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ABSTRACT

Ground penetrating radar (GPR) processing workflows commonly rely on techniques

developed particularly for seismic reflection imaging. Although this practice has produced

an abundance of reliable results, it is limited to basic applications. As the popularity of

GPR continues to surge, a greater number of complex studies demand the use of routines

that take into account the unique properties of GPR signals. Such is the case of surveys

that examine the material properties of subsurface scatterers. The nature of these compli-

cated tasks have created a demand for GPR-specific processing packages flexible enough

to tackle new applications. Unlike seismic processing programs, however, GPR counter-

parts often afford only a limited amount of functionalities. This work produced a new

GPR-specific processing package, dubbed IVGPR, that offers over 60 fully customizable

procedures. This program was built using the modern Fortran programming language in

combination with serial and parallel optimization practices that allow it to achieve high

levels of performance. Within its many functions, IVGPR provides the rare opportunity

to apply a three-dimensional single-component vector migration routine. This could be

of great value for advanced workflows designed to develop and test new true-amplitude

and inversion algorithms. Numerous examples given through this work demonstrate the

effectiveness of key routines in IVGPR. Additionally, three case studies show end-to-end

applications of this program to field records that produced satisfactory result well-suited

interpretation.
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NOMENCLATURE

GPR Ground penetrating radar

EM Electromagnetic

A-scan The display of a single GPR trace is commonly referred
to as an A-scan

B-scan The display of a multitude of adjacent traces.

IVGPR Processing package for GPR data developed as part of
this study

iGPRead Graphical user interface used read and write encrypted
GPR files.

iViz3D Graphical user interface used displaying three-
dimensional GPR datasets.

AGC Automatic gain control

DR Differential resolution

ATS Average trace subtraction

MTS Mean trace subtraction

ATM Alpha-trimmed mean

TVSW Time variant spectral whitening

FDSW Frequency domain spectral whitening

GLCM Gray-level co-occurrence matrix

BNS Background noise suppression

FFT Fast Fourier Transform

MSA Multitaper spectral analysis
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BMS Background matrix subtraction

ER Energy ratio

PSD Power spectral density

CTA Complex trace analysis

vii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis structure ................................................................................................ 6

2. THE IVGPR PROCESSING PACKAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Structure and data flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Data visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 MATLAB graphical interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. BASIC PROCESSING TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Dewow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 The windowed-sinc filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Basic smoothing filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Time-zero correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

viii



3.5 Time gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Automatic gain control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.2 Spherical and exponential compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Programmed gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Desaturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Background noise suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. ADVANCED PROCESSING TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Image enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Interpolating GPR data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Advanced filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Attribute analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Textural attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1.1 Uniformity, contrast, homogeneity, and entropy . . . . . . . . . . . 50
4.3.2 Rapid assessment of structural and spectral content . . . . . . . . . . . . . . . . . . 51
4.3.3 Complex trace analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3.1 Envelope, instantaneous phase, and instantaneous fre-
quency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Alternative techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Spectral Balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1.1 Time-variant spectral whitening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1.2 Frequency domain spectral whitening . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1.3 Differential resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Background matrix subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 Attribute-based time-zero correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3.1 Edge-preserving smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5. MIGRATION OF GPR DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Phase-shift migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Downward continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.2 Phase shift migration algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Vector-migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.1 Algorithm and pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Performance analysis of migration algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6. CASE STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Case I: Geophysical archeology over the recreational yard of the main Al-

catraz prison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ix



6.3 Case II: Field record over exposed fault near Mason, Texas . . . . . . . . . . . . . . . . . . 110

7. CONCLUDING REMARKS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

REFERENCES ................................................................................................................ 117

x



LIST OF FIGURES

FIGURE Page

1.1 Systematic approach used to design and test new modules. . . . . . . . . . . . . . . . . . . 5

2.1 iViz3D GUI. (a) Loads a set of GPR lines, (b) implements changes in the
settings to the data, (c) sets the strength of the smoothing and the direction
along which it is applied, (d) pads all lines to longest or trims all lines
to shortest, (e) displays inlines, crosslines, and time slices, and (f) shows
the current location within GPR cube, and (g) allows the user to navigate
through the cube. Specific locations within the cube can be set in (f). . . . . . . . 11

2.2 iGPRead GUI. (a) Allows for the modification of headers, (b) displays the
saved data, (c) flips the order of traces, (d) removes temporal gains applied
during acquisition, (e) clips data edges, (f) specifies the input and output
formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Fundamental processing steps for a bistatic GPR surveys. The orange
box encloses a set of basic processing steps commonly applied at the site.
These are usually enough when detection of a target is the primary goal.
The gray box encloses offsite steps, which are typically applied in descend-
ing order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Example of wow noise in GPR trace and effect of dewow filter. . . . . . . . . . . . . . 16

3.3 GPR field record showing broad horizontal bands caused by low frequency
wow noise. The banding became prominent after applying a temporal
gain.(b) Demonstrates the improvement obtained by applying a dewow
filter to (a) prior to implementing the temporal gain. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Average amplitude spectrum of GPR record. The region shaded red shows
the portion of the spectrum removed by the filter. The filter used is also
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Illustrates a typical frequency filtering flow (similar to the one used in
IVGPR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xi



3.6 Amplitude response of three bandpass windowed-sinc filter with identical
cutoff frequencies (i.e. fhp = 300 MHz and flp = 1000 MHz) but varying
kernel sizes. This filters were created using the windowed-sinc routine in
IVGPR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Shows the product (b) obtained by smoothing a raw radargram (a) using
a two-dimensional mean filter with a 5 × 5 window. (b) Shows that this
kernel achieved a fair trade-off between resolution and smoothing. . . . . . . . . . . 23

3.8 Four conventional locations for picking the time-zero point along the first
reflected wavelet. Point A marks the first negative peak. Point B indicates
the S-crossover. Point C indicates the first maximum. Point D corresponds
to the Z-crossover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.9 Shows a radargram before (a) and after (b) time-zero correction. The pre-
ferred location was set to be the first significant peak. . . . . . . . . . . . . . . . . . . . . . . . . 25

3.10 Shows the convolution of a finite duration pulse (left) with a reflectivity
series (red). The resulting time series was attenuated using a linear decay
down to 10% of the original amplitude. Without a gain, an interpreter
could mistakenly deduce that the contrast in material properties varies with
depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.11 Scheme used to compute the gaining coefficients for the instantaneous and
rms AGC. The original time series is depicted as a series of points sec-
tioned into three parts (green, blue, and purple). The rms AGC algorithm
computes the coefficients at the center of each time gate (box) without
overlap. The instantaneous AGC computes the gain at the center of over-
lapping windows, which are shown in a stair case pattern for clarity. The
yellow section indicates the region where values are extrapolated in both
techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.12 (a) Shows the input B-scan in raw form. Reflectors are clearly discernible
only within 5 ns from the ground surface. (b) shows the output from the
rms AGC routine. This greatly enhanced the number of visible features. A
similar effect is obtained after instantaneous AGC (c) and robust AGC (d).
The main differences between the tree techniques is the effect on relative
lateral amplitudes and structural resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.13 Illustrates how the amplitude decay in a raw scan (a) can be ameliorated
by applying the SEC algorithm. (b) The B-scan after SEC. A red arrow
indicates where a deep feature of interest became apparent after the gain
was applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xii



3.14 (a) Workflow for programmed gains. (b) Raw B-scan affected by attenua-
tion. (c) The B-scan after being processed by a programmed gain without
smoothing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.15 Shows the manifestation of signal saturation along a GPR trace. The
dashed red lines indicate the limits of the dynamic range for the receiver
system. Clipped section appear as horizontal plateaus collinear with the
limits of the dynamic range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.16 Interpolation results using a fourth-, fifth-, and sixth- order polynomial
interpolation along with a cubic spline to estimate the amplitudes along a
clipped section. Each interpolation was compared to the actual amplitudes
using a percent error analysis. The number of neighboring points used
were 5 (a and b), 9 (c and d), and 13 (e and f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.17 (a) Radargram showing extensive clipping. (b) Output from IVGPR’s de-
clipping routine with a fourth-order polynomial interpolation. . . . . . . . . . . . . . . . 38

3.18 Shows a field record before (a) and after (b) it was treated by the ATS
algorithm. The background noise matrix was estimated using a windows
of 101 elements. A red square encloses the inferred space-time confine-
ment of a hole filled moments before acquiring the data. The blue square
surrounds events that show enhanced continuity applying the ATS algorithm. 40

4.1 Shows a bilinear interpolation of a raw GPR slice (a) originally composed
of 29 lines. The interpolated slice (b) contains 290 lines. No obvious
evidence of damaging artifacts can be observed for this time slice. . . . . . . . . . . 43

4.2 Extending the definition of cutoff frequency kc as the perimeter of an ellipse. 45

4.3 Two-dimensional Butterworth transfer function (a) and a two-dimensional
Tukey window (b). The same cutoff frequency was chosen along each
axial direction resulting in the isotropic response shown. . . . . . . . . . . . . . . . . . . . . . 46

4.4 Raw radagram (a) treated by the Wiener filter denoising procedure in IVGPR
using an 11×11 window. Two boxes are use to highlight how this filter can
improve signal-to-noise without deteriorating the resolution of the image.
A smaller window size may be used to retain more detail.. . . . . . . . . . . . . . . . . . . . 47

xiii



4.5 Approach used to compute textural attributes. A moving window of size
M byM is centered at each pixel of an image and the resulting sub-images
are quantized to a prescribed gray level. The figures on the right show a
sub-image quantized to 4 gray levels. Next, a GLCM is computed for
every direction. The images on the left show how the 0◦ GLCM is derived.
The resulting matrices are summed and the sum is normalized to produce
Co. Textural attributes can then be easily computed from Co. . . . . . . . . . . . . . . . . 49

4.6 (a) Uniformity. (b) Contrast. (c) Homogeneity. (d) Entropy. One can eas-
ily discern regions of potential interest (with high and low values) high-
lighted by these attributes. There are a number of locations where these
attributes reinforce one another. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Shows a 2D multitaper spectral estimate for the entire radagram (a) and a
1D implementation for a synthetic trace created by combining three sinu-
soids with frequencies of 7.8, 15.6, and 125 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 (a) Shows a raw radargram along with the extracted gradient amplitude (b)
and direction (c) attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9 Shows the complex trace analysis attributes included in IVGPR. These
consists of envelope (b), instantaneous phase (c) and instantaneous fre-
quency. The attributes were extracted from the raw B-scan shown in (a).
The amplitudes for each plot was normalize by the absolute maximum.
Additionally, the instantaneous frequency was treated using a Plank win-
dow to reduce the effect of high amplitudes at the edges of the data. . . . . . . . . 59

4.10 Time-variant spectral balancing algorithm. The input data is Fourier trans-
formed (red arrows) and filtered. This produces N sub-records with dif-
ferent frequency content. After an inverse Fourier transformation (blue
arrows), each sub-record is gained using a programmed gain. The gained
sub-records are combined to produced the TVSW data. . . . . . . . . . . . . . . . . . . . . . . 62

4.11 Three adjacent bandpass filters (dashed curves) generated by setting f1 =
50 MHz, f2 = 650 MHz, and N = 3. Their superstition (solid purple
curve) is equivalent to a single bandpass filter with cutoff frequencies fhp

and flp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.12 (a) Raw radagram with three squares indicating regions of different depth
and characteristics. (b) Shows the result after treating the raw radargram
with the TVSW. The results within the three regions were used to qualita-
tively asses the performance of this routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiv



4.13 Amplitude spectrum of a GPR trace before (blue) and after (red) FDSW.
The spectral response appears broader and its peak frequency has shifted
to a higher value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.14 Identical sections of a profile before (left) and after (right) FDSW. Three
depth regions are highlighted to evaluate the effectiveness of the routine.
Clear enhancements to the continuity and resolution of reflectors can be
observed after FDSW (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.15 Plot of the terms in equation 4.28. The sporadic behavior of high order
derivative is likely due to noise in the original trace. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.16 (a) Shows the output trace (blue) generated after treating the original trace
(orange) with DR. The power spectrum of both traces is shown in (b).
Figures (c) and (d) show a GPR section before and after DR, respectively.
Three boxes enclose different depth ranges used to evaluate the technique.
A red arrow indicates improvements in resolution.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.17 Shows three background matrices corresponding to: (a) mean trace sub-
traction (MTS), (b) alpha-trimmed mean trace subtraction (ATM), and (c)
background matrix subtraction (BMS). A dashed square shows an instance
where MTS appears to overestimate the background noise. An arrow
shows one of the sharp transitions peculiar to the BMS technique. . . . . . . . . . . 75

4.18 Automatic first-arrival picking workflow. Processes colored in red indicate
steps that differ from Coppen’s method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.19 Shows the Time-zero correction of a raw B-scan (A) after applying the
peak-finding based method (B), the energy-ratio method (C), and the en-
tropy method (D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.20 Average trace (black curve) showing the time-zero picks that would re-
sult from the entropy method (A), energy-ratio method (B), and the peak-
finding method (C–F). The red and blue dashed line shows the average ab-
solute value for the first derivative of entropy and energy-ratio attributes,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.21 (a) Original step function. (b) Step function after random Gaussian noise
was added. (c) Noisy data treated by conventional moving average filter
using a window size of 17 elements. (d) Noisy data treated by EPS using
a window size of 17 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xv



5.1 Illustrates the effect of data collection and migration. In particular, a point
scatterer in object (or physical) space becomes mapped as a hyperbolic
event in data space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Illustrates how a hyperbolic event becomes more compact as the array of
receivers gets closer to its source. The white circles represent wavefronts
at the time they first reach the receivers. The dotted lines indicate the
distance a wave front needs to travel to reach the edge receivers after it
arrives at the middle receiver. On the right, the resulting hyperbolic event
within the acquisition time (indicated by a gray band) are shown. . . . . . . . . . . . 85

5.3 Up-going plane wave propagating at some angle θ with respect to the ver-
tical axis. The signal reaching two stations (red and blue dots) is shown as
stem plots on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Contour lines for the equiphase planes corresponding to the maximum
value of a monochromatic plane wave. The propagation direction of the
wave is indicated with a white line such that it makes an angle θ with
respect to the vertical axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Shows artifacts caused by the intrinsic periodic boundary conditions of the
phase shift migration algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Shows the vector migration workflow proposed by Streich et al. (2007).
The steps shaded in gray indicate the FFT-based technique for finding Ĝ.
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1. INTRODUCTION

The use of ground penetrating radar (GPR) systems for the detection and characteri-

zation of subsurface targets has become a highly sought-after service in a wide range of

fields. This flexible yet powerful non-invasive profiling technique offers a way, even for

novice users, to obtain high resolution images. Prior to the proliferation of GPR-specific

data processing routines, the abundance of seismic equivalents offered an attractive alter-

native (Annan, 1999; Everett, 2013). Today, it remains common for practitioners to rely

on processing and imaging techniques intended specifically for seismic data (Cassidy and

Jol, 2009; van der Kruk, 2015). Although seismic processing tools are robust and can gen-

erate interpretable results, they are not designed to address GPR-specific noise. Hence,

the resulting images may contain artifacts that are indistinguishable from bona fide geo-

logical responses. Furthermore, the seismic techniques are inadequate for studies aimed

at gaining insight into the electromagnetic properties of the subsurface (van der Kruk,

2015). Then, the question to ask is: why has the reliance on seismic processing packages

persisted despite potential inaccuracies? While exploring the answers to that question by

querying a range of practitioners is outside the scope of this research, the following sec-

tion highlights several shortcomings of modern GPR software that might provide a partial

explanation. This is followed by a description of how IVGPR, an open-source GPR pro-

cessing program that I developed as part of this thesis research, can overcome the key

limitations found in the seismic counterparts. Primarily, IVGPR addresses the scarcity of

freely available vector migration algorithms. The final three sections report the specific

objectives, methodology, and structure of this thesis respectively.
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1.1 Motivation of research

Readily available commercial GPR software tends to be highly priced and often works

only with data formatted by acquisition tools from the same manufacturer. Recent quotes

requested for RADAN, REFLEXW, GPR-SLICE, and EKKO_Project revealed prices rang-

ing from 1000 to 11000 US dollars, excluding the cost of additional modules. All four

software packages, while offering impressive visualization capabilities, contain a nearly

identical set of basic processing routines. In particular, the complexity of the migration

algorithms is limited to scalar or asymptotic methods that use far-field approximations.

These algorithms do not account for the polarization of electric field and the radiation

pattern of antennas in the near- and mid-field. As a result, the amplitudes of the images

produced cannot be quantitatively related to the electromagnetic properties of targets in

a straightforward manner (Streich and van der Kruk, 2007; van der Kruk, 2015). This

limitation hinders the performance of advanced post-migration analyses that depend on

accurate amplitude information (Sassen and Everett, 2009).

Some GPR applications require specific, or even novel, processing and imaging tech-

niques that are not available in popular processing software packages. In these cases,

researchers opting to develop their own codes might encounter a few obstacles. Firstly,

since algorithm development tools within existing processing packages are rarely avail-

able, the data must be converted into a practical format. However, this conversion requires

facing the laborious and sometimes unfeasible task of deciphering the binary configura-

tions unique to each manufacturer’s acquisition tools. An extensive web search failed to

reveal any freely-available programs for this purpose. The work of Tzanis (2010), which

produced MATgpr, provides a good platform for reading, visualizing, and processing GPR

data at no additional cost to anyone with a MATLAB license. MATgpr is capable of read-

ing data formatted as DZT-, DT1-, and SEGY-files. Yet, data can only be exported as one
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of the binary structures that is readable by the program. In my study, the apparent scarcity

of programs capable of reading and writing GPR data was addressed by developing the

MATLAB interphase iGPRead. This interface, like MATgpr, is capable of reading and

displaying data in the most prominent GPR data formats. In contrast to MATgpr, iGPRead

can export data in such versatile formats as CSV and ASCII-files.

Secondly, researchers might find it difficult to analyze the combined effect of their own

specialized routines when used along with the standard processing steps that are available

in vendor software packages. This situation arises when source codes are not available, al-

gorithms are vaguely explained, and/or vendors do not offer a way for users to incorporate

new routines into their programs. Researchers could circumvent this obstacle by building

external routines that involve repeatedly transferring data in and out of programs. Such

options, however, are generally costly and impractical. By contrast, the program created

in this work consists of a transparent and self-contained set of independent modules. The

modular architecture allows users to easily modify, add, and maintain specialized process-

ing routines. By also offering a collection of plotting functions, IVGPR eliminates the

need to outsource data for visualization, thereby allowing researchers to focus on their

primary scientific objectives.

Although the original aim of this study was to develop and explore the effectiveness

of vector migration algorithms, the limitations described above imposed many practical

obstacles to this aim, which motivated the creation of IVGPR. This program, however,

was not created in order to rival any of the existing commercial processing packages.

Rather, it simply provides a free and flexible platform for researchers to readily implement

and test new specialized GPR processing routines.
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1.2 Objectives

The central goal of this work is to develop an open-source GPR-specific processing

package capable of implementing a vector migration algorithm. The advantages of this

class of migration techniques have been well documented (Annan, 1999; Leuschen and

Plumb, 2000; Slob, 2003; Sassen and Everett, 2009; Streich and van der Kruk, 2007;

van der Kruk, 2015), but they are generally absent in the available processing software

packages (Cassidy and Jol, 2009). As a result, analyses of their performance with field

data remains sparse. An aim of this thesis is to provide new evidence of the practicality

and applicability of these algorithms by evaluating their effectiveness treating synthetic

and field data. Further, researchers using IVGPR in the future can generate additional

contributions to the available body of work on these techniques.

A self-contained GPR processing package, IVGPR provides a library of widely used

basic routines as well as implementations of modern approaches that have been shown to

be effective throughout the literature. Thus, users have the rare opportunity to execute full

processing workflows containing vector migration algorithms. This thesis investigates the

effects on final GPR images of different workflows. This is done by varying important

parameters and the order of processing routines within IVGPR. Sample outputs are pre-

sented alongside the theoretical development of the key routines. Practical examples are

shown in a collection of case studies. Also, qualitative comparisons are made between

images obtained using analogous workflows with IVGPR and vendor software packages.

A further goal of the thesis is to facilitate the future enhancement and expansion of

IVGPR by adopting a modular design, providing the theoretical foundation of key pro-

cessing routines, and striving for optimal performance. For the latter, any major pro-

cessing routine with an estimated potential speedup ranging from two to four, based on

Gustafson’s law (Gustafson, 1988), was parallelized using OpenMP. A considerable effort
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Figure 1.1: Systematic approach used to design and test new modules.

went into maintaining a consistent formatting and documentation style to the source code.

These are just two of the several measures that I made to ensure efficient programming

practice.

1.3 Research design

The first stage of the development of the IVGPR software package focused on includ-

ing basic GPR processing routines (i.e. data editing, dewow, time-zero correction, gain

correction, background subtraction, and filtering). Fortran was chosen as the program-

ming language because of its advantages in performance and the availability of compil-

ers at no charge. Data visualization within IVGPR was made possible through gnuplot in

combination with a Fortran-based user interface I developed. To achieve additional clarity,

two graphical interfaces for visualizing GPR data within MATLAB were also constructed.

These, dubbed iGPRead and iViz3D, share no relation to the gnuplot interface. All three

plotting interfaces will receive their proper description in a later section of this thesis. Fig-

ure 1.1 shows the systematic “minimal-working-example” workflow that I used to build

and test each module independently.
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The next stage of development was aimed towards the implementation and testing

of two different migration techniques as well as a series of other advanced processing

steps. The migration techniques included in IVGPR are the Gazdag phase-shift migration

(Claerbout and Green, 2008) and a three-dimensional single-component vector migration

(Streich and van der Kruk, 2007). The former is a scalar techniques commonly used

in seismology, while the latter is a GPR-specific migration routine. Implementation of

these two contrasting techniques makes it possible to draw meaningful conclusions on the

benefits of accounting for the antenna radiation pattern and polarization associated with

EM vector-wave propagation. Two controlled data sets, one from a numerical simulation

and one from a field experiment, are used herein to quantitatively estimate the accuracy of

the migration routines.

During the final stage, IVGPR was tested using GPR field data from surveys with

pre-existing complementary interpretations made by other GPR practitioners. The IVGPR

images were compared to those obtained by the colleagues using their own preferred soft-

ware packages. In terms of performance, the primary goals were to ensure that results

were stable and accurate irrespective of parametrization and the order and combination of

processing steps. However, the available time frame of this project, in combination with

its ambitious scope, allowed only a modest amount of testing. The author acknowledges

that IVGPR, like any other software under active development, might contain glitches that

were not identified during the limited testing. Future use of this program is likely to reveal

new issues, which capable users can address.

1.4 Thesis structure

This thesis consists of five parts: a synopsis of IVGPR and related programs; basic

processing routines; advance processing routines; migration algorithms; and case studies.

The first three parts are especially beneficial to any future user of IVGPR wishing to fix,
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expand, and/or modify the program. These sections provide a clear description of the

general structure and theory of the main processing steps. The fourth part is devoted,

primarily, to the development and testing of vector a migration technique. Lastly, a number

of case studies will be presented to evidence how the program may serve as an effective

tool for processing and interpreting GPR field records. The thesis concludes with a brief

discussion and recommendations for further work.
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2. THE IVGPR PROCESSING PACKAGE

2.1 Overview

IVGPR is a powerful end-to-end processing package intended for academic research

involving GPR surveys. The number and variety of routines in the program surpasses

that of most freely available counterparts. In addition, the programming language (i.e.

Fortran 95) and components of IVGPR are nonproprietary, which expands its use beyond

non-profit applications. Many architectural and implementation aspects were influenced

by Clerman and Spector (2011). Perhaps most notable is the modular structure, which

simplifies customization and maintenance. As a result, users wanting to expand the pack-

age can do so with only a basic understanding of the overall structure. This section will

explore the architecture and core components of IVGPR.

2.2 Structure and data flow

The structure of the program consists of a main file linked to 22 modules and five

open-source libraries. These libraries enable processes such as Fast Fourier Transforms,

the conjugate gradient method, matrix inversion, spectral decomposition, and multitaper

spectral analysis. Table 2.1 lists the modules and routines designed to aid in the editing,

processing, and interpretation of GPR data. The ensemble of routines have dozens of lower

level dependencies contained in various utility modules. Most of the routines in IVGPR

underwent some degree of optimization in order to improve computational performance.

Common optimization practices included the removal of redundant computations within

loops, making effective use of Fortran’s column-major order, and basic implementations

of OpenMP parallelization. This work primarily focuses on the theory and algorithms

related to the processing routines. Proper descriptions of lower level routines were given

in the form of systematic documentation throughout the code.
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Table 2.1: Modules with most of their available routines and techniques. Those marked
with a ∗ contain one or more parallel routines. Any routine containing the symbol ‡ can be
applied to one- or two-dimensional data. The symbol † indicates advanced techniques.

Category Modules Routines and Techniques

Editing
Data management

Smooth muting
Temporal cropping
Trace removal

Processing

Dewow∗
Median and weighted mean filter
Low-pass filter

Background
subtraction∗

Moving average trace subtraction
Alpha-trimmed mean†

Background matrix subtraction†

Filtering∗

Windowed-sinc
Gaussian‡, mean‡, and median
Edge preserving smoothing†

2D elliptical Butterworth filter†

Elliptical Tukey window†

Time Zero
Peak finding
Modified Coppen’s method†

Entropy method†

Trace Balancing RMS, median, and maximum amplitude

Declipping∗
Least squares polynomial fitting
Cubic spline interpolation

Gains
Spherical and exponential correction
RMS, instantaneous, and robust AGC
Programmed gain

Spectral
Balancing∗

Time-variant spectral whitening
Frequency domain spectral whitening
Differential resolution

Migration∗
Phase-shift migration
3D single-component exact-field vector migration†

Interpretation

Attributes

Uniformity, homogeneity, contrast, and entropy‡

Energy ratio
Envelope‡

Gradient direction
Absolute gradient magnitude
Instantaneous frequency‡

Instantaneous phase‡

Image
enhancement

Box blur and Gaussian blur
Sharpen mask and unsharp mask
2D adaptive noise-removal
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A comprehensive data flow design minimizes the effort needed to adapt new modules

and functionalities. In particular, every input/output operation is controlled by a set of

routines inside the data management module. All user-defined parameters and instructions

are specified in a formatted text file, which utilizes Fortran’s NAMELIST input statements.

The parameters, along with the input GPR data, are stored within, and shared by, the

data management module. Any external routine linked to the module gains access to this

information. The output generated by each processing step can be saved in one of two

formats, a CSV or DAT-file. The latter is especially formatted for IVGPR while the former

is readable by most plotting softwares. It is worth noting that, while IVGPR currently lacks

a graphical user interface, anyone wishing to append an interactive layer can exploit the

fact that all communication with the program involves a single text file. Thus, an interface

would only need to generate said file and execute the program.

2.3 Data visualization

IVGPR also provides a plotting module that interfaces with the open-source package

gnuplot to generate figures without the need of proprietary plotting programs. Gnuplot

is flexible, portable, and can generate publication-ready figures in a variety of formats

(Janert, 2010). The module contains four plotting functions that can handle one- and two-

dimensional data. The user can customize a number of features such as labels, font size,

color maps, number of tics, and the overall dimension of the plot. Two of the functions

can generate temporary on-the-fly plots useful for testing the quality of results during the

development of new routines. Nearly every radargram in this work was produced using

the plotting functions in IVGPR. One key limitation of this module is the absence of three-

dimensional visualization capabilities. The next iteration of this program will be wrapped

in python, and it will make use of the highly capable matplotlib package. This, in turn,

will facilitate the adaptation of an interactive UI for visualization in three-dimensions.
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Figure 2.1: iViz3D GUI. (a) Loads a set of GPR lines, (b) implements changes in the
settings to the data, (c) sets the strength of the smoothing and the direction along which
it is applied, (d) pads all lines to longest or trims all lines to shortest, (e) displays inlines,
crosslines, and time slices, and (f) shows the current location within GPR cube, and (g)
allows the user to navigate through the cube. Specific locations within the cube can be set
in (f).
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2.3.1 MATLAB graphical interfaces

Although the program can read and process three-dimensional datasets, it lacks an in-

tuitive way to display data in more than two dimensions. Furthermore, it cannot directly

read the binary files generated by GPR systems. Two MATLAB interfaces, iViz3D and

iGPRead, were designed to address these limitations. The former affords a means to dis-

play and navigate through the inlines, crosslines, and depth slices of three-dimensional

GPR records. Users can also enhance the smoothness of the displayed data by applying a

linear interpolation. This requires setting a smoothing factor (ranging from 1 to 10) and

the direction along which the interpolation should be implemented. Since this program

was designed strictly for displaying purposes, a means of storing the records shown was

not implemented. Figure 2.1 shows the iViz3D graphical user interface (GUI).

The iGPRead interface was designed to convert data from the binary formats of major

GPR vendors (e.g. DZT, DT1, and SEGY) into those readable by IVGPR and MATLAB.

This GUI also allows users to implement some data editing. The editing operations avail-

able can trim edge traces, remove temporal gains, and modify the header information.

Figure 2.2 shows the iGPRead interface. Future releases of the program will replace these

interfaces with python based analogs. This, in turn, will eliminate the dependence on the

proprietary scripting language MATLAB.

12
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Figure 2.2: iGPRead GUI. (a) Allows for the modification of headers, (b) displays the
saved data, (c) flips the order of traces, (d) removes temporal gains applied during acqui-
sition, (e) clips data edges, (f) specifies the input and output formats.
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3. BASIC PROCESSING TECHNIQUES

3.1 Overview

In raw form, a radargram (or B-scan) represents a distorted image of the subsurface

typically contaminated by unwanted signals. Processing offers a way to improve the qual-

ity and interpretability of the raw data. When properly implemented, this increases the

signal-to-noise ratio, returns the data in a form that accurately represents the subsurface,

or a combination of both. The need for data processing is heavily influence by the goals

of the job, the nature of the raw data, and limitations in cost (Cassidy and Jol, 2009).

Figure 3.1 shows a typical processing flow for bistatic GPR surveys. The orange region

encloses a set of processes applicable at the acquisition site. In some cases this can be

sufficient to yield a sound (and even accurate) interpretation. The gray region includes

off-site processing adequate when a higher levels or data refinement is needed. The tech-

niques colored green and blue are recommended for the majority of projects, where the

blue techniques are linked to the specific survey types for which they apply.

Once the data is recorded, the next steps usually include removing bad traces, updat-

ing headers and background information, sorting files, and other steps that facilitate sub-

sequent processing and maintenance of the survey (Annan, 1999; Cassidy and Jol, 2009).

These fall under the category of data editing and tend to consume the most time in a pro-

cessing flow. Data editing is followed by the application of basic processing routines. In

most cases the list of basic processing routines includes dewow filtering, time-zero correc-

tion, time gains, as well as temporal and spatial filtering. Furthermore, they require little to

no knowledge of a site and can be applied to most data sets without introducing much bias.

Cassidy and Jol (2009) estimated that only about ten percent of GPR surveys need more

than basic processing to make accurate interpretations. This section describes the theory,
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Figure 3.1: Fundamental processing steps for a bistatic GPR surveys. The orange box
encloses a set of basic processing steps commonly applied at the site. These are usually
enough when detection of a target is the primary goal. The gray box encloses offsite steps,
which are typically applied in descending order.

and demonstrates successful applications, of the basic routines included in IVGPR.

3.2 Dewow

Wow is a nonlinear, non-stationary, low-frequency noise caused by inductive coupling

and/or signal saturation from shallow scatterers (Cassidy and Jol, 2009). The affected

traces can have a non-zero baseline amplitude (or DC bias) that slowly bows up or down

with time, as shown in figure 3.2. However, dewow typically refers to the removal of

low frequency noise, which may or may not conform with the characteristics defined by

15



Cassidy and Jol (2009). Classical dewow routines implement mean filters, median fil-

ters, and low-cut frequency filters. Gerlitz et al. (1993) compared these three approaches

and found that residual median filters (RMF) generated superior results. Contrary to this,

Schmelzbach et al. (2012) observed that low-cut frequency filters outperformed RMF for

their datasets. One must remember that the performance of dewow techniques is subject

to implementation bias and the characteristics of the data at hand. Therefore, an optimal

dewow tool may not exist. The dewow bundle in IVGPR, and the subject of this section,

contains the mean, median, and low-cut filtering techniques.
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Figure 3.2: Example of wow noise in GPR trace and effect of dewow filter.

An example of wow noise in a field record is shown in figure 3.3. This dataset was

first treated with a programmed gain to reveal structures masked by attenuation and lim-

itations in the instrument’s dynamic range. Unfortunately, a low frequency noise was

inadvertently amplified and a set of broad horizontal bands appeared throughout the radar-

gram. Figure 3.9b shows the output from IVGPR obtained by removing the wow noise

with a low-cut filter prior to implementing a programmed gain. The output image shows

no sign of the unwanted noise and, in addition, the resolution and interpretability of the
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image were effectively enhanced. Furthermore, a low-cut filtering dewow is straightfor-

ward to implement in IVGPR, requiring only a user defined filter kernel size and a cut-off

frequency.
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Figure 3.3: GPR field record showing broad horizontal bands caused by low frequency
wow noise. The banding became prominent after applying a temporal gain.(b) Demon-
strates the improvement obtained by applying a dewow filter to (a) prior to implementing
the temporal gain.

After extensive testing, attempts to remove the same noise using the RMF and mean

filter dewow proved futile. The amplitude spectrum computed by averaging the amplitude

spectra of every trace is shown in figure 3.4. The low- frequency horizontal banding was
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initially thought to be the result of relatively high amplitudes near 30 MHz. This was later

confirmed by applying a set of low-cut filters and noting that a cut-off frequency of 30

MHz failed to remove the banding while 35 MHz generated the desired result. The filtered

amplitude spectrum (black solid line) and the filter used are shown in figure 3.4. This noise

corresponded to frequencies higher than what RMF and mean filter dewow are intended to

effectively treat. Additionally, its frequency content was highly localized and required a

filter optimized for frequency separation. Median and mean filters are generally inadequate

for frequency filtering. This example, however, should not discourage the use of these two

routines. Not only are they simple to implement, with the only required parameter being a

temporal window size, but they remain a popular way to perform dewow filtering.
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Figure 3.4: Average amplitude spectrum of GPR record. The region shaded red shows the
portion of the spectrum removed by the filter. The filter used is also shown.
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3.3 Filtering

An unprocessed GPR record generally constitutes a mixture of the subsurface response

with other undesirable signals, e.g. ambient signals from electronic devices (Olhoeft,

2000) and inherent system noise (Rashed and Harbi, 2014). Filters offer ways to sep-

arate these signals and enhance (or suppress) features that would otherwise hinder the

interpretability of records. While there exists a virtually unlimited variety of filters with

varying levels of sophistication, one often finds that basic filtering routines are sufficient

for most tasks (Smith et al., 1997). There are many excellent literary works on discrete-

signal processing and digital filters where the interested reader can gain a robust under-

standing of filter design and implementation. The goal of this section is not to dwell on the

details and intricacies of discrete signal processing. Rather, we will focus on how filtering

is performed in IVGPR and observe some useful examples.

3.3.1 The windowed-sinc filter

One-dimensional frequency filtering in IVGPR utilizes the digital windowed-sinc filter

technique described by Smith et al. (1997). This procedure can implement low-pass, high-

pass, band-pass, and notch filters by convolving the corresponding temporal windowed-

sinc kernels with the signal. Filters applied in this manner belong to the class of Finite

Impulse Response (FIR) filters (Oppenheim et al., 1989; Smith et al., 1997). Figure 3.5

depicts a typical FIR filtering flow like the one in IVGPR. The first step is to create a

filter kernel in time (space) domain. To this end, the user specifies the size, type, and cut-

off frequencies. The i-th element of a temporal (spatial) windowed-sinc kernel (h) for a

low-pass filter with cutoff frequency fc is found using

h[i] =
sin (2πfc(i−M/2))

i−M/2

[
0.42− 0.5 cos

(
2πi

M

)
+ 0.08 cos

(
4πi

M

)]
, (3.1)
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Figure 3.5: Illustrates a typical frequency filtering flow (similar to the one used in IVGPR).

where M is some odd integer describing the size of the filter kernel. High-pass, band-pass

and notch filters can be created from low-pass filters using spectral inversion and spectral

reversal (Smith et al., 1997).

The remaining steps describe a linear convolution between the filter kernel and the

signal. Note that this is carried out as a multiplication in Fourier-domain to take ad-

vantage of the high computational performance of fast Fourier transforms (FFT). Since

FFT based convolution is inherently circular, the filter kernel and data must be padded

in order to avoid a wraparound of nonzero amplitudes. Namely, if a time series is of

size N and the filter kernels is of size M , then the two should be padded to a size

equal or bigger than N + M − 1. If the filter is zero-phase, the desired filtered out-

put will be contained within the first N elements of the convolved response. For the

phase of the filter to be zero, one must ensure that the elements
{

1, 2, . . . , M−1
2
− 1
}

and
{

2N+M+1
2

, 2N+M+1
2

+ 1, . . . , N +M − 1
}

in the padded kernel correspond to the el-

ements
{
M−1

2
+ 1, M−1

2
+ 2, . . . ,M

}
and

{
1, 2, . . . , M−1

2

}
in the original kernel respec-

tively.

Users should have a comfortable level of familiarity with the properties of windowed-

sinc filters prior to implementing them. In particularly, they should understand how the
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width of the transition band relates to the size of the kernel, how the cutoff frequency is

defined, and the symmetrical aspects of the frequency response. The transition band is

the region of the amplitude spectrum that separates the pass-band (or region of maximum

gain) from the stop-band (or region of zero gain). The sharpness of the transition band,

i.e. its width, is inversely proportional to the size of the filter kernel. Figure 3.6 shows the

amplitude spectrum of three bandpass filters with identical cutoff frequencies but different

kernel sizes. Note that, as the number of elements increases, the transition from a value

of one to zero (and vice versa) occurs within a narrower frequency range. Also shown in

figure 3.6 are two vertical lines placed at the cutoff frequencies, i.e. 300 MHz and 1000

MHz. These intersect the amplitude response of the filter at a value of 0.5, which differs

from the conventional definition of 0.707 (or −3 dB). Finally, noticed that the transition

band appears to have odd symmetry about the half maximum point. This is in fact the case

and it explains why we can use a low-pass filter to derive the other filter types.

3.3.2 Basic smoothing filters

In some cases we may want to remove features in the data that, when analyzed in the

Fourier domain, have an unconfined frequency response. A filter optimized to separate

bands of frequencies is generally ineffective for such tasks (Smith et al., 1997). Consider,

in particular, the treatment of spikes in a record. These features are highly localized in

physical space and, in turn, have energies that spans a broad spectrum and commonly

overlap with those of an otherwise noise-free signal. Therefore, it is complicated, if not

unfeasible, to effectively implement a band-cut filter to treat this type of noise. Rather,

we may find that a median filter effectively eliminates spikes without adversely influenc-

ing the character of the data. Another example is that of random noise, which is opti-

mally treated by basic mean and gaussian filters. The median, mean, and gaussian filters

constitute the set of basic smoothing filters in IVGPR. For the first two the user only
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Figure 3.6: Amplitude response of three bandpass windowed-sinc filter with identical cut-
off frequencies (i.e. fhp = 300 MHz and flp = 1000 MHz) but varying kernel sizes. This
filters were created using the windowed-sinc routine in IVGPR.

needs to define the size of a window (or kernel), while for gaussian filters one must also

define the desired standard deviation. These filters can also be applied along two dimen-

sions. The median and windowed-sinc filters may be applied using a separable scheme, i.e.

two one-dimensional filters oriented along different dimension, or by a two-dimensional

moving window. Figure 3.7 shows the results of a mean filter applied using a moving

window. Since the means and gaussian smoothing filters have well-defined equations in

two-dimensional Cartesian coordinates, they can be applied using a two-dimensional FFT-

based convolution. The convolution of these filters with an image is commonly referred to

as box and gaussian blur in image processing.
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Figure 3.7: Shows the product (b) obtained by smoothing a raw radargram (a) using a
two-dimensional mean filter with a 5 × 5 window. (b) Shows that this kernel achieved a
fair trade-off between resolution and smoothing.

3.4 Time-zero correction

The time value representing the arrival of the earliest reflected wavelet is known as

the time-zero point. This position can change because of variations in antenna elevations,

cable length differences, electronic instabilities, and thermal drift (Cassidy and Jol, 2009).

If left untreated, time-zero shifts can deteriorate lateral coherency and cause inaccurate

depth estimations. Thus, it is necessary to adjust the zero time of all traces to a consistent

and stable location along the earliest reflected wavelet. As noted by Yelf (2004), a global

consensus for the exact location of the time-zero point on a wavelet does not exists. The

choice usually depends on the options available in the algorithms of GPR manufacturers

and the preference of the users. Figure 3.8 shows four typical time-zero pick locations.

Yelf (2004) studied the stability of these picks and reported that the first negative peak

(A) and the first crossover point (B) provide good stability for geological applications

that use antennas with frequencies ranging from 25 to 500 MHz. In general, however,

the stability of a time-zero algorithms largely depends on the quality of the data and the

robustness of the method used. In IVGPR workers can apply two contrasting approaches

to automatically adjust the zero time. The main difference between these techniques lies
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Figure 3.8: Four conventional locations for picking the time-zero point along the first
reflected wavelet. Point A marks the first negative peak. Point B indicates the S-crossover.
Point C indicates the first maximum. Point D corresponds to the Z-crossover.

in their respective levels of sophistication. This section will focus on the simples option,

which relies on a peak-finding scheme to predict the time-zero point along each trace.

The time-zero correction based on peak-finding begins by searching for the first sig-

nificant peak along a trace. It does this by first locating all peaks and determining the

maximum peak amplitude. Recall that the i-th element along a trace is a peak if its ampli-

tude, ai, satisfies the relation ai−1 < ai > ai+1. This condition cannot be satisfied at the

boundaries, which may have amplitudes surpassing the highest peak. Next, the algorithm

determines the minimum significant amplitude from a user-defined percentage, p, such

that all acceptable peak amplitudes exist in the range [amax− amax · p, amax]. The following

steps involve searching for the first occurrence of a significant amplitude, trimming the

top of the record to reflect that the peak found is the zero time value, and padding (with a

smooth transition) the end of the trace in order to have a consistent temporal duration for

each trace. Troughs can be detected effortlessly after multiplying the input by −1. Fig-

ure 3.9 shows a B-scan successfully treated by the basic time-zero correction algorithm in

IVGPR.

Zero-crossover points can be found in a similar manner. In fact, a relevant zero-

crossover point must lie adjacent to a significant peak (or trough). The neighboring ex-

24



TW
T 

[n
s]

Distance along inline [m]

(a)
TW

T 
[n

s]

Distance along inline [m]

Tapered and padded ends

Flat air-ground interface

(b)

Figure 3.9: Shows a radargram before (a) and after (b) time-zero correction. The preferred
location was set to be the first significant peak.

trema depends on the type of crossover point, i.e. S-crossover and Z-crossover. For ex-

ample, consider the case where the user selects the S-crossover option for the time-zero

points. The algorithm would then look for the first significant trough, ai. Next, it would

search for the first amplitude, aj , that satisfies the relations aj−1 < 0 and aj ≥ 0 (where

j > i). The crossover point would then be identified as the j-th element along the time

series. Notice that the second condition for a S-crossover point admits values greater than

zero. That is because a data point of zero amplitude prior to crossing into positive values

might not exist.

The algorithms described here is highly sensitive to the character and quality of the

data. For example, high levels of saturation in a trace can make it difficult to clearly define

the amplitude relation and location of extrema. Furthermore, zero-crossover points might

be inconsistent when there are sharp high amplitude fluctuations in the early parts of the
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data. Both complications described can be ameliorated with additional processing steps.

Therefore, workers should be familiar with the properties of their records and implement

any necessary processing prior to implementing time-zero correction.

3.5 Time gains

Amplitudes in a raw A-scan generally show a decrease with time due to geometrical

spreading and attenuation. As a result, late arrivals become difficult to discern and the

weak amplitudes can be mistakenly linked to subtle changes in the electromagnetic prop-

erties of the medium. The latter can give the illusion that the deeper materials are vastly

different from those in shallow sections. Additionally, the dynamic range of the raw data,

which is influenced by amplitude variations, can exceed that of the displaying method in

use. Gain functions attempt to compensate for time-dependent amplitude decays. Fig-

ure 3.10 depicts time gains as the correction to amplitude attenuation along the trace. Note

that the attenuated trace obscures the fact that absolute reflection strength remains con-

stant at all interfaces. The most common time gains in GPR applications are automatic

gain control (AGC), spherical and exponential compensation (SEC), constant, and user

defined gains (Cassidy and Jol, 2009). In practice, time gains work by generating a set of

scaling factors that, when multiplied with the signal, equalize the average absolute ampli-

tude at all time levels. There is a plethora of literary works focusing on gaining techniques,

even within the context of GPR. Cassidy and Jol (2009) concisely describes the benefits

and shortcomings of popular gaining techniques for GPR applications. This section fo-

cuses on the gaining algorithms included in IVGPR and gives examples to demonstrate

their effectiveness.

3.5.1 Automatic gain control

An automatic gain control (AGC) equalizes the strength of signals across a trace for

display purposes (Jol and Bristow, 2003). Unlike the exponential and spherical compensa-
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Figure 3.10: Shows the convolution of a finite duration pulse (left) with a reflectivity
series (red). The resulting time series was attenuated using a linear decay down to 10%
of the original amplitude. Without a gain, an interpreter could mistakenly deduce that the
contrast in material properties varies with depth.

tion gains, AGC-type gains lack a direct connection to the physical phenomena that cause

attenuation. These algorithms simply reduce the dynamic range of the data such that it can

match, or be contained in, that of the displaying method. Their outputs show degraded or

absent contrast in signal strength. This can inhibit the ability to learn about the proper-

ties of the medium, which correlate to the relative amplitude information (van der Kruk,

2015). Consequently, true amplitude processing workflows tend to avoid the use of AGC.

The AGC-family performs exceptionally well in applications where the main objective is

to assess the lateral continuity of an event, such as delineating geologic horizons (Annan,

1999). Workers with limited familiarity to this family of gains should only use them for

visualization at the end of a workflow.

The AGC-type gains in IVGPR consist of an instantaneous, root mean square (rms),

and a robust AGC. The first two methods follow the popular development presented in
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Yilmaz (2001). Some attractive features of the rms and instantaneous amplitude AGC

include the need for only three basic parameters and the straight forward encoding. The

gaining coefficient at the center of a time gate for all three techniques is of the form

G =
R

A
, (3.2)

where R is a reference rms level and A is an averaging method for the values inside the

gate. In the case of the instantaneous AGC, the averaging is performed using the absolute

value of the amplitudes contained within a gate such that

Ainst =
1

N

N∑

i=1

|xi|, (3.3)

where xi represents the i-th amplitude within the time gate. The rms AGC algorithm uses

the quadratic (or rms) average, which result in

Arms =

√√√√ 1

N

N∑

i=1

x2
i . (3.4)

Another important distinction between the rms and instantaneous AGC, as imple-

mented in IVGPR, relates to how the gaining coefficients are computed for all time sam-

ples in a trace. In the case of the rms AGC, an incomplete set of coefficients is computed

only at the center of non-overlapping time gates. The remaining coefficients are found

after interpolating among the computed values (and extrapolating the edges). By contrast,

the instantaneous AGC uses overlapping time gates to define the gaining coefficient at all

time samples, edge samples excepted. Figure 3.11 illustrates how the rms and instanta-

neous AGC algorithms determining the gain coefficients for all samples in a trace. For

the time gate shown, the rms AGC computes only three coefficients from the data while
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deriving the rest through interpolation and extrapolation. The instantaneous AGC extracts

five time more coefficients directly from the data. While the latter might appear more at-

tractive, adjusting each value individually can boost the deterioration of relative amplitude

information.

Instantaneous AGC

RMS AGC

Original time series

G
ai

n

Temporal samples

Figure 3.11: Scheme used to compute the gaining coefficients for the instantaneous and
rms AGC. The original time series is depicted as a series of points sectioned into three
parts (green, blue, and purple). The rms AGC algorithm computes the coefficients at the
center of each time gate (box) without overlap. The instantaneous AGC computes the gain
at the center of overlapping windows, which are shown in a stair case pattern for clarity.
The yellow section indicates the region where values are extrapolated in both techniques.

Robust AGC is a modification to the instantaneous AGC that replaces theAinst with the

alpha-trimmed mean of the absolute values within the gate.Thus, we have that

Arob =
1

N − 2[αN ]

N−[αN ]∑

i=1+[αN ]

|xi|, (3.5)

where the square brackets denote the greater integer part and α determines what percentage

of the samples are trimmed. The value of α should satisfy 0 ≤ α < 0.5 (Bednar and Watt,

1984), where choosing α = 0 results in Ainst. This algorithm allows the preservation of

amplitude extremes, which produces gained traces that retain more of the true character
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of the input. Thus, the robust AGC computes a data-derived gain function that better

preserved relative amplitude information. Figure 3.12 shows sample outputs from all three

automatic gain control techniques included in IVGPR identical time gates. This record

used was acquired over the recreation yard in Alcatraz’s main prison. We see that, while

all outputs are very similar, instantaneous AGC and robust AGS shows the most structural

features. As a word of caution, a small time gate in all three algorithms can greatly amplify

small amplitudes related to unwanted signal and obscure events of importance.

3.5.2 Spherical and exponential compensation

In order for a time gain to achieve an ideal restoration of the “true” amplitudes it must

account for all physical processes distorting the desired amplitude information. Spherical

and exponential compensation (SEC) gains follow this principal by reversing the effect

of two theoretical models of attenuation, i.e. spherical divergence and exponential de-

cay. The first effect relates to the amplitude decay of a spherically propagating wavefront,

which is proportional to 1/r (Yilmaz, 2001). In addition, the wavefront can experience an

exponential decay in amplitude due to material losses. The SEC time gain in IVGPR uses

the equation proposed by Sandmeier (2002):

G(t) =
(

1 +
α

W
t
)

exp(βvt), (3.6)

where β is the exponential damping, v is the velocity model of the propagation medium,

W is the pulse width, and α represents the linear gain. Equation 3.6 is most effective when

the velocity distribution and lossy properties of the subsurface can be accurately inferred,

which is rarely the case. To make matters worst, electromagnetic wavefronts do not gen-

erally propagate spherically (isotropically) in geologic materials. Still, SEC gains offer

an alternative to AGC that abides by a sensible physical model of attenuation and better

preserve relative amplitude information. Figure 3.13 shows an example of the SEC rou-
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Figure 3.12: (a) Shows the input B-scan in raw form. Reflectors are clearly discernible
only within 5 ns from the ground surface. (b) shows the output from the rms AGC rou-
tine. This greatly enhanced the number of visible features. A similar effect is obtained
after instantaneous AGC (c) and robust AGC (d). The main differences between the tree
techniques is the effect on relative lateral amplitudes and structural resolution.
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tine in IVGPR applied to a field record. The relative lateral resolution, judging by the top

reflector, appears to be mostly unaffected. A red arrow points some features that emerged

after the correction. The radargram appears to have gained as much as 10 ns of resolution,

but many features remain obscured. Even achieving this modest amount of improvement

proved to be a laborious task.
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Figure 3.13: Illustrates how the amplitude decay in a raw scan (a) can be ameliorated by
applying the SEC algorithm. (b) The B-scan after SEC. A red arrow indicates where a
deep feature of interest became apparent after the gain was applied.

3.5.3 Programmed gains

The third type of gain in IVGPR belongs to the family of programmed gains, where a

data driven technique is used to automatically estimate a global gain curve. Programmed

gains (or programmed gained control) are notoriously simple to implement, require few

user defined parameters, and do not generally suffer from a severe deterioration in rel-

ative amplitudes–as it is the case with AGC gains (Yilmaz, 2001). The implementation

of these gains can be broken down into three basic steps: (1) estimate the amplitude de-

cay; (2) invert, scale, and threshold the amplitude decay obtained from the first step in

order to obtain a global gain function; and (3) apply the resulting gain function to all of
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the traces using a point-wise multiplication. A workflow for this algorithm is shown in

figure 3.17a. A worker applying a programmed gain only needs to specify parameters re-

lated to the method of estimating the amplitude decay curve. For example, in IVGPR an

amplitude decay curve is first estimated for each trace using the envelop of the absolute

amplitudes. This procedure is free of user-defined parameters, but the maximum gain level

allowed can be threshold. Next, the algorithm combines the decay curves using a simple

arithmetic average at each time level. The final step involves smoothing the decay curve,

which requires another user-defined parameter. Workers can choose to apply a mean filter,

median filter, or to use the original decay curve. The first two options require the specifi-

cation of a window size, which adds an extra parameter to the implementation. However,

every permissible choice of window size results in an acceptable gained section. Note that

the lowest allowable size (i.e. one sample) outputs a decay curve identical to the input,

while at the upper limit (i.e. all of the samples in the trace) the decay curve is simply

scaled down by a constant without losing its character. Thus, program gains reduce the

amount of user bias in time gaining by necessitating only three basic parameters (at most)

that do not require any a priori knowledge of the subsurface materials. The preservation of

signal character and ease of use make programmed gains the preferred choice in IVGPR.

Figure 3.14c shows a satisfactory treatment of a raw trace (figure 3.14b) by this routine.

Note that the amount of visible features is comparable to those seen after AGC gains but

lateral amplitude information was better preserved.

3.6 Desaturation

The amplitude of incoming signals sometimes exceeds the dynamic range of a receiver

system, a phenomenon known as signal saturation (or clipping). Figure 3.15 illustrates

how clipping manifests along a GPR trace. Highlighted sections show where the dynamic

range “clipped” the true amplitudes. This also affects the smoothness and localizes the
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Figure 3.14: (a) Workflow for programmed gains. (b) Raw B-scan affected by attenuation.
(c) The B-scan after being processed by a programmed gain without smoothing.

amplitude response in time. Signal saturation is common in GPR surveys and, in severe

cases, can render a record unusable for the intended goals. It commonly results from

the improper use of gains during acquisition. Perhaps the most serious consequences of

saturation relates to the difficulties it creates during processing. Not only are temporal

amplitude variations of affected traces distorted, but their frequency content becomes ar-

tificially enriched with high frequency harmonics. The latter can hamper the performance

of frequency-domain routines like spectral balancing and FT-based migrations. Compli-

cations also arise in time-domain routines such as time-zero correction and background

matrix subtraction. To illustrate an example, consider the application of trace normal-
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ization. In some situations it is useful to normalize each trace to its absolute maximum

amplitude in order to correct for variations in antenna-ground coupling (Cassidy and Jol,

2009). However, if consecutive traces are clipped, they will have identical normalization

coefficients (i.e. the limit of the dynamic range) that do not reflect their true absolute

maximum amplitude.
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Figure 3.15: Shows the manifestation of signal saturation along a GPR trace. The dashed
red lines indicate the limits of the dynamic range for the receiver system. Clipped section
appear as horizontal plateaus collinear with the limits of the dynamic range.

Clipping is not particular to GPR records, and many ways of ameliorating its effect

have been proposed across multiple industries. Nonetheless, an exact reconstruction of af-

fected signals is unfeasible. The two techniques included in IVGPR use a cubic spline or

a least-square polynomial interpolation, respectively, to interpolate across clipped regions.

The former is more common in commercial softwares (Cassidy and Jol, 2009) possibly due

to its unconditional smoothness and stability. By contrast, standard polynomial interpola-

tion is subject to instabilities and can be heavily influence by the quality and abundance of

points surrounding the damaged sections. In particular, poor data quality can lead to inco-

herent reconstructions while the number of available points limits the order and robustness

of the polynomial fitting.
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The performance of declipping in IVGPR was assessed with the help of a manually

clipped trace. A section with no obvious symmetry was judicially picked to generalized

the results. Figure 3.16 shows the outcome of this experiment. A set of vertical dotted

lines enclose the clipped amplitudes. The edge samples of clipped sections generally do

not correspond to real values, since their locations are determined by the sampling rate

and their amplitudes by the dynamic range. As a result, the sets of “neighboring points”

used contain amplitudes leading to but not including those at the edges. As expected,

the performance of cubic spline was independent of the number of datapoints used and

returned the same correction each time. The same behavior was not observed for a fourth-,

fifth-, and sixth-order polynomial interpolation. While the lowest percent error along the

clipped amplitudes was achieved by the sixth-order polynomial using nine neighboring

points, increasing the number of points to 13 reduced the accuracy of this fit. In fact, the

accuracy of the polynomial fits seemed to converge as the number of points used increased.

The steps following interpolation are identical for both routines. They intel stitching

the cap to the nearest neighbors and smoothing the connections. These is repeated until

every trace is free of clipping. Both methods require the user to specify the minimum

tolerable size of clipped regions, the number of neighboring points to use, the size of the

smoothing window, and the number of points around the stitching to smooth. Additionally,

least-square polynomial interpolation requires the specification of an order. Figure 3.17

shows a satisfactory application of declipping using a fourth-order polynomial interpola-

tion. The stitching was smoothed using a three point window applied to the three sur-

rounding elements. Notice that a reasonable enhancement lateral amplitude variation was

achieved by this technique. Better results might be observed if declipping is followed by

a proper smoothing scheme such as the structure-oriented smoothing of Hale (2009).
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Figure 3.16: Interpolation results using a fourth-, fifth-, and sixth- order polynomial in-
terpolation along with a cubic spline to estimate the amplitudes along a clipped section.
Each interpolation was compared to the actual amplitudes using a percent error analysis.
The number of neighboring points used were 5 (a and b), 9 (c and d), and 13 (e and f).
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Figure 3.17: (a) Radargram showing extensive clipping. (b) Output from IVGPR’s declip-
ping routine with a fourth-order polynomial interpolation.

3.7 Background noise suppression

Background noise is an unwanted coherent signal generally introduce by properties in-

herent to the GPR equipment. For instance, when a GPR system sends the intended pulse,

leftover currents continue to reverberate along the antenna’s length sending secondary

pulses (Rashed and Harbi, 2014). Also, the mismatch between the impedance of the an-

tenna and that of the ground causes a backscattering of energy that can result in antenna

ringing and, thus, horizontal striping across the B-scans. Common methods for back-

ground noise suppression (BNS) rely on spatial averaging filters and low-cut wavenumber

filters (Annan, 1999). This work provides three instances of the former, which vary only in

the techniques used to estimate the background noise matrix. The most elemental option,

and the topic of this section, removes background noise using a spatial rectangular filter.
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This approach is sometimes called mean trace subtraction (MTS), and it is the preferred

option for most GPR surveyors (Rashed and Harbi, 2014). While appearing primitive,

MTS typically produces satisfactory results at a minimal cost.

Since the MTS routine implements an unweighted averaging to estimate the back-

ground noise matrix, it does not discriminate between signal and noise. Nonetheless, MTS

often yields satisfactory results while requiring only the specification of a one-dimensional

window length. Figure 3.18 serves as evidence to the effectiveness of this routine. The

survey line cut across a freshly filled hole (with dimensions of 0.9 m×0.9 m×0.6 m) dug

at about three meters from the left edge. The hole was filled with a random mixture of the

excavated sediments placed over an aluminum plate, which measured 0.73 m× 0.73 m×

0.013 m. A red dashed-square delineates the inferred location of the hole in the B-scan.

The horizon separating a dry clean-sand (about 0.20 m thick) from a clay layer of unknown

thickness is attributed to a strong event near the five nanosecond mark, see figure 3.18a.

Note that this event appears to only suffer from a small deterioration in continuity near

the hole. Additionally, seemingly coherent layering can be observed occurring within the

inferred location of the hole in the data, i.e. the events from the 3 ns to the bottom 12 ns

mark i. As a result, an average surveyor could, understandably, misinterpret the untreated

data. The sand-clay boundary in figure 3.18b exhibits clear discontinuities at the proper

locations. One can also appreciate two flat events, corresponding to the top and base of

the hole, capping a section that shows no obvious layering. This is consistent with the re-

sponse one would predict. The blue dotted-square encloses several horizons that show an

enhancement in continuity after MTS. In summary, this technique can effectively remove

background noise and improve the interpretability of the data at little cost to the user. The

author suggest the use of MTS prior to any alternative techniques.
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Figure 3.18: Shows a field record before (a) and after (b) it was treated by the ATS al-
gorithm. The background noise matrix was estimated using a windows of 101 elements.
A red square encloses the inferred space-time confinement of a hole filled moments be-
fore acquiring the data. The blue square surrounds events that show enhanced continuity
applying the ATS algorithm.
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4. ADVANCED PROCESSING TECHNIQUES

4.1 Overview

Advance processing routines can prove useful in complex georadar studies and when

the state of a dataset does not permit a standard visual interpretation after basic processing.

However, many routines in this class are notorious for their sensitivity to operator bias and

often generate outputs that differ greatly from the input data (Annan, 1999). These are

some reasons why numerous surveyors consider them to be unnecessary or even destruc-

tive. In my experience, these techniques have proven effective in enhancing the quality of

data and extracting otherwise “hidden” information. The algorithms of this type included

in IVGPR can be subdivided into image enhancement, attribute analysis, and alternative

methods. We will explore these categories in more detail below. Since the particular tech-

niques span several fields and vary greatly in difficulty, it would prove daunting to include

detailed theoretical accounts of each. Instead, only those techniques expected to be of

most value in a wider range of GPR applications were given extensive descriptions.

4.2 Image enhancement

Image enhancement in IVGPR focuses on suppressing noise and amending aliasing

through the use of smoothing and interpolation techniques, respectively. Members of this

module lack an explicit connection with the physical and practical mechanisms that pro-

duce the unwanted characteristics in GPR data that they aim to enhance. As a result, they

might not be suited for every application. Additionally, these techniques are not meant to

serve as ubiquitous replacements to careful data collection and survey planning. In the gen-

eral case where the accuracy and reliability of an interpretation is central to a GPR study,

surveyors should resort to image enhancement techniques only after exhausting the option

of a more meticulous reacquisition of the data. We start by examining the adaptation of a
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basic interpolation routine intended for cases where a refinement of the spatial sampling is

necessary. This is followed by a comprehensive description of advanced multidimensional

filtering techniques in IVGPR that are useful for smoothing and noise suppression.

4.2.1 Interpolating GPR data

Spatial aliasing in GPR data may result from unavoidable limitations in the time and

cost of an acquisition. Interpolation offers a viable solution in such cases. This problem is

common in seismic surveying and, in response, many sophisticated seismic interpolation

algorithms have been proposed throughout the years (Liu and Fomel, 2011). The similar-

ities between georadar and seismic reflection imaging allow many of these techniques to

be effectively implemented in GPR studies. The interpolating options in IVGPR are lim-

ited to three rudimentary techniques developed after Press et al. (1992), and may not be

well-suited for GPR data. These are a bilinear interpolation, a bicubic interpolation, and

a separable application of two one-dimensional polynomial interpolations. No convinc-

ing evidence in support of these methods for treating GPR data was found throughout the

literature and, therefore, users should weight their influence lightly during interpretation.

Figure 4.1 shows the result of a bilinear interpolation along a depth slice at the maximum

aggressiveness (or refinement) currently allowed in IVGPR. Notice how the character of

the raw slice, 4.1a, is preserved, i.e. no detrimental artifacts or distortions are readily ob-

vious. Refinement of this kind might be necessary when trying to apply novel algorithms

with stringent sampling requirements to old datasets that fail to satisfy them. An example

of such a routine is vector migration, which yields unaliased results for high frequency

antennas only when a sufficiently fine sampling is used. Better suited interpolation al-

gorithms (Feng et al., 2007; Martins et al., 2015) are currently being developed for this

package and should be available in the near future.
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(a) (b)

Figure 4.1: Shows a bilinear interpolation of a raw GPR slice (a) originally composed of
29 lines. The interpolated slice (b) contains 290 lines. No obvious evidence of damaging
artifacts can be observed for this time slice.

4.2.2 Advanced filtering

Advanced filtering, as used in this dissertation, refers to any form of filtering deviating

from the conventional approaches described in section 3.3. In particular, IVGPR offers an

elliptical Butterworth filter, an elliptical Tukey window function, and a Wiener denoising

procedure. The first two can be derived from their one-dimensional analogues by carrying

out a trivial coordinate transformation. To verify this, let us consider the one-dimensional

Tukey window in wavenumber domain as given by:

W (k) =





1 |k| < kc

cos2

(
π [|k| − kc]

2µ

)
kc ≤ |k| < kc + µ

0 kc + µ ≤ |k|

, (4.1)
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where kc is the spatial cutoff frequency and µ controls the width of the transition band.

In order to create a non-separable anisotropic point spread function from equation 4.1, we

may star by considering the wavenumber k to be the polar radius k(kx, ky), that is

k = k(kx, ky) =
√
k2
x + k2

y. (4.2)

Next, rather than representing the cutoff frequency with a fix value, i.e. a circle in polar co-

ordinates, we may define the cuttoff as the trace of an ellipses centered at the origin. Recall

that the distance from the origin to the perimeter of an ellipses is, in general, dependent on

direction. This means that kc → kc(θ) such that

kc = kc(θ) =
kakb√

k2
a sin2 θ + k2

b cos2 θ

=
√
k2
cx + k2

cy ,

(4.3)

where ka and kb denote the horizontal and vertical semi-axes respectively. The rectangular

components of kc(θ) are indicated by kcx and kcy . Figure 4.2 depicts the configuration of

the cutoff frequency described by equations 4.3. This, in turn, means that the components

of the cutoff frequency satisfy the equation of an ellipse in k–space, i.e.

k2
cx

k2
a

+
k2
cy

k2
b

= 1. (4.4)

After some algebra, we can arrive at the expression

kc = ka

√
k2
x + k2

y

k2
x + k2

y/ε
(4.5)

where ε = ka/kb characterizes the anisotropy of the filter (Bernstein et al., 2004). We then

arrive at the desired equation, not shown here, by substituting 4.2 and 4.5 into 4.1.
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Figure 4.2: Extending the definition of cutoff frequency kc as the perimeter of an ellipse.

A similar set of steps would allow us to derive the elliptical Butterworth transform

function from its one-dimensional form, which would lead us to

H(kx, ky) =
G0

1 +

[(
kx
kcx

)2

+

(
ky
kcy

)2
]n . (4.6)

Here H(kx, ky) is the amplitude response, n is the number of poles, and G0 is the DC gain

of the filter. A plot of the elliptical Butterworth transport function and elliptical Tukey

window function is shown in figure 4.3. In this case the cutoff frequency was chosen to be

the same in both direction, i.e. ε = 1, producing radial non-separable filters. These filters

may be designed to be highly directional, which could prove useful in treating coherent

noise having some preferred orientation.

The third, and final, advanced filtering procedure implements an adaptive Wiener fil-

ter to reduce noise (Jin et al., 2003). For a brief account of the pertinent mathematical

formalism, let us first denote the signal encoded in a GPR image at location (i, j) as:

Rij = rij + nij, (4.7)
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Figure 4.3: Two-dimensional Butterworth transfer function (a) and a two-dimensional
Tukey window (b). The same cutoff frequency was chosen along each axial direction
resulting in the isotropic response shown.

where rij represents the noise free component and nij is the noise. The estimate of rij

obtained by the Wiener filter is

r̂ij = µij +
σ2
ij

σ2
ij + γ2

ij

(Rij − µij) , (4.8)

for which

µij =
1

NM

∑

k,l∈η

Rkl (4.9)

is the mean and

σ2
ij =

1

NM

∑

k,l∈η

R2
kl − µ2

ij (4.10)

is the variance computed in the N ×M neighborhood of (i, j) denoted by η. If the noice

variance at location (i, j), i.e. γ2
ij , is not entered manually, then the algorithm estimates a

homogenous noise variance by averaging the value of σ2
ij obtained at each location. In my

experience, this routine has produced satisfactory reductions in noise without adversely
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influencing other aspects of the image. Note that, unlike the frequency domain filters de-

scribed above, the Wiener filter operates in object (or physical) space. It also produces an

image processed by a two-dimensional moving average and a variance attribute as byprod-

ucts. Figure 4.4 shows a result from this procedure using an 11 × 11 window without a

manual estimation of the noise variance γ2
ij . One can easily see that the filtered image

shows an improved signal-to-noise ratio without serious losses in spatial resolution.

(a)

(b)

Figure 4.4: Raw radagram (a) treated by the Wiener filter denoising procedure in IVGPR
using an 11 × 11 window. Two boxes are use to highlight how this filter can improve
signal-to-noise without deteriorating the resolution of the image. A smaller window size
may be used to retain more detail.
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4.3 Attribute analysis

Attribute analysis refers to the extraction and examination of data-derived quantities

ideally related to the structural and compositional characteristics of the subsurface. The

aim is to assist the interpreter by bringing awareness to supplementary information en-

coded in the data that may remain undetected otherwise (Taner et al., 1979). Attributes

can be categorized based on their dimensionality (i.e. one-, two-, or three-dimensions)

as well as the domain in which they operate, e.g. physical space, complex space, and

Fourier domain. The package currently offers twelve attributes; five are single-trace (or

one-dimensional) and six are two-dimensional. Some are used in support of processing

routines and have proper introductions elsewhere in this work. Here we begin by consid-

ering a set of textural attributes that, even though are seldom used in GPR studies, have

recently shown promising results (Zhao et al., 2016). Next we will look at some tech-

niques that may be useful for structural assessment and quality control in the early stages

of a project. The final part of this section will focus on complex trace analysis, which has

formed part of seismic prospecting for many decades.

4.3.1 Textural attributes

Textural evaluation has gained increasing approval in seismic stratigraphical studies as

a viable tool for identifying structural fabrics (Gao, 2011). In spite of this, adaptations for

georadar studies remain mostly unexplored throughout the literature (Zhao et al., 2016).

This work offers further evidence on the effectiveness of textural attributes for GPR appli-

cations. The scheme I constructed quantifies four textures (i.e. uniformity, contrast, homo-

geneity, and entropy) utilizing the gray level co-occurrence matrix (GLCM). As shown in

figure 4.5, the algorithm begins by creating a sub-image of size M ×M centered at pixel

(i, j), where M is some odd integer such that M ≥ 3. The sub-image is subsequently

quantized into n gray levels and, in turn, a normalized omnidirectional GLCM is found.
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Figure 4.5 illustrates how the 0–degrees, P 0◦ , GLCM is created. It involves identifying all

of the pixels with an equally valued neighbor to the right. Note also that the resulting P 0◦

matrix is of size n× n, which is a property of all gray level co-occurrence matrices. Fur-

thermore, it is easy to see that P 180◦ =
(
P 0◦
)T . The normalized omnidirectional GLCM,

Co, is found by summing the matrices corresponding to all relevant directions (i.e. 0◦, 45◦,

90◦, 135◦, 180◦, 225◦, 270◦, and 315◦) and normalizing the sum. Textural attributes are

then computed from Co. Even though this process only requires two user-defined param-

eters (i.e. M and n), the overall computational cost is highly dependent on their values. A

good rule of thumb is to start the search for the optimal parametrization with small, and

inexpensive, values.

Select M by M sub-image 
centered at pixel (i, j)

Quantize image into n 
gray levels

Determine GLCM from 
quantized image

1

2

3

4

Compute textures

P 0�

M

M

Figure 4.5: Approach used to compute textural attributes. A moving window of size M
by M is centered at each pixel of an image and the resulting sub-images are quantized to
a prescribed gray level. The figures on the right show a sub-image quantized to 4 gray
levels. Next, a GLCM is computed for every direction. The images on the left show how
the 0◦ GLCM is derived. The resulting matrices are summed and the sum is normalized to
produce Co. Textural attributes can then be easily computed from Co.
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4.3.1.1 Uniformity, contrast, homogeneity, and entropy

As implied by the name, uniformity (or energy) measures the extent to which an image

is uniform. It reaches its maximum value when the image is constant, which corresponds

to a Co matrix with only one nonzero value. Therefore uniformity is also reflected by the

sparsity of the GLCM. Areas of high geological complexity or low signal-to-noise may be

detected by this attribute. The expression for uniformity at the (i, j)–pixel is

∑

i

∑

j

(
Co
ij

)2
, (4.11)

which produces values in the range [0, 1].

Contrast characterizes the disparities in intensity between a pixel and its neighbors

at each location along an image. The contrast attribute, contrary to uniformity, shows a

minimum value of zero for unchanging amplitudes. Results from uniformity and contrast

should be complementary in certain regions of an image and, therefore, may be used in

combination to reinforce an observation. This attribute is found using

∑

i

∑

j

(i− j)2Co
ij. (4.12)

The spatial compactness of the distribution represented in Co is calculated by homo-

geneity. A null value indicates a uniform distribution while unity symbolizes a diagonal

Co. One may compute homogeneity from the expression

∑

i

∑

j

Co
ij

1 + |i− j| . (4.13)

Entropy provides a statistical estimate of randomness in a sub-image. At its maximum,

one expects the co-occurrence matrix to contain elements that are all equal. This corre-
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sponds to an equal probability of finding all possible amplitude combinations along the

relevant directions. Entropy is found using the classical formula:

−
∑

i

∑

j

Co
ij logCo

ij. (4.14)

Figure 4.6 shows the four textural attributes overlaying the georadar used to extract

them. The computation was carried out using a window size of 51 elements and 16 gray

levels. The data is part of a study conducted by Zaremba et al. (2016) and can be freely

obtained from the USGS website. Some features of interest include several vertical strips

at late arrivals between the 9.1 and 13.6 meter marks (indicated by two red arrows) as well

as some areas of high geological complexity highlighted by the measurements. Notice

that all four attributes seem to indicate a set of characteristics for the vertical strips that

agree with one another. For instance, these sections appear to have low complexity (or

high uniformity) relative to adjacent regions. A feature of high contrast, encircled by

dashed white lines, also shows consistent properties across all of the textural attributes.

In summary, these attributes can help facilitate the identification and characterization of

subsurface structures represented by the spatial and amplitude variations encrypted in the

data.

4.3.2 Rapid assessment of structural and spectral content

The multitaper spectral analysis (MSA), gradient direction, and absolute gradient

magnitude attributes provide simple, yet effective ways to assess the spectral and struc-

tural content of GPR datasets. While IVGPR allows for similar evaluations using other

techniques, experience has shown these to be the most effective. The first of these at-

tributes estimates the power spectral density (PSD) along each trace. It relies on the proven

adequacy of Prieto et al. (2009) mtspec library. The PSD is estimated using Thomson’s
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(a)

(b)

(c)

(d)

Figure 4.6: (a) Uniformity. (b) Contrast. (c) Homogeneity. (d) Entropy. One can eas-
ily discern regions of potential interest (with high and low values) highlighted by these
attributes. There are a number of locations where these attributes reinforce one another.
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multitaper method. Details on the theory related to PSD estimation, and those particular

to mtspec, are beyond the scope of this work. The MSA attribute is simple to implement.

The user needs only to specify a value for the time-bandwidth product and the number of

tapers. One may also choose to operate along a single trace or the entire radargram. The

latter paints a picture of the overall frequency content, which may highlight unwanted sig-

nals specific only to some traces. Figure 4.7a shows the power spectrum found for every

trace of a radargram. This record was acquired using a 400 MHz antenna and, as a result,

we see only an insignificant amount of energy at far higher frequencies. The effectiveness

of this routine is further demonstrated in figure 4.7b. Here the PSD of a synthetic trace

resulting from a linear combination of three sinusoids was analyzed using a TBP of 1.5

and 2 tapers. The frequencies of the sinusoids were 7.8, 15.6, and 125 MHz. As shown,

the three sinusoids were successfully detected with an outstanding frequency resolution.

The gradient direction and absolute gradient magnitude, as presented here, stem from a

widely popular image processing technique known as Sobel edge detection. The method-

ology is straightforward and does not require any parametrization. In general the gradient

magnitude and gradient direction of a radargram, R(x, t), are given by

|∇R| =
√(

∂R

∂x

)2

+

(
∂R

∂t

)2

and θ∇ = arctan

(
∂R/∂t

∂R/∂x

)
, (4.15)

respectively. The derivatives in equations 4.15 may be approximated as a two-dimensional

convolution between R(x, t) and the Sobel operators. Namely,

∂R

∂x
≈ R ∗ Sx

∂R

∂t
≈ R ∗ St

(4.16)
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(a)

(b)

Figure 4.7: Shows a 2D multitaper spectral estimate for the entire radagram (a) and a 1D
implementation for a synthetic trace created by combining three sinusoids with frequencies
of 7.8, 15.6, and 125 MHz.

where we have that

Sx =




1 0 −1

2 0 −2

1 0 −1




(4.17)

and St = (Sx)
T (Jähne, 2005). Figure 4.8 shows how the two attributes can effectively em-

phasize structures not easy to distinguish in the raw data. As expected from equation 4.15,
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the values for gradient direction ranges from −π to π and appear to be insusceptible to at-

tenuation. The same is not true for gradient amplitude. Thus, a quick structural assessment

without any additional processing is best obtained from the former.

(a)

(b)

(c)

Figure 4.8: (a) Shows a raw radargram along with the extracted gradient amplitude (b) and
direction (c) attributes.

4.3.3 Complex trace analysis

Complex trace analysis (CTA) centers around the idea that transforming a trace into a

discrete-time analytic signal permits the extraction of valuable attributes with local tempo-
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ral significance (Taner et al., 1979). The use of CTA has prevailed in exploration seismol-

ogy since first advocated by Taner et al. (1979). It also received early adoption in popular

GPR processing packages (Annan, 1999). The set of CTA attributes in IVGPR is limited to

instantaneous frequency, instantaneous phase, and envelope (or reflection strength). Other

attributes, e.g. apparent polarity and weighted average frequency, may be derived from

these three and will form part of future releases.

The particular transformation technique in IVGPR was designed after Marple (1999).

There are at least two reasons for this. First, this procedure primarily relies on the FFT

and, therefore, is computationally efficient. Secondly, and unlike some of the alternatives,

each resulting complex-valued signal, {z(t)|t = n∆t and n = 0, . . . , N − 1}, is orthogo-

nal within its support, T (= (N −1)∆t), and has a real component equal to the input trace.

We may write the transformation of a trace, r(t), after Boashash (1992a) as

z(t) = r(t) + iH [r(t)]

= A(t)eiφ(t),

(4.18)

whereA(n) is the reflection strength, φ(n) is the instantaneous phase, andH is the discrete

Hilbert transform. Here z(n) satisfies the conditions

Re {z(t)} = r(t) (4.19)

and
T∑

t=0

r(t)H [r(t)] = 0. (4.20)

In practice the transformation is performed in three steps. For the first step, the trace is

transformed into frequency domain by applying a FFT such that r(t) FFT−→ r̂(ω), where

ω = m∆f and m = 0, . . . , N − 1. Next we reshape r̂(ω) into the FFT of z(t) ,i.e. ẑ(ω),
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by letting

ẑ(ω) =





r̂(0), for m = 0

2r̂(m∆f), for 1 ≤ m ≤ N
2
− 1

r̂
(
N
2

∆f
)
, for m = N

2

0, for N
2

+ 1 ≤ m ≤ N − 1

. (4.21)

Finally, the desired discrete time analytic signal is obtained by implementing an inverse

FFT, that is ẑ(ω)
IFFT−→ z(t).

4.3.3.1 Envelope, instantaneous phase, and instantaneous frequency

The envelope attribute is formally defined as the norm of the complex trace z(t), i.e.

A(t) = |z(t)| =
√

Re [z(t)]2 + Im [z(t)]2

=

√
r(t)2 − (H [r(t)])2.

(4.22)

The extrema inA(t) may not coincide with those of r(t) and, therefore, could fail to repre-

sent the true reflection strength of events along a trace (Taner et al., 1979). High envelope

amplitudes may identify major changes in lithology. Variations in lateral amplitude could

be linked to fluctuations in bed thickness or the presence of faulting and fracturing. Enve-

lope is also useful to assess the resolution of the data, and it is commonly used to estimate

an amplitude decay curve.

Instantaneous phase represents the time dependent polar angle of the z(t) phasor in the

complex plane and is defined as

φ(t) = tan−1

[
Re [z(t)]

Im [z(t)]

]

= tan−1

[H [r(t)]

r(t)

]
.

(4.23)
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Since the instantaneous phase is independent of reflection strength, it can be used to ana-

lyze the continuity of coherent events. Therefore, it is adequate for showing faults, pinch-

outs, and other types of discontinuities in the record.

The instantaneous frequency is most conveniently defined as the temporal derivative

of the instantaneous phase, that is

fi(t) =
d

dt
φ(t). (4.24)

This attribute is useful for identifying subsurface features that respond selectively to the

frequency content of the incident pulse (Annan, 1999; Jol, 2008). For example, thin beds

may have tuning frequencies that overlap with the spectrum of the signal and would, there-

fore, produce enhanced responses. The derivative in equation 4.24 is commonly approx-

imated via numerical differentiation, which is inherently sensitive to random noise. In

particular, IVGPR uses a central difference scheme to estimate fi(t). An extensive, yet

instructive analysis of theoretical and practical details pertaining to the notion of instanta-

neous frequency is given in Boashash (1992a) and Boashash (1992b).

Figure 4.9 shows the CTA attributes in IVGPR computed from a shallow B-scan ac-

quired over an urban area predominated by horizontally lying reflectors. The extraction

does not require any parametrization. The result for instantaneous frequency shown in

figure 4.9d, however, was treated with a Plank taper to overcome the masking of internal

features caused by sporadic high amplitude events near the edges. The envelope (fig-

ure 4.9b) and the instantaneous phase (figure 4.9c) appear to adequately emphasize abrupt

changes in reflection strength and the continuity of events, respectively. The instantaneous

frequency shows sharp amplitude variations along horizons that could indicate a signifi-

cant change in the nature of these boundaries. Interpreters are advised to consider these

attributes collectively in oder to obtain better results. One such case is given by Orlando

58



(2002), who used all three attributes to characterize the distribution of fluids around a

water table.

(a)

(b)

(c)

(d)

Figure 4.9: Shows the complex trace analysis attributes included in IVGPR. These consists
of envelope (b), instantaneous phase (c) and instantaneous frequency. The attributes were
extracted from the raw B-scan shown in (a). The amplitudes for each plot was normalize
by the absolute maximum. Additionally, the instantaneous frequency was treated using a
Plank window to reduce the effect of high amplitudes at the edges of the data.
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4.4 Alternative techniques

The final set of advanced routines involves methods that offer an alternative way to im-

plement otherwise basic procedures. Aside from improved performance, several of these

routines promise a reduction in operator bias. Their peculiar theoretical formalities differ

from that of conventional techniques and, therefore, might discourage their adoption. We

begin this section exploring the topic of spectral balancing, which provides a substitute

to a traditional deconvolution. Next, we study the advantages of replacing a moving aver-

age background correction scheme with a method proposed by Rashed and Harbi (2014).

Lastly, a technique developed after Sabbione and Velis (2010) to automatically detect first

arrivals is examined.

4.4.1 Spectral Balancing

To electromagnetic pulses with high dominant frequencies, e.g. the 10 to 1000 MHz

range of geological radar sounding, the earth’s preferential attenuation of high frequency

content is intensified, since the corresponding wavelengths fall closer to the scale of in-

homogeneities (Cassidy and Jol, 2009). Consequently, the spectral bandwidth of a source

wavelet becomes narrower in proportion to the traveled distance. In the time domain a

diminished spectral content unfolds as a deterioration of the temporal (vertical) resolution.

The most common processing techniques to ameliorate this degradation in resolution are

deconvolution and spectral balancing. The former, however, is notoriously ineffective in

GPR applications, which is credited to the discrepancies between the character of GPR

signals and the underlying assumptions of seismic deconvolution (Neto and de Medeiros,

2006; Belina et al., 2009; Tronicke et al., 2015). By contrast, Belina et al. (2009) showed

that spectral balancing techniques (i.e. spectral whitening and spectral blueing) can ade-

quately enhance the spectral bandwidth of GPR data without the high computational cost

and laborious parametrization required by deconvolution. A more recent development by
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Sajid and Ghosh (2014) suggests an alternative technique based on cascaded dipole fil-

ters. This method, known as differential resolution, compares to spectral whitening in

simplicity and performance while requiring even fewer user-defined parameters. Tronicke

et al. (2015) tested the effectiveness of spectral whitening, spectral blueing, and DR on

synthetic and field data. Even though the authors’ analyses are primarily qualitative, their

results demonstrate that spectral balancing can enhance the frequency content and, conse-

quently, the vertical resolution of GPR data. It is important to acknowledge that spectral

balancing techniques lack rigorous mathematical developments to support and describe

any perceived effectiveness (Yilmaz, 2001; Belina et al., 2009; Tronicke et al., 2015). As

a result, spectral balancing is treated with suspicion by the GPR community and rarely ap-

pears in processing softwares (Tronicke et al., 2015). This section aims to provide a better

understanding on how these algorithms can be implemented and further demonstrate their

effectiveness in treating synthetic and field GPR data.

4.4.1.1 Time-variant spectral whitening

The implementation of time-variant spectral whitening (TVSW) in IVGPR was molded

after the technique described by Yilmaz (2001). An overview of the TVSW workflow is

given in figure 4.10. In the first stage the user defined the frequency band of interest,

∆f(= flp − fhp) and the number of distinct bandpass filters, N , to fit within this region.

Each filter is applied to the original record, independently, resulting in N sub-records.

Frequency dependent properties in the original data (e.g. attenuation) will differ between

the sub-records, since their frequency content corresponds to those of the filters used to

generate them. The next stage is to design and implement N temporal gain functions.

Ideally, these gain functions should account for the different levels of attenuation in each

sub-record and minimize the amount of user bias. The implementation in IVGPR achieves

both of these goals using the programmed gain routine, refer to section 3.5.3. In the final
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step, the sub-records are combined to yield the corrected data.

F1

Input 
Data

TVSW 
Data

Sum resulting 
radargrams

F2

G1

FN

...

G2

GN

...

Figure 4.10: Time-variant spectral balancing algorithm. The input data is Fourier trans-
formed (red arrows) and filtered. This produces N sub-records with different frequency
content. After an inverse Fourier transformation (blue arrows), each sub-record is gained
using a programmed gain. The gained sub-records are combined to produced the TVSW
data.

In IVGPR, the bandpass filters are designed using the windowed-sinc temporal kernel,

see section 3.3.1. The symmetry in the transition-band of windowed-sinc filters allows for

an exact decomposition of a single bandpass filter into a set of bandpass filters overlapping

at common cutoff frequencies. Thus, if the desired frequency range extends from fhp to

flp, the decomposition of a single bandpass filter into N filters is given by

B̃[fhp,flp] =
N∑

i=1

B̃[fhp+(i−1)α,fhp+iα], (4.25)

where α(= ∆f/N) is the bandwidth of the filters and B̃[fhp,fhp] represents the amplitude

response of a bandpass filter with cutoff frequencies fhp and flp. Figure 4.11 shows the

amplitude responses of three adjacent bandpass filters and their sum. Note that the sum

satisfies equation 4.25, i.e. it is equivalent to a bandpass filter with cutoff frequencies

fhp and flp. Another notable, and perhaps alarming, feature in figure 4.11 is the substan-
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tial amount of overlapping between adjacent transition zones. Recall, however, that the

width of the transition band (and the amount of overlapping) is inversely proportional to

the width of the windowed-sinc kernel used to generate each filter. Thus, any adverse

effect could be brought down to a negligible level by making the temporal filter kernel

sufficiently large. A relationship between the amount of overlapping and the quality of the

technique is not explored in this work. However, a qualitative and quantitative analysis

could be achieved from judicial implementation of the TVSW algorithm and the mathe-

matical formalism described in this document.
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Figure 4.11: Three adjacent bandpass filters (dashed curves) generated by setting f1 = 50
MHz, f2 = 650 MHz, and N = 3. Their superstition (solid purple curve) is equivalent to
a single bandpass filter with cutoff frequencies fhp and flp.

An effective application of TVSW should enhance the vertical resolution of the data

without introducing artifacts. Additionally, the amplitude spectrum of the record should

become broader and more homogeneous. Other indications of a successful implementation

include the emergence of deeper features (where the attenuation is greatest) and increased

63



continuity of events. This algorithm is highly sensitive to parametrization. For example,

improper selection of the frequency range can mute important features and/or amplify

noise. A good rule of thumbs is to pick a frequency range that goes above and below the

nominal frequency by 200–300 MHz. Users should expect the best results to come only

after carefully selecting near optimal parameters tailored to their data.

A satisfactory implementation of the algorithm is shown in figure 4.12. This profile

was acquired using a co-polarized 500 MHZ GSSI antenna–receiver pair. The near-surface

geology of the surveyed area consisted primarily of a thin (10–20 cm) layer of clean sand

overlaying a thick clay. An aluminum plate was buried near the 3.9 m mark, which is

indicated by a bright reflector at about 10 ns. Figures 4.12a and 4.12b show the raw and

balanced profiles respectively. The TVSW algorithm was applied using five filter-gain

pairs to treat the frequency content ranging from 200 MHz to 800 MHz. Three boxes,

label 1–3, highlight events at different depth ranges where the resolution, continuity, and

emergence of events can be appreciated. In the shallowest box, the reflectors became no-

ticeably thinner and more continuous after the correction. The second depth range shows

some new features resulting from enhancements of the vertical and lateral resolution of the

data. Lastly, the deepest box shows a significant increase in the number of visible struc-

tural features. As shown by this example, this algorithm can enhance the interpretability

of the data while extending its usefulness to a deeper range.

4.4.1.2 Frequency domain spectral whitening

Unlike the time-variant spectral whitening (TVSW) algorithm, frequency domain spec-

tral whitening (FDSW) operates directly on the amplitude spectrum of the data. A radar-

gram successfully treated by FDSW should display an improved signal-to-noise ratio as

well as enhancements to the vertical and structural resolution (Lee, 1986). In addition, the

amplitude spectrum, as with TVSW, should become broader and more homogenous. An
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(a) Radargram of unprocessed data.

(b) Radargram treated only by TVSW.

Figure 4.12: (a) Raw radagram with three squares indicating regions of different depth and
characteristics. (b) Shows the result after treating the raw radargram with the TVSW. The
results within the three regions were used to qualitatively asses the performance of this
routine.
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amplitude spectrum corrected by FDSW is shown in figure 4.13. Aside from an obvious

broadening, we also see that the peak frequency shifted to a higher value that better agrees

with the nominal frequency of the antenna (i.e. 500 MHz). It is important to note that the

FDSW technique does not correct the phase of the data. In fact, the validity of the tech-

nique relies heavily on the assumption that the amount of distortion in the recorded phase

spectrum is negligible. Lee (1986) thoroughly describes the mathematical formalism for

FDSW and draws a number of quantitative comparisons to seismic deconvolution. Since

the adaptation of FDSW in IVGPR follows the work in Lee (1986), a similar derivation is

included in this work.
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Figure 4.13: Amplitude spectrum of a GPR trace before (blue) and after (red) FDSW. The
spectral response appears broader and its peak frequency has shifted to a higher value.

Consider a trace T such that its Fourier transform is given by F(T ) ≡ T̃ = Ãeiφ,

where Ã is the amplitude spectrum or the trace and φ is the corresponding phase spectrum.
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Spectral whitening in the frequency domain can then be defined as

T̃sw = Ãαeiφ, (4.26)

where T̃sw is Fourier transform of the corrected GPR trace, and α is an arbitrary constant

ranging from zero to one. We can rewrite equation 4.26 in the form

T̃sw = ÃÃα−1eiφ

= F̃ Ãeiφ = F̃ T̃ ,

(4.27)

and view F̃ (= Ãα−1) as a filter applied to T̃ .

It is instructive to note that, in the limit as α→ 0 we have F̃ → Ã−1. If the subsurface

reflectivity is assumed to be random, the amplitude spectrum of the source wavelet can be

approximated by that of the trace. Thus, the filter derived by FDSW resembles that of a

spiking deconvolution in the limit as α→ 0. A key parameter controlling the performance

of FDSW is α, which thresholds the amount of whitening. A bandpass filter is commonly

applied to ensure that the effect of the technique is contained within a reasonable frequency

range, which could be determined from the properties antenna-receiver pair used and the

geology of the medium. As with TVSW, an optimized parametrization is, in general, only

evident after judicially testing a range of possible values.

To see the effect of FDSW on physical data, we consider its application to the profile

treated by TVSW in § 4.4.1.1. Two identical portion of the radargram, before and after

applying the FDSW routine, are shown in figure 4.14. Boxes, labeled 1–3, enclosed three

distinct depth regions. We first observe that the reflectors in all three boxes appear thinner

and more continuous. While the shallowest and deepest boxes (i.e. 1 and 3) retained all

of the major events after the correction, some events in box 2 became difficult to discern.

Perhaps most striking, the density of visible structural features in the deepest box greatly
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exceeds that of the other two depth ranges. We see a number of distinguishable thin layers

that cannot be detected in the original record. Since a description of the geology beyond

10 ns was not acquired, the validity of this particular implementation cannot be confirm.

However, this technique has been shown to reveal details in agreement with exposed geo-

logical features (Belina et al., 2009). Also, its simplicity alone make it a attractive way to

seek improvements in the resolution of a record.
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Figure 4.14: Identical sections of a profile before (left) and after (right) FDSW. Three
depth regions are highlighted to evaluate the effectiveness of the routine. Clear enhance-
ments to the continuity and resolution of reflectors can be observed after FDSW (right).

4.4.1.3 Differential resolution

Differential resolution (DR) offers another parametrization-lean approach to imple-

ment spectral balancing. This technique was a recent developement by Sajid and Ghosh

(2014) originally intended for seismic data, but Tronicke et al. (2015) successfully used

the DR algorithm to treat synthetic and field GPR records. In their work, Tronicke et al.
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(2015) found that DR produced an artifact free output when treating a basic synthetic pro-

file. By contrast, visible artifacts appeared in the record treated by FDSW. One major

drawback of DR, with no mention in previous works, is its high sensitivity to noice. This

results from the reliance on high order derivatives (e.g. 4th and 6th) to enhance high fre-

quencies in conjunction with the susceptibility to noice of numerical differentiation. In

fact, all tolerable applications of DR to real data using IVGPR have only resulted in minor

improvements to the vertical resolution.

In order to clearly understand the steps of DR, we begin by considering the equation

describing a corrected trace as defined by Sajid and Ghosh (2014). Namely, we have that

R = Y + Ys − Y II + Y IV − Y V I , (4.28)

where R corresponds to the normalized corrected trace, Y represents the normalized input

trace, the subscript s indicates the smoothing of Y , and the roman numerals correspond to

the orders of numerical differentiation applied to Y . The use of capital letters implies a

normalization by the median of the absolute value, e.g.

Y =
y

median (|y|) , (4.29)

where y would be the input trace. Each derivative in equation 4.28 is obtained using

alternating sucessive applications of forward and backward differences. The smooth trace

is added to enhance low frequencies. While smoothing in IVGPR can be done in a number

of ways, Sajid and Ghosh (2014) suggest a 10 pass convolution of Y with the kernel

[1, 2, 1].

The terms in equation 4.28 for a physical trace are shown in figure 4.15. The trace was

not treated prior to applying DR and, as a result, the high order derivatives show sporadic
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oscillations in the later sections of the trace where the signal-to-noise ratio depreciates.

Therefore, it is suggested to implement a suitable denoising routine prior to applying this

spectral balancing technique. After extensive testing, the adaptation of DR suggested by

50 100 150 200 250 300 350 400 450 500
Sample No.

-20

-15

-10

-5

0

5

10

15

20

A
m

pl
itu

de

Original
Second Derivative
Fourth Derivative
Sixth Derivative
Smooth Trace

Figure 4.15: Plot of the terms in equation 4.28. The sporadic behavior of high order
derivative is likely due to noise in the original trace.

Sajid and Ghosh (2014) failed to adequately treat most GPR field records. As evidenced

by figure 4.16b, the DR algorithm can generate a sensible correction to the power spectrum

of a trace. Namely, the lower frequency content remained virtually unchanged while the

decay in higher frequencies was corrected. However, figure 4.16a shows that this boost in

high frequency content gave the trace a noisy appearance and rendered much of the later

section uninterpretable. In order to achieve better results, a bandpass filter was added as

an additional step following the original implementation. With this modification, the DR

algorithm was applied to the GPR section shown in figure 4.16c. This profile was chosen

to allow a direct comparison between the DR and the two contrasting spectral balancing

techniques in IVGPR, i.e. time-variant spectral whitening and frequency domain spectral

whitening. While the result (shown in figure 4.16d) shows some clear improvements to
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the vertical and structural resolution, the technique appears less effective than its spectral

balancing counterparts. Nonetheless, this could be due to less artifacts being generated,

which could be validated with a controlled experiment.
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(b) Power spectrum before and after DR.
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(c) Raw B-scan.
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(d) B-scan treated only with DR.

Figure 4.16: (a) Shows the output trace (blue) generated after treating the original trace
(orange) with DR. The power spectrum of both traces is shown in (b). Figures (c) and (d)
show a GPR section before and after DR, respectively. Three boxes enclose different depth
ranges used to evaluate the technique. A red arrow indicates improvements in resolution.
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4.4.2 Background matrix subtraction

Recently, Rashed and Harbi (2014) introduce a background noise suppression (BNS)

scheme that, unlike conventional counterparts, performs a highly discriminatory averag-

ing in order to estimate the background noise. In particular, the so-called background

matrix subtraction (BMS) method replaces the single step unweighted average of mean

trace subtraction (MTS), cf. § 3.7, with a multi-step adaptive weighted average. The

weights should, ideally, scale each sample in a way that reflects the likelihood of these

to constitute background noise. After extensive testing, however, this technique failed to

produced significant gains while it added two user-defined parameters that proved difficult

to adjust in order to achieve a satisfactory performance. Nonetheless, the results presented

by Rashed and Harbi (2014) in combination with the principal of adaptive weighting to

better estimate background noise motivated the inclusion of this procedure in IVGPR.

To compute the weights, the algorithm first determines the alpha-trimmed mean (Bed-

nar and Watt, 1984) of the elements inside a horizontal window of length N centered

at each data point (i, j), where N is an odd integer. The alpha-trimmed mean of a set

Wij(= {xk|k = 1, . . . , N}) is found by first sorting the xk’s in ascending order and, in

turn, using the formula

mij(α) =
1

N − 2[αN ]

N−[αN ]∑

`=[αN ]+1

x`. (4.30)

Here the set {x`|` = 1, . . . , N} represents the sorted Wij , the symbol [.] indicates the

greater integer function, and 0 ≤ α < 0.5. The number of edge samples discriminated in

equation 4.30 is controlled by α. When α = 0, equation 4.30 is equivalent to the arithmetic
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mean used by MTS. The next step involves computing the weights from:

w` =





|x` −mij(α)|−s if sign(x`) = sign(mij(α))

0 otherwise
, (4.31)

where s is an input parameter use to control the aggressiveness of the weights. Equa-

tion 4.31 prevents any element with a polarity opposite to that ofmij(α) from contributing

to the background noise matrix. In some cases, specially when the data is severely sat-

urated, the difference x` −Mij(α) can equal zero and lead to an undefined w`. IVGPR

deals with this problem by issuing a warning and replacing the zero difference with a small

value. The algorithm continues by normalizing the weights as

ŵ` = w`/
N∑

j=1

wj, (4.32)

Finally, the estimated background noise at location (i, j) is given by

bij =
N∑

`=1

ŵ`x`. (4.33)

A number of redundant and incorrect steps in the original work are amended here. In

particular, the equivalent of equations 4.32 and 4.33 in Rashed and Harbi (2014) yields

an incorrectly scaled background noise matrix. Also, the authors do not provide a way

to handle instances when mij(α) equals zero. Recall that zero is unsigned and, therefore,

does not satisfy ether criterion in equation 4.30. To this end, equation 4.30 was modified
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into

w` =





|x` −mij(α)|−s if sign(x`) = sign(mij(α)) or mij(α) = 0

0 otherwise
. (4.34)

Since the windowWij can go out of bound near the data edges, some form of edge handling

must be applied prior to carrying out this technique. Rashed and Harbi (2014) suggest an

edge mirroring scheme for this purpose, which is the default option in IVGPR. Other

choices, e.g. extending and wrapping, can be activated by modifying the source code.

The BNS subroutine allows for three methods of estimating the background noise

matrix. The first two are found directly from equation 4.30 and may be expressed as

B = [mij(0)] and B = [mij(α)|α 6= 0] for the MTS and ATM options, respectively. The

third option is to use the routine describe in this section, that isB = [bij]. Each method can

be applied iteratively, where each successive background noise matrix is estimated from

the previous one. A thorough comparison between MTS and BMS, which shows many

advantages for the latter, is given by Rashed and Harbi (2014) and will not be included

in this work. Currently no example of similar success with BMS has been found by the

author.

Three background noise matrices are shown in figure 4.17. All three were found using

a window size of 53 elements after performing 10 iterations. A value of α = 0.25 was

used for ATM and BMS (figures 4.17b and 4.17c respectively), and s = 1.2 was used

for the latter. Even though there are noticeable differences between the background noise

estimated by MTS and those of ATM and BMS, there last two achieve nearly identical re-

sults. A dashed square highlights one of the sections where MTS may have overestimated

the background noise. This was inferred by comparing the extent to which a number of

strong events stretches away from the enclosed area. An arrow indicates one of the coarse
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transitions calculated by the BMS routine. This is peculiar to BMS and may have adverse

effects in subsequent processing. Extensive testing revealed that MTS and ATM generally

achieve better results without the added complications of BMS.

(a)

(b)

(c)

Figure 4.17: Shows three background matrices corresponding to: (a) mean trace subtrac-
tion (MTS), (b) alpha-trimmed mean trace subtraction (ATM), and (c) background matrix
subtraction (BMS). A dashed square shows an instance where MTS appears to overesti-
mate the background noise. An arrow shows one of the sharp transitions peculiar to the
BMS technique.
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4.4.3 Attribute-based time-zero correction

Sabbione and Velis (2010) proposed a way to improve the accuracy and stability of

automatic first-arrival picking by use of one-dimensional attributes in conjunction with

edge-preserving smoothing (EPS). Their procedure resembles the popular Coppens’ algo-

rithm (Coppens, 1985) with two major difference. First, it is not limited to the energy-ratio

attribute. Instead, the authors suggest energy-ratio, entropy, and fractal dimension as suit-

able candidates for the task. Of these, however, only the first two are presently available

in IVGPR. Secondly, an EPS filter (Liu et al., 2003) is applied to the attributes in order

to accentuate the advent of significant shifts in amplitude level. The location of the first-

arrival is found by differentiating the filtered attribute(s) and, in turn, finding the maximum

absolute amplitude. Figure 4.18 shows a workflow describing this process. Four user de-

fined parameters are needed by this routine and will be discussed below. For the last steps,

IVGPR approximates the differentiation with a central difference scheme and finds the

absolute maximum via an intrinsic index-searching function.

Compute 
attribute

Input 
trace

Edge-preserving 
smoothing

Estimate first 
derivative

Find absolute 
maximum

Figure 4.18: Automatic first-arrival picking workflow. Processes colored in red indicate
steps that differ from Coppen’s method.

Typical definitions for the energy along a curve often involves a direct proportionality

to amplitude (or its value squared). This makes it a fitting attribute for detecting a transition

between a “quiet” region and the arrival of the earliest pulse on a trace, since the two

often differ by prominent variations in amplitude. In the case of energy-ratio (ER), the

measurement at each point of a trace is estimated from the energy in its vicinity scaled
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by the energy accumulated up to that point. This, consequently, favors early variations in

energy. The equation to calculate ER, as given in Sabbione and Velis (2010), is:

E(t) =
E1(t)

E2(t) + β
, (4.35)

where β[≥ 0] stabilizes the solution to help reduce the chance of erroneous picks. Here

E1(t) and E2(t) represent the energies accumulated within the time ranges [t − n` + 1, t]

and [1, t], respectively. These quantities are computed using

E1(t) =
t∑

i=t−n`+1

s2
i (4.36a)

E2(t) =
t∑

i=1

s2
i . (4.36b)

Since [t − n` + 1, t] ∈ [1, t], we have that E2(t) ≥ E1(t) and E(t) ≥ 1. We see that E(t)

requires two user defined parameters, i.e. β and n`. A third parameter, i.e. filter kernel

size M , is needed by the EPS filter applied to the ER attribute. The particular algorithm

does not involve any form of edge-handling and, thus, cannot estimate the energy of the

first n` − 1 terms.

The one-dimensional entropy attribute can be used to expose temporal variations in

the statistical properties of a curve (Denis and Crémoux, 2002; Sabbione and Velis, 2010).

For this reason, Sabbione and Velis (2010) propose its use to determine when the signal-

to-noise ratio along the early section of a trace increases in response to the first arrival.

Entropy is found from the expression:

H(t) = log

(
1

nh

t−1∑

i=t−nh+1

|si+1 − si|
)
, (4.37)

where nh is the size of a moving window. Note that, as with ER, the computed value is
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assigned to the leading sample in the window. As remarked by Sabbione and Velis (2010),

too small of a value for nh can result in large fluctuations in entropy while large win-

dows may lead to unacceptably low resolutions. Both, energy-ratio and one-dimensional

entropy, are helpful beyond time-zero correction. For example, they may be applied in

combination with other attributes to formulate an integrated analysis.

Three time-zero corrections obtained from the energy-ratio method (C), entropy method

(D), and the peak-finding method (B) are shown in figure 4.19. The first event in the

original record (A) is recognized as the air-ground interface and, apart from a couple of

exceptions near the 4.5 and 16 meter marks, it displays a continuous horizontal trend.

The parameter values used to implement the ER and entropy methods were (n` = 7, β =

0.2,M = 11) and (nh = 18,M = 15), respectively. Picks made by the ER and peak-

finding techniques appear to be of comparable quality and superior to that of the entropy-

based technique. However, ER proved to be far more laborious as a result of its greater

number of parameters. It should be pointed out that the entropy-based time-zero correc-

tion (D) was chosen from a large number of tests, all of which appeared to be less stable

from a qualitative perspective. For this reason, the author suggest using the peak-finding

algorithm prior to attempting the more involved approaches of this section.

Figure 4.20 indicates the possible time-zero picks for all three algorithms available in

IVGPR. The picks by the entropy and ER methods (A and B respectively) correlate with

the locations of the maximum absolute value for the derivative of the corresponding filtered

attributes (shown by the red and blue curves). All the possible locations for the peak-

finding algorithm (C–F) are marked, with C being closest to the picks by the other two

techniques. One may argue that the methods from this section resulted in a time-zero that

better represents the true advent of the first arrival, which is most accurately defined by the

location marked as A. This observation has not being explored beyond what is presented.

Also, Sabbione and Velis (2010) proposed an additional routine to improve the accuracy
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C

D

A

Figure 4.19: Shows the Time-zero correction of a raw B-scan (A) after applying the peak-
finding based method (B), the energy-ratio method (C), and the entropy method (D).

and consistency of the picks made by their techniques, which has yet to be implemented

in IVGPR. In summary, all the techniques available appear to yield acceptable results with

the peak-finding method offering the best trade-off between stability and effort.

Figure 4.20: Average trace (black curve) showing the time-zero picks that would result
from the entropy method (A), energy-ratio method (B), and the peak-finding method (C–
F). The red and blue dashed line shows the average absolute value for the first derivative
of entropy and energy-ratio attributes, respectively.

4.4.3.1 Edge-preserving smoothing

Edge-preserving smoothing filters are designed to provide a reduction in noise compa-

rable to that of moving average filters while achieving a much sharper step response (Liu
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et al., 2003; Sabbione and Velis, 2010). To explain how EPS operates, let us consider an

input data series A(= {ai|i = 1, 2, . . . , N}) treated using a kernel of size M , where M is

some positive odd integer. Algorithm 1 describes a basic EPS routine, which applies to

this scenario. It is worth remarking that EPS, as with many moving window filters, must

be preceded by a proper handling of data edges. In particular, this gives us an extended

data series A∗(=
{
a∗j |j = 1−∆, 2−∆, . . . , N + ∆

}
), with ∆(= (M − 1)/2) being the

number of appended elements at ether end. The i-th smoothed element, Ei, is computed

by comparing the standard deviation inside M windows around the point a∗i+∆, identify-

ing which window location minimized the standard deviation, and, finally, assigning the

arithmetic average inside that window to Ei. These three step comprise lines four to seven

in algorithm 1.

Algorithm 1 Edge-preserving smoothing, after Liu et al. (2003).
1: Expand edges so that A −→ A∗

2: ∆ = (M − 1)/2
3: for i = 1, 2, . . . , N do . N := total number of samples
4: for k = 0, 1 . . . ,M − 1 do . M := size of moving window

5: Sk+1 =

√√√√√
i+k+∆∑
j=i+k−∆

(
a∗j − µ

)2

M − 1
. µ is local average

6: Locate index of minimum value in Sk, e.g. ` = minloc(Sk).

7: Ei =
1

M

i+M+`−1∑
j=i+`−1

aj . Smoothed i-th element

The excellent step response of EPS is clearly demonstrated in figure 4.21. For this case

a step function, composed of 600 elements and centered at sample 300, was combined with

random Gaussian noise to form the response shown in figure 4.21b. The outputs from a

general moving average filter, figure 4.21c, was calculated using a 17 element sliding
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window. The edge, originally located along the dashed vertical line shown, is markedly

less pronounced in this figure. By contrast, figure 4.21d shows how an EPS filter of equal

size preserved a transition of sharpness comparable to that of figure 4.21a.
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Figure 4.21: (a) Original step function. (b) Step function after random Gaussian noise was
added. (c) Noisy data treated by conventional moving average filter using a window size
of 17 elements. (d) Noisy data treated by EPS using a window size of 17 elements.
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5. MIGRATION OF GPR DATA

5.1 Overview

Migration may be viewed as an attempt to map an image from data space into object (or

physical) space, where the geometry and properties of subsurface targets can be accurately

estimated (Leuschen and Plumb, 2001). As illustrated by figure 5.1, images in data space

contain distortions inflicted by the acquisition process. One such example is the deterio-

ration of spatial resolution, which results when energy reflected by an object gets mapped

along a stretch of space far greater than its physical dimensions. In response, migration

should reposition this energy within the object’s “true” spatial confinement (Jones, 2014).

Typical GPR migration techniques include: hyperbolic summation migration, Kirchhoff

migration, frequency-wavenumber migration, and finite difference migration (Leuschen

and Plumb, 2000; Cassidy and Jol, 2009; Qin et al., 2014; Ozdemir, Caner and Demirci,

Sevket and Yigit, Enes and Kavak, Adnan, 2007). The performance of migration algo-

rithm is generally hindered by assumptions and simplifications that do not adhere to the

complex nature of field records (Slob, 2003). For instance, many algorithms assume a

laterally invariant velocity model, which is generally inaccurate. This assertion is spe-

cially crippling considering the principal role that an accurate estimation of the subsurface

velocity structure plays in most migrations algorithms (van der Kruk, 2001; Slob, 2003;

Jones, 2014). The two techniques available in IVGPR are examples of wave-field extrapo-

lation techniques. In particular, the user can decide between the widely popular phase-shift

migration (Gazdag, 1978; Claerbout and Green, 2008) or an exact field vector-migration

routine (Streich et al., 2007) specially designed for GPR data. This section presents a syn-

optic description of the theory underlying these algorithms while providing satisfactory

examples of their implementation.
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Figure 5.1: Illustrates the effect of data collection and migration. In particular, a point
scatterer in object (or physical) space becomes mapped as a hyperbolic event in data space.

5.2 Phase-shift migration

Phase-shift migration is a frequency-domain technique introduced by Gazdag (1978)

to treat zero-offset seismic records. As expected of a frequency-domain migration algo-

rithms, it features a computational efficiency that far surpasses that of time-domain imag-

ing techniques (Chun and Jacewitz, 1981). Most mainstream GPR processing softwares

offer the option to perform a frequency-domain migration through the Stolt or Phase-shift

algorithm, with the former being more abundant. One clear advantage of phase-shift mi-

gration over Stolt migration is the ability to easily account for vertical variations in velocity

(Gazdag, 1978). This section begins by presenting a fictitious experiment to illustrates the
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energy focusing property of downward-continuation and migration. Next, it gives a deriva-

tion of the downward-continuation formulas in Fourier domain, which forms the core of

the phase-shift migration algorithm. A principal focus is to show how the phase-shift mi-

gration algorithm stems from the classic idea of downward-continuation brought forth by

Claerbout (1971). One may regard this section as a concise but complete summary of past

works related to the phase-shift migration method, primarily that of Claerbout and Green

(2008). Additional details on the general theory of phase-shift migration (and similar

frequency-domain techniques) can be found in Gazdag (1978), Chun and Jacewitz (1981),

Scales (1995), Claerbout and Green (2008), and Stolt and Weglein (2012). For GPR spe-

cific applications, the reader can visit the works of Gu et al. (2004) as well as Zhang et al.

(2013).

5.2.1 Downward continuation

Consider an impulse acoustic source located at some point (xs, ys, zs) within a homo-

geneous half-space of known properties. The emitted pulses propagate isotropically (with

radial symmetry) away from the source point at some velocity v. A linear array of re-

ceivers, measuring 2δ, is initially positioned on the z = 0 plane (parallel to the x−axis)

and extends from xs− δ to xs + δ. The receivers record the wavefield that arrives within a

time-window T . After each recording, the array of receivers is lowered a distance ∆z and

the process is repeated. Figure 5.2 depicts this scenario. We see that as the array of re-

ceivers approaches the source, the hyperbolic event observed in the recorded data shrinks,

i.e. the event within the gray section corresponding to the time range T . This is a desirable

result during migration and a key aspect of downward-continuation. Ultimately we seek to

focus the recorded energy down to a point, but that result is not obvious from this example.

In fact, the hyperbola will appear as a point at z = zs only if the receivers are separated by

a distance ∆x > vT along the array.
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Figure 5.2: Illustrates how a hyperbolic event becomes more compact as the array of
receivers gets closer to its source. The white circles represent wavefronts at the time they
first reach the receivers. The dotted lines indicate the distance a wave front needs to travel
to reach the edge receivers after it arrives at the middle receiver. On the right, the resulting
hyperbolic event within the acquisition time (indicated by a gray band) are shown.

In practice, downward-continuation does no require moving the receiver array or hav-

ing a source embedded in the medium. Instead, the wavefield recorded at the surface is

decomposed into plane waves that are extrapolated along the depth-axis by means of time-

or phase-shifting. To illustrate this consider a plane wave traveling parallel the z−axis

of the half-space shown in figure 5.2. Hence, the equiphase planes and z = const. are

parallel. Assume that at time t we record the energy of the plane wave along the interface

z = 0, such that the recorded wavefield can be expressed using u(t, z = 0). Note that

there is no dependence in the x− or y−coordinates since the measured response is con-

stant along every xy−plane for a homogeneous and harmonic plane wave traveling along

the z−axis. The response at some deeper section, z = ∆z, can be obtained by applying a
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time-shift to the measurement at z = 0 using

u(t, z = ∆z) = u(t, z = 0) ∗ δ (t+ ∆t) , (5.1)

where ∆t[= ∆z/v] is the temporal sampling rate and δ(t) is the dirac delta function. The

convolution theorem allows us to write equation 5.1 in the frequency-domain as

U(ω, z0 + ∆z) = U(ω, z = z0)e−iω∆t

= U(ω, z = z0)e−iω
∆z
v .

(5.2)

We can derive a similar equation for an arbitrarily oriented plane wave using the

sketch shown in figure 5.3. Assume that a plane wave propagates through a homoge-

neous medium at some angle θ with respect to the vertical (depth) axis. Two recording

stations, marked by a red and blue dot, are positioned along a vertical line. The stations

are separated by a vertical distance ∆z. Assume that a some time t1 after we start record-

ing the wave-front (shown in yellow) reaches the lower station. At a later time t2 the same

wave-front reaches the second station. The records shown in figure 5.3 (right) reveals that

the signal at the deeper point can be determined by time-shifting the shallower response

by ∆t = ∆z cos θ/v, where v is the velocity of propagation for the host medium. Thus,

the downward-continuation equation becomes

U(ω, θ, z + ∆z) = U(ω, θ, z)e−iω∆t

= U(ω, θ, z)e−iω
∆z cos θ

v .

(5.3)

Equation 5.3 can be generalized to work with depth-dependent velocity distributions,

v = v(z), but it does not account for amplitude variations introduced by reflections and

transmission along interfaces. Moreover, our downward-continuation equations only ap-

86



ϴ

Δz

x

z

z = z0

direction of propagation tt1

tt2d

Figure 5.3: Up-going plane wave propagating at some angle θ with respect to the vertical
axis. The signal reaching two stations (red and blue dots) is shown as stem plots on the
right.

ply to plane waves and cannot handle most field records directly. Fortunately, field records

can be decomposed into sets of plane waves. The Fourier transform lets us express a field

record as the superposition of monochromatic plane waves represented by points in the

wavenumber-frequency domain. We now need to modify equation 5.3 such that it can

operate on Fourier transformed data. This requires finding a way to relate the propagation

angle θ to the wavenumbers kx and kz.

Let us now consider a moving cosine wave propagating through a homogeneous medium

at a velocity v and with angular frequency ω. The wave travels at an angle θ with respect

to the z–axis and can be expressed using

u(x, z) = cos
[
ω
(x
v

sin θ +
z

v
cos θ − ϕ

)]
, (5.4)
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Figure 5.4: Contour lines for the equiphase planes corresponding to the maximum value
of a monochromatic plane wave. The propagation direction of the wave is indicated with
a white line such that it makes an angle θ with respect to the vertical axis.

where ϕ is some arbitrary phase-shift added for completness. Figure 5.3 illustrates this

scenario, where the yellow lines indicate the equiphase planes corresponding to the max-

imum amplitude. Lets define an apparent wavelength in the i–th direction as λi such that

it describes the physical distance for two equal parts of a wave to repeat. We see from

figure 5.3 that the x– and z–directed wavelength are equal to ∆x (the segment AC) and

∆z (the segment CD) respectively. The wavelength in the direction of propagation, λθ, is

related to the velocity v and period T of the wave by λθ = vT , which is equal in length

to the segment BC. We can relate wavelengths λx and λz to λθ using the propagation

direction θ as

λx =
λθ

sin θ
=

v

f sin θ
, (5.5a)

λz =
λθ

cos θ
=

v

f cos θ
. (5.5b)
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where f [= 1/T ] is the frequency of the moving cosine wave. When both sides of equa-

tion 5.5 are divided by 2π and inverted, the desired relationships between wavenumbers

(kx and kz) and the angle θ are revealed as

sin θ

v
=
kx
ω
, (5.6a)

cos θ

v
=
kz
ω

=
1

v

√
1− k2

xv
2

ω2
. (5.6b)

The downward propagator in equation 5.3, namely exp (−iω∆z [cos θ/v]), becomes

operational inside the Fourier domain after substituting equation 5.6b. Observe how the

downward-continuation process, which originated as a time-shift, has become the phase-

shift exp(−ikz∆z) in Fourier domain. To recapitulate, an arbitrary data record, u(t, x, z =

z0), is decomposed into a set of monochromatic plane waves, U(ω, kx, z = z0) after a

Fourier transformation. Each element in U at z0 can be downward-continued to a new

depth z = z0 + ∆z using the equation

U(ω, kx, z0 + ∆z) = U(ω, kx, z0) exp (−ikz∆z)

= U(ω, kx, z0) exp

(
−iω∆z

v

√
1− v2k2

x

ω2

)
.

(5.7)

Alternative derivations of equation 5.7 based directly on the Helmholtz equation are

given by Gu et al. (2004) and Zhang et al. (2013). While more direct, this approaches

generally neglect the physical significance of the mathematics involved. Claerbout and

Green (2008) achieve the same results with less mathematical rigor and greater clarity.

5.2.2 Phase shift migration algorithm

The imaging stage of the phase shift migration algorithm is generally broken down into

three main steps: (1) decomposing the wavefield into plane waves by a Fourier transform

in space and time; (2) extrapolate the field down into the earth using a phase-shift operator;
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(3) estimate the reflectivity by evaluating the results from the previous step at t = 0 and

applying an inverse Fourier transform. It is worth emphasizing that these steps do not

comprise the entirety of the phase shift algorithm. Some important preliminary steps are

not included, e.g. the discretization of the medium into homogeneous layers of thickness

∆z. We start by addressing each of the steps in more detail while noting any pertinent

assumption and limitation.

The imaging stage begins with a two-dimensional Fourier transformation to the GPR

dataset. While migration algorithms based on the Fourier transform approach provide

high computational efficiency, they suffer from two drawbacks. First, they are limited to

homogeneous media (Scales, 1995). Secondly, space becomes periodic making the edges

of the dataset act as periodic boundaries (Claerbout and Green, 2008), which can result

in artifacts (Leuschen and Plumb, 2000). Figure 5.5 illustrates how an events reaching a

periodic boundary reappears on the opposite side. Phase shift algorithms commonly treat

the latter by allowing the user to pad the edges of the problems with zeros. This tactic was

adopted in IVGPR.

Next, the measured wavefield is extrapolated downwards along the depth axis itera-

tively. As it stands, equation 5.7 only accounts for up-going waves, i.e. one-way propaga-

tion. If we assume a zero-offset (monostatic) configuration, then the up- and down-going

waves follow identical paths. Consequentially, we can use a velocity profile twice as slow

as the original in order to achieve the appropriate two-way travel times. The downward-

continuation operator becomes

C = exp

(
−iω∆τ

√
1− v2k2

x

4ω2

)
, (5.8)

where τ is the two-way vertical travel time such that ∆τ = 2∆z/v.

During the final imaging step, the extrapolated data is used to estimate the reflectivity,
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Figure 5.5: Shows artifacts caused by the intrinsic periodic boundary conditions of the
phase shift migration algorithm.

Image(x, z), for every x at each new value of z. This is achieved by evaluating the extrapo-

lated wavefield at t = 0, which is analogous to summing over all frequency components ω

(Gazdag, 1978; Scales, 1995; Claerbout and Green, 2008). The migrated image for some

arbitrary depth layer of thickness ∆z is obtained after a one-dimensional inverse Fourier

transform from kx to x.

The pseudo-code detailing the implementation method adopted in IVGPR is shown in

algorithm 2. This approach is commonly referred to as Claerbout’s phase-shift migration

algorithm (Scales, 1995; Claerbout and Green, 2008). We see that line 1 performs the first

step of the imaging stage. Line 2 is where different depth sections are picked, and it marks

the beginning of the iterative steps. The second step corresponds to lines 3 through 6 while

the third step is perform from lines 7 to 11.
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Algorithm 2 Phase shift migration from Claerbout and Green (2008)

1: u(t, x, τ = 0)
FFT−−−→ U(ω, kx, τ = 0) . 2D-Fourier transform

2: for τ = ∆τ, 2∆τ, . . . , end of time axis on B-scan do
3: for all kx do
4: for all ω do
5: C = exp

(
−iω∆τ

√
1− v2k2

x/4ω
2
)

6: U(ω, kx, τ) = U(ω, kx, τ −∆τ) ∗ C
7: for all kx do
8: Image(kx,τ )=0
9: for all ω do

10: Image(kx, τ ) = Image(kx, τ ) + U(ω, kx, τ )
11: Image(kx, τ ) IFFT−−−−→ Image(x, τ ) . Fourier transform along x

5.3 Vector-migration

Proper GPR imaging requires migration techniques that address the vectorial nature of

EM signals and the radiation pattern of antennas (van der Kruk et al., 2000; Slob, 2003;

Streich and van der Kruk, 2007; van der Kruk, 2015). Most studies, however, use scalar

methods similar to the one described in § 5.2, which are unfit for true amplitude processing

and inversion. A new class of migration algorithms specifically designed for GPR systems

(dubbed vector migration) has been developed in the past two decades. Their objective is to

generate images with quantitative characteristics directly related to the physical properties

of targets (van der Kruk, 2015). Most algorithms in this class implement far-field approxi-

mation to Green’s functions that are not proper for the typical depth ranges of GPR studies

(about 1 to 15 meters or 1 to 5 wavelengths). By contrast, Streich et al. (2007) proposed

an inexpensive way to obtain highly accurate solutions to Green’s functions as part of a

three-dimensional single-component copolarized vector migration algorithm. The routine

offered in IVGPR stems from the works of van der Kruk (2001) and Streich et al. (2007).

The focus of this section is to provide a synaptic but adequate description of this algorithm.

For an in-depth description of this technique the motivated reader should consult Streich
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et al. (2007) and the complementary material mentioned in that publication.

5.3.1 Algorithm and pseudocode

Vector migration and phase-shift migration, see § 5.2, share a number of similari-

ties that fall in line with the properties of wavefield extrapolation (WE) methods. Im-

ages in both methods are formed by applying a set of depth extrapolating operators,
{
F̃ (ωi;k, zj)

}
, that are computed for each relevant depth level zi and angular frequency

ωi. In practice, these operators function as two-dimensional filters acting along the k-

planes corresponding to the frequency components of the recorded wavefield and the de-

sired depth levels. The migrated image along a depth level is calculated from the sum of

all filtered frequency components for that depth. These steps form the basis of the imaging

condition for wavefield extrapolation migration (Claerbout and Green, 2008; Jones, 2014)

and should be consistent with the strategy outlined in § 5.2.2. Next we want to consider

how this idea was transformed into the vector migration routine proposed by Streich et al.

(2007) and implemented in IVGPR.

Figure 5.6 provides an illustrative description of the vector migration strategy pro-

posed by Streich et al. (2007). This scheme is an amendment to the earlier work of van der

Kruk (2001). The main difference between the two lies in the strategy used to estimate

the f–x domain Green’s functions necessary to find F̃ (ωi;k, zj). In particular, far-field

analytical expressions (Engheta et al., 1982) are replaced by a four step scheme (shaded in

gray) to obtain accurate approximations valid in the near- and mid-field ranges. The first

step involves computing f–k domain Green’s functions, G̃αβ , where α[∈ {x, y, z}] rep-

resents the orientation of the electric field and β[∈ {x, y}] represents the inline-crossline

directions. The symbols ˆ and ˜ indicate wether a variable is in x–f or k–f domain,

respectively. For a horizontal x– or y–oriented co-polarized antenna pair, f–k domain
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Compute G̃[= G̃0 exp��1(z � z0)] at current z by
phase-shifting

Compute G̃0[= G̃(kx, ky,!, z = z0)] at each (kx, ky,!)

2D IFFT to x-f domain

Compute the forward wavefield extrapolator (FWE) D̂
in x-f domain

Apply 2D IFFT to get the k-f domain FWE (D̃)

Invert D̃ to get the inverse wavefield operator (F̃ )

Multiply F̃ with Ẽ

Truncate the resulting Ĝ’s in order to determine
the source and receiver Green’s functions Ĝs and Ĝr

corresponding to the survey configuration

Tapered operator

2D Turkey function

Apply taper

For each depth level, z, find:

�(x, y, t = 0, z) = 2D IFFT

P
!
�̃(kx, ky,!, z)

�
Migrated image in (x, y, z) space

Survey configuration
and medium properties.

No truncation

Truncated

Apply a 3D FFT to
the data (E) to get Ẽ Are all depth levels imaged?

Yes

No

Invert nonzero values

Figure 5.6: Shows the vector migration workflow proposed by Streich et al. (2007). The
steps shaded in gray indicate the FFT-based technique for finding Ĝ. The outputs from a
100 MHz monostatic antenna configuration at a depth of z = 5 m are shown for different
steps. Oversampling factors of px = py = 4 were used on a spatial (x, y) grid composed
of 512 by 512 elements separated by a distance of 0.1 m in both directions.

Green’s functions at the initial depth z0 are found, after Streich et al. (2007), using




G̃xx(kx, ky, ω, z0)

G̃yx(kx, ky, ω, z0)

G̃zx(kx, ky, ω, z0)




= −ζ




k2
xṼ + Ũ

kxkyṼ

−jkxΓ0Ṽ




(5.9)
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and 


G̃xy(kx, ky, ω, z0)

G̃yy(kx, ky, ω, z0)

G̃zy(kx, ky, ω, z0)




= −ζ




kxkyṼ

k2
yṼ + Ũ

−jkyΓ0Ṽ



, (5.10)

where we have that:

Ũ =
exp{−Γ1z0}

Γ0 + Γ1

, Ṽ =
exp{−Γ1z0}
γ2

1Γ0 + γ2
0Γ1

,

Γi =
√
γ2
i + k2

x + k2
y, γ2

i = ηiζ,

ηi = σi + jωεi, ζ = jωµ0.

(5.11)

Here γi describes the complex propagation constant for air (i = 0) and the subsurface

(i = 1), ηi is the electric material parameters for conductivities σi and permittivities εi,

and ζ is the magnetic material parameter with permeability µ0. Green’s functions for some

other depth interval z can be found using a vertical phase-shift on equation 5.9, such that

G̃mα(kx, ky, ω, z) = G̃mα(kx, ky, ω, z0) exp{−Γ1 (z − z0)}. (5.12)

In practice, equation 5.9 is analyzed at each node of a three-dimensional rectangular

mesh in (kx, ky, f) space. An interval refinement (or oversampling) is implemented along

the kx and ky axes. This is equivalent to expanding the size of each wavefield extrapolating

filter kernel, which generally enhances the results obtained by this class of migration algo-

rithm (Hale, 1991). Particularly, the increase in kernel size manifests as a more accurate

approximation to the “exact” Green’s functions in f -x domain (Streich and van der Kruk,

2007). The refined wavenumber intervals are found using

∆k
(o)
β =

∆kdata
β

p
, (5.13)
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where ∆kdata
β [= 2π/Nβ∆β] represents the original wavenumber sampling intervals (de-

termined by the survey configurations) and p is the oversampling (or refining) factor. It

is worth mentioning that large values of p could result in unfeasible computational and

memory requirements for an average personal computer.

Once the f -k domain Green’s functions are computed, the next step is to obtain their

f -x counterparts (Ĝ) by performing a 2-D IFFT in k domain. The oversampling from

the previous step results in Ĝ’s that encompass a region of object space greater than the

surveyed area. Thus, the edges of each Ĝ must be truncated to ensure a dimensional

agreement with the unmigrated data. When the transmitter-receiver offset is not zero, the

Green’s functions for the receiver (Ĝr) are obtained by shifting the truncation boundaries

by an amount equivalent to the offset between the antennas. This strategy is most accurate

when the spacing between the transmitter and the receiver is some integer factor of the

trace spacing, which is assumed to be uniform.

The forward wavefield extrapolator D̂ is found from the inner product of the source

and receiver Green’s functions. Namely, we have that

D̂β(x, y, ω, z) =
∑

α

Ĝs
αβ(x, y, ω, z)Ĝr

αβ(x, y, ω, z) (5.14)

for an antenna pair pointing in the β direction. Next we compute the inverse operator F̃

using the expression

F̃ (kx, ky, ω, z) =





(
F
{
F
[
D̂(x, y, ω, z)

]})−1

for k2
x + k2

y < −γ2
1

0 otherwise
, (5.15)

where F is the forward Fourier transform. Note that equation 5.15 is nonzero only within

the propagation regime of the k-planes corresponding to each admissible frequency com-
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ponent. In practice, however, a sharp transition like the one defined by this equation should

be avoided. Recall the relationship between the sharpness of the transition band and the

size of the kernel discussed in § 3.3.1. An “ideal” transition, like the one defined in equa-

tion 5.15, would correspond to a virtually infinite kernel prohibiting a working approxi-

mation to a linear convolution between the data and the inverse operator. This problem

is circumvented by using an elliptical Tukey window function (Bernstein et al., 2004) to

smoothly transition between the propagation and the evanescent regimes. In the IVGPR

implementation, the ideal stop-band attenuation of Tukey windows was exploited by al-

lowing the condition k2
x+k2

y < −γ2
1 in equation 5.15 to be replaced with |D̃| > 0. In other

words, we first find D̃−1 using

D̃−1 =





1/D̃ for |D̃| > 0

0 otherwise
(5.16)

and, subsequently, multiply our result with a Tukey window to get F̃ . This approach,

shown in figure 5.7 resulted in noticeable improvements in performance.

=�

Figure 5.7: Method for computing F̃ (right-hand side) from the Hadamard, or element-
wise, product of the Tukey window and D̃−1, which is found using equation 5.16. The
Tuckey window shown was found using a transition width of µ = 1, see §4.2.2.
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The final stage of each iteration in the migration algorithm involves multiplying F̃ with

the k-f representation of the data, i.e. Ẽ. This results in a single-frequency component,

χ̃(kx, ky, ω, z), for the current depth level z. Once all of the frequency components have

been computed, the migrated image at z is found using

χ(x, y, z) = F−1

{
F−1

(∑

ω

χ̃(kx, ky, ω, z)

)}
. (5.17)

This procedure is repeated for each depth level until the final migrated cube is found. Algo-

rithm 3 gives a programmatic representation of the steps described above. The backbones

of the implementation in IVGPR follow algorithm 3 with the exception that it allows user

to limit the number of frequency values, ω, to consider. For details on the physical signifi-

cance and mathematical formalism of to the wavefield extrapolator D̃, the reader can visit

Slob (2003) as well as van der Kruk (2001). The ensuing section examines the perfor-

mance of both, phase-shift and vector migration, techniques through primarily qualitative

means.

5.4 Performance analysis of migration algorithms

Synthetic and field data were used to evaluate the performance of both, vector and

phase-shift, migration algorithms. In particular, the accuracy of each technique was quan-

tified by comparing the percent error between the dimensions of structures within migrated

sections and those of the models used to generate the raw data. Additionally, the parallel

efficiency of the vector migration algorithm was examined using the runtime differences

from a serial to a quad-thread run using single thread increments while keeping the dimen-

sion and configuration of each run constant. Even though only a fundamental, and at times

purely qualitative, analysis is given in this section, it captures how the two migration rou-

tines in IVGPR can generate satisfactory results upon judicious implementation. Details

of practical importance, e.g. the effect of tapers and padding, are also included.

98



Algorithm 3 Single-component vector migration based on Streich et al. (2007)

1: E(t;x, y, z0)
3D FFT−−−−−→ Ẽ(ω; kx, ky, z0) . Input GPR record

2: (∆k
(o)
x ,∆k

(o)
y ) = (∆kyp

−1
x ,∆kxp

−1
y )

3: Compute G̃mα(ω; kx, ky, z0) and image at z0 . Same steps as shown below
4: but without a phase-shift
5: for z = ∆z + z0, 2∆z + z0, . . . , N∆z + z0 do
6: for all ω do
7: for all (kx, ky) do
8: G̃αβ(ω; kx, ky, z) = G̃mα(ω; kx, ky, z0)e−Γ1(z−z0) . Phase shifting step

9: G̃αβ(ω; kx, ky, z)
2D IFFT−−−−−−→ Ĝ(ω;x, y, z)

10: Truncate and shift Ĝαβ to get Ĝsαβ and Ĝrαβ
11: D̂β =

∑
α
ĜsαβĜ

r
αβ

12: D̂β(ω;x, y, z)
2D FFT−−−−−→ D̃β(ω; kx, ky, z)

13: for all D̃β 6= 0 + i0 do
14: F̃β = D̃−1

β

15: Implement taper or filter H̃ to get H̃F̃β
16: χ̃ = ẼH̃F̃β

17: χ(t = 0;x, y, z) = 2D IFFT

{∑
ω
χ̃

}
. Migrated depth slice

The highly regarded modeling tool gprMax (Warren et al., 2015) was used to simulate

the response of a kink style syncline. The corresponding subsurface model, shown in

figure 5.8, was created using four unique materials and eight geometrical shapes. These

were configure to represent a layer of clean sand (with εr = 4, µr = 1, and σ = 0mS/m)

overlaying a clay layer with laterally varying properties. The clay layer is divided into

three sections with different dielectric constants, i.e. εr ∈ {10, 20, 40}, but the same value

for conductivity and relative permeability (µr = 1 and σ = 100mS/m). A Hertzian dipole

emitting a Ricker wavelet with a nominal frequency of 100 MHz served as the source.

The source and receiver were oriented perpendicular to the inline direction in a monostatic

configuration. The synthetic B-scan comprised 160 traces spaced 0.1 m apart and each

containing 2333 samples representing a total time window of 110 ns. Figure 5.9 shows the
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Figure 5.8: Subsurface model of a kink-style syncline. A total of eight geometrical shapes
and four unique materials were used to construct the model. These create a sand layer
overlaying a folded layer composed of three clay section varying only in permittivity.

resulting B-scan after an instantaneous AGC gain was applied. This, in turn, revealed the

bowtie pattern characteristic of synclines as well as multiples and diffractions within the

simulated response. Since the vector migration algorithm requires three-dimensional data,

a GPR cube composed of 64 lines at a hypothetical spacing of 0.1 meters was created by

cloning the B-scan and assuming isotropy in the cross-line direction.

Figure 5.10 shows a juxtaposition of the raw radargram (a) and the result after the

phase-shift routine (b). The migration was carried out using a velocity of 0.15 m/ns,

which corresponds to εr = 4. A comparison between the dimensions of the migrated

syncline and the model revealed an average percent error of 6.1%. The horizontal edges

of the migrated image were tapered during the migration and, therefore, present regions

where data was lost. This, in combination with padding, can help reduce the number of

artifacts that appear in the migrated radargram. By contrast, figure 5.10c shows the result

of carrying out an analogous migration without applying a taper. Note that, while the

reconstruction of the syncline is virtually identical, we can appreciate the emergence of

two strong artifacts.

Figure 11 shows the central line in our GPR cube, i.e. line 32, after carrying out a
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Figure 5.9: Synthetic B-scan of kink-style syncline after undergoing an instantaneous
AGC gain. The expected bow-tie pattern can be seen at the center. Two green arrows
point to a diffraction and a multiple within the B-scan.

vector migration. This run was configured to use a dielectric constant (εr) of 4, an inline

oversampling factor (px) of 8, and a cross-line oversampling factor (py) of 16. Frequencies

ranging from 10 MHz to 400 MHz were used, which amounted to 38 frequency elements.

Note that the ground-to-surface reflection was removed as necessitated by this algorithm

(Streich et al., 2007). This, in turn, resulted in traces with 1733 samples each, or a 26% re-

duction in size. Unlike the admissible percent error achieved by phase-shift migration, the

dimensions of the radiograms migrated by this routine deviated, on average, by 25% from

those of the model. Even though the exact cause for this discrepancy was not uncovered,

three possibilities are: the required trimming of the direct wave, a non-optimal choice of

parametrization, and the nature of the synthetic data. Another important distinction be-

tween the migrated data in figure 5.10 and figure 5.11 pertains to the amplitude variations

along the sand-to-clay contact. In particular, the line treated by the vector migration shows

a clearer difference between the reflection strength at the hinge and that of the the limbs
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Figure 5.10: Shows the raw synthetic radargram (a) next to the one migrated using the
phase-shift algorithm (b). A velocity of 0.15 m/ns was used for the migration. A separable
two-dimensional Plank-tapering window was applied to artifacts produced at the edges
of the data. The same migration without tapering is shown in (c), which resulted in the
manifestation of strong artifacts.

and unfolded lateral sections. From these one could correctly infer that a greater contrast

in properties exists in that region.

One hindering characteristic of vector migration is an uneconomical computational

demand. Streich et al. (2007) reported running times of 8.4 hours for a modest survey

using a high end processor. The implementation in IVGPR was designed using a parallel

framework that allowed for a maximum speedup of 3.26 folds after engaging four threads.

A parallel performance analysis for the vector migration routine is shown in figure 5.12.
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Figure 5.11: GPR line treated by the vector migration algorithm using εr = 4, px =
8, and py = 16. Each original depth slice contained 160×64 elements. A total of 1733
depth slices were migrated using 38 frequency components from 10 MHz to 400 MHz.
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Figure 5.12: Parallel performance analysis for the single-component 3D exact radiation
pattern vector migration routine in IVGPR. The run time (a) shows a quadratic decrease
with number of threads activated while the speedup (b) was linear with a slope of 0.77.

This results were obtained using 2333 depth slices with 1024 by 64 elements each and a

total of 11 frequency elements, which corresponds to more than 1.68 × 109 iterations. A

quadratic decay in run time and a linear increase (of about 0.77 folds per processor) were

found. The synthetic dataset used for figure 5.11 was comparable in size to the survey

used by Streich et al. (2007), and it was migrated using a similar configuration. Yet, it

took an average 127 minutes to complete each successful run using four processors with a

clocking speed of 3.6 GHz each.

The performance of this vector migration algorithm was qualitatively assessed using

a small field survey composed of 18 lines with 213 traces and 512 time samples. The

103



survey was conducted without any regards to the stringent requirements of this routine,

which impaired the possibility of an effective migration. A slide corresponding to the

line at the center of the migrated survey is shown in figure 5.13b. Even though we can

appreciate a number of artifacts near the deeper sections, the overall reconstruction does

not appear inadequate when compared to the unmigrated central line, figure 5.13a. A more

informative quantitative analysis of this result was not pursued in this work.

In summary, it was demonstrated that the phase-shift and vector migration algorithms

can adequately migrate GPR data if properly implemented. It appeared as though the

phase shift migration algorithm offers an inexpensive operation cost and a more accurate

geometrical reconstructions. On the other hand, the vector migration produced a more

accurate rendering of reflection strengths but only a marginally acceptable geometrical

reconstruction and intensive computational requirements.

(a)

(b)

Figure 5.13: Vector migration of field data. The migrated line (b) shows artifacts likely
due to aliasing. The corresponding unmigrated line is shown in(a).
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6. CASE STUDIES

6.1 Overview

This section demonstrates how the numerous routines described throughout this work

can be combined in order to create effective workflows capable of enhancing the inter-

pretability and usefulness of GPR records. To that end, a total of two case studies where

IVGPR served as the primary processing tool are presented. The datasets used were made

available, in raw and processed form, by fellow GPR practitioners. The first survey took

place at Alcatraz National Historic Landmark, while the second survey was performed to

study a large exposed fault near Mason, Texas. Both surveys are introduced with a concise

description of pertinent historical and geological elements. The results and interpretations

included in this section are intended to demonstrate the robustness of the program and

should not be used to rival or support past conclusions made using these datasets.

6.2 Case I: Geophysical archeology over the recreational yard of the main

Alcatraz prison

The Alcatraz survey was carried out by Dr. Timothy S. de Smet and Dr. Mark E.

Everett over the main prison’s recreational yard. The goal of this study was to identify

buried infrastructures matching the architectural records of a military fortification dating

back to 1859. A manuscript by de Smet, currently under review, suggests that the recre-

ational yard has a concrete foundation overlaying soil used as fill during the construction

of the prison. The expected targets (e.g. man-made tunnels and the remains of buildings)

should have coherent signatures distinguishable from that of surrounding filling materials.

The GPR data was acquired with a PulseEkko system using a pair of 500 MHz antennas

in a common-offset bistatic configuration. The survey consisted of 63 lines that varied in

lengths but were separated from each other using a consistent line-spacing of 0.5 m. Each
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line was recorded with a trace density of 40 stations (traces) per meter and a total of 500

time samples, which corresponded to an acquisition window of 100 ns. The processing

workflows implemented by de Smet (2016), shown in figure 6.1, involved a dewow fil-

ter (applied as a bandpass filter with fhigh-pass = 300 MHz and flow-pass = 700 MHz), an

ATS background noise filter, a 2D FFT Stolt migration, and an AGC. In addition, de Smet

(2016) used the energy and instantaneous amplitude (or envelope) attributes to aid in the

interpretation of the processed data. The following explores the product of this workflow

using IVGPR as well as a modified version proposed by the author.

Dewow Background noise 
removal

2D FFT Stolt 
migration AGCRaw 

radagram

migration velocity of 
0.09 m/ns

Energy and 
instantaneous 

amplitude

Figure 6.1: Workflow proposed by de Smet (2016).

The raw radargram for line 35 of this survey is shown in figure 6.2a. As evidenced by

this image, raw records generally reveal only a limited amount of information. Figure 6.2b

shows the result obtained after applying a Gazdag migration and, subsequently, an instan-

taneous AGC. The migration was carried out using a constant subsurface velocity of 0.09

m/ns (corresponding to εr = 11.1) and, therefore, reduces to the Stolt migration used by

de Smet (2016). This migration was preceded by a low cut dewow filter and background

noise removal, in agreement with figure 6.1. The instantaneous AGC was computed using

a time gate of 2.2 ns. Figures 6.2c and 6.2d show the energy and instantaneous amplitude

attributes, respectively. While the latter does not require any parameters, the former was

obtained using 8 gray levels and a window size of 15 by 15 elements. It is worth mention-

ing that energy here was computed using the textural attribute routine of § 4.3.1, which
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might differ from the method used by de Smet (2016). The shallow section of figure 6.2b

(above 0.25 m) shows a dense set of energetic diffractions likely due to a noisy region that

precedes the advent of the first arrivals. Without a sufficiently large number of padded ele-

ments, this energy would wrap around introducing numerous artifacts that could render the

data uninterpretable. This problem can be avoided by properly implementing a time-zero

correction prior to the migration step. Note that, unlike figure 6.2a, the migrated image

and the attributes display an abundance of details about the subsurface and, therefore, are

better suited for interpretation. This workflow is common among GPR practitioners and,

as demonstrated in here, can be successfully implemented using the IVGPR package.

Figure 6.4 represents a modification to the workflow introduced above. The first step

refers to the combination of three routines suited to derive a comprehensive assessment of

the data’s quality. This, in turn, helps to optimize ensuing steps in the processing flow. In

particular, these routines are the gradient magnitude, multi-taper power spectrum estimator

(MTPSE), and programmed gain. The first of these procedures can reveal the presence

of random noise throughout the data and, thus, justify the use of a temporal trimming

and/or denoising. It also provides images of the subsurface structure without the need of

parametrization. The MTPSE generates a highly accurate rendering of the spectral content

for the entire radagram and, therefore, may reveal the presence of unwanted signals that

can be treated using frequency filtering. The programmed gain, like the gradient direction,

can help unveil important features in signal depleted regions in a manner familiar to most

users. Figures 6.4a and 6.4b shows an example in which the gradient direction attribute

was used to uncover the presence of random noise and later confirm the effectiveness of

the denoising procedure. A dashed line corresponds to the temporal level below which the

signal-to-noise ratio exceeds the desired tolerance. Since the performance of these three

quality assessment routines is virtually independent of parameters, users are advised to

implement them at the early stages of a georadar investigation.
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(a)

(b)

(c)

(d)

Figure 6.2: Outputs from a typical workflow implemented in IVGPR. (a) shows the raw
line. (b) shows the migrated data after AGC. (c) and (d) show the energy and instantaneous
attributes respectively.

The next two steps in the workflow involve an optional temporal trimming and a time-

zero correction. The former should be implemented based on the results obtained from

the quality analysis while the latter is applied following the methods described in §3.4 and

§ 4.4.3. Steps three through six are analogous to the ones in de Smet’s workflow, with

the exception of a time-zero correction. Step seven involves the implementation of TVSW

which, as described in § 4.4.1.1, acts similarly to a temporal gain but can enhance the
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Figure 6.3: New workflow proposed to produce improved results on this dataset.

vertical resolution of the data. Even though spectral balancing routines are not typical in

GPR studies, the author has found this technique pleasantly effective. The choice of dis-

play gain for step eight should align with the goals of the study. For instance, if a textural

attribute analysis is to be performed, an AGC gain can prove detrimental by producing

unphysical variations in amplitude.

Figure 6.5 shows line 32 and line 58 after applying steps one through seven of the

proposed workflow. The location of these lines within the recreational yard are shown in

figure ??a. Figure ??b shows a depth slice from the original survey and also indicates

the position of the two lines. As shown in figure 6.6a, line 58 traverses an underground

tunnel located about 10 meters inline. The migrated radiogram of figure 6.5b shows a

trapezoidal feature (indicated by the red arrow) at a similar inline location and at a depth

of 0.6 meters, which presumed to be related to this archeological structure. A region

of anomalously low amplitude is enclosed by a dashed box. The source of this peculiar

feature was not identified. Line 58 traverses a large tunnel believed to lie underneath

the center of the recreational yard, as indicated by figure 6.6a. A strong reflector with

the appropriate geometrical characteristics one would expect of this feature is evident in

figure 6.5a. This case study demonstrated that IVGPR can be used to for practical GPR

studies. In addition, a workflow useful for basic to mildly complex georadar surveys was
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(b)

Figure 6.4: (a) Gradient direction attribute used to reveal the underlying geometry and to
assess the level of noise in the image. The dashed line separates a the regions of high
and low signal-to-noise ratios. (b) Shows the same B-scan after applying the 2D adaptive
denoising routine in IVGPR. The coherency of events for this image appears to be much
improved, which corresponds to a lower number of randomly oriented events.

proposed. In the subsequent case study, this workflow will be applied to a field line in

order to characterize a fracture network.

6.3 Case II: Field record over exposed fault near Mason, Texas

The record processed in this section was acquired over a densely fractured area lo-

cated in the western potion of the Llano Uplift near Mason, Texas. It formed part of a

multi-azimuth polarimetric GPR survey conducted by Amara (2016). In his work, Amara
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(a)

(b)

Figure 6.5: Line 32(a) and line 58(b) from the study conducted over the recreational yard
of Alcatraz prison island. Two red arrows indicate the inferred location of underground
tunnels. A red square encloses a region of anomalously low amplitudes.

(2016) sought to obtain a detailed characterization of the underlying near-surface fracture

network. The original survey constituted a total of four lines (labeled A through D) each

acquired using three distinct antenna-receiver configurations. Line A in PP-mode was

analyze for this case study, where PP indicates that the antenna and receiver where both

parallel to the inline direction. This line traversed a high-angle normal fault, shown in fig-

ure 6.7, that trends north-east to south-west and dips to the south-east. Figure 6.7 depicts

the position of the GPR line with respect to the fault. Note that the line was acquired in

the northward direction. For a detailed account of the geology pertinent to this study, the
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 250 

Figure 6. (left) Georectified model over the recreation yard based upon the 1894 map where 251 

Traverses I, J, and K can be seen from north to south; and (right) georectified sketch map of 252 

historic traverses I, J and K and batteries 6 and 7 based on 1892 ordnance survey map, overlain 253 

in by the approximate outline of the recreation yard walls (by Martini). The georectification on 254 

the left highlights the external architecture while the internal architecture of the masonry 255 

magazines and communication tunnels is shown on the right. 256 

 257 

Based upon the information determined using the georectification process, remains of 258 

cultural features associated with the “initial military fortification” (1847-1867) were likely 259 

completely destroyed during the cutting and construction of the later “earthen fortification” 260 

(a)

 424 

Figure 11. TLS and GPR 500 MHz instantaneous amplitude depth slices from the recreation 425 

yard, at: (a-b) 0.5-1.0 m; (c-d) 1.0-1.5 m depths. (a) and (d) show the common aerial view, while 426 

(b) and (c) show a 3D perspective view. 427 

 428 

GPR Interpretation and Discussion 429 

 430 

     The interpretation of GPR data is always difficult, due to the complexities of electromagnetic 431 

vector wave propagation in strongly heterogeneous geological media. This is certainly the case 432 

for the task of discerning subsurface targets within the extensively anthroturbated strata 433 

underlying the Alcatraz recreation yard. Humans are remarkably proficient, however, at 434 

(b)32
58

32
58

Figure 6.6: (a) Map showing the recreational yard of the main prison in Alcatraz island.
The green and red lines indicate the position of lines 32 and 58, repetitively. A rendering
of the believed architecture of the military fortification that predates the prison can be seen
overlaying the map. Line 32 traverses a tunnel near its mid-section while line 58 traverses
a tunnel nearly 10 meters inline. (b) Shows the locations of the lines with respect to a
depth slice from the original publication by de Smet (2016). Modified for this work with
the consent of Mark E. Everett and Timothy S. de Smet.

reader should visit Amara (2016). The examples in this section focus on demonstrating

how IVGPR can generate accurate images that offer improvements from those published

in the original work, which involved the use of a commercial processing package.

This survey was carried out using a PulseEkko system with a 200 MHz antenna-

receiver pair. The B-scan used here is composed of 150 traces uniformly spaced 0.2 me-

ters apart. Each trace contains 750 samples that amounts to a total time window of 300

ns. In his work, Amara (2016) processed this line by applying a dewow filter, background

112



N

35 ft

A’

A

Figure 6.7: Shows the location of a high-angle fault traversed by the GPR line A to A’.
The line was acquired in the northward direction while the fault dips to the south-east.

noise filter, Stolt migration, and an AGC. Note that, aside from the attribute analysis step,

this workflow is identical to the one implemented by de Smet (2016). In IVGPR, line A

was processed using steps one through eight of the modified workflow introduced in the

previous section. This was followed by a manual mapping of numerous fractures in the

processed record. The general location of the fault was first inferred during the initial qual-

ity assessment of the data, which corresponds to step one of the modified workflow. The

author noticed that, after a programmed gain was applied, a cluster of hyperbolas appeared

about 17 meters inline. A dewow high-pass filter with a cut-off frequency of 35 MHz was

applied to generate figure 6.8, since applying a gain alone strengthened a high amplitude

and low frequency signal that made it difficult to conduct an effective quality assessment.

Figure 6.9a shows the radagram processed in IVGPR as well as a network of fractures

manually picked. This same line, processed and interpreted by Amara (2016), is shown in

figure 6.9b. The fractures indicated with orange curves show instances where analogous

picks were made in both images. On the other hand, fractures mapped with green curves
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Figure 6.8: Line A after a low-cut dewow and a programmed gain were applied in order
to highlight strong reflectors masked by the direct arrival. A dashed box encloses a cluster
of hyperbolic events initially believed to be caused by a local fault.

belong to those newly found by the author. Two arrows indicate where a pair of peculiar

features appear in both images, which shows that both processing flows generated compa-

rable results. A yellow curve identifies the fault within the dataset. The most significant

differences between these two images relate to the vertical resolution and depth for which

effective interpretations can be drawn in each. In particular, the image processing using

IVGPR shows a higher vertical and lateral resolution, manifested by visibly thinner beds

and clearer discontinuities. Additionally, while both records show similar depth ranges,

the image from Amara (2016) reveals little detail below the 2 m mark.

To process this data, the author first used a 2D adaptive denoising routine with a win-

dow size of 5 by 5 elements. Next, a high-pass dewow filter was used to remove amplitudes

below 35 MHz and a time-zero correction set to s-crossover aligned the first arrivals at a

common datum. This step was followed by an ATM background subtraction with α = 0.25

and a window size of 51 elements. A phase-shift migration was carried out using a con-

stant velocity of 0.09 m/ns in agreement with that used by Amara (2016). The final two

steps involved a TVSW followed by an instantaneous AGC. The TVSW was applied using

four filters within the frequencies of 50 to 350 MHz, while a time gate of 5.2 ns was used

for the instantaneous AGC. It is worth noting some of the results of different time-zero
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(a)

 

67 

 

 

Figure 26: Line A PP at different stages of processing workflow. 
 

 

(b)

Figure 6.9: (a) Shows the B-scan produced using IVGPR after implementing the workflow
proposed on the previous section. A number of visible fractures were mapped. Those
marked with orange curves correspond to picks matching the ones made by Amara (2016).
Newly interpreted picks are indicated by green curves and the inferred location of the large
normal fault is shown by the yellow curve. Two red arrows indicate regions where the data
processed by Amara (2016) (b) and that processed by the author (a) show a pair of peculiar
features in good agreement.

correction methodologies. Amara (2016) used temporal clipping rather than an automa-

tive or manual selection of the first arrival. The quality of the image produced by IVPGR

allowed for a comprehensive fracture characterization in a greater amount of detail than

that by an experienced user using a commercial software. This should further evidence the

ability of this program to produce satisfactory results when treating field records.
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7. CONCLUDING REMARKS AND FUTURE WORK

This work presented the major features of a new GPR processing package intended to

be powerful, free, and flexible. The author hopes to have provided enough justification,

through effective examples, in support of the adoption of IVGPR for academic georadar

studies. An extensive search failed to reveal a free GPR processing package program

that compares to IVGPR in the number and sophistication of the available functionalities.

Furthermore, this program offers the rare opportunity to implement 3D vector migrations

as part of a processing workflow. The unavailability of these techniques has been known

to hinder the performance of advanced georadar procedures such as inversion and true

amplitude processing.

Currently this program lacks a user interface that is easy to use for those without a

comfortable level of expertise in Fortran programming. Future iterations of this program

will be wrapped in python and will provide a dedicated GUI in order to remove the need to

interact with the source code. In addition, the author will develop python-based methods

to read encrypted GPR files and visualize 3D GPR records. In its current state, the author

sees the usefulness of IVGPR limited to a small niche of advanced users in the academic

sectors. By releasing a version better suited for the masses, this program can possibly

replace many of the feature-deprived options currently available at no cost.
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