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ABSTRACT

This dissertation contains two independent projects: the first project develops a general method-

ology for solving the Positive–Unlabeled (PU) learning problem, and the second project creates a

hierarchical Bayesian model that solves a specific astronomical problem – periods estimation for

Miras.

In the first project, we deal with the PU learning which considers two samples, a positive set P

with observations from only one class and an unlabeled set U with observations from two classes.

The goal is to classify observations in U . Class mixture proportion estimation (MPE) in U is a

key step in PU learning. Blanchard et al. (2010) show that MPE in PU learning is a generalization

of the problem of estimating the proportion of true null hypotheses in multiple testing problems.

Motivated by this idea, we propose a flexible framework: fistly reduce the problem to one di-

mension via construction of a probabilistic classifier trained on the P and U data sets, and then

apply a one–dimensional mixture proportion method to the observation class probabilities. The

flexibility of this framework lies in the freedom to choose the classifier and the one–dimensional

MPE method. Using this framework, we propose two mixture proportion estimators: one adapts

ROC technique (Storey, 2002; Scott, 2015), and another adapts isotonic regression (Patra and Sen,

2015). Theoretically we prove the consistency of these two estimators. Empirically we demon-

strate that our proposed estimators have competitive performance on simulated waveform data and

a protein signaling problem. And the implementations of our estimators are tuning parameter free.

The second project of this dissertation is to present an inverse Period-Luminosity relation

(PLR) enhanced multi-band semi-parametric model (SP3) to efficiently recover periods for quasi-

periodic variable stars such as Miras. Mira variables are promising distance indicators because the

oxygen-rich type Miras follow a tight PLR in the near-infrared. However, the Mira light curves

are quasi-periodic, making their period estimation significantly challenging. In recent few years,

several methods have been developed to estimate period for Miras. He et al. (2016) develop a

single-band semi-parametric model based on the Gaussian processes tool. Yuan et al. (2018) ex-

ii



tend the above model to a multi-band case. These two models are designed for fitting observations

for single Mira (single-band or multi-band) and do not use the PLR. To borrow the strength across

light curves, our proposed SP3 model uses inverse Period-Luminosity relation (iPLR) to adaptively

feed a frequency prior to each light curve. This model outperforms existing methods in various

simulated data sets.
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1. INTRODUCTION

1.1 Introduction of the first project: a flexible procedure for Positive–Unlabeled learning

Let

X1, . . . , Xn ∼ F = αF0 + (1− α)F1, (1.1)

XL,1, . . . , XL,m ∼ F1,

all independent, where F0 and F1 are distributions on Rp with densities f0 and f1 with respect to

measure µ. The goal is to estimate α and the classifier

C01(x) =
(1− α)f1(x)

αf0(x) + (1− α)f1(x)
, (1.2)

which can be used to separate the unlabeled data {Xi}ni=1 into the classes 0 and 1. The above

problem has been termed Learning from Positive and Unlabeled Examples, Presence Only Data,

Partially Supervised Classification, and the Noisy Label Problem in the machine learning literature

(Elkan and Noto, 2008; Ward et al., 2009; Ramaswamy et al., 2016; Scott et al., 2013; Scott, 2015;

Liu et al., 2002). In this work, we use the term PU learning to refer to Model (1.1). Here we

denote the positive set P := {XL,i}mi=1 and the unlabeled set U := {Xi}ni=1. This setting is more

challenging than the traditional classification framework where one possesses labeled training data

belonging to both classes. In particular α and C01 are not generally identifiable from the data

{Xi}ni=1 and {XL,i}mi=1. PU learning has been applied to text analysis (Liu et al., 2002), time series

(Nguyen et al., 2011), bioinformatics (Yang et al., 2012), ecology (Ward et al., 2009), and social

networks (Chang et al., 2016).

Several strategies have been proposed for solving the PU learning problem. Ward et al. (2009)

assume α is known and use logistic regression to classify U . The SPY method of Liu et al.

(2002) classifies U directly by identifying a “reliable negative set.” The SPY method has prac-

1



tical challenges including choosing the reliable negative set. Other strategies estimate α directly.

Ramaswamy et al. (2016) estimate α via kernel embedding of distributions. Scott (2015) and

Blanchard et al. (2010) estimate α using the ROC curve produced by a classifier trained on P and

U .

Blanchard et al. (2010) show that MPE in the PU model is a generalization of estimating the

proportion of true nulls in multiple testing problems. Specifically, suppose that F0 and F1 are one–

dimensional distributions and F1 is known. Then the unlabeled set X1, . . . , Xn may be interpreted

as test statistics with the hypotheses:

H0 : Xi ∼ F1,

Ha : Xi ∼ F0.

In this context, 1 − α is the proportion of true null hypotheses and the classifier C01 is the local

FDR (Efron et al., 2001). There are many works on addressing identifiability and estimation of α

and C01 in this simpler setting (Patra and Sen, 2015; Efron, 2012; Genovese and Wasserman, 2004;

Robin et al., 2007; Meinshausen and Rice, 2006).

FDR α estimation methods have been developed for one–dimensional MPE problems and are

not directly applicable on the multidimensional PU learning problem in which Xi ∈ Rp. In this

work, we show that the PU MPE problem can be reduced to dimension one by constructing a

classifier on the P versus U data sets followed by transforming observations to class probabilities.

One dimensional MPE methods from the FDR literature can then be applied to the class probabil-

ities. Computer implementation of this approach is straightforward because one can use existing

classifier and one–dimensional MPE algorithms. We prove consistency for adaptations of two one–

dimensional MPE methods: Storey (2002) based on empirical processes and Patra and Sen (2015)

based on isotonic regression. These proofs use results from empirical process theory. We show

that the ROC method used in Blanchard et al. (2010) and Scott (2015) is a variant of the method

proposed by Storey (2002).
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1.2 Introduction of the second project: periods estimation for Miras using multi-band light

curves and inverse Period-Luminosity relations

The current expansion rate of the Universe, known as the Hubble constant or H0, is one of

a few fundamental parameters required to understand the contents and evolution of the cosmos.

The most precise and accurate technique for estimating H0 is based on white-dwarf supernovae

and Cepheid variables (Riess et al., 2016). The latest determination of this parameter (Riess et al.,

2018) has a value that is 3.8σ higher than the expectation based on the current cosmological model

(Planck Collaboration et al., 2018). If this discrepancy is confirmed at a higher confidence level

(i.e., > 5σ), it may be evidence for an additional component of the Universe.

In order to reach above goals of accurately estimating H0 and proving additional component

of the Universe, it is desirable to establish different techniques that can provide equally robust but

independent estimates of H0. Mira variables (hereafter, Miras) have been shown to be promising

alternatives to Cepheids (Whitelock et al., 2014; Huang et al., 2018) and can be used to calibrate

additional techniques that will supplement the white-dwarf supernovae method.

Miras are long-period (P = 100−1000 days) pulsators with large-amplitude cyclical variations

in luminosity (Kholopov et al., 1985). Owing to a different pulsation mechanism than strictly-

periodic variable stars such as Cepheids, Miras exhibit quasi-periodic changes as seen in figure 1.1.

Figure 1.1a shows a typical “light curve” of a Mira from the OGLE survey (Udalski et al., 2008).

This particular star is located in a satellite galaxy of the Milky Way known as the Large Magellanic

Cloud (hereafter, LMC). A “light curve” is a time-series data containing brightness measurements

(known as “magnitudes”) at a series of unevenly-spaced points. The measurement error associated

with each magnitude is also provided in standard astronomical surveys. The measurement error

describes an one-standard deviation uncertainty on the magnitude. Typically, the brightness of a

star is measured at different ranges of wavelengths (known as “bands”) using various filters that

limit the light received by the detector. A light curve is said to be “quasi-periodic” in that it has

an intrinsically periodic pattern but the amplitudes or phases for each cycle may be different. The

LMC is relatively nearby and has been extensively imaged by the OGLE survey for more than

3



two decades, yielding very high-quality measurements as shown in the aforementioned figure. In

contrast, most astronomical time-series data are significantly noisier and rather poorly sampled.

Figure 1.1b shows the light curve of a Mira in the galaxy Messier 33 (M33) from a recent study

(Yuan et al., 2018). M33 is located ∼ 17× farther than the LMC, making the stars ∼ 300× fainter

and requiring much larger telescopes that can only be used infrequently.

The period of pulsation of a variable star is used to construct Period-Luminosity relations

(PLRs), which are one of the techniques used to estimate H0. PLRs are linear correlations be-

tween the logarithm of the period and the logarithm of the average luminosity for stars of a given

type, first discovered for Cepheids by Henrietta Leavitt more than a century ago (Leavitt and Pick-

ering, 1912). One subtype of Miras (known as “Oxygen-rich”) also exhibit tight PLRs (Ita et al.,

2005; Soszyński et al., 2007; Yuan et al., 2017b; Yuan et al., 2018). In order to realize the full

potential of PLRs one must have accurate period estimations, which are particularly challenging

for Miras due to their quasi-periodic behavior.

In the recent few years, two methods have been proposed to estimate the periods of Miras. He

et al. (2016) use a semi-parametric model to estimate period with densely-sampled single-band

data (e.g. figure 1.1a). But this model is difficult in recovering the period for sparsely-sampled

light curve. Yuan et al. (2018) make an improvement over above model by taking advantage of

multi-band information. This multi-band model improves the performance on spasely-sample data,

but its period estimates should be followed by an ad hoc correction before they are used for PLRs

inference. All these methods are designed for an individual light curve. Even when estimating

periods for a set of stars that share a single PLR, the light curves are processed separately and their

periods are estimated independently. A natural and intuitive way to borrow information from each

light curve is to use PLRs, which can serve as a conductor to orchestrate the connection between

light curves. However the PLRs are not easy to use, but their inverse relations – inverse Period-

Luminosity relations (iPLRs) – are more straightforward to be used to enhance the performance of

the aforementioned two methods. In this project, we develop an iPLR-enhanced multi-band model

for quasi-periodic light curves, especially for poor quality light curves as shown in figure 1.1b.
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Figure 1.1: Light curves of Miras in two nearby galaxies: (a) LMC and (b) M33. Each star has
time-series data in four bands: · · · : I; · · · : H; · · · : J ; · · · : K. The vertical bars around each
point are two-standard deviation. . The quality and sampling of the I light curve for the LMC Mira
is atypical; most astronomical data sets will be poorly sampled and noisy as the other examples.

5



2. A FLEXIBLE PROCEDURE FOR POSITIVE–UNLABELED LEARNING

In this chapter, we develop a flexible procedure for solving the Positive–Unlabeled learning

problem. Using this procedure, two mixture proportion estimators are proposed in this project. We

will demonstrate that these two estimators have competitive performance on simulated data and

real data.

The rest of this chapter is organized as follows. In section 2.1 we give a sketch of the proposed

procedure, which includes two proposed estimators C-patra/sen and C-roc. This section consists

of three subsections. First, a motivation of the procedure from hypothesis testing community is

explained. Second, identifiability of α is addressed. Third, a workflow is provided to explain how

to implement the proposed procedure. In section 2.2 we show that model (1.1) can be reduced to

one-dimension with a classifier. In section 2.3 we show consistency of two α estimators. In section

2.4 we numerically show that the estimators perform well in various settings.

2.1 Background and proposed procedure

2.1.1 Multiple testing, FDR, and estimating the proportion of true nulls

Suppose one conducts n tests of null hypothesis H0 : Xi ∼ F1 versus alternative hypothesis

Ha : Xi ∼ F0, i = 1, . . . , n. TheXi are typically test statistics or p–values and the null distribution

F1 is assumed known (usually Unif [0, 1] in the case of Xi being p–values). The distribution of

the Xi are F = αF0 + (1− α)F1, where 1− α is the proportion of true null hypotheses. The false

discovery rate (FDR) is the expected proportion of false rejections. IfR is the number of rejections

and V is the number of false rejections then FDR ≡ E[V
R
1R>0]. Benjamini and Hochberg (1995)

developed a linear step–up procedure which bounds the FDR at a user specified level β. In fact,

this procedure is conservative and results in an FDR ≤ β(1 − α) ≤ β. This conservative nature

causes the procedure to have less power than other methods which control FDR at β. Adaptive

FDR control procedures first estimate 1− α and then use this estimate to select a β which ensures

control at some specified level while maximizing power. Many estimators of α have been proposed
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(Patra and Sen, 2015; Storey, 2002; Benjamini et al., 2006; Langaas et al., 2005; Blanchard and

Roquain, 2009; Benjamini and Hochberg, 2000).

There are two reasons why these procedures cannot be directly applied to the PU learning

problem. First, many of the methods have no clear generalization to dimension greater than one

because they require an ordering of the test statistics or p–values. Second, the distribution F1 is

assumed known where as in the PU learning problem we only have a sample from this distribution.

The classifier dimension reduction procedure we outline in subsection 2.1.3 addresses the first

point by transforming the PU learning problem to 1–dimension. The theory we develop in section

2.2 and 2.3 addresses the second issue.

2.1.2 Identifiability of α and C01

Many works in both the PU learning and multiple testing literature have discussed the non–

identifiability of the parameters α and F0. For any given (α, F0) pair with α < 1, one can find a

γ > 0 such that α′ ≡ α + γ ≤ 1. Define F ′0 ≡ αF0+γF1

α+γ
. Then

F = α′F ′0 + (1− α′)F1,

which implies (α′, F ′0) and (α, F0) result in the same distributions for P and U .

To address this issue, we follow the approach taken by Blanchard et al. (2010) and Patra and

Sen (2015) and estimate a lower bound on α defined as

α0 := inf

{
γ ∈ (0, 1] :

F − (1− γ)F1

γ
is a c.d.f.

}
. (2.1)

The parameter α0 is identifiable. Recall the objective is to estimate

C01(x) =
(1− α)f1(x)

αf0(x) + (1− α)f1(x)
,

the probability an observation in U is from class 1. We can use α0 to upper bound C01 in the
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following way. Note that the classifier

C(x) =
πf1(x)

πf1(x) + (1− π)f(x)

outputs the probability an observation is from the labeled data set at a given x. We can approximate

C by training a model on the P versus U data sets. The classifiers C and C01 are related through

α. To see this, note that after some algebra

f1(x)

f(x)
=

C(x)

1− C(x)

1− π
π

.

Thus

C01(x) =
(1− α)f1(x)

f(x)
=

1− π
π

C(x)

1− C(x)
(1− α).

Since α is not generally identifiable, neither is C01. However the plug-in estimator using Cn (a

classifier trained on P versus U ) and α̂0 (some estimator of α0) serves as an upper bound for C01.

Specifically,

Ĉ01(x) =
1− π
π

Cn(x)

1− Cn(x)
(1− α̂0).

We can classify an unlabeled observation Xi as being from F1 if Ĉ01(Xi) >
1
2
. The problem has

now been reduced to estimation of α0. The classifier Cn plays an important role in estimation of

α0 as well, as shown in the following section.

2.1.3 Workflow for α0 estimation

The proposed procedure to estimate α0 in model (1.1) is summarized in figure 2.1. The key

idea of this procedure is to reduce the dimension of PU learning problem via the classifier Cn

trained on P versus U and then apply a one-dimensional MPE method on the transformed data to

estimate α0. The procedure consists of three steps:

• Step 1. Label the P samples with pseudo label (Y = 1) and label the U samples with pseudo

label (Y = 0). Hence we have P̃ := {(XL,i, Yi = 1), i = 1, . . . ,m} and Ũ := {(Xi, Yi =

8



0), i = 1, . . . , n}.

• Step 2. Train a probabilistic classifier Cn(·) = P̂ (Y = 1|X = ·) on P̃ versus Ũ . Compute

probabilistic predictions: p1 := {p1i, i = 1, . . . ,m} and p0 := {p0i, i = 1, . . . , n}, where

p1i := Cn(XL,i) and p0i := Cn(Xi).

• Step 3. Apply a one-dimensional MPE method to p1 and p0 to estimate α0.

Cn(·) one-dimensional

procedure

1

2

or

C-patra/sen method:
adapted from Patra and Sen [2015]

C-roc method:
adapted from Storey [2002] and Scott [2015]
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.

.
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?
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+

.
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+
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0
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0

0

0

1

.

.

.
1

1

1

1

1

p0n

.

.

.
p05

p04

p03
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p01
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p15
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p13

p12

p11

features y probability output

Step 1:
Augment data with y.
Stack the positive and the
unlabeled as a large matrix

Step 2:
Train a classifier, compute
class probabilities

Step 3:
Apply one-dim procedure on
class probabilities

Figure 2.1: Workflow of proposed procedure. In Step 1, “+” denotes the positive samples, and
“?” denotes the unlabeled samples whose label are unknown (can be “+” or “-”). We stack the set
P and the set U together as a large matrix, and add a new column y to manually impose pseudo
labels on observations: “1” for XL,i and “0” for Xi. In Step 2, a classifier Cn(·) is trained on
the stacked matrix and the probability predictions (y = 1 as reference) are obtained. In Step
3, a one-dimensional procedure is applied to the probability output from Step 2. In this project,
two methods C-patra/sen and C-roc are introduced as examples. The upper density curve is used
to demonstrate that the p1 := {p1i}mi=1 are from one population, while the bottom density curve
shows that p0 := {p0i}ni=1 are from mixture of two populations.
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We augment the original data with pseudo labels in Step 1, in order to use a supervised learning

classification algorithm. In Step 2 we use Random Forest (Breiman, 2001). However in principle

any classifier can be used. Note that the p0i and p1i are scalars. Hence in Step 3 we can utilize

any one-dimensional method to estimate α0. In this work we adapt two methods – one from

Storey (2002) and Scott (2015), another from Patra and Sen (2015). Note that the original theory

developed for these methods assumed that the null distribution is known, but in the PU problem

we need to estimate it from p1. Since this setting is more complex and more challenging, new

theory is needed. In section 2.3, we prove the consistency of two estimators in the PU setting,

using Theorems 1 and 2.

2.2 Dimension reduction via classifier

Using the P and U samples we can make probabilistic predictions, i.e. compute the probability

that the observation is from distribution F1 versus from distribution F . The true classifier is

C(x) =
f1(x)π

f1(x)π + f(x)(1− π)
, (2.2)

where π = m
m+n

is the proportion of labeled sample within the entire data. We treat π as a known

constant.

Denote the distribution of probabilistic predictions for P and U , respectively, as

G(t) = P (C(X) ≤ t|X ∼ F ), (2.3)

GL(t) = P (C(X) ≤ t|X ∼ F1). (2.4)

One can consider the two-component mixture model

G = αGGs + (1− αG)GL, (2.5)
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for αG and GS , which are again potentially non-identifiable. Define

αG0 := inf

{
γ ∈ (0, 1] :

G− (1− γ)GL

γ
is a c.d.f.

}
. (2.6)

Theorem 1. αG0 = α0.

See appendix A.1.1 for a proof. Theorem 1 shows one can solve the p–dimensional MPE

problem (2.1) by solving the 1–dimensional MPE problem (2.6). In what follows we use α0 instead

of αG0 to simplify notation.

In practice, the classifier C(X) is approximated by a trained model Cn(X) on a given sample.

For convenience, we assume the classifier Cn(X) is trained using another independent sample D′n.

The D′n is omitted in the following to lighten notation. We require the approximated classifier to

be a consistent estimator of the true classifier.

Assumptions 1. We assume

E|Cn(X)− C(X)| = O
(
n−τ
)
, (2.7)

for some τ > 0.

Such convergence results have been proven for a variety of probabilistic classifiers, including

variants of Random Forest (Biau, 2012). Define

GL,n(t) :=
1

m

m∑
i=1

1Cn(XL,i)≤t,

Gn(t) :=
1

n

n∑
i=1

1Cn(Xi)≤t.

Intuitively we can think of GL,n and Gn as approximate empirical distribution functions of GL and

G respectively. The approximation is due to the fact that C is estimated with Cn. Thus we would

expect Glivenko-Cantelli and Donsker properties for Gn(t) and GL,n(t). However problems can

arise when C(X) is not continuous. Essentially convergence in probability for C(X), implied by
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Assumptions 1, only implies convergence of distribution functions at points of continuity. By as-

suming GL and G possess densities, we can obtain uniform convergence of distribution functions.

Assumptions 2. We assume that G and GL are absolutely continuous and have bounded density

functions g and gL.

Theorem 2. Under Assumption 1 and 2, for β = τ/3

nβ(GL,n(t)−GL(t)) is OP (1),

nβ(Gn(t)−G(t)) is OP (1),

where both OP (1) are uniform in t.

See appendix A.1.2 for a proof. The result from theorem 2 is the key step in showing consis-

tency of our α0 estimators in the following sections.

2.3 Estimation of α0

We generalize a one–dimensional method of Patra and Sen (2015) to the PU learning problem.

We call it C-patra/sen to emphasize the fact that the method developed in Patra and Sen (2015)

is applied to the output of a classifier. Then we generalize a one dimensional method of Storey

(2002) to the PU learning problem. We show that the ROC method developed in Blanchard et al.

(2010) and Scott (2015) can be viewed as a variant of the Storey (2002) idea. We develop a version

of ROC termed C-roc.

2.3.1 C-patra/sen

Patra and Sen (2015) remove as much of the GL,n distribution from Gn as possible, while

ensuring that the difference is close to a valid cumulative distribution function. We briefly review

the idea and provide theoretical results to support use of this procedure in the PU learning problem.

See Patra and Sen (2015) for a fuller description of the method in the one–dimensional case.

For any γ ∈ (0, 1] define

Ĝγ
s,n =

Gn − (1− γ)GL,n

γ
.
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If γ ≥ α0, Ĝγ
s,n will be a valid c.d.f. (up to sampling uncertainty) while the converse is true if

γ < α0. Find the closest valid c.d.f. to Ĝγ
s,n, termed Ǧγ

s,n, and measure the distance between Ĝγ
s,n

and Ǧγ
s,n. Define

Ǧγ
s,n = argmin

all c.d.f. W (t)

∫ (
Ĝγ
s,n −W (t)

)2
dGn(t), (2.8)

dn(g, h) =

√∫
(g(t)− h(t))2 dGn(t).

Isotonic regression is used to solve Equation 2.8. If dn(Ĝγ
s,n, Ǧ

γ
s,n) ≈ 0, then α0 ≤ γ where the

level of approximation is a function of the estimation uncertainty and thus the sample size. Given

a sequence cn define

α̂cn0 = inf
{
γ ∈ (0, 1] : γdn(Ĝγ

s,n, Ǧ
γ
s,n) ≤ cn

nβ−η

}

where η ∈ (0, β) is a constant and the rate β is from Theorem 2.

Theorem 3. Under Assumptions 1 and 2, if cn = o(nβ−η) and cn →∞, then α̂cn0
p−→ α0.

The proof, contained in appendix A.1.4, is a generalization of results in Patra and Sen (2015)

which accounts for the fact that both Gn and GL,n are estimators. While Theorem 3 provides con-

sistency, there are a wide range of choices of cn. Patra and Sen (2015) showed that γdn(Ĝγ
s,n, Ǧ

γ
s,n)

is convex, non-increasing and proposed letting α̂0 be the γ that maximizes the second derivative of

γdn(Ĝγ
s,n, Ǧ

γ
s,n). We use this implementation in our numerical work in section 2.4.

2.3.2 C-roc

Recalling the definitions of G, Gs, and GL from Section 2.2, note

G(t) = αGs(t) + (1− α)GL(t) ≤ α + (1− α)GL(t)
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for all t. Thus for any t such that GL(t) 6= 1 we have

k(t) ≡ G(t)−GL(t)

1−GL(t)
≤ α.

In the FDR literature, GL is the distribution of the test statistic or p–value under the null hypothesis

and is generally assumed known. Thus only G must be estimated, usually with the empirical

cumulative distribution function. Storey (2002) proposed an estimator for k(t) at fixed t (Equation

6) and determined a bootstrap method to find the t which produces the best estimates of the FDR.

The PU problem is more complicated in that one must estimate G and GL. However the

structure of G and GL enables one to estimate the identifiable parameter α0. Specifically with

t∗ = inf{t : GL(t) ≥ 1} we have

lim
t↑t∗

k(t) = α0. (2.9)

See Lemma 1 for a proof. This result suggests estimating α0 by substituting the empirical es-

timators of Gn and GL,n into Equation 2.9 along with a sequence t̂ which is converging to the

(unknown) t∗. Such a sequence t̂ must be chosen so that the estimated denominator 1 − ĜL,n(t̂)

is not converging to 0 too fast (and hence too variable). For t̂ we use a quantile of the empirical

c.d.f. which is converging to 1, but at a rate slower than the convergence of the empirical c.d.f..

For some q ∈ (0, β), define

t̂ = inf{t : GL,n(t) ≥ 1− n−q} − n−1.

The n−1 term in t̂ avoids technical complications.

Theorem 4. Under Assumptions 1 and 2

kn(t̂) ≡ Gn(t̂)−GL,n(t̂)

1−GL,n(t̂)

P−→ α0.

See appendix A.1.3 for a proof.
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2.3.2.1 Connection with ROC method

The ROC method of Scott (2015) (Proposition 2) and Blanchard et al. (2010) is a variant of the

Storey (2002) method with a particular cutoff value t. Define the true ROC curve by the parametric

equation

{(GL(t), G(t)) : t ∈ [0, 1]}.

Scott (2015) showed that α0 is the supremum of one minus the slope between (1,1) and any point

on the ROC curve.1 This is equivalent to the Storey method because

α0 = sup
t

1− 1−G(t)

1−GL(t)

= sup
t

G(t)−GL(t)

1−GL(t)

= sup
t
k(t).

The true ROC curve is not known, so α0 cannot be computed directly from this expression. Blan-

chard et al. (2010) found a consistent estimator and Scott (2015) determined rates of convergence

using VC theory. For application to data, Scott (2015) splits the labeled and unlabeled data sets

in half, constructs a kernel logistic regression classifier on half the data, and estimates the slope

between (1,1) and a discrete set of points on the ROC curve. The α0 estimate is the supremum of

1 minus each of these slopes. Thus we see that the ROC method and earlier methods developed

in the FDR literature are in the same family of α estimation strategies. Choosing a t in the Storey

approach is equivalent to choosing a point on the ROC curve.

2.3.2.2 Practical implementation

We consider two implementations of these ideas. The method of Scott (2015), using a kernel

logistic regression classifier and a PU training–test set split to estimate tuning parameters, is re-

ferred to as “ROC.” To facilitate comparison with C-patra/sen, we consider another version with a

1Scott (2015) estimated κ = 1 − α. We have modified the ROC method notation to reflect the α notation used in
this work.
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Random Forest classifier using out–of–bag probabilities to construct the ROC curve. We call this

method C-roc.

2.4 Numerical experiments

To illustrate the proposed methods we carry out numerical experiments on simulated waveform

data and a real protein signaling data set TCDB-SwissProt. We compare the performance of the

three methods (C-patra/sen, C-roc and ROC) discussed in Section 2.3 and the SPY method. With

the SPY method, once the classifications (“positive” or “negative”) in set U are made, we use the

proportion of “negative” cases as an approximation of α0. For the C-roc and C-patra/sen methods

(Breiman, 2001), we use Random Forest to construct Cn(·).

2.4.1 Waveform data

We simulate observations from the waveform data set using the R-package mlbench (Leisch

and Dimitriadou, 2010). The waveform data is a binary classification problem with 21 features.

We fix π = 0.5 for all simulations.
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Figure 2.2: Comparison of methods with different α values. On the x-axis, α varies from 0.01 to
0.99 by step size 0.01. The left plot displays the estimates of the lower bound α0. The middle plot
displays the accuracy of classifying observations in U . The right plot displays the F1 score of the
classifications.
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2.4.1.1 Varying α

We vary α from 0.01 to 0.99 in Model (1.1) in increments of 0.01. For each α the sample sizes

are fixed at m = n = 3000. At each α we run the methods described to estimate α and classify

observations in U . Results are shown in figure 2.2. For α estimation shown in the left panel, the

ROC method performs well when α is large, but overestimates α when it is near zero. If α is small,

the ROC method is sensitive to the random seed used to divide samples into training and testing

sets. The SPY method depends on a good choice of noise level, so with misspecified noise level

it usually overestimates or underestimates α. C-roc and C-patra/sen methods are more stable with

small α.

2.4.1.2 Varying sample size

We empirically examine consistency and convergence rates of the methods by estimating α

at increasing sample sizes, keeping the number of labeled and unlabeled observations equal, i.e.

n = m. In figure 2.3, every method is repeated 20 times for each (n, α) pair. The 20 α0 estimates

are displayed as a boxplot, which show estimator bias and variance.

We see that 1) all methods, except SPY, appear consistent under different settings (α = 0.1, 0.5, 0.9);

2) the ROC estimator has the largest variance; 3) with larger α, the estimators have smaller variance

4) C-patra/sen and C-roc are the best methods on average.

2.4.1.3 Single feature α0 estimation

One approach to solving the multidimensional PU learning problem is to estimate α separately

using each feature. If Xi ∈ Rp, this results in p estimates α̂1
0, . . . , α̂

p
0 of the parameter α. Each

of these is an estimated lower bound on α. Thus a naive estimate of α0 is max(α̂1
0, . . . , α̂

p
0). This

approach ignores the correlation structure among features.

Using the waveform data, we compare this strategy to the multi–dimensional classifier ap-

proach. To make the problem challenging we select the 14 weakest features, defined as having

the lowest Random Forest importance scores. We apply the Patra–Sen one–dimensional method

to obtain individual feature α0 estimates. The results are summarized in figure 2.4. Feature impor-
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Figure 2.3: Comparison of methods with different sample sizes. The red solid line represents the
true α (0.1,0.5,0.9). The range for all y-axes is [0, 1] from bottom to top. The unlabeled sample
size n varies with 100× 2j(j = 0, . . . , 6). Each boxplot summarizes 20 repeated estimates α̂0 for
each (n, α) pair.

tance matches well with the performance of the α estimates. On the right panels of Figure 2.4, we

see that feature 5 is not useful because there is little difference between the unlabeled and labeled

samples, leading to a feature based α estimate of approximately 0.012. In contrast, feature 8 is

better in that it gives an alpha estimate of approximately 0.542. The SPY, C-roc, and C-patra/sen

methods all perform better than the individual feature estimates (upper left of figure 2.4).
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features 5 and 8.

2.4.2 Protein signaling

The transporter classification database (TCDB) (Saier et al., 2006), here the P set, consists of

2453 proteins involved in signaling across cellular membranes. It is desirable to add proteins to

this database from unlabeled databases which contain a mixture of membrane transport and non–

transport proteins. Elkan and Noto (2008) and Das et al. (2007) manually identified 348 of the 4906

proteins as being related to transport in the SwissProt (Boeckmann et al., 2003) database. We treat

the SwissProt data as the unlabeled setU for which we have ground truth α = (4906−348)/4906 ≈

0.929. Information from protein description documents are used as features including function,

subcellular location, alternative products, and disease. In total there are 741 features. PCA is used

on 741 features to obtain 200 new features that explain about 94% of variation.
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Table 2.1 contains results of applying the four methods to estimate α and classify unlabeled

observations. In the ideal column, α = 0.93 is the true proportion of negative samples within the

unlabeled set. The accuracy (0.99) and F1 score (0.92) in the ideal column are calculated using

10–fold cross-validation with all the of positive examples (in TCDB and SwissProt) against only

the negative examples in SwissProt. This represents an upper bound on the performance one could

expect for the PU learning methods. The second through fifth columns (C-patra/sen through SPY)

contain results of the four methods discussed in this work. C-roc has the best performance among

the methods.

ideal C-patra/sen C-roc ROC SPY
alpha 0.93 0.96 0.94 0.96 0.89

accuracy 0.99 0.95 0.96 0.89 0.94
F1 score 0.92 0.54 0.68 0.04 0.66

Table 2.1: Comparison of methods for protein signaling data.
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3. PERIODS ESTIMATION FOR MIRAS USING MULTI-BAND LIGHT CURVES AND

INVERSE PERIOD-LUMINOSITY RELATIONS

In this chapter, we introduce a hierarchical Bayesian model to estimate periods for Miras using

multi-band light curves and inverse Period-Luminosity relations. Our proposed model generalizes

existing period estimation methods including those in He et al. (2016) and Yuan et al. (2018).

Current existing models for period estimation are only designed for an individual single-band or

multi-band light curve. In contrast, our model uses the inverse Period-Luminosity relations to

borrow strength across different light curves that share common Period-Luminosity relations. We

will demonstrate the power of our proposed model in two simulation experiments.

The rest of this chapter is organized as follows. Section 3.1 reviews the existing models to

estimate period of Mira. Section 3.2 presents an iPLR-enhanced multi-band model for a set of

light curves. Section 3.3 compares our model with other methods in two simulation experiment.

An application to a set of real Miras light curves is also available in section 3.4.

3.1 A review of existing methods for period estimation

In this section, we review some popular existing methods for period estimation. In sum-

mary, most existing methods follow the procedure below: firstly, build a regression model y =

f(t, σ|ω, θ), where y is a vector of magnitude, t is a vector of observation time, σ is a vector of

measurement error, ω is the frequency (i.e. reciprocal of period p) parameter and θ is a vector

contains other parameters; secondly, do a grid search on ω, i.e. for each fixed candidate ωj in the

model, θ̂ is estimated and a log-likelihood lj based on (ωj, θ̂) is calculated; thirdly, a periodogram

is plotted in a way log-likelihood lj against on frequency ωj; finally, a period estimate is given

p̂ = 1/ω̂, where ω̂ is a frequency that maximizes the log-likelihood in the periodogram plot.

The reason that a grid search on frequency is performed is that there is no closed-form expres-

sion for the frequency and the multi-modality in periodogram makes it difficult to directly optimize

on the frequency parameter. We will see the multi-modality property in later sections. All methods
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fall into two categories: single-band and multi-band.

3.1.1 Single-band models

In this subsection, we denote a single-band light curve data as {ti, yi, σi}ni=1, where ti is the

observation time, yi is the magnitude, σi is the measurement error associated to the magnitude.

3.1.1.1 Lomb-Scargle and generalized Lomb-Scargle

The most famous single-band period estimation approach is Lomb-Scargle (LS) (Lomb, 1976;

Scargle, 1982). The LS model firstly centralizes the mean of magnitudes to be zero and then

models the centralized magnitude as a sinusoid plus measurement error:

ỹi = a sin(2πωti + φ) + σiεi, (3.1)

where ỹi = yi − 1
n

∑n
i=1 yi is the mean-centered magnitude, εi ∼ N(0, 1) is the standard Gaussian

variable, ω is the frequency, a is the amplitude and φ is the phase. Zechmeister and Kürster (2009)

create a generalized Lomb-Scargle (GLS) approach by adding a floating mean to the equation (3.1)

and model on the original magnitudes:

yi = m+ a sin(2πωti + φ) + σiεi, (3.2)

where m is the floating mean. The LS and GLS models can be solved straightforwardly via a

series of least-squares fitting along a set of candidate frequencies. We illustrate the idea of the

GLS model here. Let β1 = a cos(φ) and β2 = a sin(φ), then the equation (3.2) becomes

yi = m+ β1 sin(2πωti) + β2 cos(2πωti) + σiεi. (3.3)

The related Error Sum of Squares (SSE) function is

l(ω,m, β1, β2) =
n∑
i=1

(
yi −m− β1 sin(2πωti)− β2 cos(2πωti)

σi

)2

. (3.4)

22



For a fixed ω, we can minimize the SSE function with respect to parameters (m,β1, β2):

l(ω) = min
m,β1,β2

l(ω,m, β1, β2). (3.5)

Hence the MLE for ω is

ω̂ = arg min
ω
l(ω). (3.6)
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Figure 3.1: A comparison of the LS and GLS methods for data with a true frequency of 0.2 and
a selection filter which removes faint observations (mag > 10.7). The GLS approach correctly
recovers the true frequency of 0.2, while the LS method fails to recover frequency with estimate
frequency as 0.4. This figure is adapted based on the work of VanderPlas (2018).

The difference between the LS and GLS models is illustrated in figure 3.1: the data contains 52

noisy observations of a sinusoidal signal whose faintest observations (i.e. mag > 10.7) have been

omitted. In this case, the mean (used to center data) estimated from the LS approach is not close to

the true mean (mag = 10), making the LS model to fail to recover the true frequency (lower panel

of figure 3.1). The GLS model is more flexible than the LS model. Therefore, when comparing

models in section 3.3, we only use the GLS model.

Notice that the sinusoid in the LS and GLS models could be replaced by other shapes like
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splines, wavelets (Foster, 1996), Nadaraya-Watson estimator (Hall et al., 2000), Gaussian process

with periodic kernel (Wang et al., 2012) or more complicated templates (Sesar et al., 2010, 2017).

The template-based approach usually has good performance for stars like RR Lyrae because those

templates are particularly obtained for that type of star. This template-based method is beyond the

range of this project, and it is usually computationally inefficient and has no versatility.

3.1.1.2 Semi-parametric

He et al. (2016) model the quasi-periodic light curves directly using semi-parametric Gaussian

process model (hereafter, SP1). The idea of the SP1 model is quite similar to that by Wang et al.

(2012) but the main difference is that: the later paper uses a periodic kernel like sinusoid to serve

as a flexible curve shape to the light curve, while the SP1 model uses a periodic term to model

the global periodic signal and plus a Gaussian process term to model the stochastic variation. The

stochastic variation is the fundamental challenge for quasi-periodic light curves.

The SP1 approach models the magnitude as

yi = m+ β1 sin(2πωti) + β2 cos(2πωti) + h(ti) + σiεi, (3.7)

where h(t) is a smooth function to model stochastic variation. They assume h(t) belongs to a

reproducing kernel Hilbert spaceH with norm ‖ · ‖H and reproducing kernel K(·, ·). The negative

log-likelihood function is

l(ω,m, β1, β2) =
n∑
i=1

(
yi −m− β1 sin(2πωti)− β2 cos(2πωti)− h(ti)

σi

)2

, (3.8)

To model yi in a semi-parametric way, a penalized term of h(t) should be added to prevent

over-fitting. Then the object function is

l(ω,m, β1, β2) + λ‖h(·)‖2H, (3.9)

where λ is a regularization parameter. From the perspective of Bayesian statistics, the above regu-

24



larization approach (equation (3.9)) is equivalent to imposing a Gaussian process prior on the func-

tion h(t) (Rasmussen and Williams, 2005). A real-valued continuous stochastic process {h(t)} is a

Gaussian process (GP) if vector (h(t1), . . . , h(tn)) is a multivariate Gaussian distribution for every

finite set of positions (t1, . . . , tn). Hence the final model of SP1 is

yi|m,β, h(ti), ω ∼ N (m+ bω(t)Tβ + h(ti), σ
2
i ), (3.10)

m ∼ N (m0, σ
2
m), (3.11)

β ∼ N (0, σ2
βI), (3.12)

h(t)|θ ∼ GP(0, kθ(t, t
′)), (3.13)

where θ = (θ1, θ2) and ω are fixed parameters, kernel in equation (3.13) takes a squared exponen-

tial form kθ(t, t
′) = θ1 exp

(
− (t−t′)2

2
θ2

)
, β = (β1, β2)

T and bω(t) = (sin(2πωt), cos(2πωt))T .

The SP1 model (3.10)–(3.13) is solved via a hybrid of Bayesian and frequentist approaches.

ω̂ is obtained with a profile likelihood method. For fixed ω, hyper-parameter θ is estimated as

θ̂ω with MLE, then with plug-in θ̂ω in the likelihood function, a profile MLE ω̂ is found by a

grid search. For details of the algorithm, we refer the interested readers to He et al. (2016) and

Rasmussen and Williams (2005).

3.1.2 Multi-band models

In this subsection, we denote a multi-band light curve data as {{tbi, ybi, σbi}nb
i=1}Bb=1, where

tbi is the observation time, ybi is the magnitude, σbi is the measurement error associated to the

magnitude, the subscript b represents which band the data point belongs to.

3.1.2.1 Multi-band GLS and penalized GLS

Modern astronomical surveys are paying increasing attention to combining multi-band infor-

mation, but few methods have been developed to do so. Typically and naively, practitioners apply

single-band procedures individually to each band and then determine which period estimates to

use based on some ad hoc criteria (Watkins et al., 2009). Süveges et al. (2012) use principal com-
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ponent analysis (PCA) to combine bands together and then apply the GLS approach. Their method

requires the observation time points to be the same across different bands. Long et al. (2016)

and VanderPlas and Ivezić (2015) develop a multi-band generalized Lomb-Scargle (MGLS) ap-

proach that systematically combines different bands in one model. The MGLS approach models

magnitudes as:

ybi = mb + ab sin(2πωti + φb) + σbiεbi, (3.14)

and log likelihood function is

l(ω,m,a,φ) =
B∑
b=1

nb∑
i=1

(
ybi −mb − ab sin(2πωti + φb)

σi

)2

, (3.15)

where m = (m1, . . . ,mB)T , a = (a1, . . . , aB)T and φ = (φ1, . . . , φB)T . The frequency estimate

is given as ω̂ = arg minω l(ω), where l(ω) = minm,a,φ l(ω,m,a,φ). In summary, the MGLS

model integrates multi-band information by assuming period is shared across different bands and

it’s solved by weighted least squares.

Long et al. (2016) also propose a penalized generalized Lomb-Scargle (PGLS) method. They

penalize the amplitude and phase on the log-likelihood function (3.15) as

lp(ω,m,a,φ|γ1, γ2) = l(ω,m,a,φ) + γ1J1(a) + γ2J2(φ), (3.16)

where J1 and J2 are some L2-norm functions. In (3.16), parameters γ1 and γ2 are fixed and need

to be specified before fitting.

3.1.2.2 Multi-band semi-parametric

Yuan et al. (2018) generalize the SP1 model to a multi-band model via a series of amplitude-

and phase- relations between different bands. We call their model as SP2 for later reference. The
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SP2 model is

ybi|mb,βb, hb(tbi), ω ∼ N (mb + bbω(t)Tβb + hb(tbi), σ
2
bi), (3.17)

mb ∼ N (mb0, σ
2
bm), (3.18)

βb ∼ N (0, σ2
bβI), (3.19)

hb(t)|θb ∼ GP(0, kθb(t, t
′)δ(t, t′)), (3.20)

where θ = (θ1, θ2), kθ(t, t′) = θ1 exp
(
− (t−t′)2

2
θ2

)
, βb = (βb1, βb2)

T , bbω(t) = Ab

A0
(sin(2πωt −

∆Φb0), cos(2πωt−∆Φb0))
T , and δ(t, t′) is defined as

δ(tbi, tb′i′) =


1 if b = 0 and b′ = 0,

1 if b 6= 0 and b′ 6= 0,

0 if otherwise.

(3.21)

Here band b = 0 is considered as the reference. So Ab/A0 is the amplitude ratio between bth band

and the reference band, while ∆Φb0 is the phase difference between bth band and the reference

band. Hyper-parameters Ab/A0 and ∆Φb0 are learnt from other well-studied surveys of galaxies

like the LMC. The role of Equation (3.21) is to force non-reference bands to share a covariance

structure. The application of the SP2 model in M33 Miras is quite successful, but it is not straight-

forward to adapt their model to a general case.

Table 3.1 summarizes the aforementioned methods. The main contribution of this project is to

propose a model that makes an improvement over the SP1 and SP2 models by using the information

of (inverse) PLR. Note that for a set of multi-band Mira light curves, the SP1 model only fits

one band for each light curve, while the SP2 model fits all bands data but each light curve is

fitted independently. Our proposed model can fit all light curves simutaneously and hence the

information borrowed across light curves can help greatly improving the performance in recovering

the periods.
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type band name reference

strict-periodic
single-

LS Lomb (1976); Scargle (1982)
GLS Zechmeister and Kürster (2009)

multi-

MGLS Long et al. (2016); VanderPlas and Ivezić (2015)
PGLS Long et al. (2016)
Watkins Watkins et al. (2009)
Süveges Süveges et al. (2012)

quasi-periodic
single- SP1 He et al. (2016)
multi- SP2 Yuan et al. (2018)

Table 3.1: Some existing period estimation methods.

3.2 Inverse Period-Luminosity relation enhanced multi-band semi-parametric model

In this section, we aim at developing a multi-band semi-parametric model for a set of light

curves which share the same PLR. To use the information of PLR, we propose the inverse Period-

Luminosity Relations which treat period as a function of luminosity. The luminosity works as a

covariate to the light curve, and hence the period can be roughly guided by luminosity via iPLR.

The multi-band model enhanced by the iPLR is called iPLR-enhanced multi-band semi-parametric

model, which is called SP3 for short.

3.2.1 The SP3 model

Denote a set of light curves as D = {Dl,ml}Ll=1, where Dl = {{(tlbi, ylbi, σlbi)}nlb
i=1}Bb=1 is a

light curve and ml is luminosity of the interested band for Dl. Suppose we are interested in Ks

band PLR, then approximately ml ≈ 1
2

(mini(ylKsi) + maxi(ylKsi)) as discussed in Yuan et al.

(2017a). Here we treat the luminosity ml as a covariate to Dl. In astronomy, a PLR for Miras

could take different forms. For example, Ita et al. (2005) use linear relations with break at about

period equals to 400 days, while Yuan et al. (2017a) use a quadratic form:

ml = a0 + a1 log10 pl + a2 log2
10 pl + σεl, (3.22)
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where pl is the period of l-th light curve, σ is standard deviation, and l = 1, . . . , L. In this project

we assume such kind of PLR exists for the set of light curves D. Additionally, we assume the PLR

of interest has a quadratic form. Those PLRs of linear form can be easily adapted in our model.

Directly fitting equation (3.22) is difficult due to the large uncertainty of period estimates.

Note that frequency is the inverse of period and the function of PLR is monotonic, from (3.22) we

see that PLR can be used to control the location of frequency in the magnitude-frequency space.

Instead of using (3.22) to govern a series of light curves, we use iPLR:

logωl = a0 + a1ml + a2m
2
l + τεl = aTd(ml) + τεl, (3.23)

where a := (a0, a1, a2)
T , d(ml) := (1,ml,m

2
l )
T and τ is the standard deviation. We call it

“inverse” since it treats frequency as a function of luminosity. In astronomical domain, it is natural

to use base of 10 for the logarithm of period, but we will use the base of e in this project since it is

more convenient to use in statistical computation.

The classical way to calculate PLRs is a two-step procedure, in which frequency ωl is estimated

for each light curve Dl, and then a quadratic regression is fitted to estimate a and the overall

residual standard deviation σ. The quality of PLRs or iPLRs calculation highly depends on the

accuracy of frequency estimations. This procedure has a major limitation that the frequency ωl is

estimated by setting a wild-guess initial value or doing a grid search over a large range. Either way,

a wild-guess or a grid search, would be a waste of time calculating “alias” the fake frequencies.

Suppose we have obtained frequency estimates {ω̂l}Ll=1 from the first step, then the second step to

calculate iPLR is to fit the model log ω̂l ∼ N (aTd(ml), τ
2), i.e.

ω̂l ∼ LogNormal(aTd(ml), τ
2). (3.24)

The equation (3.24) gives us the insight how to specify the prior for frequency of each light curve.
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Based on the SP1 and SP2 models, we propose the SP3 model as

ylbi|mlb,βlb, hlb(tlbi), ωl ∼ N (mlb + bωl
(t)Tβlb + hlb(tlbi), σ

2
lbi), (3.25)

mlb ∼ N (mlb0, σ
2
lbm), (3.26)

βlb ∼ N (0, σ2
lbβI), (3.27)

hlb(t)|θlb ∼ GP(0, kθlb(t, t
′)), (3.28)

θlb1 ∼ LogNormal(0, θ0), (3.29)

θlb2 ∼ LogNormal(0, θ0), (3.30)

ωl ∼ LogNormal(aTd(ml), τ
2), (3.31)

where a and τ 2 both have non-informative prior s.t. p(a) ∝ 1 and p(τ 2) ∝ 1/τ 2, respectively.

Equations (3.25)–(3.28) are just the multi-band version of the SP1 model; equations (3.29) and

(3.30) are convenient priors that make computation easy, and the reason will be explained in next

subsection; equation (3.31) is based on equation (3.24). Figure 3.2 shows the diagram of the SP3

model.

3.2.2 Computation of the SP3 model

There is a computation issue in directly sampling a from the SP3 model. The posterior can be

represented as

p(a, τ,ω,m,β,θ|D), (3.32)

where ω = (ωl : l = 1, . . . , L), m = (mlb : l = 1, . . . , L; b = 1, . . . , B), β = (βlbj : l =

1, . . . , L; b = 1, . . . , B; j = 1, 2), and θ = (θlbj : l = 1, . . . , L; b = 1, . . . , B; j = 1, 2). In total

there are 5BL + L + 4 parameters in (3.32). For example, if we use the information from two

bands (i.e. B = 2) and 1000 light curves (i.e. L = 1000), then we have 11004 parameters. The

MCMC for the SP3 model would require large memory and long computation time. Below we will

introduce an algorithm that avoids a large MCMC sampling.
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Figure 3.2: Diagram of the SP3 model.

Note that by integrating out mb and βb, we can simplify equations (3.25)–(3.28) to

ylb|ωl,θlb ∼ N (mlb01, Klb(tlb, tlb|ωl,θlb)), (3.33)

where ylb := (ylb1, . . . , ylbnlb
)T and

Klb(tlb, tlb|ωl,θlb) = (σ2
lbm + σ2

lbβbωl
(tlbi)

Tbωl
(tlbj) + kθlb(tlbi, tlbj) + σ2

lbiδij)nlb×nlb
, (3.34)

where tlb := (tlb1, . . . , tlbnlb
)T .

Treat (a, τ) as the global parameters and (ω,m,β,θ) as local parameters. When a and τ have

been fixed, then the SP3 model is reduced to be a series of independent models. Conditional on

parameters a and τ , the model estimation for (3.29)–(3.34) can be carried out by Elliptical Slice

Sampler (ESS) (Murray et al., 2010). ESS is widely applicable in cases where we have normal
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priors. To use ESS technique, we firstly make some transformations on the priors (3.29)–(3.31):

θ̃lbj = log θlbj, j = 1, 2 (3.35)

ω̃l = logωl, (3.36)

where b = 1, . . . , B. Denote the parameters as Θl = (θ̃l11, θ̃l12, . . . , θ̃lB1, θ̃lB2, ω̃l). Then Θl

has distribution N (µ(aTd(ml)),Σ(τ)), where µ(aTd(ml)) = (0, . . . , 0, aTd(ml)) and Σ(τ) =

diag(θ0, . . . , θ0, τ
2). Denote the likelihood function as L(Θl). The detailed ESS algorithm for the

Θl is given in the algorithm 1.

Algorithm 1: ESS update for Θl given (a, τ)

input : current state Θl

output: new state Θ′l
1 ν ∼ N (µ(aTd(ml)),Σ(τ));
2 u ∼ Unif[0, 1];
3 Let LL = logL(Θl) + log u;
4 η ∼ Unif[0, 1];
5 [ηmin, ηmax]← [η − 2π, η];
6 Θ′l ← (Θl − µ(aTd(ml))) cos η + (ν − µ(aTd(ml))) sin η + µ(aTd(ml));
7 while logL(Θ′l) < LL do
8 if η < 0 then
9 ηmin ← η

10 else ηmax ← η ;
11 η ∼ Unif[0, 1];
12 Θ′l ← (Θl − µ(aTd(ml))) cos η + (ν − µ(aTd(ml))) sin η + µ(aTd(ml));

On the other hand, when frequency estimates ω̂ have been obtained from each light curve, then

estimation of (a, τ) is trivial. Based on this insight, we propose an iterative two-step procedure

(algorithm 2) for estimating periods of the SP3 model.

In algorithm 2, initial values a(0) and τ (0) can be specified in two ways. The first way is to obtain

their values from another survey. For example, we can use the iPLR of LMC Miras as the initial
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Algorithm 2: Conditional maximization algorithm for the SP3 model
1 Initialize a(0) and τ (0);
2 Let M =

[
d(m1)

T ; · · · ; d(mL)T
]

be a L× 3 design matrix;
3 Flag← True, j ← 1;
4 while Flag do
5 for l = 1, . . . , L do
6 Estimate ω(j−1)

l by ESS algorithm 1 on light curve Dl given (d(ml)
Ta(j−1), τ (j−1));

7 Let W =
(

logω
(j−1)
1 , . . . , logω

(j−1)
L

)T
;

8 a(j) ←
(
MTM

)−1
MTW ;

9 τ (j) ←
√

1
L−3W

T (I −M(MTM)−1MT )W ;

10 if τ (j−1) < τ (j) or τ (j−1) − τ (j) < ε0 then
11 Flag = False;

12 j ← j + 1;

iPLR for M33 Miras. The second way is to use simple models like the LS method to calculate

the initial iPLR. In this project we use the second way, since the LS method is computationally

cheap and we do not need to rely on additional information. The M in Line 2 of algorithm 2 is

the design matrix for the quadratic regression. In lines 5–6, each light curve is independently fitted

by Algorithm 1. There is a huge computation advantage in lines 5–6, which can be done with

parallel or distributed computing techniques. Lines 7–9 are the updates for global parameters a

and τ by quadratic regression. Lines 10–11 are used as a criteria when to stop updating global

parameters. The criteria is when either (1) the updated iPLR is not as tight as the previous one

or (2) the tightness of iPLR can only be improved by a small value, then we stop updating. In

practice, we set ε0 = 0.01 for the Miras.

This method, the Algorithm 2, is also called conditional maximization (Gelman et al., 2013):

given initial a and τ , maximizing function (3.32) w.r.t. parameters Θl; given updated Θl, maximiz-

ing function (3.32) w.r.t. parameters (a, τ); alternately updating two sets of parameters for enough

times. From the perspective of frequentist, this method is also termed as block coordinate ascent.

For the l-the light curve, it is easy to make prediction on new observation time vector t∗ on
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b-band, given estimated m̂lb0, θ̂lb and ω̂l. Suppose the prediction is y∗ of length n, then

y∗
ylb

 |m̂lb0, θ̂lb, ω̂l ∼ N


 m̂lb01n

m̂lb01nlb

 ,

Klb,11 Klb,12

Klb,21 Klb,22


 ,

where

Klb,11 :=Klb(t
∗, t∗|ω̂l, θ̂lb),

Klb,12 =KT
lb,21 := Klb(t

∗, tlb|ω̂l, θ̂lb),

Klb,22 :=Klb(tlb, tlb|ω̂l, θ̂lb).

Therefore prediction and variance are

E
[
y∗|ylb, m̂lb0, θ̂lb, ω̂l

]
=m̂lb01n +Klb,12K

−1
lb,22 (ylb − m̂lb01nlb

) , (3.37)

V ar
[
y∗|ylb, m̂lb0, θ̂lb, ω̂l

]
=Klb,11 −Klb,12K

−1
lb,22Klb,21. (3.38)

3.3 Simulations

In this section, two simulation experiments are conducted to compare the performance of our

proposed method (SP3 using algorithm 2) with other existing methods including: generalized

Lomb-Scargle (GLS, Zechmeister and Kürster (2009)), single-band semi-parametric method (SP1,

He et al. (2016)) and its multi-band extension (SP2, Yuan et al. (2018)).

3.3.1 Simulation I: 90 sets of Mira light curves at distance of LMC

The third phase of OGLE survey (Udalski et al., 2008) results in the discovery of 1663 Miras

(Soszyński et al., 2009) with a median of 466 photometric measurements per object. The obser-

vation time points of these light curves and their precision are quite high, and hence making their

period estimation relatively easy. An example of such light curve is in figure 1.1(a). The Miras

in the LMC galaxy of the OGLE survey have good period estimation (Ita et al., 2005; Soszyński
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et al., 2007; Yuan et al., 2017b), so we can use their light curves to generate simulated light curves

with different qualities.

He et al. (2016) use the semi-parametric Gaussian process model (called SP1.5 for short) to

fit the OGLE-III light curves using I band. The SP1.5 model is slightly more complex than the

SP1 model: the SP1 model only uses a squared exponential kernel, while the SP1.5 model uses an

additional independent squared exponential kernel and a periodic kernel. The additional kernels

of the SP1.5 model make the templates of I band more adaptive to the observational data. And

thanks to the dense sampling of the I band data, the resulted templates have high quality. Yuan

et al. (2017b) use above I band templates to generate other JHKs bands templates. Take the J

band for example. (I(t) − J(t)) is firstly predicted via a regression model with a group of light

curve features. Then the J band template is taken as J(t) = I(t) − (I(t) − J(t)), where the first

I(t) term is the I band template. He et al. (2016) and Yuan et al. (2017b) also generate their own

simulated Mira light curves. The simulated light curves in He et al. (2016) only have I band data,

and hence they do not meet our need for the multi-band models. The simulated light curves in

Yuan et al. (2017b) will be discussed in next subsection.

In this simulation, we only consider I and Ks bands of Oxygen-rich Miras. Assuming number

of I band points (nI) is no less than that ofKs band points (nKs), we consider 10 pairs of (nKs , nI):

(5,5), (5,10), (5,20), (5,30), (10,10), (10,20), (10,30), (20,20), (20,30) and (30,30). To mimic real

observation time pattern, we have 3 different scenarios to specify {tbi, b = I or Ks, i = 1, . . . , nb}

as follows:

• Pattern 1: M33 observation times as show in figure 1.1 (b);

• Pattern 2: LMC seasonal observation times as show in figure 1.1 (a);

• Pattern 3: The observation times are uniformly distributed.

For pattern 1 and pattern 2, tbi is drawn from real light curves with replacement and is added with a

random shift in order to make every set of samples unique. With the observation time points being
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fixed, the light curve magnitudes are generated from Mira templates (see He et al. (2016) and Yuan

et al. (2017b)).
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Figure 3.3: 3 noise levels for simulation I.

Another important consideration is measurement error or noise level. Note that the real noise

level could be related to many factors like distance of the star, size of camera, exposure time,

weather condition, light pollution, dust and so on. To make the simulation easy, we only use a

simple exponential model, σ(m) = exp(a·mc−b), to simulate noise levels. As shown in figure 3.3,

a base-line curve (black solid line) is σ(m) = exp (1.82× 10−6m5 − 5.84), which goes through

points (7, 0.003) and (20, 1). The magnitude range from 7 to 20 roughly covers the magnitudes of

LMC templates (salmon-color dots). This base line noise level curve is called “noise1” for later

reference. To simulate other noise levels, we shift the “noise1” upward by 0.05 mag to create

“noise2” (red dash line in figure 3.3) and by 0.1 mag to create “noise3” (green dot line in figure

3.3). The magnitude-noise pattern of M33 light curves (gray dots in figure 3.3) roughly follows

this simple exponential model.
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In total, we produce 90 (= 10 pairs of sample size ×3 time patterns ×3 noise levels) sets of

simulated Oxygen-rich Miras, and each set consists of L = 1000 light curves with I and Ks bands.

Figures B.1–B.3 each contains 9 simulated light curves for different patterns and different noise

levels, with (nI = 20, nKs = 5), (nI = 20, nKs = 10) and (nI = 30, nKs = 30) respectively.

More detail of the simulation procedure, code as well as the simulated light curves are all available

on GitHub at https://github.com/zflin/mira.

3.3.1.1 Model comparisons

To evaluate the models, we can see how accurate a model recovers the frequencies for the set

of light curves. Suppose {ωl} are the ground truth frequencies and {ω̂l} are the estimates. Then we

can use root mean square error (RMSE) and “accuracy” (ACC) to compare different models. The

RMSE is calculated as
√

1
L

∑L
l=1 (ω̂l − ωl)2. The “accuracy” is another metric used in astronomy

for variable stars. The ACC is calculated as 1
L

∑L
l=1 Ind (|ω̂l − ωl| ≤ λ), where Ind(·) is index

function and threshold λ is chosen for different purposes. For Miras, λ = 2.7e-04, which is the

average half distance to the sidelobes in the frequency spectra (He et al., 2016).

Three other models – GLS, SP1 and SP2 – are used to make comparison with our proposed SP3

model. The GLS and SP1 models are applied only on I band, which has more observation points

than Ks band. Note that the GLS method is computationally fast, and hence we use the GLS

result to give the initial value of
(
a(0), τ (0)

)
for algorithm 2 to compute the SP3 model. Figure

B.4 compares RMSE values of these four methods over 90 different settings. Similarly, figure

B.5 compares ACC values. Overall, the proposed SP3 model outperforms others in all 9 different

pattern-noise combinations.

3.3.2 Simulation II: a set of Mira light curves at distance M33

In subsection 3.3.1 we simulate 90 different sets of Mira light curves. In each set, every light

curve roughly has same quality. In this subsection, we consider another simulated Mira data set,

which consists of 5,000 O-rich Mira light curves and is constructed in the work of Yuan et al.

(2018). These light curves are designed to mimic the real observed Mira stars in M33 galaxy.
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Hence light curves in this set could have different quality, i.e. sample sizes and noise levels could

be different from each other. As again, we only use I and Ks bands data and we are interested

in the Ks band PLR, i.e. ml represents the luminosity of Ks band. The performance of the GLS,

SP1, SP2 and SP3 methods is summarized in table 3.2. The GLS and SP1 methods are applied on I

band data, while the SP2 and SP3 methods are applied on I andKs band data. Figure 3.4 compares

the true frequencies with estimated frequencies in more details. By borrowing information from

each light curve, the SP3 model efficiently excludes alias (fake frequency estimates) in a series of

iterations as demonstrated by 3 bottom panels in figure 3.4.

GLS SP1 SP2 SP3
RMSE (×10−4) 12.56 11.09 7.46 1.83

ACC (%) 72.02 78.66 91.26 96.02

Table 3.2: Simulation II. Comparison of methods for simulated 5,000 Mira light curves at the
distance of M33 galaxy.

The iPLR is updated and improved at each iteration for the algorithm 2. This updating process

for the Simulation II is demonstrated in figure 3.5. The results from the GLS model are used to

calculate the initial iPLR, which has bias and wide confidence band. The iPLR becomes tighter

and tighter, until 3rd updates when the criteria in algorithm 2 (line 10) holds. The improved iPLR

at each iteration would in turn help to estimate periods more accurately.

3.3.2.1 An example of a light curve: prediction and local periodogram

To offer more details of the SP3 model, in this subsection we take a light curve (id=00080 in

Simulation II) for example. Given global parameters a and τ estimated, each light curve can be

modeled independently. For each light curve, we can do prediction using equation (3.37), as shown

in figure 3.6. The gray band represents the 95% confidence band of the prediction. For this light

curve, the estimated period is 171.20 compared to the true period 171.88 (days).

The periodogram is an important way to do diagnosis for the GLS, SP1 and SP2 models.
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Figure 3.4: Simulation II. Comparison of the GLS, SP1, SP2 and SP3 models in periods recovering
for 5,000 simulated M33 light curves.

Similarly, we can also have the periodogram for the SP3 model. But since we only softly constrain

the grid search for frequency with a prior distribution, we would use the term local periodogram

to distinguish from the traditional one. The periodogram from the SP1 model is given in figure

B.6 the top-left panel. In the figure, the true frequency is marked by the vertical dash black line,

while the estimated frequency is marked by the vertical dash green line for the model. Each blue

line is corresponding to a green dot in the iPLR plot right next to each (local) periodogram plot.

Without iPLR information, the SP1 method would incorrectly recover the period with an alias (=

352.11 days). After first iteration, the iPLR then forces the frequency prior (green solid line) to

move towards the current frequency location.
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Figure 3.5: Simulation II. iPLR updates of the SP3 model for 5,000 simulated M33 light curves.
In each panel, the red solid line is iPLR and the two red dash lines represent the 95% confidence
interval band of the iPLR. The y-axis is for the estimated periods. The values of τ (j) (j = 0, 1, 2, 3)
for each iteration are 0.32, 0.19, 0.10 and 0.07 respectively.

3.4 Application to a set of real M33 Mira light curves

We apply the SP3 model to a real M33 dataset, which consists of 1,265 candidate O-rich Miras

(Yuan et al., 2018). This dataset is collected from several sources: UKIRT (Khosroshahi et al.,

2015), Kitt Peak National Observatory KPNO and DIRECT (Macri et al., 2001; Pellerin and Macri,

2011). Each star is measured in I, J,H andKs bands, with the median number of observation each

band being 68, 5, 6, 11, respectively. Yuan et al. (2018) use these Miras to determine the distance

modulus for the M33 galaxy. Their periods are estimated by the SP2 method on all four bands,
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Figure 3.6: Simulation II. An example of fitted curve for a light curve (id=00080). The period
estimated is 171.20 (days) compared to true period 171.88 (days).

and a further correction is made if the estimated period is far away from the PLR. The correction

step is important to get tight PLRs in their work. Their estimated periods (after correction) are

compared against the periods estimated by our proposed method in figure 3.7. The vertical error

bars are calculated by bootstrapping for the SP2 model; the horizontal error bars are obtained by

the standard deviation of ESS samples without outliers. An outlier is defined as an ESS sample

point outside the range [Q1 − 1.5 × IQR, Q3 + 1.5 × IQR], where Q1 is first quantile, Q3 is third

quantile, and IQR = Q3 −Q1 is the interquartile range.

Following the convention of Yuan et al. (2018), a linear PLR is fitted for periods less than 400

days,

ml = c0 + c1 × (log10 pl − 2.3),
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Figure 3.7: Estimated periods for M33 O-rich Miras. The horizontal axis is the period estimated
by the SP3 model. The vertical axis is the period of the SP2 model with ad hoc correction (Yuan
et al., 2018).

while a quadratic PLR is fitted for all Miras,

ml = c0 + c1 × (log10 pl − 2.3) + c2 × (log10 pl − 2.3)2.

Since the LMC survey has high quality light curves and the PLRs inference is reasonably trustable,

we fix c1 (and c2) to the values determined by Yuan et al. (2017b) and then solve for c0. The fitted

coefficients of PLRs are summarized in table 3.3. The LMC is used as a reference with distance

modulus µLMC = 18.493 ± 0.048. The relative distance modulus between M33 and LMC is the

bias-corrected difference between the intercepts of PLRs, i.e. ∆µ = ∆c0 + ∆Aλ + ∆ct, where

∆c0 is the difference of PLR intercepts, ∆Aλ is the interstellar extinction and ∆ct is the color term
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bias in photometric calibration. Here the information of ∆Aλ and ∆ct can be obtained from Yuan

et al. (2018) and are available in table 3.4. Then the derived M33 distance modulus for J , H , Ks

bands are (1) 24.81± 0.06, 24.79± 0.06, 24.76± 0.06, respectively, using the linear PLR, and (2)

24.81 ± 0.06, 24.77 ± 0.06, 24.75 ± 0.06, respectively, using the quadratic PLR. These distance

moduli are consistent with the results of Yuan et al. (2018).
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Figure 3.8: M33 O-rich Mira PLRs in J (top), H (middle), and Ks (bottom). The solid points
represent stars with estimated period≤ 400d, while the open circles are stars with estimated period
> 400d. The dash (red) and solid (black) lines indicate the PLR fits to the linear and quadratic
forms, respectively.
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4. CONCLUSIONS

4.1 First project: a flexible procedure for Positive–Unlabeled learning

In this project we proposed a flexible framework for estimating the mixture proportion and

classifier in the PU learning problem. We implemented this framework using two estimators from

the FDR literature, C-patra/sen and C-roc. The framework has the power to incorporate other one-

dimensional MPE procedures, such as Meinshausen and Rice (2006), Genovese and Wasserman

(2004), Langaas et al. (2005), Efron (2007), Jin (2008), Cai and Jin (2010) or Nguyen and Matias

(2014). More generally we have strengthened connections between the classification–machine

learning literature and the multiple testing literature by constructing estimators using ideas from

both communities.

4.2 Second project: periods estimation for Miras using multi-band light curves and inverse

Period-Luminosity relations

Accurate period estimation is important in modern astronomy. However, current methods like

GLS, MGLS, PGLS are designed for strict-periodic light curves. The SP1 method can only deal

with single-band data. The SP2 method is designed for multi-band Mira light curves. None of

the existing approaches can nicely handle multi-band quasi-periodic light curves. To fill the gap

between application and methodology, we develop the SP3 model, which is designed to model

a set of light curves which share the same PLR. The SP3 method has substantial improvement

over other methods in the Mira application. Besides computational advantage, the SP3 method

may have other advantages: (1) from posterior samples an highest posterior density interval can be

obtained for period estimation; (2) “alias” can be efficiently excluded out; (3) it is more flexible to

incorporate prior information from other previous well-studied surveys.

The SP3 method proposed in this project currently cannot deal with this situation: the set of

light curves contains two or more different types of variable stars, i.e. there are several groups

of light curves and different groups share different PLRs or iPLRs. In this scenario, a possible
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solution would be to make the prior on frequency a mixture of log normal distributions, but this

will leave for future research.
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APPENDIX A

PROOFS IN CHAPTER 2

A.1 Theorems

A.1.1 Proof of Theorem 1

Equivalently, we are trying to prove

G− (1− γ)GL

γ
is a CDF⇔ F − (1− γ)F1

γ
is a CDF. (A.1)

Sufficient to show

G− (1− γ)GL non-decreasing⇔ f − (1− γ)f1 ≥ 0 with probability 1. (A.2)

First we show⇐. Consider any t2 > t1. Then

(G(t2)− (1− γ)GL(t2))− (G(t1)− (1− γ)GL(t1)) =

∫
{x:C(x)∈(t1,t2]}

f(x)− (1− γ)f1(x)︸ ︷︷ ︸
≥0 by assumption

dµ(x)

≥ 0.

Now we show⇒ by proving the contrapositive. By assumption there exists

A = {x : f(x)− (1− γ)f1(x) < 0}
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such that P (A) > 0. Further we have

A =

{
x : (1− γ)

(1− π)

π
>

f(x)

f1(x)

(1− π)

π

}

=

x :
1

1 + (1− γ) (1−π)
π︸ ︷︷ ︸

≡t∗

< C(x)

 .

So

(G(1)− (1− γ)GL(1))− (G(t∗)− (1− γ)GL(t∗)) =

∫
A={x:C(x)>t∗}

f(x)− (1− γ)f1(x)dµ(x)

< 0.

A.1.2 Proof of Theorem 2

nβ(Gn(t)−G(t)) =
nβ

n1/2
n1/2

(
Gn(t)− E[1Cn(X)≤t|Cn]

)︸ ︷︷ ︸
≡Rn(t)

+ nβ
(
E[1Cn(X)≤t|Cn]−G(t)

)︸ ︷︷ ︸
≡Qn(t)

We now show that Rn(t) and Qn(t) are OP (1) uniformly in t. Together these facts show the

expression is OP (1) uniformly in t.

Rn(t): Note

Rn(t) =
√
n

(
1

n

n∑
i=1

1Cn(Xi)≤t − E[1Cn(X)≤t|Cn]

)
.

By the DKW inequality

P (||Rn||∞ > x
∣∣Cn) ≤ 2e−2x

2

.

Thus ||Rn||∞ is OP (1).
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Qn(t): We have

Qn(t) = E[

≡Tn︷ ︸︸ ︷
(1Cn(X)≤t − 1C(X)≤t)

∣∣Cn]

≤ |E[Tn1|C(X)−t|≤εn
∣∣Cn]|︸ ︷︷ ︸

B1

+ |E[Tn1|C(X)−t|>εn1|C(X)−Cn(X)|<εn
∣∣Cn]|︸ ︷︷ ︸

B2

+ |E[Tn1|C(X)−t|>εn1|C(X)−Cn(X)|>εn
∣∣Cn]|︸ ︷︷ ︸

B3

Noting that |Tn| ≤ 1 and Cn is independent of C(X), we have

B1 ≤ P (|C(X)− t| ≤ εn) ≤ 2εn sup
t
g(t)

where g is the density of C(X), which exists and is bounded by Assumptions 2. B2 is 0 because

Tn = 0 whenever the indicator functions in B2 are both 1. Finally noting B3 ≤ 1|C(X)−Cn(X)|>εn

and using Markov’s inequality twice, we have

P (B3 > rn) ≤ P (E[1|C(X)−Cn(X)|>εn|Cn] > rn)

≤ P (|C(X)− Cn(X)| > εn)

rn

≤ E[|Cn(X)− C(X)|]
εnrn

.

If we choose εn = n−τ/3 and rn ∼ n−τ/3, then we can set β = τ/3 and achieve the desired result.

Identical arguments hold for showing nβ(GL,n(t)−GL(t)) is OP (1) uniform in t.

A.1.3 Proof of Theorem 4

Since t̂ = inf{t : GL,n(t) ≥ 1− n−q} − n−1 and 0 < q < β, we have

(nβ(1−GL,n(t̂)))−1 =
nq

nβ
= o(1).
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Recall by Theorem 2 we have

nβ(GL,n(t)−GL(t)) ≡ dL(t) = OP (1)

nβ(Gn(t)−G(t)) ≡ d(t) = OP (1)

where this and subsequent OP and oP are uniform in t. We have

Gn(t̂)−GL,n(t̂)

1−GL,n(t̂)
=
G(t̂)−GL(t̂)

1−GL,n(t̂)
+
n−β(dL(t̂)− d(t̂))

1−GL,n(t̂)

=

(
1−GL(t̂)

1−GL,n(t̂)

)
︸ ︷︷ ︸

≡A

(
G(t̂)−GL(t̂)

1−GL(t̂)

)
︸ ︷︷ ︸

≡k(t̂)

+
dL(t̂)− d(t̂)

nβ(1−GL,n(t̂))︸ ︷︷ ︸
oP (1)

.

Note that

A = 1 +
dL(t̂)

nβ(1−GL,n(t̂))
= 1 + oP (1).

Thus it is sufficient to show that k(t̂) → α0. By Lemma 1, k(t) ↑ α0 as t ↑ t∗. We show that for

any ε > 0

P (t̂ ∈ (t∗ − ε, t∗))→ 1.

Thus by the continuous mapping theorem, the estimator is consistent.

Part 1: We show P (t∗ − t̂ > ε) → 0. By the definition of t∗, there exists γ > 0 such that

GL(t∗ − ε/2) = 1− γ. We have

P (t∗ − t̂ > ε) = P (GL,n(t∗ − ε+ n−1) > GL,n(t̂+ n−1))

≤ P (GL,n(t∗ − ε+ n−1) > 1− n−q)

≤ P (GL(t∗ − ε+ n−1) > 1− n−q − γ/2)︸ ︷︷ ︸
≡A

+ P (|GL,n(t∗ − ε+ n−1)−GL(t∗ − ε+ n−1)| > γ/2)︸ ︷︷ ︸
→0 by Theorem 2

.
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A→ 0 because for sufficiently large n,GL(t∗−ε+n−1) ≤ GL(t∗−ε/2) = 1−γ < 1−n−q−γ/2.

Part 2: We show P (t̂ ≥ t∗)→ 0. We have

P (t̂ ≥ t∗) = P (Gn,L(t̂+ n−1) ≥ Gn,L(t∗ + n−1))

= P (1− n−q ≥ Gn,L(t∗ + n−1))

= P (1−Gn,L(t∗ + n−1) ≥ n−q)

= P (nβ(GL(t∗ + n−1)−Gn,L(t∗ + n−1))︸ ︷︷ ︸
OP (1) by Theorem 2

≥ nβ−q).

Since β > q we have the result.

A.1.4 Proof of Theorem 3

Proof. ∀ε > 0, we need to show P (|α̂cn0 − α0| > ε)→ 0. Note

P (|α̂cn0 − α0| > ε) = P (α̂cn0 < α0 − ε) + P (α̂cn0 > α0 + ε).

First we show that P (α̂cn0 < α0 − ε)→ 0. If α0 ≤ ε, then

P (α̂cn0 < α0 − ε) ≤ P (α̂cn0 < 0) = 0.

If α0 > ε, suppose we have α̂cn0 < α0 − ε, then by Lemma 6,

dn(Ĝα0−ε
s,n , Ǧα0−ε

s,n ) ≤ cn
nβ−η(α0 − ε)

.

The LHS of above converges to positive constant by Lemma 5, while the RHS converges to zero

by the choice of cn, hence P (α̂cn0 < α0 − ε)→ 0.

Now we show that P (α̂cn0 > α0 + ε)→ 0. Suppose we have α̂cn0 > α0 + ε, then by Lemma 6,

nβ−ηdn(Ĝα0+ε
s,n , Ǧα0+ε

s,n ) >
cn

(α0 − ε)
.

61



The LHS of above converges to zero by Lemmas 5 and 4, while the RHS converges to infinity by

the choice of cn, hence P (α̂cn0 > α0 + ε)→ 0.

A.2 Lemmas

Lemma 1. limt↑t∗ k(t) = α0.

Proof. Define α′0 = limt↑t∗ k(t).

Show α′0 ≤ α0: By the definition of α0 there exists c.d.f Gα0 such that

G(t) = α0Gα0(t) + (1− α0)GL(t)

≤ α0 + (1− α0)GL(t).

Thus

k(t) =
G(t)−GL(t)

1−GL(t)
≤ α0

for all t. Thus α′0 = limt↑t∗ k(t) ≤ α0.

Show α′0 ≥ α0: Consider any γ < α0. We show γ < α′0. Since γ < α0,

G− (1− γ)GL

γ

is not a c.d.f. Thus there exists t1 < t2 such that

G(t1)− (1− γ)GL(t1)

γ
>
G(t2)− (1− γ)GL(t2)

γ
. (A.3)

Since the left hand side is bounded above by 1 and G(t) = 1∀t ≥ t∗, t2 < t∗. From Equation (A.3)

we have

G(t1)−G(t2) > (1− γ)(GL(t1)−GL(t2))
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which implies (since GL(t1)−GL(t2) < 0) that

G(t2)−G(t1)

GL(t2)−GL(t1)
< (1− γ). (A.4)

From Lemma 3 we have

1−GL(t2)

1−G(t2)
=
GL(1)−GL(t2)

G(1)−G(t2)
≥ GL(t2)−GL(t1)

G(t2)−G(t1)

Combining this result with Equation (A.4) we obtain

1−G(t2)

1−GL(t2)
≤ 1− γ

which implies

γ ≤ G(t2)−GL(t2)

1−G(t2)
= k(t2)

Since k(t) ↑ as t ↑ t∗ (see Lemma 2), we have the result.

Lemma 2. k(t) is increasing on t ∈ [0, t∗).

Proof. Recall Q(p) = inf{t ∈ (0, 1] : GL(t) ≥ p} and t∗ = Q(1). Note that with a, b, c, d > 0 and

a/b < c/d,
a+ c

b+ d
>
a

b
.

Next note that by Lemma 3, for t∗ > t2 > t1,

G(t2)−G(t1)

GL(t2)−GL(t1)
>

1−G(t2)

1−GL(t2)
.
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Thus we have

1− k(t1) =
1−G(t1)

1−GL(t1)

=
1−G(t2) +G(t2)−G(t1)

1−GL(t2) +GL(t2)−GL(t1)

≥ 1−G(t2)

1−GL(t2)

= 1− k(t2).

Lemma 3 (Ratio). For all 0 ≤ t1 < t2 ≤ 1 where G(t2)−G(t1) > 0 we have

1− π
π

t1
1− t1

<
GL(t2)−GL(t1)

G(t2)−G(t1)
≤ 1− π

π

t2
1− t2

where 1/0 ≡ ∞.

Proof. The classifier is

C(x) =
πfL(x)

πfL(x) + (1− π)f(x)
=

1

1 + 1−π
π

f(x)
fL(x)

Define At = {x : C(x) ≤ t} = {x : 1−t
t

π
1−πfL(x) ≤ f(x)}. Therefore on the set At2 ∩ ACt1 we

have
1− t2
t2

π

1− πfL(x) ≤ f(x) <
1− t1
t1

π

1− πfL(x)

So

GL(t2)−GL(t1)

G(t2)−G(t1)
=

∫
At2∩A

C
t1

fL(x)∫
At2∩A

C
t1

f(x)
>

∫
At2∩A

C
t1

fL(x)

1−t1
t1

π
1−π

∫
At2∩A

C
t1

fL(x)
=

t1
1− t1

1− π
π

.

We can obtain the upper bound in an identical manner.
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Lemma 4.

nβ−ηdn(G,Gn) = oP (1),

nβ−ηdn(GL, GL,n) = oP (1).

Proof.

nβ−ηdn(G,Gn) =

√√√√√√∫
 n−η︸︷︷︸

=oP (1)

nβ (Gn(t)−G(t))︸ ︷︷ ︸
=OP (1)


2

dGn(t),

where nβ (Gn(t)−G(t)) = OP (1) uniformly, and then n−ηnβ (Gn(t)−G(t)) = oP (1) uniformly.

Therefore

nβ−ηdn(G,Gn) ≤ sup
t
|n−ηnβ (Gn(t)−G(t)) | = oP (1).

The GL, GL,n case can be proved in an identical manner.

Lemma 5. For 1 ≥ γ ≥ α0,

γdn(Ĝγ
s,n, Ǧ

γ
s,n) ≤ dn(G,Gn) + (1− γ)dn(GL, GL,n).

Thus,

γdn(Ĝγ
s,n, Ǧ

γ
s,n)→


0 if γ ≥ α0,

> 0 if γ < α0.

Proof. Let

Gγ
s =

G− (1− γ)GL

γ
.
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If γ ≥ α0, then

γdn(Ĝγ
s,n, Ǧ

γ
s,n) ≤ γdn(Ĝγ

s,n, G
γ
s ) ≤ dn(G,Gn) + (1− γ)dn(GL, GL,n).

The first inequality holds by the definition of Ǧγ
s,n due to the fact that Gγ

s is a valid CDF when

1 ≥ γ ≥ α0, and the second inequality is due to triangle inequality.

Now we prove the limit property of γdn(Ĝγ
s,n, Ǧ

γ
s,n). If γ ≥ α0, then γdn(Ĝγ

s,n, Ǧ
γ
s,n) → 0

since dn(G,Gn)→ 0 and dn(GL, GL,n)→ 0 by Lemma 4. If γ < α0, by the definition of αG0 , Gγ
s

is not a valid c.d.f.. Pointwisely, Ĝγ
s,n → Gγ

s . So for large n, Ĝγ
s,n is not valid c.d.f., while Ǧγ

s,n is

always a c.d.f.. So γdn(Ĝγ
s,n, Ǧ

γ
s,n) would converge to some positive constant.

Lemma 6. Bn := {γ ∈ [0, 1] : nβ−ηγdn(Ĝγ
s,n, Ǧ

γ
s,n) ≤ cn} is convex. Thus, Bn = (α̂cn0 , 1] or

Bn = [α̂cn0 , 1].

Proof. Obviously, 1 ∈ Bn. Assume γ1 ≤ γ2 from Bn, let γ3 = ξγ1 + (1− ξ)γ2, where ξ ∈ [0, 1].

Then by definition of Ĝγ
s,n,

ξγ1Ĝ
γ1
s,n + (1− ξ)γ2Ĝγ2

s,n = γ3Ĝ
γ3
s,n.

Note that 1
γ3

(
ξγ1Ǧ

γ1
s,n + (1− ξ)γ2Ǧγ2

s,n

)
is a valid c.d.f. We have γ3 ∈ Bn because

dn(Ĝγ3
s,n, Ǧ

γ3
s,n) ≤ dn

(
Ĝγ3
s,n,

1

γ3

(
ξγ1Ǧ

γ1
s,n + (1− ξ)γ2Ǧγ2

s,n

))
= dn

(
1

γ3

(
ξγ1Ĝ

γ1
s,n + (1− ξ)γ2Ĝγ2

s,n

)
,

1

γ3

(
ξγ1Ǧ

γ1
s,n + (1− ξ)γ2Ǧγ2

s,n

))
≤ ξγ1

γ3
dn(Ĝγ1

s,n, Ǧ
γ1
s,n) +

(1− ξ)γ2
γ3

dn(Ĝγ2
s,n, Ǧ

γ2
s,n)

≤ ξγ1
γ3

cn
nβ−ηγ1

+
(1− ξ)γ2

γ3

cn
nβ−ηγ2

=
cn

nβ−ηγ3
.
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APPENDIX B

CHAPTER 3

B.1 Examples of simulated light curves in Simulation I
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Figure B.1: 9 examples of light curve with different time patterns and noise levels, when nI = 10
and nK = 5. “0500” is the id in each set of light curves.
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Figure B.2: 9 examples of light curve with different time patterns and noise levels, when nI = 20
and nK = 10. “0500” is the id in each set of light curves.
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Figure B.3: 9 examples of light curve with different time patterns and noise levels, when nI = 30
and nK = 30. “0500” is the id in each set of light curves.
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B.2 Performance comparisons of models in Simulation I
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Figure B.4: Simulation I: Performance comparison of GLS, SP, MSP and PBMSP models with
RMSE metric.
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Figure B.5: Simulation I: Performance comparison of GLS, SP, MSP and PBMSP models with
ACC metric.
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B.3 Local periodogram for a light curve in Simulation II
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Figure B.6: An example of periodogram for a light curve (id=00080). True period = 171.88 (days),
denoted as vertical black dash line in left panels. The left top panel is periodogram of the SP1
model on I band. The left panels in other rows are local periodogram with ESS samples (red dots)
and frequency priors (blue solid lines). Vertical green dash lines in all left panels represent the
estimated frequencies, which are also marked as green dots in all right panels respectively.
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