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ABSTRACT 

 

  

The demand for wireless and high-rate communication system is increasing 

gradually and multiple-input-multiple-output (MIMO) is one of the feasible solutions to 

accommodate the growing demand for its spatial multiplexing and diversity gain. 

However, with high number of antennas, the computational and hardware complexity of 

MIMO increases exponentially. This accumulating complexity is a paramount problem 

in MIMO detection system directly leading to large power consumption. Hence, the 

major focus of this dissertation is algorithmic and hardware development of MIMO 

decoder with reduced complexity for both real and complex domain, which can be a 

beneficial solution with power efficiency and high throughput. Both hard and soft 

domain MIMO detectors are considered.  

The use of lattice reduction (LR) algorithm and on-demand-child-expansion for 

the reduction of noise propagation and node calculation respectively are the two of the 

key features of our developed architecture, presented in this literature. The real domain 

iterative soft MIMO decoding algorithm, simulated for 4 × 4 MIMO with different 

modulation scheme, achieves 1.1 to 2.7 dB improvement over Lease Sphere Decoder 

(LSD) and more than 8x reduction in list size, K as well as complexity of the detector.  

Next, the iterative real domain K-Best decoder is expanded to the complex 

domain with new detection scheme. It attains 6.9 to 8.0 dB improvement over real 

domain K-Best decoder and 1.4 to 2.5 dB better performance over conventional complex 
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decoder for 8 × 8 MIMO with 64 QAM modulation scheme. Besides K, a new 

adjustable parameter, Rlimit has been introduced in order to append re-configurability 

trading-off between complexity and performance.  

After that, a novel low-power hardware architecture of complex decoder is 

developed for 8 × 8 MIMO and 64 QAM modulation scheme. The total word length of 

only 16 bits has been adopted limiting the bit error rate (BER) degradation to 0.3 dB 

with K and Rlimit equal to 4. The proposed VLSI architecture is modeled in Verilog 

HDL using Xilinx and synthesized using Synopsys Design Vision in 45 nm CMOS 

technology. According to the synthesize result, it achieves 1090.8 Mbps throughput with 

power consumption of 580 mW and latency of 0.33 us. The maximum frequency the 

design proposed is 181.8 MHz.  

All of the proposed decoders mentioned above are bounded by the fixed K. 

Hence, an adaptive real domain K-Best decoder is further developed to achieve the 

similar performance with less K, thereby reducing the computational complexity of the 

decoder. It does not require accurate SNR measurement to perform the initial estimation 

of list size, K. Instead, the difference between the first two minimal distances is 

considered, which inherently eliminates complexity. 

In Summary, a novel iterative K-Best detector for both real and complex domain 

with efficient VLSI design is proposed in this dissertation. The results from extensive 

simulation and VHDL with analysis using Synopsys tool are also presented for 

justification and validation of the proposed works. 
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CHAPTER I 

 

 INTRODUCTION  

 

1.1 Introduction to MIMO systems 

 

The introduction of multiple input multiple output (MIMO) is a monumental leap 

in wireless communication system design for the past decade [1]. It offers outstanding 

gains in data rates and reliabilities, because of which it has already been adapted by the 

technology of choice in many state-of-the-art wireless standards [2]. For instance, in the 

Wireless Local Area Network (WLAN) IEEE 802.11n standard, MIMO is the key 

technology in order to attain the throughput over 480 Mbps. It has also been acclaimed 

for high data rates by IEEE 802.16e Wireless Metropolitan Network (WMAN) system as 

known as Worldwide Interoperability for Microwave Access (WiMAX) [3], as well as 

next generation WiMAX for high mobility systems, the IEEE 802.16n standard [4].  

The next generation mobile communication standard, 3rd Generation Partnership 

Project (3GPP) uses MIMO as a basis of the Long Term Evolution (LTE) standard with 

data rates of 100 Megabits per second (Mbps) and 50 Mbps for downlink and uplink 

respectively [5]. On top of it, recent 4G LTE-Advanced standard achieves 1 Gigabits per 

second (Gbps) for downlink and 500 Mbps for uplink with the help of MIMO 

technology [6]. Research for algorithmic and VLSI development has been conducted on 
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beyond 5G wireless technology attaining higher bandwidth for both uplink and downlink 

data stream. 

The MIMO system exploits the use of multiple antennas at both transmitter and 

receiver side in order to meet the requirement of these standards, achieving higher data 

rates compared to traditional single-input single-output (SISO) systems. Additionally, it 

also leads to higher system reliability and coverage area with lower power requirements. 

The transmission schemes employ the highest efficiency by leveraging the following 

three types of gains [7]: 

 Diversity gain: It refers to transmitting same copy of data through multiple 

antennas experiencing non-deterministic fluctuations in the signal power, known 

as fading. Hence, multiple antennas at the receiver end can combine and 

reconstruct the transmitted signal with much less amplitude variability compared 

to traditional SISO. Therefore, the diversity order is equal to the number of 

independent fading path, or the number of receiver antennas, if the transmission 

channel is unknown.  

 Multiplexing gain: It allows an increase in the spectral efficiency and peak data 

rates by transmitting multiple data streams simultaneously through different 

antennas. This leads to substantially larger channel capacity rates compared to 

SISO channel. The multiplexing gain depends on the number of parallel streams, 

hereby limited by the number of transmit and receiving antennas. 

 Array gain: It refers to upholding a large share of transmitted power at the 

receiver end, extending the communication range. Hence, the increase in 
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received power leads to high signal to noise ratio (SNR), suppressing 

interference and the resistance to noise.  

 

A tradeoff exits among these three gains based on applications and MIMO 

systems with the intention of maximizing one particular gain. Such as, space-time 

coding exploits the diversity gain [8], where beamforming employs the use of multiple 

antennas to maximize array gain in [9]. Opportunistic beamforming is also used to attain 

diversity gain additionally [10]. The spatial multiplexing (SM) scheme exploits the use 

of all the antennas in order to achieve the highest data rates with multiplexing gain. 

Hence, all these considerably have led the path to incorporate MIMO technology into 

various wireless standards [11, 12]. 

 

1.2 Challenges and Motivation 

 

The significant improvements in performance associated with MIMO systems 

can be achieved at the cost of significantly complex signal processing at the transmitter 

and receiver end. Let us consider a constellation diagram of 16 QAM modulation 

scheme shown in Figure 1, where each constellation symbol consists of 4 bits. 
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Figure 1. 16 QAM constellation diagram. 

  

 

At the receiver, each antenna receives the superposition of all the transmitted 

vectors. They are shifted points in the diagram due to addition of noise and the function 

of detector is to remap the symbols correctly to the sent points. The objective of MIMO 

detection became an exponentially complex task because of conflicting requirements of 

high data rate and reduced hardware cost as shown in Figure 2.   
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Figure 2. Challenges of MIMO detection. 

 

 

As illustrated in Figure 2, the main challenges behind MIMO decoder are high 

computational complexity, feasible VLSI implementation, scaling with respect to 

different MIMO system and optimization with limited resources. Hence, algorithmic 

development is the first step to enable reliable MIMO detection with the intention to 

reduce computational complexity. This results to the simpler hardware design in which 
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introduction of pipelining effect can make it a feasible and efficient VLSI solution. 

Scaling of the decoder for different antenna number and constellation number also needs 

to be considered for any order of MIMO implementation. Last but not the least, the 

algorithm and hardware solution should aim at reducing cost with less power 

consumption, achieving high throughput and reliable BER performance. 

Since the modern wireless standards require high throughput with less power 

consumption, it leads to the algorithm with less computational complexity. Hence, one 

field of focus of this dissertation is to develop such MIMO detection algorithm for both 

hard and soft decision. The algorithm also needs to be scalable to large MIMO systems 

with large number of transmit and receiving antennas and constellation points. The 

addition of the parameterized re-configurability can provide large degree of freedom 

trading-off complexity versus performance. 

The implementation of MIMO detector has been consistently identified as major 

drawback for high power consumption and complex VLSI architecture. Hence, another 

focus of this dissertation is to propose a dedicated VLSI architecture for scalable and re-

configurable MIMO detector with high throughput and power efficiency. 

 

1.3 Contributions 

 

The contributions of this dissertation are as follows: 

I. The development of a novel K-Best detector for near optimal MIMO detection. It 

finds K-Best child using on-demand child expansion.  Hence, it expands a very small 
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fraction of all possible children compared to exhaustive search.  Its complexity is 

independent of constellation size and can be scaled sub-linearly with the 

constellation number. The same detector can be used for iterative hard decision and 

soft decision based decoder with the use of low density parity check (LDPC) decoder 

[13, 14]. It is jointly applied with lattice reduction to infinite lattices. 

II. The extension of the proposed real domain K-Best decoder to the complex domain 

[15] with reduced computational complexity compared to the conventional complex 

decoder [16]. The real domain K-Best algorithm is also transformed to complex 

domain with a novel on-demand child expansion scheme [15] with complexity 

analysis. A new adjustable parameter is also included in the algorithm in order to 

attain the re-configurability and to perform tradeoff between performance and 

complexity.  

III. Design and implementation of a VLSI architecture for hard decision based complex 

K-Best MIMO decoder with scalability and re-configurability of the MIMO system 

[17]. The design allows a pipelined data flow enabling higher throughput with low 

power consumption and low latency. It includes fixed point realization of the K-Best 

decoder in order to decide the optimized architecture for each sub-module and the 

required minimum word-length [18]. 

IV. The extension of iterative fixed K-Best decoder to adaptive K-Best decoder in real 

domain achieving similar performance with less list size, K [19]. It proposes that the 

same BER performance can be achieved with smaller list size, K reducing 

computational complexity. 
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Our research contributions include the algorithmic and hardware solutions for 

both real and complex domain MIMO detection. All of these approaches can be applied 

for both hard and soft domain MIMO decoder. Hereafter, it leads to a feasible 

implementation design with reduced computational complexity and higher throughput 

with lower latency. 

 

1.4 Thesis Outline 

 

The organization of thesis is as follows. Chapter II provides the background of 

MIMO based wireless system with performance and complexity characteristics.   

Chapter III describes the proposed on-demand K-Best algorithm for real domain. In this 

chapter we present iterative soft decision based LR-aided K-Best MIMO detector with 

the help of LDPC decoder resulting reduction to computational complexity with 

improved performance in BER. The extension of on-demand K-Best decoder to the 

complex domain is proposed in chapter IV. It achieves re-configurability and scalability 

with improvement in performance compared with previous works both in real and 

complex domain.  

Chapter V investigates the fixed point realization of the proposed K-Best 

decoder. It includes selecting optimized architecture for each sub-module of K-Best 

decoder and also performing fixed point conversion in order to minimize the bit length 

with similar performance. Chapter VI includes the VLSI implementation of complex K-

Best MIMO decoder with comparison to the previous work and then, chapter VII 
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presents the development of adaptive K-Best algorithm for MIMO detection in real 

domain in order to add scalability and adaptability to the algorithm. Finally, chapter VIII 

concludes the dissertation with future work.  
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CHAPTER II 

 

BACKGROUND 

 

The chapter begins with a description of MIMO system under consideration and 

introduces the concepts of MIMO detection as well as all the notations used in the 

dissertation. A brief description of the fundamental algorithmic choices for MIMO 

detection is also addressed in the subsequent parts of the chapter. 

 

2.1  MIMO System Model 

 

Let us consider a MIMO system with 𝑁𝑅 transmit antenna and 𝑁𝑅 receiving 

antenna. In this dissertation, 𝑁𝑅 is considered to be equal to or greater than 𝑁𝑇. At time 

n, a complex vector, 𝑠𝑐(𝑛) = [𝑠1(𝑛) , 𝑠2(𝑛), ….  𝑠𝑁𝑇
(𝑛)]𝑇 is transmitted through 𝑁𝑇 

parallel streams. Each element 𝑠𝑖(n) is taken from a complex constellation, 𝒪 such as 

rectangular quadrature amplitude modulation (QAM) which consists of 𝑀 = |𝒪| = 2𝑀𝑐  

distinct points. It means that every 𝑀𝑐 consecutive bits are mapped to one complex 

constellation point. The transmission rate of the respective MIMO in spatial 

multiplexing (SM) mode is equal to 𝑟 =  𝑁𝑇 log2 𝑀 =  𝑁𝑇𝑀𝑐 bits per channel. The 

signal vector, 𝑠𝑐 is normalized before transmission so that the average transmitted power 

is one, i.e. 𝐸 {||𝑠||
2

} = 1. Hence, the MIMO system can be presented as: 
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  𝑦𝑐 =  𝐻𝑐𝑠𝑐 + 𝑛𝑐, (2.1) 

 

where 𝑦𝑐 = [𝑦1 , 𝑦2, ….  𝑦𝑁𝑅
]𝑇 is the 𝑁𝑅 dimensional complex received symbol vector 

transmitted, 𝐻𝑐 is 𝑁𝑅 × 𝑁𝑇 dimensional complex channel matrix. 𝐻𝑐 denotes the channel 

gain between each transmit and receive antenna. Noise vector, 𝑛𝑐 = [𝑛1 , 𝑛2, ….  𝑛𝑁𝑅
]𝑇 

is a 𝑁𝑅 dimensional circularly symmetric complex zero-mean Gaussian noise vector with 

variance, 𝜎2. The signal to noise ratio (SNR) is defined as the ratio between the total 

normalized transmitted power to the variance of thermal noise. Hence, SNR = 1/𝜎2. A 

MIMO system model can be shown as: 
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Figure 3. A MIMO System Model. 
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The main objective of MIMO detector is to obtain the best possible estimate of 

the transmitted vector, 𝑠𝑐 from the Euclidean distance, i.e., 

  

�̂�𝑐 = 𝑎𝑟𝑔𝑠𝑐∈𝒪𝑁𝑇 min‖𝑦𝑐 − 𝐻𝑐𝑠𝑐‖2 . (2.2) 

 

 

Here, �̂�𝑐 is estimated complex vector and ||.|| denotes the 2-norm. The channel 

estimator at the receiver end provides the estimate of current channel status based on 

previously known transmitted pilot symbols. However, we have considered a perfectly 

known channel in this thesis. The corresponding real signal mode following [20, 21] is: 

 

⌊
ℜ[𝑦𝑐]

ℑ[𝑦𝑐]
⌋ =  [

ℜ[𝐻𝑐] −ℑ[𝐻𝑐]

ℑ[𝐻𝑐] ℜ[𝐻𝑐]
] [

ℜ[𝑠𝑐]

ℑ[𝑠𝑐]
] +  [

ℜ[𝑛𝑐]

ℑ[𝑛𝑐]
]  , 

 

𝑦 = 𝐻𝑠 + 𝑛,  (2.3) 

 

where 𝑠 =  [𝑠1 , 𝑠2, ….  𝑠2𝑁𝑇
]𝑇, 𝑦 = [𝑦1 , 𝑦2, ….  𝑦2𝑁𝑅

]𝑇 and . 𝑛 = [𝑛1 , 𝑛2, ….  𝑛2𝑁𝑅
]𝑇. 

The real and imaginary parts of a complex number are denoted by ℜ(⋅) and ℑ(⋅) 

respectively.  ML detector solves for the transmitted signal by calculating: 

 

�̂� = 𝑎𝑟𝑔𝑠∈𝑆2𝑁𝑇 min‖𝑦 − 𝐻𝑠‖2 . (2.4) 
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Here ‖⋅‖ denotes the 2-norm and 𝑆2𝑁𝑇 = |𝒪|𝑁𝑇 which means that a complex 

𝑁𝑅 × 𝑁𝑇 MIMO system can be modeled as a real 2𝑁𝑅 × 2𝑁𝑇 MIMO system. 𝑆 is the set 

of all possible real entries in the constellation for in-phase and quadrature parts as 

follows: 

 

𝑠𝑖 ∈  𝑆 =  {
(−√𝑀 + 1)

𝐸𝑠
, … ,

−1

𝐸𝑠
,    

+1

𝐸𝑠
, … ,

(√𝑀 − 1)

𝐸𝑠
 }, (2.5) 

 

where 𝐸𝑠 = 2(𝑀 − 1) 3⁄  is the average symbol energy for an M-QAM constellation. 

 

2.2 MIMO Detection Schemes 

 

As aforementioned, the objective of MIMO detector is to resolve the transmitted 

vector from the received signal. There are various algorithms proposed so far in order to 

perform this task trading off between complexity and performance. Generally, there are 

two classes of MIMO detectors: hard decision based and soft-decision based detector. 

For hard decision, data symbols are decided based on the confidence of the detection 

with no extra estimation or information. Hence, it is useful for uncoded transmission. A 

soft-decision based detector calculates the log likelihood ratio (LLR) of each bit using 

error correction coding scheme (ECE) and performs the bit correction based on the 

estimation. Hence, a soft information is being exchanged between detector and decoding 

modules required by both iterative detection and decoding scheme. This kind of detector 
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is called soft input soft output (SISO) detector, which is suitable for subsequent iterative 

decoding [13, 14]. In this thesis, we will focus on both hard and soft decision based 

decoder.  

 

 

MIMO 

Detector

Optimal Sub-Optimal Near-Optimal

Linear Non-Linear

ML ZF MMSE SIC BLAST SD K-Best
 

 

 

Figure 4. The Taxonomy of MIMO Detection Schemes. 

 

 

As shown in Figure 4, the MIMO detection scheme can be classified into three 

groups based on their relative detection accuracy: optimal, suboptimal and near-optimal 

methods. All of these schemes lead to specific approaches of MIMO detection trading of 
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between BER performance and complexity. The focus of this thesis is the K-Best 

decoder, highlighted with a gray box in Figure 4. 

 

2.2.1 Optimal MIMO detection 

 

The most popular optimal MIMO detector is Maximum-Likelihood (ML) 

detector achieving the lowest BER performance. With the presence of additive white 

Gaussian noise (AWGN), ML detector searches for all the possible lattice points, s in the 

constellation 𝒪 and reaches closest to the received point, y in the lattice. Hence, if the 

size of the scalar complex constellation transmitted from each antenna is M, this scheme 

needs to search over 𝑀𝑁𝑇 vectors, where 𝑁𝑇 is the number of transmit antenna. 

Therefore, the complexity of ML detector grows exponentially with the increasing 

number of transmitting antenna and constellation size. Due to its characteristics of being 

an exhaustive search, it is not considered practical for implementation in MIMO 

receivers [22]. Instead it is used as a reference in simulation for the performance analysis 

with other MIMO detection schemes. 

 

2.2.2 Sub-optimal MIMO detection 

 

Sub-optimal MIMO detectors can be divided into two groups: linear and non-

linear suboptimal detectors. Zero-forcing (ZF), Minimum-mean-square-error (MMSE) 

etc. are considered as linear sub-optimal detectors due to its linear complexity; where 
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Successive-interference-cancelation (SIC), Bell-labs-layered-space-time (BLAST) 

detectors are the examples of non-linear sub-optimal detectors.  

 

2.2.2.1     Linear Detectors 

 

Linear MIMO detector is based on the linear estimation of the MIMO detection 

problem with the aim of reversing the effect of channel. It processes the parallel streams 

of data all at once without taking into consideration of the order, thereby leading to low 

computational complexity. Hence, they can only achieve the diversity order of 𝑁𝑅 −

𝑁𝑇 + 1 [23], resulting poor performance especially for the symmetric MIMO system 

where 𝑁𝑇 =  𝑁𝑅 at high SNR. The linear detectors, ZF and MMSE detectors are 

described as follows: 

 

Zero-Forcing Detector 

 

Zero-Forcing (ZF) detector solves the problem according to the method of least 

squares, which inverts the frequency response of the channel [24].  Applying this on 

equation (2.3), we get: 

 

�̂� = 𝑠 + 𝑛𝑍𝐹,  (2.6) 
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where  𝑛𝑍𝐹 =  𝐻−1𝑛.  Hence, although ZF detector removes the interference between 

parallel streams,  power of the noise increases which thereby leads to poor performance.  

 

MMSE Detector 

 

The problem of noise enhancement of ZF detector is addressed by MMSE 

detector which tries to minimize the overall expected error considering the channel noise 

[25].  It tries to find the minimum mean squared errors between the actual transmitted 

signal and the output of the linear detector.  Although it provides better performance 

compared to ZF detector, however the performance is poor compared to ML one.  

 

2.2.2.2     Non-linear Detectors 

 

Non-linear suboptimal detector depends on detecting the symbols in an order, 

from strongest to weakest symbol. It uses the previous decision for earlier symbols to 

choose the later symbols. Two examples of non-linear detectors are as follows: 

 

SIC Detector 

 

In Successive Interference Cancellation (SIC) detector, the symbols of the 

parallel data streams are considered one after another and their contribution is removed 

from the received vector before detecting the next stream. Hence, SIC achieves an 
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increase in diversity with each iteration. The diversity of the first stream will be in the 

order of 𝑁𝑅 − 𝑁𝑇 + 1, the second stream will attain 𝑁𝑅 − 𝑁𝑇 + 2 and so on. However, 

BER performance depends on the detection order as shown in [26]. 

 

BLAST Detector 

 

Bell Labs Layered Space-Time (BLAST) detector is based on the principle of 

both SIC and zero nulling [27, 28]. It detects the symbols consecutively one after 

another. Hence the detection order of the symbols significantly affects the BER 

performance of BLAST detector. It has the complexity in the order of 𝑂(𝑁𝑇
2) and the 

complexity increases when the channel coherence time decreases. BLAST detector 

outperforms the linear detectors, although there remains a considerable performance gap 

from ML detector. Hence, near-optimal detector such as K-Best decoder, Sphere decoder 

(SD) etc. are introduced with better performance compared to linear detectors, as shown 

in Figure 5.  
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Figure 5. The Comparison of Multiple Detectors with ML Detector for 4 × 4  

MIMO with 16 QAM Modulation Scheme [12]. 

 

 

2.2.3 Near Optimal MIMO detection 

 

Near optimal detector are capable of achieving near ML performance with less 

complexity compared to ML. MIMO detection problem can be considered as the

closest point problem for a given lattice ℒ(𝐻) [29]. If the lattice bases are orthogonal, 

then this search becomes easier. The complexity of closest point problem can be 

considered as  NP-hard problem, since the lattice basis are built with channel matrix and 
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are completely arbitrary.  It can also be restated as a tree-search problem, with the leaves 

of the tree presenting the set of all potential solutions.  To form the tree structure, first 

QR decomposition is performed on H matrix, i.e., H = QR, where Q is a unitary matrix 

and R becomes an upper triangular matrix.   Hence, equation (2.3) becomes: 

 

�̂� =  𝑄𝐻𝑦 = 𝑅𝑠 + 𝑄𝐻𝑛  (2.7) 

 

The original detection problem in (2.3) can be remodeled as shown in equation 

(2.8). Since R is a triangular matrix, the partial distance of i-th QAM symbol (𝑠𝑖) 

becomes a function of consecutive QAM symbols (𝑠𝑖+1, 𝑠𝑖+2, … , 𝑠𝑀).  

 

𝑑(𝑠) =  ‖[

�̂�1

�̂�2

�̂�3

�̂�4

] − [

𝑅11 𝑅12

0
0
0

𝑅22

0
0

     

𝑅13 𝑅14

𝑅21

𝑅33

0

𝑅24

𝑅34

𝑅44

] [

𝑠1
𝑠2

𝑠3

𝑠4

]‖

2

  (2.8) 

 

Figure 6 demonstrates a tree for three transmit antenna with binary phase shift 

keying (BPSK) modulation, where each level of the tree corresponds to a transmit 

antenna.  The goal of the tree search is to find the smallest branch from the root to the 

last layer of the tree (node).  
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Figure 6. An Example of BPSK with 3 Transmit Antennas. 

 

 

ML detector considers all the leaves to find the optimum node. Thus it provides 

optimal solution with exponential complexity. However, the search can be reduced with 

the method of tree pruning, which is eliminating the subtree leading to unlikely solutions 

based on pre-defined performance matric (generally partially Euclidean distance (PED)). 

Figure 7 demonstrates the effect of tree pruning with initial distance set to ∞. Once a leaf 

node with less PED is found, it is chosen for further expansion. And the one with greater 

weights are then pruned (shown in the shaded box). 
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Figure 7. An Example of Tree Pruning. 

 

 

Tree searching methods can be classified into two major categories: depth-first 

search and breadth-first search.  The details of the two methods are given below: 

 

2.2.3.1     Depth-First Tree Search 

 

Depth-first tree search is a recursive method, which starts from the root and 

traverses in both forward and backward direction along the tree. Sphere decoding (SD) 
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[30] is the most common depth-first approach. It is also called depth-first search least 

sphere decoder (DPS-LSD). In order to reduce the number of candidate nodes, the search 

is constrained to only those who lie within a hyper-sphere with radius r around the 

receiver symbol y. Hence, the corresponding inequality can be given by: 

 

 ‖𝑦 − 𝐻𝑠‖2 <  𝑟2.  (2.9) 

 

Here, r is considered as radius constraint. In the beginning, it is important to have 

an initial guess of r to start with. Choice of r affects the performance of the algorithm 

significantly. If r is chosen to be a large number, it will take a long time to get the 

solution. However, no solution may fit in if r is too small. Therefore, throughput of this 

algorithm is not fixed. 

 

2.2.3.2     Breath-First Tree Search 

 

Breath-first tree search explores all the children of a parent node before visiting 

the admissible siblings of that parent node. Initially it tries to find the admissible child 

based on PED. If it exists, it is chosen as future parent node to be expanded. Otherwise, 

it returns to the parent of the current node to consider the remaining children. It is a non-

recursive scheme and it traverses only in the forward direction.  Among the breadth-first 

approach, K-Best algorithm is the most well-known scheme [31]. K-Best algorithm 

guarantees a fixed throughput independent of SNR with performance close to ML. In 
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this thesis, we focus on the K-Best algorithm, which will be discussed in Chapter III to 

VII. The list of different decoders with computational complexity and BER performance 

is given in Table 1. 

 

 

Table 1. List of MIMO Detectors. 

 

Detector Type BER Complexity 

Optimal detectors 

• Maximum Likelihood (ML) 

 

Optimal Exponential 

Sub-optimal detectors 

• Zero Forcing (ZF) 

• Minimum Mean Square Error 

(MMSE) 

• Successive Interference 

Cancellation 

Poor Low (linear) 

Near-ML detectors 

• Sphere Decoder (SD) 

• K-Best Decoder 

Near-optimal 
Moderate 

(polynomial) 
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CHAPTER III 

 

REAL DOMAIN ITERATIVE K-BEST DETECTOR 

 

The chapter begins with a description of K-Best detector for real domain.  As 

shown in equation (2.3), the real domain tree search is twice as deep resulting to larger 

latency in terms of hardware implementation.  For the complex domain, the number of 

the possible children of a node is twice than that of the real domain. In this chapter, we 

present the proposed soft decision based iterative LR-aided K-Best MIMO decoder [13, 

14]. 

 

3.1 Theory of K-Best Algorithm 

 

Let us consider a 𝑁𝑅 × 𝑁𝑇 MIMO system with M-QAM modulation scheme. So, 

initially it is translated to a tree search problem of 2𝑁𝑇 levels in real domain. The K-Best 

selecting K best candidates considering them as future nodes to be algorithm traverses 

along the tree from root to leaves by expanding each level and expanded in the next 

level.   If there are K nodes at level i, each of these nodes will be expanded to calculate  

*Reprinted with permission from  

1. “An Improved Soft Decision Based MIMO Detection Using Lattice Reduction” by 

M. Rahman, E. Rohani, J. Xu and G. Choi, 2014. International Journal of Computer 

and Communication Engineering, vol. 3, no. 4, pp. 264-268 by IAP Press. 

2. "An Iterative LR-Aided MMSE Extended Soft MIMO Decoding Algorithm" by M. 

Rahman, E. Rohani and G. Choi. 2015. International Conference on Computing, 

Networking and Communications (ICNC), pp. 889-894 by IEEE Publication. 
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√𝑀 possible children at level i+1. Hence, at level i+1, the total number of children and 

PED being calculated is equal to K√𝑀.  Therefore, the main challenges behind K-Best 

algorithm are to calculate all the possible children nodes and then to do the sorting in 

order to find the K best candidates [31]. 

 

3.2 Proposed K-Best Algorithm 

 

In this section, an iterative soft decision based LR-aided K-Best decoder is 

presented, which enables the utility of lattice reduction in iterative soft decoding.  It 

includes a K-Best decoder which reduces the effect of noise with the help of increased 

orthogonality by applying lattice reduction [32, 33]. In order to overcome the challenges 

of node calculation and sorting, a scheme called on-demand child expansion is applied 

based on the strategy of Schnorr-Euchner (SE) enumeration [34]. 

 

3.2.1 LR-Aided K-Best Decoder 

 

The effect of Lattice-Reduction (LR) is to diminish the non-orthogonality of the 

channel columns, which is the result of the correlation between transmit and receiving 

antenna. It remodels the channel matrix to more orthogonal one lowering the likelihood 

of noise perturbations in the detection scheme. Since lattice reduction requires 

unconstrained boundary, so the following change is made to (2.4) to obtain a relaxed 

search: 
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�̂� = 𝑎𝑟𝑔𝑠∈𝒰2𝑁𝑇 min‖𝑦 − 𝐻𝑠‖2 , (3.1) 

 

where 𝒰 is unconstrained constellation set as {… , −3, −1, 1, 3, … }. However  �̂� may not 

be a valid constellation point. Hence a quantization step is applied: 

 

�̂�𝑁𝐿𝐷 =  𝒬 (�̂�) , (3.2) 

 

 

where 𝒬(. ) is the symbol wise quantizer to the constellation set 𝑆. It is equivalent to 

naive lattice detection (NLD) studied in [35] and [36]. But the proposed NLD does not 

generally have good diversity-multiplexing tradeoff (DMT) optimally, even with the K-

Best search [11]. To achieve DMT, the following modifications are proposed in [35] and 

[37]: 

 

�̂� = 𝑎𝑟𝑔𝑠∈𝒰2𝑁𝑇 min (‖𝑦 − 𝐻𝑠‖ +  
𝑁0

2𝜎𝑠
2

‖𝑠‖),  

 

�̂� = 𝑎𝑟𝑔𝑠∈𝒰2𝑁𝑇 min‖�̅� − �̅�𝑠‖2 . (3.3) 

 

Here, we have included MMSE regularization, 𝐸{𝑠𝑠𝑇} =  𝜎𝑠
2𝐼 with I as a 𝑁 ×  𝑁 

identity matrix, and �̅� and �̅� in equation (3.3) are the MMSE extended channel matrix 

and received signal vector defined as: 
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�̅� =  [

𝐻

√
𝑁0

2𝜎𝑠
2

𝐼2𝑁𝑇

], �̅� =  [
𝑦

02𝑁𝑇×1
], (3.4) 

 

 

where 02𝑁𝑇×1 is a 2𝑁𝑇 × 1 zero matrix, and 𝜎𝑠
2 is the signal variance. LR-aided 

detectors apply lattice reduction to the matrix �̅� to find a more orthogonal matrix �̃� =

 �̅�𝑇 , where T is a unimodular matrix. This reduction effectively finds a better basis for 

the lattice defined by the channel matrix, thereby reducing the effect of noise and 

minimizing error propagation. After the reduction, the NLD with MMSE becomes 

 

�̂� = 2𝑇 arg  𝑚𝑖𝑛𝑧∈ℂ2𝑁𝑇  (‖�̃� −  �̃��̃�‖
2

+  12𝑁𝑇×1), (3.5) 

 

where  �̃� is the real domain received signal vector and 12𝑁𝑇×1 is a 2𝑁𝑇 × 1 one matrix. 

After shifting and scaling of equation (3.5), we obtain:   

 

�̂� = 2𝑇�̃� +  12𝑁𝑇×1 . (3.6) 

 

The K-Best search with lattice reduction proposed in [8] and [9] belongs to a 

particular subset of the family of breadth first tree search algorithms. At a high 

algorithmic level of abstraction, the LR aided K-Best search is performed sequentially, 

solving for the symbol at each antenna. At first, it does QR decomposition on �̃� = 𝑄𝑅,  
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where Q is a 2(𝑁𝑅 +  𝑁𝑇)  ×  2𝑁𝑇 orthonormal matrix and R is a 2𝑁𝑇  ×  2𝑁𝑇 upper 

triangular matrix. Then (3.5) is reformulated as 

 

�̂� = 2𝑇 arg  𝑚𝑖𝑛𝑧∈ℤ2𝑁𝑇  (‖�̆� −  𝑅�̃�‖2 + 12𝑁𝑇×1), (3.7) 

 

where �̆� =  𝑄𝑇�̃� . The error at each step is measured by the PED, e.g. the accrued error 

at a given level of the tree, for a given path through the tree.  

For an arbitrary level of the tree, the K best nodes are collected, and passed to the 

next level for consideration. At the end, the K paths through the tree are evaluated. 

While working with hard decision, the path with the minimum overall error is selected as 

the most likely solution. In contrast for soft decision, each path of chosen K best paths is 

considered as potential candidate. Therefore, all of the chosen paths are passed to the 

LLR update unit for LLR calculation (soft value). The LLR values are then fed into the 

LDPC decoder for 2nd iteration. This whole process is being continued till the difference 

between the last two iterations becomes negligible. Then, hard decision is made based on 

the estimation from the soft values. 

 

3.2.2 On Demand Child Expansion 

 

On demand expansion scheme lies on the principle that the children of a given 

node in the tree is to be enumerated in a strictly non-decreasing error order. It employs 
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the Schnorr-Euchner (SE) strategy to perform an on-demand child expansion. The 

strategy employs expanding of a child if and only if all of its better siblings have already 

been expanded and chosen as the partial candidates of the nth layer. The scheme of the 

on-demand child expansion is given in Figure 8. 

 

 

 

 

Figure 8. The Order of SE for Four Consecutive Enumeration. 

 

 

As shown in Figure 8, the first child is initially calculated by rounding the 

received node to the nearest integer. The received node is denoted as a triangle in the 

figure. Then, the next best children are calculated in a zig-zag manner. As the first child 

is to the right of the received node, the next best child is the left nearest integer, which 

can be calculated by subtracting one step from the first child [34]. Hence, the 3rd best 

child will be to the right which can be found by adding 2 steps with the 2nd best child and 
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so on. Therefore, this child expansion scheme calculates the child if and only if all of its 

previous best siblings are already chosen. For finding the K best nodes, this process 

requires node calculation only K times, and also does not require any kind of sorting, 

thereby reducing computational and hardware complexity as a result.    

The complexity at any level of the tree (as expressed by number of nodes 

expanded) is analyzed as follows. At an arbitrary level of tree, 𝐾 candidates from the 

previous level are initially expanded into their best children. The best of these is 

selected, and replaced by an enumeration step. For the worst case, complexity for a level 

of the tree is bounded by 𝐾 + (𝐾 − 1). Taken over the entire tree, with 𝑁𝑇 levels, the 

complexity for the search is bounded by 2𝑁𝑇𝐾 − 2𝑁𝑇 [13, 14]. Comparing with the 

conventional K best algorithm, the number of the expanded nodes is 𝑁𝑇𝐾𝑛, where n is 

the number of the child of each parent.  

Hence, a significant reduction on the node expansions can be achieved using SE 

enumeration. We have used this algorithm to perform the list calculation and then the 

chosen K paths are passed to the iterative soft input soft output (SISO) decoder.  

 

3.2.3 Soft Decoding 

 

LDPC soft decoder was introduced in [36]. For detectors, Roth et al. in [38] 

described a method to efficiently calculate the approximate LLRs from a list of 

candidates. It became possible to implement a soft output detector using (3.8).  
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𝐿𝐸(𝑥𝑘|𝑌) ≈
1

2 

     𝑚𝑎𝑥
𝑥 ∈  𝑋𝑘,   +1

{−
1

𝜎2
∥ 𝑦 − 𝐻. 𝑠 ∥2+ 𝑋[𝑘]

𝑇 . 𝐿𝐴,[𝑘]}

−
1

2 

𝑚𝑎𝑥
𝑥 ∈ 𝑋𝑘,   −1

{
1

𝜎2
∥ 𝑦 − 𝐻. 𝑠 ∥2+ 𝑋[𝑘]

𝑇 . 𝐿𝐴,[𝑘]}. 

(3.8) 

 

From the perspective of hardware design, the computation of LLR can be done in 

a separate unit. It keeps track of two numbers for each LLR; one for those whose kth bit 

of the candidate list is 1 (Lambda-ML) and the other for 0 (Lambda-ML-bar). After that, 

the LLR values will be calculated as the subtraction of Lambda-ML and Lambda-ML-

bar divided by two. 

Different error correcting codes such as convolutional, turbo [20] or LDPC codes 

[39, 40] can be used as channel coder in digital communication system. At the receiver 

side, the decoder reconstructs the original signal from the knowledge of code used by 

channel and the redundancy contained in the data. The probability of having error in the 

output is a function of code characteristics, and channel characteristics such as noise, 

interference level and so on.  

Low density parity check (LDPC) codes and turbo codes are the two most 

promising codes which can achieve good BER performance near Shannon limit with 

efficient hardware implementation. Comparing with the turbo code, LDPC offers lower 

complexity and decoding latency with simpler computational processing. Therefore, we 

have chosen iterative LDPC decoder in order to perform the soft decoding in the 

proposed module. 
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3.2.4 LDPC Decoder 

 

An LDPC code is defined with parity check matrix called H.  Each row and 

column of the matrix is associated with parity check equation and received bits 

respectively. Parity check equation using Tanner graph is also called check nodes and 

the coded bits can be represented by variable nodes. A variable node is connected to a 

check node when the associated bit in H matrix is 1. The process of decoding can be 

done with passing information through the edges of the graph. In this work, we use 

LDPC decoder based on our previous work presented in [39, 40]. The block diagram of 

the whole process for the soft decision based iterative LR-aided K-Best decoder is 

shown below in Figure 9. 

 

 

 

 
 

 

Figure 9. Block Diagram of Proposed Soft Decision Based K-Best Decoder. 
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3.3 Discussion 

 

This section demonstrates the performance of our proposed iterative soft decision 

based MIMO decoder. We have implemented IEEE 802.16e standard as the test and 

simulation environment. This standard supports up to 4 × 4 antenna arrangement and 

modulation schemes of QPSK, 16 QAM, and 64 QAM. 10−6 is specified as minimum 

required BER according to the standard [41]. For performance evaluation, we simulate 

and demonstrate the BER versus SNR curves with different list sizes and up to four 

iterations. All the simulation are achieved either with simulation of 105 packet or at the 

presence of minimum 100 errors, whichever happens first.  

The signal to noise ratio (SNR) is defined as the ratio of received information bit 

energy to noise variance. Since the benefit gained from 3rd to 4th iteration is limited and 

negligible for iterations beyond that, the simulations are demonstrated up to 4th iteration 

i.e. the improvement between 3rd and 4th iteration is at most 0.2 dB (in case of 64 

QAM). The LDPC decoder has been set to continue up to 25 internal iterations, although 

it terminates as soon as all the parity check equations were satisfied.  

For the simulation, we first derive the maximum performance for our proposed 

decoding algorithm and compare it to the optimum performance of DFS-LSD in [42]. 

While working with LSD, we maintain two provisions to support the list decoder. One is 

to keep the list of K best distances of the tree search at the last level, and the other is not 

to reduce the search distance unless all the candidates of the lists get shorter distances. 

Hence, initially we need to consider our sphere radius as infinity. First, we report the 
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maximum gain that is achievable with performing each iteration. Then, we optimize the 

algorithm parameters and show that there will be no significant performance loss due to 

these optimizations. We show that the list size can be reduced to 64 without any 

performance loss for all the modulation schemes. 

 

3.3.1 Simulation and Analysis 

 

We first analyzed the effects of four iterations in both LSD and LR-aided 

decoder for all the modulation schemes. The parameters are chosen in order to obtain the 

maximum performance for both decoders. Figure 10 and 11 shows the BER versus SNR 

curve for iterative LR-aided decoder with different modulation schemes. In the curves 

LR-aided and LSD iterative soft decoding for the i-th iteration are represented by LR-i 

and LSD-i respectively. 
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Figure 10. BER vs SNR Curve for the First Four Iterations of Proposed Decoder with 

QPSK Modulation Scheme. 

 

 

As it is demonstrated in Figure 10, for QPSK modulated LR-aided decoder with 

list size of 256, we observe 0.7 dB improvement in BER due to the 2nd iteration and for 

the 3rd and 4th iteration, the improvement increases to 1.0 dB and 1.1 dB respectively at 

the BER of 10−6. We run all the simulations up to the four iterations. It is because after 

the 4th iteration, it gets saturated i.e. the improvement between 3rd and 4th iteration 

becomes negligible.  
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(a) 16 QAM (b) 64 QAM 

 

 

Figure 11. BER vs SNR Curve for the First Four Iterations of Proposed Decoder with 16 

QAM and 64 QAM Modulation Scheme. 

 

 

Next, as shown in Figure 11(a), the improvement gained by performing 2nd 

iteration is approximately 0.8 dB with list size of 1024 for 16 QAM modulation scheme. 

Increasing the number of iterations results in improving the performance by 1.2 dB for 

the 3rd and 1.25 dB for 4th iteration compared to the 1st iteration. For 64 QAM 

modulation scheme, having the same list size as 16 QAM, the results of the 2nd iteration 

is 0.8 dB better than that of the 1st one. Then, comparing the 3rd and 4th iteration against 

the 1st one, 1.2 dB  
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Figure 12. BER vs SNR Curve for the First four Iterations of DFS-LSD with QPSK 

Modulation Scheme. 

 

 

and 2.0 dB improvements are observed respectively. The performance curve for 64 

QAM is shown in Figure 11(b). As evident in Figure 10 and 11, when the number of 

iteration increases, the improvement between the i-th and the (i+1)-th iteration 

diminishes. At the same time, the performance improvement from the i-th to the 1st 

iteration gets saturated. The results for LSD based decoder are shown in Figure 12 and 

13, which show similar behavior. 
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(a) 16 QAM (b) 64 QAM 

 

 

Figure 13. BER vs SNR curve for the First Four Iterations of DFS-LSD with 16 QAM 

and 64 QAM Modulation Scheme. 

 

 

It is evident from Figure 12 that compared to the 1st iteration at BER of 10−6, 

the 2nd, 3rd and 4th iteration provide 0.6 dB, 0.9 dB and 1.1 dB improvement for QPSK 

modulated LSD based decoder having list size 256. Therefore, for the 2nd iteration we 

observe better result than the 1st one, and then in the 3rd and 4th iteration, the 

improvement gradually saturates. Moreover, for 16 QAM with list size of 1024, this 

improvement becomes 1.5 dB for the 2nd iteration and 1.8 dB for the 3rd one. When we 
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simulate it further for 4th iteration, we get 1.85 dB improvement comparing with the 1st 

one. The performance curve for 16 QAM is shown in Figure 13(a).  

Then, we run the same algorithm for 64 QAM keeping the list size of 1024, 

demonstrated in Figure 13(b). From the curve, we observe 1.2 dB improvement for the 

2nd iteration and for the 3rd and 4th one, the improvement increases to 1.3 dB and 1.4 

dB respectively. All the list sizes that are used as the maximum effective list size in this 

analysis are derived through extensive simulations. In this case, we consider a list size 

twice the reported list size and observe no improvement in performance curves. Also, 

there is a slight degradation in performance curves when compared to the list size of half 

(shown later). Besides, as in LR-aided decoder, the improvement between the i-th and 

the (i+1)-th iteration for LSD based decoder also decreases with increasing number of 

iteration. The comparison of performance between LSD and LR-aided decoder of the 4th 

iteration for different modulation schemes is represented in Figure 14. 
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Figure 14. BER vs SNR curve of the 4th Iteration of Soft Decision Based DFS-LSD and 

Proposed Decoder. 

 

 

As demonstrated in Figure 14, a 1.2 dB improvement in performance can be 

achieved using LR-aided iterative soft decoding for the 4th iteration with QPSK 

modulation at the BER of 10−6. The list size is considered to be equal to maximum 

which is 256.  In addition, performance improvements are 1.9 dB and 2.7 dB for 16 

QAM and 64 QAM respectively at the same level of BER with list size of 1024. 

Therefore, it is evident that with increasing number of modulation schemes, 
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improvement between each iteration of the two methods gets higher. The SNR dB 

improvements for different iterations using both LSD and LR-aided decoding schemes 

with different modulation are tabulated below in Table 2. 

 

 

Table 2. Comparison of SNR Improvements in dB. 

 

Modulation Scheme 

LSD Decoder (in dB) Proposed Decoder (in dB) 

1st and 

2nd 

1st and 

3rd 

1st and 

4th 

1st and 

2nd 

1st and 

3rd 

1st and 

4th 

QPSK 0.6 0.9 1.1 0.7 1.0 1.1 

16 QAM 1.5 1.8 1.85 0.8 1.2 1.25 

64 QAM 1.2 1.3 1.4 0.8 1.4 2.0 

 

 

 

The performance benefit gained by using the LR-aided decoder over LSD 

decoder is summarized in Table 3. The table shows that with the increase in the number 

of constellation bits of the modulation or with the increase in the number of iterations 

(up to 4th iteration) the gain achieved using LR-aided decoder will also increase. 
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Table 3. SNR Improvements in dB. 

Modulation Scheme 

Gain of proposed decoder over LSD 

1st and 1st 4th and 4th 

QPSK 1.1 1.2 

16 QAM 1.8 1.9 

64 QAM 2.2 2.7 

3.3.2 Choosing Optimum List Size, K 

Here, we demonstrate the reason behind choosing the optimum list size. When 

we run the simulations varying list sizes for each configuration (antenna arrangement 

and modulation scheme), we observe that to a certain limit, the performance increases 

with the increase of list size and it remains the same for bigger list sizes (became 

saturated). Figure 15 shows the BER versus SNR curve for the 4th iteration of iterative 

LR-aided decoder with different modulation schemes. 
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Figure 15. BER vs SNR Curve of 4th Iteration of Proposed Decoder with Different K. 

For iterative soft LR-aided decoder with QPSK modulation scheme, we can 

achieve maximum performance keeping list size to the maximum. For 4 × 4 MIMO, the 

maximum list size is of 256 considering QPSK modulation scheme. If we reduce the list 

size to 128, then we get slight decrease in the performance. The minimum list size for 16 

QAM is 1024. As demonstrated in Figure 15, there is no improvement in the 

performance for list size of 2048. In contrast, there is a slight degradation in 

performance when the list size is of 512. For 64 QAM, the minimum list size for 

achieving highest performance is also 1024. 
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The curves in the Figure 16 are demonstrating the optimum list size compared to 

the smaller and bigger list sizes. If we consider the list size higher than the mentioned 

ones, the performance does not improve, while for smaller list sizes the losses in 

performance are significant. Same analysis can be applied to derive the optimum list size 

for LSD based iterative soft decoder comparing the 4th iteration, the result of which is 

demonstrated in Figure 16. 

Figure 16. BER vs SNR Curve of the 4th Iteration of Soft Decision Based LSD with 

Different K. 
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For iterative soft LSD based decoder, the optimum values of K are 256, 1024, 

and 1024 for QPSK, 16 QAM, and 64 QAM respectively. With the mentioned list sizes, 

the performances get saturated. It means that increasing the list size does not improve the 

bit error rate, while decreasing it causes a considerable performance loss. 

 

3.3.3 Effect of LLR clipping on K 

 

The maximum effective list size obtained in Figure 15 and 16 can be further 

reduced to a certain level without the degradation in performance by including the 

concept of LLR clipping [43]. In [43], the list size is reduced from 64 to 16 without any 

performance loss for 16 QAM using turbo code based LSD decoder. It also shows that 

the LLR clipping is not that effective for K-Best decoder and reduces the list size from 

128 to 64. However, the complexity of decoder in K-Best search is proportional to the 

list size. As we demonstrate later, our proposed method can reduce the list size of LR-

aided decoder from 256 to 64 in case of QPSK and from 1024 to 64 for 16 QAM and 64 

QAM using LLR clipping. By empirical analysis, we establish the value of LLR 

clipping.  

Observed from Figure 15 and 16 that a list size of 256 is required for optimum 

performance in QPSK system for both LSD based and LR-aided decoder with 

unbounded LLR values. The required list size for both 16 QAM and 64 QAM is 1024. 

However, the same performance can be achieved with smaller list size by constraining 

the LLR values to a certain limit. Figure 17 and 18 show the performance with different 



 

47 

 

 

values of K and LLR clipping for the 4th iteration of different modulation schemes 

operating in both LR-aided and LSD based algorithms. The effect of LLR clipping is 

only studied on the 4th iteration, because this is the most sensitive performance curve. In 

other words, a change in parameters that may not affect the 3rd iteration, may affect the 

4th one; but a change that affects the 3rd iteration, will definitely cause the similar 

change in 4th iteration. 

 

 

 

 

 

Figure 17. BER vs SNR Curve for Different Value of K and Saturation Limit for the 4th 

Iteration of QPSK Modulated LSD and Proposed Decoder. 
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It is evident from Figure 17 that for the 4th iteration of LSD and LR-aided 

decoders with QPSK modulation scheme, we can attain the optimum performance by 

keeping the list size equal to 64 and setting a saturation limit 8, i.e. LLR values can 

change in [-8,8] range. We have also included the curves for saturation limit 4 and 16 

with list size of 64 and also list size of 32 with saturation limit 8. All these curves show 

degraded performance compared to list size of 64 and 8 with saturation limit of 8. The 

optimum parameters can help us to achieve the same performance as of very 

big/unbounded list sizes. The same analogy can be applied for extracting the optimum 

list size and saturation limit for 16 QAM and 64 QAM, as shown in Figure 18. 

 

  

(a) 16 QAM (b) 64 QAM 

 

Figure 18. BER vs SNR Curve for Different Values of K and Saturation Limit for the 4th 

Iteration of LSD and Proposed Decoder. 



 

49 

 

 

The performance curves for 16 QAM and 64 QAM for both of the decoders are 

presented in Figure 18(a) and 18(b) respectively. The optimum parameters for 16 QAM 

modulation scheme are K of 64 and saturation limit of 8 for both of the LR-aided and 

LSD based decoder. From Figure 18(a), we observe that for 16 QAM modulation 

scheme, same performance as of list size 1024 with unbounded LLR values can be 

reached for both decoders using the derived optimum parameters.  

For 64 QAM LR-aided decoder, we can use K as 64 and keep the saturation limit 

to 8 to achieve the best performance using our method. Thus, the performance curves are 

shown in Figure 18(b). For 64 QAM LSD based decoder, the optimum parameters are 

the same as LR-aided decoder and they are list size 64 with saturation limit 8.  

Next, the comparison of the 1st and 4th iterations between LSD and LR-aided 

methods operated with optimum parameters for all the modulation schemes are shown in 

Figure 19 and 20. 
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Figure 19. BER vs SNR Curve with Optimized K and Saturation Limit for the 1st and 4th 

Iteration of QPSK Modulated LSD and Proposed Decoder. 

 

  

(a) 16 QAM (b) 64 QAM 

 

Figure 20. BER vs SNR Curve with Optimized K and Saturation Limit for the 1st and 4th 

Iteration of LSD and Proposed Decoder. 



 

51 

 

 

The optimized parameter for both LSD and LR-aided decoder is K of 64 with 

saturation limit of 8 operating in QPSK, 16 QAM and 64 QAM modulation scheme. As 

demonstrated in Figure 19 and Figure 20, using these optimized K and saturation limit, 

we observe the same performance as obtained for higher list size with no saturation limit 

to the LLR values (such as list size of 256 for QPSK and 1024 for both 16 QAM and 64 

QAM). For QPSK, the proposed decoder outperforms LSD decoder by 1.2 dB, while the 

improvements are 1.9 dB and 2.7 dB respectively for 16 QAM and 64 QAM modulation 

scheme. There are some differences among the results of this section and the results in 

[43] and it is due to the use of different coding algorithm (Turbo code). However, the 

results show that the LR-aided K-Best algorithm can truly be benefited using LLR 

clipping. Therefore, the list size and computation complexity can also be reduced 

effectively.  

Applying the saturation limit on the LLR values in both of the algorithms will 

result in more than 8x reduction in list size with no performance loss and almost no 

added complexity in case of hardware implementation (when quantization is applied for 

hardware implementation the clipping would usually be applied in most cases). The LR-

aided K-Best algorithm not only provides a reasonable performance gain compared to 

LSD, but also requires the same list size as that of LSD, although this is not the case for 

conventional K-Best.  

The final reminder is that the K-Best algorithm has been considered more often 

than LSD in case of hardware implementation due to its characteristics like being 

parallelizable and having constant detection time. But the large list size required for 
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iterative decoding often makes it infeasible. LR-aided algorithm with LLR clipping can 

help to overcome this implementation problem to a great extent. 
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CHAPTER IV 

 

COMPLEX DOMAIN ITERATIVE K-BEST DECODER 

 

This chapter presents an iterative soft decision based complex K-Best decoder, 

which enables the utility of lattice reduction and complex SE enumeration in MIMO 

decoder [15]. For complex domain detection, the tree search does not need to be 

expanded twice the height for the mapping to real domain. This inherently saves 

complexity and required calculation. However, node calculation with complex value 

became challenging in terms of algorithmic and hardware implementation. 

 

4.1 Proposed Complex Domain K-Best Algorithm 

 

The proposed LR-aided K-Best decoder enables the utility of lattice reduction in 

iterative soft decoding in order to reduce the effect of noise with the help of increased 

orthogonality [32, 33]. Lattice reduction reorganizes the channel matrix to more 

orthogonal one lowering the likelihood of noise propagation. Since the detection is done 

in complex domain, the following change is made to (3.1) to obtain a relaxed search: 

 

�̂� = 𝑎𝑟𝑔�̅�∈𝒰𝑁𝑇 min‖𝑦 − 𝐻�̃�‖2 , (4.1) 

*Reprinted with permission from  

“Iterative Soft Decision Based Complex K-best MIMO Decoder” by M. Rahman and G. 

Choi, 2015. An International Journal on Signal Processing, vol. 9, no. 5, pp. 54-65 by 

CSCPress. 
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 where 𝒰 is unconstrained constellation set as {… , −3 + 𝑗, −1 − 𝑗, −1 + 𝑗, 1 − 𝑗, … }. 

Hence,  𝑠

̂

 may not be a valid constellation point. This is resolved by quantizing 𝑠

̂

𝑁𝐿𝐷 =

 𝒬 (𝑠

̂

), where 𝒬(. ) is the symbol wise quantizer to the constellation set 𝑆.  This type of 

naive lattice reduction (NLD) does not obtain good diversity multiplexing tradeoff 

(DMT) optimally. Therefore, MMSE regularization is employed [44]. Hence, equation 

(3.4) became the following: 

 

�̅� =  [

𝐻

√
𝑁0

2𝜎2
2 𝐼𝑁𝑇

], �̅� =  [
𝑦

0𝑁𝑇×1
], (4.2) 

 

 

where 0NT×1 is a NT × 1 zero matrix and INT
 is a NT × NT complex identity matrix [45, 

46]. Then, equation (4.1) can be represented as: 

 

ŝ = args̃∈𝒰NT min‖y̅ − H̅s̃‖2 . (4.3) 

 

Hence, lattice reduction is applied to �̅� to obtain �̃� =  �̅�𝑇 , where 𝑇 is a 

unimodular matrix. Equation (4.3) then becomes:  
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ŝ = T arg  minz̃∈𝒰NT  (‖ỹ − H̃z̃‖
2

+  (1 + j)NT×1), (4.4) 

where  ỹ = (y̅ −  H̅(1 + j)NT×1
)/2 is the complex received signal vector and (1 + j)NT×1 

is a NT × 1 complex one matrix. After shifting and scaling, equation (6.4) became the 

following one.   

 

ŝ = Tz̃ +  (1 + j)NT×1 . (4.5) 

 

Lattice reduction is a NP complete problem. However, polynomial time 

algorithms such as Lenstra Lenstra Lovasz (LLL) algorithm in [47] can find near 

orthogonal short basis vectors for lattice reduction. 

Complex K-Best LR-aided detection offers a breadth first tree search algorithm, 

which is performed sequentially starting at 𝑁𝑡ℎ-level. First, it requires QR 

decomposition on 𝐻 = 𝑄𝑅,  where Q is a (𝑁𝑅 +  𝑁𝑇)  × (𝑁𝑅 +  𝑁𝑇) orthonormal matrix 

and R is a (𝑁𝑅 +  𝑁𝑇)  ×  𝑁𝑇 upper triangular matrix. Then equation (3.4) is 

reformulated as 

 

ŝ = T arg  minz̃∈𝒰NT  (‖y̆ −  Rz̃‖2 +  (1 + j)NT×1), (4.6) 
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where �̆� =  𝑄𝑇�̃� . The error at each step is measured by the partial Euclidean distance 

(PED), which is an accumulated error at a given level of the tree. For each level, the K 

best nodes are selected and passed to the next level for consideration. At the end, all the 

K paths through the tree are evaluated to find the one with minimum PED. The number 

of valid children for each parent in LR-aided K-Best algorithm is infinite. Hence, in our 

proposed algorithm, the infinite children issue is addressed by calculating K best 

candidates using complex on-demand child expansion. 

 

4.2 Complex On-demand Expansion 

 

Complex on-demand expansion exploits the principle of Schnorr-Euchner (SE) 

enumeration [45, 16]. The strategy employs expanding of a node (child) if and only if all 

of its better siblings have already been expanded and chosen as the partial candidates 

[33, 34]. Hence, in an order of strict non-decreasing error, K candidates are selected. In 

conventional complex SE enumeration, expansion of a child can be of two types: Type I, 

where the expanded child has same imaginary part as its parent, i.e. enumerating along 

the real axis; and Type II for all other cases. The example of conventional complex on-

demand SE enumeration is shown in Figure 21. 
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Figure 21. Complex SE Enumeration. 

 

 

First received symbol is rounded to the nearest integer as shown in Figure 21(a), 

which includes quantizing of both real and imaginary components of the signal to the 

nearest integer. Type-I candidate will be expanded two times along real and imaginary 

axis using SE enumeration, and the two expanded nodes are considered candidates, as 

demonstrated in Figure 21(b). Then, the one with the minimum PED is chosen, and 

expanded for further calculation depending on the type. As in Figure 21(c), the chosen 

node is of type I, so it will be expanded to 2 more nodes. If the chosen node is of Type 

II, as shown in Figure 21(d), it will be expanded only along imaginary axis. 
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The number of nodes need to be expanded at any level of the tree is considered 

as the measurement of complexity analysis. The worst case scenario will be if all the 

nodes chosen are of type I. Then, at an arbitrary level of tree, the number of expanded 

nodes is bounded by 𝐾 + 2(𝐾 − 1). Taken over the entire tree, the complexity for the 

search becomes 3𝑁𝑇𝐾 − 2𝑁𝑇 [17]. Comparing with the real domain detection algorithm 

in [13, 14], the number of the expanded nodes is 4𝑁𝑇𝐾 − 2𝑁𝑇. For instance, with K as 4 

and 𝑁𝑇 equal to 8, the number of expanded node is 80 and 112 considering complex and 

real decoder respectively. Hence, complex SE enumeration requires less calculation, 

thereby reduces hardware complexity. 

In this work, we introduce another parameter, Rlimit while performing the 

complex on demand child expansion. In contrast with the conventional one, the type of a 

child is not considered for further expansion. The example of improved complex SE 

enumeration with Rlimit as 3 is given in Figure 22. 
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Figure 22. Improved Complex SE Enumeration with Rlimit as 3. 

 

 

As shown in Figure 22, after rounding the received symbol to the nearest integer, 

first real SE enumeration is performed to calculate 𝑅𝑙𝑖𝑚𝑖𝑡 candidates. Hence, it means 

that, all the calculated nodes up to 𝑅𝑙𝑖𝑚𝑖𝑡 will have same imaginary values, as 

demonstrated in Figure 22(b). Then, the one with minimum PED is selected and 

expanded only along the imaginary axis using imaginary domain SE enumeration. This 

process is continued till K nodes are selected at that level of tree as presented in Figure 

22(c)-(d). 

The complexity analysis of the improved child expansion proceeds as follows. At 

any level of tree search, first 𝐾𝑅𝑙𝑖𝑚𝑖𝑡 nodes need to be expanded. After that, only 
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imaginary domain SE enumeration will be performed. Hence, considering the worst 

case, the total number of nodes calculated at each level is 𝐾𝑅𝑙𝑖𝑚𝑖𝑡 + (𝐾 − 1). For 𝑁𝑇 

levels, the complexity becomes 𝑁𝑇𝐾 (𝑅𝑙𝑖𝑚𝑖𝑡 + 1) − 𝑁𝑇. Therefore, introduction of 

𝑅𝑙𝑖𝑚𝑖𝑡 may increase the complexity as evidenced in result section, although it offers 

better BER performance comparing to the conventional one. However, comparing with 

the real domain detection, the total complexity is still less. We have used improved 

complex on demand expansion to perform the list calculation and then the chosen K 

paths are passed to the iterative soft input soft output (SISO) decoder. 

 

4.3 Iterative Soft Decoding 

 

LDPC decoder in [39] calculates approximate LLR from the list of possible 

candidates using equation (4.7). 

 

LE(xk|Y) ≈
1

2 

max
x ∈ Xk,   +1

{−
1

σ2
∥ y − Hs ∥2+ x[k]

T  . LA,[k]} −

     
1

2 

max
x ∈ Xk,   −1

{
1

σ2
∥ y − Hs ∥2+ x[k]

T  . LA,[k]}, 

(4.7) 

 

 

where 𝑥[𝑘]
𝑇  and 𝐿𝐴,[𝑘] are the candidates values {-1 or 1} and LLR values except k-th 

candidate respectively. In order to perform the soft decoding, the LLR values are first 
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computed at the last layer of K-Best search. Then, the soft values are fed into the 

iterative decoder for the subsequent iteration. This process continues until the difference 

in error levels between the last two iterations becomes negligible. Lastly, the updated 

LLR values are used for hard decision. 

From the perspective of hardware design as proposed in [15, 18], the LLR 

calculation unit takes one of the candidates at a given time and computes the LLR value. 

Then, the new LLR is compared to the maximum of previous LLRs. Hence, this unit has 

to keep track of 2 values for each LLR; one for those whose k-th bit of the candidate list 

is 1 (Lambda-ML), and the other for 0 (Lamda-ML-bar). After that, the LLR values are 

calculated as the subtraction of Lambda-ML and Lambda-ML-bar divided by 2. 

 

4.4 Discussion 

 

This section demonstrates the performance of the proposed iterative soft decision 

based complex K-Best decoder. The test and simulation environment has been 

implemented using IEEE 802.16n standard. All the simulations are for 8 × 8 MIMO 

with different modulation schemes. The ratio between the signal and noise power is 

considered as signal to noise ratio (SNR). 

We first analyze the performance of four iterations of our proposed decoder for 

different modulation scheme. Then, the effect of Rlimit on BER performance is shown 

for 64 QAM modulation scheme. Finally, we demonstrate the comparison of 
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performance of our proposed work with that of iterative conventional complex decoder 

and real decoder for 64 QAM modulation scheme. 

The total number of the nodes expanded for 8 × 8 MIMO is considered as 

measurement of the complexity analysis. For iterative real decoder, as shown in [13, 14] 

the improvement gained from 3rd to 4th iteration is limited and negligible for iterations 

beyond that. Hence, we consider BER versus SNR curve up to four iterations in order to 

perform comparison among maximum performance. 

 

4.4.1 Simulation and Analysis 

 

The performance of four iterations of our proposed soft decision based complex 

decoder for QPSK modulation scheme is presented in Figure 23. 
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Figure 23. BER vs SNR Curve of the First 4 Iterations of Iterative Complex Decoder for 

8 x 8 MIMO System with K as 4 and QPSK Modulation Scheme. 

 

 

As shown in Figure 23, for QPSK modulation with list size, K of 4 and Rlimit of 

4, we observe 0.4 dB improvement in BER due to the 2nd iteration at the BER of 10−6. 

When we compare the performance of 1st iteration with 3rd and 4th one, the 

improvement increases to 0.7 dB and 1.0 dB respectively. Next the performance curve 

for 16 QAM and 64 QAM modulation scheme is presented in Figure 24. 
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(a) 16 QAM (b) 64 QAM 

 

 

Figure 24. BER vs SNR Curve of the First 4 Iterations of Iterative Complex Decoder for 

8 x 8 MIMO System with K as 4. 

 

 

As demonstrated in Figure 24(a), the performance of 2nd iteration is 

approximately 0.4 dB better than the 1st one with K as 4 and Rlimit set to 4 for 16 QAM 

modulation scheme. When increasing the iteration, the performance improves by 0.8 dB 

for the 3rd and 1.1 dB for the 4th iteration compared to the 1st one. 

For 64 QAM having same K as of 16 QAM, the improvement due to the 2nd 

iteration is 0.4 dB, shown in Figure 24(b). If we then compare the 3rd and 4th iteration 
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with respect to the 1st one, the improvements are 0.8 dB and 1.0 dB respectively. By 

extensive simulation, we observe that the performance does not improve beyond 4th 

iteration. Therefore, with iteration number, the performance between i-th and (i+1)-th 

iteration gets saturated. 

 

4.4.2 Effect of Rlimit on BER 

 

The effect of Rlimit, as discussed in previous subsection for proposed complex 

on demand child expansion is shown in Figure 25. It represents BER performance for the 

4th iteration over different SNR considering 8 × 8 MIMO and 64 QAM modulation 

scheme with list size, K as 4. 
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Figure 25. BER vs SNR Curve of the 4th Iteration of Iterative Complex Decoder for 8 x 

8 MIMO with 64 QAM Modulation Scheme Having K as 4. 

 

 

It is evident that if the value of Rlimit is increased, the performance improves and 

then, it saturates with Rlimit. On the other hand, decreasing Rlimit will degrade BER. 

Hence, as shown in Figure 25, when Rlimit increases from 4 to 6, the performance get 

saturated. However, decreasing the Rlimit to 2 and then 1, degrades the performance by 

0.3 dB and 1.1 dB respectively. 

Similar curves can be obtained considering 1st, 2nd and 3rd iteration of proposed 

iterative decoder for different Rlimit. By extensive simulation, we also observe that, for 
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QPSK and 16 QAM modulation schemes, Rlimit set to 4 can obtain the maximum 

performance. Even if the value of Rlimit is increased, the performance does not improve. 

 

4.4.3 Comparison of Performance 

 

The comparison of the performance of different iterations of our proposed work 

with those of iterative conventional complex decoder and real decoder is presented in 

this section. Figure 26-38 show the BER vs SNR curves of the three decoders for 8 x 8 

MIMO with 64 QAM modulation scheme having K as 4.  

For proposed iterative complex decoder, we have considered Rlimit as 1, 2 and 4 

for performance evaluation. Simulation with Rlimit higher than 4 is not considered, since 

it is the minimum value required to achieve the maximum performance. We consider 

BER versus SNR curve up to four iterations in order to perform comparison among 

maximum performance, as shown in [14], since the performance gets saturated after the 

4th iteration. 
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Figure 26. BER vs SNR Curve of the 1st Iteration of the Proposed Iterative Complex, 

Conventional Complex and Real Decoder. For Proposed, Rlimit is Set to 1, 2, and 4. 

 

 

As demonstrated in Figure 26, a 3.4 dB improvement in performance can be 

achieved comparing the 1st iteration of proposed decoder with that of conventional 

iterative complex decoder with Rlimit as 4 at the BER of 10−6. When Rlimit is changed 

to 2 and 1, the improvements become 3.0 dB and 2.9 dB respectively. We also compare 

the performance of proposed decoder with that of the iterative real decoder for the 1st  
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Figure 27. BER vs SNR Curve of the 1st Iteration of the Proposed Iterative Complex 

Decoder with the 4th Iteration of Conventional Complex and Real Decoder. For 

Proposed One, Rlimit Is Set to 1, 2, and 4. 

 

 

iteration [14]. As presented in Figure 26, 9.0 dB to 9.5 dB improvement can be achieved 

using Rlimit as 1 to 4. 

Next, as shown in Figure 27, a 1.5 dB improvement can be obtained if we 

consider the performance of 1st iteration of proposed decoder with the 4th iteration of  
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Figure 28. BER vs SNR Curve of the 4th Iteration of Proposed Iterative Complex, 

Conventional Complex and Real Decoder. For Proposed, Rlimit Is Set to 1, 2, and 4. 

 

 

conventional complex one using Rlimit as 4. Decreasing Rlimit to 2 and 1 results in 1.0 

dB and 0.8 dB improvement respectively. Comparing to the 4th iteration of iterative real 

decoder, 6.1 dB to 6.8 dB SNR gain can be achieved using Rlimit set to 1 to 4 

accordingly. 
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Figure 28 presents the comparison curves considering the 4th iteration of 

iterative decoders. As demonstrated in the figure, a 2.4 dB improvement can be obtained 

using Rlimit as 4 at the BER of 10−6 comparing the conventional iterative complex 

decoder. In addition, when simulating for Rlimit as 2 and 1, the gain becomes 2.2 dB and 

1.4 dB respectively. Similar analysis can be performed comparing to the 4th iteration of 

iterative real decoder. A gain of 6.9 dB to 8.0 dB can be achieved for Rlimit set to 1 to 4. 

Then, we have performed the computational complexity analysis for the 

presented work. The total number of the nodes expanded for 8 x 8 MIMO is considered 

as measurement of the analysis. Complexity analysis of proposed and conventional 

complex decoder is shown in Table 4. 

 

 

Table 4. Complexity Analysis of Conventional and Proposed Complex Decoder. 

 

K 

Proposed Conv. Complex Proposed vs Conv. (in dB) 

Rlimit Node Node 1st vs 1st 4th vs 4th  1st vs 4th 

4 1 56 80 2.9 1.4  0.8 

4 2 88 80 3.0 2.2  1.0 

4 4 152 80 3.4 2.5  1.5 
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As tabulated in Table 4, for iterative conventional complex decoder, we need to 

perform 80 calculations for K equal to 4, where our proposed decoder calculates 56, 88 

and 152 nodes using same list size and Rlimit set to 1, 2, and 4 respectively. Hence, with 

less computational complexity, the proposed decoder can achieve 1.4 dB better 

performance than that of conventional one for the 4th iteration. However, 2.2 to 2.5 dB 

gain can be achieved by tolerating higher computational complexity using proposed 

complex decoder. Considering 1st iteration with same level of complexity, 2.9 dB to 3.4 

dB gain can be achieved using proposed decoder. Next, complexity analysis of proposed 

and iterative real decoder is presented in Table 5. 

 

 

Table 5. Complexity Analysis of Iterative Real and Proposed Complex Decoder. 

 

K 

Proposed Real Proposed vs Real (in dB) 

Rlimit Node Node 1st vs 1st 4th vs 4th  1st vs 4th 

4 1 56 112 9.0 6.9  6.1 

4 2 88 112 9.1 7.7  6.5 

4 4 152 112 9.5 8.0  6.8 
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As shown in Table 5, the number of the nodes need to be expanded for LR-aided 

real decoder [14] for list size 4 is equal to 112. Considering the same list size, proposed 

complex decoder requires 56, 88 and 152 node expansion for Rlimit set to 1, 2 and 4 

respectively. Hence, proposed decoder can achieve 6.9 dB to 7.7 dB better performance 

even with less computational complexity comparing with the iterative real one. Allowing 

more complexity can increase the performance to 8.0 dB. If we consider the performance 

of only 1st iteration, with same level of complexity the proposed decoder can attain 9.0 

to 9.5 dB improvement comparing with the real one.  

Therefore, our iterative soft complex decoder with Rlimit offers a tradeoff 

between performance and complexity for different iterations. It not only increases the 

performance, but also can reduce complexity to a certain level. 
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CHAPTER V 

 

FIXED POINT REALIZATION OF ITERATIVE K-BEST DECODER 

 

This chapter includes a novel study on fixed point realization of iterative LR-

aided K-Best decoder based on simulation [18]. It is a required step to decide on the 

hardware implementation. The process involves 2 steps: first is to select optimized 

architecture for each sub-module of K-Best decoder, and the second is to perform the 

fixed point conversion. The choice of proper architecture makes the hardware 

implementation easier, while the fixed point conversion minimizes the bit length of each 

variable. These objectives gradually lead to the minimization of hardware cost, power, 

and area as well. 

 

5.1  Architecture Selection 

 

The architecture selection of each sub-module of the system model for Iterative 

LR-aided K-Best decoder in [14] is given below. The block diagram of the system model 

proposed in [14] is presented in Figure 29. 

 

*Reprinted with permission from  

“Fixed Point Realization of Iterative LR-Aided Soft MIMO Decoding Algorithm” by M. 

Rahman and G. Choi, 2015. An International Journal on Signal Processing, vol. 9, no. 2, 

pp. 14-24 by CSCPress. 
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Figure 29. System Level Model of Iterative LR-Aided K-Best Decoder [14, 18]. 

 

 

5.1.1 QR Decomposition 

 

There are three well known algorithms for QR Decomposition proposed in [48]. 

Among them, the Givens rotation algorithm implemented by Coordinate Rotation Digital 

Computer (CORDIC) scheme under Triangular Systolic Array (TSA) in [49, 50] is 

selected for QR Decomposition. CORDIC is adopted due to its simple operations for 

hardware implementation with reduced latency and it can be implemented easily 

exploiting parallel and pipeline architecture. 
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5.1.2 Lattice Reduction 

 

The effect of lattice reduction is to reduce the noise propagation, thereby 

reducing the impact of noise while decoding at the receiver end. Lenstra Lenstra Lovasz 

(LLL) algorithm proposed in [47] is a popular scheme for implementing lattice 

reduction. It can obtain optimal performance with low complexity. Hence, it is suitable 

for hardware realization by transforming the complicated division and the inverse root 

square operation into Newton-Raphson iteration and CORDIC algorithm respectively 

[51]. 

 

5.1.3 LDPC Decoder 

 

 The probability of having error in the output of MIMO detection is a function of 

code characteristics, and channel characteristics such as noise, interference etc. Low 

density parity check (LDPC) codes and turbo codes are the two most promising codes 

achieving near Shannon performance with efficient hardware implementation. 

Comparing with the turbo code, LDPC offers more parallelism, lower complexity and 

decoding latency with simpler computational processing. Therefore, we have chosen 

iterative LDPC decoder in order to perform the soft decoding in the proposed module. 

The hardware design of LDPC Decoder in [39] consists of separate LLR 

calculation unit. It takes one of the candidates at a given time and computes the LLR 

value at each clock cycle. Then, the new LLR is compared to the maximum of previous 
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LLRs. Hence, this unit has to keep track of 2 values for each LLR. One for those whose 

k-th of the candidate list is 1 (Lambda-ML), and the other for 0 (Lamdba-ML-bar). After 

that, the LLR values are calculated as the subtraction of Lamdba-ML and Lamdba-ML-

bar divided by 2. 

 

5.2 Fixed Point Conversion with Word-length Optimization 

 

In order to perform the fixed point conversion, all floating-point variable and 

arithmetic operations are converted into fixed point version. It is simulated by MATLAB 

HDLcoder, which is bit-accurate with Verilog source code and mimics the actual 

operation in hardware. 

Each word length is then optimized to determine the minimum bit width for each 

fixed point variable keeping high performance within tolerated error limit. To choose the 

length of proper precision bits, first minimum integer word length is calculated under 

large data simulation. After that, the minimum and maximum value of each variable is 

calculated through MATLAB profiling. 

To estimate precision bits, first minimum and maximum fractional word length 

are chosen through extensive simulation. Then the bit error rate (BER) performances are 

evaluated for subsequently decreasing word length from max to selected min. At the end, 

the word length for which high performance with lower and tolerable error limit can be 

achieved, is selected as final optimized precision bit length. 
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5.3 Discussion 

 

This section demonstrates the performance of iterative soft decision based LR-

aided K-Best decoder in [14] for 8 ×8 MIMO with different modulation schemes. The 

signal to noise ratio (SNR) is defined as the ratio of received information bit energy to 

noise variance. 

We first analyze the performance of four iterations of both iterative LR-aided 

decoder and LSD decoder in [14] with list size of 4 for different modulation schemes. 

Next, the comparison between LR-aided and LSD decoder is performed for QPSK, 16 

QAM and 64 QAM modulation schemes. We also demonstrate the comparison of 

performance for floating word length with that of fixed one. For iterative decoder, as 

shown in [14] the improvement gained from the 3rd to 4th iteration is limited and 

negligible for iteration beyond that. Hence, we consider BER versus SNR curve of 4th 

iteration in order to compare among maximum performances. LDPC decoder has been 

set to continue up to 25 internal iterations, although it would terminate immediately if all 

the parity check equations are satisfied. 

 

5.3.1 Comparison of Performance 

 

The comparison of performance of between iterative LR-aided decoder and LSD 

decoder of the 4th iteration for different modulation schemes in presented in Figure 30. 
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Since the performance becomes saturated after 4th iteration, we have considered the BER 

vs SNR curves of only 4th iteration to evaluate among maximum performances. 

 

 

 

 
 

 

 

Figure 30. BER vs SNR Curve of the 4th Iteration of Iterative LR-Aided Decoder 

and LSD Decoders for QPSK, 16 QAM and 64 QAM Modulation Scheme with 

K as 4. 
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As demonstrated in Figure 30, a 2.5 dB improvements in performance can be 

obtained using LR-aided decoder for the 4th iteration with QPSK modulation. When 

considering 16 QAM and 64 QAM modulation schemes, the performance gain becomes 

2.8 dB and 2.5 dB respectively at the BER of 10−6. The gain between LR-aided and 

LSD decoder for 1st and 4th iteration is summarized in Table 6. 

 

 

Table 6: SNR Improvements Comparing Between LR-Aided and LSD Decoder. 

 

Modulation 

Scheme 

Gain of LR-aided Decoder Over LSD 

Decoder 

1st and 1st 4th and 4th 

QPSK 2.1 2.5 

16 QAM 2.2 2.8 

64 QAM 3.0 2.5 
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5.3.2 Optimization of Word-length 

 

The optimization of word length can reduce the total bit width of variables while 

achieving the similar BER. In Figure 31, the comparison of performance of iterative LR-

aided decoder using floating bit length with that of fixed precision word length is 

presented for QPSK modulation scheme. 

 

 

 

 

 

Figure 31. BER vs SNR Curve of the 4th Iteration of 8 x 8 LR-Aided Decoder 

for QPSK Modulation Scheme with Floating and Fixed Word-length of 14 and 16 Bits. 
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The simulation is done for 8 × 8  MIMO system with K equal to 4. We consider 

only the 4th iteration in order to evaluate comparison among maximum performance. As 

shown in Figure 31, when considering bit length of 16 bits, the performance degrades 

0.3 dB comparing with the floating one. If we decrease the word length to 14 bits, the 

performance decreases to 1.3 dB. Hence, 16 bits of fixed word length can limit the 

performance degradation to 0.3 dB at the BER of 10−6. Next, Figure 32 represents the 

performance curve of 4th iteration for 16 QAM and 64 QAM modulation scheme. 

 

 

  

(a) 16 QAM (b) 64 QAM 

 

 

Figure 32. BER vs SNR Curve of the 4th Iteration of 8 x 8 LR-Aided Decoder 

with Floating and Fixed Word-length of 14 and 16 Bits. 
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As demonstrated in Figure 32(a), for 16 QAM modulation scheme, 16 bit word 

length decreases the BER performance 0.2 dB at the BER of 10−6. When considering 

the word length of 14 bit, the performance degrades approximately about 1.3 dB. While 

considering the performance of 64 QAM, shown in Figure 32(b), 16 bit precision limits 

the degradation to 0.3 dB. When evaluating for fixed 14 bits, the performance decreases 

to more than 1.4 dB. Therefore, 16 bits of fixed word length can keep the BER 

performance degradation within 0.3 dB for QPSK, 16 QAM and 64 QAM modulation 

schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

84 

 

 

CHAPTER VI 

 

VLSI IMPLEMENTATION OF COMPLEX K-BEST DECODER 

 

This section presents a hardware architecture of complex K-Best MIMO decoder 

reducing the complexity of Maximum Likelihood (ML) detector [17]. We develop a 

novel low-power VLSI design of complex K-Best decoder for 8 × 8 MIMO and 64 

QAM modulation scheme. Use of Schnorr-Euchner (SE) enumeration and a new 

parameter, Rlimit in the design reduce the complexity of calculating K-Best nodes to a 

certain level with increased performance. 

 

6.1 Architecture Proposal 

 

In this proposed work, a low-power hardware design of iterative complex K-Best 

decoder is presented. The design is specified for 8 × 8 MIMO and 64 QAM modulation 

scheme with K and Rlimit as 4. For higher throughput and eliminating dependency, 8 

sets of structure for 8 levels are proposed. For the first level, the data is received from 

antenna and hardware for the other 7 levels fetch the data from the immediate 

*Reprinted with permission from  

“Hardware Architecture of Improved Complex K-best MIMO Decoder” by M. Rahman 

and G. Choi, 2016. An International Journal on Signal Processing, vol. 10, no. 1, pp. 56-

68 by CSCPress. 
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corresponding registers.  

The proposed architecture for complex K-Best decoder consists of two blocks. 

First one is Data-path block which contains all the processing elements for arithmetic, 

logical, and sorting operations. The second one is Control-path block which provides 

synchronization and control signaling. The block diagram of the proposed architecture is 

shown in Figure 33. 

 

Data-path 
Block

Input
Output

Control-path 
Block

Clk Rst

 

 

 

Figure 33. Block Diagram of the Proposed Architecture. 

 

 

As presented in Figure 33, Input includes �̆� and R according to eq. (4.1) and the 

Output denotes list and distance representing K best node list and the cumulative PED 

distances respectively. Clk is considered as system clock. Additional initialization is 
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done through a reset signal, Rst. The detail explanations of the Data-path block and 

Control-path block are presented in the subsequent sections. 

 

6.1.1 Data-path Block 

 

The generalized illustration of proposed data-path architecture design is 

presented below in Figure 34.  

 

 

 

Figure 34. Block diagram of the Data-path Architecture. 

 

 

After receiving the initial input, rounding is first performed as shown in Figure 

34. Then the initial nodes (children) are calculated Rlimit times along the real axis using 



 

87 

 

 

on demand child expansion. While calculating each node, it is passed to the shift 

register. Hence, the register will be initially updated Rlimit times with Rlimit nodes of 

real domain. Then, sorting is done to choose the one with minimum distance and 

selected as a future node for the next level. Hence, the future node is passed to the final 

list and next child is also calculated from that using on demand expansion along 

imaginary axis to update the register of the particular index. This sorting and updating 

the final list as well as register are repeated till K-Best nodes are selected for the future 

candidates of the next level. Therefore, updating the register can be done in four ways: 

after rounding, after calculating the initial nodes, after calculating the node in imaginary 

domain, or it can retrieve its previous value. 

Figure 34 can be considered as a robust hardware design for all the 8 levels. The 

generalized illustrations of shift register and sorter are given in Figure 35(a) and 35(b) 

respectively. As presented in Figure 35(a), the operation of shift register is controlled by 

Updated, K and Rlimit from the control-path block. Initially, shift register will be 

updated by the serial input (SI) from the on-demand child expansion for Rlimit times. 

Then, after sorting is performed, only the corresponding register will be loaded with next 

best node out of 4 registers. 4 enable signals (En1, En2, En3, and En4) decides which 

register will be updated. The enable signals also decide whether the input will be taken 

from the updated block or not. The presented shift register is a simple forward fashioned 

register, where each register is to store 16 bits of value with respect to Clk. The data 

flow of shift register is given as follows in Figure 35(a). 
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(a) 

 

Min Min Min Min

Min Min

Min

In1 In2 In3 In4 In5 In6 In7 In8

Min Output  

(b) 

Figure 35. Block Diagram of the Shift Register and Sorter. 
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For sorter in Figure 35(b), a feed-forward pipelinable VLSI architecture is 

considered for simple implementation. We have chosen bubble sort algorithm for our 

design in order to obtain a simple tree-like structure. In this sorter, every 2 values are 

compared to choose the minimum one. Hence, as shown in the Figure 35(b), it requires 3 

levels of calculation to find the minimum value out of 8 values. Further optimization can 

be possible regarding the architecture of sorter. In the proposed work, we also include 

the pipelining effect among 8 levels of detection to enhance the performance and 

throughput. The design flow for all the 8 levels of hardware is presented as follows in 

Figure 36. 

First K best candidates are calculated by level 1 hardware from the input. Then, 

they are passed to the Reg1. In the meantime, level 1 starts working with new input and 

level 2 hardware fetches the value from Reg1 and starts performing. This process will go 

on till the level 8 hardware fetches the value from Reg7 and perform the final output. 

Detection algorithm proposed in [15] is interdependent and sequential. Hence, in order 

to include 8 antennas, 8 units of hardware set need to be used providing the pipelining 

effect and higher throughput. Since the computational complexity of each level of 

hardware is low due to elimination of any multiplier and divider [15], use of 8 sets of 

hardware for 8 antennas does not include high cost in terms of power consumption. The 

pipelined structure of 8 ×8 MIMO is given in Figure 36. 
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Figure 36. Proposed Pipelined Architecture for 8 ×8 MIMO. 

 

 

As illustrated in Figure 36, at cycle 1, level 1 receives the data from the input and 

performs the calculation. It requires (Rlimit+K) or 8 clock cycles to perform the 

computation of each level. Hence, at cycle 8, the output of level 1 is saved to the Reg1, 

where level 2 fetches and starts decoding simultaneously. Level 2 saves the output to 

Reg2 at cycle 16. Therefore, at cycle 16, level 3 will start working with the output of 

level 2. Level 1 also starts working with a new set of input at cycle 8 in order to provide 
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efficient pipelining. This process goes on till cycle 64. At cycle 56, level 8 receives the 

output of level 7 and starts decoding. Hence, the final list calculation for one set of 

decoding can be obtained at cycle 64. In summary, we require 64 clock cycles to attain 

the first set of output for one MIMO detection. The effect of pipelining not only 

increases throughput, but also increases the efficiency of the implemented MIMO 

architecture. 

 

6.1.2 Control-path Block 

 

The control block provides synchronization and control signaling for the data-

path block for decoding properly. It consists of a finite state machine that handles all the 

required control signals for calculating and detecting the K-Best nodes at each level. The 

use of two counter (K, Rlimit) decides the number of node calculation and also required 

clock cycle. As presented earlier in Figure 34, after rounding the initial input, nodes are 

calculated along the real axis Rlimit times and passed to the shift register. Hence, shift 

register will be updated initially from the real domain child expansion block Rlimit 

times. Then, sorting and next best child calculation along the imaginary domain will be 

done K times. Therefore, shift register will again be updated according to the control 

signal, K from the control-path block. 

 In this work, both K and Rlimit are set to 4. Hence, detection at one level 

requires 8 clock cycles. Finally, the final list size is operated by control signal, K and 

sent to the next level of detection.  
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It is worth noting that the proposed architecture is fully pipelined. Hence it can 

be easily applied in the cases of multicarrier scenarios and each subsequent carrier can 

be passed to the proposed MIMO detector through pipelining. It can also be applied for 

different channel conditions with channel estimator if the channel condition is known to 

the receiver. 

 

6.2 Discussion 

 

The proposed VLSI architecture is modeled in Verilog HDL using Xilinx and 

synthesized using Synopsys Design Vision in 45 nm CMOS technology. It is designed 

for operating with transmitted signal vectors generated from 8 × 8 MIMO and 64 QAM 

modulation scheme having K and Rlimit set to 4. Simulations for functional validation 

and verification are done using MATLAB and Xilinx.  

As presented in our previous work [16], a novel study on fixed point realization 

of iterative LR-aided K best decoder is conducted based on simulation. The process 

includes selecting optimized architecture for each sub-module of K-Best decoder, and 

also performing the fixed point conversion to minimize the bit length resulting reduction 

to hardware cost, power, and area as well. The simulation results show that the total 

word length of only 16 bits can keep BER degradation within 0.3 dB for 8 × 8 MIMO 

and 64 QAM modulation scheme. Hence, in this presented work total word length of 16 

bits is considered for the design and implementation approach.   
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6.2.1 Synthesis Results 

 

The design specs of the proposed complex on-demand K-Best decoder attains the 

requirement of IEEE 802.16e. In each detection, there includes 2 computing stages and 

complicated operations such as sorting, PED calculation etc. Hence, multiple clock 

cycles are required for MIMO detection at each level. In our proposed architecture, (K + 

Rlimit) times, i.e., 8 clock cycles are necessary for detection at every stage. From the 

synthesis result for 45 nm CMOS technology, 0.33 us latency is observed for detection 

at each level. Hence, the maximum achievable frequency is 181.8 MHz, leading to 5.5 ns 

as required time period. Throughput is calculated to be equal to 1090.8 Mbps. If total 

observed area is divided by the area of a NAND gate, the total number of gate count 

became 63.75 kG.  

In order to perform the fair analysis, a normalized hardware efficiency (NHE) is 

calculated using the following eq. (6.1) and our proposed design achieves NHE as 

0.0585. 

NHE (kG Mb⁄ ps⁄ ) =  
core area (kG)

scaled throughput (Mb s⁄ )
 (6.1) 

 

6.2.2 Comparison 

 

The comparison between the proposed complex decoder and the recently 

proposed MIMO detectors in complex and real domains are tabulated in Table 7.  



 

94 

 

 

Table 7. Design Comparison of the Proposed Design with Previous Works. 

 

Reference 

TVLSI 

2007 

[52] 

TCAS 

2010 

[53] 

TVLSI 

2010 

[54] 

JSSC 

2010 

[55] 

JSSC 

2011 

[56] 

TVLSI 

2011 

[57] 

TVLSI 

2013 

[16] 

 

This 

work 

[17] 

Modulation 16 QAM 16 QAM 64 QAM 
(4–64) 

QAM 
64 QAM 

64 

QAM 
64 QAM  64 QAM 

Antenna 4 × 4 4 × 4 4 × 4 
4 × 4 – 

8 × 8 
4 × 4 4 × 4 4 × 4  4 × 4 

Method K-Best 
SISO-

SD 
K-Best 

MBF-

FD 

(SD) 

SISO 

MMSE- 

PIC 

K-Best 
Modified 

K-Best 
 

Proposed 

K-Best 

Domain Complex Complex Real Complex Complex Real Complex  Complex 

Process 0.13 um 90 nm 65 nm 0.13 um 90 nm 
0.13 

um 
0.13 um  45 nm 

K 64 N/A 5-64 N/A N/A 10 10  4* 

f (max) 

(MHz) 
270 250 158 198 568 282 417  181.8 

Throughput 

(Mb/s) 
100 90 

732 -

1000 

285 - 

431 
757 675 1000  1090.8 

Gate count 

(kG) 
5270 96 1760 350 410 114 340  31.87 

NHE 

(kG/Mb/s) 
52.7 1.6 

4.81-

35.2 

1.23-

0.81 
0.78 0.17 0.34  0.0585 

Power 

(mW) 
847 N/A 165 57-74 189.1 135 1700  290 

Latency 

(us) 
N/A N/A N/A N/A N/A 0.6 0.36  0.17 

Hard/ soft Soft Soft Hard Soft Soft Hard Hard  Hard 

*In our proposed design, both K and Rlimit are equal to 4.  
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The above table shows comparison among different MIMO detecting scheme for 

different configuration. It includes detection scheme, latency, power, throughput, gate 

count, list size, antenna arrangement, modulation and technology for a fair comparison. 

To make the analysis of performance justified, different types of detection scheme (K-

Best, MMSE, SISO-SD etc.) both in real and complex domain are also included in the 

table. The complex K-best decoder presented in the 2nd column of the Table 8 [52] 

requires 165x more gates achieving only 100 Mbps throughput and has a power 

consumption of 847 mW. In contrast, our proposed complex decoder achieves 10x more 

throughput with around 1/3rd of power consumption. Although the referenced real 

domain K-best decoders presented in [54, 57] require less power compared with our 

proposed one, however, they lag behind 9.0 to 9.5 dB considering BER performance. 

When comparing with other decoders such as complex SISO, complex MMSE decoder 

etc. in [53, 55, 56], our proposed complex MIMO detector outperforms all the schemes 

in terms of performance.  

The VLSI architecture for complex domain MIMO detection presented in [16] 

can be considered as the most updated published work so far. Hence, we have compared 

the result of our proposed work with [16] and all other works referenced by [16]. As 

shown in Chapter IV, the proposed scheme achieves 3.4 dB improvement when 

comparing between the 1st iterations, and 2.5 dB gain for the 4th iteration (maximum 

performance). 

The Table 8 shows that our proposed architecture requires less power and lower 

latency with higher throughput comparing with all other previous works for both real 
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and soft domain. If we consider [16] as the most updated VLSI architecture published so 

far in complex domain, the proposed architecture outstands the performance in terms of 

gate count, power consumption and so on.  

The architecture implemented in [16] is for 4 x 4 MIMO with 64 QAM 

modulation scheme and K as 10 using 0.13 um technology, where our proposed design is 

for same MIMO configuration with list size of 4 and it is synthesized using 45 nm 

technology. Hence, even with less size, the proposed one can achieve higher throughput 

which 1090.8 Mbps compared to that of [16]. The power consumption is 5.86x less with 

the requirement of 1/10th of the gates compared to the one in [16] considering 4 x 4 

MIMO. The gate count of proposed decoder is 31.87 kG for 4 x 4 MIMO, where in [16] 

it is equal to 340 kG.  The latency is 8.1x less compared to the published one. Although 

the maximum achievable frequency for our proposed decoder is 181.8 MHz, where the 

architecture in [16] can attain higher frequency which is 417 MHz.  

As shown in [15], we can improve the performance by increasing the value of K 

and Rlimit with allowing more complexity. The complexity can also be reduced with less 

K and Rlimit on the contrary trading off some performance loss. Moreover, the proposed 

architecture provides more re-configurability in terms of complexity and performance.  
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CHAPTER VII 

 

ADAPTIVE REAL DOMAIN ITERATIVE K-BEST DECODER 

 

The chapter begins with a description of soft decision based iterative LR-aided 

adaptive K-Best MIMO decoder [19]. All the detectors mentioned above have fixed use 

of K. Hence, an adaptive K-Best MIMO detector is proposed to include more 

adaptability and re-configurability. The proposed method has several advantages over 

adaptive conventional K-Best scheme for MIMO system.  

Firstly, it does not require the estimation of SNR. The ratio between first two 

minimal distances is calculated instead for estimating the quality of channel. If the ratio 

is high, i.e., the differences between first two minimal distances is small, the channel 

condition can be considered as good and value of K can be decreased to the minimum 

comparing with the predefined thresholds in order to attain the certain BER. Hence, the 

proposed method can achieve significantly improved performance compared to [58] and 

approach the performance of ML with less computational complexity without the 

necessity of SNR measurement.  

Secondly, it calculates the average ratio for the first several symbols of each 

frame transferred through the same channel, and uses the ratio to estimate the channel 

*Reprinted with permission from  

“An Iterative Soft Decision Based Adaptive K-best Decoder Without SNR Estimation” by 

M. Rahman, E. Rohani and G. Choi, 2014. Asilomer Conference on Signals, Systems and 

Computers, pp. 1016-1020 by IEEE Publication. 
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condition and to decide the value of K for the rest of the symbols in that particular frame. 

Therefore, it does not require ZF to perform the initial estimation with large value of K. 

Besides, use of lattice reduction and MMSE extension in K-Best algorithm reduces the 

effect of noise over channel. In addition, on-demand child expansion ensures minimal 

computation for generating the list. 

 

7.1 Proposed Adaptive K-Best Algorithm 

 

The system model of proposed adaptive K-Best decoder is shown in Figure 37. 

 

 

 

 

 

Figure 37. Block Diagram of Proposed Iterative Adaptive K-Best Decoder. 
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 In this decoder, we include the concept of adaptive list size in iterative LR-

aided MMSE extended K-Best scheme [14]. The main reason behind that is, if the 

channel condition is good, the same performance in terms of BER can be achieved using 

less K, which leads to significant reduction in computational complexity. This requires 

the channel condition to be estimated first. One approach of solving the problem is to 

measure the SNR to adaptively control the list size. However, this method requires 

accurate measurement of SNR, since the performance can be decreased to a significant 

amount due to the wrong estimation of the SNR value. Our proposed scheme does not 

require the measurement of SNR. In order to estimate the channel condition, the ratio 

between first two minimal distances is calculated. A high ratio means that the channel 

condition is good and the value of K can be decreased. 

The proposed method starts decoding with the maximum list size and calculates 

the average ratio for the first several symbols of each frame transferred through the main 

channel. Then, the ratio is used to estimate the channel condition and the minimum value 

of K is chosen comparing to the predefined thresholds in order to achieve the required 

BER. Next, the new K value is used to decode the rest of the symbols in that particular 

frame. After the decoding of one complete frame, the list of candidates are passed to the 

LLR update unit and a saturation of [−8, 8] is applied for further optimization on list 

size. Then, iterative decoding is performed until the difference between two consecutive 

iterations becomes negligible and at that point, a hard decision is made with the last 

updated LLR values. Since the computational complexity of the conventional LR-aided 
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K-Best search is proportional to K, the reduced list size for adaptive K-Best decoder can 

scale down the computational complexity significantly. 

In this work, we compare the performance of proposed adaptive K-Best decoder 

with that of conventional LR-aided K-Best decoder in [13, 14] and also with iterative 

DFS-LSD in [42]. DFS-LSD searches the lattice tree only once and builds a list of 

possible candidates for each received symbol. Then, LLRs are generated and updated 

using the candidate list and calculated distances. Therefore, this type of detector often 

avoids searching the entire tree by focusing only on the possible candidates within a 

certain distance of received signal. 

 

7.2 Discussion 

 

This section demonstrates the performance of our proposed adaptive K-Best 

algorithm. The test and simulation environment includes 4 × 4 antenna arrangement and 

16 QAM modulation scheme. Each transmitted frame consists of 2304 bits, i.e., 144 

symbols per frame. All the simulation are achieved either for 105 packets or in the 

presence of minimum 100 errors, which ever happens first. Performance is presented in 

terms of BER with the minimum required value of 10−6 according to the IEEE 802.16e 

standard. SNR is defined as the ratio of received information bit energy to noise variance 

(Eb / No). Since the benefit gained from the third to the fourth iteration diminishes and is 

negligible for iterations beyond that, the simulations are demonstrated up to 4th iteration. 
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The maximum number of internal iterations for LDPC is set to 25, although it would 

terminate as soon as all the parity check equations are satisfied. 

 It is evident in [13, 14] that the minimum list size required for achieving 

maximum performance in terms of BER is 1024. If the list size is increased further, the 

performance does not improve. It is also presented in [15] that the same performance can 

be achieved using list size of 64 and limiting the LLR to [-8, 8]. In this work, we 

consider K as 64 with saturation limit of 8 for maximum achievable performance. 

 

7.2.1 Estimation of Channel 

 

In order to adaptively control the list size, K, the condition of channel needs to be 

estimated beforehand. In this proposed design, instead of measuring SNR, ratio between 

first two minimum distances is calculated for all the symbols of a frame and it offers a 

certain relation with SNR. Figure 38 shows the average ratio of one frame versus SNR 

curve for the fourth iteration of 4 × 4 MIMO with K and saturation limit as 64 and 8 

respectively. 
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Figure 38. Ratio vs SNR Averaging 144 Symbols of a Frame. 

 

 

As demonstrated in Figure 38, we observe that the ratio of first minimum to the 

second minimum distance increases with the increase of SNR. It is because when SNR is 

high, the effect of noise is low, i.e., the difference between the first two minimum 

distances is low. Hence, the ratio increases. Therefore, the calculation of ratio can 

provide the good estimation of channel without even measuring the SNR. In Figure 38, 

we consider the average ratio of all the symbols of a frame in order to demonstrate the 

relation with SNR. Although, the similar estimation can be made by calculating the 

average of less number of symbols of a frame, as shown in Figure 39. 
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Figure 39. Ratio vs SNR Averaging Different Number of Symbols. 

 

 

The relationships between the average ratio and SNR considering different 

number of symbols of a particular frame are demonstrated in Figure 39. Here, we 

include the curves by calculating the average ratio of 20, 30, 35, 40, 50 and all the 

symbols (144) of a frame. It is evident from the figure that, the minimum number of 

symbols required to achieve the performance similar to that of 144 symbols is 30. In 

other words, if we take the average of first 30 symbols, it can give the same performance 
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compared to the average of all the symbols of a frame. For the total number of symbols 

more than 30, such as, 35, 40 and 50, as shown in Figure 39, around same performance 

can be achieved. On the other hand, if the average of the first 20 symbols is considered, 

then the performance curve varies significantly from the one obtained using 144 

symbols.  

 

7.2.2 Choosing Threshold Points 

 

The proposed adaptive K-Best decoder, initially, calculates the average of first 30 

symbols using maximum list size, K as 64 with saturation limit of 8. Then, the value of 

K is adapted based on the predefined thresholds and is used for decoding the rest of the 

symbols of that particular frame. Performance of adaptive K-Best decoder highly 

depends on choosing the threshold points. If the thresholds are chosen to be high, then 

the performance, that can be achieved using maximum list size, can also be obtained 

using adaptive K-Best algorithm. Thresholds used in this work with their approximately 

reduced computational complexity, for decoding around 80% of a frame, is given below 

in Table 8. We consider BER of 10−6 as minimum required quality of service (QoS) in 

order to choose these points. 
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Table 8. Threshold for Choosing Different List Size with Respect to Ratio. 

 

Threshold Ratio 

Minimum K 

Required 

Reduced 

Complexity 

𝛾1 0.572 32 50% 

𝛾2 0.573 16 75% 

𝛾3 0.574 8 57.5% 

𝛾4 0.575 4 93.7% 

 

 

 

 

As evident in Table 8, if the ratio is greater than 𝛾1 and less than 𝛾2, we can use 

K as 32 instead of 64 to achieve the required BER, otherwise list size should be 64. Use 

of list size 32 for decoding 114 symbols (around 80%) of a frame, can reduce the total 

computational complexity by half (50%). Besides, for the ratio that lies within the 

range 𝛾2 − 𝛾3, minimum list size required came down to 16 and hence, complexity 

reduces around 75%. Again, when the ratio is greater than 𝛾3 and 𝛾4, then we can keep 

the list size to 8 and 4 respectively instead of 64 to achieve the standard performance and 

can also reduce the complexity more than 80%. All of these thresholds are evaluated by 
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empirical analysis of 4 × 4 MIMO with 16 QAM modulation scheme and saturation 

limit of 8. 

 

7.2.3 Performance of Adaptive K-Best Decoder 

 

The performance curve of the fourth iteration, in terms of BER, of proposed 

adaptive K-Best decoder for 4 × 4 MIMO and 16 QAM modulation scheme is given in 

Figure 40. For the comparison and evaluation, the BER versus SNR curves of the fourth 

iteration of conventional LR-aided K-Best decoder and DFS-LSD, both operating with 

maximum list size, 64 and saturation limit of 8, are also included in the same figure. 

Only the performance of fourth iteration is considered in this work, since after fourth 

iteration, the performance improvement from i-th to first iteration gets saturated [13, 14]. 
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Figure 40. BER vs SNR Curve of the 4th Iteration of Proposed and Conventional K-Best 

with DFS-LSD decoder. For Conventional and DFS-LSD, K is Chosen to Be Maximum, 

64 with Saturation Limit to 8 for 16 QAM 4 × 4 MIMO. 

 

 

As it is demonstrated in Figure 40, at the BER of 10−6, the difference between 

conventional K-Best and adaptive K-Best is less than 0.1 dB. Hence, adaptive K-Best 

can achieve nearly similar performance with less number of list size, comparing to the 

conventional one operating at maximum list size. In addition, 1.6 dB improvement in 

performance can be attended using the adaptive K-Best detector comparing to the DFS-

LSD decoder, which is operating with maximum list size 64 and saturation limit of 8. 
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Moreover, the performance of adaptive system highly depends on the chosen threshold 

points. If the thresholds are kept high, then exact BER can be achieved with adaptive K-

Best decoder compared to the conventional one. On the other hand, lower thresholds can 

degrade the performance of our proposed method to a significant amount. 
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CHAPTER VIII 

 

CONCLUSION 

 

In this research development of both algorithm and hardware architecture of 

MIMO detector is considered, thereby resulting an efficient novel MIMO detector 

architecture. It outperforms all the previously proposed detectors in terms of BER 

performance, computational complexity, throughput, gate count, power consumption, 

latency with pipelining effect. It can be performed in both real and complex domain and 

can also be represented in different MIMO configuration with multiple modulation 

schemes. 

The algorithm of an iterative soft decision based MMSE extended K-Best 

decoder is presented in Chapter III. It exploits the lattice reduction following IEEE 

802.11e standard. This decoding process uses LR algorithm to enforce orthogonality 

among the constellation points and MMSE extension to reduce the effect of noise. 

Furthermore, this method combined with LLR clipping reduces the required list size for 

the maximum achievable performance. Our improved MIMO soft detection algorithm 

has achieved 1.1 to 2.7 dB improvement compared to LSD based MIMO detection for 

different iterations. It includes the optimized list size and saturation limit for each 

antenna arrangement, observed by the results of extensive simulations. Finally, it is 

showed that unlike the conventional K-Best algorithm, LLR clipping can reduce the size 
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of the optimum candidate list for new and LSD based algorithm for more than 8 times 

than that of the unclipped decoders. 

Then, in Chapter IV an iterative soft decision based complex domain K-Best 

decoder is proposed exploiting the improved complex on-demand child expansion. It 

includes the use of LR algorithm in order to achieve orthogonality among the 

constellation points reducing the effect of noise. An additional parameter, Rlimit is 

introduced to tune the complexity of computation with improvement in BER 

performance. Reduction of computational complexity directly results to less power 

consumption of the decoder as well. 

 We also compare the result of 4th iteration of our proposed decoder with 

iterative conventional complex decoder and obtain 1.4 to 2.5 dB improvement at the 

BER of 10−6 for 8 × 8 MIMO and 64 QAM modulation scheme with comparable 

complexity. Comparing with iterative LR-aided real domain decoder, the improvement 

increases more than 7.0 dB with less computational complexity. Although more than 2.9 

dB and 9.0 dB gain can be achieved with same level of complexity comparing 1st 

iteration of proposed decoder with that of conventional iterative complex and real 

decoder respectively. 

The fixed point design of an iterative soft decision based LR-aided K-Best 

decoder is proposed in Chapter V. A simulation based word-length optimization 

provides feasible solution for hardware implementation with the selection of efficient 

architectural sub-components. Besides, the fixed point conversion also minimizes the bit 

width of each variable. Hence, it can reduce hardware cost including area, power and 
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time delay. Simulation results show that the total word length of only 16 bits can keep 

BER degradation about 0.3 dB for 8 × 8 MIMO with different modulation schemes. For 

QPSK modulation, precision of 16 bits results in less than 0.3 dB degradation, while 16 

QAM and 64 QAM modulation provide 0.2 dB and 0.3 dB decrease in performance 

respectively compared to those of the floating bits of MIMO decoder.  

After that, a VLSI architecture of complex domain K-Best decoder is proposed 

exploiting the improved complex on-demand child expansion in Chapter VI. It includes 

an additional parameter, Rlimit in order to trade-off the complexity of computation with 

improvement in BER performance. Although the proposed approach is scalable to any 

MIMO configuration and constellation order, the design is specified for 8 × 8 MIMO 

with 64 QAM modulation scheme for K and Rlimit equal to 4.  

The proposed VLSI architecture is modeled in Verilog HDL using Xilinx and 

synthesized using Synopsys Design Vision in 45 nm CMOS technology. Simulations for 

functional validation and verification are done using MATLAB and Xilinx. Next, the 

comparison of the performance with the previous works is mentioned for fair evaluation. 

Our design approach achieves 1090.8 Mbps throughput with power consumption of 580 

mW and latency of 0.33 us. The number of gate count required is 63.75 kG and it can 

achieve frequency up to 181.8 MHz. 

Lastly, an iterative soft decision based MMSE extended adaptive K-Best decoder 

is proposed in Chapter VII exploiting the lattice reduction. It adaptively changes the list 

size, K with respect to the channel condition, reducing numerous computational 

complexity of the decoder. In order to estimate the channel condition, it does not require 
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the measurement of SNR. The ratio between the first two minimal distances is calculated 

instead to predict the channel condition. If the ratio is high, i.e., the difference between 

first two minimal distances is low, the channel condition can be considered good and 

lower value of list size, K can be used for achieving the required BER. Hence, this 

process starts decoding with maximum list size for each frame, calculates the average 

ratio for certain number of symbols of a frame to estimate the channel, and then decodes 

the rest of the symbols of that frame with new value of K.  

This decoding process also uses LR in order to enforce orthogonality among the 

constellation points and MMSE extension for reducing the effect of noise. The concept 

of LLR clipping is included to reduce the required list size for the maximum achievable 

performance. Our adaptive K-Best algorithm operating at less number of K has achieved 

similar performance compared to the conventional one with maximum list size. While 

comparing to the fourth iteration of DFS-LSD with K as 64 and saturation limit of 8, 1.6 

dB improvement can be obtained by the proposed method with less number of K and 

fewer computational complexity of the tree search decoder. 

Our research efforts have cultured the algorithmic and hardware solutions for 

both real and complex domain MIMO decoder. It not only reduces computational 

complexity, but also provides a feasible implementation design with higher throughput 

and lower latency. Future work of this proposed architecture includes evaluating the 

detector performance and synthesis result with improved and modified design for each 

critical block (such as sorter, PED calculation etc.).  
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