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ABSTRACT

The process of camera calibration is of paramount importance in order to employ any vision
based sensor for relative navigation purposes. Understanding and quantifying the physical pro-
cess that converts the external electromagnetic stimulus into an image inside a camera is key to
relating the position of a body in an image to its pose in the real world. Both camera calibration
and relative navigation are extensively explored topics. In the topic of camera calibration, various
algorithms have been proposed that model the image formation process in different ways. This
research utilizes the Homography approach proposed by Zhang [1] along with two distortion mod-
els: Brown’s nonlinear Distortion Model and the Geometric Distortion Model in order to model
the intrinsic distortion and discrete image formation process. The idea of this research is to utilize
the intrinsic parameters estimated using the homography optimization approach for the estimation
of the relative pose of an object in the camera’s field of view. A nonlinear optimization based
approach is presented for this purpose. The camera used here is the Phasespace Motion Capture
camera [2] which utilizes linear imagers to form a fictitious image plane. Hence, the applicabil-
ity of the two distortion models is tested through multiple datasets. Through testing with three
datasets, it is found that neither distortion model is adequate to describe the distortion and image
formation process in the Phasespace camera. A further test is conducted in order to validate the

efficacy of the optimization based approach for relative pose estimation.
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NOMENCLATURE

Scaling factor in pinhole projection model
Beacon Image Plane coordinates (= [u v 1] T)

Beacon Inertial Frame coordinates (= [X Y 1} T)
Camera Intrinsic Parameter matrix

Rotation matrix from Camera frame to Inertial frame
Translation vector from Camera frame to Inertial frame
Focal length in the @ direction of the image plane
Focal length in the ¥ direction of the image plane
skewness factor

Principal Offset in the @ direction of the image plane
Principal Offset in the © direction of the image plane
Homography matrix

Scalar cost function for nonlinear least squares algorithm

Skew symmetric matrix associated with the Classical Ro-
drigues Parameters (CRP)

CRP vector

Matrix of left singular vectors of R
Matrix of right singular vectors of R
Diagonal singular values matrix of R
Unit vector along detector 0

Unit vector along detector 1

Unit vector along image plane x-axis

vi



Oq

Unit vector along image plane y-axis

Vector of distortion coefﬁciejr}ts for Brown’s Distortion
Model (:[lﬁ ka ks m pﬂ )

Vector of distortion coefficients in the @ direction of the im-
T
age plane (= [k?:cl ko kx3:| )

Vector of distortion coefficients in the © direction of the im-
T
age plane (= [kyl kyo ky?»} )

Uncertainty bound magnitude of the quantity a
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1. INTRODUCTION AND LITERATURE REVIEW

The advent of practical semiconductor technology in the early 1970’s has ushered in the age
of sensor technology that is inexpensive and can be mass produced. As a result electronic in-
strumentation for niche fields of research, which otherwise would have been restricted to orga-
nizations and individuals with exceptional financial backing, has been made easier to obtain and
inexpensive to use. This has led to a boon in research within disciplines involving heavy use of
application-specific electronic equipment. A good example of such a discipline is Machine Vision.
The introduction of CMOS integrated vision sensors has resulted in a brighter spotlight on research

involving Vision based guidance and navigation.
1.1 Camera Calibration

The first step in the utilization of any sensor is its calibration. Once the inherent biases of
the sensor are known, additional corrections can be applied either physically to the experiment or
digitally in order to obtain accurate measurements. For vision based sensors, the calibration proce-
dure is conducted in order to quantify the parameters that model the formation of the image from
an external electromagnetic stimulus, whether it be part of the visible or invisible electromagnetic
spectrum. Camera calibration has been extensively researched since the early 1960s under the
name of “Photogrammetry”. The early photogrammetry algorithms were developed assuming the
idealised pinhole model with the focal length and principa point offsets being the only parameters
of the image plane to estimate. However, the idealised pinhole model was not sufficiently precise
so distortion models were developed in order to capture the additional nonlinear effects in the im-
age capturing process. Seminal work in the field of photogrammetry by Magill [5], Cox [6] and
many others led to the nascent formulations that would lay the groundwork for many researches
like Brown [7] and Kenefick [8] to come up with some of the first camera distortion estimation al-
gorithms. Although Brown’s camera calibration algorithm was created to be used on images stored

in photographic plates, the same distortion formulation is applicable to CCD/CMOS cameras.



With the introduction of CCD/CMOS cameras, various algorithms were developed by Zhang
[1], Heikkila et al [9] and Tsai [10] that sought to combine the image distortion concepts developed
by Brown with a nonlinear optimization based approach to estimate the intrinsic parameters of the
camera and the relative pose of the object being viewed. The standard calibration procedure for a
digital off-the-shelf camera is to employ Zhang’s Homography algorithm and Brown’s distortion
algorithm to optimize over the intrinsic parameters and the relative pose of the body. However,
the image distortion process can be modelled in various ways. Ma et al [4] proposed a set of
geometric distortion models where the distortion function has various nonlinear forms that can
be used for a wide range of cameras depending on the degree of distortion that manifests on the
image. This research utilizes Zhang’s Homography algorithm to generate the starting guesses for
the nonlinear optimization algorithm. The image distortion is modelled using both Brown’s model
and the Geometric distortion model to see if the constant intrinsic camera parameters and distortion

coefficients can be computed across different datasets.
1.2 Vision based GNC

With the semiconductor-based sensors being made cheap and ubiquitous, many off-the-shelf
consumer products employ the use of inexpensive vision sensing technologies. Microsoft’s
Kinect[11] and Nintendo’s Wii[12] are examples of vision based sensors that detect invisible elec-
tromagnetic radiation for relative pose estimation purposes. The Kinect uses an Infrared camera
to capture a set of infrared features in the scene projected onto its sensor array. Triangulation is
then utilized to obtain the coordinates of these features in the object space. As the ball is pushed
further in terms of increasing computational ability with decreasing size, wearable technology has
also been on the rise, both in the commercial market and among researchers. Vision Tape[13],
for example, utilizes eight photodiodes for fast image acquisition and dense optical flow detec-
tion at great speeds. Research on similar devices developed by Placer and Kovacic[14], Hung and
Suh[15], Do and Suh[16] and many more prove that the interest in developing systems for machine
learning with the vision sensors playing a pivotal role in data acquisition will only rise in the future.

All vision based guidance and navigation applications can be divided into two categories. The



first category can employ the use of reference points at known locations in the object space to
facilitate relative navigation in a cooperative manner. Autonomous aerial refueling[17], aircraft
and spacecraft relative navigation[18], [19] and autonomous aircraft landing on ships and aircraft
carriers are instances of the first category. The second category requires the development of navi-
gation systems in an uncooperative manner (i.e. non reliance on the presence of reference points in
the workspace). Examples of this category include, but are not limited to, path planning for robots
[20], planetary exploration[21], planetary reentry navigation [22] and proximity operations [23].
Vision based navigation systems provide robust 6 degree-of-freedom (DOF) relative navigation
solutions driven by the geometry of the problem.

Proximity based operations use high speed, high resolution cameras along with a slew of other
sensors to monitor various parameters pertaining to the relative pose and pose rates between the
target and the manipulator. Recently, some systems have been developed as alternatives to the
CCD/CMOS camera-incorporated sensor suites being used to provide 6 DOF relative pose esti-
mates of a target. An example of this is the VISNAV system developed by Gunnam et al[24] and
Junkins et al[25]. VISNAV is an analog system that uses a position sensitive diode (PSD) to mea-
sure camera space positions of active beacons in the scene; with four or more imagd beacons, least
squares “resection” permits accurate estimates of the VISNAV sensor relative to an object space
reference frame. In this case the PSD behaves like a high speed CCD/CMOS array, providing
fictitious image plane coordinates with respect to a coordinate system, defined by the normalized
imbalance of four voltage values. The analog nature of the VISNAV system means high effective
frame rates but a significant amount of expertise in analog electro-optical systems is required to
operate and troubleshoot the system. An alternative to the analog VISNAV system is the develop-
ment of a digital counterpart to it, as done in Wong et al[3]. This all digital system is much eaier
to design, engineer and acquire data from, and harnesses the capability of recent advances in data
transfer solutions and high processing power of embedded computer systems to provide robust 6
DOF relative pose estimates relatively at high rates. Although this system uses a conventional CCD

camera as its optical sensor, the novel approach is the utilization of a set of LED beacons which are



programmed to strobe at different frequencies (motivated by the original analog VISNAV patent).
This allows for the isolation and identification of each beacon independently. Commercial motion
capture technologies like Vicon[26] and Phasespace[2] employ similar arrangements of beacons in
the workspace with multiple cameras to identify and track them to provide 6 DOF relative pose es-
timates. The beacons are passive in the case of Vicon and active in the case of Phasespace and are
attached to a target body to estimate its relative pose in respect to their internal coordinate system.
Vicon leverages the known positions of its infrared beacons to estimate the relative pose of a target
body. Phasespace harnesses the fact that each of its LED beacons strobe with a different frequency
to isolate and group four or more specific beacons together in order to estimate the relative pose of
a body.

The Phasespace camera uses optical elements to focus the light emanating from the active
LED beacons to two orthogonal linear detectors. One vertical linear detector images the collapsed
left-right field of view (thus capturing the x-coordinates of the beacons) and the other horizontal
linear detector images the collapsed up-down field of view (thus capturing the y-coordinates of the
beacons). The frame rate of the camera is 960 Hz. This allows for a high rate of beacon coordinate
computation (around 200 Hz). The faster frame rate is used to capture the unique beacon frequency
of modulation to uniquely associate the measured coordinates with the corresponding beacon. The
Phasespace system is conventionally designed to operate o thebeacon coordinates and compute and
output the three dimensional line of sight vector for each beacon with respect to its internal pre-
calibrated coordinate system using the linear detector positions from each camera. In this research,
a single Phasespace camera is employed as the optical sensor. The linear detector values are used
to compute uncalibrated coordinates of the beacons in the fictitious image plane whose bases are
taken to be the two linear detectors.

This research presents, in addition to the calibration results of the Phasespace camera, a non-
linear optimization algorithm that can be implemented online to estimate the relative pose of an
uncooperative target equipped with the compatible beacons. The first chapter discusses Zhang’s

homography algorithm. A key contribution is the alternate formulation of the matrix 5B dependent



on the intrinsic parameter matrix which mitigates the effects of data noise on the intrinsics estima-
tion process. The second chapter provides details of the Phasespace motion capture camera used
in this research along with some tests that provide some insight about its parameters. The third
chapter discusses in depth the two distortion models tried in this work, with some more algorith-
mic description in the Appendices. The fourth chapter presents the nonlinear optimization based
approach that can be implemented once the constant intrinsic camera parameters and distortion
coefficients are estimated to estimate the relative pose of an uncooperative target equipped with
the requisite number of compatible LED beacons. Experimental results are then presented that de-
termine the applicability of the two distortion models to the Phasespace camera and the efficacy of
the algorithm presented in the previous chapter in estimation of the relative pose. The final chapter

details the conclusions and possible avenues for future research in this area.



2. HOMOGRAPHY EXPLANATION

A detailed dicussion of the utilization of Homography for the calibration of a CCD/CMOS
camera is presented in Zhang[1].

According to Zhang, the pinhole projection model is represented by 2.1.
sﬁz:A[R t] M 2.1

where s is a scaling factor, M is a beacon coordinate in the target frame, m is the corresponding
image plane projection of M, R and t are the Rotation matrix and translation vector pertaining

to the transformation from the target frame to the camera frame and A is the intrinsic parameter

a ¢ oy
matrix is givenby A = |0 5 v, |, the scaling parameters in the x and y directions in the image
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Figure 2.1: The Homography Problem as shown in the paper(3]

The figure 2.1 illustrates the geometry of the perspective problem that Zhang’s paper serves to



find a computational solution for.

4.2 can be further expanded as 2.2 since without any loss of generality, we can set Z=0.

X
U X
Y
v :A|:T'1 To T3 t:| :A|:'r‘1 T2 t:| Y (22)
0
1 1
1

For notational conciseness, let us define

H:A|:’l"1 T2 t:|

The first step is the estimation of the homography matrix /. 2.2 is rewritten as

. o= 0 2.3)
o' M —uvM

where x is the columns of /1 arranged into a column vector.
For n points in the image there will be n such equations that can be stacked.

This sequence of steps is carried out for multiple frames. In each case, if
~ T

M o’ —uMT

L= o e the solution @ is the singular vector of L corresponding to the

of M —vM
smallest singular value of L.

This result can now be used as an initial guess to solve the nonlinear least squares problem given

by 2.4.
T = "|lmi — myl? (2.4)

where m; = —
hs™ M;

~ T
ho M;
With H estimated for all frames, the next step is to calculate intrinsic and extrinsic parameters.



Zhang’s paper defines a matrix B as given in 2.5.
B=ATA" (2.5)

The motivation behind the definition of B stems from the following development. The estimation

of the homography matrix calculated earlier can be written as the following.

|:h1 h2 h3:| =M |"l“]_ T2 t:| (26)

Now, using two known fundamental properties of the rotation matrix, i.e. orthonormality of the
basis vectors with respect to each other and the equality of magnitude for each direction, the next

two equations can be developed.

hiTATA ' hy =0
(2.7)
hiTATA ' hy = hyTATTA Ry

The occurence of A= A~! in both equations suggests its analysis.

Substitution of the A matrix enables the determination of B in terms of the intrinsic camera

parameters.
1 __c_ cvo—uof
a? a?p a?p
2 _
B=| - St & _%_% (2.8)
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Now,since B is a symmetric matrix, it can be represented as a vector of its six distinct elements.
T

b= By Bia By Bz Bas DBag (2.9)

The vector b describes the image of the absolute conic, which is a concept innate to the process

of self calibration.



The definition of B, defined in either 2.8 or 2.13, allows for the representation of 2.7 in the follow-
ing manner.

T
V12

b=0 (2.10)
(’U11 — ’022)T

T
where vi; = |hiihji hiahje + hishji hishja  hishji + hihjs  hishja + hishjs  hishjs| SO,

if we have n images, they can be stacked in order to have a 2nz6 matrix V', which gives the
following equation.

Vb=0 2.11)

The solution to the above equation is the singular vector of V' associated with the smallest singular
value of V.
Once, b is estimated, we can compute the intrinsic parameters of the A matrix using the following

formulas.

o BlZBl3 - BllBZS

vy =
’ By1 By — B,
B1
[ A
a= /=
B
- (2.12)
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CUp 313052
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A novel contribution by this research is the reformulation of B as follows.
B=amar 2.13)



As aresult, B has the following form.

2 _ _ _
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It is noteworthy that since B33 is one as opposed to % + /% + 11in 2.8, there in no need

for normalization with respect to Bss in the case of 2.13. This allows for less contribution of the
formulation of B towards the errors in the estimation of the intrinsic camera parameters.

If BT is used, the intrinsic parameters are computed as so.

1
h= By — B3y
vy = —DBa3f8
By — 331332) 2
o= (B, p2 _ Bn—DBube (2.15)
( H o By — B3s

¢ = —(Biz — Bi3Bas)af?
cvg — a3 Bsy
Uy = ————
)
Once A is known, the definition of the homography matrix can be used to compute the extrinsic

parameters for each image. From 2.6, we have.

T = )\A_lhl
T = )\A_lhz
(2.16)
rs =71 X To
t - )\A71h3
where A = ||A—11h1|| = HA‘llhzll' Because of noise in the data, hy never equals ho, as a result

using h; and h, will result in different extrinsic parameters. A key clue to this fact is the observa-

tion that the smallest singular value associated with L, defined in 2.3, is never zero, irrespective of
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frame. Another adverse effect of noise in the data is that rotation matrix thus computed from the
Homography matrix and intrinsic parameters does not in general satisfy the properties of a rotation
matrix. There are many ways to estimate the best rotation matrix from the given rotation matrix.
Zhang provides a solution S such that the R — S has the least Frobenius norm. This research
utilizes a solution to the Orthogonal Procrustes Problem to compute the best rotation matrix.

The normalisation variable A\ (refer Equation 2.16) will be different depending on the choice
of either r; or 73, due to some noise in the calculations as introduced by the SVD analysis for the
estimation of the Homography matrix and measurement noise. As a result, the estimated rotation
matrix will not satisfy the orthogonality constraint or the unit determinant constraint. Out of the
many possible algorithms that could be harnessed to estimate the best possible rotation matrix, the
solution to the Orthogonal Procrustes problem is utilized.

If R is the estimated rotation matrix for a frame, let us say that the Singular Value Decompo-
sition of R gives us matrix of left singular vectors U, matrix of right singular vectors V' and the
diagonal singular values matrix S. (i.e. svd(R) = USVT assuming R has real entries). In that
case the best possible rotation matrix is given by Rbest =UVT.

The Classical Rodrigues Parameters (CRPs) are obtained from the rotation matrix using the
Cayley Transform.

Q = (I — Ryl )(I + Roesr) 2.17)

T
where () is the skew-symmetric matrix associated with the CRP vector {ql % qgl .
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3. PHASESPACE MOTION CAPTURE CAMERA

3.1 Overview

This research uses the camera from the Phasespace Impulse X2E Motion Capture System as
the structured light sensor. The uniqueness of the camera lies in the fact that instead of using a
CCD/CMOS array, it utilizes two linear detectors to capture light information from the scene. The
orientation of the detectors is shown in Figure 3.1. It is to be noted that both linear detectors are
aligned perpendicular to each other. The camera frame rate is 960 Hz but the data display rate is

about 200 Hz.

Figure 3.1: The orientation of the two linear detectors in the Phasespace camera is shown. The
orange line represents detector O and blue line represents detector 1. Original image taken from [2]

The detectors are assigned values 0 and 1 according to their manner of reference in the Phas-
espace SDK package. Facing the front face of the camera, Detector O starts from the centre on the
top edge and ends at the bottom right corner whereas Detector 1 starts from the centre of the top

edge and ends at the bottom left corner. The actual physical position of the detectors is somewhere

12



away from the front face of the camera, at a distance which is not known to the author at the time
of writing.

Each LED beacon that falls within the field of view of the camera is identified using a propri-
etary algorithm which isolates beacons based on their strobing frequency. The light rays emanating
from each beacon are directed onto each detector using optical instruments such as lenses. The
footprint left by the light rays from each beacon is treated as a Gaussian and an internal algorithm
computes its width, normalized position and amplitude on each detector. These values can be ac-
cessed through the Phasespace SDK and the structure associated with the footprint of the light rays
from each beacon on each detector is called "Peaks".

The mutually perpendicular orientation of the linear detectors in the camera make them viable
candidates as basis vectors for the fictitious 2D image plane. A number of tests were conducted
in order to determine the ideal direction for the chosen basis vectors, the standard deviation for
the position of a stationary beacon and the range of both detector positions before a definitive

coordinate system was assigned to the fictitious image plane.
3.2 Coordinate System Determination
3.2.1 Basis Vectors Test

This test was conducted in order to determine the direction of increase in position for each
detector. For this purpose, 8 beacons are affixed to a checkerboard pattern at known positions
(corners of certain squares on the checkerboard) in the shape of an "F". This arrangement is shown

in Figure 3.2.
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Figure 3.2: The beacon arrangement on the checkerboard pattern is shown. The number next to
each beacon denotes its assigned reference number in the Phasespace SDK

The camera was mounted on a Manfrotto table top tripod, tilted so as to align Detector O
with the vertical lines of the checkerboard pattern and Detector 1 with the horizontal lines of the
checkerboard pattern and positioned at a distance from the board. The camera and board are kept
stationary, the system is turned on and the positions of the beacons are acquired. Three alignment

categories are defined.

1. Horizontal alignment: There are 3 groups each beacon can be sorted under.

* Horizontal line 1(Lh1): Consisting of beacons 4,7,6 and 0
* Horizontal line 2(Lh2): Consisting of beacons 5,1 and 2

* Horizontal line 3(Lh3): Consisting of beacon 3
2. Vertical alignment: There are 4 groups each beacon can be sorted under.

 Vertical line 1(Lv1): Consisting of beacons 4,5 and 3
 Vertical line 2(Lv2): Consisting of beacons 7 and 1
* Vertical line 3(Lv3): Consisting of beacons 6 and 2
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* Vertical line 4(Lv4): Consisting of beacon 0

3. Individual: The light from each beacon is captured individually by blocking out the radiation

from the other beacons.

Data is acquired by allowing light from a certain category of beacons to be captured by obscuring
the other beacons. For example, the Lh1 data is acquired by only allowing light from beacons 4,7,6

and 0 to be captured by the camera. The recorded normalized positions are shown in Table 3.1.

Beacon No. | Detector 0 normalized position | Detector 1 normalized position

0 Lh1 =0.525 Lh1 =0.348
Individual = 0.527 Individual = 0.354
Lh2 =0.572 Lh2 =0.458

1 Lv2=0.572 Lv2=0.458
Individual = 0.572 Individual = 0.458
Lh2 =0.575 Lh2 =0.408

2 Lv3 =0.575 Lv3 =0.408
Individual = 0.575 Individual = 0.408

3 Lvl=0.619 Lvl =0.512
Individual = 0.619 Individual = 0.512
Lh1=0.514 Lh1 =0.499

4 Lvl =0.517 Lvl =0.506
Individual = 0.517 Individual = 0.506
Lh2 =0.568 Lh2 =0.509

5 Lvl =0.568 Lvl =0.509
Individual = 0.568 Individual = 0.509
Lhl =0.522 Lh1 =0.398

6 Lv3=0.524 Lv3=0.404
Individual = 0.524 Individual = 0.404
Lh1=0.519 Lhl =0.448

7 Lv2=0.521 Lv2=0.455
Individual = 0.521 Individual = 0.455

Table 3.1: The recorded positions of each beacon in both detectors and for all alignment groups
they lie in are shown.

For beacons 0,4,6 and 7 there is a slight difference between the detector normalized positions

for different alignment categories. This can be attributed to the fact that the values in the Table 3.1
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pertain to one timestep chosen for which position values for all beacons and detectors are available.
When the detector position values of each beacon are compared to the beacon’s corresponding
position on the board, it can be inferred that the direction of increase of normalized position for

both detectors would be as shown in Figure 3.3.

Figure 3.3: The direction of increasing position values for both detectors is shown, as inferred
from Table 3.1. The orange arrow shows the direction of increasing position values for Detector 0
and the blue line shows the direction of increasing position values for Detector 1

Figure 3.3 forces a change in the perception of the coordinate system of the image plane from
the conventional {do dl] to [dmaz —d do] . Where dj is the normalized position for detector
0, d, is the normalized position for detector 1 and dy,,,, is the maximum normalized position
physically observed for detector 1. So, the x axis of the fictitious image plane is in the opposite
direction of the blue arrow in Figure 3.3, the y axis is in the direction of the orange arrow and the
z axis comes out of the front face on the camera.

A calibration test was conducted ,with the camera in the tilted alignment, with the goal to
ascertain the choice of coordinates from the detector position values so as to obtain a near-parallel
image plane alignment with the inertial plane. The same beacon arrangement as shown in Figure

3.1 is used. The position of the origin, in addition to the beacon positions, is shown in Figure 3.4.

16



Figure 3.4: The inertial coordinate system with beacon positions. "O" is the origin and "OX" and

"OY" represent the inertial planar axes.

The inertial frame coordinates of each beacon are shown in Table 3.2.

Beacon No. | Inertial Position
0 [7s,s]
1 [3s,35]
2 [5s,35]
3 [s,55]
4 [s,s]
5 [s,3s]
6 [5s,s]
7 [3s,s]

Table 3.2: Inertial coordinates of each beacon given as [X-coordinate,Y-coordinate], s=49/16

inches
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The image plane projections for each pose of the board as seen from the Phasespace Viewer
are shown in 3.10 and their corresponding physical setup images can be seen in Figure 3.11.

The extrinsic projections of each frame as computed from Zhang’s[1] homography algorithm is
shown in Figure 3.12. The projections have been shown from the board’s perspective. For aesthetic
purposes, the figures have been moved to the end of the Chapter.

For the purpose of simple verification, consider the first figure and the last two figures. These
three figures are fronto-parallel board orientations at different distances from the camera. The in-
creasing order of frames by distance is Frame 1, Frame 23 and Frame 24. The extrinsic projections

of these frames as seen in Figure 3.12 provide two conclusions:

* The inter-planar distance between the inertial and the frame coordinate system also increases

from Frame 1 to Frame 24 through Frame 23.

* The planar axes are nearly aligned to each other, as is expected for the fronto-parallel orien-

tation.

The translation and CRP plots against frame number are given in Figures 3.5 and 3.6 respec-

tively.
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Figure 3.6: Plots of CRP vector elements against frame number
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The z-coordinate of the translation vectors for all frames are positive, which lends credibility
to the solution. All CRPs for all the frames are below 1. The extrinsic projections of all frames

with respect to the inertial frame are shown in Figure 3.7.

60 J Frame24
40
30 4
20 4 _ £ra
10 “iriartial Frame
0 //20
: 0
0 ~
-10 -20
-20

Figure 3.7: Extrinsic Projections of all frames combined and shown with respect to the inertial
frame
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The choice of image plane coordinates, as related to the position values from the two linear
detectors, to obtain nearly aligned planar axes of the image plane and the inertial plane was deter-
mined by undergoing cases for assignment of the detectors as the two axes of the image plane and
finding the right assignment. If & and © are the two fictitious image plane axes and do and d are

the unit vectors associated with detectors 0 and 1 respectively, the following cases were tested.
* Case 1: -dg || @ and dy || ©
« Case2: dy | @and dy ||
« Case3:-d; | @and dp || ©

The negative detector axes coordinates were represented as d,, a4z — dp, Where n € [0, 1]. dymas
was calculated using the range test, discussed in the next subsection.
The image plane projections plotted by Matlab, were compared with the inertial frame projec-

tions plotted by Matlab. These are shown in Figure 3.8.
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Figure 3.8: Comparison between the inertial frame projections (shown on the left) and the image
plane projections (shown on the right) for each case. The top two images are for Case 1, the middle
two images are for Case 2 and the bottom two images are for Case 3

It can be seen from Figure 3.8 that for Case 3, the two plot match nearly perfectly. This implies

that the sense of the image plane for the Phasespace Camera is indeed as seen in Figure 3.3.
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3.2.2 Range Test

The next test was to determine the range of normalized position values for both detectors.
The main reason for this test was to determine the value of dy,,,,. This test was performed by
keeping the board stationary and moving the camera around so as to capture various positions of
the beacons covering as much of the workspace of the camera’s field of view as possible. There
were beacon registration errors when the camera was brought too close to the board so data was
acquired in three stages with the camera being set at three different pitch angles. These three levels
are named upper, centre and lower. Figure 3.9 shows the various positions each beacon occupied

at all timesteps and for all three camera pitch angle configurations.

‘central region restricted data
Ve e

lower rgian mestricted data

92 03 o4 BA o Or A 08 a1 B2 @3 o4 0B BE  O7 OB 03
tmincior { manmaiied posilon dutecton ) manmaliosd posilien

(a) Normalized positions of all bea- (b) Normalized positions of all bea- (c) Normalized positions of all bea-
cons for the upper pitch angle cam- cons for the centre pitch angle cam- cons for the lower pitch angle cam-
era configuration era configuration era configuration

Figure 3.9: Normalized beacon positions from the Range Test

From the position data obtained, the maximum and minimum normalized position values for
both detectors across all three pitch angle camera configurations were determined. Table 3.3 shows
the same.

Out of the values shown in Table 3.3, the one of most importance is dy,,,, since it will be used
to determine the y coordinate of a beacon in the fictitious image plane, as discussed in the previous

subsection.
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Detector max/min Value
Detector 0 max 0.991708

Detector 0 min 0
Detector 1 max 0.99814
Detector 1 min 0

Table 3.3: Maximum and minimum recorded normalized position values for both detectors

3.2.3 Standard Deviation Test

In order to be aware of the deviation in position that can be expected from the camera’s sensor,
the standard deviation test was conducted. The main inspiration for this test came from the results
of the basis vectors test for beacons 0,4,6 and 7 shown in Table 3.1.

The test was conducted by keeping the board and the camera stationary with a certain distance
between them and acquiring data for about 20 seconds. Two iterations of this test were conducted.
The results of the first iteration are provided in Table 3.4 and the results of the second iteration
are provide in Table 3.5. The results are tabulated beacon-wise to shine light on the influence of

specific beacons on the uncertainty of their positions.

Beacon No. | Standard Deviation for d, | Standard Deviation for d;
0 0.0059247 0.0000019
1 0.0064068 0.0000015
2 0.0000019 0.0000064
3 0.0000053 0.0075424
4 0.0000021 0.0000020
5 0.0000037 0.0000017
6 0.0000015 0.0000085
7 0.0000019 0.0046924

Table 3.4: Standard Deviation values sorted beacon-wise for the first iteration of the Standard
Deviation Test. dy and d; pertain to positions in detectors O and 1 respectively.

Out of all the standard deviation values observed in both tables, the maximum standard devia-

tion value observed is 0.0075424. Looking at the variation in position values for beacons 0,4,6 and
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Beacon No. | Standard Deviation for d, | Standard Deviation for d;
0 0.0000119 0.0000025
1 0.0000037 0.0073923
2 0.0000020 0.0065174
3 0.0000052 0.0000142
4 0.0000021 0.0000018
5 0.0000037 0.0058451
6 0.0000014 0.0045665
7 0.0000019 0.0051810

Table 3.5: Standard Deviation values sorted beacon-wise for the second iteration of the Standard
Deviation Test. dy and d; pertain to positions in detectors O and 1 respectively.

7 in Table 3.1, all variations lie within 0.0075424. So those measurements are acceptable. Also, the
fact that both iterations show different standard deviations for both detectors for different beacons

shows that the standard deviation for any beacon at any day cannot be certainly determined.
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Figure 3.10: Image plane projections of each pose of the board as seen through the Phasespace
Viewer. The frames are ordered from the top left to the bottom right.
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Figure 3.11: The physical alignment of the board with respect to the camera corresponding to
each image plane projection shown in Figure 3.10. The frames are ordered from the top left to the
bottom right.
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Figure 3.12: Extrinsic Projections as computed using Zhang’s Homography algorithm correspond-
ing to each image plane projection shown in Figure 3.10. The distances are provided in inches.
The frames are ordered from the top left to the bottom right.
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4. ESTIMATION OF THE EXTRINSICS USING NONLINEAR LEAST SQUARES!

As stated before, Wong et al[3] presents an batch algorithm to estimate the relative pose of
the camera with respect to the target given the intrinsic parameters and the distortion coefficients.
The estimation of the pose rates is not performed and instantaneous beacon positions in the image
plane are used to estimate instantaneous relative pose of the camera. It is noteworthy that the planar
assumption for the beacons in the target centred frame is not required for this algorithm, but the
camera must be calibrated.

The objective is to obtain expressions relating the image coordinates of the beacons to their
inertial coordinates using the notions of homography and rigid body motion. 4.1 represents rigid

body motion and 4.2 represents the pinhole camera model without distortion.

py = Rp}” +1 (4.1)

i
up=uo+ fa—g
“i

C (4.2)
Y;

7

T
where pZV is the inertial frame coordinate of the ¢th beacon, pic = {xc y¢ ch} is the 3D

)

T
camera frame coordinate of p}” and [uz Ui:| is the image plane projection associated with p}”.

T T
Principal offset vector [uz Uz’] and focal length vector [ fa fy} are the camera intrinsic pa-

rameters along with the skewness factor ¢, not shown here. If the rotation matrix and translation

T T2 T13 ty
vector are written as R = |y, 19y 193 | and £ = |¢, | respectively and substituted into 4.2, 4.3
r31 T2 T33 ts

'Rewritten with permission from "A Structured Light System for Relative Navigation Applications" by Wong and
Majji in IEEE Sensors Journal 16.17 (2016): 6662-6679 ©2011 IEEE
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would be obtained.

ruzl + 7’12% +r132) + 1
T31$W + 7’32% + 7"332 +13 4.3)
rozl’ + 7”22yZ + 1ozl + to
razl + raoyl’ 4 ragzl’ 4 ts

—uO fm

i = Vo + fy

If auxilliary variables u; and v, are defined as in 4.4, 4.3 would reduce to 4.5. w and v] are the

normalised camera space coordinates.

v = A |y, 4.4)
1 1

ui‘(rgle“rrgzyi +7’332 +t3)—7“11$ +7“12yZ +7’13Z + 1
4.5)

w
i (ranay + ey’ +raszl’ +ls) = roay +raay) +rasz A+t
Here, A is the intrinsic parameter matrix. 4.5 pertains to each beacon in each frame. If there are n

beacons in each frames, the 2n condition equations can be stacked and rearranged in order to form

4.6.

[Al A2] " =0 (4.6)
t

where
w 1w W raWwoW "W
Xy 0 —wz” vy 0 —wy =z 0 —upz

w ! W w 1, W w ! W
0 zy —viz, 0 vy —vy; 0 2z —viz

A =
w ! W w !, W w 1 W
x,, 0 —w,x, v, 0 —uwy, =z, 0 —u,z,
w ! W w 1, W w r W
0 L —Up; 0 Yn —UnYn 0 Zn —UnZn |
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!/
/
01 —u
Ay =
/!
1 0 —u,
/
0 1 —oy ]
T
s = |ryy Toy T3y T2 Toe Tsa Ti3 Tog rs3| and tis defined earlier. In this research, the

A matrix has been modified to accommodate the fact that all beacons lie on a plane in the target

centred frame.

2V 0 =l oy 0 —uyY 0 0 0|
0 2V —vz 0 YV —vy 0 0 0

A= | : : : : : Do 4.7)

a2V 0 —ul Vo0 —uy!” 0 0 0

0 ¥ —val 0 ¥V —vyl 0 0 0

~

The last three columns in 4.7 can be truncated during computation. On substitution into 4.6, it is
clear that the last column of the rotation matrix gets eliminated from the computational process.
This highlights the similarity of this configuration with the homography algorithm discussed in
Zhang|[1].

r and ¢ can be found by solving the linear algebra problem outlined by 4.6.

Now, t can be computed in terms of 7 in accordance with 4.8.

t=—(ATA) AT Ay (4.8)

Since A, is column rank deficient, the pseudo-inverse of A, is used to compute the translation
vector. Also, due to the errors associated with the pseudo-inverse process 4.8 does not determinis-
tically obtain ¢ but only estimates it, therefore the notation of £ is used to represent the translation

vector.
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On resubstituting 4.8 into 4.6, the null space problem to solve for 7 is obtained.

(Al — AQ(A;A2>_1A5A1)T =Kr=0 (49)

Noting the modified definition of A; as shown in 4.7, the projection matrix K will have a distinct
form wherein the last three columns will be zeros, owing to the fact that K = SA; where S =
I — Ay(AL Ay)~' AL, This again reinforces the fact that only 7; and 7 are begin estimated,
thus reaffirming the similarity with the homography algorithm in Zhang[1]. Two challenges are

associated with the null space solution.

* There is scale ambiguity in the solution, thus precluding the direct estimation of the orthog-

onal matrix.

* In the presence of noise, small changes in parameters of K can cause large variations in the

null space vector.

To alleviate some of these challenges, the rotation matrix is parameterized in terms of CRPs. The

use of CRPs has the following advantages.
* Reduction of dimensionality of the pose estimation problem to 6.

* Each row of the K'» = 0 equation is a quadratic in the CRPs, assuring global convergence

and facilitating the formulation of the problem into a nonlinear least squares problem.

If we define, Kr as f(u,v, PT, q), then we have the following.

y = f(u,v,PT,q)=0 (4.10)

Here, PT is the beacon coordinates in the target centred frame stacked on top of each other. The

actual measurements will have some errors, therefore

= f(u,v,PT q)+e (4.11)
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The cost function to be minimized is 4.12

1

J = seTWe =S [f(@)TW[f(@) @.12)

After linearizing about the current estimate of CRPs, the closed form optimal corrections are given
by 4.13
Ag=—(H"WH)'H'W f((q)) (4.13)

Where H = g—gq is the Jacobian Matrix. The linearization process is carried out iteratively by
updating the current estimate § = ¢+ Agq. The derivation and form of H are discussed in Appendix
B.

For the purpose of linear covariance analysis, it is assumed that the image space measurements

are corrupted by zero mean Gaussian white noise. This is represented by 4.14.

U=1u-+ €,

(4.14)
V=v+¢€,

where €, and €, represent the independent identically distributed zero mean white noise vectors
with covariances X, and ., respectively. ., and ¥, are diagonal matrices whose 7:th element is
given by 02, and o2, respectively. Similarly beacon location uncertainty in the inertial coordinate

system is captured using a similar assumption.

P=P+ep (4.15)

T

withep = €p1 €p2 - €pm and X p is a 3n x 3n diagonal matrix whose 7th diagonal element

corresponds to position uncertainty in the corresponding beacon coordinate.
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The Taylor Series expansion of f(u,v, PT, q) is given by 4.16.

o [0F 0f o7
P.qg) = P
f(lln v7 Y q) f<u7 IU? Y q) + |:aq:| ,&767137{15q + |iau‘| @ ~ Aeu + |:a’U:| ﬁ,’b’,ﬁ ev

+ {—} ep + HO.T (4.16)
@,5,P,q

On ignoring the higher order terms and combining the error contributions by u, v and P into

a single vector v, 4.16 reduces to 4.17.
f(u,v,P,q) = f(@,d, P,q) + Hiq+ G(@,d, P, q)v (4.17)

where G is the nonlinear influence matrix that captures the influence of the sensitivities of the
function with respect to the image space and inertial space coordinates of the beacons on the errors
in the estimation process. The Jacobian Matrix H is evaluated at the converged CRP estimate §. It
can be inferred that the random vector v is Gaussian with statistics (0,.5). The covariance matrix

S is given by 4.18.

. 0 0
S=10 %, 0 (4.18)
0 0 Xp

The CRP estimation error is given by dq = ¢ — g. Keeping in mind that f(u,v, P,q) = 0
and utilizing the linear error theory of least squares estimation[27], the CRP error covariance can

be computed.

P, = E(6qéq") = (H'(GSGT)'H)™* (4.19)

A key assumption in the error quantification in 4.19 is that the least squares estimate q is
obtained by using a weighted least squares approach with the weight matrix W = (GSGT) L.
For linear convariance analysis of the translation error, the relationship between the translation

vector and the rotation vector, represented by 4.8, is revisited albeit in a modified form wherein the
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weight matrix W has been added. The translation error is given by the following.
0t = —((A; WAz) T Ay WA (r(q) — r(q) = C(r(q) — r(q)) (4.20)

The nonlinear relationship between the translation error and rotation error shown in 4.20 can be

linearized by linearizing r(q) about the current CRP estimate §.

On substituting the linearized rotation vector into 4.20, an approximate expression for transla-

tion error convariance can be obtained.

T
P, = E(6tst") =~ C {—q} E(6qoq™) {—} c” 4.21)
q

The Jacobian Matrix [g—;} is a linear function in the current CRP estimate.

The incorporation of clllifferent sources of uncertainty in the image space and inertial space
beacon coordinates makes the above outlined process robust to real world sources of error. For
example, in the case of occlusion or oblique viewpoints, i.e. where the geometry of observation

is poor, the related uncertainty in the acquired data will introduce large errors in the estimation

process which will manifest in the large value of error covariance.
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5. DISTORTION INCORPORATED ESTIMATION

The Homography algorithm described in Chapter 2 does not assume any distortion in the im-
age plane of the camera. Hence, to estimate the distortion coefficients in addition to the intrinsic
and extrinsic parameters, a nonlinear optimization strategy is employed. The nonlinear optimiza-
tion algorithm of choice is the Levenberg Marquardt [28] algorithm and is carried out using the
[sgnonlin function in MatLab. In literature, the most common function used to model the image
plane distortions is the Brown’s Distortion model[7]. This is because Brown’s distortion model
was created with Photogrammetric plates in mind and the same model was found to be applica-
ble to modern CCD/CMOS array cameras with rectangular pixels. But to the best knowledge of
the author, no distortion model has been implemented on a Phasespace camera or a similar linear

imager based camera. So, this section discusses two distortion models:

¢ Brown’s Distortion Model

* Geometric Distortion Model presented by Ma et al[4]

To validate the two distortion models, two known CCD camera datasets are used and the non-
linear optimization algorithm is implemented on both and compared with their known results.
Bouguet Toolbox dataset consists of 20 frames capturing a checkerboard pattern with 156 inner
corners whereas Zhang’s dataset consists of 5 frames capturing a grid of squares pattern with 256

features.
5.1 Brown’s Distortion Model

The conventional formulation of distortion most commonly used to undistort CCD/CMOS

cameras is given by Brown[7] in Equation 5.1.

Ty = Ty + xu(k1r2 + kor* + )+ (pl(r2 + Q:E?l) + 2poz,yy) (1 +p37“2 + p4r4 +..)
(5.1

Yd = Yu + yu(lﬁrQ + kort + )+ (2prxyy, +p2(r2 + 2y§))(1 + psr? + part + )
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T T
where [g;u yu} is the undistorted normalised camera plane coordinate, {3; iy d] is the

corresponding distorted normalised camera plane coordinate, r = /x2 + 2 is the radial distance,
k; is the ith radial distortion coefficient and p; is the ith tangential distortion coefficient.
An alternate realization of the relationship between the undistorted and distorted normalised

camera plane coordinates, shown in Equation 5.2, can also be employed.

Ty = 1+ vq(kir? + kor® + ) + (pr(r? + 222) + 2pozaya) (1 4 psr? + pyr* + ..) 52)

Yu = Yo + Ya(krr? + kor* 4+ ) + (2p1xuya + pa(r® + 2y2)) (1 + psr?® + par® + ...)

Here, r = /22 + 2.

Since both the distortion models use infinite radial and tangential distortion coefficients, choice
of the number of coefficients to use is left to the user.

Zhang[1] utilizes a simplified version of Brown’s distortion model wherein only the first two
radial distortion parameters are considered and develops a linear least squares solution to obtain
their estimates.

Since a linear imager is being discussed, both radial and tangential distortion must be taken
into consideration. For the purposes of this research, three radial and two tangential distortion co-
efficients are considered. Thus the simplified Brown’s distortion model corresponding to Equation

5.1 1s given below. This is the model used in this research.

T = Ty + Tu(k1r? + kor® + k3r®) + py(r? 4 222) + 2poz,y,
(5.3)

Yd = Yu + yu(kITQ + ]{327”4 + k37ﬁ> + 2pll‘uyu + p2<7ﬂ2 + 2%%)

With the lens distortion taken into consideration, Brown’s model is utilized to estimate the
distorted image plane coordinates for comparison with the measured image plane coordinates. It

must be noted that Equations 5.1 and 5.2 represent the relationship between the undistorted and
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distorted beacon coordinates in the normalised camera frame.

Brown’s distortion model represented by Equation 5.3 is tested with the Bouguet’s Camera
Calibration Toolbox[29] dataset and Zhang’s [1] dataset.

Henceforth, the process of optimizing over the intrinsics, extrinsics and the distortion coef-
ficients will be referred to as the "Combined Estimation Approach". The Combined Estimation

Approach can employ either the Brown’s distortion model or the Geometric distortion model.
5.1.1 Bouguet Toolbox Dataset

The results of applying the combined estimation approach to the Bouguet Toolbox[29] Dataset
are compared to the results of application of the Toolbox itself. Below is the comparitive study of
the same.

The initialization values from Homography are optimized using the combined estimation ap-
proach, whereas the initialization values in Bouguet’s Toolbox are optimized using the Steepest
Gradient Descent algorithm. After optimization, the comparison of results are shown in the Tables
that follow.

Table 5.1 shows the optimized intrinsics as computed by both the combined estimation ap-
proach and Steepest Gradient Descent side by side. The initial value shown in the Table are com-
puted using Homgraphy.

It can be seen from the Table 5.1 that the converged intrinsics in both cases are extremely close
to each other. Tables 5.2, 5.3 and 5.4 show the rotation matrices as computed from the converged
parameters of rotation (CRPs in the case of the combined estimation approach and principal ro-
tation vector in the case of the Bouguet Toolbox) next to each other for comparison. Tables 5.5
and 5.6 shows the translation vectors. The initial values shown in the tables are computed using

homography.
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Parameter | Initial Values | Optimized Values | Bouguet Toolbox Values

o 652.0965121 657.5199781 657.5199789
B 660.1095416 657.8880139 657.8880141
c 0.708048876 0.330929654 0.330929792
U 279.780234 302.6640633 302.6640606
Vo 225.9629734 242.434325 242.4343209
Kk 0 -0.261286314 -0.261286377
ko 0 0.176867237 0.176867826
ks 0 -0.122710594 -0.122712115
D1 0 0.0000623 0.0000623
D2 0 -0.000226054 -0.000226055

Table 5.1: Intrinsic parameters and distortion coefficients for the Bouguet Toolbox dataset are
shown. The initial values, computed using Homography, are used for Nonlinear Optimization. The
corresponding parameter values from the Bouguet Toolbox are shown for comparison. Brown’s
Distortion Model is used in the optimization process
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ov

Rotation Matrix
Frame Initial Values Optimized Values Bouguet Toolbox Values
0.044 0.991 0.120 0.054 0.992 0.112 0.0564 0.992 0.112
1 0.638 0.064 —0.767 0.633 0.052 —0.772 0.633 0.052 —0.772
—0.768 0.111 —0.630 —0.772 0.113 —-0.625 —0.772 0.113 —0.625
—0.0004 0.991 0.137 0.005 0.992 0.120 0.005 0.992 0.120
2 0.861  0.069 —0.503 0.860  0.056 —0.505 0.860  0.056 —0.505
—0.508 0.117 —0.853 —0.508 0.106 —0.854 —0.508 0.106 —0.854
—0.162 0.983  0.077 —0.158 0.985  0.057 —0.158 0.985  0.057
3 0.847  0.179 —0.499 0.848  0.166 —0.502 0.848 0.166 —0.502
—0.505 —0.015 —0.862 —0.504 —0.030 —0.862 —0.504 —0.030 —0.862
—0.252  0.917 —-0.307 —0.255 0.901 —0.349 —0.255 0.901 —0.349
4 0.782  0.006 —0.622 0.802 —0.004 —0.596 0.802 —0.004 —0.596
—0.568 —0.397 —0.720 —0.539 —0.433 —0.722 —0.539 —0.433 —0.722
—0.246 0.768 0.590 —0.225 0.766 0.601 —0.225 0.766 0.601
5 0.575  0.605 —0.548 0.584 0.600 —0.545 0.584 0.600 —0.545
—0.779 0.204 —-0.592 —0.779 0.228 —0.583 —0.779 0.228 —0.583
—0.130 0.990 0.043 —0.140 0.989 0.041 —0.140 0.989 0.041
6 0.734 0.067 0.675 0.733 0.076 0.675 0.733 0.076 0.675
0.666 0.119 —0.735 0.664 0.125 —0.736 0.664 0.125 —0.736
—0.145 0.798  0.584 —0.153  0.786  0.597 —0.153  0.786  0.597
7 0.851 —0.199 0.484 0.846 —0.207 0.490 0.846 —0.207 0.490
0.503  0.568 —0.650 0.510  0.581 —0.634 0.510  0.581 —0.634

Table 5.2: The rotation matrices for the first 7 frames of the Bouguet Toolbox dataset are shown. The initial values, computed by
Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Brown’s Distortion
function is used in the optimization process



It

Rotation Matrix

Frame Initial Values Optimized Values Bouguet Toolbox Values
—0.113  0.768  0.629 —-0.132 0.729 0.671 —-0.132  0.729 0.671

8 0.866 —0.232 0.441 0.863 —0.247 0.439 0.863 —0.247 0.439
0.485 0.595 —0.639 0.486  0.638 —0.597 0.48  0.638 —0.597
—0.206 0.750 —0.627 —0.200 0.718 —0.666 —0.200 0.718 —0.666

9 0.895 0.403  0.188 0.892 0.414  0.178 0.892 0414  0.178
0.394 —0.523 —0.755 0.404 —0.558 —0.723 0.404 —0.558 —0.723
—0.231 0.854 —0.465 —0.215 0.835 —0.505 —0.215 0.835 —0.505

10 0.930 0.334  0.152 0912 0.356  0.199 0.912  0.356  0.199
0.285 —0.397 —0.871 0.347 —0.418 —0.839 0.347 —0.418 —0.839

—0.122 0.991 —-0.045 —0.127 0.990 —-0.049 —0.127 0.990 —0.049

11 0.893 0.129 0.430 0.867 0.135 0.478 0.867 0.135 0.478
0.432 0.012 —0.901 0.481 0.018 —0.876 0.481 0.018 —0.876

—0.124 0.991 0.023 —0.127 0.991 0.004 —0.127 0.991 0.004

12 0.891 0.101 0.440 0.880 0.110 0.461 0.880 0.110 0.461
0.434 0.076 —0.897 0.457 0.062 —0.886 0.457 0.062 —0.886

—0.118 0.985 0.119 —0.121 0.987 0.103 —0.121 0.987 0.103

13 0.901 0.056 0.431 0.897 0.064 0.437 0.897 0.064 0.437
0.418 0.158 —0.894 0.425 0.146 —0.893 0.425 0.146 —0.893

—0.109 0.983 0.144 —0.108 0.986 0.120 —0.108 0.986 0.120

14 0.911 0.041 0.408 0.909 0.050 0.412 0.909 0.050 0.412
0.396 0.176 —0.901 0.401  0.154 —0.902 0.401 0.154 —0.902

Table 5.3: The rotation matrices for the frames 8 through 14 of the Bouguet Toolbox dataset are shown. The initial values, computed
by Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison.Brown’s Distortion
function is used in the optimization process
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Rotation Matrix

Frame Initial Values Optimized Values Bouguet Toolbox Values

—0.081 0.985 0.149 —0.089 0.975 0.203 —0.089 0.975 0.203

15 0.966 0.041 0.254 0.970 0.039 0.237 0.970 0.039 0.237
0.244  0.165 —0.955 0.223 0.218 —0.949 0.223 0.218 —0.949

—0.203 0.970 0.133 —0.207 0.977  0.030 —0.207 0.977  0.030
16 0.964 0.221 —0.140 0.962  0.210 —-0.172 0.962  0.210 —-0.172
—0.166 0.100 —0.981 —0.174 —0.006 —0.984 —0.174 —0.006 —0.984
—0.102  0.966 —0.235 —0.104 0.958 —0.264 —0.104 0.958 —0.264

17 0.807  0.218  0.547 0.809  0.236  0.538 0.809  0.236  0.538
0.581 —0.134 —0.802 0.578 —0.157 —0.800 0.578 —0.157 —0.800

0.045 0.856 —0.513 0.023 0.862 —0.505 0.023 0.862 —0.505

18 0.657 0.361  0.660 0.639 0.375  0.670 0.639 0.375  0.670

0.752 —0.367 —0.547 0.768 —0.338 —0.543 0.768 —0.338 —0.543

—0.170 0.834  0.523 —0.186 0.824  0.533 —0.186 0.824  0.533

19 0.739 —0.243 0.628 0.715 —0.258 0.648 0.715 —0.258 0.648
0.651  0.493 —0.575 0.673  0.503 —0.542 0.673  0.503 —0.542

—0.095 0.625 0.774 —0.114 0.584  0.803 —0.114 0.584 0.803

20 0.852 —0.349 0.387 0.847 —0.364 0.386 0.847 —0.364 0.386
0.513  0.697 —0.499 0.518 0.724 —0.453 0.518 0.724 —0.453

Table 5.4: The rotation matrices for the frames 15 through 20 of the Bouguet Toolbox dataset are shown. The initial values, computed
by Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison.Brown’s Distortion
function is used in the optimization process



Translation Vector in meters
Frame | Initial Values | Optimized Values | Bouguet Toolbox Values

—512.529 —590.490 —590.490

1 —213.933 —278.347 —278.347
2957.725 2844.169 2844.169
—435.655 —515.180 —515.180

2 —472.869 —530.558 —530.558
2588.268 2526.353 2526.353
—330.695 —416.035 —416.035

3 —520.868 —581.429 —581.429
2636.163 2585.814 2585.814
—121.676 —213.229 —213.229

4 —448.102 —515.445 —515.445
2598.821 2597.414 2597.414

—220.317 —306.0125 —306.0125

5 —701.434 —763.341 —763.341
2506.850 2456.339 2456.339
—437.360 —495.461 —495.461

6 —222.515 —265.076 —265.076
1483.488 1483.323 1483.323
—224.688 —275.520 —275.520

7 —219.971 —258.636 —258.636
1477.794 1466.863 1466.863
—514.237 —565.929 —565.929

8 —302.501 —344.657 —344.657
1594.624 1539.911 1539.911

83.415 —4.652 —4.652

9 —688.332 —749.999 —749.999
2455.271 2429.836 2429.836
7.971 —96.757 —96.757

10 —944.286 —1000.853 —1000.853
2991.082 2868.444 2868.444
—428.546 —501.981 —501.981

11 —737.311 —783.902 —783.902
2466.929 2349.344 2349.344
—375.588 —443.646 —443.646

12 —540.580 —590.187 —590.187
2064.899 2016.517 2016.517

Table 5.5: The translation vectors for the first 12 frames of the Bouguet Toolbox dataset are shown.
The initial values, computed by Homography, are used for nonlinear optimization. The results
from Bouguet Toolbox are shown for comparison. Brown’s Distortion function is used in the
optimization process
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Translation Vector in meters
Frame | Initial Values | Optimized Values | Bouguet Toolbox Values

—377.325 —441.138 —441.138

13 —429.319 —477.987 —477.987
1836.644 1815.721 1815.721
—352.664 —410.927 —410.927

14 —412.441 —456.646 —456.646
1653.253 1636.024 1636.024
—607.843 —662.720 —662.720

15 —401.109 —447.929 —447.929
1640.103 1583.183 1583.183

29.911 —51.881 —51.881

16 —510.901 —567.232 —567.232
2322.697 2318.755 2318.755
—387.156 —449.816 —449.816

17 —413.882 —462.815 —462.815
1630.930 1634.470 1634.470
—566.599 —617.070 —617.070

18 —484.396 —525.711 —525.711
1540.649 1471.745 1471.745
—321.373 —354.435 —354.435

19 —240.456 —264.843 —264.843
1169.700 1113.610 1113.610
—435.696 —478.522 —478.522

20 —257.575 —292.999 —292.999
1374.484 1320.395 1320.395

Table 5.6: The translation vectors for the frames 13 through 20 of the Bouguet Toolbox dataset are
shown. The initial values, computed by Homography, are used for nonlinear optimization. The
results from Bouguet Toolbox are shown for comparison. Brown’s Distortion function is used in
the optimization process
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The similarity in the values of the converged intrinsics and extrinsics lends credibility to the
current implementation of the combined estimation approach using Brown’s distortion model as

developed in this research.
5.1.2 Zhang’s Dataset

Zhang’s[1] dataset was also used to verify the credibility of the combined estimation approach
with Brown’s distortion model. The results of the combined estimation approach are compared
with the corresponding results from Bouguet’s Toolbox.

After optimization of the initialization values using the homography optimization algorithm
and the Steepest Gradient Descent algorithm in Bouguet’s Toolbox, the results are compared in the
subsequent tables. Table 5.7 compares the converged intrinsics from both algorithms. The initial

values shown in the Table are computed using Homography.

Parameter | Initial Values | Optimized Values | Bouguet Toolbox Values
o 871.3640761 833.0034588 833.0034437
6] 871.071365 832.9376039 832.9375887
c 0.216330799 0.211020284 0.21101857
U 300.7357847 304.0043788 304.0044236
Vg 220.9411681 208.8753372 208.8753452
kq 0 -0.222263498 -0.222264505
ko 0 0.086958529 0.086971646
ks 0 0.364852766 0.364804933
D1 0 0.0000566 0.0000566
D2 0 0.001058611 0.00105861

Table 5.7: Intrinsic parameters and distortion coefficients for the Zhang dataset are shown. The ini-
tial values, computed using Homography, are used for Nonlinear Optimization. The corresponding
parameter values from the Bouguet Toolbox are shown for comparison. Brown’s Distortion func-
tion is used in the optimization process

The intrinsics and distortion parameters computed using the homography optimization algo-
rithm are in good agreement with the intrinsics and distortion parameters as computed using

Bouguet’s Toolbox. Table 5.8 shows the rotation matrices as computed from the converged pa-
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rameters of rotation (CRPs in the case of the combined estimation approach and principal rotation
vector in the case of the Bouguet Toolbox) next to each other for comparison. Table 5.9 shows the

translation vectors. The initial values shown in the tables are computed using homography.
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Rotation Matrix

Frame Initial Values Optimized Values Bouguet Toolbox Values
0.990 —0.027 0.135 0.992 —-0.026 0.117 0.992 —-0.026 0.117

1 0.015 0.995 0.092 0.014 0.994 0.101 0.014 0.994 0.101
—0.137 —0.089 0.986 —-0.119 —-0.099 0.987 —0.119 —-0.099 0.987

0.996 —0.002 0.087 0.997 -0.004 0.071 0.997 —0.004 0.071
2 0.020 0.979 —0.201 0.017 0983 —0.181 0.017 0983 —0.181
—0.085 0.202  0.975 —0.069 0.181  0.980 —0.069 0.181  0.980

0.914 —0.036 0.402 0.915 —0.035 0.401 0915 —0.035 0.401

3 —0.002  0.995 0.095 —0.007 0.994 0.104 —0.007 0.994 0.104
—0.404 —0.087 0.910 —0.403 —0.098 0.909 —0.403 —0.098 0.909

0.986 —0.017 —0.164 0.986 —0.017 —0.162 0.986 —0.017 —0.162

4 0.031 0.996  0.084 0.033 0.995  0.094 0.033 0.995  0.094

0.162 —0.088 0.982 0.159 —0.098 0.982 0.159 —0.098 0.982

0.967 —0.197 —0.155 0.967 —0.197 —0.158 0.967 —0.197 —0.158

5 0.188 0.979 —0.069 0.191 0.980 —0.052 0.191 0.980 —0.052

0.166 0.037  0.985 0.165 0.020  0.986 0.165 0.020  0.986

Table 5.8: The rotation matrices for the frames of the Zhang dataset are shown. The initial values, computed by Homography, are used
for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Brown’s Distortion function is used in the
optimization process



Translation Vector in meters
Frame | Initial Values | Optimized Values | Bouguet Toolbox Values
—3.784 —3.840 —3.840
1 3.423 3.615 3.615
13.676 12.812 12.812
—3.663 —3.717 —3.717
2 3.538 3.731 3.731
14.111 13.217 13.217
—2.886 —2.944 —2.944
3 3.531 3.736 3.736
15.108 14.265 14.265
—3.355 —3.407 —3.407
4 3.418 3.601 3.601
13.302 12.475 12.475
—4.016 —4.073 —4.073
5 2.962 3.170 3.170
15.280 14.364 14.364

Table 5.9: The translation vectors for the frames of the Zhang dataset are shown. The initial values,
computed by Homography, are used for nonlinear optimization. The results from Bouguet Toolbox
are shown for comparison. Brown’s Distortion function is used in the optimization process

The comparison of the converged rotation matrices and translation vectors from both algo-
rithms proves that the combined estimation approach with Brown’s distortion model has verified
credibility for estimation of the intrinsics, extrinsics and distortion coefficients. However, it must
be noted that the two datasets used to test the combined estimation approach are obtained using
conventional CMOS cameras. It remains to be seen whether this approach can be extended to the
linear imagers. The subsequent chapter presents and discusses the results from the employment
of the combined estimation approach with Brown’s distortion model to the Phasespace camera
datasets.

Now the Geometric Distortion Model is introduced, discussed and tested with the Bouguet

Toolbox dataset and Zhang dataset in the subsequent section.
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5.2 Geometric Distortion Model

Ma et al[4] discusses a family of polynomial and rational distortion functions as viable sub-
stitutes to Brown’s distortion model. These distortion functions are lumped models that take into
account all nonlinear distortion effects. The family of functions presented in the paper are given in

Table 5.10.

Function
1 + k’l’f’
1 + l{?17’2
1 + klr + kQTz

1+ k17”2 + k2T4
1
1+kir
T

Z
e

O| 0| | O\ | | W | —

1+k1T2
1+kir
1+/§27‘2

1+kir+kor?
1+k‘17”

1+k2r+k3r2
1+k17‘2

1+k27’+k’37’2

p—
(e

Table 5.10: Family of Polynomial and Rational Distortion Functions as presented in Ma et [4]

Function 4 is the same form as the purely radial distortion function in Brown’s distortion model
with two coefficients. Out of the ten distortion functions defined, the function chosen for this

research is presented in Equation 5.4.

1 + kfx17’2
Tqg = Ty
d 1 + kaT + kw37“2

. 1 + k'le2
Yd = Yu 1+ k‘ygr T ky3T2

(5.4)

It is worth mentioning that the above equation is a slightly modified version of the expression
10 in Table 5.10 presented in Ma et al. Different distortion coefficients are defined for the two

camera plane basis directions. Equation 5.4 represents the geometric distortion function that has
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the most modularity in choice of distortion coefficients and the rational nature of the function
means that both radial and tangential distortion effects can be captured.

The geometric distortion process using nonlinear optimization is discussed in detail in Ap-
pendix C.

The distortion function defined above is tested on the two datasets used for Brown’s distortion
function, namely the Bouguet Toolbox dataset and the Zhang’s dataset. The intrinsic parameters,
distortion coefficients and the extrinsic parameters are compared with the known results as was

done in the previous subsection.
5.2.1 Bouguet Toolbox Dataset

Table 5.11 compares the intrinsic parameters for the Bouguet Toolbox dataset as found using
the nonlinear optimization with the results from Bouguet’s Toolbox. Bouguet’s Toolbox does not

accomodate different distortion models, so only the intrinsic parameters are compared.

Parameter | Initial Value | Optimized Value | Bouguet Toolbox Value
a 652.0965121 657.7444023 657.5199789
B 660.1095416 | 657.5920104 657.8880141
c 0.708048876 | 0.310112494 0.330929792
U 279.780234 302.5256425 302.6640606
Vo 225.9629734 | 242.8550007 242.4343209

Table 5.11: The intrinsic parameters for the Bouguet Toolbox dataset are shown. The optimized
values are shown in the second column in comparison with the values obtained from Bouguet’s
Toolbox. Geometric Distortion function is used in the optimization process

The intrinsics as computed using the Combined Estimation procedure are in reasonable agree-
ment with the corresponding values from Bouguet’s Toolbox. Slightly different values are to be
expected since a different funtion is being minimised by the combined estimation procedure as

compared to Bouguet’s Toolbox.
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The optimized distortion parameters came out to be

ky = [0.278948587 0.004673147 0.526391265}

and

ky, = [0.456400351 —0.003967398 0.726773159]

The extrinsic parameters for each frame, as computed using the homography optimization al-
gorithm and Bouguet’s Toolbox, are presented below. Tables 5.12, 5.13 and 5.14 show the rotation

matrices whereas Tables 5.15 and 5.16 shows the translation vectors.
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Rotation Matrix
Frame Initial Values Optimized Values Bouguet Toolbox Values
0.044 0.991 0.120 0.054 0.992 0.112 0.0564 0.992 0.112
1 0.638 0.064 —0.767 0.633 0.052 —0.771 0.633 0.052 —0.772
—0.768 0.111 —0.630 —0.771 0.113 —0.625 —0.772 0.113 —0.625
—0.0004 0.990 0.136 0.005 0.992 0.120 0.005 0.992 0.120
2 0.861  0.069 —0.503 0.861 0.056 —0.505 0.860  0.056 —0.505
—0.507 0.117 —0.853 —0.508 0.106 —0.854 —0.508 0.106 —0.854
—0.162 0.983  0.077 —0.158 0.985  0.057 —0.158 0.985  0.057
3 0.847  0.179 —0.499 0.848  0.166 —0.501 0.848 0.166 —0.502
—0.505 —0.015 —0.862 —0.504 —0.030 —0.863 —0.504 —0.030 —0.862
—0.252  0.917 —-0.307 —0.255 0.901 —-0.350 —0.255 0.901 —0.349
4 0.782  0.006 —0.622 0.802 —0.003 —0.596 0.802 —0.004 —0.596
—0.568 —0.397 —0.720 —0.538 —0.433 —0.722 —0.539 —0.433 —0.722
—0.246 0.768 0.590 —0.225 0.766 0.601 —0.225 0.766 0.601
5 0.575  0.605 —0.548 0.585 0.600 —0.545 0.584 0.600 —0.545
—0.779 0.204 —-0.592 —0.778 0.229 —0.583 —0.779 0.228 —0.583
—0.130 0.990 0.043 —0.140 0.989 0.041 —0.140 0.989 0.041
6 0.734 0.067 0.675 0.733 0.075 0.675 0.733 0.076 0.675
0.666 0.119 —0.735 0.665 0.125 —0.735 0.664 0.125 —0.736
—0.145 0.798  0.584 —0.153  0.787  0.597 —0.153  0.786  0.597
7 0.851 —0.199 0.484 0.845 —0.207 0.491 0.846 —0.207 0.490
0.503  0.568 —0.650 0.510  0.580 —0.633 0.510  0.581 —0.634

Table 5.12: The rotation matrices for the first 7 frames of the Bouguet Toolbox dataset are shown. The initial values, computed by
Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Geometric Distortion
function is used in the optimization process
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Rotation Matrix

Frame Initial Values Optimized Values Bouguet Toolbox Values
—0.113  0.768  0.629 —-0.132 0.729 0.671 —-0.132  0.729 0.671

8 0.866 —0.232 0.441 0.863 —0.247 0.439 0.863 —0.247 0.439
0.485 0.595 —0.639 0.486  0.637 —0.597 0.48  0.638 —0.597
—0.206 0.750 —0.627 —0.201 0.718 —0.666 —0.201 0.718 —0.666

9 0.895 0.403  0.188 0.892  0.415 0.178 0.892 0414  0.178
0.394 —0.523 —0.755 0.405 —0.558 —0.723 0.404 —0.558 —0.723
—0.231 0.854 —0.465 —0.215  0.835 —0.506 —0.215 0.835 —0.505

10 0.930 0.334  0.152 0.912  0.356  0.200 0.912  0.356  0.199
0.285 —0.397 —0.871 0.347 —0.418 —0.838 0.347 —0.418 —0.839

—0.122 0.991 —-0.045 —0.127 0.990 —-0.049 —0.127 0.990 —0.049

11 0.893 0.129 0.430 0.867 0.135 0.479 0.867 0.135 0.478
0.432 0.012 —0.901 0.481 0.018 —0.876 0.481 0.018 —0.876

—0.124 0.991 0.023 —0.127 0.991 0.004 —0.127 0.991 0.004

12 0.891 0.101 0.440 0.879 0.110 0.462 0.880 0.110 0.461
0.434 0.076 —0.897 0.458 0.062 —0.886 0.457 0.062 —0.886

—0.118 0.985 0.119 —0.121 0.987 0.103 —0.121 0.987 0.103

13 0.900 0.056 0.431 0.896 0.063 0.438 0.897 0.064 0.437
0.418 0.158 —0.894 0.425 0.146 —0.892 0.425 0.146 —0.893

—0.109 0.983 0.144 —0.108 0.986 0.120 —0.108 0.986 0.120

14 0.911 0.041 0.408 0.909 0.049 0.413 0.909 0.050 0.412
0.396 0.176 —0.901 0.402 0.154 —0.902 0.401 0.154 —0.902

Table 5.13: The rotation matrices for the frames 8 through 14 of the Bouguet Toolbox dataset are shown. The initial values, computed by
Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Geometric Distortion
function is used in the optimization process
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Rotation Matrix

Frame Initial Values Optimized Values Bouguet Toolbox Values

—0.081 0.985 0.149 —0.089 0.975 0.203 —0.089 0.975 0.203

15 0.966 0.041 0.254 0.970 0.038 0.238 0.970 0.039 0.237

0.244  0.165 —0.955 0.224 0.218 —0.949 0.223 0.218 —0.949

—0.203 0.970 0.133 —0.207 0.977  0.030 —0.207 0.977  0.030
16 0.964 0.221 —0.140 0.962  0.209 —0.171 0.962  0.210 —-0.172
—0.166 0.100 —0.981 —0.173 —0.006 —0.984 —0.174 —0.006 —0.984
—0.102  0.966 —0.235 —0.104 0.958 —0.264 —0.104 0.958 —0.264

17 0.807  0.218  0.547 0.808  0.236  0.538 0.809  0.236  0.538
0.581 —0.134 —0.802 0.579 —0.157 —0.799 0.578 —0.157 —0.800

0.045 0.856 —0.513 0.023 0.862 —0.505 0.023 0.862 —0.505

18 0.657 0.361  0.660 0.639 0.375  0.671 0.639 0.375  0.670

0.752 —0.367 —0.547 0.768 —0.338 —0.542 0.768 —0.338 —0.543

—0.170 0.834  0.523 —0.186 0.825  0.533 —0.186 0.824  0.533

19 0.739 —0.243 0.628 0.715 —0.258 0.649 0.715 —0.258 0.648
0.651  0.493 —0.575 0.673  0.502 —0.541 0.673  0.503 —0.542

—0.095 0.625 0.774 —0.114 0.584  0.803 —0.114 0.584 0.803

20 0.852 —0.349 0.387 0.846 —0.365 0.386 0.847 —0.364 0.386
0.513  0.697 —0.499 0.519 0.724 —0.453 0.518 0.724 —0.453

Table 5.14: The rotation matrices for the frames 15 through 20 of the Bouguet Toolbox dataset are shown. The initial values, computed by
Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Geometric Distortion
function is used in the optimization process



The rotation matrices as computed by both the combined estimation procedure and Bouguet’s
Toolbox are in good agreement with each other. The values do not match to the extent that they did
when Brown’s Distortion Model was used since the optimized values, as computed using the Geo-
metric Distortion Model, are compared with the optimized values from Bouguet’s Toolbox which
uses Brown’s Distortion Model. But the compared Rotation Matrices are very close to each other

nonetheless. Similar observations can be made for the translation vectors, shown subsequently.
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Translation Vector in meters
Frame | Initial Values | Optimized Values | Bouguet Toolbox Values
—512.529 —589.890 —590.490
1 —213.933 —280.170 —278.347
2957.725 2843.999 2844.169
—435.655 —514.648 —515.180
2 —472.869 —532.192 —530.558
2588.268 2526.029 2526.353
—330.695 —415.489 —416.035
3 —520.868 —583.102 —581.429
2636.163 2585.442 2585.814
—121.676 —212.652 —213.229
4 —448.102 —517.105 —515.445
2598.821 2596.969 2597.414
—220.317 —305.506 —306.012
5 —701.434 —764.944 —763.341
2506.850 2455.771 2456.339
—437.360 —495.155 —495.461
6 —222.515 —266.034 —265.0765
1483.488 1483.129 1483.323
—224.688 —275.234 —275.520
7 —219.971 —259.586 —258.636
1477.794 1466.721 1466.863
—514.237 —565.663 —565.929
8 —302.500 —345.745 —344.657
1594.624 1539.913 1539.911
83.415 —4.151 —4.652
9 —688.332 —751.594 —749.999
2455.271 2429.302 2429.836
7.971 —96.153 —96.757
10 —944.286 —1002.728 —1000.853
2991.082 2867.556 2868.444
—428.546 —501.487 —501.981
11 —737.311 —785.450 —783.902
2466.929 2348.703 2349.344
—375.588 —443.226 —443.646
12 —540.580 —591.477 —590.187
2064.899 2015.965 2016.517

Table 5.15: The translation vectors for the first 12 frames of the Bouguet Toolbox dataset are
shown. The initial values, computed by Homography, are used for nonlinear optimization. The
results from Bouguet Toolbox are shown for comparison. Geometric Distortion function is used in
the optimization process
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Translation Vector in meters
Frame | Initial Values | Optimized Values | Bouguet Toolbox Values

—377.325 —440.766 —441.138

13 —429.319 —479.143 —477.987
1836.644 1815.288 1815.721
—352.664 —410.594 —410.927

14 —412.441 —457.678 —456.646
1653.253 1635.589 1636.024
—607.843 —662.425 —662.720

15 —401.109 —448.987 —447.9298
1640.103 1583.056 1583.183
29.911 —51.414 —51.881

16 —510.901 —568.745 —567.232
2322.697 2318.415 2318.755
—387.156 —449.482 —449.816

17 —413.882 —463.849 —462.815
1630.930 1634.037 1634.470
—566.599 —616.767 —617.070

18 —484.396 —526.667 —525.711
1540.649 1471.393 1471.745
—321.373 —354.210 —354.435

19 —240.456 —265.588 —264.843
1169.700 1113.423 1113.610
—435.696 —478.283 —478.522

20 —257.575 —293.929 —292.999
1374.484 1320.355 1320.395

Table 5.16: The translation vectors for the frames 13 through 20 of the Bouguet Toolbox dataset
are shown. The initial values, computed by Homography, are used for nonlinear optimization. The
results from Bouguet Tool