug has been 

well documented, and management guidance is available for a mixed complex of stink 
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bugs (Greene et al. 2001) and verde plant bug (Brewer et al. 2013). But less is known 

concerning the comparative boll injury and yield decline potential for these species and 

the degree they can be managed collectively or separately. Furthermore, plant water stress 

may change the sensitivity of cotton to injury by the sucking bug complex as seen for 

Lygus sp. (Hemiptera: Miridae) on cotton (Parajulee et al. 2018). This is especially 

relevant in dryland growing conditions where seasonal rainfall greatly fluctuates, such as 

is often the case in south Texas (Brewer et al. 2016). 

The objectives of this study were to compare fruit retention, boll injury, boll rot, 

and yield as a result of feeding activity of three primary stink bugs and a plant bug 

occurring in Texas, and to calculate economic injury levels based on yield—insect density 

relationships (Pedigo et al. 1986, Benedict et al. 1989). Based on the results, the extent to 

which the members of this species complex can be managed individually versus jointly 

was considered. 

 

Materials and Methods 

 

Insect Collection and Pre-Infestation Cotton Management 

Adult insects used for infesting caged whole cotton plants were collected from 

several wild and cultivated host plants, including cotton, sorghum, soybean and several 

seepweeds, Suaeda spp. (Chenopodiaceae) (Armstrong 2010). Insects were collected 

using a modified leaf blower that displaces insects from vegetation and transfers them into 

an inflatable sock that fits on the opposite end of the blower’s fanned nozzle, known as a 
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KISS-sampler (keep it simple sampler) (Beerwinkle et al. 1997). Verde plant bugs were 

collected in 2014 and 2015 from a mixture of seepweeds and grain sorghum from milk 

through hard dough stages (Gerik et al. 2003), and in 2016 on soybean, flowering through 

full pod development (Bean and Miller 1998). Stink bugs were collected from various pod 

filling stages of soybean. Insects were captured 24 h before infestation on caged cotton 

plants during each of the three years. All insects were held individually in plastic portion 

cups for a 24 h fasting period, and inspected to confirm that only healthy adults were used 

for infesting the caged cotton. 

The experiment was conducted in 2014, 2015, and 2016 at the Texas A&M 

AgriLife Research and Extension Center farm in Corpus Christi, TX. Phytogen 499 WRF 

(Dow AgroSciences, Indianapolis. IN) cotton seed was planted in early May on 91-m rows 

and 96-cm row centers at a field site of 0.4 ha, resulting in a plant stand of 77,800 plants 

per ha (31,500 plants per acre). In 2014, the region experienced extreme drought (192 mm 

of rainfall from April 15 to August 1, 23% of the average long-term rainfall for the Texas 

Coastal Bend region [National Weather Service 2017]), and in 2015 the region 

experienced abundant rainfall providing ample soil moisture for cotton production (622 

mm of rainfall from April 15 to August 1). In 2016, the region experienced moderate 

drought (324 mm of rainfall from April 15 to August 1). Rainfall estimates were acquired 

from the Corpus Christi airport weather station located ca. 6.75 km from the experiment 

(National Weather Service 2017). In 2016, plots were subdivided into water limiting 

(dryland) and irrigated (non-water limiting) sections to mimic dryland and abundant 

rainfall conditions, respectively. Cotton plots were grown without irrigation except in 
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2016 as noted above. Thiamethoxam insecticide (Centric, Syngenta Crop Protection, 

Greensboro, NC) at labelled rates was used ca. every 10 days to maintain plots pest free 

before and after infestation. Thiamethoxam application was discontinued 14 days prior to 

infesting with experimental insects, and application was restarted at the conclusion of the 

infestation period. Other agronomic practices were normal for the region (Morgan 2018). 

 

Whole Plant Cage Experimental Design and Insect Infestation 

Insects were released into caged cotton for a 1-week period to characterize the 

effects of species and insect density on fruit retention, cotton boll injury, cotton boll rot, 

and yield. In any year, the experimental design was a species by infestation rate factorial 

with a minimum of six replications conducted separately at one or two blooming periods 

and under dryland (water limiting) conditions in 2014, non-water limiting conditions in 

2015, and manipulated dryland and irrigated conditions in 2016 (Table 2.1). Mid-bloom 

was characterized as 10-12 NAWF on the first (mainstem) fruiting position (Kerby et al. 

2010), and late-bloom was characterized as 7-9 NAWF. In each year, groups of four whole 

cotton plants were enclosed by large organza fabric cages (152 by 122 cm, ~240 micron 

mesh, JoAnn’s Fabrics, Hudson, OH) at bloom. Two days before each infestation, plants 

were sprayed with a short-residual U.V.-sensitive pyrethrin insecticide (0.02% by volume, 

Bonide products, Oriskany, NY) to remove aphids and other small insects that may 

contaminate the caged cotton. In 2014, an additional un-caged non-infested control 

treatment of four plants was established and set out randomly with the rest of the 
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treatments per the design. Data from this treatment and the caged non-infested treatment 

in 2014 and 2015 were paired to test for a caging effect. 

 

Table 2.1. Field Experiment Conditions. Key experimental and environmental conditions of the field 

experiments in 2014-2016. 
Year Bloom Perioda Irrigation Water Availabilityb Speciesc 

2014 Mid No 192 mm Pg, Es, Ah 

2014 Late No 192 mm Pg, Es, Ah 

2015 Mid No 622 mm Cs, Es, Ah 

2015 Late No 622 mm Cs, Es, Ah 

2016 Mid No 324 mm Cs, Es 

2016 Mid Yes 665 mm Cs, Es 

Common infestation rates across all years and experiments; infestation rates of 0 (control), 0.25, 1, and 2 adult bugs per plant; infestation 

duration was one week. 
a Cotton phenological stage when infestation occurred. Mid-bloom was characterized as 10-12 NAWF and late-bloom was 
characterized as 7-9 NAWF. 
b Rainfall estimates were acquired from the Corpus Christi airport weather station located ca. 6.75 km from the experiment (National 

Weather Service 2017); in 2016 irrigated plots received a total of 665mm of water during the growing season (341mm from 
supplemental irrigation). 
 c Species used to infest cotton. Pg = Piezudorus guildinii (redbanded stink bug); Es = Euschistus servus (brown stink bug); Ah = 

Acrosternum hilare (green stink bug); Cs = Creontiades distant (verde plant bug). 

 

 

 

The species used and water stress conditions varied by year depending on 

availability (Table 2.1). In 2014, the brown stink bug, green stink bug, and redbanded stink 

bug were used for mid-bloom and late-bloom infestations under (water limiting) dryland 

conditions. In 2015, the verde plant bug, brown stink bug, and green stink bug were used 

to infest cotton at mid-bloom and late-bloom under abundant rainfall (non-water limiting) 

conditions. In 2016, the brown stink bug and verde plant bug were used to infest cotton 

only at mid-bloom in two separate experiments planted side-by-side to simulate both 

dryland and irrigated conditions. Irrigated plots received a total of 68.5 cm of water during 

the growing season (458 mm from supplemental irrigation and 227 mm rainfall from April 
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15 to August 1). Above ground irrigation tape and the clay content of the soil allowed 

effective soil moisture management in the field. 

Cages were infested with adults of each species individually at rates of 0, 0.25, 1, 

and 2 adult insects per plant (i.e., 0, 1, 4, and 8 bugs per cage, respectively) for 7 days. 

Infestation rates were based on density estimates of boll-feeding insects associated with 

boll injury and economic injury in commercial fields (Brewer et al. 2013). The 7-day 

infestation period was chosen to reflect a commercial field were insects might go 

undetected during weekly scouting. At the conclusion of the infestation period a sampling 

of caged treatment plants (n > 10) were inspected for active insects, which were observed 

inside all cages inspected. All caged treatments were then treated with thiamethoxam 

insecticide on day 7 post-infestation and again on day 14 to eliminate non-target pest 

damage and remnant treatment insects including nymphs emerging from eggs laid by the 

adults. 

 

Plant Injury and Yield Measurements 

Cages remained in place until harvest, allowing bolls and cotton boll rot introduced 

by these insects to mature. Hand harvest occurred August 15 (113d-emergence to harvest) 

in 2014, August 1 (119d-emergence to harvest) in 2015, and August 17 (117d-emergence 

to harvest) in 2016. At harvest, all of the four individual experimental plants from each 

cage were mapped using PMAPplus (Anderson et al. 2018) in all three years to record 

fruit retention, boll injury, and cotton boll rot. Boll injury was rated using a boll injury 

scale ranging from 0 (representing no locule injury) to 1-3 (representing a progression of 



 

25 

seed and lint degradation occurring in 1-3 locules, respectively) to 4 (representing severe 

degradation of seed and lint in all locules) (Lei et al. 2003). Mean percent fruit retention 

per plant was calculated for sympodial branches for each species and infestation rate. All 

bolls retained on the plant were counted, open bolls were rated, and green bolls were 

placed in a commercial dryer until fully dried and opened. The boll interior was thoroughly 

inspected for symptoms of cotton boll rot (Medrano et al. 2009). Bolls were scored on 

presence or absence of cotton boll rot visually. Yield data were estimated by cotton lint 

weights. To obtain lint weight, seed cotton was ginned by hand using a 10-saw laboratory 

cotton gin (Continental Eagle Crop., Prattville, AL). Weights were recorded per plant. 

 

Data Analysis and Economic Injury Level (EIL) Calculation 

Percent fruit retention and bolls with symptoms of cotton boll rot were transformed 

by arcsine square-root transformation of the proportion before analysis because of the 

wide range of values encountered (Neter et al. 1985). Back transformed means were 

presented for ease of interpretation. To assess the overall caging effect, yields from the 

no-cage control were compared with the uninfested caged controls in 2014 and 2015. 

Analysis of variance (ANOVA) was used, conforming to a randomized complete block of 

two treatments (uncaged control and uninfested caged control) (Proc GLM, Littell et al. 

1991). Based on the lack of differences in 2014 and 2015 and a past study showing no 

yield differences using the same method (Brewer et al. 2013), caging effects were not 

further considered (data not presented). 
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All measurements taken from caged treatments were used to examine treatment 

effects by using an ANOVA for a two-way factorial (species and infestation rate) (Proc 

GLM, Littel et al. 1991) including the following specifications. The species and infestation 

rate factors were set as fixed effects; therefore, the residual was set as the error term for 

the main effects and the infestation rate-species interaction (Neter et al. 1985). Four 

infestation rates were used to consider linearity and other higher order polynomial trends 

across the range of the values. Standard coefficients for linear, quadratic, and cubic 

orthogonal contrasts (Neter et al. 1985) were applicable because there were few missing 

data points and no missing treatment combinations. If the interaction was significant, the 

trend analyses were conducted separately by species. If the interaction was not significant, 

the same contrasts were used to evaluate trends common across all species (Quinn and 

Keough 2002). A Tukey’s mean separation test (α = 0.05) was used to compare results 

among species averaged across the infestation rates when the species main effect was 

significant and the interaction was not (Neter et al. 1985).  

Field trials conformed to a three (stink bugs species) by four (infestation rate) 

factorial in 2014 (drought year, mid-bloom and late-bloom infestations), a three (2 stink 

bugs, 1 plant bug) by four (infestation rates) factorial in 2015 (wet year, mid-bloom and 

late-bloom infestations), and a two (1 stink bug, 1 plant bug) by four (infestation rates) 

factorial under dryland and irrigated conditions in 2016 (mid-bloom infestation only) 

(Table 2.1) (Littell et al. 1991). Measurements were analyzed separately for the two 

blooming periods in 2014 and 2015 and the two water conditions in 2016 because the 

experiments were conducted separately. 
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Analyses using first (simple linear), second (quadratic), and third (cubic) order 

regression equations (Neter et al. 1985) were used to consider yield response-insect 

density relationships for significant results of the lint weight measurement. Equations were 

estimated by species depending on the significance of the infestation rate-species 

interaction. For linear relationships, y = mx + b, were y was the yield response in lint 

weight per plant, x was the insect density in bugs per plant, b was the y-intercept, and m 

was the slope in lint weight per bug per plant. Because significant linear relationships 

across infestation rates were detected, an economic injury level was calculated by using 

the formula of Pedigo et al. (1986), EIL = C/(V*I*D*K), where C was the expected cost 

of control, V was the expected market share value of the cotton lint, and K was the 

expected proportion of the population to be controlled. Variables C, V, and K were set as 

constants of US$18.53 per ha (US$7.50 per acre), US$1.90 per kg (US$0.86 per lb.), and 

0.9 (90% expected control). I was plant injury per insect, and D was yield loss per plant 

injury unit. Lint weight loss per bug per plant from the experiment was used to estimate 

the product I*D, and was estimated from the slope m, converted to lint weight (hectare 

basis) per bug by using a conversion factor of 77,800 plants per hectare. The much lower-

valued seed weight loss was not included. 

 

Results 

 

Significant differences in yield were not detected between the caged and uncaged 

treatments in 2014 (P > 0.22), confirming minimal to no caging effect on plant growth 
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and fruiting potential. An ANOVA was run individually for each year and blooming 

period because species used and growing conditions varied across years (Table 2.1). 

Significant yield decline was not observed when infestations occurred on late-blooming 

cotton in 2014 and 2015 (2 ANOVAs, P > 0.20) (Figure 2.1); although four of six 

ANOVAs of the boll measurements had significant factors. In contrast, yield differences 

were observed exclusively during the mid-bloom period (4 ANOVAs, P < 0.03) (Figure 

2.2) and twelve of the fruit retention, boll injury, and boll rot measurement ANOVAs for 

the mid-bloom period of infestation had significant factors. All analysis below will focus 

on the mid-bloom period of infestation, where the significant boll measurements were 

followed by significant yield differences across treatments. 

 

 
Figure 2.1. Mean Lint Weights for Late-bloom Infestation. Mean (±SEM) lint weights for late-bloom 

period of infestation under water limiting conditions (A:2014) and non-water limiting conditions (B:2015). 

Infestation rates of 0 (control), 0.25, 1, and 2 insects per plant; infestation duration was one week. See legend 

for species used each year. 
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Figure 2.2. Mean Lint Weights for Mid-bloom Infestation. Mean (±SEM) lint weights for mid-bloom 

period infestation under water limiting conditions (A:2014 and C:2016) and non-water limiting conditions 

(B:2015 and D:2016). Infestation rates of 0 (control), 0.25, 1, and 2 insects per plant; infestation duration 

was one week. See legend for species used each year. 

 

Fruit Retention 

In 2014, a significant stink bug infestation rate-species interaction was detected 

when cotton was infested with all three stink bug species at mid-bloom (Table 2.2) (Figure 

2.3A). In 2015, a significant interaction was not detected at mid-bloom when cotton was 

infested with the verde plant bug, brown stink bug, and the green stink bug (P > 0.05) 

(Table 2.2) (Figure 2.3B), or in 2016 when cotton was infested with the verde plant bug 

and brown stink bug (P > 0.05) (Table 2.2) (Figures 2.3C and 2.3D). In 2014, when the 

interaction was seen trend analyses were conducted separately by species. Fruit retention 

decreased in a linear fashion as infestation rate increased for the brown stink bug (linear 
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contrast F = 5.29; df = 1, 16; P = 0.035), but a downward linear trend was not significant 

for the redbanded or green stink bug (P > 0.05) (Figure 2.3A). In 2015, a significant linear 

contrast was not detected across the infestation rates for the three species (P > 0.05) 

(Figure 2.3B). In 2016 (dryland experiment), a downward linear trend as infestation rate 

increased was significant for brown stink bug (linear contrast F = 16.49; df = 1, 40; P = 

0.0002) but not verde plant bug (P > 0.05 (Figure 2.3C). In 2014, the species main effects 

was statistically significant when the interaction was not significant (P > 0.05, see above). 

A Tukey test (α = 0.05) indicated that the verde plant bug infestation resulted in 

significantly lower fruit retention compared to fruit retention for the brown stink bug and 

green stink bug infestations (Figure 2.3B). 

 

Table 2.2. ANOVA Significance Results for Whole Plant Cages. ANOVA significance tests of the 

factors, infestation rate, species, and their interaction, conducted separately during mid-bloom and late-

bloom (2014, 2015), and during mid-bloom in water limiting (Dryland) and non-water limiting (Irrigated) 

conditions (2016). 
 2014  2015  2016 (Mid-bloom) 

Factor a Mid-bloom Late-bloom  Mid-bloom Late-bloom  Dryland Irrigated 

Yield 

Infestation 

rate 

F = 13.63 

df = 3, 58 

P = 0.0001 

F = 3.31 

df = 3, 61 

P = 0.026 

 

F = 0.05 

df = 3, 47 

P = 0.98 

F = 1.53 

df = 3, 48 

P = 0.21 

 

F = 2.05 

df = 3, 40 

P = 0.12 

F = 3.31 

df = 3, 40 

P = 0.029 

 

Species 

F = 2.02 

df = 2, 58 

P = 0.14 

F = 0.12 

df = 2, 61 

P = 0.88 

 

F = 0.50 

df = 2, 47 

P = 0.60 

F = 1.44 

df = 2, 48 

P = 0.24 

 

F = 13.62 

df = 1, 40 

P = 0.0007 

F = 6.2 

df = 1, 40 

P = 0.017 

Infestation 

rate * 

Species 

F = 1.02 

df = 6, 58 

P = 0.42 

F = 0.95 

df = 6, 61 

P = 0.46 

 

F = 2.96 

df = 6, 47 

P = 0.015 

F = 0.41 

df = 6, 48 

P = 0.87 

 

F = 3.71 

df = 3, 40 

P = 0.019 

F = 2.06 

df = 3, 40 

P = 0.12 

Fruit Retention 

Infestation 

rate 

F = 0.88 

df = 3, 60 

P = 0.46 

F = 1.01 

df = 3, 60 

P = 0.39 

 

F = 0.63 

df = 3, 47 

P = 0.60 

F = 1.85 

df = 3, 48 

P = 0.15 

 

F = 5.72 

df = 3, 40 

P = 0.0024 

F = 1.98 

df = 3, 40 

P = 0.13 

 

Species 
F = 4.20 

df = 2, 60 

P = 0.019 

F = 1.16 

df = 2, 60 

P = 0.31 

 

F = 4.80 

df = 2, 47 

P = 0.012 

F = 1.42 

df = 2, 48 

P = 0.31 

 

F = 1.86 

df = 1, 40 

P = 0.17 

F = 1.37 

df = 1, 40 

P = 0.24 

Infestation 

rate * 

Species 

F = 2.45 

df = 6,60 

P = 0.034 

F = 0.94 

df = 6, 60 

P = 0.47 

 

F = 1.98 

df = 6, 47 

P = 0.087 

F = 0.90 

df = 6, 48 

P = 0.50 

 

F = 1.61 

df = 3, 40 

P = 0.20 

F = 0.96 

df = 3, 40 

P = 0.42 
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Table 2.2. Continued. 

 2014  2015  2016 (Mid-bloom) 

Factor a Mid-bloom Late-bloom  Mid-bloom Late-bloom  Dryland Irrigated 

Boll Injury 

Infestation 

rate 

F = 46.50 

df = 3, 60 

P = 0.41 

F = 55.01 

df = 3, 59 

P = 0.0001 

 

F = 23.49 

df = 3, 47 

P =0.0001 

F = 41.72 

df = 3, 48 

P = 0.0001 

 

F = 13.26 

df = 3, 40 

P = 0.0001 

F = 4.13 

df = 3, 40 

P = 0.45 

 

Species 
F = 3.21 

df = 2, 60 

P = 0.047 

F = 2.36 

df = 2, 60 

P = 0.10 

 

F = 9.98 

df = 2, 47 

P= 0.0002 

F = 13.92 

df = 2, 48 

P = 0.0001 

 

F = 30.98 

df = 1, 40 

P = 0.0001 

F = 3.71 

df = 1, 40 

P = 0.18 

Infestation 

rate * 

Species 

F = 0.84 

df = 6, 60 

P = 0.54 

F = 1.08 

df = 6, 60 

P = 0.38 

 

F = 2.46 

df = 6, 47 

P = 0.037 

F = 3.96 

df = 6, 48 

P = 0.0027 

 

F = 9.92 

df = 3, 40 

P = 0.0001 

F = 6.72 

df = 3, 40 

P = 0.45 

Boll Rot 

Infestation 

rate 

F =29.48 

df = 3, 60 

P = 0.0001 

F = 41.5 

df = 3, 60 

P = 0.0001 

 

F = 24.57 

df = 3, 47 

P = 0.0001 

F = 47.35 

df = 3, 48 

P = 0.0001 

 

F = 12.35 

df = 3, 40 

P = 0.0001 

F = 39.43 

df = 3, 40 

P = 0.0001 

 

Species 

F = 1.55 

df = 2, 60 

P = 0.22 

F = 2.03 

df = 2, 60 

P = 0.13 

 

F = 7.86 

df = 2, 47 

P = 0.019 

F = 13.49 

df = 2, 48 

P = 0.0001 

 

F = 26.25 

df = 1, 40 

P = 0.0001 

F = 100.77 

df = 1, 40 

P = 0.0001 

Infestation 

rate * 

Species 

F = 0.32 

df = 6, 60 

P = 0.92 

F = 0.46 

df = 6, 60 

P = 0.88 

 

F = 1.09 

df = 6, 47 

P = 0.38 

F = 3.87 

df = 6, 48 

P = 0.0031 

 

F = 4.10 

df = 3, 40 

P = 0.012 

F = 17.48 

df = 3, 40 

P = 0.0001 
Exact probabilities (P) are given, bolding is used to focus attention on significant results of the interaction, P < 0.05, or significant 

main effects when the interaction is not significant. The residual was used as the error term. 
a Infestation rate = 0, 0.25, 1, and 2 insects per plant; Species are redbanded stink bug, brown stink bug, and green stink bug in 2014, 
verde plant bug, brown stink bug, and green stink bug in 2015, and verde plant bug and brown stink bug in 2016. 
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Figure 2.3. Mean Percent Fruit Retention for Mid-bloom Period of Infestation. Mean (±SEM) percent 

fruit retention for mid-bloom period infestation under water limiting conditions (A:2014 and C:2016) and 

non-water limiting conditions (B:2015 and D:2016). Infestation rates of 0 (control), 0.25, 1, and 2 insects 

per plant; infestation duration was one week. See legend for species used each year. 

 

Boll Injury 

In 2014, decomposing the models by the interaction, and main effects only when 

the interaction was not significant, a significant stink bug infestation rate-species 

interaction was not detected when infested with the redbanded, brown stink bug and the 

green stink bug at mid-bloom. In addition, no significant differences were detected in 2016 

when infested with the verde plant bug and brown stink bug for the irrigated plots (P > 

0.05) (Table 2.2) (Figures 2.4A and 2.4D). In 2015, significant stink bug and plant bug 

infestation rate-species interactions were detected at mid-bloom when infested with the 

verde plant bug, brown stink bug, and the green stink bug (Table 2.1) (Figure 2.4B). In 
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2016, significant differences were also detected in dryland conditions when infested with 

the verde plant bug and brown stink bug (Table 2.1) (Figure 2.4C). 

 

 
Figure 2.4. Mean Boll Injury for Mid-bloom Period of Infestation. Mean (±SEM) boll injury rating (0-

4) for mid-bloom infestation under water limiting conditions (A:2014 and C:2016) and non-water limiting 

conditions (B:2015 and D:2016). Infestation rates of 0 (control), 0.25, 1, and 2 insects per plant; infestation 

duration was one week. See legend for species used each year. 

 

In 2014 looking at the main effects, boll injury increased in a linear fashion as 

infestation rate increased for mid-bloom infestations (linear contrast F = 128.59; df = 1, 

71; P = 0.0001) (Figure 2.4A). In 2015, trend analyses were conducted separately by 

species (the interaction was significant), boll injury increased in an upward linear fashion 

as infestation rate increased at mid-bloom for the verde plant bug under water limiting 
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conditions (linear contrast F = 22.74; df = 1, 16; P = 0.0002), brown stink bug (linear 

contrast F = 28.22; df = 1, 16; P = 0.0001), and the green stink bug (linear contrast F = 

22.74; df = 1, 16; P = 0.0002) (Figure 2.4B). In 2016 for the dryland experiment, boll 

injury was marginally non-significant, tending to increase in an upward linear fashion as 

infestation rate increased for the verde plant bug (linear contrast F = 4.26; df = 1, 20; P = 

0.0523), and brown stink bug (linear contrast F = 35.47; df = 1, 20; P = 0.0001) (Figure 

2.4C). 

 Overall, the brown stink bug and verde pant bug infested plants consistently 

experienced increased boll injury when compared to uninfested plants. The mirid species 

comparator, verde plant bug, was less damaging to bolls with most boll injury occurring 

under dryland conditions at mid-bloom for this species. The verde plant bug was observed 

to injure cotton in a linear fashion similar to stink bugs but was only economically 

significant when infestation occurred on mid-bloom cotton under dryland conditions 

(Figure 2.4C). These results were consistent with previous reports of verde plant bug 

injury to younger economically significant bolls (Brewer et al. 2013). 

 

Cotton Boll Rot 

When visually inspecting open bolls at harvest, up to 29% of bolls had symptoms 

of cotton boll rot in 2014, 22% in 2015, and 45% in 2016 (Figure 2.5). These results were 

consistent with previous findings of occurrence and magnitude of cotton boll rot 

symptoms (Medrano et al. 2015, Brewer at al. 2012b). In contrast to boll injury, an 

infestation rate-species interaction was detected in 2015 late-bloom, and in 2016 dryland 
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and irrigated plots during mid-bloom (Table 2.2). In 2016, cotton boll rot progressively 

worsened as the verde plant bug infestation rate increased (dryland: linear contrast F = 

30.60; df = 1, 20; P = 0.0001, Figure 2.5C; irrigated: linear contrast F = 96.76; df = 1, 20; 

P = 0.0001, Figure 2.5D). When cotton was infested with brown stink bug, the rate of 

cotton boll rot increase was much steeper (dryland linear contrast F = 6.36; df = 1, 20; P 

= 0.0202, Figure 2.5C; irrigated linear contrast F = 14.99; df = 1, 20; P = 0.0010, Figure 

2.5D). In 2015, the interaction was observed during late-bloom infestations under ample 

rainfall, possibly reflecting an environment more conducive to boll rot transmission by at 

least some of the species. 

 In 2014 and 2015 when an interaction was not detected at mid-bloom, cotton boll 

rot incidence averaged across species increased in a linear fashion as infestation rate 

increased in both years (2014: linear contrast F = 86.09; df = 1, 60; P = 0.0001, Figure 

2.5A; 2015: linear contrast F = 68.23; df = 1, 47; P = 0.0001, Figure 2.5B). In 2014, 

significant species main effects (interaction was not significant) on cotton boll rot were 

not detected (P > 0.05), supporting that the three stink bug species elicited a similar plant 

response in terms of cotton boll rot under water limiting growing conditions. In 2015, a 

significant species main effect was detected (Table 2.2), and a Tukey test (α = 0.05) 

indicated that the brown stink bug induced significantly higher percentage of cotton boll 

rot compared to that for the verde plant bug and the green stink bug at mid-bloom (Figure 

2.5B). 
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Figure 2.5. Mean Percent Boll Rot for Mid-bloom Period of Infestation. Mean (±SEM) percent boll rot 

for mid-bloom period infestation under water limiting conditions (A:2014 and C:2016) and non-water 

limiting conditions (B:2015 and D:2016). Infestation rates of 0 (control), 0.25, 1, and 2 insects per plant; 

infestation duration was one week. See legend for species used each year. 

 

In general, boll rot seemed to track boll injury; as boll injury increased so did boll 

rot. Along with the boll injury, these data support mid-bloom as the significantly more 

sensitive blooming period susceptible to sucking bugs. Verde plant bug inflicted cotton 

boll injury at about the same level as stink bugs but caused similar or higher fruit 

abscission losses and less cotton boll rot. The low percentage of cotton boll rot (<10%) 

observed in the verde plant bug infested plants may be partly attributed to significantly 

lower fruit retention (Figures 2.3B and 2.3C). In 2016, the significant stink bug and plant 

bug infestation rate-species interactions detected at both irrigated and dryland production 

conditions suggest both species are significant contributors to cotton boll rot and provide 



 

37 

further supporting evidence that the brown stink bug is likely a more serious vector of boll 

rotting pathogens compared to the other stink bug species evaluated. 

 

Yield Response 

In 2014, an infestation rate-species interaction was not detected when infested with 

the redbanded, brown stink bug, and green stink bug at either phenological stages of cotton 

(Table 2.2) (Figures 2.1A and 2.2A). In 2015, a significant infestation rate-species 

interaction was detected when infested with the verde plant bug, brown stink bug, and the 

green stink bug during mid-bloom when rainfall was ample (Table 2.2) (Figure 2.2B), and 

also in 2016 water limiting (dryland) experiments when infesting mid-bloom cotton with 

verde plant bug and brown stink bug (Table 2.2) (Figure 2.2C). Although the interaction 

was not significant in the 2016 irrigated plots, both species and infestation rate main effect 

were significant (Table 2.2). In 2015, trend analyses were conducted separately by species 

(the interaction was significant). A significant curvilinear trend was detected at mid-bloom 

for the verde plant bug (cubic contrast F = 6.45; df = 1, 19; P = 0.021) (Figure 2.2B) and 

no linear or curvilinear relationships were detected for the brown stink bug or green stink 

bug (P > 0.05) under ample rainfall conditions. In 2016, a significant downward linear 

trend was detected for yield as infestation rate increased for infestations occurring at mid-

bloom under water-limiting (dryland) condition for the brown stink bug (linear contrast F 

= 12.20; df = 1, 20; P = 0.0023) (Figure 2.2C), and no linear or curvilinear relationships 

were detected for the verde plant bug (P > 0.05) (Figure 2.2C). In 2014 when no interaction 

was detected, yield declined in a downward linear fashion as infestations increased from 
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0 to 2 bugs per plant for mid-bloom infestations (mid-bloom linear contrast F = 35.23; df 

= 1, 58; P = 0.0001, Figure 2.2A). In 2016 under irrigated conditions and when no 

interaction was detected, yield was lower under brown stink bug infestation than under 

verde plant bug infestation (Table 2.2) (Figure 2.2D). 

 The linear decline in fruit retention and increased boll injury as infestation rates 

increased (Figures 2.3 and 2.4) generally support the interpretation that one of the main 

causes of yield decline was poor fruit retention and boll injury when plants were infested 

during mid-bloom under water limiting conditions, but differences across species may be 

occurring to some degree as reflected in the significant interaction. Cotton boll rot may 

further magnify the problem during mid-bloom infestation and possibly during late-bloom 

(Figure 2.5). Declines in fruit retention and yield loss were not detected in plants infested 

at late-bloom (Figure 2.1), even though both cotton boll injury and cotton boll rot 

increased as infestation rates increased at late-bloom. 

 

Economic Injury Level (EIL) and Integrated Pest Management Decision Making 

A simple linear response best described the yield response-insect density 

relationship observed for the boll-feeding insects when the ANOVA model was 

significant, and few higher order polynomial trends were significant. This result supported 

calculation of EILs using Pedigo’s et al. (1986) method, which assumes linearity of the 

yield response-insect density relationship. Calculation of EILs was most appropriate for 

data sets of mid-bloom infestation under water limiting conditions in 2014 and 2016. In 

these data sets, either the infestation rate by species interaction or the main effects for the 
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yield measurement were significant and followed the significant effects seen in the other 

measurements. In 2014, the interaction was not significant, and the infestation rate main 

effect was significant. This justified calculation of a common EIL for the three stink bug 

species used in this experiment (Table 2.3). For instances where one species dominated, 

species-specific EILs may be more appropriate; therefore, these values were also 

calculated (Table 2.3). In 2016 under water limiting conditions, the species by infestation 

rate interaction was significant; therefore, separate EILs were calculated for verde plant 

bug and brown stink bug used in this experiment (Table 2.3). 

 

 

 
Table 2.3. Economic Injury Levels. Economic injury level (EIL) calculations for three species of stink 

bugs and verde plant bug when infestation occurred at mid-bloom under water limiting conditions in 2014 

and 2016. 
Species Linear regressiona 

(Y=mx+b) 

P a R2 a I*Db EILc 

Bugs/plant 

EILc 

Bugs/m--row 

 - - - - - - - - - - - - - - - - - - - - - - - - - - 2014 - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -  

Redbanded stink bug Y = -0.42x+34.72 <0.0001 0.59 32.69 0.33 1.32 

Brown stink bug Y = -0.45x+19.71 <0.0001 0.35 35.01 0.31 1.24 

Green stink bug Y = -0.28x+29.54 <0.0001 0.24 21.78 0.50 2.00 

Common Y = -0.41x+51.28    0.0013 0.38 31.89 0.34 1.36 

 - - - - - - - - - - - - - - - - - - - - - - - - - 2016 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Verde plant bug Y = -0.29x+28.8 <0.0001 0.49 22.14 0.49 1.96 

Brown stink bug Y = -0.47x+29.6 <0.0001 0.36 37.02 0.29 1.16 

Common economic thresholds (labeled common in table) across species were calculated only when the infestation rate by species 

interaction was significant in 2014. Individual species calculations were retained in 2016 when the interaction was significant, therefore 
individual species EILs were given. 
a Y was the yield response in lint weight (kg), m was the slope in lint weight per bug per plant, x was insect density in bugs per plant, 

and b was the y-intercept. P and R2 indicate probability and fit of the data of the regression line. 
b I was plant injury per insect, and D was yield loss per plant injury unit. Lint weight loss per bug per plant from the experiment was 

used to estimate the product I*D, and was estimated from the slope m, converted to lint weight (hectare basis) per bug by using a 

conversion factor of 77,800 plants per hectare.  
c EIL = C/ (V*I*D*K), where C was the expected cost of control set at US$18.53 per ha, V was the expected market share value of the 

cotton lint set at US$1.90 per kg, and K was the expected proportion of the population to be controlled set at 90%. 
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Discussion 

 

This study illustrates the importance of a complex of sucking bugs as economic 

pests of cotton, and highlights how variation of at least one environmental factor, water 

availability, can affect economic injury levels. Our cage study spanned three years and 

was conducted under both water limiting and non-water limiting conditions that are 

representative of the region. Based on significant measures during the mid-bloom period 

of infestation in 2014 and 2015, infestation in 2016 was only done at mid-bloom to further 

define cotton’s sensitivity to multiple species of sucking bugs and variable infestation rates 

on dryland and irrigated cotton. Cotton vulnerability to and injury potential of boll-feeding 

sucking bugs are largely determined by fruit age (Allen et al. 2009). The mid-bloom period 

of cotton development contains the largest array of susceptible boll ages and represents 

the more sensitive growth period. Significant yield loss during mid-bloom was consistent 

with previous findings indicating that verde plant bug feed on large squares and small 

bolls which can result in higher boll abscission under dryland growing conditions (Brewer 

et al. 2012a). Significant yield losses were associated with verde plant bug infestations in 

cotton when they occurred at mid-bloom and losses were higher under water limiting 

conditions (dryland) (Figures 2.2A and 2.2C) as previously seen for cotton fleahopper 

(Brewer et al. 2016) and Lygus hesperus (Parajulee et al. 2018). Similarly, stink bugs have 

been shown to feed primarily on smaller bolls that occur throughout mid-bloom and to a 

lesser degree after peak-bloom (Greene et al. 2001). Along with the information provided 

by others (Greene et al. 2001, Armstrong et al. 2013), the results here were most applicable 
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early through mid-bloom under water limiting conditions that may be experienced under 

dryland cotton production. 

Khan et al. (2006) showed that the green mirid, Creontiades dilutus (Stal) 

(Hemiptera: Miridae), significantly depressed cotton yield in early blooming cotton in 

Australia and reported a nominal threshold of 1 to 3 bugs per m-row. By using the 77,800 

plants per hectare conversion factor and 96-cm row spacing, our EIL of 0.49 verde plant 

bug per plant converts to 1.96 verde plant bugs per m-row (Table 2.3), which is within the 

range provided by Khan et al. (2006). These results were also consistent with an EIL of 

0.45 bugs per plant, previously calculated for verde plant bug, but not compared side by 

side with other species (Brewer et al. 2013). 

The EILs for brown stink bug in the two years were similar (0.31 and 0.29 for 2014 

and 2016, respectively) and were also similar to that for redbanded stink bug in 2014 (0.33) 

(Table 2.3), further justifying a common stink bug EIL for at least these two species. The 

EIL for green stink bug in 2014 was numerically higher (0.50) but did not significantly 

differ from the other stink bug species. Further experimentation for green stink bug may 

be warranted, but currently it seems prudent to use the lower common stink bug EIL of 

0.34, particularly where these species occur as a complex in the southeast U.S. (Greene et 

al. 2001) and the Upper Gulf Coast of Texas and central Texas (Brewer et al. 2012b, Suh 

et al. 2013). Using the conversion of bugs per plant to bugs per m-row (Table 2.3), 

economic injury levels ranged from 1.16 to 1.24 bugs per m-row for the brown stink bug, 

1.32 bugs per m-row for the redbanded stink bug, and 2.0 bugs per m-row for the green 

stink bug. The converted stink bug EILs were consistent with Greene et al. (2001) who 
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reported treatment at one bug per 2-m of row (0.5 bugs per m-row) for the green stink bug, 

southern green stink bug, and brown stink bug provided adequate yield protection. Greene 

et al. (2001) used the threshold concept, which is appropriately lower than the EIL we 

report here. More recently, Soria et al. (2017) demonstrated that for a related species, the 

neotropical brown stink bug, Euschistus heros (F.), an economic injury level of 0.5 adult 

bugs per plant or 2 bugs per m-row preserved yield. Our brown stink bug EIL estimate of 

0.31 bugs per plant was lower, but it was calculated in water limiting conditions where 

cotton is likely more sensitive to insect injury. 

 Overall, the narrowness in the range of economic injury levels for the complex of 

stink bugs supports the construction and use of a common stink bug EIL of 0.34 bugs per 

plant. Verde plant bug was less damaging on average and can be considered separately 

from the stink bugs using a higher EIL of 0.49 bugs per plant (Table 2.3). If a particular 

stink bug species dominates in an area, the species-specific EIL for a stink bug also may 

be more appropriate. In a mixed species situation, the common stink bug threshold of 0.34 

bugs per plant is a reasonable approach for pest management. 
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CHAPTER III 

COMPARISONS OF BOLL INJURY CAUSED BY FIVE SPECIES OF BOLL-

FEEDING SUCKING INSECTS 

 

Introduction 

 

Injury to cotton, Gossypium hirsutum L. (Malvaceae), by boll-feeding sucking 

pests has increased substantially with the widespread adoption of transgenic Bt (Bacillus 

thuringiensis) cotton cultivars targeting lepidopteran pests (Allen et al. 2009, Luttrell et 

al. 2015, Glover et al. 2019). The resulting insecticide use decline has likely released plant 

bugs and stink bugs (Hemiptera: Miridae and Pentatomidae, respectively) formerly 

controlled by broad-spectrum insecticides (Lu et al. 2010). As a result, cotton boll injury 

due to plant bug and stink bug feeding has increased substantially during the last two 

decades in the southern United States (Luttrell et al. 2015) and elsewhere (Khan et al. 

2006, Lu et al. 2010, Soria et al. 2017). 

A complex of piercing-sucking boll-feeding insects in south Texas is composed of 

three representative stink bug species and one mirid species. These species or related 

species also occur in other locations in the southern United States (Greene et al. 2001, Suh 

et al. 2013). Injury from the green stink bug, Acrosternum hilare (Say), and brown stink 

bug, Euschistus servus (Say) (Hemiptera: Pentatomidae), has been shown to cause 

decreased fruit retention, lint staining, lint loss, and seed loss (Greene et al. 2001). Loss 

can be further magnified when bacterial boll rot is introduced during probing and feeding 
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activity from stink bugs (Medrano et al. 2015). Soybeans grown along the Texas Gulf 

Coast harbor the redbanded stink bug, Piezudorus guildinii (Westwood) (Hemiptera: 

Pentatomidae) (Vyavhare et al. 2014), which may move into developing cotton as soybean 

pods begin to senesce (JPG, pers. obs.). Historically, the southern green stink bug, green 

stink bug, and brown stink bug are known to be economic pests of cotton (McPherson et 

al. 2000). 

The verde plant bug, Creontiades signatus (Distant) (Hemiptera: Miridae), is a 

significant cotton pest in south Texas. Armstrong et al. (2013) demonstrated that the verde 

plant bug readily injured bolls <12-d-old from the first day of bloom (white flower), 

whereas older bolls incurred little or no injury in a no-choice test. When given a choice of 

varied-age squares and bolls on a branch, Brewer et al. (2012a) found that older squares 

and young bolls were preferred, which decreased boll retention and increased subsequent 

yield decline. Verde plant bug was also associated with cotton boll rot (Brewer et al. 

2012b) and is a suspected vector of the disease based on similar insect-disease 

relationships previously documented for stink bugs (Medrano et al. 2009). A related 

species, Creontiades distant (Stal) (Hemiptera: Miridae), has been shown to injure pre-

bloom and early-bloom cotton in Australia (Khan et al. 2006). 

Glover et al. (2019) compared several species of stink bugs and the verde plant 

bug to generate economic injury levels using whole plant caging experiments. They found 

severity of boll injury and yield decline was greater when cotton was infested mid-bloom 

compared to late-bloom. Cross species difference occurred but were less apparent. The 

objectives of this study were to compare fruit retention, boll injury, boll rot, and lint 
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decline as a result of feeding activity on individual bolls varying in age. The same species 

were considered in this study as used in Glover et al. (2019) in order to examine the extent 

that boll age sensitivity to feeding and species differences contribute to differences seen 

in boll injury, yield decline, and result in previously observed differences in specific 

damage and yield when cotton is infested mid-bloom and late-bloom. 

 

Materials and Methods 

 

Insect Collection and Pre-Infestation Cotton Management 

Adult insects used for infesting caged single cotton bolls were collected from 

several wild and cultivated host plants, including cotton, sorghum, soybean and several 

seepweeds, Suaeda spp. (Chenopodiaceae) (Armstrong 2010). Insects were collected 

using a modified leaf blower that displaces insects from vegetation and transfers them into 

an inflatable sock that fits on the opposite end of the blower’s fanned nozzle, known as a 

KISS-sampler (keep it simple sampler) (Beerwinkle et al. 1997). Verde plant bugs were 

collected from a mixture of seepweeds and grain sorghum from milk through hard dough 

stages, and stink bugs were collected from various pod filling stages of soybean. Insects 

were captured a day before infestation on caged cotton bolls. All insects were held 

individually in plastic portion cups for a 24 h fasting period and inspected to confirm that 

only healthy adults were used for infesting the caged cotton.  

The experiment was conducted in 2013 and 2014 at the Texas A&M AgriLife 

Research and Extension Center farm in Corpus Christi, TX. Phytogen 367 WRF (Dow 
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AgroSciences, Indianapolis. IN) cotton seed was planted in early May on 91-m rows and 

96-cm row centers at a field site of 0.4 ha, resulting in a plant stand of 77,800 plants 

per ha (31,500 plants per acre). Cotton plots were grown without irrigation in 2013 when 

235 mm of rainfall was seen from April 15 to August 1 (National Weather Service 2019). 

Supplemental irrigation was provided by a drip system in 2014 (drought year) to attain a 

total of 241 mm of water inputs from April 15 to August 1 (Glover et al. 2019). 

Thiamethoxam insecticide (Centric, Syngenta Crop Protection, Greensboro, NC) was 

applied at labelled rates ca. every 10 days to maintain plots pest free before and after 

infestation. Thiamethoxam application was discontinued 14 days prior to infesting with 

experimental insects, and application was restarted at the conclusion of the infestation 

period. Other agronomic practices were normal for the region (Morgan 2018). 

 

Single Boll Cage Experimental Design and Infestation 

Insects were released into individually caged cotton bolls for a one-week period to 

characterize the effects of species and boll age on fruit retention, cotton boll injury, cotton 

boll rot, and yield. Experiments conformed to a species (including a no insect control) by 

boll age factorial. In 2013, available species were the verde plant bug, redbanded stink 

bug, brown stink bug, and green stink bug and boll ages were 0 and 3-day old post-

anthesis. In 2014, species available were verde plant bug, brown stink bug, and green stink 

bug, and boll ages were 3, 5, and 7-day old post-anthesis. The boll age range increased in 

the second year based on first year date that showed a high amount of fruit abscission for 

newly set fruit (0-day old bolls). Treatment combinations of species and boll ages were 
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replicated 12 times in 2013 and 14 times in 2014, and each replication was set out in 

randomized blocks in the uniform cotton planting. 

The experimental bolls were prepared for infestation by enclosing white blooms 

during the second week of bloom characterized as 10-12 NAWF (mid-bloom) from the 

first fruiting position (Kerby et al. 2010) with small organza fabric cages (12 by 13 cm, 

~240 micron mesh, JoAnn’s Fabrics, Hudson, OH) that protected bolls from feeding 

(Armstrong et al. 2005). Four days before each infestation, plants were hand sprayed to 

run-off with a short-residual U.V. sensitive pyrethrin insecticide (0.02% by volume, 

Bonide products, Oriskany, NY) to remove aphids and other small insects that may 

contaminate the caged cotton. 

Cotton bolls of specific ages defined as 0- and 3-day old bolls post-anthesis in 

2013, and 3, 5, and 7-day old bolls post-anthesis in 2014, were infested with each species 

individually, along with uninfested controls. To identify boll age, first position cotton bolls 

were identified at white bloom by tagging the boll pedicle with a plastic tag indicating the 

date and a colored ribbon was tied to the corresponding node of the main stem to identify 

plants with tagged bolls. First position cotton bolls were used for uniformity and because 

they are a significant portion of the total yield (Jenkins et al. 1990). Bolls were tagged 

every one to two weeks and maintained insect free with pyrethrin insecticide to ensure 

availability of clean developing bolls when the experiment was conducted.  

Each cage was infested with one adult for each species for 7 days, along with 

maintaining a uninfested control. The seven-day infestation period was chosen to reflect 

a commercial field were insects might go undetected during weekly scouting. At the 
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conclusion of the infestation period a sampling of cages distributed across all species and 

both years (n > 50) were inspected for active insects, which were observed inside all cages. 

All caged treatments were then treated with thiamethoxam insecticide on day seven post-

infestation and again on day 14 to eliminate non-target pest damage and remnant treatment 

insects including nymphs emerging from eggs laid by the adults. 

 

Plant Injury and Yield Measurements 

Cages remained in place until bolls fully matured and opened to expose lint, 

allowing bolls and potential cotton boll rot introduced by these insects to mature. Hand 

harvest occurred early August in 2013, and late August in 2014. At harvest, all caged bolls 

were rated for fruit retention, boll injury, cotton boll rot, and yield. For each treatment 

combination of species and boll age, mean percent fruit retention was calculated. All bolls 

retained on the plant were brought to the laboratory. Mean boll injury was calculated by 

first rating each boll using a boll injury scale. The scale ranged from 0 (representing no 

locule injury) to 1-3 (representing a progression of seed and lint degradation occurring in 

1-3 locules, respectively) to 4 (representing severe degradation of seed and lint in all 

locules) (Brewer et al. 2013, Glover et al. 2019). Next, the boll interior was thoroughly 

inspected for symptoms of cotton boll rot (Medrano et al. 2009). Bolls were scored on 

presence or absence of cotton boll rot visually to obtain the percent bolls showing signs of 

boll rot. Yield data were estimated by cotton lint weights. To obtain lint weight, seed 

cotton was ginned by hand using a 10-saw laboratory cotton gin (Continental Eagle Crop., 

Prattville, AL). Weights were recorded as g weight of lint per boll. 
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Data Analysis 

Before analyses, percent fruit retention and percent bolls with symptoms of cotton 

boll rot were transformed by arcsine square-root transformation of the proportion because 

of the wide range of values encountered (Neter et al. 1985). Back-transformed means were 

presented for ease of interpretation. Separate analyses were conducted for each 

measurement and each year because of the different species and boll ages used. The two-

way factorial (species and boll age) were set out in physical blocks of replications. The 

SAS package (Proc GLM, Littell et al. 1991) which included the following specifications. 

The species and boll age factors were set as fixed effects; therefore, the residual was set 

as the error term for the main effects and the boll age-species interaction (Neter et al. 

1985). If the interaction was significant, means separation analyses for the species and 

boll age main effects were conducted separately when the treatment levels were greater 

than two (Quinn and Keough 2002). If the interaction was not significant, the same means 

separation were used to compare means across species and boll age main effects. The 

means separation procedure used was Tukey’s honest significant difference test (α = 0.05) 

implemented in Proc GLM (Littell et al. 1991).  

 

Results and Discussion 

 

There was good evidence that the individual boll cages were successful in 

restricting feeding to and not disrupting feeding by the insects introduced into the cages. 

An ANOVA was run for each year because species used and boll ages caged varied across 
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years. In general, decreases in fruit retention, increases in cotton boll injury and cotton 

boll rot, and subsequent declines in lint weight resulted from the infestation of verde plant 

bug, brown stink bug, and green stink bug were compared to uninfested bolls and bolls 

infested with redbanded stink bug (Figures 3.1 and 3.2) (Table 3.1). All analyses below 

focus on significant species-boll age interactions and the main effects of species and boll 

age especially when it helps interpret the interaction or the interaction was not significant. 

 

Figure 3.1. Mean Percent Fruit-retention and Boll Injury Rating. Mean (±SEM) percent fruit retention 

(A; 2013 and B; 2014); and boll injury rating (0-4) (C; 2013 and D; 2014) when selected species of stink 

bugs and a plant bug were infested individually on caged cotton bolls of several ages for a one-week period 

during mid-bloom. Bars with different letter(s) denote significant differences in species from their respective 

controls at P < 0.05; analyzed by Tukey’s post-hoc test. See legend for boll ages used each year. 
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Figure 3.2. Mean Percent Boll Rot and Lint Weights. Mean (±SEM) percent boll rot (A; 2013 and B; 

2014); and lint weights per boll (C; 2013 and D; 2014) when selected species of stink bugs and a plant bug 

were infested individually on caged cotton bolls of several ages for a one-week period during mid-bloom. 

Bars with different letter(s) denote significant differences in species from their respective controls at P < 

0.05; analyzed by Tukey’s post-hoc test. See legend for boll ages used each year. 



57 

 

Table 3.1. ANOVA Significance Results for Single Boll Cages. ANOVA significance tests of species, boll age, and their interaction when selected 

species of stink bugs and a plant bug were infested individually on caged cotton bolls of several ages for a one-week period during mid-bloom (2014, 

2015). 

 Fruit Retention   Boll Injury  Boll Rot Yield  

Factor a 2013 2014  2013 2014  2013 2014 2013 2014 

 

Species 
F = 10.98 

df = 4, 123 

P = 0.0001 

F = 7.91 

df = 3, 187 

P = 0.0001 

 

F = 16.93 

df = 4, 123 

P = 0.0001 

F = 20.86 

df = 3, 187 

P = 0.0001 

 

F = 3.80 

df = 4, 123 

P = 0.012 

F = 16.10 

df = 3, 187 

P = 0.0001 

F = 5.82 

df = 4, 123 

P = 0.0013 

F = 13.21 

df = 3, 187 

P = 0.0019 

Boll age 

F = 4.32 

df = 1, 123 

P = 0.041 

F = 2.87 

df = 2, 187 

P = 0.098 

 

F = 13.63 

df = 1, 123 

P = 0.0038 

F = 2.76 

df = 2, 187 

P = 0.068 

 

F = 4.42 

df = 1, 123 

P = 0.043 

F = 2.18 

df = 2, 187 

P = 0.11 

F = 1.51 

df = 1, 123 

P = 0.22 

F = 4.98 

df = 2, 187 

P = 0.0088 

Boll age 

- Species 

F = 0.48 

df = 4, 123 

P = 0.74 

F = 1.85 

df = 6, 187 

P = 0.094 

 

F = 2.98 

df = 4, 123 

P = 0.046 

F = 0.91 

df = 6, 187 

P = 0.48 

 

F = 2.08 

df = 4, 123 

P = 0.12 

F = 0.96 

df = 6, 187 

P = 0.45 

F = 1.97 

df = 4, 123 

P = 0.13 

F = 0.88 

df = 6, 187 

P = 0.51 

Exact probabilities (P) are given, bolding is used to focus attention on significant results of the interaction, P < 0.05, or significant main effects when the interaction is not significant. The 

residual was used as the error term. 
a Species were verde plant bug, redbanded stink bug, brown stink bug, and green stink bug in 2013, verde plant bug, brown stink bug, and green stink bug in 2014; Boll ages were 0 and 3-day 
old in 2013, and 3, 5, and 7-day old in 2014. The boll age – species interaction follows. 

 

 

 

 

 

 

 

 



58 

 

Fruit Retention 

In 2013 and 2014, a significant boll age-species interaction was not detected (P > 

0.05) (Table 3.1) (Figures 3.1A and 3.1B), but fruit retention differed across species 

(including the uninfested control) (Table 3.1) (Figures 3.1A and 3.1B). A Tukey’s test (α 

= 0.05) indicated that the verde plant bug, brown stink bug, and green stink bug caged 

bolls resulted in significantly lower fruit retention compared to bolls caged with redbanded 

stink bug and controls (bolls caged with no insect) in 2013 averaging across boll age 

(Figure 3.1A). Similarly, in 2014, a Tukey’s test (α = 0.05) indicated brown stink bug and 

green stink bug infested bolls resulted in significantly lower fruit retention compared to 

fruit retention for bolls caged with the verde plant bug and control bolls (Figure 3.1B).  

In 2013, marginally significant boll age main effects were detected (P = 0.041), 

but not in 2014 (P < 0.05) (Table 3.1). In 2013, 0-day old bolls had lower fruit retention 

compared to older 3-day old bolls averaged across species (Figure 3.1A). Brewer et al. 

(2012a) found lower fruit retention when younger 0-day old bolls were caged with the 

verde plant bug. In data reported here, younger 0-day old bolls when caged with verde 

plant bug experienced up to 96% fruit abscission, and 100% fruit abscission when caged 

with the brown stink bug (no bolls retained) (Figure 3.1A). Similarly, Glover et al. (2019) 

showed significant decreases in fruit retention of younger bolls resulting from the 

infestation of verde plant bug at mid-bloom. To compensate for excessive declines in fruit 

retention the 0-day old boll age treatment was not repeated in 2014 and two additional boll 

ages were considered. 
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Boll Injury 

In 2013, both the species-boll age interaction and main effects were significant 

(Table 3.1) (Figure 3.1C). Looking across species at 3-day old bolls, a Tukey’s test (α = 

0.05) indicated bolls caged with verde plant bug, brown stink bug, and green stink bug 

were more injurious than bolls infested with the redbanded stink bug or control bolls 

(Figure 3.1C). These differences were less clear with comparing boll injury to 0-day old 

bolls across species (Figure 3.1C). Inspecting the interaction, 0-day old control bolls caged 

with no bug (no injury observed) and bolls caged with redbanded stink bug experienced 

minimal boll injury (> 0.2 ± 0.41 injured locules per boll) compared to bolls infested with 

green stink bug (1.5 ± 0.38), and verde plant bug infested bolls which on average had the 

greatest boll injury score of (2.8 ± 0.43) injured locules per boll (Figure 3.1C). All 0-day 

old bolls caged with the brown stink bug in 2013 abscised (0% fruit retention, Figure 

3.1A), and subsequent boll measures were not collected. Three day old control bolls had 

no damage and bolls caged with redbanded stink bug experienced minimal boll injury (> 

0.6 ± 0.42 injured locules per boll) compared to bolls infested with brown stink bug (2.0 

± 0.21), green stink bug (2.4 ± 0.38), and verde plant bug (2.6 ± 0.19) infested bolls (Figure 

3.1C). 

In 2014, the interaction was not significant (P > 0.05), boll injury differences were 

detected across species, but not boll age (P > 0.05) (Table 3.1) (Figure 3.1D). A Tukey’s 

test (α = 0.05) indicated insect infested bolls experienced significantly greater boll injury 

when compared to uninfested control bolls (Figure 3.1D). Verde plant bug (1.0 ± 0.41) 
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was less injurious compared to brown stink bug (2.0 ± 0.33) and green stink bug (2.3 ± 

0.39) when averaged across boll age (Figure 3.1D) in 2014.  

 Overall, verde pant bug and stink bug infested plants consistently experienced 

increased boll injury when compared to uninfested plants, and more variation in boll injury 

was associated with species differences than boll age. The redbanded stink bug was less 

damaging to bolls when compared with the other stink bugs and verde plant bug. However, 

bolls infested with the redbanded stink bug experienced decreased fruit retention and boll 

injury distinct from control bolls. While boll injury was more variable across boll age than 

previously found, these results were consistent with reports of verde plant bug injury 

occurring primarily on younger bolls (Brewer et al. 2013). Additionally, Glover et al. 

(2019) reported boll injury rates similar to rates observed in this study, further supporting 

the susceptibility of younger less mature fruit. 

 

Cotton Boll Rot 

When visually inspecting open bolls at harvest, up to 66% of bolls had symptoms 

of cotton boll rot in 2013 and 85% in 2014, and variability was detected primarily across 

species (Table 3.1) (Figures 3.2A and 3.2B). Cotton boll rot reported here was 

significantly higher than previous findings of occurrence and magnitude of cotton boll rot 

symptoms when bolls were exposed to verde plant bug feeding (Brewer at al. 2012b). A 

significant species-boll age interaction was not detected both years (P > 0.05); however, 

species differences in occurrence of cotton boll rot were detected (Table 3.1). In 2013, a 

Tukey’s test (α = 0.05) indicated that bolls caged with verde plant bug, brown stink bug, 
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and the green stink bug had significantly more cotton boll rot than bolls caged with 

redbanded stink bugs and control bolls (Figure 3.2A). Cotton boll rot was never detected 

in bolls caged with redbanded stink bug or control bolls (Figure 3.2A). These results are 

inconsistent with Glover et al. (2019) who reported relatively low incidence of cotton boll 

rot (no greater than 10%) when caging whole cotton plants during mid-bloom with the 

redbanded stink bug, while cotton boll rot incidence was much higher in cages infested 

with other stink bug species. The lack of boll rot observed in bolls caged with the 

redbanded stink bug and the relatively high incidence of cotton boll rot for other species 

in the current study may be associated with differences in habitat reservoirs for the disease 

(redbanded stink bug was collected in soybean, while the other species were collected in 

sorghum) or the efficiency in transmitting the disease that is occurring to some degree 

across species.  

In 2014 a Tukey’s test (α = 0.05) indicated that bolls caged with the brown stink 

bug and green stink bug experienced significantly more cotton boll rot (up to 85%) 

compared to bolls infested with the verde plant bug (up to 62%). Cotton boll rot was never 

detected in the control bolls (Figure 3.2B). In 2013, a marginally-significant boll age main 

effect was detected (F = 4.42; df = 1, 123; P = 0.043) (Figure 3.2A) but was not (P > 0.05) 

(Table 3.1) in 2014. Detailed cross-species disease transmission and vector competency 

studies may help explain what drives the variation detected across species in this study. 
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Lint Weight 

In 2013 and 2014, the species-boll age interaction was not significant (P > 0.05) 

(Table 3.1) (Figures 3.2C and 2.3D). In 2013, lint weight varied across species but not 

across the two boll ages (Table 3.1) (Figure 3.2C). A Tukey’s test (α = 0.05) indicated a 

significant decline in lint regardless of boll age when exposed to verde plant bug, brown 

stink bug and green stink bug compared to the other species and the uninfested controls. 

Bolls infested with redbanded stink bug had lint weight comparable to the uninfested bolls, 

suggesting boll response to herbivory from this species may be less severe and may be 

associated with the low levels of cotton boll rot seen for this species (Figure 3.2). Lint 

depression on a per boll basis reflected boll injury and cotton boll rot observed here 

(Figures 3.1A, 3.1C and 3.2A), as well as that observed in whole plant cage studies except 

for redbanded stink bug (Glover et al. 2019). Although the interaction was not significant 

in the 2014, both species and boll age main effects were detected (Table 3.1). In 2014, a 

Tukey’s test (α = 0.05) indicated significant lint decline when infested with any species 

compared to infested bolls (Figure 3.2D). In comparison, differences in yield detected 

across boll age were not readily apparent (Figure 3.2D).  

In this 2-year study, the same species were considered as used in Glover et al. 

(2019) in order to examine the extent that boll age sensitivity to feeding and species 

differences contributed to differences observed in specific damage and yield when cotton 

was infested at mid-bloom. Differences in fruit retention, boll injury, boll rot, and yield 

were detected across species in 2013 and 2014. The contrast of results comparing 0, 3, 5, 

and 7-day old bolls reflects past studies which showed that verde plant bug readily feeds 
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on large squares and small bolls <10-day old (Brewer et al. 2012a) and is an important 

contributor to decreased fruit retention. In contrast, southern green stink bugs can continue 

feeding on larger bolls (Greene et al. 2001). From a management viewpoint, this may have 

implications on the window of field monitoring that is needed when sampling for these 

insects. The decline in fruit retention and increased boll injury (Figure 3.1) support the 

interpretation that main causes of yield decline was poor fruit retention and boll injury that 

led to cotton boll rot (Brewer et al. 2013, Glover et al. 2019). The variation observed in 

frequency and magnitude of cotton boll rot in this two-year study suggest a seasonality in 

the presence of boll rot pathogens and or potential differences in transmission efficiency 

cross species. Further research to define species-specific disease relationships would be 

valuable, particularly because it appears to be an important driver of yield decline (see 

lack of cotton boll rot and yield decline for redbanded stink bug here [Figures 3.2A and 

3.2C]). 

From a management viewpoint, the similarities in fruit retention, boll injury, cotton 

boll rot and subsequent yield decline observed in these experiments further explains and 

supports the mid-bloom period of cotton development as containing the largest array of 

susceptible boll ages, and the more sensitive growth period. Furthermore, the narrow range 

of yield depression observed in these experiments across stink bug and plant bug infested 

bolls supported the construction of a common economic injury level for at two species of 

stink bugs when a mixed species complex is present (Glover et al. 2019). 
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CHAPTER IV 

TRANSMISSION OF COTTON SEED AND BOLL ROTTING BACTERIA BY THE 

VERDE PLANT BUG 

 

Introduction 

 

The verde plant bug, Creontiades signatus (Distant) (Hemiptera: Miridae), is a 

significant cotton pest in south Texas and has been associated with cotton seed and boll 

rot, commonly called cotton boll rot (Brewer et al. 2012a). Verde plant bug was a 

suspected vector of the disease based on similar insect-disease relationships previously 

documented for stink bugs (Medrano et al. 2007). Armstrong et al. (2009) isolated bacteria 

associated with verde plant bug feeding injury on cotton bolls. Medrano et al. (2014) 

identified the bacteria Serratia marcescens as a boll rot pathogen isolated from bolls fed 

upon by verde plant bug. Currently, management for verde plant bug in south Texas 

assumes that the boll rot pathogen is present and the insect is capable of transmitting the 

pathogen. Economic thresholds for verde plant bug have been established that assumed 

presence of boll rot pathogens (Glover et al. 2019). The potential of economic damage is 

evaluated by checking for signs of internal feeding, including opening green bolls during 

field monitoring activities (Greene et al. 2001, Brewer et al. 2013). 

 Unfortunately, early detection of cotton boll rot infection caused by S. marcescens 

and possibly vectored by verde plant bug is limited since there is an absence of external 

infection symptoms on immature green bolls, and likely no visible internal symptoms soon 
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after infection as seen by boll rot bacteria vectored by stink bugs (Medrano et al. 2007). 

Known disease symptoms from cotton boll rotting bacteria introduced by stink bugs 

include discolored lint and necrotic seed that can be observed only when infected green 

bolls are cross-sectioned at least one week after initial infection or once mature bolls open 

(Medrano et al. 2007). If transmission potential can be authenticated, then insecticide use 

decision-making based on economic injury levels and verde plant bug monitoring (Glover 

et al. 2019, Brewer et al 2013) can be revisited and adjusted based on transmission and 

retention risk. 

 We investigated verde plant bug as a cotton boll rot vector to expand our previous 

work that showed an association of verde plant bug with bacterial rot (Brewer et al. 2012) 

and showed Serratia marcescens, isolated from bolls feed upon by verde plant bug, can 

cause the disease (Medrano et al. 2014). The specific objectives of this study were to 

confirm pathogenicity and transmission of bacteria recovered from bolls fed on by verde 

plant bug exposed to the bacteria Serratia marcescens and examine disease retention as 

verde plant bug feeds on multiple bolls in a field setting. 

 

Materials and Methods 

 

Individual cotton bolls were infested with verde plant bug exposed and not exposed 

to the boll rot causing bacterial pathogen Serratia marcescens in experiments conducted 

in 2016 and 2017 at the Texas A&M AgriLife Research and Extension Center farm in 

Corpus Christi, TX. Phytogen 333 WRF (Dow AgroSciences, Indianapolis. IN) cotton 
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seed was planted in late April on 91-m rows and 96-cm row centers at a field site of 0.6 

ha, resulting in a plant stand of 77,800 plants per ha (31,500 plants per acre). Cotton plots 

were grown under dryland conditions. Thiamethoxam insecticide (Centric, Syngenta Crop 

Protection, Greensboro, NC) at labelled rates was used ca. every 10 days to maintain plots 

pest free before infestation. Thiamethoxam application was discontinued 14 days prior to 

infesting with experimental insects. Other agronomic practices were normal for the region 

(Morgan 2018). 

 

Exposure of Insects to S. marcescens 

Verde plant bug adults used to infest caged cotton bolls were taken from a 

laboratory colony established from field collections. The laboratory colony was 

established from adult verde plant bugs collected from several wild and cultivated host 

plants, including sorghum, soybean and several seepweeds, Suaeda spp. 

(Chenopodiaceae) (Armstrong 2010), along the Texas Gulf coast. Insects were collected 

using a modified leaf blower that displaces insects from vegetation and transfers them into 

an inflatable sock that fits on the opposite end of the blower’s fanned nozzle, known as a 

KISS-sampler (keep it simple sampler) (Beerwinkle et al. 1997). Verde plant bugs were 

collected in 2016 from a mixture of seepweeds and grain sorghum from milk through hard 

dough stages, and in 2017 on soybean from flowering through full pod development. All 

insects were inspected to confirm only healthy adults were used to establish the laboratory 

colony. Insects were reared under laboratory conditions on a diet of sanitized (bleached) 

green beans, Phaseolus vulgaris L. Colony adults and immature stages were fed fresh 
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green bean pods thoroughly rinsed in a 5% sodium hypochlorite solution and dried. The 

beans were replaced at 2-3d intervals and all life stages were held in a ventilated plastic 

container at 28˚C and a photoperiod of 14:10h (L:D) following the protocol of Medrano 

et al. (2007, 2016). The colony was kept for three generations to purge to the extent 

possible boll rot causing bacteria that may have been present on field collected verde plant 

bugs used to establish the colony. 

 To prepare for infecting verde plant bug with the bacteria for experimental 

purposes, a Rif resistant bacterial mutant S. marcescens strain (CC119-R), was maintained 

on Luria Bertani agar (LBA; Difco, Detroit, MI) amended with Rifampicin antibiotic with 

levels up to 200 µg ml-1 and incubated at 28˚C (Medrano et al. 2014). The strain was 

derived from cotton bolls infested with verde plant bug and associated with cotton boll rot 

from the same location of the field experiment (Brewer et al. 2012). Bacteria isolated from 

the bolls were identified as S. marcescens on the basis of phenotype testing, fatty acid 

profiling (similarity index = 0·94), and 16s ribosomal DNA sequence analysis (99% 

nucleotide identity) and were shown to cause disease on cotton bolls (Medrano et al. 2014) 

comparable to field observed disease. Fresh green beans were sterilized, cross-sectioned 

into 3cm pieces, and soaked for 2 min in either the disease-causing Rif resistant bacteria 

(CC119-R) inoculum or in sterile water. The bean pieces were then blotted dry using 

sterile paper towels as described in Medrano et al. (2007, 2016). A treated bean section 

was aseptically transferred into a sterile disposable Petri dish along with a single teneral 

third-generation verde plant bug from the colony. Multiple dishes were set up depending 

on the needs of the experiment. After two days of incubation with the exposed bean piece 
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each verde plant bug was transferred using a sterile aspirator (i.e. ethanol dipped and then 

flamed) into a new sterile petri dish containing a sanitized (bleached) non-exposed green 

bean. The process of feeding on sterile water soaked green beans was repeated for another 

two days in order to minimize S. marcescens exposure to the plant bug body surface. 

Finally, the verde plant bugs were aspirated into one-ounce plastic portion cups and held 

for a 24h fasting period before being used in 2016 and 2017 field experiments. 

Concurrently, another set of verde plant bugs fed on non-exposed green beans (i.e. green 

beans provided to insects soaked for 2 min in sterile water) and processed through the 

same bean replenishment and fasting period before being used as the non-exposed verde 

plant bug in the same field experiments.  

At infestation, randomly selected adults from the exposed and non-exposed 

treatment groups from the colony were placed in one-once portion cups and released mid-

morning on individual bolls enclosed in single boll exclusion cages. The effects of S. 

marcescens exposed and non-exposed verde plant bugs, in addition to controls (bolls 

caged with no bug) on boll injury and cotton boll rot were measured and verified using 

molecular techniques. 

 

Single Boll Cage Experimental Design and Insect Infestation 

In 2016 to examine initial pathogenicity and transmission of S. marcescens, individual 

verde plant bugs exposed and non-exposed to S. marcescens (CC119-R), along with a no 

insect control, were released into individual caged cotton bolls of two ages for a one-week 

period. In 2017, the experiment was repeated, and immediately followed by a disease 
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retention study by moving surviving verde plant bugs exposed to CC119-R, from the 

initial cages to a new set of previously caged insect and disease-free bolls for a 24 h period 

to examine the retention of the bacteria for potential transmission into additional bolls.  

The experimental bolls were prepared for infestation by enclosing white blooms 

during the third second of bloom characterized as 10-12 NAWF on the first (mainstem) 

fruiting position (Kerby et al. 2010) with small organza fabric cages (12 by 13 cm, ~240 

micron mesh, JoAnn’s Fabrics, Hudson, OH) that protected bolls from feeding (Armstrong 

et al. 2005). Four days before each infestation, plants were hand sprayed to run-off with a 

short-residual U.V.-sensitive pyrethrin insecticide (0.02% by volume, Bonide products, 

Oriskany, NY) to remove aphids and other small insects that may contaminate the caged 

cotton bolls.  

In 2016 and 2017 initial pathogenicity and transmission field studies, the 

experimental design conformed to a disease exposure treatment by boll age factorial. The 

disease exposure treatments were verde plant bug non-exposed to CC119-R, verde plant 

bug exposed to CC119-R, and a no insect control. The boll age treatments were 5 and 7-

day old bolls post-anthesis. A minimum of 65 replications per treatment combination were 

conducted across both years. A 24 h infestation period in 2017 simulated the risk of 

allowing these insects to persist in the field, retain the disease, and transmit the disease to 

more than one boll. A 7-day infestation period in 2016 was chosen to reflect a commercial 

field were insects might go undetected during weekly scouting.  

In the 2017 disease retention study, surviving insects from bolls caged with verde 

plant bug exposed to CC119-R from the 2017 initial pathogenicity and transmission 
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experiment were aspirated from their respective bolls after the prescribed 24 h infestation 

period and immediately re-caged on additional cotton bolls (6 and 8-day old bolls) to 

investigate if insects were able to continue to transmit disease (disease retention) to 

multiple bolls after disease acquisition. In 2017, the disease retention study conformed to 

randomized complete block of the boll age treatment (6 and 8-day old bolls post-anthesis) 

with a minimum of 35 replications for each boll age. At the conclusion of the infestation 

period of each experiment in each year a sampling of caged treatment bolls (n > 50) were 

inspected for active insects, which were observed inside all cages inspected. 

Cotton bolls of specific ages were defined as 5 and 7-day old bolls post-anthesis 

in 2016 and 2017 initial pathogenicity and transmission, and 6 and 8-day old bolls post-

anthesis in 2017 disease retention study. Bolls were identified at white bloom by tagging 

the boll pedicle with a plastic tag indicating the date and a colored ribbon was tied to the 

corresponding node of the main stem to identify plants with tagged bolls. First position 

cotton bolls were used for uniformity and because they are a significant portion of the total 

yield (Jenkins et al. 1990). Bolls were tagged every 1 to 2 weeks and maintained insect 

free with pyrethrin insecticide to ensure availability of clean developing bolls when the 

experiment was conducted. At the end of the infestation period of 7 days or 24 h depending 

on the experiment, the caged bolls were then treated with thiamethoxam insecticide and 

again 7 days later to eliminate non-target pest damage and remnant treatment insects 

including nymphs emerging from eggs laid by the adults.  
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Cotton Boll Evaluation 

Caged bolls remained on the plants for two weeks after the infestation allowing 

any S. marcescens introduced by verde plant bug to express cotton boll rot disease 

symptoms. At this time, additionally caged bolls with S. marcescens-exposed verde plant 

bugs were opened and the interior were visually inspected for cotton boll rot. Disease 

symptoms were photographed in the laboratory. All remaining caged green cotton bolls 

were transported to the USDA-ARS, College Station, TX, where they were evaluated 

using visual and molecular techniques (Glover et al. 2019, Medrano et al. 2007, 2016).  

Briefly, visual examination of locules from collected bolls were scored for boll 

injury using a rating on a scale ranging from 0 (representing no locule injury) to 1-3 

(representing a progression of seed and lint degradation occurring in 1-3 locules, 

respectively) to 4 (representing severe degradation of seed and lint in all locules) (Brewer 

et al. 2013a). Bolls were visually inspected for presence or absence of symptoms of cotton 

boll rot in each locule (Medrano et al. 2009) scoring the number of locules with boll rot 

presence (0 to 4) scale. Methods and parameters reported in Medrano et al. (2007, 2016) 

were used for microbiological assessment. Briefly, bolls were surface sterilized, diseased 

and asymptomatic locule tissue were aseptically harvested, and bacterial concentrations 

of the tissues were recorded using standard microbiological methods to isolate diseased 

tissues on bacteriological media. Luria Bertani agar amended with Rifampicin antibiotic 

(200 ug/ml) was used to screen for CC119-R. 
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Macerated boll tissue samples were spread and incubated at 37˚C for 24 hours on 

the rifampicin amended plates and scored for presence or absence of growth of bacterial 

strain CC119-R. 

 

Data Analyses 

All measurements taken from the caged treatments were used to examine treatment 

effects by using an ANOVA for a two-way factorial (disease exposure and boll age 

factors) in the 2016 and 2017 initial pathogenicity and transmission field experiments, and 

an ANOVA for a randomized complete block (boll age) in the 2017 disease retention field 

study (Proc GLM, Littel et al. 1991). The disease exposure and boll age factors were set 

as fixed effects; therefore, the residual was set as the error term for the main effects and 

the disease exposure-boll age interaction for the factorial (Neter et al. 1985). If the 

interaction was significant, means separation analyses for the species and boll age main 

effects were conducted separately when the treatment levels were greater than two (Quinn 

and Keough 2002). If the interaction was not significant, the same means separation test 

was used to compare disease exposure treatments averaged across boll age. The means 

separation procedure used was Tukey’s honest significant difference test (α = 0.05) 

implemented in Proc GLM (Little et al. 1991). 

Percent laboratory plated and confirmed cotton boll rot samples (CC119-R) were 

transformed by arcsine square-root transformation of the proportion before analysis to 

compensate for potential deviation from normality (Neter et al. 1985). Back transformed 

percentages were presented for ease of interpretation. Measurements were analyzed 
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separately in 2016 and 2017 initial transmission experiments and in the 2017 disease 

retention study. 

 

Results 

 

Confirming Exposure of Insects to S. marcescens 

A preliminary analysis using approximately 35 verde plant bugs exposed and non-

exposed were used to confirm the effectiveness of the dietary regime for infecting verde 

plant bug with the Rif-resistant S. marcescens bacteria (CC119-R), known to cause cotton 

boll rot. Bacteria were isolated from all insects exposed to Rif-resistant bacteria via the 

dietary treatment placed on discriminating media. Concentrations of Rif-resistant bacteria 

and ranged from 106 to 108 CFUs per insect. Rifampicin-resistant bacteria were not 

recovered from non-exposed bugs that were used as negative controls (i.e., not exposed to 

CC119-R). The highest concentration of rifampicin-resistant bacteria ranged from 103 to 

108 CFU’s per insect from verde plant bugs exposed to CC119-R (Table 4.1) that were 

taken from a subset of bugs used in the field experiment. 

For the field transmission study, cotton boll injury and boll rot from the infestation 

of verde plant bug exposed to CC119-R were significantly higher than non-infested and 

non-exposed to CC119-R treatments. The bacterial infection process did not apparently 

affect insect vigor based on average boll damage ratings (Figures 4.1A, 4.1B, and 4.1G) 

where similar feeding damage was observed across both exposed to CC119-R and non-

exposed verde plant bugs. 
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Table 4.1. Bacterial Concentration Ranges. Bacterial concentration ranges from verde plant bug infested 

bolls that were exposed or non-exposed to Rif-resistant Serratia marcescens (CC199-R) known to cause 

cotton boll rot (2016, 2017). 
 LBA a  LBA Rif a 

 Lowest-Highest      

Bacterial          

Concentration b 

2016 

Lowest-Highest 

Bacterial          

Concentration  

2017 

 Lowest-Highest 

Bacterial          

Concentration  

2016 

Lowest-Highest 

Bacterial          

Concentration  

2017 

  

Boll age  

                                       - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Control - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

5 d             1-6 1-9  Nd Nd 

7 d           2-7 2-7  Nd Nd 

                                       - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Non-exposed - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

5 d             1-8 1-9  Nd Nd 

7 d           3-7 3-7  Nd Nd 

                          - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Exposed- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

5 d            2-7 1-9  1-7 1-8 

7 d           3-7 2-8  3-7 1-6 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Exposed - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

6 d   1-9   3-8 

8 d  
 1-8 

 
 1-6 

a Luria–Bertani agar; LBA amended with rifampicin (100 lg ml).  
b Bacterial concentrations are expressed as log CFUs/g of cotton tissue; Nd, indicates no presence of Rif-resistant Serratia marcescens 

(CC199-R); Presence of (CC199-R) was only detected from bolls infested with verde plant bug exposed to Rif-resistant Serratia 
marcescens.  
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Figure 4.1 Mean Boll Injury, Diseased locules, and Confirmed Disease. Mean (±SEM) boll injury rating 

(0-4), diseased locules per boll rating (0-4), and percent plated and confirmed Rif-resistant Serratia 

marcescens (CC119-R) for initial pathogenicity and transmission field experiments (A: 2016 and B: 2017) 

(C: 2016 and D: 2017) (E: 2016 and F: 2017), and the disease retention study (G: 2017) (H: 2017) (I: 2017). 

Infestation duration was 1 wk in 2016 and 24 h in 2017. Bars with different letter(s) denote significant 

differences in disease exposure treatment from their respective controls at P < 0.05; analyzed by Tukey’s 

post-hoc test. See legend for boll ages used each year. 

 

Disease Symptoms, Transmission, and Confirmation 

In 2016 and 2017 initial pathogenicity and transmission field experiments, damage 

to locule tissue from cracked green bolls caged with verde plant bug exposed to CC119-

R was confined to the immediate area surrounding the puncture wound (Figure 4.2) 

Bacteria were not detected from carpel imprints on discriminating media (containing Rif) 

by using representative bolls after caging with insects (data not shown). From the bolls 
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analyzed (n > 400) for signs of insect feeding, 384 had puncture wounds on the inner 

carpel wall, had affected lint tissue, or both in 2016 and 2017. The number of punctures 

for all bolls caged with an insect ranged from 1 to 6 per boll with 83% of bolls having 1 

to 5 lesions. Both pierced and uninjured locules were observed on individual bolls. Based 

on observations of lint and seed, 89% of the inner carpel lesions inflicted by verde plant 

bug not exposed to CC119-R had no corresponding locule tissue damage (Figure 4.2A, 

left panel). Conversely, all bolls that had been infested with verde plant bug exposed to 

CC119-R exhibited inner carpel damage and at least seed discoloration (Figure 4.2A, right 

panel). Bacteria were not detected from samples of lint or seed tissue from bolls caged 

with verde plant bug non-exposed to CC119-R or control bolls (Table 4.1). Disease 

symptoms consistently corresponded with the detection of CC119-R based on growth on 

the LBA media amended with rifampicin. 
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Figure 4.2. Internal and External Feeding Effects of Bolls Infested with Verde Plant Bug. Internal and 

external effects of feeding on field-grown cotton bolls caged with verde plant bug, Creontiades 

signatus (Distant) (Hemiptera: Miridae), exposed and non-exposed to Rif-resistant Serratia marcescens 

(CC119-R) after two weeks exposure. Panel A: left boll shows inner carpel and locule damage associated 

with verde plant bug non-exposed to CC119-R, the right boll was feed on by a verde plant bug exposed to 

CC119-R, illustrating initial inner carpel and locule damage. Panel B: effects of verde plant bug non-exposed 

to CC119-R feeding on the external carpel wall (top section) and verde plant bug exposed to CC119-R 

(bottom section) cannot be distinguished by boll inspection. Panel C: effects of verde plant bug non-exposed 

to CC119-R feeding on the internal carpel wall (top section) and verde plant bug exposed to CC119-R 

(bottom section) can be distinguished by cracking green bolls after at least two weeks after the initial 

infection. Panel D: effects of verde plant bug non-exposed to CC119-R feeding on developing lint (bottom 

left section) and verde plant bug exposed to CC119-R (bottom middle section) can be distinguished by 

inspecting open bolls near harvest. 

 

Boll Injury 

In 2016 and 2017, a significant disease exposure-boll age interaction was not 

detected (P > 0.05) (Figures 4.1A and 4.1B), but a significant disease exposure main effect 

was detected (2016: F = 29.84; df = 2, 114; P < 0.0001; 2017: F = 40.67; df = 2, 290; P < 

0.0001). Overall, bolls caged with verde pant bug either exposed or not exposed to S. 

marcescens, consistently experienced higher boll injury compared to bolls caged without 

an insect. The bacterial infection process did not apparently affect insect vigor based on 

average boll damage ratings where similar feeding damage was observed across all bolls 

caged with verde plant bug (Figures 4.1A and 4.1B). In 2016 and 2017, significant boll 
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age main effects (interaction was not significant) were not detected (P > 0.05), supporting 

susceptibility of bolls to verde plant bug herbivory on bolls ranging from 5 to 7-days old 

post-anthesis. 

 

Cotton Boll Rot  

When visually inspecting green bolls two weeks after infestation, up to 62% of 

bolls infested with S. marcescens-exposed verde plan bug had symptoms of cotton boll rot 

in 2016 and 54% in 2017 (Figures 4.1C and 4.1D). These results were significantly higher 

than previous findings of occurrence and magnitude of cotton boll rot symptoms in field-

collected bolls (Brewer at al. 2013). Disease symptoms were never detected in bolls caged 

with verde plant bug non-exposed or controls. In 2016, a significant disease exposure-boll 

age interaction was detected (F = 17.63; df = 2, 114; P < 0.0001), but was not significant 

in 2017 (P > 0.05) (Figures 4.1C and 4.1D) in the diseased locule rating measurement. 

The interaction reflected a greater tendency of cotton boll rot symptoms in younger bolls 

(5 day old) than older bolls, consistant with previous finding that boll rot was more severe 

when infestation occurred mid-bloom compared to late-bloom (Glover et al. 2019). Visual 

symptoms of locule rot were detected in bolls caged with verde plant bug exposed to 

CC119-R (Figure 4.2A, right panel; 5 day old boll, and Figure 4.2D, right panel; 7 day old 

boll). In 2017, looking at the main effects (interaction was not significant) significant 

disease exposure main effects were detected (F = 45.20; df = 2, 290; P < 0.0001), and 

signficant boll age main effects were not (P > 0.05). A Tukey’s test (α = 0.05) indicated 

bolls caged with verde plant bug exposed to CC119-R consistently experienced symptoms 
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of locule rot compared to bolls caged with verde plant bug non-exposed and control bolls 

(Figure 4.1D). Simliar to 2016 field experimetns, cotton boll rot was never detected in 

bolls caged with non-exposed verde plant bug or control bolls. In general, cotton boll rot 

seemed to track boll injury (Figures 4.1A, 4.1B, 4.1C, and 4.1D); as boll injury increased 

so did boll rot in 2016 and 2017 field experiments, with a tendency of greater cotton boll 

rot expression as boll age decreases. These data support the susceptibility of younger bolls 

to feeding damage and cotton boll rot (Brewer et al. 2012, Glover et al. 2019). 

 

Laboratory Disease Confirmation 

When visually inspecting plated tissues on discriminating media (media containing 

Rif) from control bolls, significant disease exposure-boll age interactions were not 

detected (P > 0.05) in 2016 or 2017 (Figures 4.1E and 4.1F), but a significant disease 

exposure main effect was detected (2016: F = 5.80; df = 2, 114; P = 0.0040; 2017: F = 

8.02; df = 2, 155; P = 0.0005) (Figures 4.1E and 4.1F). In 2016 and 2017, a Tukey test (α 

= 0.05) indicated bolls caged with verde plant bug exposed to CC119-R consistently 

experienced symptoms of cotton boll rot compared to bolls caged with verde plant bug 

non-exposed to CC119-R and uninfested controls where cotton boll rot was never detected 

(Figures 4.1E and 4.1F). In 2016 and 2017, when looking at the boll age main effect 

differences were not detected (P > 0.05), confirming susceptibly of 5 and 7-day old bolls 

to verde plant bug vectored boll rot (CC119-R). Overall, the rifampicin sensitive bacterial 

strain (CC119-R) were only recovered from bolls caged with verde plant bug exposed to 
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CC119-R, and never from controls (bolls caged with no bug) or bolls caged with verde 

plant bug non-exposed to CC119-R (Figures 4.1E and 4.1F). 

 

Retention of S. marcescens by the Verde Plant Bug 

In the 2017 disease retention study, from the bolls analyzed (n = 73) for signs of 

insect feeding, all 68 had inner carpel damage, affected lint tissue, and discolored seed and 

lint. The number of punctures for all bolls caged with an insect ranged from 1 to 7 per 

boll. All bolls caged with verde plant bug exposed to CC119-R exhibited inner carpel 

damage and seed discoloration (Figure 4.2A, upper right panel; Figure 4.2D, bottom right 

panel). Bacteria concentrations recovered on the selective medium ranged from101 to103 

CFUs/g tissue (Table 4.1). Again, disease symptoms consistently corresponded with the 

detection of the Rif-resistant bacteria based on selective medium growth. Disease 

symptoms consistently corresponded with the detection of CC119-R based on 

discriminating medium growth. 

In the 2017 disease retention field study, a significant boll age effect on boll injury 

and cotton boll rot were not detected (P > 0.05) (Figure 4.1G), but more diseased locules 

per boll were found in 6 day old bolls, with an average of 3.1 diseased locules, compared 

to older 8 day old bolls with an average of 1.6 diseased locules per boll (F = 5.60; df = 1, 

68; P < 0.021) (Figure 4.1H). Up to 67% of bolls had symptoms of cotton boll rot by visual 

inspection (Figure 4.1H). When visually inspecting plated tissues on discriminating media 

(media containing Rif), up to 60% of the plated samples had confirmed cotton boll rot 

(CC119-R). This transmission rate compared to 54 to 62% in the initial transmission study, 
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demonstrating the ability of the verde plant bug to retain the disease and transmit cotton 

boll rot (CC119-R) successfully to an additional fruiting (bolls) sites with consistent 

efficiency across feeding on two bolls (Figure 4.1I). 

 

Discussion 

 

This study verified that providing insects green beans first immersed in a solution 

contaminated with the disease agent was an effective method for infesting insects with the 

cotton pathogen as reported by Medrano et al. (2007, 2016). The use of our disease model 

provided a method to systematically analyze insect-derived boll injury resulting from 

verde plant bug feeding/probing alone, and in tandem with boll infection by an insect-

vectored pathogen at various stages of fruit development. Appearance of cotton boll rot 

infection symptoms ranged from reddening of the seed to seed and lint necrosis, and 

always corresponded with the detection of S. marcescens strain CC119-R. An additional 

set of bolls were caged with verde plant bug exposed to CC119-R and allowed to fully 

mature and open to photograph the range of disease expression at harvest (Figure 4.3). 
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Figure 4.3. Disease Expression in Cotton Bolls Infested with Verde Plant Bug. Range of disease 

expression of cotton bolls caged with verde plant bug, Creontiades signatus (Distant) (Hemiptera: Miridae), 

vectoring Rif-resistant Serratia marcescens (CC119-R). Lint injury and positive visual symptoms of cotton 

boll rot after infestation with verde plant bug exposed to CC119-R on a five (A), six (B), seven (C), and 

eight (D) day old boll. Abscised fruit from bolls infested with verde plant bug exposed to CC119-R (E). 

 

This study demonstrated boll injury caused by verde plant bug feeding as distinct 

from cotton boll infections by verde plant bug vectoring opportunistic S. marcescens. The 

symptoms of cotton boll rot and boll injury shown here were similar to those described in 

various reports of cotton seed and boll rotting disease (Medrano et al. 2016), and injury 

caused by verde plant bug infestations (Brewer et al. 2012). Medrano et al. (2007) working 

with the southern green stink bug, reported bacteria that included Serratia, 

Staphylococcus, Pseudomonas, Pantoea, and Enterobacter at levels reaching 109 CFUs/g 

tissue from locules with evidence of stink bug punctures. This study corroborated this 

earlier observation with similar bacterial concentrations from locules with feeding and 

probing indications by verde plant bug. All locules from non-infested control bolls were 

asymptomatic and no bacteria was detected (<101 CFUs/g tissue). Furthermore, 
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concentrations seemed to remain at or about the same level across the two boll ages 

considered here. This study authenticated that verde plant bug injury directly caused by 

piercing/sucking feeding was distinct from disease infection caused by introduction of S. 

marcescens through the feeding process. Results from these experiments indicated that 

damage associated with verde plant bug infestations of developing bolls was in large part 

dependent on whether the insect transmitted the cotton pathogen S. marcescens. 

This study was the next logical step to expand our work which established 

decision-making procedures for verde bugs that assumed the presence of boll rot 

pathogens (Glover et al. 2019). Our disease transmission work with the insect vectors 

authenticate presence and persistence of the disease and risk of pathogen transmission by 

the vector in cotton fields. The nature of bacterial persistence within the insect as seen 

with the insect’s ability to retain and transmit disease across two bolls may be useful for 

risk assessment information and for evaluating insect monitoring needs for verde plant 

bug. 
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CHAPTER V 

PHOTOPERIOD-SPECIFIC DISTRIBUTION OF THE GREEN STINK BUG 

(HEMIPTERA: PENTATOMIDAE) ON COTTON 

 

Introduction 

 

Injury to cotton, Gossypium hirsutum L. (Malvaceae), by stink bugs (Hemiptera: 

Pentatomidae) has increased substantially with the widespread adoption of transgenic Bt 

(Bacillus thuringiensis)-cotton cultivars targeting lepidopterans pests (Luttrell et al. 2015). 

The resulting insecticide use decline has likely released sucking bugs, including stink 

bugs, that were formerly controlled by broad-spectrum insecticides (Lu et al. 2010). 

Consistent with higher numbers of these pests, cotton boll injury due to stink bug feeding 

has increased substantially during the last two decades in the southern United States 

including Texas, China, and other cotton-producing counties (Lu et al. 2010, Greene et al. 

2001, Luttrell et al. 2015, Glover et al. 2019). 

The complex of stink bugs on cotton that frequently occur in south Texas include 

redbanded stink bug, Piezodorus guildinii (Westwood), brown stink bug, Euschistus 

servus (Say), southern green stink bug, Nezara viridula (Say), and the green stink bug, 

Chinavia hilaris (Say) (Hemiptera: Pentatomidae). Members of this boll-feeding complex 

are the same or representative of stink bugs found elsewhere in cotton (Greene et al. 2001). 

Historically, the southern green stink bug, brown stink bug, and the green stink bug are 
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known to be economic pests of cotton (McPherson and McPherson 2000), and they have 

been shown to cause decreased fruit retention, lint staining, lint loss, and seed loss (Greene 

et al. 2001, Glover et al. 2019). Loss can be further magnified when bacterial boll rot is 

introduced during probing and feeding activity from stink bugs (Medrano et al. 2015, 

2016).  

The management of stink bug infestations on cotton currently relies on use of 

insecticides when action or economic thresholds are exceeding based on visual sampling 

methods. Methods available include collecting green bolls (2.5 cm in diameter) for internal 

injury assessment (Toews et al. 2009) and sampling for stink bugs using a drop cloth 

(Reay-Jones et al. 2009), sweep net (Outward et al. 2008), or beat bucket (Pyke et al. 

1980). The sweep net has been found to be more effective sampling nymphs, while the 

drop cloth was more effective at sampling adults (Reay-Jones et al. 2009), Conversely, the 

beat bucket has been found to effective at sampling all life stages but efficiencies in its 

use are affected by plant growth stage. Sampling strategies that displace insects for density 

estimates are further complicated by the remarkable attachment ability of the stink bug 

with higher attraction forces (>40) greater than its body weight (Voigt et al. 2019). 

Sampling time of day and within-plant distribution of stink bugs may also affect the 

outcomes of monitoring for stink bugs for detection and density estimation. Detection and 

density estimation of stink bugs require intensive and time-consuming sampling that may 

be affected by these factors and may introduce bias and variability that negatively affects 

management. 
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Biologists have used a wide variety of mark-release-observe techniques to obtain 

insect observation data related to these issues (Southwood 1978). Rice et al. (2015) 

demonstrated that marking stink bugs with fluorescent powders and using UV LEDs light 

sources was a simple, nondestructive and effective technique for detecting, otherwise 

inaccessible aspects of stink bug distribution, during nighttime in field studies. Cabrera et 

al. (2016) reported the use of markers of various colors and found no fitness cost or toxicity 

associated with the marking agent but noted variability in ability to observe different 

colors. 

Information on when (photo-period specific) and where (within-plant distribution) 

stink bugs are observed on cotton is relevant to these stink bug monitoring and 

management issues. We used mark-release-observe experiments acquire this information 

by using a combination of fluorescent marking techniques applied to a representative stink 

bug and visual blacklight aided observations of the stink bug infesting cotton. The 

objectives of this study were to assess if stink bugs were observed evenly by plant section 

(i.e. bottom, middle, and top branches), by fruiting positions and leaf surface, and by 

concealed or exposed orientation on floral bracts and leaf surfaces across daytime and 

nighttime observations. 

 

Materials and Methods 

 

 In a field study conducted over two years (2016-2017), mark-release-

observe experiments were conducted using over five hundred adult green stink bugs to 
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identify when and where bugs were observed on cotton. Field collected stink bugs were 

marked or left unmarked with non-toxic fluorescent sharpie markers, released, and 

monitored in cotton fields at peak bloom. Stink bugs where monitored visually during day 

and night, aided by a handheld blacklight for nighttime observations. Within-cotton 

distribution insect observations were categorized by plant section (i.e. bottom, middle, and 

top branches), by fruiting positions and leaf surface, and by concealed or exposed 

orientation on floral bracts and leaf surfaces. A simple external marking technique was 

applied to individual stink bugs which consisted of a quick drying, light weight marker 

available in several highly visible colors (Walker et al. 1981). The marker was durable, 

nontoxic, non-water soluble, resistant to peeling and chipping, and easy to apply 

(Wineriter et al. 1984). 

 

Insect Collection and Pre-infestation Cotton Management 

 Adult stink bugs were collected on flowering and pod filling stages of 

soybean in 2016 and 2017. Stink bugs were collected using a modified leaf blower that 

displaces insects from vegetation and transfers them into an inflatable sock that fits on the 

opposite end of the blower’s fanned nozzle, known as a KISS-sampler (keep it simple 

sampler) (Beerwinkle et al. 1997). Insects were captured 24 h before being released at 

the base of the cotton plant (Figure 5.1.) in each year. All insects were held individually 

in plastic portion cups for 24 h fasting period and inspected to confirm that only healthy 

adults (i.e. bugs with all appendages) were used. 
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Figure 5.1 Fruiting Branches on Cotton Plant Diagram. Diagram of a cotton plant illustrating fruiting 

branches present during time of infestation. In 2016 and 2017, stink bugs were released early morning at the 

base of the plants main stem (N1) during the third week of bloom. Branches were aggregated in groups of 5 

sympodial nodes: bottom branches 1-5 (nodes 6-10), middle branches 6-10 (nodes 11-15), and top branches 

11-15 (nodes 16-20). Insects were monitored for a period of 3 days and 2 nights, and peak bloom cotton was 

used, characterized as > 10-12 nodes above first white flower (NAWF). 

 

 The mark-release-observe field experiments were conducted in 2016 and 2017 at 

the Texas A&M AgriLife Research and Extension Center farm in Corpus Christi, TX. 

Cotton used for the within-plant vertical distribution experiments was selected for 

uniformity from a 1.0 ha field planted to Phytogen 499 WRF (Dow AgroSciences, 

Indianapolis. IN). Planting occurred in early May on 91-m rows and 96-cm row centers at 

a rate of 77,800 seeds per ha (31,500 seed per acre). Cotton plots were grown without 

irrigation under dryland growing conditions. Thiamethoxam insecticide (Centric, 

Syngenta Crop Protection, Greensboro, NC) at labelled rates was used ca. every 10 days 

to maintain plots pest free before infestation. Thiamethoxam application was discontinued 

2 weeks prior to infesting with insects. Other agronomic practices were normal for the 

region (Morgan 2018). 
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Field Experimental Design, Marking Technique, and Insect Infestation 

 Marked stink bugs were released into interior experimental plots nested within a 

larger contiguous and uniform cotton field to characterize the within-plant vertical 

distribution of the green stink by plant section (i.e. bottom, middle, and top branches), by 

fruiting positions and leaf surface, and by concealed or exposed orientation on floral bracts 

and leaf surfaces. Each experimental plot consisted of 10 consecutive rows (96-cm row 

centers by 15.3 m in length). Adult green stink bugs were marked with non-toxic neon 

permeant markers (Sharpie neon fine point permanent markers, Sanford L.P., Oak Brook, 

IL). The adult bugs were chilled at 3 C in a refrigerator for 2 min in preparation for 

marking the insects. Individual adult bugs were gently held between the thumb and 

forefinger, cradled by the middle finger, while the dorsal side was broadly covered with a 

single marking color of blue or orange neon. To minimize adverse effects to the insects 

(Wineriter et al. 1984), neon marking ink were only applied to the pronotum extending 

past the scutellum towards the hemelytra, and including the corium avoiding sensory 

organs (i.e. antennae, eyes, or wing membranes). The marked and unmarked control bugs 

were placed in ventilated rectangular plastic and mesh cages (29.2 × 25.4 × 26.6cm 

bugdorm cages, BioQuip, Rancho Dominguez, California) to air dry.  

 The candidate marking colors were chosen based on a preliminary darkroom 

laboratory assay that marked green stink bug cadavers with five neon marker colors (pink, 

green, yellow, blue, and orange). Marked insects were pinned to live potted cotton plants 

on leaves and various fruiting structures in a dark room illuminated by a handheld, battery 

operated portable UVA ultraviolet LED blacklight flashlight (Scorpion Master, 52 LED 
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395nM, Shawshank Ledz, Gilbert, AZ). Blue and orange had the highest visual reflectance 

and were therefore selected as the two marking colors along with an unmarked control in 

the 2016 field experiments. In 2017 field experiments, orange marked bugs along with an 

unmarked control, were used based on observations in the 2016 experiment (see results 

section). 

 In 2016, three experimental plots were infested separately with one of three 

marking treatments (i.e., blue, orange, and non-marked insects) during the third week of 

bloom. Third week of bloom was characterized as > ten to twelve nodes above first white 

flower (NAWF) on the first (mainstem) fruiting position (Kerby et al. 2010). In each 

experimental plot, 100 stink bugs of an assigned marking treatment were released early 

morning, before sunrise, at the base of cotton plant main stem approximately at node one 

(N1) (Figure 5.1). Stink bugs were released ca. every 1.4 m for a total of 10 bugs per row 

in 10 consecutive rows. A grand total of 300 green stink bugs were used in the experiment 

(i.e., 100 blue-marked, 100 orange-marked, and 100 non-marked adult stink bugs). In 

2017, the same protocol was used in two experimental plots releasing a total of 200 green 

stink bugs (i.e., 100 orange-marked and 100 non-marked adult stink bugs). Insects were 

monitored for a period of 3 days and 2 nights in 2016 and 2017. 

 

Photoperiod-specific within-Cotton Distribution Monitoring and Measurements 

 Insect monitoring and data collection were taken during day and night 

photoperiods. Daytime measurements were taken during mid-morning when plants were 

dry from morning humidity (ca. 10:30am). The data collection period was chosen to reflect 
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a time frame that insect monitoring may occur in a commercial setting. A single observer 

(JPG) collected all data. The observer walked at a slow pace in-between rows where stink 

bugs were released. Sampling was initiated at the beginning of each row inspecting all 

plants within the respective row moving from left to right until all plants within the 

experimental plot had been observed. The observer walked all experimental plots 

randomly one after the other over an approximate 45 min time-frame. The observer held 

the blacklight about 0.5 m from the plants. The sampler visually scanned each individual 

plant beginning at the terminal moving downward towards the base of the plant to observe 

the position of stink bugs by plant section (i.e. bottom, middle, and top branches), by 

fruiting positions and leaf surface, and by concealed or exposed orientation on floral bracts 

and leaf surfaces. Boll bracts and leaves were gently manipulated to determine the relative 

concealed or exposed orientation of the stink bug and caution was used to minimally 

disturb plants. Plants observed with treatment stink bugs were marked with the fluorescent 

marker to minimize the chances of sampling the same individual multiple times and ensure 

the independence of stink bug observations. Nighttime measures were taken during the 

late-evening (ca. 10:30 pm, US central time zone). Measurements were taken during the 

moon’s first quarter (in perigee), on July 12 and July 13 in 2016, and July 30 and July 31 

in 2017 (National Weather Service 2016/17). 

 Within-plant vertical distribution of the green stink bug was assessed by 

partitioning the plant into bottom, middle, and top sections. Reproductive or sympodial 

branches were counted in order from bottom to top of the plant, where the bottom branches 

(B1-5) corresponded to nodes 6-10 beginning with the first reproductive (sympodial) 
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branch, middle branches (B6-10) corresponded to nodes 11-15, and upper branches (B11-

15) corresponding to nodes 16-20 (Figure 5.1). Reproductive branches were consistently 

found at or above the fifth node above the cotyledonary node. Fruiting and leaf surface 

distribution data were assessed by recording visual observations of stink bugs on first, 

second, and third position cotton bolls (N6) (Figure 5.1) or on a leaf surfaces as partitioned 

among the bottom, middle, and top plant sections. Fruiting positions on reproductive 

branches were counted in order from the nearest position to the main stem outward 

(Anderson et al. 2018). Relative concealment and exposure of the stink bugs were assessed 

by recording observations of the green stink bug in relation to its position on the boll bract 

and leaf. Cotton bolls are surrounded by three or sometimes four bracts which are the 

modified leaves at the base of the fruit. Stink bugs observed inside a bract or on a lower 

leaf surface were recorded as concealed (Figures 5.2A and 5.2D), and stink bugs observed 

outside a bract (Figures 5.2B and 5.2E) or on an upper leaf surface were recorded as 

exposed (Figures 5.2C and 5.2F). 
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Figure 5.2. Field Measurements. Field measurements taken in 2016 and 2017 photoperiod-specific within-

plant distribution experiments. Cotton was infested with marked (fluorescent blue and orange) and non-

marked green stink bugs, Chinavia hilaris (S.) (Hemiptera: Pentatomidae). Green stink bug observed on a 

developing first and second poistion cotton boll concealed (inside) the bract (A: day and B: night), green 

stink bug observed on a first and second position cotton boll exposed (outside) the bract (C: day and D: 

night), and green stink bug observed on a leaf surface exposed (upper leaf surface) (E: day and F: night). 

 

Data Analysis 

The number of stink bugs observed were accumluted and aggregated across three 

daytime observation periods and two nighttime observation periods, as categorized by 

plant section, by fruiting and leaf surface distribution, and by relative concealment and 

exposure on bracts and leaves. A contingeny table analysis was used to test three 

hypotheses related to these distribution categories separately for daytime and nighttime 
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observations (Freund and Walpole 1980). The first hypothesis tested for independence of 

the porportion of stink bugs observed among plant sections (3: top, middle, and bottom) 

and marking technique (3 in 2016: unmarked, blue-marked, and orange-marked; and 2 in 

2017: unmarked and orange-marked). The second hypothesis tested for independence of 

the porportion of stink bugs observed among plant sections (3) and fruiting and leaf 

surface distribution (3: first position boll, second position boll, and leaf). The third 

hypothesis tested for independence of the porportion of stink bugs observed among 

fruiting position and leaf surface distribution (3) and relative concealment and exposure 

on bracts and leaves (2: found concealed or exposed on bracts and leaves). The Pearson 

X2 statistic was generated and the probability of independence was determined for these 

three m by n contingency table analyses using the computer program JMP (Lehman et al. 

2013). 

 

Results 

 

A total of twelve contingency table analyses were conducted, separated by year, 

photoperiod, and the three hypotheses. All contingency analyses were significant (P < 

0.05) for the nighttime observations (6 Pearson Chi-Square tests) and most during the 

daytime (5 Pearson Chi-Square tests). Cotton can produce bolls beyond the second fruiting 

position, but very few stink bugs (n < 3 for any observation period) were observed on third 

or greater position cotton bolls regardless of marking color, photoperiod, and year; 

therefore, these data were excluded from the analysis. 
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Within-Plant Distribution of the Green Stink Bug  

In 2016 and 2017 daytime field experiments, marked stink bugs were detected at 

higher rates than non-marked (control) stink bugs (Figures 5.3A and 5.3B) (2016: X2 = 

16.31; df = 4; P = 0.002; total number of stink bugs observed [n] = 56; 2017: X2 = 1.92; 

df = 2; P = 0.37; n = 38), respectively. In 2016 field experiments, two florescent colors 

were assayed (blue and orange). Observations of the number of stink bugs marked with 

the two marking colors varied but were always higher on the middle and top branches 

where most of the stink bugs occurred. For experimental efficiency, fluorescent orange 

was chosen as the single marking color in the 2017 field experiments. In 2016 and 2017 

daytime field experiments, more stink bugs were observed in upper portions of the cotton 

plant (middle and top sections) (Figures 5.3A and 5.3B) during the daytime than in the 

bottom branches of the plants (Figures 5.1 and 5.3). 
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Figure 5.3. Observed Marked and Unmarked Stink Bugs by Branch Sections. Number of marked and 

unmarked stink bugs observed and percent observed in the daytime (A:2016 and B:2017) and nighttime 

(C:2016 and D:2017) by branch sections: bottom branches 1-5 (nodes 6-10), middle branches 6-10 (nodes 

11-15), and top branches 11-15 (nodes 16-20). See legend for marking treatments used each year. 

 

In 2016 and 2017 nighttime field experiments, marked (fluorescent) stink bugs 

were detected in greater numbers (n > 140 and n > 130) than non-marked (controls) (n < 

7, and n < 3) (Figures 5.3C and 5.3D) (2016: X2 = 8.65; df = 4; P = 0.013; n = 144; 2017: 

X2 = 6.63; df = 2; P = 0.03; n = 169). respectively. Similar to daytime distribution of the 

green stink bug, marked stink bugs were more frequently observed in upper portions of 

the cotton plant (middle and top branch sections) (Figures 5.3C and 5.3D) during the 

nighttime with very few observations (n < 18, both years) on the bottom branches of the 

plant (Figures 5.1 and 5.3). 
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Fruiting Position and Leaf Distribution of the Green Stink Bug 

In 2016 and 2017 daytime field experiments, significant differences in fruiting site 

and leaf distribution of marked stink bugs were detected (Figures 5.4A and 5.4B) (2016: 

X2 = 10.0; df = 4; P = 0.04; n = 56; 2017: X2 = 9.94; df = 4; P = 0.04; n = 38) respectively, 

by plant section (i.e. bottom, middle, and top) (Figure 5.1). In 2016 and 2017 daytime field 

experiments, marked stink bugs were detected in greater numbers on first position cotton 

bolls (N6) (Figure 5.1) in the upper portion of the plant (i.e. middle, and top branches) and 

on second position bolls in the bottom section of the plant (Figures 5.4A and 5.4B). 

Despite the limited number of observations in 2016 and 2017 daytime field experiments, 

when marked stink bugs were detected on leaf surfaces bugs were primarily observed in 

the upper portion of the plant (i.e. middle and top) (Figures 5.4A and 5.4B). 
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Figure 5.4. Observed Stink Bugs in Daytime and Nighttime by Fruiting Position and Leaf Surfaces. 

Number of stink bugs observed and percent observed in the daytime (A:2016 and B:2017) and nighttime 

(C:2016 and D:2017) by fruiting position and leaf surfaces by branch section: bottom branches 1-5 (nodes 

6-10), middle branches 6-10 (nodes 11-15), and top branches 11-15 (nodes 16-20). Fruiting positions on 

reproductive branches were counted in order from the nearest position to the main stem outward. See legend 

for fruiting position or leaf treatments used each year. 

 

In 2016 and 2017 nighttime field experiments, similar to the fruiting site and leaf 

distribution observed during the daytime, significant differences in fruiting site and leaf 

distribution of marked stink bugs were also detected (Figures 5.4C and 5.4D) (2016: X2 = 

14.51; df = 4; P = 0.0005; n = 144; 2017: X2 = 10.40; df = 4; P = 0.03; n = 131) 

respectively, by plant section. In 2016 and 2017 nighttime field experiments, marked stink 

bugs were detected in greater numbers on first position cotton bolls in the upper portion 

of the plant (i.e. middle, and top branches) and on leaf surfaces in the top section of the 

plant (Figures 5.4C and 5.4D). 
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Bract Position Distribution of the Green Stink Bug 

In 2016 and 2017 daytime field experiments, significant differences in the stink 

bug-bract position and leaf surface distribution of marked stink bugs concealment and 

exposed (Figures 5.2A, 5.2C, and 5.2E) were detected (2016: X2 = 12.11; df = 2; P = 

0.002; n = 56; 2017: X2 = 7.2; df = 2; P = 0.02; n = 38) respectively, by fruiting position 

(i.e. first and second position cotton bolls) (Figure 5.1) and leaf surfaces (Figures 5.5A 

and 5.5B). In 2016 and 2017 daytime field experiments, marked stink bugs were detected 

at higher rates distributed inside the bract (concealed) (Figure 5.2A) when found on any 

given fruiting site (Figures 5.5A and 5.5B). Marked stink bugs when detected on leaves 

were primarily observed on lower leaf surfaces (concealed) (Figures 5.5A and 5.5B). 

Conversely, in 2016 and 2017 nighttime field experiments, the opposite trend was 

observed. Significant differences in the stink bug-bract position and leaf surface 

distribution of marked stink bugs concealment and exposed (Figures 5.2B, 5.2D, and 5.2F) 

were detected (2016: X2 = 11.02; df = 2; P = 0.004; n = 144; 2017: X2 = 8.23; df = 2; P = 

0.01; n = 131) respectively, by fruiting position and leaf surfaces (Figures 5.5C and 5.5D). 

In 2016 and 2017 nighttime field experiments, marked stink bugs were detected at higher 

rates distributed outside the bract (exposed) (Figure 5.2D) when found on any given 

fruiting site (first or second bolls) (Figures 5.5C and 5.5D). Marked stink bugs when 

detected on leaves were primarily observed on upper leaf surfaces (exposed) (Figures 

5.2F, 5.5C, and 5.5D) respectively, in contrast to daytime observations. 
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Figure 5.5. Stink Bugs Observed in Daytime and Nighttime Outside or Inside Cotton Boll Bracts. 

Number of stink bugs observed and percent observed in the daytime (A:2016 and B:2017) and nighttime 

(C:2016 and D:2017) outside or inside the cotton bolls bract by fruiting position or leaf. Fruiting positions 

on reproductive branches were counted in order from the nearest position to the main stem outward. See 

legend for bract position observed each year. 

 

Discussion 

 

 This study highlights how differences in photoperiod-specific within-plant 

distribution of stink bugs may complicates detection of stink bugs using standard sampling 

methods (Greene et al. 2001, Toews et al. 2009, Reay-Jones et al. 2009). The field 

experiments spanned two years and were conducted under dryland conditions that are 

representative of the south Texas cotton-production region using a stink bug representative 

of this and other production regions (Greene et al 2001). 
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 Observation rates in 2016 and 2017 during the nighttime were on average similar 

or higher than similar mark-recapture studies (Tillman et al. 2009), demonstrating the 

effectiveness of the marking technique for stink bugs. The significant differences between 

daytime and nighttime observations and the differences in within-plant distribution across 

plant sections, on bolls and leaves, and relative concealment and exposure of the stink 

bugs may help to explain the difficulties encountered when using current stink bug 

detection and monitoring methods (Greene et al. 2001, Toews et al. 2009, Reay-Jones et 

al. 2009). 

 It can be assumed that marked (fluorescent) stink bugs observed during the 

nighttime data collection period were experimental insects, not from local populations, 

and detected after insects went undetected during daytime observations. The larger 

number of nighttime specific observations of stink bugs in both 2016 and 2017 following 

the limited number of daytime observations support the conclusion that when an 

infestation occurs there is a portion of the population that goes undetected during the 

daytime, which complicates insect density assessment which occurs during the daytime. 

 Our data suggest candidate sections of the plant to concentrate sampling efforts 

when monitoring for the green stink bug. Daytime-specific observations indicated stink 

bugs were distributed 42% and 50% within the upper sections of the plant (i.e. middle) 

and 35% and 21% top section of the plant in 2016 and 2017 field experiments. Similarly, 

nighttime-specific observations indicated that bugs were distributed 51% and 56% within 

the upper sections of the plant (i.e. middle) and 45% and 28% in the top section of the 

plant during the night in 2016 and 2017 field experiments with very few stink bugs were 
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observed on the bottom section of the plant. Results further suggest candidate fruiting sites 

within-plant sections to concentrate sampling efforts when monitoring for the green stink 

bug. Data support that as the green stink bug moves up the plant from the base it may 

transition towards the interior of the plant to first position cotton bolls 34% and 25% in 

the middle section of the plant and in the top section of the plant 32% and 16% in 2016 

and 2017, respectively. The same trend was observed during the nighttime data which 

indicated stink bugs were distributed 38% and 35% on first position cotton bolls in the 

middle plant section, and 32% and 23% in the top plant section during the night in 2016 

and 2017 field experiments, respectively. Furthermore, significant difference in stink bug-

bract distributions were detected between day and night observations. Data suggest 

candidate fruiting sites to survey within-plant sections to maximize sampling efficiency 

when monitoring for the green stink bug. Daytime-specific observations indicated stink 

bugs were distributed primarily inside the bract (concealed) (Figure 5.2) when observed 

on first position fruiting sites 53% and 36%, in 2016 and 2017, respectively. Similarly, 

stink bugs observed on second position fruiting sites were primarily concealed 9% and 

12% inside the bract, observed on lower leaf surfaces 17% and 19% in 2016 and 2017, 

respectively. In contrast, nighttime observations indicated stink bugs were more exposed, 

primarily observed outside the bract (> 55%) or on the upper leaf surface (> 23%) (Figure 

5.2) in 2016 and 2017, respectively. 

 The differences in plant section distribution, fruiting and leave position 

distribution, and relative concealment and exposure during the nighttime in contrast to 

daytime observation of bugs are important factors to consider when sampling for the green 
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stink bug. Focusing visual observations within the upper portions of the plant and 

inspecting boll bracts may improve existing detection and monitoring efforts (Greene et 

al. 2001, Reay-Jones et al. 2009). Exploration of companion detection techniques may 

assist in detecting stink bugs in cotton. Xia et al. (2011) reported a fluorescent fingerprint 

when cotton bolls damaged by stink bugs were exposed to long-wave ultraviolet light. The 

green bolls emitted a strong blue-green fluorescence in a circular region near the puncture 

wound. Similarly, stink bugs and their damage have also been detected using an electronic 

nose (Henderson et al. 2010). Additional research in the applications of fluorescence 

markers, ultraviolet light, and existing insect detection methods are warranted. Our results 

here indicate where in the cotton plants, stink bug detection should by focused in isolation 

or in companion with these developing techniques or the existing technique of opening 

green bolls to observe visual signs of lint discoloration due to stink bug feeding. In regard 

to existing stink bug sampling techniques, further field experimentation using the beat 

bucket, sweep net, and visual observations is warranted to determine if the methods can 

be further refined using the distribution data from this experiment. 
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CHAPTER VI 

CONCLUSIONS 

 

The four studies presented in this dissertation culminate in three major conclusions 

concerning the boll-feeding sucking bug complex present in the coastal bend cotton 

growing regions of Texas. First, using whole plant caging experiments, plant response to 

feeding resulted in boll injury in the form of lint deterioration and cotton boll rot at mid 

and late-bloom stages, and in water limiting and non-water limiting conditions. Although 

plant injury was apparent across a wide range of conditions, subsequent yield decline 

attributed to insect feeding was seen primarily under water limiting conditions when plants 

were infested at mid-bloom. The mid-bloom period of cotton development contained the 

largest array of susceptible boll ages and represented the more sensitive growth period. 

Significant yield loss during mid-bloom indicated verde plant bug readily feed on large 

squares and small bolls which resulted in higher boll abscission under dryland growing 

conditions and was an important driving factor in yield depression. Second, for these 

conditions, significant yield—insect density relationships were used to calculate economic 

injury levels (EILs) for each species. EILs expressed as bugs per plant from lowest to 

highest were the brown stink bug (0.29 to 0.31 bugs per plant), redbanded stink bug (0.33), 

verde plant bug (0.49), and green stink bug (0.50). Lastly, the narrowness in the range of 

economic injury levels for the complex of stink bugs supported the construction and use 

of a common stink bug EIL of 0.34 bugs per plant. Verde plant bug was less damaging on 

average and can be considered separately from the stink bugs using a higher EIL of 0.49 
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bugs per plant (Table 2.3). If a particular stink bug species dominates in an area, the 

species-specific EIL for a stink bug also may be more appropriate. In a mixed species 

situation, the common stink bug threshold of 0.34 bugs per plant is a reasonable approach 

for pest managemen. This study illustrated the importance of the complex of sucking bugs 

as economic pests of cotton, and highlights how variation of at least one environmental 

factor, water availability, can affect economic injury levels. 

 In Chapter 3, using the same species considered in Chapter 2, single boll cage 

experiments examined the extent that boll age sensitivity to feeding and species 

differences contributed to differences observed in specific damage and yield when cotton 

was infested at mid-bloom. Response to feeding resulted in reduced fruit retention, 

increased boll injury in the form of lint deterioration, and increased cotton boll rot. The 

contrast of results comparing 0-day, 3-day, 5-day, and 7-day old bolls showed that verde 

plant bug readily feeds on smaller less mature bolls and was an important contributor to 

decreased fruit retention. Stink bugs also caused significant injury and boll rot on the older 

bolls of the study. Secondly, variation in fruit retention, boll injury, boll rot, and yield 

were primarily associated with species differences rather than between 3-day and 7-day 

old bolls. The decline in fruit retention and increased boll injury supported the 

interpretation that main causes of yield decline was poor fruit retention and boll injury that 

led to cotton boll rot. From a management viewpoint, this has implications on the window 

of field monitoring that is needed when sampling for these insects.  

The variation observed in frequency and magnitude of cotton boll rot in a two-year 

study suggested a seasonality in the presence of boll rot pathogens or potential differences 
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in transmission efficiency cross species. Lastly, boll injury was apparent across the species 

used and subsequent yield decline attributed to insect feeding was detected for all species 

except the redbanded stink bug. Averaging across boll ages, species-specific yield losses 

from lowest to highest in grams per boll were the green stink bug (2.9 ± 0.53), verde plant 

bug (3.5 ± 0.37), brown stink bug (3.8 ± 0.51), and the redbanded stink bug (4.7 ± 0.41) 

compared to controls (4.6 ± 0.28). In fact, the results of both Chapters 2 and 3 support 

mid-bloom as the significantly more sensitive blooming period susceptible to boll-feeding 

sucking bugs. From a management viewpoint, the similarities in fruit retention, boll injury, 

cotton boll rot and subsequent yield decline observed in these experiments further explains 

and supports the mid-bloom period of cotton development as containing the largest array 

of susceptible boll ages, and the more sensitive growth period. Furthermore, the narrow 

range of yield depression observed in these experiments across stink bug and plant bug 

infested bolls supported the construction of a common economic injury level for at two 

species of stink bugs when a mixed species complex is present (see Chapter 2). 

Chapter 4 showed the ability for the verde plant bug to harbor, transmit, and retain 

the cotton seed and boll rotting bacteria, Serratia marcescens (CC119-R). This study was 

the next logical step to expand our work which established decision-making procedures 

for verde bugs that assumed the presence of boll rot pathogens (see Chapter 2). First, the 

bacterial infection process did not apparently affect insect vigor based on similar boll 

injury ratings observed across both Serratia-exposed and non-exposed bugs. Cotton bolls 

with Serratia-exposed verde plant bugs had significantly greater presence of S. 

marcescens and symptoms of cotton boll rot than caged without bugs (uninfested controls) 
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or non-exposed bugs. Secondly, transmission of the disease agent (CC119-R) by the verde 

plant bug was observed and recovered across all boll ages assayed. Boll rotting bacteria 

were not detected in locules of a boll that showed no feeding activity and no damaged lint 

or seed. The magnitude of disease expression was significantly higher on younger 5- and 

6-day old bolls than older 7- and 8-day old bolls. Furthermore, pathogen transmission 

assays detected an ability for the verde plant bug to harbor the disease agent anywhere 

from 24h up to 96h post-infection and retain the pathogen as it fed on at least two bolls. 

Lastly, concentrations seemed to remain at or about the same level across the two boll 

ages considered here. 

This study authenticated that verde plant bug injury directly caused by 

piercing/sucking feeding was distinct from disease infection caused by introduction of S. 

marcescens through the feeding process. Results from these experiments indicated that 

damage associated with verde plant bug infestations of developing bolls was in large part 

dependent on whether the insect transmitted the cotton pathogen S. marcescens. The use 

of our disease model provided a method to systematically analyze insect-derived boll 

injury resulting from verde plant bug feeding/probing alone, and in tandem with boll 

infection by an insect-vectored pathogen at various stages of fruit development. 

Appearance of cotton boll rot infection symptoms ranged from reddening of the seed to 

seed and lint necrosis, and always corresponded with the detection of S. marcescens strain 

CC119-R. Our disease transmission work with the insect vector authenticate presence and 

persistence of the disease and risk of pathogen transmission by the vector in cotton fields. 

The nature of bacterial persistence within the insect as seen with the insect’s ability to 
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retain and transmit disease across two bolls may be useful for risk assessment information 

and for evaluating insect monitoring needs for verde plant bug 

Chapter 5 investigated the photoperiod-specific distribution of the green stink bug 

within the individual cotton plant. Mark-release-observe experiments were conducted to 

identify when and where bugs were observed on single cotton plants. Stink bugs where 

monitored visually during day and night, aided by a handheld blacklight for nighttime 

observations. Within-cotton distribution insect observations were categorized by plant 

section (i.e. bottom, middle, and top branches), by fruiting positions (first and second 

position bolls) and leaf surface, and by concealed or exposed orientation on floral bracts 

and leaf surfaces. First, the green stink bug was primarily (> 80%) distributed in the middle 

and top branches irrespective of photoperiod, and on bolls in the first position from the 

main stem (> 62%). Secondly, significant differences in stink bug orientation were 

detected and varied in daytime and nighttime observations. During the daytime, when 

observed on fruiting structures stink bugs were primarily observed inside the bract (> 

55%), and when detected on leaves on the lower leaf surface (> 54%) concealed. In 

contrast, nighttime observations indicated stink bugs when observed on fruiting structures 

were primarily outside the bract (> 66%), and when detected on leaves on an upper leaf 

surface (> 78%) exposed. 

Lastly, our data suggested not only candidate sections within the plant when 

monitoring for the green stink bug, but also candidate fruiting sites within-plant sections 

to concentrate sampling efforts. Furthermore, difference in stink bug-bract distributions 

were detected between day and night observations. The larger number of nighttime 
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specific observations of stink bugs following the limited number of daytime observations 

support the conclusion that when an infestation occurs there is a portion of the population 

that goes undetected during the daytime, which complicates insect density assessment 

which occurs during the daytime. The differences between daytime and nighttime 

observations and the differences in within-plant distribution across plant sections, on bolls 

and leaves, and relative concealment and exposure of the stink bugs are important factors 

to consider when sampling for the green stink bug and may help to explain the difficulties 

encountered when using current stink bug detection and monitoring methods. This study 

highlights how differences in photoperiod-specific within-plant distribution of stink bug 

complicates detection of stink bugs using standard sampling methods. Focusing visual 

observations within the upper portions of the plant, on first position cotton bolls, 

inspecting boll bracts may improve existing detection and monitoring efforts. These 

results are relevant to refining current stink bug detection and monitoring protocols to 

improve efficiency and reduce variability. 

Together, these studies indicated the overall similarities in plant response from a 

boll-feeding sucking bug complex. Boll injury from both stink bugs and the verde plant 

bug took the form of external and internal punctures that upon inspection were visually 

indistinguishable. Ultimately, many of these probing sites, irrespective of the species and 

cotton growth stage, became a wart or callous-like mass of proliferated cells. Often, these 

growths were the initial sites of cotton seed and lint rot collectively referred to as cotton 

boll rot. Cotton boll rot consistently tracked boll injury: as boll injury increased so did 

cotton boll rot. Visual symptoms of cotton boll rot vectored by stink bugs and verde plant 
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bug at harvest ranged from moderate to severely matted and discolored lint, rotted seed 

and or lint, groups of desiccated locules, and or whole bolls that abscised from the plant.  

Bolls exhibiting both boll injury and cotton boll rot occurred during mid and late-

bloom, but only caused significant economic yield depression during mid-bloom. The 

experiments in this dissertation did not look at disease progression or symptomology at 

various times post-infection. However, it should be noted that a limited exploration of 

green boll samples from both the whole plant and single cage experiments, irrespective of 

species that contained cotton boll rot, consistently had symptoms ranging from reddening 

of the seed to seed and lint necrosis. Bolls experienced cotton boll rot during both mid and 

late-bloom, but only caused a significant economic yield depression during mid-bloom. 

However, the degree to which the different species can successfully or competently vector 

cotton boll rot varied across species and years during field experimentation. One 

interpretation is that boll response to some species may be less severe in terms of cotton 

boll rot frequency or the species is a less competent vector. 

Fruit retention was a major driving factor in significant yield decline when cotton 

was infested with verde plant bug. Decreased fruit retention was observed at similar or 

greater rates for the verde plant bug when compared to stink bugs, especially on younger 

less mature fruit. The verde plant bug is considerably smaller compared to the stink bugs 

considered in these experiments. The studies in this dissertation, comparing members of 

the boll-feeding sucking bug complex, reemphasized that size is not a reliable indicator of 

an insect’s injury and disease potential as observed with the verde plant bug. Lastly, time 

inefficiencies and variability in current detection efforts may be reduced by focusing our 
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efforts in the upper portions of the cotton plant on first position bolls, physically inspecting 

the floral bract, and looking at lower leaf surfaces during routine periods of insect 

monitoring.  

While I explored important yield-insect density relationships to generate drought-

sensitive economic injury levels, future work to define non-water limited economic injury 

levels for areas that receive above average annual precipitation or affected by El Niño 

weather patterns may prove useful for finer management. Second, the lack of boll rot 

observed in bolls caged with the redbanded stink bug and the differences in frequency of 

occurrence of cotton boll rot for other species observed may be associated with differences 

in habitat reservoirs for the disease. Species such as the redbanded stink bug were collected 

in soybean, while the other species were collected in sorghum. Differences in the 

efficiency of cotton boll rot transmission were observed to some degree across species. 

Detailed cross-species disease transmission and vector competency studies may help 

explain what drives the variation detected across species in this study. From a management 

viewpoint, further research should be conducted to determine if insects are more likely to 

be infected with a boll rotting pathogen when populations transition from either 

overwintering weedy hosts or alternative row crop hosts into cotton acting as habitat 

reservoirs for the disease. Furthermore, pathogen transmission assays detected an ability 

for the verde plant bug to harbor the disease agent anywhere from 24h up to 96h post-

infection and retain the pathogen as it fed on at least two bolls. Future work should be 

done do determine how long verde plant bug remains infective and able to successfully 

transmit disease.  
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Lastly, additional research in the applications of fluorescence markers, ultraviolet 

light, and existing insect detection methods are warranted. Our results indicate where in 

the cotton plants stink bug detection should be focused, possibly in companion with future 

cotton boll rot field-detection techniques or the existing technique of opening green bolls 

to observe visual signs of lint discoloration due to stink bug feeding. In regard to existing 

stink bug sampling techniques, further field experimentation using the beat bucket, sweep 

net, and visual observations is warranted to determine if these methods can be further 

refined using the distribution data from the mark-release-observe experiments. 


