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ABSTRACT 

 

Geopolymers (GPs) are defined as a unique class of inorganic polymers synthesized 

through polycondensation of monomeric Al and Si species into a complex 3D 

framework. Due to their good mechanical properties, fire resistance, and low thermal 

conductivity, much research has been conducted on possible use in construction 

materials and in fire resistant coatings. Despite the abundance of research on geopolymer 

based coatings on metallic substrates, very little research has been done on the adhesive 

properties at both room and high temperature of geopolymer gels on metallic substrates. 

In this work, substrates adhered with geopolymer based adhesives were analyzed for 

surface wettability, adhesive layer thickness, lap shear and tensile strength at room and 

elevated temperatures. In addition, photographic analysis was conducted through use of 

optical and electron microscopy with Energy-Dispersive X-Ray Spectroscopy (EDS). 

Results of testing are conclusive in showing that geopolymer based adhesives are 

comparable in tensile and shear strengths to alternative commercially available polymer 

adhesives at room temperature, while maintaining good performance after exposure to 

elevated temperatures, i.e., up to 800 °C. Exposure to elevated temperatures appears to 

cracking in the geopolymer matrix without delamination due to thermal expansion 

mismatch, leading to a reduced strength adhesive without complete debonding or failure. 

In addition, it was shown that a Si-O-M oxygen bridge develops between the Si in the 

geopolymer gel and the metal (M) oxide on the surface leading to increased strength.  
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NOMENCLATURE 

Al     Aluminum 

CA     Cyocrylanate 

EDS     Energy-Dispersive X-Ray Spectroscopy 

FTIR     Fourier Transfer Infrared Spectroscopy 

GPs     Geopolymer 

K     Potassium 

KOH     Potassium Hydroxide 

MK     Metakaolin 

Na      Sodium 

NaOH                Sodium Hydroxide 

OM      Optical Microscopy 

Si     Silicon 

SS     Stainless Steel 

Ti     Titanium 

SEM     Scanning Electron Microscopy 

XPS     X-Ray Photoelectron Spectroscopy 
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1 INTRODUCTION  

1.1 History of Geopolymers  

Inorganic aluminosilicate polymers, usually refer to as “Geopolymers”, are a new class 

of materials that can be used as alternative binding agents to traditional cements. These 

materials were believed to be first synthesized by Viktor Glukovsky and his team in 

Ukraine in the mid-1950s [1]. Although they referred to them as “soil silicate concretes”, 

Joseph Davidovits coined the term “Geopolymer” during his research in the 1970s that is 

more commonly used today [2].  

Various definitions of Geopolymers can be found in the literature. However, the 

following definition by Bell et. al probably provides the best description of their nature: 

“Geopolymers are a class of totally inorganic, alumino-silicate based ceramics that are 

charge balanced by group I oxides. They are rigid gels, which are made under relatively 

ambient conditions of temperature and pressure into near-net dimension bodies, and 

which can subsequently be converted to crystalline or glass-ceramic materials [3].” 

It is believed that Geopolymers have been used throughout history for different 

structural applications. In the early 1980s, Davidovits proposed that the ancient 

Egyptians developed a geopolymeric reaction to synthesize stone blocks for pyramids 

over 4500 years ago. Several teams of scientists are still currently doing research to 

support this theory [4]. In addition, Nuclear Magnetic Resonant (NMR) analysis 

identified geopolymeric compounds (though different from modern synthesized 

compounds) inside ancient Roman architectural structures primarily used for storing 
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water, such as aqueducts and cisterns. These cements were believed to have been 

synthesized using the alkaline rich volcanic soil of the region [5]. Davidovits suggests 

that in ancient times, geopolymer based cement may have been used as a cementous 

material long before Portland cement was developed. 

Geopolymers possess many traits that make them ideal candidates for ‘green’ (i.e. 

renewable resource) building materials. For example, geopolymers can be synthesized 

from industrial waste with little to no post processing, and produce no atmospheric 

carbon dioxide (CO2) upon synthesis. Portland cement, on the other hand, not only 

requires high temperatures for activation but also releases CO2 into the atmosphere 

during production [6]. Advocates for renewable resources as well as environmental 

advocates have suggested geopolymer based cements would make an excellent green 

substitute for today’s most common Portland cement based concrete [7, 8]. In addition to 

their green properties, geopolymers also possess several other significant advantages 

over other traditional cements; several studies have suggested geopolymer cement be 

used as a fire resistant coating due to its heat and spallation resistance and low thermal 

conductivity [9, 10]. Other studies have shown that geopolymer materials possess the 

characteristics needed to safely contain radioactive material [11]. While geopolymers 

had not been extensively researched before the 21st century, current research shows they 

may be able to solve many problems in an inexpensive and efficient manner. 
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1.2 Chemistry and Structure of Geopolymers  

Chemically, Geopolymers can be identified as poly-sialates with empirical formula Mn[ -

(SiO2)z – AlO2-]n.w.H2O  where M is the alkali metal cation, n is the degree of 

polymerization, z is the Si/Al  ratio (usually 1, 2, 3…), and w is the molar water 

quantity. It is worth noting here, that the activating metal cation M (usually Na+ or K+) is 

believed to stay in the geopolymer framework cavities close to Al and balance the 

negative charge of the IV-coordinated [-AlO2-]
-, as illustrated in Figure 1 by the yellow 

atoms [8].  

 

Figure 1: Geopolymer 3D framework [2] 

 

Geopolymers are usually prepared with a Si/Al ratio of 1.8-2.2, an H2O/(Al2O3 +SiO2) 

ratio of 2.0-5.0, and a M/Al ratio of 0.9-1.2 (where M is Na or K). Over the last several 

years, a large number of studies have reported on the effects that chemical composition 
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of geopolymers has on their structure and properties. Chemical modifications such as 

water content, additions of other alkali activators, the availability of aluminum, as well 

as other seemingly insignificant factors can play a large role in the chemical structure, 

and consequently properties of geopolymers [12-15]. 

The most studied and arguably the most important factor dictating the properties of 

geopolymers is the Si/Al ratio in their structure. This ratio dictates the formation of the 

polysilates that form the geopolymer framework during polycondensation [2, 16, 17]. It 

is believed that a higher Si:Al ratio allows a more complex interlinking in the 

geopolymer framework during polycondensation, leading to overall better properties 

such as higher mechanical strength. Different polysilates for different Si:Al ratios can be 

seen in Figure 2.  

 

Figure 2: Polysilates corresponding to Si/Al ratios of 1:1, 2:1, 3:1, and 4+:1 [7] 
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Another critical factor during polycondensation is the availability of aluminum in the 

geopolymer gel. The amount of aluminum ions is readily available during the 

polycondensation phase and its release rate directly affect many geopolymer properties, 

including strength, microstructure, acid resistance, the curing profile, and the strength 

development profile [18, 19]. While the alumina in metakaolin-based geopolymers is 

readily available [20], the aluminum ions in fly ash and other industrial waste based 

geopolymers are much more slowly released. In addition, the release rate can be dictated 

by alkali activator type and concentration [21]. A slowly released alumina source can 

become the rate limiting step in a geopolymer reaction, leading to incomplete 

geopolymerization and polycondensation in addition to slow curing times [22].  

High water content affects geopolymers by increasing the distance between the 

geopolymer chains during polycondensation. Upon curing, this excess water evaporates 

from the geopolymer leaving a lower density solid with a more open geopolymer 

framework. By decreasing density, one subsequently decreases compressive strength and 

increases open porosity. However, open porosity and more open structure can result in 

lower thermal conductivity [12]. Excessive water also seems to decrease the pH of the 

alkali solution, thus requiring the addition of extra OH- (usually by adding more NaOH 

or KOH) to balance the solution and make an optimized geopolymer [8, 23]. 

The balance of alkali activator to aluminum also seems to be important. Ideally the ratio 

should be 1:1, as the K+ or Na+ ion is loosely attached to the aluminosilicate framework 

to balance the positive charge on the Al+ ion. However, an increase in the 
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alkali/aluminum ratio has been theorized to act as a “chain terminator” during 

polycondensation and prevent the geopolymer chains from fully developing. In addition, 

the extra alkaline content makes the geopolymer more hydrophilic and leads to an 

increase in the residual chemically bonded interstitial water after curing [8, 12, 23].  

In another study it was determined that the addition of Calcium, as well as other earth 

alkaline cations, to the initial geopolymer gel resulted in additional strength at high 

temperatures. This is partly due to calcium hydroxide creating calcium silicate hydride 

phases in the aluminosilicate network, developing feldspar and nepheline at high 

temperatures [24]. Most of the strength increase comes from the tendency toward 

framework disorder [25]. In addition, calcium and other earth alkali phases act as 

reaction germs and increase the reaction rate to more quickly develop structure-forming 

products [24].  

Many other chemical considerations in addition to the ones above mentioned have been 

discussed in the two recent books published on Geopolymers [2, 8]. 

 

1.3 Synthesis of Geopolymers  

Synthesis of geopolymers is based on Al and Si speciation and condensation 

polymerization. A basic flowchart of geopolymer synthesis can be seen in Figure 3. 



 

7 

 

 

Figure 3: Geopolymerization flowchart [7] 

 

Aluminosilicate rich sources such as clays (i.e. kaolin, or metakaolin) or industrial waste 

(i.e. fly-ash, steel slag) [26, 27] containing polymeric chemical species, such as 

[(SiO)OH3]
-, [(SiO2)OH2]

2-, [(AlO)OH4]
- etc. make excellent precursors for geopolymers 

due to their naturally occurring structure and stoichiometry. Ideal candidates for 

geopolymerzation contain a Si:Al ratio between 2-4 (this ratio can be artificially 

increased during synthesis if the base aluminosilicate source is lacking silicon content by 

use of an alkaline silicate solution).  

Next, an aqueous alkaline solution (or an aqueous alkaline silicate solution if extra 

silicon is needed to balance the Si:Al ratio) is added to the aluminosilicate source. Upon 

mixing, the aluminosilicate source is completely dissociated by the alkaline solution into 
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common Si and Al species, i.e. monomers or oligomers. The species formed during 

dissociation can be seen in Figure 4b. After dissociation, the species begin to chain 

together monomerically by forming into –Al-O-Si- or –Si-O-Si- bonds during a 

polycondensation process in which excess water is released, as seen in Figure 4c.  

 

Figure 4: Illustration of geopolymerization process [7] 

 

The aluminosilicate chains continue to grow during the polycondensation process. 

During this process various monomeric, oligomeric, and polymeric units continue to 

produce chains and crosslink until an amorphous gel with a complex 3D structure is 

formed, as is illustrated in Figure 4d. To accelerate curing of the initial gel, it is usually 
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exposed to a temperature of 60-80 oC. The geopolymers continue to polycondensate and 

lose water mass until they are fully cured, which takes approximately 21 days at room 

temperature [28]. 

The final geopolymer structure can be described as an amorphous, 3-D framework of 

corner-sharing [SiO4]
4- and [AlO2]

5- tetrahedra in IV-fold coordination [29], where the 

IV-coordinated aluminum present in the structure differentiates a geopolymer from other 

poly-aluminosilicate materials. The negatively charged Al ions in the geopolymer are 

balanced by residual alkali cations which remain loosely incorporated into the 

geopolymer structure. These cations are hydrophilic and retain some water in the 

geopolymer structure after curing [12, 30]. 

After completion of the curing process, a rigid, aluminosilicate polymer with an 

amorphous, complex, 3D network structure, referred to as geopolymer, is formed.  

 

1.4 Applications of Geopolymers  

While geopolymers possess similar physical characteristics to Portland cement that make 

them an excellent alternative for concrete in traditional construction applications, they 

also possess many other properties that can be utilized in other industries and 

applications. 
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1.4.1 Thermal Protection Applications 

Geopolymers have inherently low thermal conductivity due to their chemistry and open 

framework structure. Their conductivity can be lowered even further by introducing 

porosity to their structure by introducing excess water to the geopolymer mixture. The 

geopolymer can also be foamed while in gel phase, creating a very lightweight porous 

material [31]. These traits make geopolymers a prime candidate for insulation 

applications where an inexpensive, durable material with low thermal conductivity is 

needed.  

Many researchers have conducted tests on the thermal conductivity of geopolymers. 

Duxson et. al. [32] measured the thermal conductivity of Geopolymers and found it to lie 

between 0.2 and 0.6 w/m.K, depending on their chemistry and structure. This falls well 

below range of traditional construction materials, especially concrete (K = 1.6 – 1.9 

w/m.k) [33]. Geopolymer based insulations have successfully replaced several types of 

insulation in a variety of applications, but have the potential to excel in industrial casting 

environments as a refractory cement. For example, ceramic fiber reinforced Geopolymer 

composites do not experience the same level of crack propagation as alternative 

refractory cements because their stiffness increases with temperature rises, in addition to 

the fiber reinforcement preventing excessive crack propagation leading to failure [34]. 

Geopolymer foams are the latest in aluminosilicate based thermal protection. As studied 

by Zhang et. al., these foams provide an economic and environmentally friendly material 

that is simple to produce and can be used for a variety of applications. Zhang suggests 
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these foams can either be directly applied to existing structures to add thermal insulation 

and structural reinforcement, or cast into blocks to create a portable construction 

material [31].  

 

1.4.2 Fireproofing Applications 

Geopolymers are also considered to be an ideal candidate for both fireproof materials 

and coatings due to a variety of factors. First, as discussed above, they possess low 

thermal conductivity. This is beneficial, especially in the application of thermal barrier 

coatings, as it prevents heat transfer to the substrate. Second, geopolymers are able to be 

synthesized into a liquid ‘gel’ before curing, allowing them to be applied with methods 

such as rolling, brushing, or even spraying [35, 36]. Many traditional fireproofing 

materials are distributed in rolls or sheets, preventing uniform coating of complex 

geometries. Geopolymer paint could present an inexpensive solution to fireproof 

coatings for many applications. An example of geopolymer based fire retardant coating 

being tested can be seen in Figure 5. 
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Figure 5: Flame testing of a fire retardant geopolymer coating 

 

Bakharev et. al. conducted a study on the thermal behavior of fly ash based geopolymers 

exposed to temperatures similar to those found in aggressive fires. They found that 

certain geopolymer compositions remain amorphous at temperatures up to 1200 oC 

rather than breaking down into alkaline feldspars as many other aluminosilicates do. 

Furthermore, these samples exhibited increased compressive strength upon heating in 

contrast to many materials which are susceptible to thermal creep at elevated 

temperatures [37]. 
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One particular concern of concrete structures is their tendency to spall under thermal 

stresses. The concrete absorbs water, which upon application of heat turns to steam and 

breaks off large chunks of the concrete due to internal stresses. Spalling is a rather 

common concern when designing large structures made of concrete, and structural 

columns and other vertical supports loaded in compression have the potential to explode 

when exposed to fire due to their particularly low permeability and high brittleness [38]. 

Due to their internal cross linking, geopolymers tend to resist spalling much more than 

traditional Portland cement based concretes while maintaining equal or higher 

compressive strength. 

 

1.4.3 Chemical Resistance 

Another environment where concrete is not a viable construction material is in acidic 

environments. Strong acids, such as sulfuric or hydrochloric acid, dissolve the Portland 

cement component of traditional concrete rendering it unstable. Geopolymer based 

materials have much better acid resistance than concrete, even in long term exposures. 

Tests in which geopolymer samples have been submerged in strong acids for long 

periods of time show minimum (if any) mass loss, versus complete dissolution for 

Portland cement based concrete [39, 40]. In fact, recent research has shown that 

exposure to strong acids does not alter the geopolymer microstructure significantly [41]. 

It has been hypothesized that the internal aluminosilicate polymer structure inhibits acid 

erosion.   
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Due to their chemistry, geopolymers are naturally resistant to highly basic environments 

due to the free OH- groups built into their structure. These properties make geopolymers 

a natural pH stabilizer, and they have been used with some success in this application in 

research [42]. 

 

1.5 Objectives of the Research Work  

The importance of this research work presented here stems from the ability to create a 

product that is extremely beneficial to the industry. Historically, bonding of ceramic to 

metal has been done with using either adhesives or brazing. In order to make the ceramic 

adhere to the metal, the ceramic is first infiltrated with a metallic braze. Next, the 

metallic component is attached and soldered to the infiltrated ceramic component. This 

method is preferred when an electrical or thermal bond is required. Problems arise at 

high temperatures, as solders and brazes that are capable of being applied usually melt at 

temperatures below 500 oC. In addition, the joint is not thermally or electrically isolated 

and susceptible to corrosion [43].  

The most widely used current methods for adhesion rely on polymer based adhesives. 

Many of these products are general purpose adhesives that will work with metals and 

ceramics. For example, cyocrylanate (CA) glue can be used to bond stainless steel or 

titanium to glass, but has a very low shear strength and an even lower melting point. In 

addition, polymer based adhesives usually require surface preparation, which usually 
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requires either physically or chemically roughing the surface in order to give the 

adhesive a method to penetrate the substrate [44-46]. 

Other adhesives exist that have much higher working temperatures. For example some 

alumina based adhesives are capable of withstanding working temperatures of up to 

4000 oF. These products are excellent for ceramic or refractory adhesion, but are not 

ideal for adhering metallic substrates together as they do not penetrate the metallic 

surface that results in a very weak bond. Other factors include high cost and low 

compressive strength (due to high porosity) [47].  

Geopolymer-based adhesives fill in niche in the currently available adhesive lineup for a 

product that is capable of bonding metallic and ceramic substrates with low thermal 

conductivity, high corrosion resistance, and low cost. 
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2 LITERATURE REVIEW  

In order for Geopolymer based cements to be a suitable adhesive for metallic substrates 

at high temperatures, they must outperform current adhesives in their mechanical 

strength, chemical adherence to metallic substrates, thermal resistance, and their 

chemical resistance in aggressive environments. Many studies have been performed on 

these topics and some of the results have been summarized in the following sections. 

 

2.1 Mechanical Properties of Geopolymers 

It is critical for an adhesive to be able to bear a high tensile load. Research has shown 

that Geopolymers possess a relatively low tensile strength compared to most metals, but 

their relative tensile strength is quite high compared to many ceramics. Buchwald et. al 

showed that in both slag and metakaolin based geopolymers, the tensile strength is 

almost always directly proportional to the compressive strength, with an average range 

of tensile strengths between 7 to 12 MPa [14]. For comparison, most polymer based 

glues, with proper surface treatment, possess a tensile strength in the range of 5 to 30 

MPa [48] [49]. Several other studies have shown similar tensile results to Buchwald’s in 

other baseline studies where the geopolymer chemistry has been altered [4, 50-52]. 

Dombrowski et. al determined that an addition of Calcium Hydroxide to the geopolymer 

gel actually increase the tensile strength of geopolymer cements at elevated temperatures 

by a small percentage by forming an amount of feldspar in the geopolymer matrix [24]. 

Analyzing these previous results show that geopolymer matrix is strong enough in 
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tension to be a feasible adhesive, comparable in strength to polymer based adhesives. In 

addition, the research shows that both metakaolin and fly ash based geopolymers possess 

high enough tensile strength to be feasible adhesives, and the additions of small 

impurities to the initial reagents or the geopolymer gels does not cause catastrophic 

degradation of the tensile strength. All of these conclusions support feasibility of using 

geopolymer gel as an adhesive. 

As the most researched component in geopolymer research is the ability to create 

environmentally friendly alternatives for concrete, a great number of studies have been 

reported on Geopolymer compressive strength and performance with and without 

common aggregates in many different compositions. One of the most influential studies 

on this research work was the work conducted by Lizcano et. al on the effect of water 

content on geopolymer’ s properties. Lizcano et al. showed that while previous methods 

of geopolymer synthesis simply added water to the geopolymer gel to obtain a workable 

viscosity for casting, the water content in the geopolymer gel possesses a strong 

influence on the final porosity of the geopolymer. As the porosity increases, the 

geopolymer’s compressive strength decreases [12]. Westwick et. al showed that when 

higher water ratios are used during the production of geopolymer gel, increasing the 

amount of alkali used during synthesis can lead to higher compressive strength while an 

excessive amount of alkali leads to a lower compressive strength. This is theorized to be 

caused by additional alkali allowing charge balancing in the geopolymer structure when 

high amounts of water leach some of the alkali material, while an excessive amount of 

alkali material acts as a ‘chain terminator’, causing the polycondensation process to stop 
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prematurely and preventing some crosslinking. When geopolymers are created with 

optimized chemical and water ratios, their compressive strength can exceed 100 MPa, 

vastly exceeding the compressive strength of most Portland cements [23]. While 

compressive strength is not critical for this work, these research works show that 

geopolymers will fail in tension or shear modes before compressive modes, allowing us 

to eliminate compressive testing from the experiment design. 

 

2.2 Adhesion of Geopolymers to Various Substrates 

In order to be a viable adhesive, geopolymers must be capable of adhering to substrates 

via mechanical interlocking or chemical bonding. Mechanical interaction between 

geopolymer and the underlying substrate has been studied in depth by many researchers, 

as geopolymers show promise to make thermally resistant coatings on metallic 

substrates. Temuujin et. al has conducted several experiments involving the coating and 

adhesion of mild steel substrates with geopolymer adhesive[35, 36, 53]. In an early test 

performed with sodium cured fly ash based geopolymers, it was shown that geopolymers 

were capable of coating a mild steel substrate with the primary factor of effectiveness 

being the geopolymer composition, most importantly the water content. The results were 

promising, with a tensile strength of 3.5 MPa being attained. More testing was shown to 

reveal a high water content leads to a low thickness coating while a lower water content 

provides a thicker coating, but is more susceptible to cracking during curing. After a 

certain thickness the geopolymer ceases to effectively adhere to the substrate, theorized 
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to result from warping during curing [36]. In a later test a sodium silicate/metakaolin 

based geopolymer was used. The geopolymer was tested to determine its water solubility 

after testing, with results ranging from 12 to 35 percent leaching, depending on the 

initial concentration. In addition, the coated specimens were exposed to elevated 

temperatures for short periods of time. The geopolymer adhesive showed a 3% thermal 

expansion relative to the substrate after heating at 800 oC for 1 hour [35]. These results 

are supported by other research data, showing geopolymer coatings have relatively high 

tensile strength and make excellent coatings when processed properly [53].  

Latella et. al has shown that geopolymer based adhesive is capable of bonding glass and 

steel substrates effectively with both fly ash and metakaolin based compositions [54].  In 

addition, Ueng et. al has determined that geopolymer based adhesive excels in the 

joining of different cement mortars under conditions where they would normally be 

unable to bind to each other [55]. Finally an important result from De Barros et. al shows 

us that the surface preparation of the substrate has little to no effect on the bonding 

strength of the interface [56]. These results show great promise to the experiment, as 

geopolymers have been successfully bonded to metallic substrates. The fact that surface 

preparation does not significantly increase tensile strength supports the theory that an 

underlying chemical bond is present in the geopolymer-substrate interface. 
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2.3 Chemical Bonding of Aluminosilicate to Metal Oxide Layers 

Aside from mechanical strength, another critically important facet to analyze is the 

ability for geopolymer based adhesive to chemically bond to the substrate material. 

While little research to date has been conducted on the adhesive properties of 

geopolymer cements, many studies have been conducted in the field of dentistry on the 

chemical bonding of silicon based gels and adhesives to titanium substrates, as many 

dental implants are made of titanium. Adachi et. al and Ozcan et. al have both analyzed 

the adhesive strength of silicon based gels to titanium via oxide adherence. Oxide 

adherence allows silicon and titanium to bond through a shared oxygen atom in the 

oxide layer of titanium, creating a Si-O-Ti bond. These bonds have relatively high 

strength and are created spontaneously when curing a silica-based adhesive [57, 58]. 

Wang et. al also performed experiments on oxide adhesion using a silicon nitride coating 

on titanium, allowing a common alumina based porcelain to bond to a titanium substrate 

chemically but allowing oxygen diffusion during the firing process [59]. These studies 

dictate that is it possible for a silicon atom to bond to the oxide layer of a metallic 

substrate without the addition of any additional energy addition to the system or any 

special preparation work. It also shows that Si-O-Ti bonds are a reliable mechanical 

bond capable of adherence to a titanium substrate. The titanium oxide adherence could 

theoretically be carried over to any metallic substrate with a nonreactive oxide layer, 

including aluminum oxide, chromium oxide (in stainless steel), and even possibly iron 

oxide. These results are optimistic for the purposes of a geopolymer based adhesive; 

chemical adhesion potential shows geopolymer gel, which is primarily constructed of 
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silicon, aluminum, and oxygen, has a high chance of creating oxygen adherence to a 

metallic substrate with an oxide layer.  

 

2.4 Thermal Resistance of Geopolymers 

For use in an industrial environment, an adhesive must possess high thermal resistance. 

The thermal properties of geopolymers have been widely studied due to their inherently 

low thermal conductivity and use in possible insulation applications. Barbosa and 

MacKenzie showed that geopolymers continue to possess their basic Al-O-Si amorphous 

crosslinked structure until their melting point between 1200 and 1300 oC. They also 

showed that while the geopolymer samples lost their excess water at 200 oC, they did not 

shrink excessively. In addition, at higher temperatures the geopolymers showed very 

little thermal expansion, making them ideal for high temperature applications [60]. 

Bakharev et. al showed that geopolymers possess excellent mechanical properties up to 

temperatures exceeding 1000 oC before they begin to degrade. However the geopolymer 

itself remained amorphous and did not begin conversion to feldspar and thus break down 

the cross linked matrix [37]. Since the geopolymer does not shrink when exposed to high 

heat and does not have an excessively high thermal expansion coefficient, it can be 

assumed the metallic substrate will expand at a higher rate than the geopolymer based 

adhesive. This would prevent the adhesive from delaminating from the substrate at 

elevated temperatures if the thermal expansion coefficient of the geopolymer was higher 
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than that of the substrate. Instead, the geopolymer adhesive may simply crack between 

substrates, but still retain a chemical bond with the substrate. 
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3 EXPERIMENTAL METHOD  

3.1 Substrate Preparation  

Samples for this experiment were prepared in accordance with ASTM D897-08 for 

tensile specimens and ASTM 1002-10 for shear specimens. Small sample coupons were 

also created for microscopy analysis and to heat treat to determine the effect of high 

temperature to the geopolymer adhesive. 

The tensile specimens were created using a modified ¾ - 10 bolt made from grade 2 pure 

titanium or 316 stainless steel. The bolt was placed thread first into a collet on a manual 

toolroom lathe. First, the front head of the bolt was machined flat to remove any dents, 

lettering, or other defects on the surface. A low feed rate was used on the lathe to avoid 

any grooving due to high feed speeds. Next, the side of the bolt was turned down to a 

diameter of 1.000 inches, with a tolerance of ±0.0005 inches. This allowed extremely 

accurate calculation of the surface area the adhesive is applied to, resulting in reliable 

calculations of the tensile strength. The tensile samples before processing can be seen in 

Figure 6. 
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Figure 6: Tensile test specimen before adhesion 

 

The shear specimens were prepared using different tooling for each material. Due to the 

relatively high cost of the titanium plate used, a Computer Numerically Controlled 

(CNC) Mitsubishi FA Series wire Electrical Discharge Machine (EDM) was used to 

create the ¾ inch wide strips of titanium used for shear testing. This was done primarily 

to minimize kerf waste and to provide the maximum number of samples from the 

titanium stock. Upon receipt from the wire EDM, the specimens were extremely dirty 

from the machine. They were cleaned using 600 grit sandpaper and ethyl alcohol before 

being prepared for testing. The specimens were finally scored ¾ inch from the end to aid 

in the measurement during the creation of the lap shear specimens. 

The stainless steel strips used in shear testing were cut from a larger plate and therefore 

did not need wire EDM. A South Bend Lathe Company SB1019 horizontal band saw 

was used to cut the strips approximately 7/8 inches wide. Next, the strips were squared 
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on a Bridgeport vertical milling machine using a ½ inch carbide end mill. Finally, a jig 

was created to allow the strips to be held vertically and milled to exactly ¾ inch wide 

using the carbide end mill. The specimens were finally scored ¾ inch from the end to aid 

in the measurement during the creation of the lap shear specimens. The Titanium and 

Stainless Steel shear specimens before processing can be seen in Figure 7.  

 

Figure 7: Shear test specimens before adhesion 

 

The ¾ inch square heat treatment coupons were cut with wire EDM in a manner similar 

to the titanium shear specimens. Upon receipt they were cleaned with 1000 grit 

sandpaper and ethyl alcohol before preparation for testing. The heat specimens as well as 

the plate they were cut from can be seen in Figure 8. 
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Figure 8: Heat treatment specimens before adhesion 

 

3.2 Geopolymer Gel Synthesis  

Geopolymer gel is formed of a combination of commonly found raw ingredients. While 

geopolymers are capable of being synthesized from fly ash, it is easier to control the 

purity, reaction rate, and the resultant properties when they are synthesized from 

metakaolin clay. In this study we use metakaolin (METAMAX, BSF Catalysts Ltd., NJ) 

and fumed silica (Alfa Aesar, MA) together with NaOH (Alfa Aesar, MA) or KOH (Alfa 

Aesar, MA) alkali activators and deionized water to prepare geopolymer gels. First, the 

quantities of material needed to prepare geopolymers with different compositions, i.e. 

with different Si/Al and (SiO2+AlO2)/H2O rations were measured. In all samples, Na/Al 

or K/Al ratio was kept constant and equal to 1. Geopolymers with different composition 
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were labeled in this study as X-Y-Z, where X is akali activator (Na or K), Y is Si/Al 

ratio and Z is (SiO2+AlO2)/H2O ratio.  

The water is measured and placed into a borosilicate glass beaker. A stir bar is added, 

and the beaker is placed onto a stir plate. NaOH or KOH is then weighed and slowly 

added to the water to form an alkaline solution. The solution is kept covered during 

mixing to prevent water vapor from escaping the solution or carbon dioxide from 

entering it as the acidity of carbon dioxide can neutralize the OH- ions and cause poor 

dissolution of the silica in the next step or even incomplete geopolymerization. This 

solution must be well mixed before continuing, and is stirred for 2 to 4 hours depending 

on the quantity of alkali used. 

The alkaline solution is then processed into an alkaline silicate solution. Fumed silica is 

weighed and added slowly to the alkali solution as it dissolves. Adding the silica too 

quickly results in the alkali solution being wicked into the fumed silica before the silica 

can be dissociated, and can result in failure of the synthesis. Adding the silica usually 

takes between 1 to 2 hours. Upon completion, the alkaline silicate solution must be well 

mixed (usually for 24 or more hours) before continuing. 

Finally, the geopolymer gel is created by adding the silicate solution to the metakaolin 

clay. The clay is weighed and added to the stir chamber of a vacuum mixer (Whipmix, 

KY). The well-mixed silicate solution is also added to the stir chamber. The mixture is 

stirred in a vacuum for 5 minutes to ensure all of the metakaolin clay has been dissolved. 

In the event of an extremely viscous mixture which prevents the paddle in the mixer 
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from operating, the stir chamber is removed and mixed manually until the viscosity 

decreases enough to allow the vacuum mixer to function properly. 

Upon completion of mixing, the geopolymer gel is stored in syringes for short term 

storage and easy application. The gel remains viable for an approximate 1 hour period, 

upon which it has sufficiently polycondensated and is too viscous to extrude properly. A 

syringe of geopolymer gel ready for application can be seen in Figure 9. 

Figure 9: Syringe of geopolymer gel adhesive ready to be applied 

3.3 Geopolymer Gel Wetability 

In order to determine ideal geopolymer gel compositions to use as adhesives, a 

wettability test was performed to measure the contact angle and thickness of the 

geopolymer gel when applied to the metallic substrate. Approximately 0.5 mL of several 
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types of geopolymer gel was applied to a polished strip of each of the metallic substrates 

that were used in this work (titanium and stainless steel). The specimens were then 

photographed from the side to determine the variance in contact angle as well as the 

adhesive layer thickness. The strips were then placed in a convection oven to cure to 

determine the degree of thermal expansion cracking. 

3.4 Substrate Surface Preparation 

The adhesion test substrates are prepared in several different ways. However, before any 

preparation work is started all of the substrates are thoroughly washed with distilled 

water to prevent impurities from being introduced from external sources. 

For the tensile ‘bolt’ specimens, a lathe was used to remove approximately 0.005 inches 

off the end of the bolt to remove cured geopolymer from previous tests. Next, the edges 

of the bolt are chamfered at a 45 degree angle approximately 0.002 inches to remove the 

burrs resultant from machining. The mating heads of the bolts are then sanded and 

polished using 200 then 400 grit sandpaper. Finally, the specimens are thoroughly 

cleaned with deionized water, followed by ethyl alcohol. 

The shear specimens are prepared similarly to the way the tensile specimens are 

prepared. First, the residual geopolymer from previous tests is removed with a putty 

knife and 200 grit sandpaper. A visual inspection confirms the specimen is free of 

previous geopolymer material or large flaws before it is reused. The specimen is then 
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Several iterations of the tensile and shear specimens were conducted with a highly 

polished surface in order to minimize the mechanical interaction between the 

geopolymer and substrate. These specimens were prepared the same as the tensile and 

shear specimens above, but with a polish regimen of 150-400-600-1000-1500 grit silicon 

carbide sandpaper, followed by 12-6-3 μm diamond polishing paste. The final surface 

was lightly buffed with a soft cloth and ethanol, leaving a mirror finish that can be seen 

in Figure 10. 

Figure 10: Mirror polished tensile test specimens before adhesion 

Since they are only used once, the heat treatment coupons do not need to have excess 

geopolymer residue removed from them between tests. They are lightly sanded with 400 

grit sandpaper and cleaned with water and ethyl alcohol before adhesion. 

sanded with 400 grit sandpaper and cleaned with deionized water and ethyl alcohol. 
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3.5 Adhesion of Substrate with Geopolymer Gel  

3.5.1 Tensile Specimens 

Once the tensile specimens’ surfaces were prepared, they were loaded into a custom 

created fixture to ensure proper adhesion. The bottom bolts were first loaded to the 

bottom plate and secured, using a ¾-10 nut. Next, the top bolts were threaded through 

the aluminum plate. Finally, the top plate was secured to the bottom plate using two 

precision machined risers and screws. The specimens can be seen in the jig prior to 

curing in Figure 11. 

 

Figure 11: Tensile test specimens in alignment jig during adhesion 
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Once the fixture was assembled, a large drop of geopolymer gel (approx. 0.5mL) was 

applied to the head of the bottom bolt. The top bolt was then threaded down until it was 

in contact with the bottom bolt, squeezing the excess geopolymer paste out the sides. 

The thickness of the adhesive layer and the contact pressure could be controlled through 

how far the top bolts were threaded through the aluminum plate. For this set of tests, the 

bolt was turned finger tight, resulting in a contact force of approximately 20N and a 

geopolymer adhesive layer approximately 20μm thick.  

 

3.5.2 Shear Specimens 

Shear specimens were prepared with a jig that allowed both plates to be positioned in a 

perfectly straight line. After the specimens’ surfaces were prepared, strips of wax paper 

were cut ¾ inch wide and placed to the side. A strip of wax paper was laid into the jig, 

followed by a full metal strip on one side of the jig, and a piece of metal scrap on the 

other side of the jig. The metal scrap allowed the second strip to sit level on top of the 

first strip. Next, a syringe was used to dispense approximately 0.25mL of geopolymer 

gel onto the end of the first plate. A second plate was then aligned with the scribe mark 

and placed on top of the first plate to create a shear lap joint. Upon later inspection, the 

weight of the metal alone caused the thickness of the geopolymer paste to vary between 

50μm and 200μm. To rectify this, the specimens were recreated, but with a 2kg weight 

resting on them during curing. This allowed the adhesive layer to remain constant for all 

samples, with a thickness of approximately 30μm. 
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Upon completion of the single shear specimen, a second piece of scrap metal was placed 

opposite to the top plate to create a level surface for the next specimens to sit on. 

Another piece of wax paper was added on top of the specimen, and the process was 

repeated until all shear specimens had been assembled.  

 

3.5.3 Specimens for Thermal Treatment 

After surface preparation, specimens for thermal treatment were prepared by applying a 

small drop (approximately 0.25mL) of geopolymer gel to the bottom substrate, followed 

by the top substrate. Upon completion, the samples were stacked in a v-shaped channel 

to prevent them from turning or sliding during curing. Samples were separated using 

small squares of wax paper. The assembled heat treatment coupons can be seen in Figure 

12. 
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Figure 12: Thermal treatment coupons in fixture during curing 

 

3.6 Controlled Curing  

All samples were cured in a low temperature convection oven at 65 degrees Celsius for 

24 hours in sealed containers. Following the initial curing, the samples were left to age at 

room temperature between 4 and 7 days, allowing excess water in the samples to 

dissipate. 

 

3.7 High Temperature Treatment  

Several samples were exposed to high temperatures to determine how well the adhesive 

performed in an elevated temperature environment. The oven was first calibrated using a 
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J-type thermocouple. Upon reaching the desired temperature, samples were placed in the 

oven and left for 24 hours. Upon removal, the samples were left at room temperature for 

24 hours to stabilize prior to testing or analysis. 

 

3.8 Sectioned Samples for Microscopy 

Several specimens from each batch were created for microscopy following the same 

techniques as listed above. These specimens, once cured and aged, were carefully cast in 

Buehler EpoxiCure 2 Resin and sectioned using a Buehler Isomet 1000 precision 

sectioning cutter. The half specimens cut surface were then polished on an Allied M-

Prep 5 Polisher using silicon carbide sandpaper grits 300, 400, 1000, and 1500. This 

initial sanding was followed by buffing with 12micron, 6micron, 3micron and 1micron 

diamond polishing compound to achieve the smoothest possible surface finish. One of 

the half samples which was to be used for Optical Microscopy (OM) and Scanning 

Electron Microscopy (SEM) and analysis was sputter coated with a 5um layer of 

platinum after being left to cure in a low temperature convection for 3 days to remove 

residual water. 
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3.9 Testing 

3.9.1 Microscopy 

All optical microscopy analysis was performed with a Keyence VHX series digital 

microscope. In order to avoid localized singularities, multiple exposures were taken of 

the specimen in slightly different locations with varied brightness and contrast settings. 

SEM was performed using a JEOL JSM series Scanning Electron Microscope (SEM) 

equipped with Energy-dispersive Spectroscopy (EDS) detectors for analyzing chemical 

composition. 

3.9.2 Tensile Testing 

Tensile testing was performed on an Instron 5900 series tensile testing frame with a 5kN 

load cell attached. Samples were attached to the frame via a set of custom machined 

fixtures that allowed the ¾-10 bolts to be attach to the pin mount of the frame. While 

threading the bolts into the fixtures, great care was taken not to apply any torsion, 

bending or shear loading to the substrate-adhesive interface. In addition, no preload was 

applied to the samples before the start of the test. 
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Figure 13: Tensile test specimen after tensile failure 

 

Once the samples were attached to the frame, they were loaded with a constant extension 

rate of 0.05 in/s. Upon failure, specimens were removed from the fixture to be analyzed 

further. The force and extension at break were recorded and the sample was set aside to 

be analyzed at a later time. An example of a tensile specimen after failure can be seen in 

Figure 13. 
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3.9.3 Shear Testing 

Shear specimens were also tested on an Instron 5900 series tensile testing frame with a 

5kN load cell. Samples were attached to the frame via Instron self-tightening grips. In 

order to prevent bending moments from developing during testing, the samples were 

shimmed on both sides until they were perfectly symmetrical in the grips. Once again, 

great care was taken to avoid applying shear, tensile, torsion, or bending loads to the 

interface prior to the test. 

The samples were subjected to the same extension rate as the tensile samples of 0.05 

in/s. Due to the lack of a pin connection, these samples did not need to be pre-loaded and 

usually had a small amount of tensile force already applied before the test began. 

Upon failure the specimens were removed from the grips and set aside to be analyzed 

further at a later time. The force and extension at break were also recorded for each 

sample identifier. An example of a shear test after failure can be seen in Figure 14. 
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Figure 14: Shear test specimen after shear failure 

 

3.9.4 Heat Treated Tensile Specimens 

Heat treated tensile specimens were tested with the same parameters as tensile 

specimens with the addition of a heating cycle prior to testing. For all samples tested in 

this work, the heating cycle prior to tensile testing was 500 °C.  
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4 RESULTS AND DISCUSSION 

4.1 Surface Wettability 

In order to determine the most optimal geopolymer compositions to test, surface 

wettability tests were performed. Geopolymer gel was carefully dropped onto a polished 

strip of each substrate metal. The strips were then photographed from the side to 

determine the approximate contact angle. A photo of the wettability test before curing 

can be seen in Figure 15.  

 

Figure 15: Surface wettability on stainless steel and titanium substrates 

 

Analysis of the contact angle revealed geopolymer compositions with high water content 

exhibited the highest contact angle, while compositions with high silicon content 

possessed the lowest contact angle. The substrate strips were covered and placed in a 

convection oven to cure for 24 hours to determine the effects of water loss. The cured 

samples can be seen in Figure 16. 
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Figure 16: Wettability samples after 24 hours curing at 70 °C 

 

After curing, the geopolymer composition ratios of K-3-2 and K-3-4 were chosen for 

synthesis. The K-3-2 ratio was chosen due to its lack of cracking during curing, and the 

K-3-4 composition was chosen due to its high contact angle during its gel phase. It is 

unclear why the compositions with high Si/Al ratios exhibited such extensive cracking 

during curing. 

 

4.2 Adhesive Gap 

4.2.1 Optical Microscopy 

After being sectioned, the specimens were analyzed using optical microscopy. Analysis 

at the magnification of 500 and 1000 times was used to determine the overall thickness 

of the adhesive gap. The adhesive gap width for a K-3-2 geopolymer based adhesive on 

a stainless steel substrate can be seen in Figure 17 to have a gap thickness of 
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approximately 60 um, while the same K-3-2 geopolymer adhesive when applied to a 

Titanium substrate gives a thickness of approximately 80 um as seen in Figure 18. This 

discrepancy in adhesive thickness could be caused from a variety of sources, but is most 

likely due to the higher pressure applied by the heavier stainless steel top substrate, as in 

this test no force regulation was used during the adhering process. 

Figure 17: K-3-2 stainless steel adhesive gap 

Figure 18: K-3-2 titanium adhesive gap 
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An additional set of specimens created with a less viscous adhesive, K-3-4 was also 

analyzed. K-3-4 based geopolymer gel has twice the water content as K-3-2 geopolymer 

gel and therefore is much less viscous. The lower viscosity adhesive led to smaller 

adhesive gaps. The gap in the K-3-4 Stainless Steel specimens was on the order of 30 um 

as seen in Figure 19, while Figure 20 shows the gap for K-3-4 tensile specimens to be 

approximately 60 um. It should be noted that the leading surfaces of the titanium 

substrate used in this particular experiment were possibly damaged during sectioning, 

leaving a strange pattern in the photos that is non-indicative of the actual surface (the 

sample was sectioned using a different sectioning saw that was much less sharp than the 

saw used to section all of the other specimens in this work). 

Figure 19: K-3-4 stainless steel adhesive gap 
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Figure 20: K-3-4 titanium adhesive gap 

4.2.2 Electron Microscopy 

Electron microscopy on platinum sputter coated sectioned samples reveals similar results 

for adhesive gap thickness to the optical microscopy results. Figure 21 depicts an 

adhesive gap for the K-3-2 Stainless Steel specimen of approximately 60um. However, 

Figure 22 shows a much higher thickness in the adhesive gap for the K-3-2 Titanium of 

approximately 150 um. These results show how unreliable adhesion without a pressure 

can be. 
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Figure 21: K-3-2 stainless steel adhesive gap 
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Figure 22: K-3-2 titanium adhesive gap 

4.2.3 Reduction of Gap 

In order to create more consistent samples in addition to reducing the thickness of the 

adhesive gap, some specimens were put under pressure during curing. This was done one 

of two ways: by adding a 2kg weight to the tops of the specimens during curing or by 

using a clamp or jig to hold the specimen under pressure during curing (as seen in Figure 
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23). The results of the thicknesses of the adhesive layer can be seen in Table 1 and 

Figure 24. 

 

 

Figure 23: Clamping jigs used for applying pressure to tensile specimens during curing 
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Table 1: Minimum and maximum observed adhesive gap for various geopolymer gel compositions and fixturing 

methods 

Treatment Substrate Composition 

Min Thickness 

(um) 

Max Thickness 

(um) 

None 

 

 

 

Stainless 

Steel 

 

K-3-2 45 70 

K-3-4 20 65 

Titanium 

 

K-3-2 75 160 

K-3-4 45 90 

Weighted 

(2kg) 

 

 

 

Stainless 

Steel 

 

K-3-2 20 45 

K-3-4 10 35 

Titanium 

 

K-3-2 30 80 

K-3-4 25 55 

Clamped 

(2kg) 

 

 

Stainless 

Steel 

 

K-3-2 25 65 

K-3-4 20 50 

Titanium 

 

K-3-2 45 85 

K-3-4 30 60 
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Figure 24: Plot of minimum and maximum adhesive gaps for various geopolymer compositions and fixturing methods 

It can clearly be seen that the K-3-4 geopolymer produces the thinnest adhesive layer 

with the stainless steel substrate, followed by the K-3-2 geopolymer with the stainless 

steel substrate. Counterintuitively, the K-3-4 geopolymer with the titanium substrate 

actually in almost all cases produces a thicker adhesive layer than the K-3-2 geopolymer 

in conjunction with the stainless steel substrate. This may be attributed most likely to the 

higher surface roughness and interaction of the viscous gel with the substrate surface. It 

can be speculated here that during adhesion, a smoother contact surface allows the gel to 

0

50

100

150

200

250
K

-3
-2

-S
S

K
-3

-4
-S

S

K
-3

-2
-T

i

K
-3

-4
-T

i

W
ei

gh
te

d
 K

-3
-2

-S
S

W
ei

gh
te

d
 K

-3
-4

-S
S

W
ei

gh
te

d
 K

-3
-2

-T
i

W
ei

gh
te

d
 K

-3
-4

-T
i

C
la

m
p

e
d

 K
-3

-2
-S

S

C
la

m
p

e
d

 K
-3

-4
-S

S

C
la

m
p

e
d

 K
-3

-2
-T

i

C
la

m
p

e
d

 K
-3

-4
-T

i

Th
ic

kn
es

s 
(u

m
)

Minimum and Maximum Thickness of Adhesive 
Layers vs Geopolymer Composition and 

Technique



50 

move more readily and therefore be more easily dispelled out the sides of the specimen 

being adhered. For all lap shear specimens analyzed, the weighted method was used 

while the clamped method was used for all tensile specimens. 

4.3 Analysis of Cross Section 

4.3.1 Electron Microscopy 

The sectioned specimens were also used to examine the mechanical interlocking 

between the substrate and the adhesive. Using an electron microscope, the boundary 

between the substrate and adhesive was analyzed in depth to determine critical surface 

features. 

A titanium substrate with K-3-2 geopolymer adhesive is shown in Figure 25. On the 

right side of the picture we can clearly see the smooth metallic substrate while the left 

side shows the typical amorphous characteristic commonly associated with geopolymers. 

The discolorations on the far right side of the substrate are identified as silicon carbide 

by Energy-Dispersive X-ray Spectroscopy (EDS), possibly residual from polishing. On 

the metallic substrate, several ‘divots’ can be seen in which the geopolymer has become 

mechanically attached to the substrate. In addition, there is no cracking, delamination, or 

separation between the substrate and the adhesive. Similar results are seen in Figure 26, 

which shows a K-3-2 geopolymer adhesive with a stainless steel substrate. It should be 

noted, however, that the substrate and geopolymer adhesive are no longer level on the 
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same plane in the photo. This is probably due to uneven polishing, which eroded the 

softer geopolymer layer away more quickly than the substrate layer. 

Figure 25:Titanium substrate (right) with geopolymer adhesive (left) 
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Figure 26: Stainless steel substrate (bottom) adhered with geopolymer adhesive (top) 

 

Figure 27, shows a higher magnification of the interface between geopolymer adhesive 

(K-3-2) with titanium substrate with one of the deeper gaps seen in the substrate surface. 

It appears that the geopolymer gel has infiltrated this gap leading to an increased 

mechanical interaction. Micro cracking in the geopolymer near the substrate can also 

begin to be seen here, as mechanical stresses near the interface are increased. This micro 

cracking can be better seen in Figure 28. 
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Figure 27: Flaw on titanium substrate surface infiltrated by geopolymer gel 
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Figure 28: Microcracking in geopolymer (bottom) near titanium substrate surface 

4.3.2 EDS Analysis 

EDS was used in order to determine the chemical makeup of the materials on both sides 

of the interface and to determine if there was any chemical interaction between the 

geopolymer gel and the metallic substrates. 



55 

Figure 29: EDS analysis of boundary between geopolymer (left) and stainless steel substrate (right) 

In Figure 29 the geopolymer/substrate boundary is clearly defined by an EDS line scan. 

At the interface the concentrations of aluminum, silicon, and potassium drastically 

decrease while the concentration of iron and chromium increase (for a stainless steel 

substrate). We see a similar result in Figure 30 with a titanium substrate, where the 

aluminum, silicon, and potassium content drops off rapidly at the interface while the 

titanium concentration increases. 

One thing that is consistent between these results is the behavior of the oxygen 

concentration throughout the interface. In Figure 30 the oxygen line can be seen in 



56 

orange. Closer inspection reveals that while the oxygen content remains high in the 

geopolymer as expected, the concentration does not immediately drop off at or 

immediately after the interface (due to an oxide layer). Instead, the oxygen content 

tapers down over a distance of approximately 10um until it reaches a steady value in the 

material. This can also be seen in Figure 29, but is more difficult to observe due to the 

more complex alloy. 

Figure 30: EDS analysis of boundary between geopolymer (left) and titanium substrate (right) 
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4.4 Shear Testing 

4.4.1 Shear Strength Results 

Shear testing was performed using a single lap shear test. The results of these 

experiments can be seen in Figure 31. 

Figure 31: Lap shear test results for various substrates and geopolymer compositions 

It can be seen that samples with stainless steel substrates exhibited higher shear strengths 

than those with titanium substrates, in addition to the thinner K-3-4 geopolymer based 

adhesive exhibiting slightly higher shear strength than the thicker K-3-2 geopolymer. 

This may be due to the thickness of the adhesive layer; the thinner layer allows for 

higher strength due to a higher proportion of the adhesive layer exhibiting oxygen 

bridging with the substrate surface. 
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4.4.2 Optical Microscopy Analysis 

An analysis of the shear specimens was conducted using optical microscopy. Typical 

images of the failed substrate surfaces can be seen in Figure 32. 

Figure 32: Surface of failed shear specimens for stainless steel substrate (A) and titanium substrate (B) 

It can be seen that the crack propagation in shear is partially through the matrix. 

Therefore, the failure is not due to delamination. It appears that the failure mode is 

dictated by crack propagation in shear, which correlates well to other researched results 

as previously discussed. 
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4.5 Tensile Testing 

4.5.1 Tensile Strength Results 

Tensile strength was tested using a pure tension setup to derive the most accurate results. 

Initial results showed that the lower water content K-3-2 geopolymer seemed to give 

higher strength, so more tests were performed with that composition. 8 specimens were 

prepared for each substrate with the K-3-2 geopolymer gel, and 4 specimens were 

prepared for each substrate with the K-3-4 geopolymer gel. The specimens were adhered 

using a jig to align the specimens and clamped with approximately 20N of force during 

curing. 

The loading for each specimen was set to be at the constant displacement rate of 0.05 

in/s. Each specimen seemed to have a similar loading curve, an example of which can be 

seen in Figure 33. Each curve began with very low load while the fixture was preloading 

shown in segment A, followed by a short period of rapid loading as shown in segment B. 

After this initial rapid loading, another segment of slow loading occurs as shown in 

segment C. This is theorized to be due to the threads on the sample slowly coming into 

full contact with the threads on the test frame. Once the threads are in full contact, the 

load quickly increases until the specimen fails as shown in segment D of the diagram. 
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Figure 33: Typical loading curve for tensile testing 

The tensile strengths of different samples can be seen in Figure 34. Stainless steel 

substrates bonded with K-3-2 geopolymer adhesive exhibited the highest tensile strength 

with an average (standard deviation) value of 5.9(3.24) MPa. This is followed by the 

Titanium substrates bonded with K-3-2 geopolymer adhesive at 4.4(2.64) MPa, then the 

Stainless Steel substrate bonded with K-3-4 adhesive at 1.95(2.50) MPa and finally, the 

Titanium substrate bonded with K-3-4 adhesive at 1.25(1.61) MPa. Due to the high 

standard deviation of the results, it is suggested that more tests be performed and a 

statistical Weibull analysis be conducted in order to provide more accurate statistical 

data. 
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Figure 34: Tensile strength results of various substrates and geopolymer compositions 

The difference in the modes of failure between the high strength and low strength 

specimens should be noted. The specimens failed in one of several modes observed by 

visual inspection of the fracture surfaces and depicted in Figure 35: Pure shear break as 

seen in segment A, mixed break as seen in segment B, or delaminated break as seen in 

segment C.  The specimens that failed in the pure shear mode exhibited the highest 

strength, followed by the specimens that failed in mixed modes and finally delaminating 

modes. 
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Figure 35: Tensile failure modes - A: Full shear, B: Mixed break, C: Delaminated break 

It should be noted that the pure shear failure mode fractures do not go all the way to the 

substrate, but rather leave an extremely thin layer of geopolymer adhesive between the 

substrate and the fracture surface. This supports the theory of oxygen bridging being 

present between the metallic oxide layer and the silicon in the geopolymer gel, as it 

would take more energy for the fracture to propagate through the chemically bonded 

layer than it does for it to propagate through the geopolymer matrix. The path of the 

fracture requires the geopolymer to shear multiple times and thus expend much energy to 

propagate the fracture through the matrix, resulting in a very high tensile strength. 

In the mixed modal and delaminated failures, the geopolymer separated from the 

metallic substrate in either partially or entirely. It is unclear what causes this 

delamination but it is suspected to be due to poor sample preparation by making the 

matrix too thick during curing, or failure to properly remove all oils from the specimen 

surface prior to applying the geopolymer adhesive. In these specimens, the fracture does 

not have to expend nearly as much energy to propagate through the geopolymer matrix, 

and thus leads to a lower tensile strength. 
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In addition to the failure modes, it appears that some of the specimens that failed at a 

drastically lower load did not seem to be fixed in the jig properly while being cured, 

leading to uneven adhesion. If the adhesive coating was thicker on one side of the 

specimen than the other, it could induce a bending moment on the specimen and result in 

a different mode of failure, leading to a premature break (sometimes even while securing 

them to the tensile frame). These results were removed from the data shown above, but 

caution should be taken to avoid this failure mode during testing. 

4.5.2 Optical Microscopy Analysis 

Optical microscopy after tensile failure on multiple specimens confirms the presence of 

the aforementioned three failure modes. Figure 36 depicts pure shear failure and mixed 

mode failure on a titanium surface in segments A and B, and pure shear failure and 

mixed mode failure on a stainless steel surface in segments C and D, respectively. 
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Figure 36: Optical analysis of failed tensile specimens. A and C represent high strength failure while B and D 

represent low strength failure 

While only one surface of the failed tensile specimen is shown in segments A and C, the 

other half of the tensile specimen looks nearly identical with a similar distribution of 

similar sized of geopolymer “patches” or islands on the surfaces . This confirms the 

shear failure mode allows fracture propagation via shearing through the geopolymer 

matrix. In addition, while it appears that substrate is exposed through the ‘holes’ in the 

optical microscopy photos, further inspection via SEM and EDS reveals it is actually 

still covered in a nanometers thick coating of geopolymer adhesive. In the mixed modal 
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failures (segments C and D) large patches of geopolymer and metallic substrate can be 

seen, indicating a minimal amount crack propagation due to shearing through the 

geopolymer matrix.  

Each of the ‘pores’ ranges in diameter from approximately 40 um to 150 um for the 

titanium substrate, and 20 um to 100 um for the stainless steel substrate. Smaller pores 

allow for higher pore density; since the failure mode for these specimens involves shear 

failure along the pore ‘walls’, this may indicate why the specimens with a stainless steel 

substrate exhibited higher tensile strength than the specimens with a titanium substrate. 

 

4.5.3 Electron Microscope Analysis 

Electron microscopy confirms the results discovered by optical microscopy and tensile 

testing. A closer inspection of several of the pores can be seen in Figure 37, where 

segments A and B show a close up of two pores while segments C and D show a detail 

of one of the side walls of the pore. 
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Figure 37: SEM analysis of pores on surface of failed tensile speciemen 

 

As previously stated, the substrate is not exposed through the pore but rather coated by a 

nanometers thick geopolymer coating. Closer inspection of the surface surrounding the 

pores in segments A and B indicates the pores may be created by the merging of 

microcracks in the surface into a closed path, providing a reduced thickness area that is 

more easily sheared through. 
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4.5.4 EDS Analysis 

In order to better understand the chemical interaction between the substrates and the 

geopolymer adhesive under stress, and EDS analysis was conducted on the surfaces of 

the fractured tensile specimens. Figure 38 depicts EDS elemental analysis along a 

scanning line crossing the pore. 

Figure 38: EDS analysis of pore found on failed tensile surface 

The line scan shows a higher concentration of titanium (purple) throughout the center of 

the pore, with a reduction in aluminum (orange) and potassium (red) where the titanium 

concentration is higher. However the silicon (blue) does not exhibit as much of a 
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reduction in concentration where the titanium concentration is elevated. These results 

support the theory that the geopolymer layer at the bottom of the pore is thin on the order 

of nanometers in order to detect significant concentrations of titanium. In addition, the 

coexistence of oxygen, silicon, and titanium at the center of the pore may indicate the 

presence of Si-O-Ti bonding. 

While the line scans are useful, a qualitative mapping of the surface of a pore produced 

much more in depth results that can be seen in Figure 39. The first segment shows an 

overall view of the mapping area, while the 5 other segments show the individual 

relative concentrations of aluminum, potassium, oxygen, silicon, and titanium across the 

pore. 

Figure 39: EDS mapping of pore found on failed tensile surface 
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The higher titanium concentration on the top left hand side of the mapping, along the 

ridge of the pore may be indicative of the location of the failure propagation. When the 

crack first begins to propagate, it may penetrate almost to the substrate interface. 

However, due to the oxygen bridging occurring at that interface, the crack then 

propagates upward through the geopolymer matrix as it requires less energy. This failure 

mode can be seen in Figure 40, where the arrow depicts the area where more energy is 

required for crack propagation. 

Figure 40: Graphical explanation of shear crack propagation through geopolymer matrix 

It can be clearly seen that the higher concentrations of titanium correlate to the lower 

concentrations of the other elements in Figure 39, indicating a thin area in the coating on 

the bottom of the pore. However, a careful analysis overlaying the silicon and titanium 
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mappings shows some interaction between the two. This overlaid mapping can be seen 

in Figure 41.  

 

Figure 41: EDS comparison of concentrations of Si and Ti in pore found on failed tensile surface 

 

4.6 Heat Treatment 

Samples were also subjected to elevated temperatures to test their durability when 

exposed to high temperature environments. No debonding was observed in more 

stainless steel or titanium coupons that were glued with K-3-2, K-3-4, K-4-2, or Na-3-2 

geopolymer, after heat treatment for one hour up to 100, 200, 300, 500, 600, 700 and 

800 oC.  Specimens analyzed via SEM were heated to 800 oC, while tensile and shear 

specimens were heated to 500 oC for 1 hour, and the cooled down to the room 

temperature before tensile testing.   
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4.6.1 Electron Microscopy 

Figure 42: SEM analysis of heat treated specimens 

Electron microscopy revealed an interesting cracking pattern in the heat treated 

specimens. Upon heating, the specimens showed a zig-zag shaped pattern that 

propagated through the geopolymer matrix. This zig zag is best seen in segments A and 

D of Figure 42. In addition, in other areas cracks propagated from one substrate surface 

to the other, as seen in segments B and C of Figure 42. These cracks and zig-zag patterns 
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can easily be explained by the stresses induced by the difference in thermal expansion 

between the geopolymer adhesive and the metallic substrate. Since the metallic substrate 

has a much higher thermal expansion coefficient than the ceramic based geopolymer, 

upon heating the metallic substrate stretches and cracks the geopolymer through the 

matrix. Theoretically, however, it does not cause complete debonding due to the 

chemical bonding between the matrix and substrate. 

4.6.2 Tensile Results 

The room temperature tensile strengths of the specimens after heat treatments at 500 oC 

for 1 hour are provided in in Figure 43. Due to time and budget constraints, heat treated 

shear specimens were not tested in this work. 

Figure 43: Tensile strength of heat treated specimens 
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The heat treated specimens exhibited approximately 25 to 50 % of the tensile strength of 

the non-heat treated specimens. 

4.6.2.1 OPTICAL MICROSCOPY ANALYSIS 

An optical analysis of the failed surfaces of the heat treated tensile specimens, seen in 

Figure 44, reveals patterned pores similar to those found in the standard tensile 

specimens. However there are several differences, notably the shape of the pores. While 

the pores found in the standard failed tensile specimens are round or ellipsoid as seen in 

Figure 36, the pores found in the failed heat treated tensile specimens are polygonal. 

This could be due to the shear cracks propagating through the existing thermal expansion 

cracks, leading to ‘sharp’ corners where thermal expansion cracks intersect. 

Figure 44: Optical micrographs of heat treated specimens. A: Stainless steel substrate, B: Titanium substrate 
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4.7 Polished Specimens 

In order to evaluate the degree of chemical interaction versus mechanical interaction in 

the geopolymer adhesive with the substrate, several specimens were polished to a mirror 

finish and testing in tension. Mirror finishing provided very smooth surfaces of the 

substrates and thus less mechanical interlocking between adhesive geopolymer layer and 

the substrate. Figure 45 shows the results for both polished stainless steel and titanium 

substrates adhered with K-3-2 Geopolymer adhesive. For comparison, the results 

obtained using unpolished samples from Figure 34 are also presented in this figure.  

 

Figure 45: Tensile strength of specimens with mirror polished substrates 

 

The average tensile strength of both the titanium and the stainless steel substrates are 

approximately 50% of the average tensile strength from the tests performed earlier using 

only ground metallic substrate surfaces. This can be explained  by higher smaller surface 
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roughness of the mirror polished metallic surface as surface roughness not only provided 

better mechanical interlocking but increased surface area for oxygen bonding to possibly 

take place.  

In addition, some of the polished specimens were exposed to an elevated temperature of 

500 oC for 24 hours before cooled down to the room temperature and tensile testing to 

determine the effect of surface polishing and heat treatments on the tensile strength of 

the adhesive. The specimens were then tensile tested, with results shown in Figure 46.  

 

Figure 46: Tensile strength of specimens with mirror polished substrates with heat treatment 

 

It can be seen that the results correspond to the difference in standard tensile specimens 

and standard heat treated specimens, with a reduction in strength of approximately 60 

percent.  
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5 CONCLUSION  

Results of this study show that geopolymer can be used as high temperature adhesive for 

titanium and stainless steel, and possibly other metals and alloys. A comparison of 

alternative commercially available adhesives with geopolymer based adhesive can be 

seen in Table 2. When the shear strengths were compared to other commercially 

available polymeric adhesives, geopolymer adhesives studied here show lower or 

comparable shear strength, however unlike polymeric adhesives they can be used to 

substantially higher temperatures, possibly exceeding even 800 °C. On the other hand, 

when compared to other commercial ceramic adhesives that can be used at higher 

temperatures, they show much higher shear strength. 

Table 2: Comparison of geopolymer based adhesive to other commercially available adhesives for metallic substrates 

[44-47] 

 Max 
Shear 
Range 
(MPa) 

Max 
Operating 

Temperature 
(°C) 

Fireproof 

Geopolymer 1-6 750 Yes 

Cyanoacrylate 5-15 82 No 

RTV Silicone 0.8-1.5 180 No 

Ceramic 0.1-0.7 1650 Yes 

Instant Epoxy 8-20 50 No 

Silane Polymer 1-4 50 No 

Metal Epoxy 8-24 140 No 
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Comparison of the results of the various tests performed in this work show evidence not 

only of mechanical interaction (interlocking) but also of a chemical interaction between 

the metallic substrate and geopolymer adhesive layer. The latter is most likely the reason 

for the good mechanical properties of the geopolymer adhesives when compared to other 

ceramic adhesives.  

First, a comparison between the standard tensile test specimens with a rough surface and 

the polished tensile test specimens with a mirror surface shows that the adhesion is not 

purely mechanical, as the polished layer possessed little to no surface roughness for the 

geopolymer adhesive to physically interlock with. Thus a chemical bond must exist in 

order to explain the results obtained by the polished tensile test specimens. While the 

polished specimens did possess higher than expected tensile strength, they still were only 

capable of supporting approximately 50 percent of the load of the standard tensile 

specimens with a rough surface finish. These results can be explained by two theories: 

the higher loads in the standard samples are due to a combination of chemical and 

mechanical interactions, or the higher loads in the standard specimens are due to an 

increased amount of chemical bonding due to the increased surface area on the uneven 

surface of the standard specimens. Most likely the true reason for the higher strength in 

the standard tensile samples is a combination of these two. Further research is required 

to determine the degree of mechanical versus chemical interaction is responsible for the 

tensile strength. 
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Specimens subjected to heat treatment exhibited higher than expected tensile strength, 

but still significantly lower strength than non-heat treated specimens at approximately 40 

percent of the non-heat treated strength. As previously stated, this is speculated to be due 

to the higher thermal expansion coefficient in the metallic substrate. During heating, the 

expanding metal imposes a biaxial tension on the geopolymer adhesive, causing it to 

crack throughout the matrix perpendicular to the substrate surface. These cracks, while 

weakening the overall structure, do not seem to run parallel to the substrate surface at 

any location and thus do not lead to delamination. During tensile testing after heat 

treatment, the cracks formed by thermal expansion provide a starting point for the shear 

crack propagation failure mode seen in other standard tensile specimens; as the load 

increases the cracks join and form enclosed areas, which are then capable of easily 

shearing through the matrix. At this point the specimen fails. It should be noted that the 

heat treated polished tensile specimens failed at almost the same load that their non-heat 

treated polished counterparts failed at. The reason for this is still not clear at this point, 

but since in booths samples with polished and ground surfaces, thermal treatment leads 

to the formation of the zig-zag microcracks in the geopolymer adhesive due to thermal 

expansion mismatch. Although more work is needed to further understand this 

phenomenon, we can hypothesize at this point that initial zig-zag microcracks due to 

thermal expansion preferentially originate at deep dimples and surface crevices filed 

with geopolymer – such as those shown in Figure 25, leading to the larger number of 

zig-zag crack in heat treated samples with ground surfaces, when compared to those with 

mirror polished surfaces.   
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5.1 Future Work 

While the aforementioned results are indeed conclusive, further testing could solidify the 

theories and mechanisms proposed in this work. Several suggestions that would improve 

this study have been included as suggestions for future research work on this topic. 

 

5.1.1 Weibull Statistics and Sample Size 

Due to the ceramic nature of the geopolymer adhesive, the failure loads of both the shear 

and tensile tests are relatively inconsistent. By utilizing Weibull statistics in future 

research, the tensile and shear strengths can be measured much more quantitatively than 

with simple mean and standard deviation measures. In addition, a larger sample size 

would provide much more consistent data than the small sample size used in this work. 

 

5.2 XPS 

In this work an oxygen bridging between the geopolymer adhesive and substrate was 

theorized due to the analysis of physical failure behavior and the chemical spectrum of 

the surface after failure. However, XPS could provide a much better indication of the 

chemical bonding at the interfaces. Several researchers have done work with Si-O-Ti 

bonding and analyzed their results using XPS and established techniques to determine its 

presence [61, 62].  An XPS analysis of the substrate-adhesive interface layers could 

determine the presence and/or degree of oxygen bridging occurring. 
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5.2.1 Nano FTIR 

While FTIR was conducted in this study (not shown here) in an effort to observe a 

characterizing shift for a Si-O-Ti bond, no useful results were obtained due to the 

relatively large sample area required by the standard FTIR instrumentation (3mm 

diameter). Another method, referred to as Nano IR, operates on the same principles as 

FTIR but does so on a microscopic level, allowing the user to precisely select the site of 

interest down to the nanometer level [63]. Using Nano FTIR with ATR, comparison of 

the pores found in the failed specimen’s geopolymer layer to standard geopolymer and 

titanium oxide could show a characteristic shift of resonant light indicating an oxide 

bridge (research has shown that FTIR is capable of detecting a Si-O-Ti bond [64]). 

 

5.2.2 Alternative Substrates 

Titanium and 316 Stainless Steel alloy were tested in this work, but any metallic 

substrate that readily forms an oxide layer theoretically should perform well with 

geopolymer based adhesive. Other metallic substrates that would be useful to test 

include aluminum, Inconel, and ferrous steel.  

 

5.2.3 Alternative Surface Preparation 

This work has shown higher surface roughness of the substrate and coating is important 

to increasing the tensile strength of the specimen. This was theorized to be either due to 
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mechanical interaction, or due to additional surface area being created causing additional 

oxygen bridging to occur. Future works could seek to isolate this variable by carefully 

controlling surface area and roughness and determining the effectiveness of creating 

specimens whose physical properties are dominated by mechanical interaction (high 

roughness, low surface area) and chemical interaction (low roughness, high surface 

area).  

 

5.2.4 Alternative Geopolymer Gels and Curing Conditions  

The adhesive used on all specimens created in this work was synthesized from 

metakaolin based geopolymer gel. Another type of geopolymer gel is synthesized using 

industrial waste, namely fly ash. These fly ash based geopolymers can possess higher 

base amounts of silicon, and have shown promise for being a more ecologically friendly 

choice than metakaolin based geopolymers in recent research [36, 65]. Future research 

could determine if the silicon content in fly ash based geopolymers increases the degree 

of oxygen bridging a significant amount and therefore the shear and tensile strengths. 

In addition, only two geopolymer ratios were tested in this work. These ratios were 

selected due to their midrange performance and ease of synthesis determined by 

previous research experience [12, 23]. Many other metakaolin compositions are capable 

of being synthesized with higher silicon, alkali, or water content. In theory, higher 

silicon content will lead to higher strength due to oxygen bridging while higher water 
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content will lead to a thinner adhesive layer.  Future work may result in higher tensile 

and shear strengths due to optimization of these chemical parameters.  

 



 

83 

 

REFERENCES 

1. V.D., G., Gruntosilikaty, G. Kiev, Editor. 1959: USSR. 

2. Davidovits, J., Geopolymer chemistry & application. Institute Géopolymèr-

France, 2008. ISBN: 9782951482012. 

3. Bell, J.L., P.E. Driemeyer, and W.M. Kriven, Formation of Ceramics from 

Metakaolin-Based Geopolymers. Part II: K-Based Geopolymer. Journal of the 

American Ceramic Society, 2009. 92(3): p. 607-615. 

4. Davidovits, J., Geopolymers and Geopolymeric Materials. Journal of Thermal 

Analysis, 1989. 35(2): p. 429-441. 

5. Davidovits, J. Environmentally driven geopolymer cement applications. in 

Proceedings of 2002 Geopolymer Conference. Melbourne. Australia. 2002. 

6. Duxson, P., et al., The role of inorganic polymer technology in the development 

of 'green concrete'. Cement and Concrete Research, 2007. 37(12): p. 1590-1597. 

7. Duxson, P., et al., Geopolymer technology: the current state of the art. Journal of 

Materials Science, 2007. 42(9): p. 2917-2933. 

8. Provis, J.L. and J.S.J. Van Deventer, Geopolymers: structures, processing, 

properties and industrial applications. 2009: Elsevier. 

9. Hussain, M., et al., Investigation of thermal and fire performance of novel hybrid 

geopolymer composites. Journal of Materials Science, 2004. 39(14): p. 4721-

4726. 

10. Cheng, T.W. and J.P. Chiu, Fire-resistant geopolymer produced by granulated 

blast furnace slag. Minerals Engineering, 2003. 16(3): p. 205-210. 

11. Van Jaarsveld, J.G.S., J.S.J. Van Deventer, and A. Schwartzman, The potential 

use of geopolymeric materials to immobilise toxic metals: Part II. Material and 

leaching characteristics. Minerals Engineering, 1999. 12(1): p. 75-91. 

12. Lizcano, M., et al., Effects of Water Content and Chemical Composition on 

Structural Properties of Alkaline Activated Metakaolin‐Based Geopolymers. 

Journal of the American Ceramic Society, 2012. 95(7): p. 2169-2177. 

13. Rowles, M. and B. O'Connor, Chemical optimisation of the compressive strength 

of aluminosilicate geopolymers synthesised by sodium silicate activation of 

metakaolinite. Journal of Materials Chemistry, 2003. 13(5): p. 1161-1165. 



 

84 

 

14. Buchwald, A., H. Hilbig, and C. Kaps, Alkali-activated metakaolin-slag blends - 

performance and structure in dependence of their composition. Journal of 

Materials Science, 2007. 42(9): p. 3024-3032. 

15. Fletcher, R.A., et al., The composition range of aluminosilicate geopolymers. 

Journal of the European Ceramic Society, 2005. 25(9): p. 1471-1477. 

16. Xu, H. and J.S.J. Van Deventer, The geopolymerisation of alumino-silicate 

minerals. International Journal of Mineral Processing, 2000. 59(3): p. 247-266. 

17. Phair, J.W. and J.S.J. Van Deventer, Effect of the silicate activator pH on the 

microstructural characteristics of waste-based geopolymers. International 

Journal of Mineral Processing, 2002. 66(1-4): p. 121-143. 

18. Fernandez-Jimenez, A., et al., The role played by the reactive alumina content in 

the alkaline activation of fly ashes. Microporous and Mesoporous Materials, 

2006. 91(1-3): p. 111-119. 

19. Weng, L.Q., et al., Effects of aluminates on the formation of geopolymers. 

Materials Science and Engineering B-Solid State Materials for Advanced 

Technology, 2005. 117(2): p. 163-168. 

20. Duxson, P., et al., Effect of alkali cations on aluminum incorporation in 

geopolymeric gels. Industrial & Engineering Chemistry Research, 2005. 44(4): p. 

832-839. 

21. van Jaarsveld, J.G.S. and J.S.J. van Deventer, Effect of the alkali metal activator 

on the properties of fly ash-based geopolymers. Industrial & Engineering 

Chemistry Research, 1999. 38(10): p. 3932-3941. 

22. Rees, C.A., et al., The mechanism of geopolymer gel formation investigated 

through seeded nucleation. Colloids and Surfaces A: Physicochemical and 

Engineering Aspects, 2008. 318(1–3): p. 97-105. 

23. Westwick, M.R., Miladin, The Effect of K/Al and Na/Al ratio on the Structure 

and Properties of Geopolymers. 2012, National Science Foundation: Research 

Experience for Undergraduates. 

24. Dombrowski, K., A. Buchwald, and M. Weil, The influence of calcium content 

on the structure and thermal performance of fly ash based geopolymers. Journal 

of Materials Science, 2007. 42(9): p. 3033-3043. 

25. Xu, H. and J.S.J. van Deventer, The effect of alkali metals on the formation of 

geopolymeric gels from alkali-feldspars. Colloids and Surfaces a-

Physicochemical and Engineering Aspects, 2003. 216(1-3): p. 27-44. 



 

85 

 

26. Xu, H. and J.S.J. Van Deventer, Geopolymerisation of multiple minerals. 

Minerals Engineering, 2002. 15(12): p. 1131-1139. 

27. van Jaarsveld, J.G.S., J.S.J. van Deventer, and G.C. Lukey, A comparative study 

of kaolinite versus metakaolinite in fly ash based geopolymers containing 

immobilized metals. Chemical Engineering Communications, 2004. 191(4): p. 

531-549. 

28. Perera, D.S., et al., Influence of curing schedule on the integrity of geopolymers. 

Journal of Materials Science, 2007. 42(9): p. 3099-3106. 

29. Duxson, P., et al., Si-29 NMR study of structural ordering in aluminosilicate 

geopolymer gels. Langmuir, 2005. 21(7): p. 3028-3036. 

30. Palomo, A., A. Fernandez-Jimenez, and M. Criado, "Geopolymers": same basic 

chemistry, different microstructures. Materiales De Construccion, 2004. 54(275): 

p. 77-91. 

31. Zhang, Z., et al., Geopolymer foam concrete: An emerging material for 

sustainable construction. Construction and Building Materials, 2014. 56: p. 113-

127. 

32. Duxson, P., G.C. Lukey, and J.S.J. van Deventer, Thermal conductivity of 

metakaolin geopolymers used as a first approximation for determining gel 

interconnectivity. Industrial & Engineering Chemistry Research, 2006. 45(23): p. 

7781-7788. 

33. Kim, K.-H., et al., An experimental study on thermal conductivity of concrete. 

Cement and Concrete Research, 2003. 33(3): p. 363-371. 

34. Bernal, S.A., et al., Performance of refractory aluminosilicate particle/fiber-

reinforced geopolymer composites. Composites Part B: Engineering, 2012. 43(4): 

p. 1919-1928. 

35. Temuujin, J., et al., Preparation and thermal properties of fire resistant 

metakaolin-based geopolymer-type coatings. Journal of Non-Crystalline Solids, 

2011. 357(5): p. 1399-1404. 

36. Temuujin, J., et al., Fly ash based geopolymer thin coatings on metal substrates 

and its thermal evaluation. Journal of Hazardous Materials, 2010. 180(1–3): p. 

748-752. 

37. Bakharev, T., Thermal behaviour of geopolymers prepared using class F fly ash 

and elevated temperature curing. Cement and Concrete Research, 2006. 36(6): p. 

1134-1147. 



 

86 

 

38. Ali, F.A., D. O'Connor, and A. Abu-Tair, Explosive spalling of high-strength 

concrete columns in fire. Magazine of Concrete Research, 2001. 53(3): p. 197-

204. 

39. Davidovits, J., et al. Geopolymeric cement based on low cost geologic materials. 

Results from the european research project geocistem. in Proceedings of the 2nd 

International Conference on Geopolymer. 1999. 

40. Skvara, F., Alkali activated materials or geopolymers? Ceramics-Silikaty, 2007. 

51(3): p. 173-177. 

41. Rostami, H. and W. Brendley, Alkali ash material: a novel fly ash-based cement. 

Environmental science & technology, 2003. 37(15): p. 3454-3457. 

42. Phair, J.W. and J.S.J. Van Deventer, Effect of silicate activator pH on the 

leaching and material characteristics of waste-based inorganic polymers. 

Minerals Engineering, 2001. 14(3): p. 289-304. 

43. Schwartz, M.M., Brazing, 2nd Edition. 2003: ASM International. 

44. Permatex. Technical Data Sheet: Permatex Clear RTV Silicone Adhesive Sealant. 

2003  [cited 2016; Available from: 

http://www.devcon.com/prodfiles/pdfs/fam_tds_398.pdf. 

45. Henkel. Technical Data Sheet: Loctite Epoxy Weld Bonding Compound. 2014  

[cited 2016; Available from: 

http://www.loctiteproducts.com/tds/EPXY_WELD_T_tds.pdf. 

46. Henkel. Technical Data Sheet: Loctite Epoxy 1 Minute Instant Mix. 2014  [cited 

2016; Available from: http://www.loctiteproducts.com/tds/EPXY_1MIN_tds.pdf. 

47. Armeco. Technical Data Sheet: High Temperature Ceramic and Graphite 

Adhesives. 2015  [cited 2016; Available from: http://www.aremco.com/wp-

content/uploads/2015/04/A02_15.pdf. 

48. MasterBond, Technical Data Sheet MASTER BOND MB SERIES 

CYANOACRYLATES 2016, Master Bond Inc.: Hackensack, NJ. p. 4. 

49. Uehara, K. and M. Sakurai, Bonding strength of adhesives and surface roughness 

of joined parts. Journal of Materials Processing Technology, 2002. 127(2): p. 

178-181. 

50. Duxson, P., et al., The effect of alkali and Si/Al ratio on the development of 

mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces 

a-Physicochemical and Engineering Aspects, 2007. 292(1): p. 8-20. 

http://www.devcon.com/prodfiles/pdfs/fam_tds_398.pdf
http://www.loctiteproducts.com/tds/EPXY_WELD_T_tds.pdf
http://www.loctiteproducts.com/tds/EPXY_1MIN_tds.pdf
http://www.aremco.com/wp-content/uploads/2015/04/A02_15.pdf
http://www.aremco.com/wp-content/uploads/2015/04/A02_15.pdf


 

87 

 

51. Steveson, M. and K. Sagoe-Crentsil, Relationships between composition, 

structure and strength of inorganic polymers - Part I - Metakaolin-derived 

inorganic polymers. Journal of Materials Science, 2005. 40(8): p. 2023-2036. 

52. Steveson, M. and K. Sagoe-Crentsil, Relationships between composition, 

structure and strength of inorganic polymers - Part 2 - Flyash-derived inorganic 

polymers. Journal of Materials Science, 2005. 40(16): p. 4247-4259. 

53. Temuujin, J., et al., Preparation of metakaolin based geopolymer coatings on 

metal substrates as thermal barriers. Applied Clay Science, 2009. 46(3): p. 265-

270. 

54. Latella, B.A., et al., Adhesion of glass to steel using a geopolymer. Journal of 

Materials Science, 2006. 41(4): p. 1261-1264. 

55. Ueng, T.-H., et al., Adhesion at interface of geopolymer and cement mortar 

under compression: An experimental study. Construction and Building Materials, 

2012. 35: p. 204-210. 

56. De Barros, S., et al., Adhesion of Geopolymer Bonded Joints Considering 

Surface Treatments. The Journal of Adhesion, 2012. 88(4-6): p. 364-375. 

57. Adachi, M., et al., Oxide adherence and porcelain bonding to titanium and Ti-

6Al-4V alloy. Journal of dental research, 1990. 69(6): p. 1230-1235. 

58. Özcan, I. and H. Uysal, Effects of silicon coating on bond strength of two 

different titanium ceramic to titanium. Dental Materials, 2005. 21(8): p. 773-779. 

59. Wang, R.R., G.E. Welsch, and O. Monteiro, Silicon nitride coating on titanium 

to enable titanium–ceramic bonding. Journal of Biomedical Materials Research, 

1999. 46(2): p. 262-270. 

60. Barbosa, V.F.F. and K.J.D. MacKenzie, Thermal behaviour of inorganic 

geopolymers and composites derived from sodium polysialate. Materials 

Research Bulletin, 2003. 38(2): p. 319-331. 

61. Butz, R., G.W. Rubloff, and P.S. Ho, Chemical bonding and reactions at Ti/Si 

and Ti/oxygen/Si interfaces. Journal of Vacuum Science & Technology A, 1983. 

1(2): p. 771-775. 

62. Ingo, G.M., S. Dirè, and F. Babonneau, XPS studies of SiO2-TiO2 powders 

prepared by sol-gel process. Applied Surface Science, 1993. 70: p. 230-234. 



 

88 

 

63. Sergiu Amarie, P.Z., Yusuke Kajihara, Erika Griesshaber, Wolfgang W. 

Schmahl, Fritz Keilmann1, Nano-FTIR chemical mapping of minerals in 

biological materials. Beilstein J. Nanotechnol., 2012. 2012(3): p. 312–323. 

64. Ren, J., et al., Silica–Titania mixed Oxides: Si–O–Ti Connectivity, Coordination 

of Titanium, and Surface Acidic Properties. Catalysis Letters, 2008. 124(3): p. 

185-194. 

65. Swanepoel, J.C. and C.A. Strydom, Utilisation of fly ash in a geopolymeric 

material. Applied Geochemistry, 2002. 17(8): p. 1143-1148. 

 




