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ABSTRACT 

Disease-identifying proteins, toxins and carcinogens, bacteria, viruses, cancerous 

cells, and many other biomarkers can all be found in the circulatory system, making the blood 

and other bodily fluids a diagnostic goldmine. Clinical chemistry: the analysis of bodily fluid 

components by pathologists, remains the most commonly used diagnostic tool, with the CDC 

estimating 6.8 billion various in-vitro laboratory tests performed per year by clinical 

pathologists. Conversely a staggering 87% of patient samples are sent to centralized 

laboratories. Lab-on-a-chip devices allow for low sample/reagent volumes, portability, and 

disposability, thereby automating sample preparation and analysis. Utilizing surface enhanced 

Raman spectroscopy (SERS) as the signal transduction method, ultra-low limits of detection 

can be achieved while also providing opportunities for high-throughput multiplexed assays. 

Several SERS-on-a-chip sensor platforms were investigated, initially looking at both 

direct and indirect analysis of various biomarkers ranging from small molecules and single 

nucleotides, to labeled and unlabeled proteins. Finally, investigating deeply into the detection 

and isolation of non-immunogenic small molecule biomarkers from complex media, a 

competitive binding assay for detection of the small endocrine-disrupting toxin bisphenol-A 

(BPA) was developed. This assay has the potential to be translated to virtually any biomarker 

by utilizing aptamers: short synthetic ssDNA strands capable of binding to non-DNA targets. 

Specifically, this “turn off” competitive binding assay relies on aptamer-mediated assembly 

of SERRS active plasmonic and magnetic nanoparticles. Additionally, a magneto-fluidic 

SERS analysis chip for automated sample processing and quantification of BPA (0.2 pg/mL 

- 0.2 µg/mL) was developed. Last, this magnetic chip was attached to a blood filtration chip 

and the feasibility of the assay’s resilience in whole blood was analyzed.  
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This technology can potentially be made sensitive to other analytes by simply 

exchanging the aptamer - making the platform “programmable” The enablement of 

technologies like this help push medicine to become increasingly personalized, predictive, 

and preventative by moving away from initial symptom based diagnostics and towards fast, 

quantifiable monitoring. 
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NOMENCLATURE 

BADGE 

bp 

Bisphenol-A diglycidyl ether 

Base pair 

BPA 

CDC 

CV 

CSA 

CSF 

Bisphenol-A 

Center for Disease Control 

Coefficient of Variation  

Core-satellite assembly 

Cerebrospinal fluid 

DLS 

ds 

EF 

GCS 

Dynamic light scattering 

Double stranded 

Enhancement factor  

Glasgow Coma Scale  

HPLC  High Performance Liquid Chromatography  

IR 

IVD  

Infrared radiation  

In-vitro Diagnostic  

Laser  Light Amplification by Stimulated Emission of Radiation  

LOC Lab-on-a-Chip 

MBA Mercaptobenzoic acid 

MGITC Malachite green isothiocyanate 

MNP  Magnetic nanoparticle  

MS 

MST  

Mass spectroscopy 

Microscale Thermophoresis 
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MYO Myoglobin 

NP 

NSE 

nt 

Nanoparticle 

Neuron specific enolase 

Nucleotide 

NTA Nanoparticle tracking analysis  

PEG Poly(ethylene) glycol 

PDMS Polydimethylsiloxane 

POC 

R6G 

Point-of-care 

Rhodamine-6G 

SEM/TEM  Scanning/transmission electron microscopy  

SERRS  Surface enhanced resonance Raman scattering  

SERS  

ss 

TBI 

Surface enhanced Raman spectroscopy  

Single stranded 

Traumatic Brain Injury 

TRITC 

UCH-L1 

Tetramethylrhodamine isothiocyanate 

Ubiquitin carboxy-terminal hydrolase L1 

UV-vis  

WHO 

Ultraviolet -visible spectrophotometry 

World Health Organization  
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Figure 56. Box and whisker plots for visualizing quantitative resolution. Boxes represent 

the SERS signal distribution across the five pads for each tested concentration, 
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capable of differentiating between the three regions separated by the break 
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Figure 57. Comparison of SERS response curves using peak intensity vs peak area 

analysis. The peak area response is fit to a Hill1 curve as defined in Eq. 2 with 
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Figure 58 SERS sensor performance representing the quality of the Hill fit and the 
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CHAPTER I 

INTRODUCTION 

With the CDC estimating over 13 billion in-vitro diagnostic tests run annually, disease-

identifying proteins, toxins and carcinogens, bacteria, viruses, cancerous cells, and many other 

biomarkers found in bodily fluids are analyzed using various forms of in-vitro diagnostic (IVD) 

testing, making them the most frequently performed medical tests in the United States.5 

Personalized patient care and preventive diagnosis revolve around a clinical chemist’s 

understanding of each patient’s unique and complex physiology, and historically this has been 

monitored through the through the collection and analysis of bodily fluids. Blood, urine, and 

sweat (BUS) are the most common biological samples though other bodily fluids provide 

useful insights into human physiology such as cerebral spinal fluid or sputum, but are much 

more difficult to obtain due to complex sample collection or required patient participation.6  

Remarkably IVDs tests make up only 2.3% of all healthcare expenditures in the United 

States7. Yet despite their low cost and frequency of use, and despite the fact that 66% of all 

medical decisions are based on the result of an IVD8, in the United States 86% of all IVDs are 

performed off-site at independent labs or centralized facilities7. Patients are typically referred 

to a separate location where biological samples can be collected by a phlebotomist and 

analyzed by a trained technician. Laboratory testing of patients in developing countries present 

even greater challenges due to the limited access to laboratory equipment, clean water, and 

consistent electricity. Patient samples are typically sent to off-site locations capable of 

performing such tests, which runs the risk of samples being contaminated, lost, or mislabeled 

9 along the way. Many patients in remote settings are unable to return to city clinics for multiple 
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appointments and often never receive results, only the initial medication, further prolonging 

proper diagnosis and treatment 10.   

 

I.1 Translating clinical chemistry to the point-of-care  

Recent developments in point-of-care technology focus on creating rapid diagnostic 

testing platforms (RDTs) where patient samples can be tested and results obtained minutes 

after collection. The development of POC technologies that involve automated sample 

preparation, such as lab-on-a-chip (LOC) devices, remove the need for complex laboratories 

and experienced personal by automating mixing and filtration with microlfuidics11. While 

improving overall healthcare quality by bringing BUS test results to the patient’s bedside, into 

the home, the ambulance, the field, and more, point-of-care technology can achieve and 

maintains the gold standard of testing set by centralized clinical chemistry laboratories 12.  

As tests often must be sent to a centralized hospital or independent laboratory, getting 

the result to the patient can require hours or even days due to delays caused by sample 

preparation, assay design, and/or logistic holdups5. This wait is often enough to warrant the 

patient being treated before the doctor is actually able to confirm their diagnoses. A POC 

technology solves these problems by providing a user-friendly interface, without the need of 

expert technician support or complex analysis, whilst still meeting the current clinical 

chemistry standards for IVDs as set by the AACC.13-14 Moving towards integrated lab-on-a-

chip systems for blood, urine, and other fluid testing offers many advantages such as automated 

measurement, low sample and reagent volumes, minimal sample preparation, portability, 

disposability, and user-friendly interfaces. Point-of-care blood diagnostic sensors utilizing 

disposable chip platforms have already been successfully implemented for a number of 
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common clinical chemistry tests, for example: to quantify panels of electrolytes, metabolites, 

cardiac biomarkers, blood gases, and hematocrits (i-STAT15); to detect HIV, syphilis and other 

infectious diseases (mChip16); and to perform up to 25 blood tests with one device by 

combining optical light scatter, colorimetric and electrochemical methods (Ativa). However 

there has yet to be a fully translatable sensing methodology for detecting and isolating 

emerging small molecule, bacterial, viral and protein biomarkers. Ergo, it is proposed that a 

surface enhanced Raman spectroscopy nanoparticle based detection mechanism will be 

developed towards the realization of a universal biosensing platform.  

Separation of small non-immunogenic biomarkers from larger cellular components in 

biological fluids is particularly critical for accuracy in in-vitro diagnostic testing.17 By 

developing a platform analysis chip using microfluidics, nanoparticles, and SERS, IVD results 

could be analysed at the patient’s side, removing many of the sources of human error 

associated with diagnostic blood testing, such as mislabelling of samples and improper sample 

preparation and transportation.18  The implementation of an on-chip SERS analysis method 

could significantly enhance a number of developing POC devices for a variety of applications 

such as remote and emergency health monitoring, pharmaceutical testing, or medical and 

academic research.  

 To facilitate the translation of IVDs to the point-of-care, the investigated SERS 

technologies should ideally be accurate, portable, simple to use, easy to read a positive or 

negative result, require little or no sample preparation, provide timely results, and be cost-

effective.19 The World Health Organization (WHO) has specifically defined the criteria 

defining a POC device in the form of an easy to remember acronym: ASSURED20 as defined 

in Table 1.  
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Table 1. ASSURED criteria set by the WHO for classification of POC devices.  

 Affordable   Cost of test 1-2 day salary for developed world 

 <$0.10 for developing countries 

 Sensitive   Low false negatives/high true positive rate 

Ensures patients not infected are not treated 

 Specific   Low false positives/high true positive rate 

Identifies only patients needing treatment 

 User friendly   User friendly, easy to use, requires only a few simple steps and 

minimal operator training 

 Rapid & Robust   Result time ~30 min, reagent shelf life >1 year  

 diagnose & treat in same day 

 Equipment-free   Equipment-free, little user input required, compact, battery 

powered unit, readily transportable 

 Deliverable   Deliverable where needed, portable, hand-held, cloud-enabled, few 

consumables, little waste 

 

I.2 What is Raman scattering?  

 Raman scattering techniques have emerged as a unique tool in the development of 

blood biomarker assays as they provide characteristic chemical fingerprints, low limits of 

detection and capability for multiplexing due to narrow spectral band widths21. A number of 

electromagnetic interactions can occur when a biological sample is hit with an incident 

excitation source, the most common being elastic Rayleigh scattering (Figure 1).22 However 

the Raman signal stems from the inelastic scattering of photons caused by a loss or gain in the 

incident photon’s energy due to vibrations of a molecule’s electric cloud. These inelastic 

scattered photons exhibit this shift (for Stokes Raman, gain for anti-Stokes) in energy as a 

result of a shift in the molecules dipole moment, where each ‘Raman shifted’ frequency 

returned is related to the polarizability of the molecule probed and the chemical structure of 

the molecule. Each vibrational mode corresponds to a recorded peak in the Raman spectra and 

can be matched to a specific bond, thereby providing an incredibly specific chemical 

fingerprint of the analyte. Only about 1 in 108 incident photons undergoes spontaneous Raman 
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scattering, consequently causing the technique’s intrinsically weak signal. Strong Raman 

bands are attributed to Raman reporter molecules (RRMs) with a high Raman cross-section, 

meaning the molecule’s electron cloud is easily distorted by the excitation laser and thus is 

highly polarizable.23-24 

 

Figure 1. Schematic identifying light scattering after laser exposure on a sample surface.  

Reprinted with permission from Butler et al.22 Copyright 2016 Nature Publishing Group. 

 

 

I.2.i Colloidal surface enhanced Raman spectroscopy (SERS)  

 In surface enhanced Raman spectroscopy (SERS) extreme electromagnetic 

enhancements are observed when the analyte is in close proximity to a plasmonic surface such 

as metallic colloidal nanoparticles.25-28 In colloidal SERS, the incident Raman excitation laser 

is used to generate an electric field at the dielectric interface between the particle and 

surrounding medium, leading to signal enhancements of up to 1011 when the analyte is 

sandwiched within 1 nm of two gold spherical particles29-30. Nevertheless, SERS techniques 

often lack reproducibility and specificity due to the random nature of particle aggregation and 



 

6 

 

the  adsorption of molecules onto the metal surface26, making it difficult to obtain quantitative 

information. The integration of SERS detection with biomolecular assays has been recently 

implemented through the design of SERS nanoprobes: metallic nanoparticles conjugated to 

molecules with specific optical and biochemical functionalities31-33. 

 The plasmonic nano-rough structures required to facilitate SERS can be synthesized 

using a variety of complex photolithographic techniques borrowed from the silicon wafer 

industry, however colloidal plasmonic nanoparticles are arguably the simplest SERS substrate 

to fabricate without the need for any complex equipment or extensive training. Starting from 

the 1980s onward colloidal nanoparticle suspensions have served as one of the most popular 

SERS substrates to date, due to their relatively basic synthesis process requiring only a silver 

salt and a reducing agent to produce a metallic sol, with submicromolar detection limits first 

demonstrated by Lee and Meisel using silver nanoparticles and carbocyanine dyes in 1982 34. 

In this work they also observed the extra enhancements achievable when combining SERS 

with resonance Raman (SERRS). Not long after in 1989, Rohr, Cotton, et al. revealed the first 

SERRS immunoassay capable of monitoring antibody/antigen interactions for the biomarker 

human thyroid stimulating hormone (TSH) 35. Their one-step, no wash, sandwich-type assay 

used a resonant dye to indirectly monitor TSH in the physiological range, thus validating the 

potential of SERS to enhance and improve diagnostic assays. A decade and a half later, Nie 

and Emory were famously able to achieve SERRS enhancements of up to 1015 when probing 

individual rhodamine 6G molecules on single silver nanoparticles 36, thus inviting future 

investigators to utilize this technique for point-of-care applications requiring ultra-low limits 

of detection. 
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I.3 System requirements for facilitating colloidal SERS 

 Colloidal SERS is most commonly achieved using silver and/or gold nanoparticles 

between 20-200 nm, as they exhibit unique and tunable optical properties to facilitate the 

plasmonic coupling event required in SERS sensing. The nanoparticle size 37, shape 38, 

dispersant 39, and particularly the dielectric properties of the metal all strongly effect a colloid’s 

extinction spectra and SERS capabilities. To ensure a colloid’s SERS enhancement factor is 

uniform throughout the suspension, it is also required that the nanoparticles be somewhat 

monodisperse (PDI < 0.300) 40. Spheroids exhibit LSPRs that are typically within a ± 120 nm 

window of the most commonly used laser sources: 532 nm, 633 nm, and 785 nm (Figure 2).31  

  

Figure 2. Photographs (left) and extinction spectra (right) of various 60 nm metal 

nanoparticles (AgNPs, AuNPs and Au/Ag nanoshells) in water. LSPR peaks are observed at 

430 nm, 540 nm and 630 nm, respectively. Reprinted with permission from Wang et al.31 

Copyright 2013 Royal Society of Chemistry. 

 

 

 Maximal SERS enhancements are achieved by tuning the Raman excitation wavelength 

close to the intrinsic LSPR peak of the colloid, or by causing the colloid’s LSPR to shift even 

closer into resonance with the laser by altering the particles surface interactions or aggregation 

state. This is commonly realized using controlled salt-based aggregation, mechanical trapping 
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or centrifuging of particles, or a binding event that results in nanoparticle assembly formation, 

for example using DNA hybridization to template core-satellite formation as described 

extensively by Mirkin and colleagues 41-43. From the extinction profiles and electric field 

intensity models derived from their work as shown in Figure 3, it can be seen that the precise 

control of nanoparticle cluster formation can serve as a foundation for on/off parameters for 

SERS sensing.44 

 

Figure 3. Dependence of plasmonic enhancement on nanoclustering extent. Top: Extinction 

profiles calculated using generalized Mie theory for 20 nm diameter particles separated by 1 

nm for each differently shaped plasmonic clusters. The shapes correspond to differently 

organized clusters and the colors correspond to the different particles within a single cluster. 

Bottom: Electric field |E|4 intensity distribution for each cluster type; in each image, the light 

is polarized from left to right. Scale bars are 10 nm. Reprinted with permission from Ross et 

al.44 Copyright 2016 American Chemical Society. 

 

 

 The separation of a desired biomarker from complex biological samples is a key factor 

for translating SERS technologies to the point-of-care. For label-free methods monitoring the 
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intrinsic spontaneous Raman (SR) or resonant Raman (RR) modes of the analyte, the 

biomarker must be either pure or isolated from the media using extraction techniques such as 

HPLC or an immunoassay, or the biomarker itself must exhibit vibrational modes that contrast 

those from the background media.45 Bringing these purification steps to the point-of-care often 

requires immobilization of affinity ligands such as antibodies or DNA aptamers onto 

wellplates, scintillation vials, or on glass slides using basic click chemistry.46 The only 

downside of these ELISA or extraction kit-style designs is the required user-intervention for 

washing steps to remove optically or biochemically interferent components of the sample prior 

to SERS analysis.  

 SERS-active nanoprobes integrate the requirements discussed above in order to 

improve the speed of test results, reduce reagent costs, and to enhance the specificity and 

dynamic range of existing assays 47. In general they involve one or more nanoparticles 

conjugated to 1) a highly polarizable Raman reporter molecule, 2) an affinity ligand such as 

an aptamer or antibody, and 3) a steric or electrostatic capping agent for stabilization in high 

salt environments 1, 3. 

 

I.3.i Label-free colloidal SERS  

 Since Raman provides a chemical fingerprint of the probed sample, it may seem 

intuitive to detect disease identifying changes in an isolated biomarker’s conformational 

structure by looking at the Raman modes coming from the analyte itself. In one example, our 

group was able to observed structure changes in the SERS spectra of for the  biomarker β-

amyloid absorbed onto aggregated gold nanospheres 48 that could be suggestive of Alzheimer's 

disease.  
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 One particularly promising example was conducted by first by Fang 49 and later Wang 

50 from Rong Chen’s group using two abundant serum proteins, albumin and globulin, to detect 

colorectal cancer using real clinical samples. In Wang’s work the two serum proteins were first 

purified from over 200 healthy and cancerous human serum samples. Protein samples were 

then added directly to hydroxylamine silver nanoparticles and acetic acid was used to aggregate 

silver nanoparticles to increase the magnitude of the SERS enhancement. SERS bands were 

assigned to verify specific biomolecular contents of the proteins, and to predict protein 

secondary structural changes that occurs with colorectal cancer progression using the 

difference of the SERS spectra between healthy and cancerous samples (aka SERDS). 

Principal component analysis and linear discriminant analysis were used to assess the 

capability of this approach for identifying colorectal cancer, demonstrating a diagnostic 

accuracy of 100% for albumin monitoring and 99.5% for globulin SERDS analysis. 

Additionally both the albumin and globulin partial lease squares (PLS) models successfully 

predicted the unidentified subjects with a diagnostic accuracy of 93.5%.  

 These results suggest that SERS analysis of serum proteins can be a sensitive and 

clinically powerful means for disease detection. However, simple direct sensing efforts like 

these still struggle to fully translate to the point-of-care, as they require complex sample 

preparation to be performed before SERS analysis. Thus these methods are not user friendly, 

are time consuming, involve complex statistical analysis or peak assignments, and require too 

many separate pieces of laboratory equipment to be fully implemented at the patient bedside. 

Integrating these techniques with lab-on-chip devices could overcome these hurdles, as 

discussed later.  
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I.3.ii Molecularly-mediated SERS  

 Indirect sensing using an assay whose SERS response is facilitated by a molecular 

binding event, particularity one that involves the biomarker itself, has emerged as an efficient 

approach to colloidal SERS. Oligonucleotides, antibodies, protein antigens, small molecules 

and dyes can all be immobilized onto metallic nanoparticles using thiol end groups, 

bifunctional PEG linkers, or sequential click chemistry 51-54. Extensive work has been done by 

Duncan Graham and Karen Faulds’ groups utilizing various oligonucleotide and resonant dye 

coated nanoprobes to form SERRS active nanoassembly complexes for multiplexed DNA 

detection 55. In most cases, the nanoassembly detection modality involves the SERRS active 

particles’ LSPR shifting in or out of resonance with the excitation source caused by hybridized 

DNA linking nanoparticles in close enough proximity to share conduction band electrons and 

red-shift their extinction spectra, and thereby a jump in SERS intensity, without causing 

irreversible aggregation. The group has translated their ‘SERS-on’ techniques for a variety of 

DNA, protein, and small molecule sensing applications, most recently by Mabbott et al. for 

monitoring four fungal probes in a multiplexed  fashion 56, by Simpson et al. using a 

biomimetic glyconanoparticle assay for ultrasensitive (ng/mL) quantification of cholera toxin 

B-subunit 57, and by Gracie et al. for the simultaneous detection of two meningitis bacterial 

DNA biomarkers extracted from cerebral spinal fluid (CSF) clinical samples 58-59.  

 

I.3.iii Magnetic micro- and nanoparticles for colloidal SERS 

 A major obstacle preventing the translation of DNA and aptamer-based molecular 

diagnostics at the point-of-care is the lack of sensitive yet also practical SERS methods that 

can be seamlessly integrated into portable platforms, again mainly due to some sample washing 
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required. Magnetic microbeads and superparamagnetic nanoparticles (SPIONS) 60 are easy to 

manipulate with small permanent neodymium magnets held at the side of a vial, wellplates, 

capillary tube, microfluidic channels or even inside cells 61. When functionalized with sensing 

ligands, this allowing for faster, more automated washing steps while also preventing sample 

sedimentation often seen with repeated centrifugation 62-63. Magnetic nanoparticles can also 

provide a plasmonic response when coated in gold or silver 64 , therefore improving SERS 

enhancement capabilities 65-67.  

 Many groups have facilitated this technique for improving clinical chemistry 

techniques recently, such as Wang et al., who used aptamers immobilized onto silver coated 

magnetic nanoparticles with a secondary SERS active gold nanoprobe coated in another 

aptamer to capture and quantify down to 10 bacterial cells/mL 68. Ge et al. used a similar 

sandwich binding approach, but with antibodies in lei of aptamers for the detection of the 

ovarian cancer serum biomarker human epididymis protein 4 (HE4). They were not only able 

to demonstrate fg/mL limits of detection and a dynamic range of 1 pg/mL to 10 ng/mL, but 

also demonstrated that the assay particles could be washed and reused at least 5 times in their 

efforts towards developing easy to use diagnostic kits 69. 

 Tuan Vo-Dihn’s group has also developed a sandwich-type SERS assay, relying on 

specific DNA hybridization to capture ultrabright SERS nanorattles onto magnetic microbeads 

70. Nanorattles are core-shell silver particles with resonance Raman reporters loaded in the gap 

space between the core and the shell, with DNA probes coated on the shell surface, thus acting 

as the SERS tags for signal detection. After hybridization, a magnet was applied to the bottom 

of the well to both remove unbound nanorattles and to concentrate the hybridization 

sandwiches at a localized detection area for SERS measurements. Probing for two specific 
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DNA sequence of the malaria parasite Plasmodium falciparum, one mutated and the other 

wild-type, it was found that SERS could detect malaria DNA down to 100 attomoles. Since 

the mutant sequence translates for resistance to artemisinin drugs, single nucleotide 

polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA was 

also demonstrated. Their results show the potential for molecularly mediate SERS to 

differentiate small mutations in infections pathogens with far greater sensitivity than current 

methods, an important factor for global health applications.  

 

I.3.iv SERS-based immunoassays challenge ELISA 

 SERS nanoprobes have recently be used to improve detection capabilities of 

immunoassays and potentially rival the ever popular enzyme-linked immunosorbent assay 

(ELISA) techniques. Combining SERS and ELISA, aka “SLISA’, has proven to be an effective 

method for improving the limits of detection due to the intrinctic enhancement capabilities of 

SERS, speeding up assay reaction times due to the 3D architecture of functionalized colloidal 

nanoparticles,  and capitalizing on the narrow spectra bands obtained with Raman for 

improving the multiplexing capabilities of traditional immunoassays 71. Bhardwaj et al. directly 

compared the capabilities of SLISA and ELISA assays for the measuring RAD54 stress-marker 

protiens. They found SLISA has similar accuracy as ELISA, but improves upon the indirect 

enzyme based method by being reusable, faster, more direct, and easy-to-use. SLISA was also 

5x more sensitive than ELISA while providing qualitative information on immuno-sensor's 

chemical characterization and antigen-antibody binding. This thereby allows direct detection 

with less uncertainty, which is a stringent limitation of all label-based biosensor technologies, 

including ELISA 72. 
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 One example of an excellent biomarker candidate for SLISA is the hormone estradiol 

(17β-estradiol, E2) a critical serum protein in sexual development. Specifically, it’s noteworthy 

that E2 levels are especially low (<10 pg/mL) in prepubertal girls, and unfortunately current 

clinical detection methods are insufficient for accurate assessment of E2 at these ultralow 

pg/mL concentrations. In a study conducted by Jaebum Choo’s group, a new E2 sensor was 

introduced using a magnetic capture bead SERS immunoassay detection platform based on 

their previous work that validated the technique for use with clinical samples for the early 

diagnosis of arthritis73. The system involves a competitive binding assay with reagents 

immobilized onto magnetic beads to assist with automated wash steps and also to enhance the 

SERS response through magnetic aggregation in a glass capillary tube (Figure 4). Their SERS 

assay was tested with 30 blood samples to assess its clinical feasibility and their prediction 

results were compared those obtained using a commercially available chemiluminescence 

immunoassay. The commercial immunoassay failed to quantify E2 serum levels lower than 10 

pg/mL, but the limit of detection of E2 using the novel SERS-based assay described in this 

study was an order of magnitude lower at 0.65 pg/mL. This verifies that SLISA-based methods 

have a strong potential in the early identification of biomarkers due to its exceptional analytical 

sensitivity. 
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Figure 4. Schematic illustration of the SERS-based competitive immunoassay for 

quantification of E2- target where E2 and E2-conjugated SERS nanotags competitively react 

with anti-E2 antibody on magnetic beads. Right: Passing-Boblok regression plot for the 

determination of the bias and compatibility between chemiluminescence and SERS. 

Reprinted with permission from Chon et al 73. 

 

 

I.4 Small molecule biomarker sensing, aptamers, & SERS 

I.4.i A brief introduction to bisphenol-A as an endocrine disruptor  

 The underlying goal of the latter half of the research presented herein is to develop a 

new point-of-care (POC) detection platform and methodology for assessment of biological 

exposure to harmful foreign chemical compounds. In contrast to most prior approaches which 

attempt to measure the amount of such manmade compounds in the environment, the 

technology developed here will have the sensitivity and specificity to detect toxic agents in 

human blood samples directly and thereby determine the toxicological “load” within the 

patient. The end-product of this research is expected to have considerable impact allowing 

toxicologists, environmental health professionals, and clinicians the ability to correlate the 

effects of toxic chemicals to disease states. 

 A number of setbacks arise when designing sensing platforms for detecting foreign 

blood toxins with low immunogenicity, such as environmental agents/stressors. Though 
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environmental monitoring in air, water, and food and beverage packaging is well-established 

and regulated, there is still a need for reliable human biomonitoring methods in order to 

determine the body’s burden with foreign toxins and their possible metabolites in the blood. 

Bisphenol A (BPA) is the monomer of an epoxy resin commonly used in plastic food and 

beverage packaging, a building block of polycarbonate plastic, and can be toxic to the 

endocrine system when exposed to humans. Though environmental monitoring of BPA in 

drinking water, and inside the food and packaging products themselves is well-established and 

strictly regulated by the FDA, a recent CDC study found BPA detected in 92.6% of the 2500 

Americans participants,74 demonstrating that there is still a need for reliable methods to 

determine how exactly BPA disrupts the endocrine control system.  

 BPA is used as an inner coating to protect metal food cans, water bottles, and other 

polycarbonate reusable containers from rusting and corrosion. The coatings are synthesized by 

the condensation of BPA with epichlorhydrin to produce BPA diglycidyl ether (BADGE). BPA 

leaches into food and beverage products from the coating, an epoxy resin, when incomplete 

polymerization occurs or after damaging UV exposure. The maximum tolerated dose for BPA 

is 1000 mg/kg body weight as determined by toxicology studies.74 BADGE is a type of 

peroxisome proliferator-activated receptor- antagonist, which means it may activate or inhibit 

ion channel activity in vessel walls directly, though this claim requires further investigation 

and much remains unknown about the mechanisms involved in humans exposed to BPA and 

its derivatives.75 
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I.4.ii Aptamers for all 

 Biological assays for blood biomarker detection are most commonly realized using 

antibodies76. However, for sensing small molecules with low immunogenicity, raising 

antibodies would require complicated synthesis of a hapten–target carrier before animals can 

be immunized with that conjugate76. Recently, aptamers, highly specific and sensitive affinity 

molecules derived from nucleic acids, have been used as assay recognition ligands in lieu of 

typical antibodies77-83. An aptamer is typically a single short (<100 bp) oligonucleotide that 

has been folded into a tertiary structure ao that it has with both ds and ss portions, where the 

ss parts act as ‘lassos’ selective to binding to a specific antigen as depicted in Figure 5. 

Aptamers are specifically advantageous for sensing small molecules with low 

immunogenicity, where raising antibodies would require synthesis of a hapten–target carrier 

before animals can be immunized with that conjugate76.  Selection of aptamers is an entirely 

in vitro process with the ability to perform counter selection steps and/or selection under non-

blood conditions. This provides the potential for greater ligand specificity and affinity, and 

once identified, aptamers are readily produced by scalable chemical synthesis. Last, aptamer 

terminal functional groups are readily incorporated during synthesis for conjugation to 

nanoparticles, or other immobilization assay steps84.  

Figure 5. The secondary (left) and tertiary (right) structure of a ssDNA aptamer selected 

against BPA, drawn using Mfold and Rosetta Commons freeware, respectively.  
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Figure 6. SERS spectra for (A) single strand probe DNA-embedded Au/Ag core–shell NPs, 

(B) cy3-labeled aptamer double strand DNA-embedded Au/Ag core–shell NPs and (C) 

aptamer-detached Au/Ag core–shell NPs in the presence of 100 nM BPA. Reprinted with 

permission from Chung et al. 85 Copyright 2015 Elsevier.   

 

  

 In one example combining aptamers and SERS for small toxin detection, Chung, Choo, 

et al. described a ‘SERS-off’ molecularly mediated SERS methodology using only aggregated 

silver colloid, relying solely on small molecule competitive binding to displace an aptamer 

tagged with a Raman dye molecule.85 This method is detailed in Figure 6 and uses a partial 

complimentary sequence to immobilize a ssDNA aptamer onto Au/Ag core–shell 

nanoparticles. This method proved to be sensitive down to the 10 fM range for BPA-spiked 

tapwater, over a total dynamic range of 10 fM - 100 nM. The authors of this work 

acknowledged that this LOD is two or three orders of magnitude lower than that reported for 

other BPA sensing techniques, but may possibly be shifted higher if the samples were in 

complex biological media. Additionally, it is noteworthy that the total detection time was 

estimated to only be about 40 min including both the reaction between aptamer and BPA (30 

min) and detection (10 min), making this option ideal for supplementing rapid diagnostic tests 

(RDTs). 
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CHAPTER II 

CHARACTERIZATION OF MULTIPLE MICROFLUIDIC MODALITIES FOR 

“SERS ON” TYPE ASSAYS 

II.1 Introduction to SERS-on-a-chip design requirements 

 The enhancement factor (EF) for each SERS-on-a-chip device was defined as shown 

in Eq. 1, and used to compare their sensing capabilities. While there are numerous methods for 

calculating SERS EFs and various rationales behind them, here we report the EF as a ratio of 

values with the units ‘photons/mole’. For each EF calculation experiment, control scans of the 

RRM or analyte probed were collected using the same Raman microscope settings as the 

SERS-on-a-chip device at the lowest detectable concentration. Looking at the same peak 

intensity for the SERS and Raman setups, the maximum intensities at each limit of detection 

were divided by the concentration in moles (Eq. 1). Using this equation, a higher EF implies a 

lower limit of detection (LOD), but does not necessarily confirm or correlate to the lowest 

quantifiable (LOQ) concentration.  

𝑬𝑭 =

𝑰𝑺𝑬𝑹𝑺
[𝑪]𝑺𝑬𝑹𝑺∙𝑽𝑺𝑬𝑹𝑺

𝑰𝑹𝒂𝒎𝒂𝒏
[𝑪]𝑹𝒂𝒎𝒂𝒏∙𝑽𝑹𝒂𝒎𝒂𝒏

=
𝑰𝑺𝑬𝑹𝑺∙𝒎𝒐𝒍𝒆𝒔𝑹𝒂𝒎𝒂𝒏

𝒎𝒐𝒍𝒆𝒔𝑺𝑬𝑹𝑺∙𝑰𝑹𝒂𝒎𝒂𝒏
   Equation 1 

 

 The limit of quantification (LOQ) of each chip discussed in this chapter is loosely 

defined as the lowest concentration at which the chip’s average SERS intensity at a specified 

vibrational mode (typically chosen to be the spectra’s sharpest or highest peak) can be 

statistically differentiated from the next two concentration points around it. Thus, a chip’s 

theoretical LOQ is highly dependent on the intrinsic error within each individual chip (i.e. 

within each patient sample, or within each concentration on a calibration curve). The intrinsic 
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error of each chip tested is reported as a range of coefficient of variations, where each 

individual chip %CV is defined in Eq. 2 as the standard deviation over the mean for each chip 

at a specified SERS peak.  This value can be thought of as the sensor’s error or tolerance, i.e. 

if a chip has a CV=0.21 then the average SERS intensity for that concentration varies across 

the substrate surface by 21%. 

%𝑪𝑽 = 𝟏𝟎𝟎% ∙
𝑺𝑻𝑫𝒆𝒗(𝑰𝑺𝑬𝑹𝑺(𝝊𝒑𝒆𝒂𝒌))

𝑨𝒗𝒆𝒓𝒂𝒈𝒆(𝑰𝑺𝑬𝑹𝑺(𝝊𝒑𝒆𝒂𝒌))
         Equation 2 

 

II.2 Direct sensing of assay products on a SERS substrate 

 As an initial approach to improve upon the slow environment of current large scale 

blood analysis labs, we aim to eliminate the need for multiple devices in order to analyze 

multiple biological transduction methods. Specifically, LabCorp currently has the capabilities 

for analyzing assays with different output signal types such as spectrophotometric (UV-Vis, 

fluorescence, etc), enzymatic, electrochemical, mass spec, various types of size-exclusion 

chromatography, etc. However this type of multifaceted laboratory requires either 1) multiple 

designated personnel for each machine, or 2) a strong team of long-term employees who are 

able to endure lengthy training to master all bioanalytical equipment in the facilities. We 

propose to use SERS as an alternative method to eliminate the need for such numerous and 

large scale lab equipment. Given its capabilities to be tuned to virtually any desired analytical 

range and the fact that any molecule with a polarizable bond has a detectable Raman signal, 

we are able to sense an endless variety of analytes.  

 In the remainder of this sub-chapter II.2, two SERS-on-a-chip devices are presented for 

the analysis of three common analyte types: 1) Small Molecule- Adenine (nucleotide used for 
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DNA-nanoparticle binding confirmation), 2) Unlabeled Protein – UCH-L1 (traumatic brain 

injury biomarker found in the optically-clear CSF), and 3) Dye-labelled Protein – 

Myoglobin*Rhodamine-6G (Myo*R6G, emulates a cardiac biomarker immunoassay product 

in that R6G is also a fluorophore). Both designs utilize mechanical trapping and aggregation 

of 60 nm commercially available gold nanoparticles (Polysciences) at a micro- to nano-fluidic 

junction. This allows for a high density of aggregated nanoparticles at a defined region for 

more reproducible formation of SERS active sites (aka ‘hot spots’) located between aggregated 

nanoparticles: where the analyte is to be trapped. Schematics of the two SERS-on-a-chip 

devices characterized in this subsection are compared in Figure 7. 

 

Figure 7. Comparison of the mechanical aggregation based SERS-on-a-chip devices for 

direct sensing of analytes. 

 

II.2.i Silica electrospun nanofibrous membrane 

 With the goal of generating reproducible SERS hot spots on chip, this device exhibits 

a micro-to-nano junction for mechanical aggregation with a silica electrospun nanofiber 

membrane sandwiched between inlet and outlet microfluidic channels, where gold 
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nanoparticles and the analyte can then be trapped sequentially. The nanofibrous membrane was 

constructed by electrospinning a polymeric-silica composite onto a glass slide, followed by 

high temperature disintegration of the polymer. PDMS microfluidic channels were fabricated 

via an SU-8 mold and bonded with the glass slide patterned with the silica nanofiber membrane 

bottom layer. The small pores created by the deposited nanofiber membrane enabled flow 

through the 25-m channel region. A schematic of the assembled device and flow chart 

detailing this fabrication process can be found in Figure 8). This chip’s fabrication is relatively 

simple in that it does not require the use of a cleanroom or special training, only a fume hood, 

high voltage power supply and high temperature oven (>500°C). 

Figure 8. Fabrication process for SERS chip facilitating mechanical aggregation of gold NPs 

at the entrance of a nanoporous membrane. (a) Fibers are electrospun onto glass slide, 

polymer is removed in high temperature bake step (b) PDMS microfluidic channel is lifted 

from SU-8 mold and bonded to glass slide with the indentation over the nanofibers. (c) 

Schematic of the assembled device. Left: top view of the device Right: side view of the chip. 

Red arrows indicate the flow direction. 
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 The nanofibrous structures were designed to exhibit ~10 nm pores and, when vacuum 

is applied at the chip outlet; the particles aggregate at the junction while the buffer solution 

passes through. To verify that the silica fibers formed a mesh that provides pores on the 

nanoscale, 20 l of commercially available 1 m polystyrene (PS) beads (diluted 1000:1 from 

Sigma stock) placed at the channel inlet followed by syringe-vacuuming with 1/3 of 1 mL 

possible full extraction. Brightfield images were collected over time until particle aggregation 

became visible at the channel entrance to the nanofiber mesh (Figure 9, left). No visible leaking 

of the 1 µm beads after 40 min implies the nanofibers provide pores on the nanoscale.  

 Next, a similar experiment was conducted using 20 L of commercially available 60-

nm gold nanoparticles (Unconjugated PolyGold, Polysciences, Inc.) and a syringe-vacuum 

system using the full 1 mL air extraction. Images were taken during the process of aggregation 

until particle aggregation appeared to reach a steady state (~ 5 min, Figure 9, right). 

Unfortunately from the brightfield images it can be seen that a significant portion of the 

nanoparticles leaked out into the nanofibrous membrane rather than remaining concentrated at 

the junction as was seen with the polystyrene microbeads. Looking at the two images in Figure 

Figure 9. Brightfield images of particles aggregating at the entrance to the nanofiber mesh, 

scale bar is 20 µm. Left: 1 µm polystyrene beads in nanofibrous channel for verification of 

nano-pore formation. Right: 60 nm gold nanoparticles, chip outlet under vacuum for 8 min 

until adenine SERS signal saturation.  
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9 together, it can be inferred that the nanofibrous membrane must provide a membrane of pores 

somewhere on the order of ~70-900 nm.  

 To determine the limit of detection and quantification capabilities of the nanofibrous 

SERS chip, a 20 µL solution of the nucleotide adenine at concentrations from 100 nM to 100 

µM was pulled through 4 separate nanofibrous channels (where all 4 fibrous regions were 

patterned at the same time on the same glass slide) preloaded with gold nanoparticles. It is 

assumed that the adenine is oriented on the gold surface as predicted by Juewen Liu,86 as shown 

in the schematic in Figure 10. Adenine’s major Raman vibrational mode (aromatic ring 

breathing86 located at 735 cm-1) was observable after 16 minutes, and the signal at the junction 

between the microchannel and nanofibers reached a steady state after ~ 2 h (Figure 11a 

). It can be observed in Figure 11b that the limit of detection of this design was 1 µM, as the 

735 cm-1 peak from the 100 nM chip was difficult to distinguish from the noise.  

 

 Finally, the enhancement factor (EF) for this SERS-on-a-chip device was determined 

using the spectra shown in Figure 11c to be ~106. While these initial proof of concept 

experiments seemed somewhat promising, it was discovered that there was extreme inter-chip 

variability (>100%) due to difficulties in repeatability with the ‘homemade’ electrospinning 

process. Keeping in mind there are 4 replicate channels per chip, this means each chip would 

Figure 10. Chemical structure and assumed orientation of the nucleotide adenine on gold 
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need to be calibrated to the first channel and only 3 samples could be run before a new 

calibration was necessary. Additionally, the limit of detection of 1µM was far too high to be 

relevant for physiologic concentrations, and the degree of gold nanoparticles leaking into the 

nanofibrous mesh proved inconsistent from chip to chip. However this chip may still be of 

value as a potential option for fluid filtration, for example, in the removal of large cellular 

components (>1 µm) form blood or other bodily fluids, and allowing protein and small 

molecule components (< 60 nm) to pass through to a second analysis chip.  

  

Figure 11. a) 100 µM Adenine collecting in the nanofiber channel over ~2 h. b) 

Concentration dependent adenine SERS spectra. c) SERS spectra of 1 µM adenine 

compared to spontaneous Raman spectra of adenine at 1M for EF calculations. 

 

a             b    c
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II.2.ii Aluminum-Oxide nanoporous membrane 

 To overcome repeatability issues faced with the nanofiber design, for the next 

mechanical aggregation based SERS-on-a-chip device a commercially available aluminum 

oxide (AlO) nanomembrane (20 nm pore size – Whatman Inc.) was sandwiched between two 

slabs of PDMS. The top PDMS layer, i.e. the inlet, includes an embedded 200 µm glass 

capillary tube to encourage capillary flow with hope of eliminating the need for the syringe. 

However it was discovered that the small pore size would not allow for capillary action across 

the nanomembrane as anticipated. Therefore light vacuum suction was applied at the channel 

outlet (PDMS slab with 1 mm hole made with a biopsy punch), as depicted in Table 1 and 

Figure 12 below. 

Figure 12. a) Side profile of the nanomembrane SERS-on-a-chip device b) Magnified 

schematic of the sensing region c) SEM images of the AlO nanomembrane d) Brightfield 

image of the assembled chip e) SEM images of 60 nm gold on the surface of the 

nanomembranes. 

c 
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 Initially this nanomembrane-based device demonstrated significant improvement when 

tested with adenine. Just as with the nanofibrous chip testing in the previous subsection, 20 L 

of commercially available 60-nm gold nanoparticles were preloaded into the chip with vacuum 

suction, followed by 20 µL of adenine at various concentrations. The nanomembrane SERS-

on-a-chip demonstrated an enhancement factor of 109, three orders of magnitude higher than 

the nanofibrous chip as shown by their comparative 1 µM adenine SERS signals in Figure 13a. 

Additionally, the limit of detection for the nanomembrane was 1pM, six orders of magnitude 

lower than the nanofibrous chip, with an intra-chip variability of 18% as shown in Figure 13b. 

  

II.2.ii.a Amino acid (citrulline) 

 Next, the nanomembranes chip’s ability to quantify a more clinically relevant analyte, 

the amino acid citrulline, which has recently emerged as a blood biomarker indicative of gut 

function after radiation exposure (Figure 14)87 was investigated. The current gold standard for 

Figure 13. a) Comparison of nanofiber (design 1) and nanomembrane (design 2) SERS-

on-a-chip devices at 1 µM adenine compared to 1 M spontaneous Raman. b) 9 scans 

taken at random points across the 200 µm sensing region.  
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radiation biodosimetry is the dicentric chromosome assay (DCA). This technique is based on 

detecting the abnormal fusion of two chromosomes and is very reliable, however, also 

extremely time consuming (tests take several days) and expensive.88 There are a number of 

developed assays for radiation exposure, most of which are based on gene expression and at 

the benchtop phase, but have the potential for microfluidic integration.88-91 Brengues et al. 

report monitoring gene expression indicative of radiation exposure has integrated their 

quantitative nuclease protection assay (qNPA) into a microfluidic “front-end” platform chip. 

However their “back-end” chemiluminescent detection chip and blood filtration portions have 

not been developed yet.92 Therefore, this biomarker would be a suitable candidate for analysis 

with the developed SERS-on-a-chip device. 

 Citrulline was detectable by Raman in its powder form, highly concentrated 

liquid form, and using SERS at twice the average physiological concentration ( 

 

 

 

 

 

Figure 15). Since there were an unusually large number of peaks detected for a weakly 

polarizable molecule, it was confirmed that the peaks detected did indeed corresponded to the 

Figure 14. Effects of ionizing radiation on blood citrulline 

concentration in mice (inset: molecular structure of citrulline). 
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citrulline molecule’s vibrational modes as assigned in Table 2 by comparing the SERS spectra 

to spontaneous Raman spectra in powder and liquid forms. Finally, the experiment was 

repeated for six concentrations encompassing the physiological range from 1 µM  100 µM. 

As shown in Figure 16, the SERS-on-a-chip device was able to detect across the full range, 

however the sensor was not quantitative. 

Table 2. Raman vibration mode assignments for citrulline. 
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Figure 15. Raman and SERS spectra of citrulline with peak assignments labelled. 
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 The variability across concentrations is likely due to the fact that the citrulline molecule 

is allowed to adsorb onto the gold nanoparticles at any random orientation and at any packing 

density across the chip. In other words, since the analyte concentration is directly related to the 

packing density and orientation of the molecules on the surface of the gold it also has a 

significant effect on which Raman bands are enhanced and to what degree depending on how 

polarizable the molecule is at a given orientation/packing density.  

 To determine if citrulline’s intrinsic Raman spectra was capable of being isolated from 

complex media for true direct sensing, citrulline at the average ‘healthy’ physiological 

concentration of 50 µM was doped into fetal bovine serum. Next 100 µL of the sample was 

pulled over the gold particles on the nanomembranes, and this experiment was repeated in a 

control experiment using 50 µM bovine serum albumin (BSA). The average SERS spectra 

across the nanomembrane for each is shown in Figure 17. Though citrulline’s dominate 1076 

cm-1 peak is still significantly stronger in the doped sample than in control, when observing 

Figure 16. Limit of quantification experiment for citrulline in the nanomembrane SERS-

on-a-chip device. 
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their full spectra the citrulline profile still mirrors that of BSA, and given that it is an amino 

acid, this is expected.  

 

II.2.ii.b TBI biomarker proteins (UCH-L1 & NSE) 

 Since it was determined in the previous subchapter that quantitative analysis by direct 

sensing of an amino acid was not possible, but that the amino acids spectra was differentiable 

from a complex biological media, the next aim was to determine if instead the chip could be 

used to simply identify protein biomarkers by their structure. In this subchapter, we aim to 

identify two traumatic brain injury biomarkers: ubiquitin C-terminal hydrolase – L1 (UCH-

L1) and neuron specific enolase (NSE), both found at elevated levels in the CSF as recently 

discovered by Banyan Bio.93 

 After traumatic brain injury occurs, medical and military professions use the Glasgow 

Coma Scale (GCS) determines the intensity and duration of loss of consciousness and coma.  

Figure 17. Comparison of SERS spectra on the nanomembranes chip 

of bovine serum samples doped with citrulline (blue) and albumin 

(red). 
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The score is based on “motor responsiveness, verbal performance, and eye opening”.94  The 

score ranges between 3 and 15 points, 3 being the most severe case.95  The GCS score then 

places the patients’ outcome into loose treatment categories: dead, vegetative state, lower 

severe disability, upper severe disability, lower moderate disability, upper moderate disability, 

lower good recovery, and upper good recovery. Although widely used, the results may vary 

between individual assessors due to the need for personal judgment, a basis on social roles and 

need for a verbal response from the patient.96 A SERS-on-a-chip device for detecting the 

biomarkers discovered by Banyan (UCH-L1 & NSE shown in Figure 18) at the point-of-care 

could provide a less symptom-based diagnostic approach for TBI patients.  

 

Figure 18. Structures and SERS spectra with peak assignments for TBI biomarkers UCH-L1 

(left) and NSE (right) at physiological concentrations on the nanomembranes chip. 
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 Concentrations in the physiological range of the traumatic brain injury biomarkers 

found in the CSF were pulled over 200 µL of gold nanoparticles. There was 100 x more gold 

used in these experiments than previously due to the fact that we are less concerned about 

creating a uniform field of enhancement and more concerned with the visualization of as many 

peaks as possible in order to predict protein structure. The SERS Raman bands were assigned 

as shown in Figure 18 alongside the structures of the proteins on the basis of existing literature 

pertaining to the spectra of amino acids and proteins. As expected, aromatic rings (828, 872, 

1000, 1110, 1204, 1546), methylene vibrational modes (1266, 1320, 1365, 1449 cm-1), 

carboxylic group vibrations (620, 964, 1397, 1584 cm-1), stretching of disulfide bonds (500 – 

550 cm-1 and 650 – 675 cm-1) and the α-helical secondary structure (890-960 cm-1) dominate 

the SERS spectra. The UCH-L1 Raman bands are sharper than NSE likely due to its smaller, 

simpler structure as the protein randomly adsorbs to the gold surface. However, previous 

studies of label-free detection of proteins48, 97-98 have shown similar Raman modes to these, 

therefore the ability to measure these trace proteins in a complex media such as whole blood 

or plasma is not feasible. 

 

II.2.ii.c Labelled protein (Myo*R6G) 

 At this point there is a realization that unlabeled protein biomarkers are too similar in 

structure to differentiate or quantify using their intrinsic Raman spectra. However, since many 

diagnostic immunoassays already exist and typically output proteins tagged with fluorescent 

probes, we make one more attempt to utilize the nanomembranes chip in an effort to quantify 

these types of assay products. Since fluorescent molecules are highly polarizable in nature, 

they also make for excellent Raman reporter molecules, especially when using a near-IR 780 



35 

nm diode laser for excitation. This laser line will not excite most fluorophores, therefore 

avoiding the dreaded fluorescent background signal and signal quenching observed when using 

a 532 nm laser, which would be closer to the plasmon resonance of 60 nm gold (λ=522 nm). 

In this chapter, we attempt to quantify myoglobin, a well-known cardiac biomarker, tagged 

with the fluorescent probe rhodamine-6G (conjugate referred to as MYO-R6G) at 

physiological concentration range found in the blood plasma of 20 ng/mL – 500 ng/mL (1.2 

nM – 30 nM). Myoglobin is the earliest sensitive marker of cardiac injury with levels elevated 

within 2-3 hours of myocardial infarction, where the mean delay of onset of symptoms to first 

blood sample is four hours, too early for positive cTn results alone.99-100 Myoglobin has a 

negative predictive value of virtually 100% for excluding early infarction within 4 hours of 

admission,101 demonstrating a critical need for monitoring cardiac biomarkers at the patient’s 

side. 

It is noted that for these experiments, the PDMS slab was replaced by plastic and rubber 

bearings to hold the nanomembranes in place (Figure 19), with the hopes that the more ridged 

chip would result in more even vacuuming suction when preloading gold particles onto the 

chip. First, the spectra for MYO-R6G was compared to that of R6G alone to identify if the 

conjugate’s peaks belong to the dye or to the protein (Figure 20). From this figure it was also 

Figure 19. The modified nanomembrane SERS-on-a-chip sensor is composed of 

plastic plates, rubbers layers, and the nanoporous membrane with the arrows 

showing the direction of sample flow. 
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calculated that the EF of the sensor for the R6G dye alone was 108, one order of magnitude

below the EF for adenine of the same chip, likely due to adenine’s tendency to adsorb onto the 

gold surface, yet R6G provides significantly more peaks available for analysis, as the molecule 

is significantly more polarizable than adenine. 

SERS spectra were collected for the physiologically relevant detection range of 

myoglobin (20 ng/mL → 500 ng/mL), and a monotonic concentration dependence was 

observed for two MYO-R6G peaks at 567 cm-1 and 600 cm-1as shown in Figure 21a. Next the 

same concentration range of MYO-R6G was doped into a solution of 10 µM BSA, the largest 

and most abundance protein in plasma, as an interferent protein demonstrated that 

concentration information is obtainable in complex media. Though the EF was reduced by a 

factor of 10 in a protein rich media, the same monotonic trend was still observable for both 

peaks when normalized (Figure 21b). The variability of nine scans taken across the 

nanomembrane area of aggregation was 8.5% - 15.3% in water and increased to 14.7% - 35.2% 

in BSA for all peaks of interest, likely due to steric hindrance from the protein rich media 

preventing MYO-R6G from being as close the gold surface as possible. It is hypothesized that 

Figure 20. Comparison of the SERS spectra and Raman band assignments 

for R6G with MYO-R6G in the nanomebrane SERS-on-a-chip device. 
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an even more complex medium, like undiluted plasma, would render even more interferent 

proteins nonspecifically adsorbing to the surface. This was tested by doping the highest 

physiological concentration of MYO-R6G (500 ng/mL) into plasma, and indeed the R6G peaks 

were no longer distinguishable from the background noise.  

 

Figure 21. SERS intensity of myoglobin-R6G in water and BSA. (a) Monitoring the 567 and 

600 cm-1 range yields quantitative information over the physiological range of myoglobin and 

in a complex media. (b) Intensity normalized to [0 100] for each data set. 

 

II.2.iii Final thoughts on direct SERS sensing 

 Based on the previous sections, it can be said that direct SERS sensing of clinical 

chemistry analytes cannot be used for quantitative analysis using mechanically aggregated 

gold, which is the commercially available ‘gold-standard’ type of enhancement for SERS-on-

a-chip devices. While using a Raman active dye demonstrate semi-quantifiable results, the chip 

failed to detect the target when in complex media. All chips presented in this section 

determined the analytes concentration by isolating its peaks from those in complex media, 

rather than physically isolating the molecule as is done in traditional assays. However, it is 

determined from these experiments that there are too many similar Raman modes in biological 
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fluids, giving rise to too many sources of error. Additionally, allowing analytes to randomly 

adsorb onto the gold surface prevented the sensor from obtaining quantifiable results as with 

the citrulline experiment, while molecules known to preferentially bind to gold like adenine or 

predicted to lie flat on the surface in a repeatable manner when analyzing concentrations across 

a narrow range, as with the MYO-R6G experiments in ideal conditions. Therefore, it is 

concluded here that an assay involving nanoparticles conjugated to known Raman reporter 

molecules must be developed for SERS-on-a-chip type sensors to be realized at the point-of-

care. 

 

II.3 Indirect sensing of SERS nanoprobe assay products 

 In this section, a “SERS On” aptameric competitive assay is presented for the target 

analyte bisphenol-A.  The proposed point of care blood diagnostic device will require a 

microfluidic cartridge-based biosensing system in order to provide an appropriate environment 

for the aptamer assay and to house and aggregate SERS active nanoparticles for detection. This 

chapter will discuss a competitive-binding sensing chemistry using functionalized SERS 

nanoprobes with target aptamer specificity, with the goal of significant and quantifiable SERS 

enhancements of the assay product at a known location in a channel and deposited on a dry 

surface. The reproducibility of the spectra, specificity of the SERS nanoprobe to the target 

aptamer, and an ability to integrate the sensor platform and assay into one lab-on-a-chip device 

will be investigated. 
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 A schematic of the proposed assay in shown in Figure 22. Aptamers will be 

immobilized upstream of a nanochannel constriction, where they will subsequently be pre-

bound to the toxin-conjugated nanoprobes described in section II.3.i. When free BPA toxins 

are added, they should compete with the pre-bound nanoprobes for aptamer binding sites, 

releasing the nanoparticles for detection. To elaborate, in the absence of analyte, all 

functionalized nanoparticles are bound to aptamers in the upstream portion of the microchannel 

and are prevented from aggregating at the entrance to the nanochannel constriction. No gold 

would be at the entrance to the nanochannel beforehand as in previous SER-on-a-cip designs, 

and therefore regardless of the complexity of the sample, virtually no signal should be detected. 

In the presence of analyte, the target biomarker competitively binds with the immobilized 

aptamer, thus releasing the functionalized nanoparticles, and allowing them to flow 

downstream for detection at the entrance to the nanochannel. The RRM has a unique SERS 

signature and is located closer to the nanoparticle surface and is more concentrated than 

everything else in the overall sample volume, and thus should be is easily distinguishable from 

any potential confounding signals from colloid buffers, serum proteins, or other interferents 

from whole blood. 

Figure 22. Proposed “SERS On” competitive binding assay schematic. Nanoparticles 

are competitively freed from aptamer tethers by competing free BPA from patient serum, 

then collected in a nanochannel or dried for analysis.  



 

40 

 

 In this chapter a functional SERS nanoprobe with specific affinity to a BPA-binding 

aptamer is characterized. The binding affinity of the nanoprobe and its specificity to the BPA 

aptamer is quantified using microscale thermophoresis (MST). This approach monitors the 

signal depletion of a fluorescently labeled aptamer as it moves along an induced temperature 

gradient102-103. The thermophoresis of molecules is size dependent, and thus titration 

experiments are used to quantify the aptamer-nanoparticle binding and determine the 

dissociation constant Kd. The plasmonic properties of these capture nanoprobes and their 

capabilities for quantitative SERS detection are also investigated. It was demonstrated that the 

described SERS nanoprobes are capable of acting as both a capture and detecting element for 

BPA assay development.  

 

II.3.i Conjugating BPA to a SERS active nanoprobe 

 SERS nanoprobes require three key conjugated elements: (1) a Raman reporter 

molecule (RRM) for quantitative identification, (2) a protective element for particle 

stabilization, and (3) a ligand for assay-specific biorecognition31. In order to reduce the number 

of Raman bands for simplified spectral multiplexing, the RRM should also have a low atom 

count and/or be highly symmetrical53, 59, 104-105. Furthermore the RRM must provide a 

functional ‘head’ group for chemisorption to the nanoparticle, most commonly chosen as a 

thiol (R-SH) for its well-defined covalent attachment to gold106-107. Formation of a self-

assembled monolayer (SAM) of RRMs on the nanoparticle surface allows for dense packing 

of molecules with uniform orientation, improving the reproducibility of the SERS signal105, 108-

110. The RRM’s terminal ‘tail’ group type also contributes to the dynamics of the nanoparticles 
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as its charge directly affects the total particle surface charge, determining the degree of 

electrostatic stabilization111-112.  

 Though a Raman reporter SAM can independently act as the nanoprobe’s stabilizing 

capping agent, additional steric stabilization is often desired for mechanical repulsion between 

particles. Conjugation of polymers such as poly(ethylene) glycol (PEG)54, 113-115 or 

polyvinylpyrrolidone (PVP)105, 116-117 to the nanoparticle as part of a mixed SAM, to the RRM’s 

‘tail’ group, or silica shell encapsulation52, 105 of the particles drastically improves the colloid’s 

shelf life, even under harsh conditions. Sterically stabilized nanoprobes exhibit minimal non-

specific adsorption, and can also provide functionalized surfaces and binding sites for further 

bioconjugation. 

 

Figure 23. Scheme for the synthesis of BADGE-functionalized SERS 

nanoprobes. Below: chemical structures of mixed SAM components3. 
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 The design of the BPA assay SERS nanoprobe, reliable reaction conditions for its 

repeatable production, and ratios of conjugates have been optimized as detailed in Appendix 

#. The BADGE functionalized SERS nanoprobes were synthesized according to scheme in 

Figure 23, and are comprised of (1) mercaptobenzoic acid (4-MBA) acting as the RRM, (2) a 

hetero-bifunctional PEG linker providing steric stabilization and protection from unwanted 

adsorption, and (3) the analyte of interest, bisphenol A diglycidyl ether (BADGE). TEM 

images of the BADGE SERS nanoprobes demonstrate an average particle diameter of ~60 nm 

and DLS measurements confirmed minimal aggregation after conjugation with an average 

particle diameter reading of 86.1 nm (Figure 24a,b). The ζ potential of the nanoprobes 

increased from -41.7 mV to -34.6 mV after the mixed SAM was formed, due to the presence 

of terminal amines on the PEG linker. After BADGE conjugation, epoxide groups replace the 

amines and the ζ potential decreased to -44.0 mV, indicating adequate particle stabilization 

Figure 24. (a) TEM image of the conjugated gold nanoparticles; (b) size distribution of 

unconjugated gold (blue) and BADGE conjugated nanoprobes (black), measured by dynamic 

light scattering; (c) extinction spectra plotted versus wave-length for: unconjugated gold 

(blue), BADGE conjugated gold nanoprobes (red), and centrifugally aggregated nano-probes 

(black).3 
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was achieved sterically by the PEG, and electrostatically by the 4-MBA’s terminal carboxylic 

acid group.110, 118 

 The intrinsic signal enhancement provided by a SERS substrate relies heavily on the 

excitation of localized plasmons at the metallic surface by the Raman excitation laser23. This 

excitation of plasmons causes a shift in magnitude in the metallic nanoparticle extinction 

spectra, dependent on the size and stability of the particles28, 119. The extinction profile is 

representative of the scattered light intensity as a function of excitation wavelength, and 

therefore serves as a predictor of the magnitude of the relative SERS enhancement. In Figure 

24c, the localized surface plasmon resonance (LSPR) extinction band for unconjugated gold 

nanoparticles is shown to be at 535 nm. After BADGE conjugation, the LSPR of the 

nanoparticles is slightly red-shifted to 540 nm, which can be attributed to the resultant 

increased particle diameter. Maximal SERS enhancements are observed when the LSPR falls 

within a 240 nm window including both the excitation wavelength and Raman-shifted 

wavelength25, specifically 780±120 nm for the excitation laser used in this work. To shift their 

LSPR into this window and achieve the SERS enhancements needed for nanomolar detection, 

the nanoprobes were aggregated by centrifugation and a secondary plasmon band at 700 nm 

becomes apparent in the extinction spectra, as indicated in Figure 24c.  

 The Raman spectra of the reporter molecule 4-mercaptobenzoic acid (4-MBA) in 

powder form, the SERS spectra of the nanoprobes suspended in solution, and the SERS spectra 

of the nanoprobes after centrifugal aggregation are compared in Figure 25. The strongest 

characteristic vibrational modes for 4-MBA occur at ~1075 cm-1 and 1586 cm-1, corresponding 

to the C-H in-plane bending (β18b)  and C-C stretching (ν8a) vibrational modes, respectively.120-

122 These bands are evident in the intrinsic Raman and nanoprobe SERS spectra (Figure 4), 
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and are comparable to those previously reported for 4-MBA bound to gold52, 105, 109, 121, 123. 

Weaker Raman modes seen in the powdered 4-MBA spectrum become visible in the SERS 

signal when the nanoprobes are aggregated (Figure 25). Though some peaks are shifted or 

broadened, the strongest peaks in the SERS nanoprobe signature correspond to the published 

vibrational modes for 4-MBA (Table 3). 

 

 

 

 

Figure 25. SERS signals of (a) 30 L of nanoprobes suspended in solution 

and (b) 30 L of nanoprobes aggregated by centrifugation, and (c) 

spontaneous Raman signal of the Raman reporter molecule (4-MBA) in 

powdered form. Inset: Chemical structure of 4-MBA3. 
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Table 3. Assignment of 4-MBA vibrational modes (cm-1) from the BADGE/MBA 

nanoprobe SERS spectra3. 

 

Raman (cm-1) SERS (cm-1) Assignment 

697 718 γ(CCC)123 

812 843 δ(COO-)123 

1099 1075 β(C-H)120-121 

1136 1141 β(C-H)121 

1183 1177 β(C-H)120-121 

1318 1330 νs(COO-)123 

1404 1402 νs(COO-)121 

1596 1586 ν(C-C)120 

δ = in-plane deformation, β = bending, γ = 

out-of-plane deformation, ν = stretching 

 

II.3.i.a Verification of competitive binding to aptamer using MST 

 The binding analytics of the SERS nanoprobe to the BPA aptamer were quantified by 

the aptamer:target dissociation constant Kd, as determined by microscale thermophoresis. The 

BPA-specific aptamer: 5’-CCG CCG TTG GTG TGG TGG GCC TAG GGC CGG CGG CGC 

ACA GCT GTT ATA GAC GTC TCC AGC-3’124 has a predicted secondary structure as 

depicted by its M-fold diagram inset in Figure 26.   Dilutions of the BADGE SERS nanoprobes, 

corresponding to 20 pM-800 nM of BADGE, were exposed to a constant 5 nM each of CY5 

labeled BPA aptamer and nonspecific aptamer. The aptamer-nanoparticle binding curves are 
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shown in Figure 26, quantified as the fraction of the total solution concentration of fluorescent 

aptamer that is bound to SERS nanoprobes, as a function of total BADGE concentration 

present in the nanoparticle solution. The dissociation constant Kd was determined to be ~54 

nM for the BADGE nanoprobes, in comparison to 10 nM reported for free BPA binding to the 

same aptamer124. Additionally, the Kd value for free BPA binding to the BPA aptamer was 

determined experimentally using MST to be ~100 nM (Figure 26), further validating the 

usefulness of the capture nanoprobe for future competitive binding assay development. The 

control experiment using a nonspecific aptamer was negative (Figure 26), demonstrating that 

the SERS nanoprobes are specific to the BPA aptamer.  

Figure 26. Binding behavior of the SERS nanoprobes to the published BPA-specific 

aptamer (red, Kd~ 54 nM, r2=0.96) and a non-BPA specific aptamer (black) as measured 

by fluorescence microscale thermophoresis (MST). Comparing to binding curve for free 

aptamer to free BPA (Kd ~100 nM) this demonstrates competitive binding will occur 

between the probe and free BPA. Inset: BPA aptamer predicted secondary structure3. 
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 This results reveal an important design aspect for assays relying on nanoparticles 

coated with sensing ligands and/or analytes. The MST aptamer binding curve against free BPA 

had nearly double the dissociation constant than it did for immobilized BADGE, i.e., the 

aptamers had a stronger affinity for the probe nanoparticle than for free BPA. By providing 

multiple binding sites in a small concentrated area, the BADGE coated probe nanoparticle 

improves upon the relative binding avidity of the assay. The 100 nM Kd still describes the 

binding affinity, or strength, of a single aptamer-BPA interaction, yet condensing these 

individual binding events in a localized region through nanoparticle immobilization increases 

the likelihood of other binding interactions to occur. This happens because each aptamer 

binding event makes the probability of another binding event occurring nearby slightly less 

favorable (negative cooperativity) as a negatively charged aptamer is less likely to approach 

an area of the analyte coated particle where there is already a negatively charged aptamer 

nearby.  

 The 54 nM avidity describes the binding strength that comes from combined effect of 

all the affinities occurring in the colloidal suspension, and can be thought of as the functional 

affinity. This particular avidity is only valid for particles containing a total BADGE 

concentration of 800nM corresponding to ~80 BADGE molecules per 60 nM gold 

nanoparticle, and therefore would be shifted to stronger affinities (lower dissociation) by 

decreasing the number of analytes per probe nanoparticle. This subsequently shifts the dynamic 

range lower, so if a higher range were required, say for urinalysis rather than plasma, then one 

would want to increase the number of analytes per probe.  Changing the number of analytes 

per probe is a catch-22 in that it requires a delicate balance between enough PEG-analyte to 

keep the particle stable in high salt environment and choosing the appropriate number of 
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ligands for the analytical range of interest. Alternatively, we could substitute mPEG for some 

portion of the PEG-analyte so that the number of analytes could be adjusted without sacrificing 

stability. Or one could simply change the size or type of the nanoparticle, though this would 

affect the net SERS enhancement as well and drastically change the response characteristics, 

and thus should be carefully considered if only looking for incremental shifts in range. 

 

II.3.ii SERS analysis in micro- to nanochannel 

 A new SERS-on-a-chip device was developed to analyze the SERS nanoprobes 

competitively freed by the BPA assay described above. This chip features two microchannels 

connected by a nanochannel fabricated on a 500 µm thick polished borosilicate wafer (Mark 

Optics, Inc., Santa Ana, CA) using photolithography according to the scheme in Figure 27. 

The microfluidic portion of the channel is 150 µm in width and 1.0 µm in depth while the 

nanochannel is 50µm in width and 40 nm in depth. Therefore, gold nanoparticles greater than 

40 nm in diameter will be trapped in the micro- to nanochannel junction, generating a 

controlled area of aggregation. The microchannel was patterned with wet HF etching and the 

nanochannel was patterned with a reactive ion etching process. This wafer will be bonded to a 

blank wafer etched with the nanochannel to seal the trenches and create the channels, with inlet 

holes created at the ends of the microchannel with a diamond drill bit. The channels were 

characterized using 5µL dilutions of the stock nanoprobes described in section II.3.i to 

determine the chips limit of detection in relation to the assay, time required to fill the 

constriction, and their ability to differentiate between low concentrations of the nanoprobes 

using SERS. 
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II.3.ii.a Toxin-functionalized Au-nanoprobe  

 Initial experiments to evaluate substrate variability were conducted using 50 µL of the 

nanoprobes in three different channels. As seen in Figure 28a there was extreme variability 

both within a chip and between chips, with inter and intra substrate variability at 20% and 45 

% respectively. However examining the bright field images of the micro to nanochannel 

(Figure 28b) revealed too much gold aggregated in the channel, likely causing randomized 

hotspots to form. Additionally it took nearly 2 hours for the signal to saturate, far too long to 

compete with current lab-on-a-chip devices.  

 Next a second generation micro- to nanofluidic chip was developed, this time with both 

the micro and nanochannels channel widths set at 20 µm. Additionally only 5 µL of particles 

were used in the variability experiments. These changes resulted in a significantly improves 

%CV both with individual chips and across the lot (Figure 29a), and improved the SERS EF 

by 3x. Additionally the signal at the nano-channel junction was monitored as a function of time 

       Nanochannel 

Microchannel    

Figure 27. Schematic of the micro- to nano-fluidic SERS-on-a-chip device. 
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to determine the signal saturation point, which occurred much quicker than the larger channel 

after only ~45 min (Figure 29c). Promising as this seemed, we were unable to obtain any 

quantifiable data, and the yield of successfully bonded channels per wafer was often lower than 

20%, making fabrication lengthy and difficult with little to no reward. Therefore, it was 

decided that the assay products instead be analyzed by simply concentration by centrifugation, 

as discussed further in the next section. 

 

 

 

 

 

 

Figure 28. a) Variability across three separate micro- to nanochannel SERS-on-a-chip 

devices. b) Brightfield images at 50x objective showing particles aggregating far outside 

the defined sensing region. c)Time to SERS signal saturation determined to be ~2 h. 
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II.3.iii SERS analysis of “SERS On” assay using centrifugal aggregation  

II.3.iii.a Toxin-functionalized Au-nanoprobe assay product 

 The stock nanoprobe concentration was the lowest detectable concentration using 

SERS in solution phase. Therefore, ten serial dilutions of the capture nanoprobes were 

centrifugally aggregated, dried, and their SERS spectra monitored to investigate the detection 

capabilities of the nanoprobes at the concentration range of interest. (Figure 30a). Features 

assigned to the SERS nanoprobes’ Raman reporter (4-MBA) dominate the spectra, until the 

concentration drops below ~10 nM and the area of aggregation becomes smaller than the laser 

spot size of 3.1 µm. At this point, peaks attributable to the polypropylene centrifuge tube 

background begin to dominate the spectra, while the SERS nanoprobe characteristic peaks at 

Figure 29. a) Variability across three separate 2nd generation micro- to nanochannel SERS-on-

a-chip devices. b) Brightfield images at 50x objective showing particles aggregating within the 

defined sensing region. c)Time to SERS signal saturation determined to be ~45 min. 
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~1075 cm-1 and 1586 cm-1 decrease until they are no longer distinguishable after six serial 

dilutions (~1.10 nM, Fig 5a). The strongest polypropylene modes can be seen at 809 cm-1 and 

841 cm-1, corresponding to the C-C-C in-plane ring deformation (α1)125-126 and C-H out-of-

plane bending (γ10a)126-127 vibrational modes, respectively. 

 

Figure 30. a) SERS signals of 100 μL of centrifugally aggregated nanoprobes at 10 

concentrations ranging from 40pM-800 nM, offset for clarity. b) SERS intensity of the 

vibrational modes at 1075 cm-1 and 1586 cm-1 with increasing volume of nanoprobes3. 

 

 

 The SERS peak intensities of the vibrational modes at 1075 cm-1 and 1586 cm-1 as a 

function of concentration are shown in Figure 30b.  The trend follows a typical dose-response 

curve, where the MBA peaks can be identified with a coefficient of variation < 25%, until the 

nanoparticle concentration drops below 600 fM (3.29 nM BADGE). This sensitivity is 

competitive with the quantification limits previously reported for the detection of BPA levels 

in human blood utilizing LC-tandem mass spectrometry, ranging from 0.43 nM128 to 64 nM129. 

It is noted that the standard error increases with increasing concentration, likely due to the 

nonhomogeneous nature of the aggregate formed using this method. For lower concentrations, 
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centrifugation causes the small volume of particles to distribute evenly on the bottom of the 

tube. However for higher volumes with a visible precipitate, a higher density of nanoparticle 

junctions119 is formed, resulting in more areas of increased SERS enhancements23.Therefore, 

the analytical range for this method is ~3-300 nM. Though this detection method for true 

quantitative analysis is impaired by high error from “hot spots”, this proof of concept study 

demonstrates that limited concentration information may be obtained using SERS through the 

controlled aggregation of nanoparticles combined 

 The limit of detection can be reduced and the analytical range shifted to suit a specific 

BPA-aptamer assay through altering the ratio and amount of PEG linker and Raman reporter 

molecule conjugated to each particle. Modifying the amount or type of RRM directly effects 

the SERS signal intensity, while adjustments made to the PEG linker can be used to modify 

the distance between the particle and analyte, to reduce charge based interactions with the 

nanoparticle surface, or to alter the number of target analyte molecules per particle114. The 

binding affinity of the aptamer to the functionalized SERS nanoprobes may also be adjusted 

by changing the BPA derivative130, or synthesizing a BADGE derivative with only one epoxy 

group so that its structure more closely resembles BPA. 
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II.4 A new potential modality: SERS by magnetic aggregation 

 As it has become apparent that mechanical aggregation of nanoparticles produces too 

much variability in the hot spot formation, even then the RRM is evenly coated on the NP 

surface prior to aggregation. In an attempt to achieve more reproducible, and even reversible, 

nanoparticle aggregation, this section discusses the potentials of magnetic based aggregation. 

To test this new method Fe3O4 core/SiAu shell functionalized SERS nanoparticles were 

developed (Figure 31).  

 The ~175 nm total diameter magnetite core gold nanoshell particles are composed of 

four layers: 1) 17 nm Fe3O4 Core 2) 110nm Silica Shell 3) 48 nm Au Shell 4) 4-MBA SAM. 

The core/shell ratio of the particles was tuned so that their maximum extinction peak shifts 

towards the laser wavelength 785 nm as depicted in Figure 32a. The Raman reporter molecule, 

4-mercaptobenzoic acid (MBA), was bound to the gold shell using a self assembled monolayer 

(SAM). Uniform orientation of the reporter molecules relative to the surface of the nanoparticle 

Figure 31. Structure of the AuSiFe SERS nanoprobe: a) 17 nm Fe3O4 Core b) 110nm 

Silica Shell c) 48 nm Au Shell d) 4-MBA SAM. Inset:TEM of silica coated Fe particles 

before gold shell is applied.  
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avoids nonspecific adsorption, while providing increased sensitivity and particle stability. 

SERS spectra of the particles with MBA suspended in solution indicate uniformity, with a total 

coefficient of variation of 10.5% across 9 scans (Figure 32b). 

 

 In the first magnetic chip design iteration depicted in Figure 33, particles flow down a 

narrowing channel to a detection region where they are aggregated by a permanent neodymium 

magnet embedded in PDMS below the sensing region. Channels were treated with a Pluronic 

F-108 surfactant to promote flow and reduce clogging outside of the detection area.  

Figure 32. a) Extinction spectra of AuSiFe nanoprobes compared to solid old. b) 9 replicates 

of the AuSiFe SERS profile taken in a wellplate, displaying peaks indicative of MBA. 

a      b 

Figure 33. Schematic diagram of the first iteration of magnetic SERS-on-a-chip. 
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 The inset bright field image in Figure 34 shows 25 μL of nanoparticles aggregated in 

the optofluidic channel over the embedded magnet, at a concentration of 3x109 particles/mL 

(0.1 mg/mL). The coefficient of variation of the SERS signal between nine scans taken 

randomly across the area of aggregation was 12.1%, where full spectra are shown in Figure 

34. The IR-tuned magnetic core-shell particles provide increased SERS enhancements, can be 

immobilized magnetically, and demonstrated uniformity in solution with an error <11%. The 

magnetic SERS platform provides reproducible spectra (12.1 %CV) across the area of particle 

aggregation at microliter volumes. Next, the target analyte BPA will need to be conjugated to 

a magnetic nanoparticle using a heterobifunctional polyethylene glycol spacer as was done 

with the gold nanoprobe. Once characterized, the functionalized particle’s binding affinity to 

BPA aptamers will need to be analyze before magnetic SERS can be validated as a potential 

aggregation mechanism.  

Figure 34. Variability in SERS spectra from the AuSiFe NPs across the magnetic  

SERS-on-a-chip device using 780 nm excitation. 
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II.5 Final thoughts on SERS modality selection 

 This chapter details the first report of the successful design of a functionalized SERS 

nanoparticle for specific binding to a BPA aptamer with an affinity similar to that of the analyte 

in free solution. The particles provide a characteristic Raman signature which can be enhanced 

through nanoparticle aggregation and detected by SERS at concentrations as low as 600 fM. 

The nanoprobes demonstrate colloidal stability for biological interaction while providing 

functional conjugation to the BADGE analyte. The aptamer/nanoprobe binding event is 

characterized through microscale thermophoresis fluorescence measurements and quantified 

by a dissociation constant of 54 nM. This demonstrates the sensitive aptamer recognition 

capabilities of capture analytes immobilized onto SERS active nanoparticles with minimal 

perturbation of the aptamer’s native, free-analyte binding. However truly quantitative data was 

not able to be obtained by mechanical aggregation, as was found earlier in the chapter, and 

therefore magnetic induced aggregation of assay particles will be explored in the next chapter.  
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CHAPTER III 

A NEW SERS COMPETITIVE BINDING ASSAY UTILIZING APTAMER-

MEDIATED NANOPARTICLE ASSEMBLY 

III.1 Introduction to molecularly-mediated SERS assays 

 Molecularly mediated surface enhanced Raman spectroscopy (SERS) can be a 

desirable approach for ultrasensitive blood biomarker detection due to its high sensitivity and 

capability for multiplexing. As hypothesized in Figure 35 by Chen et al4 core-satellite 

assemblies (CSA) formed as a result of molecular recognition event allows for localized SERS 

hot spots of enhancement that can be controlled without irreversibly aggregating nanoparticles. 

SERS analysis of DNA-directed nanoparticle assembly using functionalized colloidal 

nanoparticles has been used extensively as a method to measure and control the degree of 

enhancement of Raman scattering from a Raman active dye in response to a molecular binding 

event.131-132  

Figure 35. Modeled electromagnetic enhancement of CSA (left) and isolated 50 nm sphere 

(right). (Top) Planes in 3D views of structures identify location for which enhancements are 

displayed. (Bottom) E4 enhancement for CSA and isolated sphere (log scale). The 

polarization direction of the incident field is parallel to the horizontal coordinate. Reprinted 

with permission from Chen et al.4 Copyright 2009 American Chemical Society. 
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 SERS assays in both “turn-on” and “turn-off” formats have been developed using 

oligonucleotides to detect DNA fragments,59 as well as with aptamers for the detection of 

biomarker proteins.133-134 DNA aptamers are simpler and more economical to produce at large 

scale, are capable of greater specificity and affinity than antibodies, are easily tailored to 

specific functional groups, can be used to tune inter-particle distance and shift the LSPR, and 

their intrinsic negative charge can be utilized for additional particle stability.135,84  

 

III.2 Design & fabrication of aptamer-mediated nanoclusters 

 In this chapter, a “turn-off” competitive binding assay platform involving two different 

plasmonic nanoparticles for the detection of the toxin bisphenol A (BPA) using SERS is 

presented. A derivative of the toxin is immobilized onto a silver coated magnetic nanoparticle 

(Ag@MNP), and a second solid silver nanoparticle (AgNP) is functionalized with the BPA 

aptamer and a RRM (MGITC) capable of providing SERRS enhancements at 532 nm. The 

capture (Ag@MNP) and probe (AgNP) particles are mixed and the aptamer binding interaction 

draws the nanoparticles closer together, forming an assembly that results in an increased SERS 

signal intensity. This aptamer mediated assembly of the two nanoparticles results in significant 

enhancement of the SERS signal intensity from MGITC compared with the target particle 

alone. These pre-bound aptamer/nanoparticle conjugates were then exposed to BPA in free 

solution and the competitive binding event was monitored by the decrease in SERS intensity. 

A schematic representation of this aptamer-mediated “SERS-off” assay and preliminary 

spectral data supporting the assay platform are shown in Figure 36.  
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III.2.i Probe and Target particle conjugation  

 The target nanoparticle is comprised of silver nanoparticles coated in PEGylated BPA 

aptamer and the Raman reporter MGITC. The probe particle was functionalized with BADGE 

using the same conjugation method as described in chapter II, excluding the RRM MBA, where 

a dye resonant ~532 nm was chosen instead for this configuration and was moved to the non-

magnetic silver target. Chemical drawings of the particle conjugation chemistry can be found 

in Figure 37. 

 

 

 

Figure 36. Assay schematic: target nanoparticles exhibit SERRS from MGITC -> when 

mixed with probe particles, assay nanoclusters form and the SERS signal is ‘turned on’ -

> when BPA is introduced, the SERS signal is ‘turned off’. 
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III.2.i.a Probe: core comparison- Fe2O3 vs Fe2CoO4 

 Two different ferrite cores were investigated for the magnetic probe particle. Silver-

coated cobalt-ferrite nanoparticles (Ag@Fe2CoO4) were prepared by first synthesizing a stock 

solution of the core Fe2CoO4 nanoparticles through co-precipitation of iron(III) chloride (0.2 

M FeCl3) and cobalt(II) chloride (0.1 M CoCl2) in sodium hydroxide solution at pH ~12 (3.0 

M NaOH) using a method modified from Rutirawut et al. 136 The cobalt ferrite salt solution 

was added rapidly into 3.5 M NaOH solution under vigorous stirring, then headed at 80°C for 

1 h. The cobalt-iron oxide precipitated colloid was washed with deionized water in triplicate 

using a permanent neodymium magnet. To coat with silver, 500 µL of these stock MNPs was 

mixed with 4 mL of 0.35 M glucose and 1.5 mL of 60 μM AgNO3. The solution was sonicated 

for 10 min then heated to 90 °C for 90 min. Finally, the particles were centrifuged three times 

to wash, and finally redispersed in 6 mL of 5 mM sodium citrate.  

 Silver-coated ferrite nanoparticles (Ag@Fe2O3) were prepared using a co-precipitation 

method for the synthesis of the particle core and glucose reduction to coat with silver as 

described by Kumar et al.137  and Mandal et al.138 respectively. Briefly, a stock solution of 

maghemite (γ-Fe2O3) nanoparticles was prepared by adding 25 mL of an acidified iron salt 

solution (0.4 M Fe2+, 0.8 M Fe3+, 1 M HCl) drop-wise to 250 mL of 1.5 M NaOH at 50 °C 

Figure 37. Conjugation chemistry for the target and probe “SERS off” BPA assay 

nanoparticles.1 
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under vigorous non-magnetic stirring. After 20 min the particles were allowed to cool, washed 

twice with DI water and once with 0.1M HNO3. An additional 125 mL of HNO3 was then 

added to the solution, stirred an additional 40 min at 95 °C, and resuspended in distilled water. 

To coat with silver, 1 mL of these stock MNPs was mixed with 4 mL of 0.35 M glucose and 

1.5 mL of 60 μM AgNO3. The solution was sonicated for 10 min then heated to 90 °C for 90 

min. Finally, the particles were centrifuged three times to wash, and redispersed in 6 mL of 5 

mM sodium citrate. 

To synthesize 1 mL of BADGE functionalized magnetic nanoprobes, the SH-PEG-NH2 

linker was added drop-wise to an excess of the analyte BADGE in 0.3 M PBS buffer (pH 8.5) 

and left overnight to allow conjugation between their terminal amine and epoxide groups 

respectfully. The conjugates were then treated with aminoethanol to open unbound epoxide 

rings and prevent non-specific binding of BADGE to the RRM’s amine groups. These SH-

PEG-BADGE conjugates were then added at a 5000:1 ratio to 1 mL of silver coated magnetic 

nanoparticles (stocks diluted to 225 pM). After 1 h three 20 µL aliquots of 250 mM citrate HCl 

buffer were again added 5 min apart, and the sample was left an additional 30 min before 

centrifuging and resuspending the BADGE functionalized particles in 1 mL of 0.1 M PBS (pH 

7.4). 

 As shown from the TEM images and DLS plots in Figure 38, the average particle 

diameter for the Ag@Fe2CoO4 particles was 63 nm and final stock concentration was 385 pM 

as determined by NTA. For the probe 1, Ag@Fe2O3, particles the hydrodynamic particle 

diameter as determined by DLS was ~70 nm and final concentration of 425 pM was determined 
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by NTA. The extinction profile of plain AgNPs compared to the magnetic core-shell particles 

(Ag@ Fe2CoO4 and Ag@ Fe2O3) are shown on the right in Figure 38 for reference. 

 

 

 A colloid’s zeta potential (ζ) is indicative of the relationship between the particles’ 

surface charge and their ionic environment, and thus can be used to predict long term stability. 

Silver coated probe particles of the Fe2O3 and Fe2CoO4 varietals coated in PEGylated BADGE 

were found to have zeta potentials of -32.1 mV and -22.7 mV respectively (Figure 38), 

indicating that the PEG spacer and the HEG modified aptamer provide adequate particle 

stabilization in the 0.1 M PBS binding buffer, but that the Co doped particles were slightly less 

stable. 

 

Figure 38. TEM images of the two probe nanoparticles Center: DLS size distribution and 

zeta potential data demonstrating particle size and stability Right: Comparison of the 

extinction profile of Fe (black) and FeCo (red) core nanoparticles after coating with silver. 

The spectra for plain AgNPs used as the target nanoparticles is shown for reference2. 
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III.2.i.b Target: utilizing SERRS for colloidal assays 

 Silver colloid (AgNP) was synthesized using the ‘cold’ method reported by Leopold 

and Lendl.139 Hydroxylamine hydrochloride (1 ml, 150 mM) was added to 89 mL of NaOH 

(3.33 mM) under vigorous stirring. Silver nitrate (AgNO3) solution (10 mL, 10 mM) was added 

drop-wise and stirred for 15 min at room temperature. Dynamic light scattering (DLS) 

measurements revealed an average particle diameter of ~45 nm (not shown) with a PDI index 

of 0.133. The stock particle concentration was determined to be 225 pM according to Beer’s 

Law using an extinction coefficient of 2.87 × 1010 M-1 cm-1 at 404 nm.140 

 Prior to immobilization, the BPA aptamers were suspended in a 60 mM phosphate 

buffer (PBS, pH 8.5) and treated with 15 mg of dithiothreitol (DTT) to reduce their disulfide 

bonds. After 1 h the aptamers were purified using a Nanoseps 10kDa desalting column to 

remove residual DTT, washing three times in 0.1 M PBS pH 7.4. The aptamers were then 

heated to 90 °C for 5 min to allow any cross-linked DNA to dehybridize, then allowed to cool 

at room temperature for 15 min to allow sufficient time for the aptamers to fold into their 

tertiary structure at their strongest folding temperature of T = 54.1 °C.  

 Target AgNPs were functionalized with aptamers using a modified method developed 

by Zhang et al.141 The aptamer (80 µM) was added to 1 mL of silver colloid (225 pM) at a 

molar ratio of 2000:1 and left shaking for 1 h. Three 20 µL aliquots of 250 mM citrate HCl 

buffer (pH 2.9) were then added 5 min apart, and the sample was left an additional 30 min 

before centrifuging and resuspending the aptamer functionalized particles in 1 mL of 0.3 M 

PBS (pH 7.4). The Raman reporter molecule, malachite green isothiocyanate (MGITC, 10 µM 

in methanol), was then added at a 500:1 ratio and left to react with the aptamer AgNPs under 

sonication for 1 h, which were then centrifuged and stored in a 0.1 M PBS buffer (pH 7.4). 
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Malachite green isothiocyanate (532 nm) was chosen as it is a chromophore capable of 

exhibiting SERRS with a 532 nm excitation source (Figure 39). The Ag target nanoparticles 

were functionalized with aptamers and MGITC as described and yielded an average ζ of -39.7 

mV, where ζ > -20 mV, and as shown in Figure 39 their extinction spectra shifts but is not 

broadened as a result of aggregation in a high salt environment, indicating sufficient colloidal 

stability.  

 

III.2.ii Monitoring the formation of assay nanoclusters 

 All wellplate measurements were collected using a 384-wellplate the Thermo-

Scientific DXR Raman (600 with a spectral range from 400-1800 cm-1 in a total volume of 30 

µL in 0.1 M PBS (pH 7.4) buffer with a 532 nm laser power of 10 mW and an integration time 
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Figure 39. Raman spectra (left) of the silver target nanoparticle compared to the 

BADGE functionalized magnetic probe. Extinction profile of plain silver colloid 

compared to functionalized target nanoparticles and malachite green, which is shown 

to exhibit resonance Raman enhancement for excitation sources from 500-700 nm. 
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of 10 s (10 x 1 s exposures). A solution containing equal volumes of 225 pM of each of the 

target and probe nanoparticles was monitored with SERS for 5 h to allow complete binding 

between the immobilized BPA aptamers and BADGE under stagnant conditions. The bound 

assay particles were then exposed to varying concentrations of BPA, and a second set of 

assembled nanoparticle clusters were collected using a neodymium magnet held at the side of 

a glass vial, the supernatant containing any unbound AgNPs was removed, and the assembled 

nanoparticles were resuspended in 0.1 M PBS (pH 7.4). The assays response was compared 

for both experimental set ups (wash or no wash) to demonstrate the importance of the magnetic 

washing steps in determining the dynamic range, and to make a case for using the assay in a 

microfluidic chip to automate the washing process. Finally the precision and accuracy of the 

wellplate BPA SERS assay are discussed and the limits of the sensor in this platform was 

determined.  

 While both of the ferric magnetic probe cores were tested, the SERS signal of a stock 

solution of the assembled nanoparticles and their sub sequential response to the presence of 

competing BPA was analyzed in a microwell using the smaller and more stable Ag@Fe2O3 

particles, as the Co doped particles fell out of solution too quickly and were too heavily 

influenced by magnetics within the Raman microscope stage. As shown by Figure 40a, the 

SERS signal of the reporter molecule MGITC increases by 25 orders of magnitude as it 

experiences an enhancement in the electric field intensity of its immediate environment due to 

the aptamer-binding induced particle aggregation, reaching a steady-state equilibrium after ~ 

2 h.  For both types for ferric probes, it was confirmed using DLS that this SERS enhancement 

was indeed the result of the formation of nanoparticle assemblies facilitated by the aptamer 

binding to BADGE (Figure 40b). The nanoclusters appear to have a relative hydrodynamic 
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diameter of 100-200 nm meaning the clusters are likely something like ~4 nanoparticles each. 

However, as shown in Figure 41, only the plain Fe core based assay was able to repeatably 

produce the same ‘SERS On’ behavior across three separate batches of assay nanoparticles.  

 

 Additionally the UVV data showing the extinction spectra of the individual target and 

probe particles overlaid with the nanoparticle assembly is shown in Figure 41, and is consistent 

with the results of Mirkin et al44 that indicate a cluster formation of ~4 nanoparticles (see Figure 

35). Therefore, it is confirmed that Fe core particles are superior to FeCo core particles for 

liquid phase type assay analysis, and the assembled nanoclusters with the properties shown in 

Figure 41 will be the stock solution tested against BPA from here to the end of this dissertation. 

 

a)                                   b)  

Figure 40. a) SERS spectral intensity from target nanoparticle, conjugated to either a BPA 

specific or a nonspecific aptamer sequence, monitored for 5 h after exposure to the Ag@Fe 

probe nanoparticles at a 1:1 molar ratio. b) Validation by DLS that SERS enhancement 

facilitated by nanoparticle assemblies for both probe types.  
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III.3 Monitoring the ‘SERS Off’ competitive binding assay in a traditional wellplate 

 To monitor competitive binding with SERS, 20 µL of the assay clusters were mixed 

with 10 µL of BPA (1 pM to 1 µM) in 0.1 M PBS (pH 7.4) and SERS measurements were 

taken every 30 s for 10 min. When free BPA is added to the assay nanoparticle assembly 

solution it competes with the BADGE immobilized on the surface of the probe particle for the 

aptamer binding sites on the target particle (Figure 42a). This dissociation is visualized by the 

SERS intensity of the peak at 1175 cm-1 (aromatic C–H bending vibrational mode,142 Figure 

42b) which decreases to a steady state over the course of ~3 min as competitive binding occurs 

(Figure 42c). This implies that the BPA aptamer immobilized on the target AgNPs must 

‘loosen’ (increased net inter-particle distance) or is completely released from the BADGE on 

the probe MNPs in order to more favorably bind to free BPA. This causes a decrease in the 

solution SERS signal due to MGITC being displaced further from the nanoparticle surface 

Figure 41. Left: Validation that the assay nanocluster is repeatable across three separate 

lots. Right: Verification of nanocluster formation by UV-vis, where red-shift implies 

aggregates have formed, and the excitation laser line is marked. 
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interface. Ten scans were averaged for each concertation and the experiment was repeated 

twice using two different batches of assay nanoparticles (Figure 42d). The signal response to 

BPA was quantifiable and repeatable as hypothesized and the performance metrics of the 

sensor are discussed later on within this subsection. 
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Figure 42. a) Schematic of nanocluster dissociation in the presence of the analyte BPA. b) 

Corresponding SERS spectra of the target and probe nanoparticles, and nanoclusters before and 

after the addition of BPA. c) Nanocluster assay response after exposure to 0-100 nM of the 

competing analyte BPA in free solution as a function of time. d) SERS peak Intensity at 1175 

cm-1 as a function of concentration for two separate batches of assay particles. 
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II.3.i Effect of magnetic wash step on assay dynamic range 

 The physiologically relevant concentration range for BPA is reported as ranging from 

0.05 to 150 ng/mL, or ~200 pM to 650 nM. From looking at the SERS response concentration 

dependence in Figure 42d, it is difficult to fit the points to a proper curve, and can been seen 

that the sensor does not quite cover this range yet, with sensitivity dropping outside a 95% 

confidence interval outside the window from 0- 10pM. An attempt to improve the dynamic 

range of the assay was made by removing excess, unbound target molecules before introducing 

free BPA into the system. This prevents BPA from the sample from being ‘used up’ by the 

aptamers on free target particles that were not captured by the magnetic probes, making it far 

more likely that the free BPA will compete with the aptamer badge complex. 

 It was determined by UV-vis shown in Figure 43a that ~ 30% of target nanoparticles 

from the original assembly solution were removed in the wash step. It is noted that there 

appears to be a ‘blue shift’ in the overall exaction profile of the assay. However if we look 

back at the profile for the magnetic probes and target particles separately in section III.2.i, it is 

observed that the washed particles simply are comprised of more probe particles than target, 

and thus are less influenced by the silver peak at ~400 nm. As shown in Figure 43b, washing 

not only significantly improved the assays dynamic range, but also yielded a more definitely 

defined sigmoidal response curve capable of being fit to a Hill sigmoidal curve, which 

represents binding avidity for assays with components with multiple binding sites: i.e. it is 

representative of cooperativity. The hill fit of the curve is shown and defined in Eq. 3. 

Comparting the performance of the sensor as set by the metrics defined in Table 4, it is 

noteworthy that washing the excess target away maintained a limit of detection in the pM range 
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as was seen with the unwashed assay. However the wash step significantly improved the upper 

bound of the analytical range, the limit of quantitation 

 

 

II.3.ii Off-chip SERS sensor performance metrics 

 The 10 collected SERS spectra for each of the concentrations tested were normalized 

to the 0 nM BPA blank sample to better conceptualize the percent SERS signal drop for each 

concentration. Their normalized SERS intensity as a function of concertation can be seen in 

Figure 44a, and can be through of as a fraction bound curve. For example for an input of 1000 

nM BPA the figure shows that the SERS signal falls to ~20% of its initial signal intensity. 

When looking at this colloidal SERS assay’s accuracy and precision across the detection range 

shown in Figure 44b (cut off at the previously determined LOQ of 10 nM), it becomes 

Figure 43. Image: assay nanoclusters being just prior to wash, where the yellow supernatant 

contains unbound target silver particles a) Comparison of extinction profiles of the assay 

nanoclusters before and after the magnetic washing step. b) Comparison of the sensors 

quantitative SERS response with and without the magnetic wash step, where the shaded 

boxes demonstrate the shift in the sensors dynamic range as a result of magnetic washing.  
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apartment that the true LOQ is actually more like 10 pM, an order of magnitude below the 

lower limit of the physiological risk range (but close to the resting concentration of BPA in 

most adults). The Hill fit of the curve revealed a dissociation constant of 3.15 pM, far too close 

to the limit of detection and limit of the blank. Additionally the Hill cooperativity of n=0.93 

implies the sensor is on the verge of noncooperative binding (when n=1), where the affinity of 

the target nanoparticle to free BPA is not dependent on whether or not they are already bound 

to the probe nanoparticles. Therefore this colloidal sensor may be able to provide a yes/no 

answer as to if a patient had a higher than normal BPA level, but it would not be able to 

precisely quantify the BPA level if it was above a specified threshold. 

 

 

 

Figure 44. Sensor performance for the BPA completive binding assay analyzed in a 

standard well plate. Data is fit to a Hill1 curve with k=3.25 pM and n=0.93. 
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III.4 Final thoughts on off-chip SERS sensing 

 In this chapter, the successful design and characterization of a “SERS off” competitive 

binding assay using aptamers against the molecule BPA was performed. While further 

characterization revealed magnetic washing of the assay clusters shifted the sensor response 

closer to the desired full range from 200 pM -> 650 nM, the sensor performance could still 

only truly perform for the range of 87 pM -> 9 nM BPA, which is sufficient for yes/on sensing 

but too far below the physiological range for quantitiave results to be obtained clinically with 

this platform.75, 128, 143 Also the wash step though useful for expanding and shifting the sensor’s 

dynamic range, introduces an element of human error, requires several hours to pull down a 

few mLs of Ag@Fe particles, and could and should be replaced by a microfluidic equivalent, 

as discussed in Chapter IV. 
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CHAPTER IV 

A MAGNETOFLUIDIC SERS-ON-A-CHIP DEVICE FOR HOUSING 

NANOPARTICLE ASSAYS 

IV.1 Introduction to on-chip assay monitoring  

 A number of ferric micro- and nanoparticle-based SERS assays exist and have recently 

been studied for bringing human biomonitoring to the point-of-care.33, 82, 136, 144-148 Magnetic 

particles are easy to localize using a permanent magnet placed at the side of a vial, bottom of 

a wellplate, nearby a microfluidic channel, or alternatively using a controllable embedded 

solenoid. This provides a simple way to exchange buffers, automate assay steps on chip, and 

reversibly concentrate or aggregate ferric nano- and micro-particles. For example, Jaebum 

Choo’s group has utilized magnetic microbeads (analogous to commercially available 

TurboBeads) for a wide variety of SERS biosensing applications, including one embodiment 

using aptamer-coated gold nanoparticles (AuNPs) for detecting thrombin,82 another using a 

solenoid microfluidic chip for trapping an AuNP competitive binding assay against the anthrax 

biomarker polyglutamic acid (PGA),144 and an IgG immunoassay using antibody coated 

hollow gold nanoparticles (HGNs).33 While these assays were successful and demonstrate the 

great potential in magnetic-based SERS assays, they fail to capitalize on the surface 

enhancement of the magnetic bead. While the Choo group has attempted coating their 

microbeads in silver,145 it has been shown by others such as Park,146 Carroll,147 Guven,148 and 

Donnelly136 that using magnetic nanoparticles can significantly improve the SERS 

enhancement of these assays, and thus, improve upon the theoretical limit of detection 

capabilities of this approach.  
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IV.2 SERS mapping experiments to optimize packaging and resuspension of particles 

 As discussed in section II.4 simply holding magnetics near the walls of a PDMS chip 

does not provide sufficient reliability for SERS sensing, and is difficult to reproducibly 

aggregate particles without causing clogs. To overcome this, thin (~200nm) nickel pads 

capable of being magnetically activated were patterned on the surface of a glass slide under a 

PDMS microchannel.  This method was adapted from Do et al149 and allows the applied 

magnetic field to propagate down the array of Ni-pads and provide an even field distribution 

in the center of the channel.  A schematic of the chip designed to house the BPA assay 

described on Chapter III is shown in Figure 45. 

Figure 45. Schematic of the magnetofluidic chip design. Top left: table of 

fabrication process. Bottom left: top-down view of magnetofluidic chip. 

Right: Brightfield images of magnetofluidic chip. 
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  Each magneto-fluidic SERS chip is composed of a 200 nm-thick nickel micromagnet 

array, PDMS microfluidic channel and two permanent neodymium magnets. As described by 

the table within Figure 45, the Ni-micromagnet array is deposited onto a glass microscope slide 

by photolithography using a methodology derived from Ilievski et al.15 Glass slides are spin-

coated with LOR 3A and S-1813 lift-off resists at 750 nm and 1.3 µm, respectively. After 

exposure and development, the pattern of the Ni-micromagnet array is visibly transferred onto 

the glass slides. Next, 100 nm-thick chromium and 50 nm-thick copper are continuously 

deposited on the pattern as the adhesion layer and then 200 nm-thick nickel is deposited as the 

3rd and final ‘magnetic response layer’. After deposition, the entire glass slide is placed into 

the chemical stripper of LOR 3A at 80 °C in order to remove the photoresist layer. It is noted 

that COMSOL models shown in Figure 46 revealed that at least two pads are necessary to 

evenly distribute the magnetic field in the channel. 

Figure 46. COMSOL models of the magnetic flux density streamline (left) and 

directionality (right) for the straight channel design A. These models indicate the necessity 

for at least two pads to be present to prevent favorability towards one pole, and to provide a 

focused field at the center of the channel, which is represented by the white horizontal line. 
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 The 100 um-tall PMDS microfluidic channel are constructed using a silicon wafer mold 

via soft lithography. Uncured-PDMS solution (10:1) is poured over the silicon wafer mold and 

cured at 65 °C for 2 h as per typical soft lithography methods.16 Finally, the PDMS microfluidic 

channel is bound to the glass slide patterned with the micromagnet array by reactive ion etching 

(i.e. plasma treatment), and inlet and outlet holes are removed using a biopsy punch. The nickel 

pads within the channel are not magnetically activated until the final 3D printed neodymium 

magnet holder is placed around the channel. 

 A 200 µL solution containing equal volumes of 225 pM of each of the target and probe 

nanoparticles in 0.1 M PBS was allowed to react overnight. The assay nanoclusters were then 

washed to remove any unbound target nanoparticles by holding a permanent magnet to the side 

of the sample vial and removing the supernatant, then resuspending in PBS. The 300 µL of the 

assay particles were allowed flow through the Ni-patterned magnetic channels using a 2 mL 

syringe and a pump rate of 10 µL/min. The chips were then left out overnight to dry for later 

use, and could be stored in this state for several months if packaged in sterile wrapping. 

 After reintroducing the dried assay particles to 0.1 M PBS, the SERS profile of the 

localized assembled nanoparticle clusters were mapped using WiTec Raman analysis software 

for chip designs A & B, and using Thermo-Scientific DXR Raman Omnic mapping software 

for chip design C. Both the WiTec and Thermo-Scientific Raman microscopes use a 10 x 

objective (NA 0.25), 600 lines/mm grating, and a 10 mW 532 nm laser, where all SERS 

measurements were collected with an integration time of 2 s (2 x 1 s total exposure) and a step 

size of 10 µm. Seventeen maps were collected for a total 3D mapping area of 3 x 300 x 170 

µm (XYZ) for chip design A. Additionally 2D maps were scanned for areas of 75 µm x 75 µm 

(XY) for design B, and 70 µm x 350 µm (XY) & 70 µm x 70 µm (XZ) for chip design C. 
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Raman spectral maps of the MGITC peak at 1175 cm-1 were processed using Origin Pro 2015 

graphing software.   

 In order to develop a more repeatable SERS analysis platform for assays relying on 

magnetic nanoparticles, two Ni-patterned glass slides and PDMS microchannel were initially 

developed (Figure 47). To optimize the magnetic collection rate and the SERS enhancement 

of the probe particles, both silver coated Fe2O3 and Fe2CoO4 nanoparticles bound to the Ag 

target particles were compared for two different Ni-pattern designs as shown in Figure 47: 

straight (chip design A - center images) and spotted (chip design B - right images).  

 

 

  

A                                                     B 

Figure 47. Magneto-fluidic chip designs: Left: Top-down and isometric images of the 

experimental setup for Raman mapping of the assay nanoparticle clusters within the 

magnetic microfluidic. Center: Schematic & brightfield images of the Ni-patterned 

detection regions through a 10x objective for chip design A. Right: Same as center for 

chip design B. 
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IV.2.i Design A: 2-pad sensing region - straight pattern 

 Using 3D Raman mapping, the straight channel (chip A) provided a more uniform 

nanoparticle organization with an apparent coefficient of variation of 23.6% across the entire 

channel when in focus with the Ni pads. However, only the assay with the less stable Co-doped 

Ag@Fe2CoO4 probe was magnetically trapped within chip design A. This was likely due to its 

rapid magnetic collection rate (on the order of minutes compared to hours required to pull 

down 2 mL in a glass scintillation vial) when compared to the ‘plain’ but stable ferric particles. 

To investigate, a depth profile of the straight channel after exposure to 200 µL of Co-doped 

ferric assay nanoparticle clusters was obtained in the form of 3D Raman spectroscopic maps 

(Figure 48). 

Figure 48. Chip design A depth profile: 17 stacked XY Raman intensity maps of the 

straight channel design filled with Ag@FeCo assay clusters, revealing that the majority 

of particles are located near the surface of the nickel pad. 
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The map in Figure 48 reveals that the large majority of particles are located at the bottom 

of the channel, near the surface of the deposited nickel. Unfortunately exposure to BPA 

competing analyte as high as 2 mg/mL (an order of magnitude above the physiological range) 

revealed no statistically relevant change in the SERS intensity in the channel. It is hypothesized 

that this is due to the magnetic field delivered to the pads being too strong at its surface and 

not reaching the full height of the channel with uniformity. This forces the particles too close 

together hindering competitive binding, or even causing irreversible mechanical aggregation. 

Additional error in the particle depth distribution could be due to the fact that only the 

polydisperse, unstable Ag@Fe2CoO4 probe assay was trapped within chip design A. While this 

design was simpler to pattern, and the Fe2CoO4 core being the much simpler choice in terms 

of synthesis, it was determined that this ‘quick and easy’ modality is not sufficient for 

monitoring molecular binding events with SERS. However, it may still be valuable as a simple 

solution for controlling magnetic nano (or micro) particles for assay wash steps. This design 

could be used to either automate washing steps and buffer exchanges, or automate the capture 

and enhancement of the spectra of specific components in a complex solution. 
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IV.2.ii Design B: 10-pad sensing region - oblong array 

 Chip design B, consisting of a 2 x 5 Ni-pad array, was able to trap the more stable 

Ag@Fe2O3 based assay. Chip B demonstrated a 10-fold improvement in the localized SERS 

enhancement (Figure 49) across the nickel pads when compared to chip A, and thus 

theoretically allows for lower limits of detection. In terms of quantification limits, looking at 

the raw peak intensity at 1175 cm-1 the coefficient of variation (%CV) across all 10 pads was 

at nearly 55%, though intensity maps in Figure 49 reveal this is mainly due a larger portion of 

particles located on top row of pads. This is likely a due to several incomplete nickel pads in 

the bottom row, which prevent the magnetic field from propagating uniformly across the pads. 

Unfortunately, depth profiles for design B were unable to be obtained as the small pad’s field 

was still too concentrated near the surface, yielding enhanced assay signal only when in focus 

with the nickel pad as before.   

 

 

 

Figure 49. Chip design B Raman intensity profile: looking at the center column from the 

2 x 5 array of Ni pads it is noticeable that particles favor the top row of pads, which are 

more uniform than the bottom row and thus provide a more uniform field. 

 



 

82 

 

IV.2.iii Design C: 5-pad sensing region - square array 

To overcome the issues with chip designs A & B, a more optimized chip C nickel pad 

pattern was designed. Chip design C involves a 1 x 5 array of magnetically activated pads 

housed within the PDMS channel (Figure 50, left), which provides similar benefits as Chip B 

while avoiding the error induced by having two full rows of pads within the channel. This 

design allows the field to propagate in a manner that provides individual pad fields strong 

enough to trap the weakly-magnetic yet stable Ag@Fe2O3 based assay, while also providing 

uniform SERS enhancement in the Z-dimension. In other words, it is desired that the colloid 

is suspended in solution in the channel, and that particles are not irreversibly aggregated by the 

field pulling them too close together or onto the nickel surface, so that they may avoid steric 

hindrance when exposed to BPA.  

Top-down Raman intensity maps of chip loaded with the Fe2O3 based assay design C are 

also shown in Figure 50. When the channel is filled with dried assay particles, the chip 

demonstrated SERS enhancements up to 5 times higher than design B, and 30 times higher 

Figure 50. Chip design C Raman intensity profile: looking at the entire length of the 1 x 5 

array of Ni pads. It is noticeable that SERS intensity of the particles is redistributed when 

buffer is introduces, indicating particle resuspension. Upon introduction to 2 mg/mL of 

BPA, the net SERS intensity over each pad decreased in response to competitive binding. 
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than design A as demonstrated by comparing their averaged full spectra over the nickel patterns 

in Figure 51. However , for a more clear comparison across all three conditions, the map of the 

dried assay in Figure 50 is scaled to the maximum intensity of the PBS chip, which was 1.5 

times higher than chip B and 9 times higher than chip A. The PBS filled channel, where the 

map was collected 10 µm above the pad surface, provides ample space for particle suspension 

and verifies that after filling the dried assay in the channel with PBS the particles are 

redispersed.  This is further confirmed by an overall drop in the SERS intensity, which 

remained steady over 1 h after the full 300 µL of particles passed through the chip. 

Additionally, upon introduction of 2 mg/mL of BPA, a drastic drop in the SERS intensity at 

1175 cm-1 was observed after 5 minutes, consistent with the behavior seen when testing the 

assay in the well plate and thus validating the chips capability for housing a molecularly 

mediated SERS assay.  

Figure 51. SERS spectra for the average across the entire Ni patterned area for all 

three chip designs. Here, it is observed that chip C provides a 30-fold 

enhancement compared to chip A, and a 3- fold enhancement compared to chip B. 



 

84 

 

To confirm that particles were not permanently bound to the nickel pads, depth profiles 

(XZ) of chip design C were collected with and without the syringe pump turned on at 10 

µL/min (Figure 52). When the pump is on, the particles signal moves with the direction of 

flow. Although the %CV across the entire channel for design C is still ~50% as with design B, 

while investigating the signal variability across each individual pad it was discovered that the 

error could be reduced through individual normalization to the each of the five pads’ maximum 

intensity at time t=0 (i.e. when the channel is filled with PBS). The improved standard error of 

the mean of the five chips yielded a %CV of ~25%, further improving upon the previous 

designs. 

 

 

 

Figure 52. Chip design C Raman intensity depth profile: looking at the depth profile of the 

second pad in the array Left: Map shows that assay clusters are not bound to the surface and 

are able to move with the pump flow as a colloidal suspension. Right: Map shows assay 

cluster reorganize over the center of the pad when the pump is turned off. 
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 IV.3 Final thoughts on SERS-on-a-chip platform final choice 

Three magnetic microfluidic chip modalities were designed and tested with the two 

magnetic probe NP core types. It was found that the Ag@Fe2O3 particles were, on average, 

larger yet more uniform in size and more stable than Ag@Fe2CoO4. However, the addition of 

cobalt significantly improved the collection time of particles within the magnetic chips, and 

was also a much simpler synthesis method for the ferric core. Using 3D Raman mapping, the 

straight channel (chip A) design with the Ag@Fe2O3 particles intrinsically provided the most 

uniform nanoparticle organization, however particles were found to be localized mostly 

directly on the surface of the pad. While not suited for this application, this design is the 

simplest to produce, and could prove valuable for rapid prototyping of other magnetic 

nanoparticle assays. 

 While the nickel pad array channel chip design B was able to capture the desirable 

Ag@Fe2O3 particles and demonstrated a larger SERS enhancement, and thus a lower overall 

limit of detection, it had extreme variability between its 10 pads. For the chip C design, it was 

found that variability could be reduced to 25% through normalization to the maximum intensity 

within a pad. Additionally, it was demonstrated that this uniform signal could be obtained as 

far as 20 µm from the surface of the nickel pads, and was able to demonstrate the desired 

“SERS off” assay-competitive binding response to BPA. Moving forward Chip design C will 

be used along with the γ-Fe2O3 coated in silver as the probe nanoparticle in the following 

chapters and experiments.  
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CHAPTER V 

MONITORING THE BPA APTAMER ASSAY IN A MAGNETOFLUIDIC SERS-ON-

A-CHIP DEVICE 

V.1 Introduction to the final experimental set up  

 A “turn-off” SERS assay platform methodology has been described in detail Chapters 

III and IV for the detection of small toxins using aptamer-mediated assembly of colloidal 

nanoparticles, where the assay is housed within a magnetofluidic chip. Briefly, colloidal SERS 

assay nanoclusters were formed through the mixing of probe (antigen) and target (aptamer-

dye) nanoparticles and reaches an equilibrium after ~2 h. Particles were then washed by 

magnetic separation to remove any unbound target nanoparticles, a step that is a critical 

influence on the SERS sensor’s dynamic range. It was determined that a 1x5 array of 200-nm 

thick 50-µm square nickel pads activated by permanent magnetics was optimal for a 70 µm 

wide PDMS channel. This design demonstrated SERS enhancements 300 times higher than 

those observed by the permanent magnets alone in Chapter II.  

 In the following chapter, the 3-5 min long BPA competitive binding event that was 

monitored by the SERS wellplate assay described in Chapter III will be monitored in the 

magnetofluidic chip C as described in Chapter IV, this time for a wide range of concentrations 

to define and compare the SERS sensor’s performance metrics in and outside of the lab-on-a-

chip device. It was previously determined that the probe nanoparticles have specific preference 

for the BPA aptamer target particles, and that the particles competitively bind with free BPA 

as well, implying that no nonspecific binding occurred. It’s noteworthy that this approach has 

the potential to be translated to any aptamer/antigen pair, so long as the aptamer is PEGylated 

and thiolated and the antigen can be modified to be amine reactive, and provides the added 
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benefit of magnetic manipulation of the nanoparticle sensing network to remove any unbound 

nanoparticles or interferents from the sample that could potentially interfere with the Raman 

readout.  

 For the following experiments described, 200 µL of assay nanoclusters, consisting of 

prebound target (Ag) and probe (Ag@MNP) nanoparticles that were washed and packaged 

into magneto-fluidic SERS-on-a-chip design C and allowed to dry overnight. When ready to 

test, each SERS experiment was carried out according to the flow chart in Figure 53. First a 

SERS map is taken over the 5 pads when the particles are dry to ensure a sufficient number of 

assay particles were trapped, as damaged pads further down an array can prevent uniform field 

propagation. Second 0.1 PBS is introduces into the chip to resuspend the particles above the 

pads allowing for specific competitive binding to occur. Next, BPA at concentrations ranging 

from 1pM to 10 µM were introduced into the chip, and the SERS signal at the center of each 

pad was collected every 30 seconds for ~15 min. Last, the pump was turned off and a third and 

final map were collected. The percent signal drop before and after the addition of BPA obtained 

from the maps was compared to the results obtained for the wellplate assay in Chapter III. In 

a final experiment diluted whole blood was filtered using a lab on a chip device connected in 

cascade with the magnetofluidic chip to verify the sensors capability to function in complex 

media.  
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Figure 53. Process flow for testing the SERS assay in the magnetofluidic chip. 

  

 

V.2 SERS-on-a-chip: monitoring the BPA aptamer assay in a magneto-fluidic chip  

 As an initial validation experiment, phenol kept at the same concentration as BPA (10 

µM, 10x the physiological maximum) was also tested as a negative control in a magneto-fluidic 

chip to determine the assay’s specificity to BPA. As shown in Figure 54, both the test and 

control chips observed a distinct drop in signal upon introduction of PBS into the channel, 

indicating that the particles redispersed in the z-dimension as expected. When phenol was 

added to the control chip, no statistically significant drop in SERS intensity was observed 

(Figure 54a). Additionally, after the introduction of competing analyte BPA, a measurable drop 

in SERS intensity was observed (Figure 54b), thus validating the sensors specificity. 
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V.2.i Discussion on pad normalization & signal processing 

 It can be seen in the control experiment in Figure 54 and simply from brightfield images 

that there is an uneven distribution of particles across the five pads. Though all pads responded 

similarly to 0.02 ng/mL of BPA with a reaction time under 5 minutes as was predicted by the 

wellplate sensor in Chapter III, initial experiments revealed extreme variability in maximum 

achievable intensity across all 5 pads when looking at the raw SERS peak intensity (Figure 

55a). This is likely due to the fact that more particles congregate over the magnetic pads closer 

to the channels inlet. However if each pad is normalized to the average pad SERS intensity 

before BPA is added (i.e. at t=0 when the channel is full of PBS only), then the variability in 

the SERS signal drop across the pads was comparable (Figure 55b).  

Figure 54. Control experiment demonstrating the BPA sensor specificity. Both the control 

(a) and test (b) chips exhibited particle resuspension after PBS entered the channel, but 

only the BPA test strip experienced a significant drop in SERS intensity after the analyte 

was introduced.  
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 The SERS-on-a-chip device was tested against an expanded BPA concentration range 

(1 pM  1 0µM) and SERS analysis using both peak intensity and peak area were explored. 

As shown in Figure 56, using the peak area of MGITC for the doublet surrounding the 1175 

cm-1 peak previously used to characterize the wellplate yielded a much more defined dose-

response curve than simply looking at the maximum peak intensity. A Hill fit was used, as 

defined in Eq. 3, where n=Hill coefficient, as it describes the cooperativity of binding involving 

ligands with multiple binding site, such as our aptamer and analyte coated nanoparticles.   

 
 

 

 

Figure 55: SERS as a function of time across the five pads in chip design C after 

exposure to 0.02 ng/mL BPA, where in the right image pads are normalized at t=0. 
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 𝒚(𝒙) = 𝑺𝒕𝒂𝒓𝒕 + (𝑬𝒏𝒅 − 𝑺𝒕𝒂𝒓𝒕)
 𝒙𝒏

𝒌𝒏+𝒙𝒏                 Equation 3 

 

 A Hill1 cooperativity fit for this SERS off assay (Fraction bound vs. concentration 

Figure 56) is defined in Eq. 3 as follows: Start- the SERS intensity of a blank chip at t=0 (no 

BPA), End- the SERS intensity when the competing BPA concentration is 10x higher than 

BADGE concentration on the probes, ensuring saturation. SERS max (~1.0 fraction bound) 

controls the maximum rate achievable by the system. The dissociation constant used here is 

Michaelis constant k, and is the substrate concentration at which the reaction rate is half of 

SERS max (100% signal). This indicates the concentration that corresponds to half of the 

available binding sites being occupied was 2.31 nM, much closer to the center of the 

physiological range of 0.2 nM – 650 nM than the previous result of 3.15 pM with the wellplate 

method. This is likely due to the fact that the magnetic field brings the assay nanoclusters into 

even closer proximity, meaning that the assay nanoclusters couple more plasmons amongst 

other nanoclusters in the colloid, giving them a much higher SERS signal at the t=0 starting 

point, allowing for better analytical sensitivity. Further, the cooperativity coefficient for the 

chip sensor was n=0.26, which implies negative cooperativity in that once one target 

nanoparticle is bound to the magnetic probe, its affinity for other target nanoparticles 

decreases. 
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Figure 56. Box and whisker plots for visualizing quantitative resolution. Boxes represent the 

SERS signal distribution across the five pads for each tested concentration, with the Gaussian 

distribution overlaid. Pad numbers 1->5 at the left of the boxes represent the mean of n=25 

scans over each pad area. The sensor is capable of differentiating between the three regions 

separated by the break marks with 95% confidence, but not between concentrations within 

the bracketed sections. 

 

 The box and whisker plots shown in Figure 56 allow for visualization of two key sensor 

characteristics: 1) the pad distribution which demonstrated that the 1st pad (inlet side) has the 

largest average signal and the 5th the least (outlet side), and 2) the quantitative resolution. From 

this figure it can be said that the SERS sensor’s ability to differentiate between concentrations 

of BPA is limited to the three regions separated by the breaks. Specifically, the SERS 

nanocluster assay housed within the magneto-fluidic chip is able to distinguish between - It 

can perhaps be seen more clearly by observing the overlapping tails of the Gaussian 

distributions at each concentration compared to those surrounding it. Therefore, without any 

further analysis this chip could be configured with an algorithm to distinguish ‘low’ ‘medium’ 

and ‘high’ levels of BPA, but is not yet known if it is truly quantitative. 
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V.2.ii On-chip SERS sensor precision and accuracy (1 pM  1 µM) 

 To better evaluate the on-chip SERS sensor’s performance and the quality of the fit, 

we use the inverse of the Hill equation derived as shown in Eq. 4 to generate ‘predicted’ 

concentrations (x values) corresponding to the measured average SERS response across each 

pad. Inverse of the Hill function, where f = xpredicted and is the predicted concentration for a 

measured SERS response y(xactual). The number of cooperative binding site n and the binding 

affinity k are derived from the Hill1 fit in Eq. 3. These predicted values were then plotted vs 

the actual concertation of BPA that corresponded to each and plotted in Figure 57. The seven 

concentration data set for each of the 5 pads were first linearly fit separately to determine if 

there were any outliers (determined by Pearson correlation coefficient of 0.7), if the sensor was 

performing precisely and accurately (slope ~m=1), and establish a way to determine 

Figure 57. Comparison of SERS response curves using peak intensity vs peak area 

analysis. The peak area response is fit to a Hill1 curve as defined in Eq. 2 with k= 2.31 

nM and n=0.26. 
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uncertainty of the input range. As can be seen by comparing their linear fit parameters, the 

center pad (Pad 3) was most accurate and precise, where pad 5 demonstrated the most 

variability.  

𝒙𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 = 𝒇(𝒚) = (
𝒌𝒏(−𝑺𝒕𝒂𝒓𝒕+𝒚)

𝑬𝒏𝒅−𝒚
)

𝟏

𝒏
          Equation 4 

 

 This same data set was averaged for each concentration and their mean’s used to fit the 

linear regression for the chip sensor as a whole, as represented by box and whisker plots in 

Figure 58b. The fit is within a 99% confidence interval of the ideal x=y fit, and further 

demonstrates the versatility of the device. The diamond shaped box plots heave a breakpoint 

at the median value, and the mean is plotted as a bullet point for clarity as these were used to 

generate the linear fit 0.99x-0.09. Further, the linear fits from Figure 58a were used to generate 

a measure of uncertainty in the estimation of the actual BPA concentration.  

Figure 58 SERS sensor performance representing the quality of the Hill fit and the 

accuracy of the device. Left Mean values of SERS intensity across each pad plotted as a 

function of concentration. Right Box and whisker plots representing the mean and standard 

deviation of the plot on the left, with the red line representing the fit of the pad averages. 
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 Together these figures reflect the combined precision and accuracy of the sensor as can 

be visualized in Figure 59. The overlapping shadow boxes represent regions of the input or 

output that cannot be easily distinguished from those surrounding it. I other words the 

illustrative shadows show how close the input values can be to each other and still be 

statistically distinguished (precision) or how close a readout measurement can be to the next 

and still predict a different predicted concentration (accuracy).   

 

V.3 Comparison of off- and on-chip SERS sensor performance metrics 

 It can be observed by the direct comparison in Figure 60 that housing the assay within 

a magneto-fludic sensor chip significantly affected the assays response kinetics when overlaid 

with the response from the wellplate platform discussed in Chapter III. The dynamic range 

tested was expanded to fully encompass the full range observable in human serum and urine 

(~0.05-150 ng/mL)74, marked by the green shadowbox in Figure 60, in order to test if a single 

Figure 59. Illustration of analytical sensitivity (slope) and quantitative resolution (box 

shadow overlap) for the magneto-fluidic SERS sensor.  
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SERS sensor’s dynamic range would be viable across multiple sample types. Both sensing 

curves were fit to a Hill plot, which were used to generate the predicted vs actual curves in 

Figure 60.  

 

 To truly analyze this SERS BPA competitive binding assay’s ability to transition to the 

point of care, statistical figures of merit must meet the same performance requirements as in 

the clinic. Specifically we will define three metrics used to determine the true analytical 

sensing range of the assay for each of the two platforms. These ranges and the limits defining 

them will then be compared to the work of others and the current need. Last it will be discussed 

how each of these parameters can be tuned in the future through altering assay components or 

measurement methodologies. 

 The first and perhaps most important metric simply determines the concentration 

required to definitely say ‘yes BPA is present’, and is better known as the Limit of the Blank 

Figure 60 Comparison of sensor precision for the BPA completive binding assay when 

analyzed in a standard well plate vs housed within the magneto-fluidic chip. 

Physiological range is highlighted in green. 
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(LoB). The LoB is the largest concentration of BPA that could be mistaken for a negative (no 

response, blank) test result. This metric is a measure of the combined system background noise 

including instrument noise from the Raman microscope, pipetting errors, etc. For this assay it 

is defined as the SERS off response with outside a 95% confidence window of the blank’s 

response (1.645σ0  =0.05) The LoB of the blank was slightly higher (5.2 pM) with the 

assay in the magneto-fluidic chip than was observed in the wellplate (3.1 pM), which is correct 

despite the standard error of the blank being larger for the wellplate due to the fact that the 1 

pM response was more difficult to distinguished from the blank when the assay was housed in 

the chip. This is likely due to the particles being in closer proximity when in a magnetic field, 

making it difficult for low levels of BPA to displace enough target particles to significantly 

drop the SERS response.  

Table 4. Performance metrics of the SERS competitive binding assay for BPA 

 Definition 384 Wellplate Fluidic Chip 

Limit of the Blank  

Lowest concentration 
that can be distinguished 
from blank distribution 
with 95 % confidence  

LoB = f(1-1.645σ0) 

0.003 
nM 

0.07 ng/mL 
0.005 

nM 
0.12 ng/mL 

Limit of Detection  

Lowest concentration 
that can be distinguished 
from LOB distribution 
with 95 % confidence 
LoD= f(1-(LoB + 1.645σ0)) 

0.087 
nM 

1.97 ng/mL 
0.725 

nM 
16.6 ng/mL 

Limit of 
Quantitation  

Response of a sample 
with more than sufficient 
BPA to be a true positive 

LoQ= f(1-10σ0) 

9.10 
nM 

0.21 µg/mL 190 nM 4.35 µg/mL 

Dynamic Range 
Analytical sensing range 
of each SERS platform 

0.003 → 9.10 nM 0.725  → 190 nM 

Human Exposure 
Range 

Typical BPA levels found 
in human serum & urine 0.200 pM→ 650 nM (~0.05→150 ng/mL) 

Michaelis Constant 
(K) 

BPA concentration 
producing half occupation 0.00315 2.3100 
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 The next metric analyzed and perhaps the most commonly reported is the limit of 

detection (LoD), defined as the lowest detectable concentration that can be statistically 

distinguished from the LoB, or more commonly simplified as 3.29x standard deviation away 

from the blank.150 This tells us the lower bound of the assay’s dynamic range, or the lowest 

input required to initiate a definitive response from the SERS sensor. Again, the wellplate had 

a lower LoD at only 87 pM, on par with current trends for SERS sensors targeting small 

molecules, but several orders of magnitude below the average ‘normal’ BPA concentration of 

~2 nM.74  The chip demonstrated a LoD of 725pM, only about 3x higher than the lowest 

concentration reported in human serum.128  

  The last metric considered is the limit of quantitation (LoQ): the concentration that 

results in a response 10x greater than the standard deviation of the blank. In other words, this 

is the concentration that provides 10x more than enough target to warrant a true positive 

response. This is the upper bound of the detection range as concetrations higher than this would 

yield a true positive no matter what and fall outside the 95% confidence interval. It is observed 

by comparing the values in Table 4 with the plots in Figure 60 that these calculations are in 

agreement with the breakpoints of the sigmoidal Hill fits.  

 Combining these results we find that the SERS competitive binding assay has an 

analytical detection range of 87 pM → 9.1 nM when in a traditional wellplate and 725 pM → 

190 nM when housed within a magneto-fluidic chip. Both these ranges fall within but slightly 

short of the full physiological range of 200 pM→ 650 nM (~0.05→150 ng/mL). The LoB, 

LoD, and LoQ are all related and thus if one change the others are affected as well. Addressing 

issues with nonspecific binding through aptamer choice or size of PEG may also help improve 
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the range, along with alterations to the number of ligands per particle as discussed in previous 

chapters.  

 

V.4 Bringing SERS-on-a-chip to the point-of-care 

V.3.i An inertial blood filtration chip  

 Blood, saliva, mucus, sweat, sputum, and other biological fluids are often hindered in 

their ability to be used in point-of-care (POC) diagnostics because their assays require some 

form of off-site sample preparation to effectively separate biomarkers from larger components 

such as cells. The rapid isolation, identification, and quantification of proteins and other small 

molecules circulating in the blood plasma from larger interferent molecules is therefore a 

particularly important factor for optical blood diagnostic tests, mainly due to spectroscopic 

interference from hemoglobin-rich red blood cells. In this work we present a sequential spiral 

PDMS microfluidic device for rapid (~1 min) on-chip blood cell separation.  

 The chip shown in Figure 61 utilizes Dean-force induced migration via two 5-loop 

Archimedean spirals in series. The chip was characterized in its ability to filter solutions 

containing 10 µm fluorescent beads and blood solutions doped with Alexa-labelled albumin. 

Through these experiments, both cellular and small molecule behaviors in the chip were 

assessed.  The results exhibit an average RBC separation efficiency of 97.8% at a rate of 5.2 

million cells per second as determined by absorbance measurements and a calibration curve 

developed with a haemocytometer. It was verified through monitoring fluorescently labelled 

albumin that the chip is capable of retaining 95% of plasma components, and assumed the 

other 5% is lost to adsorption onto the PDMS channel walls. This chip is uniquely suited for 

integration within a larger point-of-care diagnostic system for the testing of blood plasma, and 
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the use of multiple filtering spirals allows for the tuning of filtering steps, making this device 

and the underlying technique applicable for a wide range of separation applications. 

 

 

V.3.ii On-chip detection of BPA in filtered blood using SERS 

 In a final experiment the assay performance in complex media such as serum or plasma 

was tested using two cascaded lab-on-a-chip devices: a sample preparation chip and a SERS 

analysis chip. For the sample prep chip an inertial filtration chip as described in the previous 

section was used to filter diluted whole blood with and without BPA 0.02 ng/mL added. The 

plasma outlet of these chips were connected to the inlets of separate magneto-fluidic analysis 

chips that were preloaded with the BPA SERS nanocluster particles preloaded as described in 

V.I. The experiment was conducted in the same manner as depicted in Figure 53, except here 

scans were taken with the pump off, hence the longer reaction time seen in Figure 62, left. 

Raman maps were taken of the pads before and after exposure to BPA as shown in Figure 62, 
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Figure 61. Left: Schematic demonstrating different phases of particle separation across the 

filter channel Right: UV-Vis of the channel’s inlet and outlet solutions, demonstrating 

sufficient removal of interferent cellular components. 
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right. It was observed that there was a net SERS signal decrease in response to BPA as 

respected, even in the presence of many potential interferents from the blood plasma.  

 The average SERS intensity across the entire Ni magnetic region before (t=0) and after 

(t=15) exposure to BPA are shown in Figure 63 with the ~10-15 most prominent Raman peaks 

labeled. When comparing these with the spectra from the ‘clean’ assay particles in PBS 

(Malachite Green Label only) as shown in Figure 63, and as listed in Table 5 it was observed 

that several new peaks emerged. In order to properly assign the new peaks present from the 

plasma sample. Table 5 shows the assignment of specific vibrational modes to the observed 

SERS peaks. This reveals that the new peaks, specifically those located at 1035 cm-1, 1078 cm-

1, 1121 cm-1, and 1261 cm-1 can be attributed to smaller blood components of blood capable of 

reaching the nanoparticle surface past the PEG layer, such as glucose, lipids, amino acids, etc. 

This implies the particles may benefit from a more sterically stabilizing polymer such as PVP 

Figure 62. Sensor response to 1 µM BPA in PBS compared to 1 µM BPA doped into 

whole blood that has been filtered by an inertial microfluidic chip connected in cascade 

to the analysis chip.  
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or even a hard silica shell for encapsulation, though there exists a tradeoff between added 

particle thickness due to stabilizers and decreased SERS enhancements.  

Table 5. Peak assignment table for Raman modes visible before and after the introduction of 

plasma and of BPA-doped plasma 

MGITC on 
Target NP 

Assay in 
Plasma 

Assay in 
Plasma 
+ BPA 

SERS Assay or 
Plasma Component 

Vibrational mode 

808 818 825 MGITC benzene1g  (out of plane C-H)151 

912 1001 1000 MGITC benzene1  (in plane) 151 

- 1035 1035 Phenylalanine C-H in-plane bending mode 152 

- 1077 1078 Glucose /triglycerides/lipids C-C 153 
1143 1122 1121 Proteins C-N Strech (protien backbone) 154 

1174 1174 1178 MGITC benzene 9 (in plane C-H) 151 
- 1199 - MGITC N-C stretch 151 

1215 1220 - MGITC NR2 bend 13 

- 1269 1261 Lipids, amide III, collagen 
CH2 In-plate deform, ν(CN), 

δ(NH) 49, 153, 155 
1292 1288 1307 MGITC in-plane C-C & C-C-H 151 
1366 1376 1394 MGITC N- stretch 151 
1444 1430 - MGITC NR2 bend 151 
1476 1469 1459 MGITC NR2 rock 151 

 1558 - Amino Acid (Tryptophan) ν (C=C) 49, 155 
1594 1583 1584 MGITC in-plane ring stretch &bend 151 

Figure 63. Stacked SERS spectra with peak assignments of the assay in 

plasma, in plasma doped with BPA, and in PBS. 
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 Though the 1175 cm-1 MGITC peak still dropped in intensity upon exposure to BPA 

as expected and as shown by Figure 64, the experiment setup required that the chips be 

connected by delicate tubing (Figure 64a) and was difficult to reproduce. Therefore for future 

work we developed an integrated chip (Figure 64b) that combines the sample prep and analysis 

chips. However initial testing has revealed that the drastic difference in optimal flow rates for 

each chip will prove to be a significant hurdle to overcome in future iterations of the device. 

 

 

 

 

 

 

 

 

 

Figure 64. Next generation SERS-on-a-chip device will integrate the filtration and 

analysis chips, bringing this technology one step closer to the point-of-care 
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CHAPTER VI 

SUMMARY & CONCLUDING REMARKS 

 The results and discussions presented throughout this dissertation lead to a couple of 

major themes to consider when designing platform point-of-care biosensing techniques that 

utilize colloidal SERS. Specifically, a bisphenol-A “turn off” competitive binding assay 

relying on aptamer-mediated assembly of SERRS active plasmonic and magnetic nanoparticles 

was analyzed in a traditional wellplate. It was determined that the analytical range of the SERS 

assay in the wellplate was 87 pM → 9.1 nM with a Michaelis constant of 3.25 pM between the 

target and probe particles. Housing this assay within a magneto-fluidic SERS analysis chip for 

automated sample processing and quantification shifted the Michaelis constant to 2.31 nM and 

the analytical range to 725 pM → 190 nM, which is much closer to the physiological range for 

BPA levels found in the serum and urine.  

 This assay has the potential to be translated to virtually any biomarker by utilizing 

aptamers: short synthetic ssDNA strands capable of binding to non-DNA targets. This 

technology can potentially be made sensitive to other analytes by simply exchanging the 

aptamer - making the platform “programmable” The enablement of technologies like this help 

push medicine to become increasingly personalized, predictive, and preventative by moving 

away from initial symptom based diagnostics and towards fast, quantifiable monitoring. 

Moving towards a lab-on-a-chip system like the magneto-fluidic assay chip presented here 

offers many advantages such as automated measurement, low sample and reagent volumes, 

minimal sample preparation, portability, disposability, and user-friendly interfaces. Thus the 

chip platform can potentially be used for a number of applications in situations where rapid 

blood or other biofluid diagnostics are of critical necessity, such as, for example, for 
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biomarkers for preeclampsia, dengue fever, radiation exposure, blood toxins, or myocardial 

infarction. Its versatility, low manufacturing cost, and portability also make it a promising 

technology for global health implications, ambulatory settings, as well as natural disaster relief 

worldwide. The enablement of technologies like this help push medicine to become 

increasingly personalized, predictive, and preventative by moving away from initial symptom 

based diagnostics and towards fast, quantifiable monitoring. 

 

VI.1 The Future? Translatable methodologies & dual modality SERS 

 While many of the techniques discussed in this subchapter have made significant 

strides towards translating colloidal SERS to the point-of-care, they still face a number of 

hurdles. Much work is yet to be done in order to validate that these techniques can actually be 

applied for multiple biomarker types and applications. One of the most recent and relevant 

emerging methods for truly universal sensing was demonstrated by He, Li, and Hu with an 

aptamer recognition-induced target-bridged SERS assay based on magnetic chitosan (MCS) 

and silver/chitosan nanoparticle (Ag@CS NPs) binding.156 A single aptamer target 

nanoparticle was used for the detection of three different types of protein, benefiting from the 

highly specific affinity of aptamers and biocompatibility of chitosan (CS). MCS coated in 

various antibodies or aptamer act as capture probes in the triple sandwich assay format shown. 

The sandwich complexes of aptamer (antibody)/protein/aptamer were first mixed with 

complex biological mediate and separated from biological samples after the reaction proceeded 

by magnetic manipulation with a permanent magnet under a glass slide. SERS signals were 

collected after washing the complexes and the protein concentrations indirectly correlated with 

the number of Raman report molecules left after washing. To demonstrate the translatability 
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of this method, three different proteins: thrombin, platelet derived growth factor (PDGF) and 

immunoglobulin E (lgE) were investigated. The CS shell demonstrated enhanced stability for 

longer shell life and prevention of signal drift due to loss of Raman reporter.  

 Like all colloidal nanoparticle assays, this method avoids slow diffusion limited 

kinetics problems observed for solid SERS substrate. The feasibility of this method for use at 

the point-of-care was demonstrated with PDGF BB in clinical serum samples, with an LOD of 

3.2 pg/mL. The prediction results obtained from human serum of healthy patient’s vs cancer 

patients using the proposed SERS method correlated with traditional ELISA results while the 

SERS method expanded the linear range. Another emerging trend in colloidal SERS is the 

utilization of dual optical modality approaches. For example many colloidal SERS assays also 

intrinsically exhibit a colorimetric response and dual sensing can facilitate simple yes/no 

readouts 157-158.  Researchers have also combined SERS with fluorescence to provide additional 

visual confirmation of binding results in a multiplexed format 159.  

 

Figure 65. Cartoon depicting an imagined integration of molecularly mediated SERS assays 

and magnetic nanoparticles with low-cost paperfluidic lateral flow devices .  
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 Combining these finding with our own findings it is proposed that future iterations of 

these magnetic nanoparticle-aptamer SERS sensors be translated from the PDMA platform 

onto a disposable paperfluidic lateral flow assay platform. This concept is depictured in Figure 

65, and one could imagine a barcode type readout with both a colorimetric response with quick 

yes/no answers, as well as the ability to take a SERS measurement for a more quantitative 

result. This cartoon in Figure 65 also depicts slight variations on the competitive assay scheme 

used for small molecule to demonstrate that the platform technology could modified for 

monitoring proteins (green/blue) or oligonucleotides (yellow/red). As more analytical 

methodologies like these emerge and combine, the benefits of SERS for clinical chemistry at 

the point-of-care will be expended even further. 
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