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ABSTRACT 

 

Estimating nonlinear effects, including interaction and quadratic effects, is a 

prevailing issue in social and behavioral science. Despite several advantages of using 

latent variable models in estimating nonlinear effects, conducting path models with 

observed composites is still a very common practice among applied researchers. 

However, it is well-known among methodologists that conducting path models without 

considering the measurement errors of the observed composites would lead to biased 

estimation. Hence, the aim of this dissertation is to bridge the gap between 

methodologists and applied researchers by reviewing two methods— reliability adjusted 

product indicator (RAPI) and latent moderate structural equations (LMS)—which can be 

applied for estimating nonlinear effects while accounting for the measurement errors of 

the composites. 

The dissertation is composed of three manuscripts. In the first manuscript I 

reviewed the RAPI and LMS methods and compared their performance with the 

conventional path models in terms of the estimation accuracy of the interaction effects. 

The second manuscript focuses on choosing the most appropriate reliability estimates 

while conducting the RAPI and LMS methods. In the third manuscript I discuss issues 

regarding having both interaction and quadratic effects in the models, and the impact of 

multicollinearity of the exogenous variables on the estimation of both nonlinear effects.  

Based on the simulation results, I found that while estimating nonlinear effects 

with observed composites, conduct latent variable models and apply both the RAPI and 
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LMS methods yielded more accurate interaction estimates than the conventional path 

analysis. Additionally, for items following congeneric assumption, applying the RAPI 

and LMS methods with the Revelle’s omega total yielded more accurate results; if only 

the power of the test is of interest, applying Cronbach’s alpha, omega, and GLB make 

less difference. However, caution should be made for applying the RAPI and LMS 

methods when the correlation between the latent exogenous variables are high (i.e., over 

.5), especially when both interaction effects and quadratic effects are of interest. This 

dissertation concludes with a summary of findings and the implications of these findings 

in applied research. 
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CHAPTER I  

INTRODUCTION  

 

Structural Equation Modeling (SEM) is a common technique to estimate the 

effects with unobserved variables. Under the SEM framework, researchers can apply 

latent variable models by creating measurement-free variables, namely, latent variables 

from the observed variables, and define the corresponding measurement errors. Using 

latent variable models can increase estimation accuracy of the linear effects or nonlinear 

effects in the models.  

Testing nonlinear effects including interaction and quadratic effects has been 

very important in social and behavioral science. Hence, methodologists have developed 

several latent variable models (e.g., the product-indicator approach for latent interaction 

effect) for modeling those nonlinear effects. Additionally, those latent variable models 

have been shown outperform the conventional path analyses, which did not take 

measurement errors into account, in terms of estimation accuracy and power.  

Despite the advantages for using latent variable models, applied researchers 

generally used conventional path analyses in their research, especially for testing 

nonlinear effects such as interaction effects. One of the reasons is the commonly use of 

manifest composites instead of latent variables when analyzing nonlinear effects. 

Unfortunately, most of the latent variable models cannot be directly applied with 

manifest composite variables due to model identification issue (i.e., the under-identified 

model with only one observed indicator loaded on a latent factor which requires 
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constraints to both factor loading and residual variance).  This, in turn, leads to the 

inability to separate the latent variables and measurement errors from the observed 

composites.  

In this dissertation, I conduct three studies to tackle this issue. In my first study, I 

compared two methods—reliability adjusted product indicator (RAPI) and latent 

moderate structural equations (LMS)—which can be applied to estimate the latent 

interaction effects with manifest composites, and evaluate the performance of these two 

methods with the conventional path analyses. One key feature in both the RAPI and the 

LMS methods is the use of the scale reliability to adjust for the measurement error 

variance of the exogenous composites. Therefore, in the second study, four commonly 

used reliability estimates: Cornbach’s alpha, omega total, Revelle’s beta, and greatest 

lower bond (GLB) were compared in terms of obtaining accurate and precise interaction 

effects estimates while incorporating with the LMS and the RAPI methods. In the third 

study, I extend the scope of my first two studies to quadratic effects, and further discuss 

issues including multicollinearity of the exogenous variables in the estimation of 

nonlinear effects. With the results and recommendations from these three studies, I 

intend to provide more feasible and effective approaches on testing non-linear effects to 

applied researchers whom will consider using latent variable models rather than 

traditional path models with manifest composites for estimating nonlinear effects.      
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CHAPTER II  

EVALUATION OF TWO METHODS FOR MODELING MEASUREMENT 

ERRORS WHEN TESTING INTERACTION EFFECTS WITH OBSERVED 

COMPOSITE SCORES1  

 

Introduction 

Testing interaction effects is an important and common practice in social and 

behavioral research, as researchers are interested in determining whether the relationship 

between two variables stays the same or changes depending on the level of a third 

variable (i.e., the moderator). In practice, both the predictor and the moderator are 

measured by either a single item (e.g., socio-economic status, age, or gender) or a scale 

containing multiple items. For the applications of testing interaction effects with 

multiple-item exogenous variables, methodologists have proposed several statistical 

methods within the structural equation modeling (SEM) framework to test this type of 

interaction effects. These statistical methods are capable of modeling the latent 

interaction effects while simultaneously taking into account any measurement errors in 

the items (Jöreskog & Yang, 1996; Kenny & Judd, 1984; Klein & Moosbrugger, 2000; 

Klein & Muthén, 2007; Lin, Wen, Marsh, & Lin, 2010; Little, Bovaird, & Widaman, 

2006; Marsh, Wen, & Hau, 2004; Moulder & Algina, 2002; Wall & Amemiya, 2001).  

                                                 

1 “Evaluation of Two Methods for Modeling Measurement Errors When Testing Interaction Effects With 

Observed Composite Scores” by Yu-Yu Hsiao, Mark H. C. Lai, and Oi-Man Kwok, 2017. Educational 

and Psychological Measurement. Copyright©2017 (SAGE). Reprinted by permission of SAGE 

Publications. DOI: 10.1177/0013164416679877 
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Despite methodological advancements in recent years, however, applied 

researchers still generally use observed composites (e.g., the mean or sum from a 

multiple-item scale) for both the predictor and the moderator when testing interaction 

effects. For example, a review of the papers (N = 120) published in the Journal of 

Applied Psychology in 2015 identified 22 (18.3%) articles testing at least one interaction 

effect using observed composites.1 Of these 22 papers, only two corrected for the 

measurement errors of the exogenous variables, but in neither study did the author 

consider measurement errors in the interaction terms (Eby, Butts, Hoffman, & Sauer, 

2015; Mitchell, Vogal, & Folger, 2015). In the remaining 20 (90.9%) articles, all the 

manifest variables and the corresponding interaction effects were assumed to be 

measured accurately (i.e., without any measurement errors). These findings echo those 

of Cole and Preacher (2014), who reviewed 44 issues of seven American Psychological 

Association journals published in 2011, and found that more than one tenth of the studies 

conducted path analyses without correcting for measurement errors in the manifest 

variables. Thus, ignoring measurement errors of the manifest variables and the 

corresponding interaction effects in path analyses is still quite common. Yet, perfectly 

reliable manifest variables rarely exist in real data (Cohen, Cohen, West, & Aiken, 2003) 

and, as a result, path analyses with observed variables uncorrected for measurement 

errors could result in biased (either under- or overestimated) path coefficients (e.g., 

Aiken & West, 1991; Busemeyer & Jones, 1983; Cole & Preacher, 2014) and lead to 

reduced statistical power (e.g., Marsh, Wen, Nagengast, & Hau, 2012).  
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Given the potential problems raised by failing to properly address measurement 

errors when observed composites are used, in this study, two alternative methods were 

reviewed and evaluated: the latent moderated structural equations (LMS) method and the 

reliability-adjusted product indicator (RAPI) method, both of which can properly take 

into account measurement errors when testing interaction effects based on observed 

composite measures. The LMS method, developed by Klein and Moosbrugger (2000), 

originally focused on testing interaction effect with multiple-indicator exogenous 

variables. In the present study, we illustrated how to impose error variance constraints on 

the exogenous variables while using the LMS method to estimate interaction effects 

based on observed composite variables. With regard to the RAPI method, even though it 

can be traced back to the 1980s (Bohrnstedt & Marwell, 1978; Busemeyer & Jones, 

1983), it has seldom been used in applied research.  

To our knowledge, the performance of these two alternative approaches in terms 

of the estimation accuracy of interaction effects with observed composites has yet to be 

investigated. Therefore, in the present study, we compared the LMS and the RAPI 

methods with the commonly used path analysis approach, which assumes no 

measurement error for all the observed composites and the corresponding interaction 

effect, under conditions of varying sample sizes, reliability levels, and magnitudes of the 

interaction effects.  

Reliability Adjustment for the Interaction Effect between Observed Composites 

As mentioned, the most common way to estimate interaction effects with 

observed composite scores is by using the traditional path models, assuming that all 
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variables in the model are measurement-error free. Thus, under the traditional path 

model (see Figure 1), both the predictor and the moderator are presented as observed 

variables and are assumed to be measurement-error free. On the contrary, the 

distribution analytic method (see Figure 2) and the reliability-adjusted product indicator 

(RAPI) method (see Figure 3) can take into account the measurement errors of the 

exogenous variables while estimating interaction effects. A key feature of these 

alternative approaches is the application of a reliability adjustment of each observed 

composite by constraining the corresponding error variance. Below we first discuss how 

to impose the error-variance constraint with the use of reliability. We then present 

examples of applying these reliability adjustments to both LMS and RAPI methods.  

 

Figure 1. The path model for estimating one interaction effect with single 

predictor variable (X) and single moderator (M). Both X and M are composites from 

multiple items; XM is the product term of X and M. 

X

M

XM

y   
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In the classical testing theory (CTT) framework (Crocker & Algina, 1986; Lord 

& Novick, 1968), score reliability of a composite variable, X, is defined as the 

proportion of variance in X that can be attributed to the true score. Multiple approaches  

 

Figure 2. The latent moderated structural equations (LMS) method for estimating one 

interaction effect with single predictor variable (X) and single moderator (M). Both X 

and M are composites from multiple items. The equations for defining 𝑣𝑎𝑟(𝛿𝑋) and 

𝑉𝑎𝑟(𝛿𝑀) are cited from Bollen (1989). 
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Figure 3. The reliability adjusted product indicator (RAPI) method for estimating one 

interaction effect with single predictor variable (X) and single moderator (M). Both X 

and M are composites from multiple items; XM is the product term of X and M. The 

equations for defining 𝑉𝑎𝑟(𝛿𝑋) and 𝑉𝑎𝑟(𝛿𝑀) are cited from Bollen (1989). The proof 

for defining 𝑉𝑎𝑟(𝛿𝑋𝑀) is described in the Appendix A. 

 

 

have been proposed to estimate reliability coefficients under conditions where the true-

score variance cannot be directly obtained (Crocker & Algina, 1986). Among these 

approaches, structural equation modeling (SEM) is one of the techniques that yield more 

precise estimation of reliability coefficients (Raykov, 1997; Yang & Green, 2010). Let 

Xi be the ith observed item of a scale measuring the latent construct,  𝑋, with the 

measurement model written as below: 
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𝑋𝑖  𝜏𝑋  𝜆𝑋𝑖
 𝑋  𝛿𝑋𝑖

,                                                   (1) 

 

where 𝜏𝑋 is the intercept, 𝜆𝑋𝑖
 is the (unstandardized) loading of the ith indicator on  𝑋, 

and 𝛿𝑋𝑖
 is the corresponding random measurement error term. Under the SEM 

framework, the factor structure reliability formula for this scale is written as (Bollen, 

1989; Kline, 2011; Raykov, 1997; Raykov & Shrout, 2002):  

 

𝜌𝑋𝑋  
(∑𝜆𝑋𝑖

)
2
𝑉𝑎𝑟( 𝑋)

[(∑𝜆𝑋𝑖
)
2
𝑉𝑎𝑟( 𝑋)  ∑𝑉𝑎𝑟(𝛿𝑋𝑖

)]
⁄ ,                       (2)   

     

where 𝑉𝑎𝑟( 𝑋) is the variance of the latent variable  𝑋 and 𝑉𝑎𝑟(𝛿𝑋𝑖
) represents the 

variance of the measurement error for the ith indicator.  

If information about the individual item is unknown or unavailable (e.g., use of 

secondary data), one can only use the composite score, X = ΣXi, as the single indicator 

for the latent variable,  𝑋. Thus, the corresponding reliability formula for X based on 

Equation (2) can then be rewritten as: 

 

𝜌𝑋𝑋  
𝑉𝑎𝑟( 𝑋)

[𝑉𝑎𝑟( 𝑋)  𝑉𝑎𝑟(𝛿𝑋)]
⁄ ,                                    (3) 
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given that the only factor loading between 𝑋 and  𝑋 (i.e., 𝜆𝑋) is constrained to 1.0 for 

identification purpose. Hence, the latent score  𝑋 is equal to the true score in CTT 

(Borsboom, 2005). The error variance, 𝑉𝑎𝑟(𝛿𝑋), can be estimated by using Equation (3), 

in which the reliability of a measure is the function of true-score variance and error 

variance as (Bollen, 1989): 

 

𝑉𝑎𝑟(𝛿𝑋)  (1  𝜌𝑋𝑋 )𝑉𝑎𝑟(𝑋).                                                 (4)  

 

Given the reliability coefficient, 𝜌𝑋𝑋′, the error variance of 𝑋 is a function of (1  𝜌𝑋𝑋′), 

which is the proportion of the variance due to measurement error in 𝑋. The true score 

variance, 𝑉𝑎𝑟( 𝑥), can be rewritten as a function of the reliability coefficient and the 

observed variance, namely: 

 

𝑉𝑎𝑟( 𝑋)  𝜌𝑋𝑋 𝑉𝑎𝑟(𝑋).                                                       (5) 

 

Equations (4) and (5) are the key elements in specifying the error variance constraints 

for the interaction effects under the RAPI method. Note that the discussion is equally 

applicable to mean composite scores, which is simply a rescaled version of the sum 

composite score.  

Distribution analytic approach. Researchers can apply the distribution analytic 

approach to estimate interaction effects by either the latent moderated structural 

equations (LMS) method (Klein & Moosbrugger, 2000) or the quasi-maximum 
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likelihood (QML) method (Klein & Muthén, 2007) under the SEM framework with 

specific data distributional assumptions. Figure 2 shows the simplest scenario in which a 

one-indicator predictor composite and a one-indicator moderator composite predict a 

single outcome. By using Equations (4) and (5) to constrain the error variances of the 

observed composites according to the corresponding reliability coefficient such as 

Cronbach’s alpha (Bollen, 1989) or factor structure reliability (Raykov, 1997), one can 

estimate the latent interaction effect with the observed composite scores via the 

distribution analytic approach, which takes into account the measurement errors for the 

observed composites (Figure 2).  

Based on Equations (4) and (5), 𝑉𝑎𝑟(𝛿𝑋) and 𝑉𝑎𝑟(𝛿𝑀) can, respectively, be 

defined as 

 

𝑉𝑎𝑟(𝛿𝑋)   (1  𝜌𝑋𝑋 )𝑉𝑎𝑟(𝑋),                              

𝑉𝑎𝑟(𝛿𝑀)  (1  𝜌𝑀𝑀 )𝑉𝑎𝑟(𝑀),  

 

while 𝑉𝑎𝑟( 𝑋) and 𝑉𝑎𝑟( 𝑀) can be defined as 

 

𝑉𝑎𝑟( 𝑋)  𝜌𝑋𝑋 𝑉𝑎𝑟(𝑋),      

   𝑉𝑎𝑟( 𝑀)   𝜌𝑀𝑀 𝑉𝑎𝑟(𝑀) . 

 

Although this is a very powerful approach, access to both the LMS and QML 

methods is quite limited. For example, the LMS method is exclusively built into Mplus 
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(Muthén & Muthén, 1998-2013) whereas the QML method is a stand-alone program 

available only from the developer Andreas Klein (Kwok, Im, Hughes, Wehrly, & West, 

2016). Additionally, the overall model chi-square test and the commonly used model fit 

indices (e.g., CFI, RMSEA, and SRMR) are not available in these methods. 

Reliability adjusted product indicator (RAPI) method. Researchers can also 

create a latent interaction effect factor by having the observed interaction effect term 

(i.e., the product of the predictor and the moderator) loaded on it (see Figure 3). Similar 

to the distributional analytic approach, the reliability-adjusted constraints can be directly 

applied to the exogenous variables (i.e., the predictor X and moderator M) under the 

RAPI approach, with the use of the same error-variance constraints as presented in 

Equations (4) and (5).  

As for the observed interaction variable, 𝑋𝑀, which is the product term of 𝑋 and 

𝑀, the variance of this interaction effect can be defined as the following equation 

(reproduced from Equation A7 in Appendix A), under the assumption of independent 

measurement errors and double mean-centered variables (Lin et al., 2010): 

 

𝑉𝑎𝑟(𝑋𝑀)  [𝐸( 𝑋𝑀
2)  (𝐸( 𝑋𝑀))

2
]  𝐸( 𝑋

2)𝐸(𝛿𝑀
2)  𝐸(𝛿𝑋

2)𝐸( 𝑀
2)

 𝐸(𝛿𝑋
2)𝐸(𝛿𝑀

2) 

       𝑉𝑎𝑟( 𝑋𝑀)  𝑉𝑎𝑟( 𝑋)𝑉𝑎𝑟(𝛿𝑀)  𝑉𝑎𝑟( 𝑀)𝑉𝑎𝑟(𝛿𝑋)  𝑉𝑎𝑟(𝛿𝑋)𝑉𝑎𝑟(𝛿𝑀),         (6) 

 

The procedure to create the double mean centered variable is straightforward. First both 

𝑋 and 𝑀 are mean-centered, then the product term of the mean-centered 𝑋 and 𝑀 are 
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mean-centered. The variance of the observed interaction variable, 𝑉𝑎𝑟(𝑋𝑀), can be 

decomposed into (a) the true- score variance, 𝑉𝑎𝑟( 𝑋𝑀), and (b) the error variance, 

𝑉𝑎𝑟(𝛿𝑋𝑀), which equals the last three components of Equation (6), or 

 

𝑉𝑎𝑟(𝛿𝑋𝑀)  𝑉𝑎𝑟( 𝑋)𝑉𝑎𝑟(𝛿𝑀)  𝑉𝑎𝑟( 𝑀)𝑉𝑎𝑟(𝛿𝑋)  𝑉𝑎𝑟(𝛿𝑋)𝑉𝑎𝑟(𝛿𝑀).            (7) 

 

The corresponding derivations are described in Appendix A. Accordingly, in 

Equation (6), we can substitute the measurement error variances and the true-score 

variances of X and M with their corresponding reliability estimates and observed 

variances. Hence, the error variance of the latent interaction effect is (Bohrnstedt & 

Marwell, 1978; Busemeyer & Jones, 1983) as follows: 

 

𝑉𝑎𝑟(𝛿𝑋𝑀)  𝜌𝑋𝑋 𝑉𝑎𝑟(𝑋)(1  𝜌𝑀𝑀 )𝑉𝑎𝑟(𝑀)  𝜌𝑀𝑀 𝑉𝑎𝑟(𝑀)(1  𝜌𝑋𝑋 )𝑉𝑎𝑟(𝑋)  

(1  𝜌𝑋𝑋 )𝑉𝑎𝑟(𝑋)(1  𝜌𝑀𝑀 )𝑉𝑎𝑟(𝑀).                               (8) 

 

Equation (8) is the key equation to set up the nonlinear constraint for the error variance 

of the latent interaction effect when using the RAPI method. 

This study compared three methods of examining the interaction effects with 

observed composite scores to determine the estimation accuracy of the interaction 

effects. A Monte Carlo simulation study was conducted to compare methods with and 

without the consideration of measurement errors of the manifest variables. Both the 

LMS and RAPI methods were compared with the conventional path model. We chose 
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the LMS method because it is currently the only distributional analytic approach that is 

feasible in a general SEM program (i.e., Mplus).  

 

Figure 4. The pseudo population model with two latent exogenous variables and one 

observed variable.  

 

Method 

In this Monte Carlo study, we compared different methods for estimating the 

magnitude of the interaction effect Υ𝑋𝑀, with the use of the data generation model shown 

in Figure 4. Specifically,  
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where 𝑋𝑖  𝑋 , 𝑋2,  𝑋  and 𝑀𝑖  𝑀 , 𝑀2,  𝑀  were observed indicators, as shown in 

Figure 4. 𝜏𝑋𝑖
, 𝜏𝑀𝑖

, and 𝜏 , respectively, represented the intercepts for 𝑋𝑖, 𝑀𝑖, and 𝑌; all 

these intercepts were assumed to be zero. 𝜆𝑋𝑖 and 𝜆𝑀𝑖 were the factor loadings for the ith 

indicator on the two latent variables,  𝑋 and  𝑀, respectively. 𝛿𝑋𝑖
 and 𝛿𝑀𝑖

 were the 

unique factors of the ith indicator on  𝑋𝑖 and 𝑀𝑖, respectively.  𝑋𝑀 was the latent 

interaction variable between  𝑋 and  𝑀. Finally, Υ𝑋, Υ𝑀, and Υ𝑋𝑀 were the path 

coefficients from the corresponding latent variables to the observed outcome 𝑌, and 𝜖  

was the error term for 𝑌. We chose a situation where mean composite scores were used 

in estimating the latent interaction effect. The results from this study are expected to be 

applicable to other forms of composite methods such as sum scores. 

Monte Carlo Simulation Study  

The model shown in Figure 4 was used to generate the population data. The two 

latent variables,  𝑋 and  𝑀, and the two unique factors, 𝛿𝑥𝑖
 and 𝛿 𝑖

, were assumed to 

follow a standard normal distribution (i.e., mean equals to 0 and variance equals to 1.0) 

in the population. Both  𝑋 and  𝑀 were latent predictors with variance set at 1 and 

𝐶𝑜𝑟𝑟( 𝑋 ,  𝑀)  0.5 . Υ𝑋 and Υ𝑀 were fixed to 0.3 (Evans, 1985). 𝑉𝑎𝑟(𝜖 ) was defined 

to make the variance of Y equal to 1 under the Υ𝑋𝑀  0 condition. Therefore, 𝑉𝑎𝑟(𝜖 )  

1  (2 ∗ 0.32  2 ∗ 0.5 ∗ 0.32)  0.73, indicating that the predictors as a whole 

explained 27% (large effect size; Cohen, 1988) of the variance in 𝑌.   

The items corresponding to  𝑋 and  𝑀 were assumed to be tau-equivalent items. 

Tau-equivalent items are defined as having equal loadings but possibly unequal error 

variance across items (Lord & Novick, 1968). Raykov (1997) showed that, if all the 
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items (e.g., 𝑋𝑖 and 𝑀𝑖 in Figure 3 of the present study) under the common factor are tau-

equivalent items, the estimated factor structure reliability equals Cronbach’s alpha 

coefficient (Cronbach, 1951). In the present study, both 𝜆𝑋𝑖 and 𝜆𝑀𝑖 were fixed to 1.0. In 

terms of error variance of the exogenous variables, based on Equation (2), the sum of the 

error variances for the three items for each latent factor was 3.85 and 1.00, 

corresponding to .70 and .90 reliability, respectively. To achieve tau-equivalent items, 

we varied the error variances of the three items proportionally for both  𝑋 and  𝑀. The 

error variance of the first item covered 55% of the total error variances in each latent 

predictor, followed by 33% of the second item, and 12% of the third item.1 In other 

words, we manipulated the error variances as (2.12, 1.27, .46) for .70 reliability, and 

(.55, .33, .12) for .90 reliability. The design factors were described below. 

Sample size, 𝑵.  Based on the conditions used in past simulation studies (Cham, 

West, Ma, & Aiken, 2012; Chin, Marcolin, & Newsted, 2003; Lin et al., 2010; Marsh, 

Wen, & Hau, 2004; Maslowsky, Jager, & Hemken, 2015), we chose 100, 200, and 500 

to represent small, medium, and relatively large sample sizes.  

Reliability,  . We manipulated the reliability, 𝜌, for both 𝑋 and 𝑀 to be either 

.70 or .90. A Reliability of .70 represents 49% of the total variance being the true score 

variance and has been viewed as the acceptable lower boundary of reliability for group 

comparison in clinical research. Low reliability conditions (i.e., ρ < .70) were not 

considered in our simulation setting. 

Interaction effect, 𝚼  .We manipulated the magnitude of the interaction effect 

Υ𝑋𝑀 to be either 0 (no interaction effect) or 0.50. The value of zero was designed to test 
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the methods’ performance when the null hypothesis was true (Cham et al., 2012). The 

value of .50 was used in a previous simulation study (cf. Chin et al., 2003). 

Mplus 7.11 (Muthén & Muthén, 1998-2013) was used to generate 2,000 data sets 

for each condition. Given that the data were generated at the item level (i.e., three items 

per latent factor), we computed the mean composite scores for X and for M by averaging 

the corresponding items. Hence, we had three new observed composite scores; namely, 

the two observed composite variables 𝑋 and 𝑀, and the corresponding product (or 

observed interaction effect) term 𝑋𝑀. The data sets were then analyzed by fitting the 

three methods as shown in Figures 1, 2 and 3, respectively. For all three methods, 

double-centering strategy (Lin et al., 2010) was applied. Therefore, before analyzing the 

data using the three methods, 𝑋 and 𝑀 were first mean-centered; the product term XM 

was first computed using the mean-centered 𝑋 and 𝑀 and then mean- centered 

afterward. The annotated Mplus syntax for specifying the models with these three 

methods is presented in Appendix B. 

Path model. The first method tested was the conventional path model (see 

Figure 1), with one predictor, one moderator, and the product term predicting one 

outcome variable. The measurement errors of the manifest exogenous variables were 

assumed to be zero. The three exogenous variables were allowed to be correlated.  

LMS method. For the second method, the LMS method, no product indicator 

was created, as depicted in Figure 2. Instead, a maximum likelihood estimator with 

robust standard errors using numerical integration was used to estimate the latent 

interaction effect, based on the information of 𝑋 and 𝑀. The measurement error 
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variances for both 𝑋 and 𝑀 were constrained by using Equations (4) and (5). The two 

latent factors,  𝑋 and  𝑀, were correlated. Both the common factor loadings were fixed 

to 1 for model identification purpose while the factor variances were freely estimated. 

RAPI method. In the RAPI method, we utilized the reliability of each composite 

to constrain the corresponding measurement error. These non-linear constrains are 

shown in Figure 3. All the common factor loadings were fixed to 1 for model 

identification purposes whereas the factor variances were freely estimated. All the latent 

factors were allowed to be correlated. 

Evaluation Criteria  

Four criteria were applied to evaluate the performance of the three methods in 

examining the interaction effects with observed composite scores. The first two criteria, 

a 95% confidence interval (CI) coverage rate and the standardized bias, were used to 

evaluate bias – the average difference between the estimator and the true parameter. For 

the 95% CI coverage, the Wald interval was obtained, with a coverage rate > 91% 

considered acceptable (Muthén & Muthén, 2002). The standardized bias was the ratio of 

the average raw bias over parameter standard errors. Therefore, the standardized bias can 

be interpreted in a standard deviation unit, like Cohen’s d. The standardized bias of the 

latent interaction effect estimates was compared with the cutoff value of 0.40. An 

absolute value < 0.40 was regarded as acceptable (Collins, Shafer, & Kam, 2001). 

The third criterion was the relative standard error (SE) bias of the interaction 

effect estimates; it was designed to evaluate the precision of the interaction estimators. 

Estimators with smaller relative SE bias show less variability across simulation 
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replications. As recommended by Hoogland and Boomsma (1998), relative SE bias 

values < 10% were considered acceptable.  

Finally, the root mean square error (RMSE) was calculated to evaluate both the 

accuracy and precision of the parameter estimations for the three methods. The smaller 

the RMSE values, the more accurate the parameter estimations were across the 2,000 

replications.  

Results 

The results of the conventional path model (without considering any 

measurement errors of the exogenous variables) and the models applying the RAPI and 

the LMS methods were compared in terms of the 95% CI coverage rate of the interaction 

effect, the standardized bias, relative standard error bias, and RMSE of the interaction 

effect estimates. The simulation results for Υ𝑋𝑀  0  are displayed in Table 1 and the 

results for Υ𝑋𝑀  0.50 are shown in Table 2.  
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Table 1  

95% Confidence Interval (CI) Coverage Rate, Standardized Bias, Relative Standard Error (SE) Bias, and Root Mean Square 

Error (RMSE) for 𝛶𝑋𝑀 (=0) a 

   95% CI Coverage (95%)  Standardized Bias  Relative SE Bias (%)  RMSE 

N  𝜌  PM RAPI LMS  PM RAPI LMS  PM RAPI LMS  PM RAPI LMS 

100 .70  93.7 97.0 91.5  -0.02 -0.01 -0.03  -3.69 -2.48 -9.7  0.07 0.19 0.12 

 .90  94.0 94.1 91.0  -0.03 -0.03 -0.03  -4.57 -5.13 -11.13  0.08 0.10 0.10 

200 .70  94.2 96.1 92.8  -0.03 -0.01 -0.03  -0.66 -2.56 -5.3  0.05 0.10 0.08 

 .90  94.7 94.7 93.1  -0.03 -0.03 -0.04  -1.97 -2.21 -5.77  0.06 0.07 0.07 

500 .70  94.6 94.1 93.8  -0.04 -0.03 -0.04  0.72 -0.91 -2.27  0.03 0.05 0.05 

 .90  94.4 94.6 93.6  -0.04 -0.03 -0.03  -0.29 -0.49 -3.67  0.03 0.04 0.04 

Note. N = sample size; 𝜌 = reliability estimate; PM = Path model; RAPI = reliability-adjusted product-indicator method; LMS 

= latent moderated structural equations method. 
aValues exceeding the recommended cutoffs are in boldface.  
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Table 2  

95% Confidence Interval (CI) Coverage Rate, Standardized Bias, Relative Standard Error (SE) Bias, and Root Mean Square 

Error (RMSE) for 𝛶𝑋𝑀 (=0.5)a 

   95% CI Coverage (95%)  Standardized Bias  Relative SE Bias (%)  RMSE 

N  𝜌  PM RAPI LMS  PM RAPI LMS  PM RAPI LMS  PM RAPI LMS 

100 .70  13.4 97.1 90.0  -2.80 0.30 -0.13  -14.82 1.14 -8.58  0.24 0.33 0.14 

 .90  79.2 93.7 91.4  -0.91 0.07 -0.07  -9.63 -7.73 -10.29  0.12 0.11 0.11 

200 .70  0.0 97.1 93.8  -4.19 0.26 -0.12  -11.50 0.28 -1.47  0.24 0.15 0.09 

 .90  67.9 93.9 94.6  -1.35 0.05 -0.06  -6.48 -5.09 -2.88  0.10 0.07 0.07 

500 .70  0.0 94.8 93.4  -6.50 0.16 -0.07  -13.96 -1.38 -1.60  0.23 0.08 0.06 

 .90  37.5 93.3 93.8  -2.11 0.03 -0.04  -7.65 -6.26 -2.51  0.09 0.05 0.04 

Note. N = sample size; 𝜌 = reliability estimate; PM = Path model; RAPI = reliability-adjusted product-indicator method; LMS 

= latent moderated structural equations method. 
aValues exceeding the recommended cutoffs are in boldface. 
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Convergence and Inadmissible Solutions 

All the simulation replications were converged without any issues. Only 12 

inadmissible solutions occurred with the RAPI method under the condition of non-zero 

interaction effect (Υ𝑋𝑀  0.50), low reliability value (𝜌  .70), and small sample size 

(𝑁  100). All 12 (out of 2,000 replications) non-positive definite matrices were due to 

the non-significant negative error variance in 𝑌, accompanied with an inflated 

interaction effect Υ𝑋𝑀. These 12 inadmissible solutions were excluded from the 

subsequent analyses. No inadmissible solution was found for either the conventional 

path model or the model using the LMS method. 

Coverage of 95% CI of 𝚼   

As shown in Table 1, for conditions with interaction effect (Υ𝑋𝑀) equal to zero, 

the coverage rate for the three methods were adequate, with a range from 93.7% to 

94.7% for the conventional path model, from 94.1% to 97.0% for the RAPI method, and 

from 91.0% to 93.8% for the LMS method, regardless of sample size and the magnitude 

of reliability.  

When the interaction effect was non-zero, the conventional path model without 

taking measurement errors into account generally resulted in lowest coverage rate. For 

example, as shown in Table 2, coverage rates were considerably low for the 

conventional path model, with a range from 0% to 79.2%. By comparison, under the 

same conditions, the coverage rates for the RAPI method continued to range from 93.3% 

to 97.1%. Similarly, the coverage rates for the LMS method were higher than those for 

the conventional path model, ranging from 90.0% to 94.6%. In other words, when the 
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true interaction effect existed, the model that did not directly take measurement errors 

into account (i.e., the conventional path model) had the lowest chance of identifying the 

true effect.  

Standardized Bias of 𝚼   

When the true interaction effect, Υ𝑋𝑀, was set to zero, all three methods resulted 

in unbiased parameter estimates. That is, regardless of sample size and the magnitude of 

reliability, the standardized biases were adequate (i.e., |standardized bias| < 0.40): 

ranging from -0.04 to -0.02 for the path model, from -0.03 to -0.01 for the model 

utilizing the RAPI method, and from -0.04 to -0.03 for the model using the LMS 

method. 

When the true interaction effect was not zero ( = 0.50), the standardized biases of 

the interaction effects differed for the three methods across simulation conditions. For 

the conventional path model, substantial underestimations of the interaction effects were 

observed, with a range from -6.50 to -0.91 across all the conditions. By contrast, 

interaction effects were slightly overestimated for the RAPI method. These 

overestimations, however, were still within the acceptable criteria across all conditions. 

Standardized biases were larger (ranged from 0.16 to 0.30) under the low reliability (.70) 

condition, compared with those (ranged from 0.03 to 0.07) under the high reliability 

(.90) condition when using the RAPI method. On the other hand, slightly underestimated 

interaction effects were found for the LMS method, with standardized biases ranging 

from -0.13 to -0.07 under the low reliability (.70) condition, and from -0.07 to -0.04 

under the high reliability (.90) condition.  
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Relative SE Bias of 𝚼    

 As shown in Table 1, the absolute values of relative SE bias when Υ𝑋𝑀  0 were 

all below 10% across all the simulation conditions for the conventional path model 

(ranged from -4.57% to 0.72%) and the model with the RAPI method (ranged from -

5.13% to -0.49%). A negative SE bias indicates that the sample-estimated SE is, on 

average, smaller than the empirical standard error. Compared with the other two 

methods, the relative standard error biases were relatively higher for the LMS method. 

Additionally, under the high reliability (.90) and low sample size (100) conditions, the 

relative SE bias for the interaction effect estimates was the largest: -11.13% (i.e., 

underestimated by 11.13%). The relative SE biases for the other conditions from the 

LMS method ranged from -9.70% to -1.47%.    

When Υ𝑋𝑀  0.50, results of the relative SE biases varied among the three 

methods. As shown in Table 2, for the conventional path model, the relative SE biases 

were over 10% in absolute value (ranged from -14.82% to -11.50%) under the low 

reliability (.70) conditions regardless of sample size. The relative SE biases were below 

10% in absolute value for all the conditions with high reliability (.90). For the RAPI 

method, all the relative SE biases were below 10% in absolute value. For the LMS 

method, the relative SE bias for the interaction effect estimates was -10.29% under the 

high reliability (.90) and small sample size (100) condition. For other conditions, the 

relative SE biases were all below 10% in absolute value (ranged from -8.58% to -

1.47%). Although most of the SE biases for the RAPI and LMS methods were 
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negligible, a trend of smaller SE bias in absolute value occurred for lower reliability 

(.70) conditions.  

RMSE in Estimating 𝚼   

 Generally, the RMSE values decreased as sample size or reliability increased. 

Under the condition of  Υ𝑋𝑀  0, the RMSE values were the highest with the RAPI 

method (ranged from 0.04 to 0.19), followed by the LMS (ranged from 0.04 to 0.12) 

method and the path model (ranged from 0.03 to 0.08).  

On the other hand, different RMSE patterns were observed when Υ𝑋𝑀  0.5, in 

which the RMSEs of the PM method were overall the highest across all three methods. 

One exception was when the sample size was small (100) and the reliability was low 

(.70), here the RMSE of the parameter estimates under the RAPI methods (RMSE = 

0.33) was higher than that of the path model (RMSE = 0.24). For all the other simulation 

conditions, the RMSEs for both RAPI and LMS methods were lower than those from the 

path model. Overall, the parameter estimates yielded from the LMS method were the 

most precise and accurate (i.e., RMSE ranged from 0.04 to 0.14) among the three 

methods. Finally, sample size had less influence on the RMSE values of the path model.  

Discussion 

Despite the existence of the SEM approach for decades, applied researchers still 

commonly test interaction effects with the presumably measurement-error-free observed 

composite scores. In this study, we reviewed two alternative methods, namely, the 

reliability adjusted product indicator (RAPI) method and the latent moderated structural 
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equations (LMS) method, and compared their performance with that of the conventional 

path model through a Monte Carlo study.   

Our simulation results showed a substantial negative standardized bias and 

considerably low coverage rate when the conventional path model (without adequately 

taking into account measurement errors of the observed composites) was employed in 

testing interaction effect. Thus, the interaction effect under the conventional path model 

is more likely to be underestimated from the true population value when measurement 

errors are not adequately taken into account in the analysis. These findings reaffirm past 

research, which has shown biased results due to imperfect (reliability) measurement 

when testing interaction effects (Dunlap & Kemery, 1988; Evans, 1985; Feucht, 1989). 

Thus, the conventional path models, which do not adjust for measurement errors of the 

manifest predictors, are not recommended for testing interaction effects. 

On the other hand, the two alternative methods discussed here, namely, the RAPI 

and LMS methods, can directly adjust the measurement errors of the observed 

composites by using either the factor structure reliability calculated from the 

measurement model or the conventional coefficient alpha. The major difference between 

these two methods is how the interaction effect is specified/captured: RAPI requires the 

creation of a product indicator for the latent interaction effect, whereas LMS does not. 

Results from the present study have shown that the RAPI method performed comparably 

well to the LMS method in estimating the interaction effects. Additionally, when the true 

interaction effects were non-zero, RAPI yielded slightly over-estimated (but still 

acceptable) coefficients, whereas LMS yielded slightly underestimated coefficients. 
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Hence, the LMS method may be more preferable for applied researchers who aim to be 

more conservative by preventing overestimated effects. 

Both sample size and the magnitude of reliability played important roles in 

estimating the non-zero interaction effect. The standardized biases became smaller as 

sample size increased for both RAPI and LMS methods, suggesting that the reliability-

adjusted measurement error constraints worked better with larger sample sizes. 

Reliability had a similar effect on standardized biases. With the same sample size, higher 

reliability (.90) produced more accurate interaction effect estimates than those from 

lower reliability (.70). Additionally, the RAPI method yielded less stable estimates than 

the LMS method under the low reliability and small sample size condition. Hence, the 

LMS method is more preferable when the exogenous variables are less reliable along 

with a small sample (e.g., N = 100).  

Although our simulation results showed the benefits of controlling for 

measurement errors when testing interaction effects, this step sometimes comes at the 

price of increasing variability. For example, comparing four latent interaction modeling 

approaches, Cham and colleagues (2012) found that latent variable models can correct 

for bias but sometimes lose statistical power. When estimating the non-zero interaction 

effects in our simulation, the relative SE biases of the interaction effects from RAPI and 

LMS were higher than those from the path model under the high reliability (.90) 

condition. Given the reciprocal relationship between measurement error and reliability, 

these results suggest that constraining measurement errors for highly reliable variables 

may lead to over-correction, especially when the sample size is small. However, if we 
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consider precision and bias together, the RMSE results showed that both the RAPI and 

LMS methods in general outperformed the conventional path model. Hence, these 

measurement-error adjustment methods are recommended for testing interaction effects 

with composites, with the recognition that the RAPI method may produce less precise or 

less accurate estimates than the LMS method under conditions with small sample and 

less reliable measures.  

Practically speaking, there are several situations where researchers will find both 

the RAPI and LMS methods more preferable than the multiple-item latent factor model 

in empirical data analyses. For example, if the predictors or the moderators are measured 

by a large number of items, fitting the hypothesized structural model at the item level 

may lead to convergence issues due to the complexity of the model. 

Another example would be when researchers analyze secondary data and have 

limited or no access to the original items. As mentioned earlier, the factor structure 

reliability in SEM is comparable to the conventional internal consistency reliability (i.e., 

Cronbach’s alpha or coefficient alpha) with tau-equivalent items (i.e., items with equal 

factor loadings and possibly unequal error variances). Hence, as long as the reliability 

information of the composites is available, we advocate the use of this information to 

constrain the error variances for the observed composites and conducting the analyses 

with either the RAPI or LMS method to obtain interaction effect estimates.  

Limitations and Future Research Directions 

Two limitations in the present study must be addressed. First, since the 

interaction effect is the product term of the predictor and moderator, having a low 
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reliability on either or both variables can amplify the measurement error of the 

interaction effect (Aiken & West, 1991). It is, therefore, worth investigating how 

changes in the reliability of the interaction term influence the interaction effect 

estimation. Second, the scope of this study was the traditional single-level interaction 

effect. Future study is needed to investigate the impact of ignoring measurement errors 

when testing interaction effect with observed composites under more complex data 

structures, such as multilevel data.   
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CHAPTER III  

COMPARISONS OF RELIABILITY ESTIMATES FOR CORRECTING 

MEASUREMENT ERRORS OF THE EXOGENOUS COMPOSITES WHEN 

TESTING INTERACTION EFFECTS  

 

Introduction 

Social and behavioral research often relies on interaction effects, which indicate 

the direction and magnitude of the relation between exogenous variables and 

endogenous variables. As being shown in Chapter 2, the variables are often measured 

with less than perfect reliability and lead to biased estimates of the interaction effects. 

Latent variable models under the Structural Equation Modeling (SEM) framework can 

effectively mitigate the biased estimation by creating error-free latent variables to 

replace the non-perfectly measured observed variables.  In decades, numerous methods 

under the SEM framework have been proposed to incorporate latent variable models in 

estimating interaction effects (Jöreskog & Yang, 1996; Kenny & Judd, 1984; Klein & 

Moosbrugger, 2000; Klein & Muthén, 2007; Lin, Wen, Marsh, & Lin, 2010; Little, 

Bovaird, & Widaman, 2006; Marsh, Wen, & Hau, 2004; Moulder & Algina, 2002; Wall 

& Amemiya, 2001).  

Many studies involve interaction effects in the social and behavioral sciences use 

composite scores from multiple items. Such practices result in challenging scenario for 

researchers who conduct latent variable models while estimating the measurement errors 

of the predictors. For example, having both latent factors and latent measurement error 
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variance related to single indicator (i.e., the composite) being freely estimated is not 

legitimated in SEM. One solution is to use the reliability of the composites to make the 

“best guess” of the measurement error variance before running the model (Bollen, 1986, 

Aiken & West, 1996).   

In the practices of estimating interaction effects with composite variables, in the 

previous chapter, I evaluated two methods under the latent variable models– latent 

moderated structural equation (LMS) and reliability-adjusted product indicator (RAPI) 

methods—which can be used for estimating the interaction effects of composite 

variables while accounting for measurement errors of the predictors. These two methods 

utilized the strategies proposed by Bollen (1986) and Bohrnstedt & Marwell (1978) to 

pre-set the measurement error variance of the exogenous composites, which were 

double-mean-centered (Lin et al., 2010). In the previous chapter I have demonstrated 

that both the LMS and RAPI methods yielded less biased estimation of the interaction 

effects, compared with the conventional path analyses.  

Despite the promising results, two questions have arisen. First, the measurement 

structures in the population model were defined as tau-equivalence items, which 

assuming factor loadings are invariant whereas error variance are varied across items. 

Such assumption is hard to achieve in real-world data (Green & Yang, 2009) Therefore, 

whether these two methods perform equally well with the congeneric equivalent items 

(i.e., invariance factor loadings and error variance) has yet to be investigated.  

Secondly, one important feature in both LMS and RAPI methods is to constrain 

the measurement error variance of the composite exogenous variables by using the 
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reliability of the item scores (Aiken & West, 1991; Bohrnstedt & Marwell, 1978; Bollen, 

1989). In chapter 2, the omega reliability (McDonald, 1978) was used and were assumed 

to be equivalent to Cronbach’s alpha with tau-equivalent items. However, under the item 

assumption of congeneric equivalence, omega has found to be substantially different 

from Cronbach’s alpha (Rayko, 1997). Additionally, previous researchers have proposed 

several alternative reliability values other than omega estimates for the Cronbach’s 

alpha. Therefore, the present study investigates the differences in the estimation of the 

interaction effects with different reliability formula being used. Based on the popularity 

in literature and the ease to conduct with accessible programs, we compared four 

reliability estimates: Cronbach’s alpha, omega total, Revelle’s omega total, and greatest 

lower bound.  

Interaction Effects with Composite Scores 

When the effects of two latent variables ( 𝑋 and  𝑀) and their interaction effect 

( 𝑋𝑀) on an endogenous variable 𝜂  (𝜂  is a latent factor variable tapping multiple 

items) is considered, the following latent variable model has been used to estimate the 

interaction effects: 

 

𝜂  𝜏  𝛾𝑋 𝑋  𝛾𝑀 𝑀  𝛾𝑋𝑀 𝑋𝑀    ,                                        (1) 

 

where 𝜏 is the intercept, 𝛾𝑋 and 𝛾𝑀 represent the linear effects, 𝛾𝑋𝑀 represents the 

interaction effect, and    is the disturbance of  𝜂 . Assuming  𝑋,  𝑀 and  𝑋𝑀 each 
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measured by composite variables X, M, and the product term XM, respectively. The 

measurement models for  𝑋,  𝑀 and  𝑋𝑀 can be described as: 

 

𝑋  𝜏𝑋  𝜆𝑋 𝑋  𝛿𝑋,                                               (2a) 

𝑀  𝜏𝑀  𝜆𝑀 𝑀  𝛿𝑀,                                             (2b) 

𝑋𝑀  𝜏𝑋𝑀  𝜆𝑋𝑀 𝑋𝑀  𝛿𝑋𝑀,                                         (2c) 

 

where 𝜆𝑋, 𝜆𝑀, and 𝜆𝑋𝑀 are equal to 1 for model identification purpose. Likewise, 

additional constraints should be made on the variance of 𝛿𝑋, 𝛿𝑀, and 𝛿𝑋𝑀. One common 

strategy is to use the reliability and variance of X and M to preset the variance of 𝛿𝑋, 𝛿𝑀, 

and 𝛿𝑋𝑀 (Bollen, 1989; Bohrnstedt & Marwell, 1978). Specifically, 

 

𝑉𝑎𝑟(𝛿𝑋)   (1  𝜌𝑋𝑋 )𝑉𝑎𝑟(𝑋),                                       (3a)                              

𝑉𝑎𝑟(𝛿𝑀)  (1  𝜌𝑀𝑀 )𝑉𝑎𝑟(𝑀),                                      (3b) 

𝑉𝑎𝑟(𝑋𝑀)   

𝑉𝑎𝑟( 𝑋𝑀)  𝑉𝑎𝑟( 𝑋)𝑉𝑎𝑟(𝛿𝑀)  𝑉𝑎𝑟( 𝑀)𝑉𝑎𝑟(𝛿𝑋)  𝑉𝑎𝑟(𝛿𝑋)𝑉𝑎𝑟(𝛿𝑀) (3c)    

 

where 𝑉𝑎𝑟(. ) represents the variance component. 𝜌𝑋𝑋  and 𝜌𝑀𝑀  are the reliability 

estimate of the item scores of X and M. Note that equation (3c) can only be hold when 

both X and M follow bi-normal distribution (Bohrnstedt and Marwell, 1978; 

Busemeyer and Jones, 1983) or are double mean-centered variables (see Appendix A). 
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Methods for Estimating the Reliability of Scales 

 In literature, there are over 30 methods which can be applied to estimate the 

reliability of scales (Hattie, 1985). In the present study, we focus on Cronbach’s alpha, 

omega, Revelle’s beta, and greatest lower bond (GLB) based on (1) the methods’ 

popularity among substantive studies, (2) conceptually similar in terms of reliability, and 

(3) the accessibility of computer program/package.  

Cronbach’s alpha (𝜶𝒍𝒑𝒉 ). Cronbach’s alpha (Cronbach, 1951) is no doubt the 

most prevailing reliability formula among social and behavioral research nowadays. 

Specifically, 

 

𝛼𝑙𝑝ℎ𝑎  
𝑘

𝑘− 
(1  

∑ 𝑠𝑖
2𝑘

𝑖=1

𝑠𝑋
2 ),                                                      (4) 

 

where k is the number of items, 𝑠𝑖
2 is the variance of individual item i where i = 1, …, k, 

and 𝑠𝑋
2 is the variance of the items’ total scores on the scale. Alpha will reach its 

maximum when the ratio of the sum of the variance of individual items over the variance 

of the items’ total scores close to zero, indicating that respondents provide similar 

answers to a set of items which are designed under the same domain. In such situation, 

the set of items would be considered to have high reliability in terms of internal 

consistency (Crocker & Algina, 2008).  

 Several criticisms have arisen of alpha regarding measuring the lower bond of 

the reliability (e.g., Green & Yang, 2009; Revelle & Zinbarg, 2009; Sijtsma 2009). 

Alpha has been known to underestimate the reliability for several occasions. For 
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example, Sijtsma (2009) compared Cronbach’s alpha with several reliability estimates 

and conclude that the greatest lower bond (GLB) is the best reliability estimate. Revelle 

& Zinbarg (2009) argue that GLB is not the best by including the reliability estimates 

being compared in Sijtsma (2009) and omega total (McDonald, 1978). They found that 

omega total in general yielded higher reliability values than both alpha and GLB. Given 

the controversial findings among the alternatives of Cronbach’s alpha, further 

investigation on the Omega total and GLB is needed. 

Omega total (𝝎𝑻𝒐𝒕 𝒍). Omega total (McDonald, 1978) was calculated after 

conducting a confirmatory factor analysis (CFA) on a measurement model of a scale. 

Such calculation was based on the CFA parameters. For a model without error 

covariance, omega total (𝜔𝑇𝑜𝑡𝑎𝑙) of a scale is estimated as follows: 

 

𝜔𝑇𝑜𝑡𝑎𝑙  
(∑ 𝜆𝑖)

𝑘
𝑖=𝑖

2
𝜙

(∑ 𝜆𝑖)
𝑘
𝑖=𝑖

2
𝜙+∑ 𝜃𝑖𝑖

𝑘
𝑖=1

,                                                         (5) 

 

where 𝜆𝑖 is the standardized or unstandardized factor loading for the 𝑖th item on the 

scale, 𝜙 is the estimated factor variance, 𝜃𝑖𝑖 is the error variance for the 𝑖th item, and k is 

the number of items on the scale. Equation (5) can be extend to fulfill conditions with at 

least one error covariance exist (Raykov, 1997). Specifically, 

 

𝜔𝑇𝑜𝑡𝑎𝑙  
(∑ 𝜆𝑖)

𝑘
𝑖=𝑖

2
𝜙

(∑ 𝜆𝑖)
𝑘
𝑖=𝑖

2
𝜙+∑ 𝜃𝑖𝑖

𝑘
𝑖=1 +2∑ 𝜃𝑖𝑗

𝑘
𝑖=1

,                                           (6) 
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In the present study, the error variance of each indicator was assumed to be independent. 

Hence, we focus on 𝜔𝑇𝑜𝑡𝑎𝑙 calculated through Equation (5) in the present study. 

Greatest Lower Bound (GLB). Jackson and Agunwamba’s (1977) greatest 

lower bond (GLB) to reliability is another alternative to the Cronbach’s alpha which 

being discussed among methodologists. Sijtsma (2009) explain the GLB as follows. The 

item observed covariance matrix 𝐶𝑋 can be decomposed into the sum of the item true 

score matrix 𝐶𝑇 and the error covariance matrix 𝐶𝐸, namely, 

 

𝐶𝑋  𝐶𝑇  𝐶𝐸,                                                      (7) 

 

where all three matrices are positive semi-definite (psd) which cannot have a negative 

eigenvalue. Since 𝐶𝐸 and 𝐶𝑇 are estimated and conditional on each other. Jackson and 

Agunwamba (1977) focus on creating all the possible set of 𝐶𝐸 which allow 𝐶𝑋  𝐶𝐸 has 

no negative eigenvalue. GLB is defined by utilizing all the solutions form Equation (7), 

specifically, 

 

𝐺𝐿𝐵  1  
𝑡𝑟𝑎𝑐𝑒[𝐶𝐸]

𝑆𝑋
2 ,                                                        (8) 

 

where 𝑆𝑋
2 is the variance of the observed items and 𝑡𝑟𝑎𝑐𝑒[𝐶𝐸] represent the maximal 

values for the possible measurement error matrix. Hence, GLB indicates the lowest 

possible value of reliability from the data (Bentler & Woodward, 1980). Likewise, when 

the glb for a scale is 0.8, the true reliability will be within the range of 0.8 and 1.  
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Revelle’s Omega. As opposed to the model used for estimating omega total, the 

model being specified to calculate Revelle’s omega is a bifactor model, in which each 

item is influenced by a general factor and group factor(s). Specifically, 

 

𝜔𝑅𝑇  
(∑ 𝜆𝑔𝑖

𝑘
𝑖=1 )2+(∑ ∑ 𝜆𝑓𝑖

𝑘𝑓
𝑖=1

𝐹
𝑓=1 )2

𝑉𝑋
,                                             (9) 

 

where 𝜆𝑔𝑖 is the loading of the ith item on the general factor, 𝜆𝑓𝑖 is the standardized 

loading of the ith item on the fth group factor, k is the total number of items, F is the 

total number of group factors, and 𝑘𝑓 is the number of items that load on the 𝑓th group 

factor. 𝑉𝑋 is the total variance after rotation which is equal to the sum of each element of 

the sample correlation matrix. Conceptually, Equation (9) is equal to Equation (5) which 

defines reliability as the ratio between true score variance and total score variance. 

However, the variance components (including the factor loadings) are estimated by 

using the Schimd-Leiman rotation (Schmid & Leiman, 1957) and may lead to different 

reliability estimates from the omega total (Revelle, 2016). 

Purpose of the Study 

 This study investigated the impact of using different reliability coefficients to 

adjust for the measurement error variance of the exogenous composites while estimating 

interaction effects. A Monte Carlo simulation study was conducted to compare four 

reliability estimates, including Cronbach’s alpha, omega total, Revelle’s omega total, 

and greatest lower bond. The accuracy, precision, and power of the interaction 
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estimations over sample size, and the levels of reliability between the RAPI and the 

LMS methods would be investigated. 

Method 

In this Monte Carlo study, we compared the LMS and RAPI methods with four 

different reliability calculations for estimating the magnitude of the interaction effect 

Υ𝑋𝑀, with the use of the data generation model shown in Figure 1. Specifically,  

 

𝑋𝑖  𝜏𝑋𝑖
 𝜆𝑋𝑖

 𝑋  𝛿𝑋𝑖
,                                                       (10a)      

𝑀𝑖  𝜏𝑀𝑖
 𝜆𝑀𝑖

 𝑀  𝛿𝑀𝑖
,                                                     (10b)     

𝑌𝑖  𝜏  𝜆 𝑖
𝜂  𝜖 𝑖

,                                                       (10c)           

𝜂  𝜏  Υ𝑋 𝑋  Υ𝑀 𝑀  Υ𝑋𝑀 𝑋𝑀    ,                                      (10d) 

 

where 𝑋𝑖  𝑋 , 𝑋2,  𝑋  and 𝑀𝑖  𝑀 , 𝑀2,  𝑀  were observed indicators, as shown in 

Figure 1. 𝜏𝑋𝑖
, 𝜏𝑀𝑖

, and 𝜏 , respectively, represented the intercepts for 𝑋𝑖, 𝑀𝑖, and 𝑌; all 

these intercepts were assumed to be zero. 𝜆𝑋𝑖, 𝜆𝑀𝑖, and 𝜆 𝑖 were the factor loadings for 

the ith indicator on the three latent variables,  𝑋,  𝑀, and    respectively. 𝛿𝑥𝑖
 and 𝛿 𝑖

 

were the unique factors of the ith indicator on  𝑋𝑖 and 𝑀𝑖, respectively. 𝜖 𝑖
 was the 

unique factor of the ith indicator on 𝑌𝑖.  𝑋𝑀, as shown as a black dot in Figure 1, was the 

latent interaction variable between  𝑋 and  𝑀. Finally, Υ𝑋, Υ𝑀, and Υ𝑋𝑀 were the path 

coefficients from the corresponding latent variables to the observed outcome 𝜂 , and    

was the error term for 𝑌. We chose a situation where mean composite scores were used 
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in estimating the latent interaction effect. The results from this study are expected to be 

applicable to other forms of composite methods such as sum scores. 

 

 

Figure 5 The pseudo population model with two latent exogenous variables and one 

latent endogenous variable. Each latent variable directly influences three indicators. 
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Monte Carlo Simulation Study  

The model shown in Figure 5 was used to generate the population data. The 

latent true score variables  𝑋,  𝑀, and 𝜂  were assumed to follow a standard normal 

distribution (i.e., mean equals to 0 and variance equals to 1.0) in the population. 

𝐶𝑜𝑟𝑟( 𝑋 ,  𝑀)  0.3 . The items corresponding to  𝑋 and  𝑀 were assumed to be 

congeneric items. Congeneric items are defined as having factor loadings and error 

variance vary across items (Jöreskog, 1971; Millsap & Everson, 1991). In the present 

study, the loadings for the first indicator of each latent true score (i.e., 𝜆𝑋1
, 𝜆𝑀1

, and 𝜆 1) 

were fixed to 1.0. The other two loadings were randomly selected from a uniform 

distribution range from 0.7 to 1.0. Hence, 𝜆𝑋2
, 𝜆𝑀2

, and 𝜆 2 were fixed to 0.89 and 𝜆𝑋 
, 

𝜆𝑀 
, and 𝜆   were fixed to 0.72.  

The linear effects Υ𝑋 and Υ𝑀 were fixed to 0.3 (Evans, 1985) and the interaction 

effect Υ𝑀 was fixed to 0.2. 𝑉𝑎𝑟(  ) was defined to make the variance of 𝜂  equal to 1 

under the Υ𝑋𝑀  0 condition. Therefore, 𝑉𝑎𝑟(  )  1  (2 ∗ 0.32  2 ∗ 0.3 ∗ 0.32)  

0.766, indicating that the predictors as a whole explained about 23% (large effect size; 

Cohen, 1988) of the variance in 𝑌.  The design factors were described below. 

Sample size, 𝑵.  In study 1 I reviewed the conditions used in past simulation 

studies (Cham, West, Ma, & Aiken, 2012; Chin, Marcolin, & Newsted, 2003; Lin et al., 

2010; Marsh et al., 2014; Maslowsky, Jager, & Hemken, 2015) and test 100, 200, and 

500 sample size conditions. I found biased estimates for the interaction effects when 

sample size equals 100. Therefore, in the present study, I test two sample size 

conditions: 250 and 500.  
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Reliability,  . We manipulated the reliability, 𝜌, for both 𝑋 and 𝑀 to be either 

.70, .80, or .90. A Reliability of .70 represents 49% of the total variance being the true 

score variance and has been viewed as the acceptable lower boundary of reliability for 

group comparison in clinical research. Low reliability conditions (i.e., ρ < .70) were not 

considered in our simulation setting. The error variance of the exogenous variables were 

varied by the level of reliability values. The sum of the error variances for the three 

items for each latent factor was 3.85, 1.70, and 1.00, corresponding to .70, .80 and .90 

reliability, respectively. We varied the error variances of the three items proportionally 

for  𝑋,  𝑀, and 𝜂 . The error variance of the first item covered 44% of the total error 

variances in each latent predictor, followed by 33% of the second item, and 23% of the 

third item. In other words, we manipulated the error variances as (1.29, 0.73, 0.51) for 

.70 reliability, (0.75, 0.56, 0.39) for .80 reliability and (0.33, 0.25, 0.17) for .90 

reliability.  

Mplus 7.11 (Muthén & Muthén, 1998-2013) was used to generate 500 data sets 

for each condition. Given that the data were generated at the item level (i.e., three items 

per latent factor), we computed the mean composite score for X and for M by averaging 

the corresponding items. Hence, we had three new observed composite scores; namely, 

the two observed composite variables 𝑋 and 𝑀, and the corresponding product (or 

observed interaction effect) term 𝑋𝑀. Double-centering strategy (Lin et al., 2010) was 

applied in the analyses. Therefore, 𝑋 and 𝑀 were first mean-centered; the product term 

XM was first computed using the mean-centered 𝑋 and 𝑀 and then mean- centered 

afterward. XM mean-centered afterward. The four reliability estimates (Cronbach’s 
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alpha, omega, Revelle’s omega, and GLB) were computed for each dataset by using R 

packages (“MBESS”) and (“psych”) (McNeish, 2017). The item-level measurement 

error variance in each dataset were constraint by using sample-specific reliability values. 

Analyses with both the LMS and RAPI methods were conducted using Mplus 7.11. The 

annotated Mplus syntax for specifying the models with these three methods is presented 

in Appendix B.  

Evaluation Criteria 

 Six criteria were selected to evaluate the accuracy, precision, and power of the 

interaction effect estimate Υ𝑋𝑀 between RAPI and LMS methods with four types of 

reliabilities. Each criterion was summarized from 500 replications for each simulation 

conditions. 

Average bias. The average bias of each simulation condition, 𝐵(𝜃𝑐) was 

calculated as: 

 

𝐵(𝜃𝑐)  𝑅− ∑ (𝜃𝑟𝑐  𝜃𝑐)
𝑅
𝑟= ,                                               (11) 

 

where  𝜃𝑟𝑐 denotes the parameter estimate for replication 𝑟 in condition 𝑐, 𝜃𝑐 represents 

the population parameter for 𝜃 in condition 𝑐, and 𝑅 indicates the total number of 

replications. In this study, 𝜃𝑐 is the true interaction effect 𝛾𝑋𝑀 in condition c, which 

equals 0.2.  

Standardized bias. In addition to comparing the average bias in its original 

magnitude, the average bias can be interpreted in terms of parameter standard errors. The 
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standard error of each population parameter will be calculated from 500 replications. 

Thus, standardized bias 𝑆𝐵(𝜃𝑐) was defined as: 

 

𝑆𝐵(𝜃𝑐)  
𝐵(𝜃𝑐)

𝑆𝐸𝜃𝑐

,                                                            (12)  

 

where 𝑆𝐸𝜃𝑐
 is the standard error of 𝜃𝑐 (Collines, Schafer, & Kam, 2001). The 

standardized bias of the latent interaction effect estimates was compared with the cutoff 

value of 0.40. An absolute value < 0.40 was regarded as acceptable (Collins, Shafer, & 

Kam, 2001). 

  Standard error (SE) ratio. The standard error ratio, 𝑆𝐸𝑅(𝜃𝑐) is calculated by 

the following formula:  

 

𝑆𝐸𝑅(𝜃𝑐)  𝑆𝐸𝜃𝑐

− [𝑅− ∑ (𝑆𝐸𝜃̂𝑟𝑐
)𝑅

𝑟= ],                                   (13) 

 

where 𝑆𝐸𝜃̂𝑟𝑐
 indicates the standard error of parameter estimate for replication 𝑟 in 

condition 𝑐. Hence, 𝑆𝐸𝑅(𝜃𝑐) represents the ratio of the average estimated standard error 

from the sample to the empirical standard error (standard deviation of 𝛾𝑋𝑀). The SE ratio 

was designed to evaluate the precision of the parameter estimators. Estimators with 

smaller SE ratio show less variability across simulation replications. The criterion for 

evaluating SE ratio is the same as evaluating relative SE bias (Hoogland and Boomsma, 
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1998). Hence, the absolute value of the SE ratio between 0.9 and 1.1 was considered 

acceptable.  

Root mean square error (RMSE). The RMSE quantifies the sampling 

variability (i.e., the standard deviation) of the parameter estimates. The RMSE was 

calculated to evaluate both the accuracy and precision of the parameter estimations for 

the three methods. The smaller the RMSE values, the more accurate the parameter 

estimations were across the 500 replications. As to our knowledge, the criterion for 

making an adequate RMSE value has yet been developed. The RMSE values were used 

from a relative standpoint, in which the RMSE estimate for a certain method or 

reliability calculation was compared with others under the same simulation conditions. 

95% confidence interval (CI) coverage rate. The 95% confidence interval 

coverage rate was calculated as: 

𝑅− (𝑛𝑜. 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝐶𝐼 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝜃)  

where  𝑅 indicates the total number of replications and 𝜃 denotes the population 

parameter. For the 95% CI coverage, the Wald interval was obtained, with a coverage 

rate > 91% considered acceptable (Muthén & Muthén, 2002). 

Power and Type I error rate. The statistical power for detecting the non-zero 

interaction effects were examined. Power estimates refers to the percentage of rejecting 

the null hypothesis when the interaction effect occur in the population data across 

replications. Conventionally, power above .80 is consider sufficient in the present study. 

In the present study, the power for testing the interaction effects for each method and 

reliability combinations was compared with the power from the true model. For sample 
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size equal 250 conditions, the powers for testing 𝛾𝑋𝑀  0.2 were .59, .71, and .86 for 

reliability equals .7, .8 , and .9, respectively. For sample size equal 500 conditions, the 

powers for testing 𝛾𝑋𝑀  0.2 were .89, .93, and .99 for reliability equals .7, .8 , and .9, 

respectively.  

Results 

Four reliability estimates (Cronbach’s alpha, omega total, Revelle’s omega total, and 

greatest lower bound) were applied to adjust for the exogenous composites’ 

measurement errors under the RAPI and the LMS methods while estimating interaction 

effects. The estimation comparisons are shown in terms of the biases (average and 

standardized) and standard error ratio in Table 3. The results of root mean square error 

(RMSE), 95% CI coverage rate and power are displayed in Table 4.  

Convergence and Inadmissible Solutions 

While using LMS methods with Revelle’s omega total as the reliability estimates 

under samples size = 250 and reliability = .9 conditions, three (0.6%) out of 500 

replications yielded non-converge results. These three cases were excluded from the 

subsequent analyses. All the other replications were converged without any inadmissible 

solutions across simulation conditions. 

Average and Standardized Bias of 𝚼   

As shown in Table1, mean estimate of the interaction effects, using alpha, omega 

total, and GLB yielded biases ranged from 0.06 to 0.08, regardless of sample size, the 

amount of measurement errors, and the methods for estimating interaction effects. These 

biases resulted in 30% of 40% overestimation, compared to the true interaction effect of 
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0.2. On the other hand, applying Revelle’s omega total resulted in biases ranged from 

0.01 (5%) to 0.03 (15%) across simulation conditions. Note that as the amount of 

measurement errors decrease, the average biases increase. 

The standardized bias increases as sample size increases. Consistent to the results 

of the average bias, the standardized biases for utilizing alpha, omega total, and GLB are 

all over the recommended criteria of 0.40, with a range of 0.51 to 1.04. Revelle’s omega 

total yielded adequate standardized biases (<.0.40) for  s equal to .7 and .8 conditions 

with a range of 0.11 to 0.32, regardless of samples size and the choice of interaction 

methods. In 𝜌 = .9 conditions, the standardized biases were around 0.41 and 0.59 for 

samples size 250 and 500, respectively.  

SE Ratio of 𝚼    

 As shown in Table 3, the SE ratios were within the range of 0.9 and 1.1 across 

most of the simulation conditions for using alpha (ranged from 0.97 to 1.06), omega total 

(ranged from 0.97 to 1.07), and GLB (ranged from 0.97 to 1.05). The only exception 

occur under the high measurement errors (𝜌 = .7) and small sample size (n = 100) with 

the LMS method, where the SE ratios were 1.12, 1.13, and 1.11 for alpha, omega total, 

and GLB, respectively. All the SE ratios for conditions related to Revelle’s omega total 

were within the range of 0.9 - 1.1.  
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Table 3 

Mean Estimate, Relative Bias, and Standard Error Ratio of the Latent Interaction Effect from 500 Replicationsa (𝛾𝑋𝑀=0.2) 

    Average Bias  Standardized Bias  Standard Error Ratio 

 N     Alpha Omega Revelle GLB  Alpha Omega Revelle GLB  Alpha Omega Revelle GLB 

RAPI 250 .70  0.07 0.08 0.01 0.07  0.52 0.55 0.12 0.51  0.98 0.97 0.97 0.97 

  .80  0.07 0.07 0.02 0.07  0.62 0.63 0.22 0.62  0.98 0.97 0.97 0.97 

  .90  0.07 0.07 0.03 0.07  0.76 0.76 0.41 0.76  0.98 0.98 0.98 0.98 

 500 .70  0.06 0.07 0.01 0.06  0.68 0.74 0.16 0.68  0.97 0.97 0.96 0.97 

  .80  0.06 0.07 0.02 0.07  0.84 0.85 0.30 0.83  0.96 0.96 0.96 0.96 

  .90  0.06 0.07 0.03 0.06  1.03 1.04 0.59 1.03  0.97 0.97 0.97 0.97 

LMS 250 .70  0.06 0.06 0.01 0.06  0.48 0.51 0.11 0.47  1.12 1.13 1.02 1.11 

  .80  0.06 0.06 0.02 0.06  0.59 0.60 0.22 0.58  1.05 1.06 0.99 1.05 

  .90  0.07 0.07 0.03 0.06  0.74 0.75 0.42 0.74  1.00 1.00 0.96 1.00 

 500 .70  0.06 0.06 0.02 0.06  0.69 0.74 0.18 0.68  1.06 1.07 0.96 0.96 

  .80  0.06 0.06 0.02 0.06  0.83 0.85 0.32 0.83  0.96 0.95 0.96 0.95 

  .90  0.06 0.06 0.03 0.06  1.02 1.03 0.59 1.02  0.97 0.98 0.96 0.97 

Note. RAPI = reliability-adjusted product-indicator method; LMS = latent moderated structural equations method; N = sample size;   = reliability 

estimate; Alpha = Cronbach’s alpha; Omega = omega total; Revelle = Revelle’s omega total; GLB = greatest lower bond. 
a For N=250,   = .90,  and LMS method with Revelle reliability condition, the number of replications is 497. 
b Values exceeding the recommended cutoffs are in bold.  
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Table 4 

Root Mean Square Error, 95% Confidence Interval (CI) Coverage Rate, and Power of the Latent Interaction Effect from 500 

Replicationsa (𝛾𝑋𝑀=0.2) 

    95% CI Coverage (%)  Root Mean Square Error  Power 

 N     Alpha Omega Revelle GLB  Alpha Omega Revelle GLB  True Alpha Omega Revelle GLB 

RAPI 250 .70  94.2 94.4 95.2 94.4  0.16 0.16 0.11 0.15  0.59 0.55 0.55 0.58 0.55 

  .80  91.6 91.6 95.4 91.4  0.13 0.14 0.09 0.14  0.71 0.69 0.69 0.71 0.69 

  .90  89.0 89.0 92.6 89.0  0.11 0.11 0.09 0.11  0.86 0.86 0.86 0.85 0.86 

 500 .70  90.0 89.8 92.6 89.0  0.11 0.12 0.07 0.11  0.89 0.87 0.87 0.88 0.87 

  .80  85.4 85.2 92.2 85.8  0.10 0.10 0.07 0.10  0.93 0.94 0.94 0.94 0.94 

  .90  79.6 79.0 89.0 79.6  0.09 0.09 0.06 0.09  0.99 0.99 0.99 0.99 0.99 

LMS 250 .70  90.6 90.6 93.6 90.8  0.13 0.14 0.10 0.13  0.59 0.62 0.62 0.60 0.62 

  .80  90.4 90.0 94.4 90.4  0.12 0.13 0.09 0.12  0.71 0.72 0.72 0.72 0.72 

  .90  88.8 88.0 93.0 88.8  0.11 0.11 0.08 0.11  0.86 0.86 0.86 0.86 0.86 

 500 .70  87.8 87.0 92.4 88.0  0.10 0.11 0.07 0.10  0.89 0.89 0.89 0.89 0.89 

  .80  83.6 84.0 91.4 83.8  0.10 0.10 0.07 0.10  0.93 0.94 0.94 0.93 0.94 

  .90  77.0 76.8 89.6 77.0  0.09 0.09 0.06 0.09  0.99 0.99 0.99 0.99 0.99 

Note. N = sample size;   = reliability estimate; PM = Path model; RAPI = reliability-adjusted product-indicator method; LMS = latent moderated 

structural equations method. a For N=250,   = .90,  and LMS method with Revelle reliability condition, the number of replications is 497. 
b Values exceeding the recommended cutoffs are in bold  
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A SE ratio smaller than 1 indicates that the sample-estimated SE is, on average, 

smaller than the empirical standard error, and vice versa. Although most of the SE biases 

displayed in Table 3 were negligible, a trend of SE bias smaller than 1 occurred for the 

RAPI method and larger than 1 occurred for the LMS method was observed.   

Coverage Rate of 95% CI of 𝚼   

As shown in Table 4, the coverage rate for the Revelle’s omega total were 

adequate, with a range from 89.0% to 95.2% for the RAPI method, from 89.6% to 93.6% 

for the LMS method, regardless of sample size and the magnitude of measurement 

errors. The two below 91% coverage rates occurred when sample size equals 500 and   

equals .90. As for the alpha, omega total, and GLB, the CI coverage rates were above 

91% criteria for using the RAPI methods under the sample size equals 250 and   equals 

.70 and .80 conditions. However, the coverage rates were below 91% when sample size 

equals 500 regardless of the amount of measurement errors and the interaction effect 

methods. Overall, applying Revelle’s omega total had the highest chance of identifying 

the true effect among the four reliabilities we compared.  

RMSE in Estimating 𝚼   

 Generally, the RMSE values decreased as sample size increased or measurement 

errors decreased. The RMSEs for the Revelle’s omega total were smaller than that for 

the other three reliability estimates. For example, under the sample size = 250 and 𝜌 = .7 

conditions, the RMSE of the interaction effect estimates was 0.11 for applying Revelle’s 

omega total, whereas the RMSEs were 0.15-0.16 for applying the other three 

reliabilities. Overall, the parameter estimates yielded from methods using the Revelle’s 
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omega total were the most precise and accurate (i.e., RMSE ranged from 0.06 to 0.11) 

among the four reliabilities. Finally, no obvious difference in RMSE was observed 

between the LMS and RAPI methods.  

Power in Estimating 𝚼    

 The power for testing the parameter estimates for each simulation condition was 

compared with the power of fitting the simulated data with true model. As shown in 

Table 4, the power of using the true model ranged from .59 to .99. Across all the 

simulation conditions, the powers were close to the power from the true model 

regardless of sample size, magnitude of the measurement errors, and interaction 

methods. Results indicate that using either the RAPI or LMS methods along with alpha, 

omega total, Revelle’s omega total, or GLB reliabilities recovered the original power of 

the significant test. 

Discussion 

While estimating the latent interaction effects with manifest composites, the 

measurement error variance of the exogenous variables have to be constrained for model 

specification purpose. One way to apply the constraints is by using the reliability 

estimates of the scale to pre-calculate the measurement error variance of the exogenous 

manifest variables before running the models. Among the reliability estimates which can 

be applied in this scenario, Cronbach’s alpha is easy to obtain in software and commonly 

reported. However, the item assumptions embedded within the usage of Cornbach’s alph 

(e.g., tau-equivalent) are almost always violated. Other alternatives including omega 

total, Revelle’s omega total, and greatest lower bond (glb) have been shown to provide 
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more accurate reliability estimates. Therefore, in the present study, the four reliability 

estimates are utilized with both the RAPI and the LMS methods and the results in terms 

of the interaction effect estimation are compared.    

In the comparisons among two different samples sizes (250 and 500) and true 

reliability values (.70, .80, and .90), the Revelle’s omega total obtains unbiased and 

stable estimates. On the contrary, Cronbach’s alpha, omega total, and glb provide biased 

and less stable estimates. Recall in study 1, omega total (or Cronbach’s alpha) yielded 

unbiased interaction effects estimates with tau-equivalent items. Results from the present 

study have shown that when items are following congeneric equivalent, Cronbach’s 

alpha, omega total, and glb are all underperformed. The four reliability estimates do not 

shown much difference in the power for detecting the interaction effects. All the powers 

for the four reliabilities are equal or close to the powers for the true models. Hence, if 

researchers are only interested in whether the interaction effects are significant or not, all 

the four reliability estimates are feasible to answer this question. However, the revelle’s 

omega total is recommended if the real values of the effects are of interest. 

 Both the reliability and the sample size influence the interaction effects 

estimation. As the sample size increase, the standardized bias increase and the 95% CI 

coverage rate decrease. Given that the average bias stay the same regardless of samples, 

we can conclude that the change in both the standardized bias and the coverage rate may 

be due to the shrinkage of standard errors related to the sample size increase. Although 

the revelle’s omega outperform the other three candidates, the interaction effects 

estimates provided by methods using revelle’s omega increase biases as the true 
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reliability of the scale increase. One possible explanation is that the Schimd-Leiman 

rotation applied to the revelle’s omega calculation overly correct the measurement error 

variance and results in more biases when there is not much measurement errors to 

account for (i.e.,   = .90).  

 A slight difference has been observed between the RAPI and the LMS methods. 

From the results of the SE ratio, all the values related to the RAPI methods are below 1 

whereas most of the values related to the LMS methods are over 1, indicating that the 

interaction estimates from the LMS methods are less stable. Less stable interaction 

estimates through the LMS methods become salient (SE ratio > 1.1) when sample size 

equals 250 and the true reliability equals .70. Therefore, cautious should be made for 

researchers using the LMS methods with small sample size and low reliability items, 

especially with Crobach’s alpha, omega total, and glb as the estimates to correct for the 

measurement errors of the exogenous composites. 

 Two limitations should be addressed. First, the item error variances were 

assumed independence in the present study. Independent error variance among items 

may not be true in the real world data and may result in biased reliability estimates 

(Green & Yang, 2009). Future research can investigate the impact of the correlation 

among item errors on the estimation of the interaction effects. Secondly, the issue of 

multicollinearity of the latent exogenous variables has not yet to be discussed in the 

present study. Since the estimation of the interaction effects is influenced by the 

exogenous variables, the correlation of the two exogenous variable may as well play a 

role in the interaction effects estimates. In the present study, I fixed the correlation in a 
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small magnitude (r = .20). Future studies should be proceeded to investigate the impact 

of multicollinearity on the interaction effects estimates with composites.    
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CHAPTER IV  

THE INTERPLAY BETWEEN INTERACTION EFFECTS AND QUADRATIC 

EFFECTS WITH COMPOSITES IN ADVANCED LATENT VARIABLE 

MODELS  

 

Introduction 

Testing nonlinear effects, including interaction and quadratic effects, has long 

been an important issue in social and behavior research. Interaction effects refer to the 

relationship between two variables stays the same or changes depending on the level of a 

third variable (i.e., the moderator). For example, educational researchers often 

hypothesized a particular teaching strategy interacts with students’ characteristics, such 

as gender, literacy level, behavioral problem, etc., in determining learning outcomes. 

Quadratic effects indicate the association between the exogenous and endogenous 

variables steadily change to an optimal level, and then level off or even change 

oppositely beyond this optimal point. For instance, students may perceived higher 

teachers’ teaching effectiveness as teachers assigned more assignments to them, given 

low to moderate demanded workload; however, the positive association between 

students’ workload and teachers’ teaching effectiveness may decrease for larger amount 

of assignments (Marsh, 2001). Interaction effects and nonlinear effects can be either 

solely exist or coexist, and may influence each other in the model (Ganzach, 1997; 

Busemeyer & Jones, 1983).  
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Structural equation modeling (SEM) has been a common way to estimate the 

nonlinear effects with unobserved variables. Within the SEM framework, the 

unobserved, or latent exogenous and endogenous variables are formulated in structural 

equations, and they are measured with measurement errors by observed indicator 

variables in a measurement model. Previous simulation studies have been mainly focus 

on interaction effects items (Jöreskog & Yang, 1996; Kenny & Judd, 1984; Klein & 

Moosbrugger, 2000; Klein & Muthén, 2007; Lin, Wen, Marsh, & Lin, 2010; Little, 

Bovaird, & Widaman, 2006; Marsh, Wen, & Hau, 2004; Moulder & Algina, 2002; Wall 

& Amemiya, 2001), little attention has been given to quadratic effects. Additionally, 

methodologist generally focus on the methods be applied to exogenous variables 

measured by multiple items, little has been discuss for the observed manifests measured 

by composite scores.  

In Chapter 2, I conduct a simulation study to evaluate methods for estimating 

latent interaction effects in latent variable models, and found that the latent moderated 

structure equation (LMS) method and the reliability-adjusted product indicator (RAPI) 

method outperform the conventional path analysis in terms of the estimation accuracy of 

the interaction effects, by modeling measurement errors of the exogenous variables. In 

Chapter 3, the simulation results show that the Revelle’s omega total outperform the 

other three candidates (Cronbach’s alpha, omega, and glb) and is recommended to while 

conducting the LMS and RAPI methods to estimate interaction effects with observed 

composites. As the pilot studies to address the issues of using composite scores in 

estimating latent interaction effects, some puzzles are remained to be solved. First, 
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whether the study conclusions stand if the researchers change their focus from 

interaction effects to quadratic effects, is unknown. Harring, Weiss, and Hsu (2012) 

compared latent variable methods in estimating the quadratic effects but did not consider 

the used of composite variables. Secondly, several studies have found that the 

correlation between the linear effects has substantial influence on the estimation of the 

nonlinear effects (Kelava & Brandt, 2009, Kelava, Moosbrugger, et al., 2008, and 

Kelava, Werner, et al., 2011), but neither did they consider the condition of using 

manifest composites nor evaluate the robustness of the RAPI and LMS methods to 

multicollinearity.  

Hence, the purpose of the present study is to expend the work from Chapter 2 

and Chapter 3 by (1) taking more design factors, such as multicollinearity and (2) the 

occurrence of the quadratic effects, into account. Comparisons between the RAPI and 

the LMS methods and the conventional path analysis, which lack the assumption of 

measurement errors of the exogenous variables, will also be addressed. By conducting a 

series of Monte-Carlo simulation studies, how the LMS method, the RAPI method, and 

the conventional path analysis perform in terms of the precision and accuracy of the 

nonlinear effects estimations, will be investigated. Since the use of composites in 

estimating nonlinear effects is a common practice, it is important to examine the impact 

of ignoring measurement errors of the exogenous variables on nonlinear effects 

estimations. 
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Nonlinear Structural Equation Models 

In social and behavioral research contexts, the relationships among variables has 

often been assumed to be linear. However, models carry with such linear relationship 

assumptions between variables often facing the challenge of not representing the reality 

in a better way (Kelava & Brandt, 2009). In particular, the relationship between an 

exogenous and an endogenous variable may (1) depends on a third variable, or (2) occur 

both linear and quadratic patterns. The former is called interaction effect and the latter is 

known as quadratic effect. 

The structural model and the measurement model for latent interaction effects 

and latent quadratic effects are discussed below. 

Latent Nonlinear Effect Model with Multiple Item 

A typical structural equation model is composed by two regression models, 

which play distinctive roles in interpreting variables’ association: (a) the structural 

model that defines the relationships among exogenous and endogenous variables, and (b) 

the measurement model that defines the relationships among latent and observed 

variables. Below I will describe the two models specified for estimating the latent 

nonlinear effects. 

Structural model. When the effects of two latent variables (   and  2), their 

corresponding quadratic terms (  
2 and  2

2), and their interaction (   2) on an 

endogenous variable 𝑦 (𝑦 is a single observed variable) is considered, the following 

latent variable model has been used to estimate the nonlinear effects:  

𝑦  𝛼  𝛾    𝛾2 2  𝜔 2   2  𝜔    
2  𝜔22 2

2  𝛿,                               (1) 



 

58 

 

where 𝛼 is the intercept, 𝛾  and 𝛾2 represent the linear effects, 𝜔 2 represents the 

interaction effect, and 𝛿 is the disturbance of  𝑦.  

The full nonlinear structural equation model can then be specified in the following 

matrix expression: 

 

𝑦  𝛼  Γ   ′Ω  𝛿.                                                              (2) 

 

In equation 2, the common factors   is defined as a 2 x 1 matrix: 

 

𝝃  (𝜉1
𝜉2
).                                                                      (3) 

 

Γ = (𝛾 , 𝛾2) denotes the coefficient vector for the linear effects, Ω  (
𝜔  𝜔 2

0 𝜔22
) is the 

upper triangular coefficient matrix of the nonlinear effects (with the quadratic effects on 

the diagonal and the interaction effects off-diagonal), and 𝛿 is the latent disturbance.  

 Measurement model. Assuming    and  2 each measured by 3 observed 

indicator variables, the measurement model for    and  2 can be described in a 

conventional confirmatory factor analysis (CFA) latent variable model (Bollen, 1989): 

 

  𝝉  𝚲 𝝃   ,                                                           (4) 
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where   are the exogenous observed indicator variables. 𝝃 is a 2 x 1 vector of common 

factor scores. The common factors 𝝃 are the commonality features explaining the 

correlations among the observed indicator variables. 𝝉  is are 6 x 1 vector of latent 

measurement intercepts, which represent the expected   scores when 𝝃  𝟎. 𝚲  is a 6 x 

2 matrix of factor loadings on  . The factor loadings 𝚲  represent the level of the linear 

relationship between indicators and the observed variables.   are the corresponding 

random measurement error factors of the exogenous and endogenous variables, 

respectively.   represents the portion of the indicators not explained by the factors. In 

the common factor models, each of the elements are defined below. 

 For  , the measured variables, the measurement intercepts, and the measurement 

error scores can be defined as a 2p x 1 vectors as,   

 

𝑋  |

𝑋 

𝑋2

∶
𝑋6

|        𝜏𝑋  |

𝜏𝑥1

𝜏𝑥2

∶
𝜏𝑥6

|         𝛿   ||

𝛿𝑥1

𝛿𝑥2

∶
𝛿𝑥6

||.                                  (5) 

  

The factor loadings 𝚲  are defined as a 6 x 2 matrix as,  

 

𝚲  

|

|

Λ𝑥1
0

Λ𝑥2
0

Λ𝑥 
0

0 Λ𝑥4

0 Λ𝑥5

0 Λ𝑥6

|

|

,                                                         (6)                                                  
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Latent Nonlinear Effect Model with Composites 

 When researchers use the composites to represent the exogenous variables, the 

structural model is the same as depicted in Equation (1). However, researchers will find 

the measurement model hard to identify when using latent variable model with 

composites. By aggregating the item scores to represent each variable, the latent variable 

model will be composed by latent factors each with single indicator. Without any further 

constraint, such model with only one observed variable loaded on the latent nonlinear 

factor is not identifiable (Bollen, 1989; Kline, 2011).  In literature, the parameters in 

such a nonlinear structural equation model can be estimated with two methods, which I 

describe in the following section. 

Reliability-Adjusted Product Indicator (RAPI). Assuming one exogenous 

composites, X = Σxi as the single indicator for the latent variable,  𝑋 with the 

corresponding reliability, 𝜌𝑋𝑋  and variance, 𝑉𝑎𝑟(𝑋). Because 𝜌𝑋𝑋  is the function of 

error variance, 𝑉𝑎𝑟(𝛿𝑋) and latent score variance, 𝑉𝑎𝑟( 𝑋) (Bollen, 1989), the error 

variance of X, 𝑉𝑎𝑟(𝛿𝑋) can be shown as: 

 

𝑉𝑎𝑟(𝛿𝑋)  (1  𝜌𝑋𝑋 )𝑉𝑎𝑟(𝑋).                                                      (7) 

 

Therefore, the error variance of the composite can be estimated by using the reliability 

and composite variance. Similar idea can be applied to the nonlinear effect term. 

Bohrnstedt and Marwell (1978) and Busemeyer and Jones (1983) have derived the 

formula for estimating the error variance of the nonlinear terms with reliability of the 
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composites. The two quadratic terms, 𝑋 𝑋  and 𝑋2𝑋2, their corresponding error 

variances can be represent as: 

 

𝑉𝑎𝑟(𝛿  )  2(𝜌𝑋1𝑋1
 𝑉𝑎𝑟(𝑋 )

2(1  𝜌𝑋1𝑋1
 ))  (1  𝜌𝑋1𝑋1

 )
2
𝑉𝑎𝑟(𝑋 )

2,           (8) 

𝑉𝑎𝑟(𝛿22)  2(𝜌𝑋2𝑋2
 𝑉𝑎𝑟(𝑋2)

2(1  𝜌𝑋2𝑋2
 ))  (1  𝜌𝑋2𝑋2

 )
2
𝑉𝑎𝑟(𝑋2)

2.           (9) 

 

And the error variance of the interaction term, 𝑋 𝑋2 is denoted as: 

 

  𝑉𝑎𝑟(𝛿 2)  𝜌𝑋1𝑋1
 𝑉𝑎𝑟(𝑋 )(1  𝜌𝑋2𝑋2

 )𝑉𝑎𝑟(𝑋2)  𝜌𝑋2𝑋2
 𝑉𝑎𝑟(𝑋2)(1  

𝜌𝑋1𝑋1
 )𝑉𝑎𝑟(𝑋 )  (1  𝜌𝑋1𝑋1

 )𝑉𝑎𝑟(𝑋 )(1  𝜌𝑋2𝑋2
 )𝑉𝑎𝑟(𝑋2).                           (10) 

  

Once the error variances of the composites for each exogenous are calculated, 

they are all fixed by the estimated values in the latent variable model for estimating the 

nonlinear effects. This method has the advantage of being feasible to implement in the 

modern SEM software, such as LISREL (Jöreskog & Sörbom, 1996) and Mplus 

(Muthén & Muthén, 1998-2013). 

 Latent Moderated Structural Equations. Rather than directly creating the 

product indicator, Klein and Moosbrugger (2000) proposed the latent moderated 

structural equation (LMS) method, which can directly estimate the nonlinear latent 

variable with specific data distributional assumptions. The latent nonlinear effects,   
2, 

 2
2, and   2 are estimated by utilizing the joint distribution of the latent linear effects,    



 

62 

 

and  2. Note that the error variances of the linear effects should be constrained by using 

Equation (7). The EM algorithm is used to compute maximum likelihood estimates of 

the parameters. The LMS method is implemented in Mplus (Muthén & Muthén, 1998-

2013). 

Method 

Research Scenario 

This study compared three methods of examining the nonlinear effects with 

observed composite scores to determine the estimation accuracy of the nonlinear effects. 

A Monte Carlo simulation study were conducted to evaluate the performance of the 

RAPI method, the LMS method, and the path analysis in estimating nonlinear effects. In 

general, the method consisted of generating data for a model testing one latent 

interaction and two latent quadratic effects on a single observed criterion variable 

(Figure 6). Both the latent true factors and latent unique factor are assumed to follow a 

standard normal distribution (i.e., mean equals to 0 and variance equals to 1.0).  In the 

population model, each of the manifest exogenous variables were defined by three 

indicators. The multiple indicators were generated under congeneric item assumption 

and moderate reliability values (.7). The correlations between the two linear effects are 

manipulated as 0, .5, and .8. The linear effects are designed to explain 10% in total of the 

variance in the criterion variable, under the condition of zero correlation between    and 

 2 (Kelava, Werner et al., 2011).  The nonlinear effects are designed to each explained 

0% or 5% of the overall variance in the criterion variable.  
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The results were evaluated by examining the extent to which the parameter 

estimates recover the generating parameter values, as indicated by measures of bias and 

relative bias, and the variability of the parameter estimates in terms of 95% CI coverage 

rate, and by examining the standard error bias and the root mean square errors. Below I 

describe the choice of design factors and the evaluation criteria in detail. 

 

 
Figure 6. The pseudo population model with two latent linear effects and three latent 

nonlinear effects (one interaction and two quadratic effects). The nonlinear effects were 

created by using the latent moderate structural equations (LMS) method so no indicator 

has been created for the latent nonlinear effects. 
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Design of the Simulation Study 

The manipulated variables were sample size, reliability obtained from the item 

scores within each exogenous variable, the reliability assumptions of the items wihin 

each exogenous variable, the effect size of the nonlinear effect, the level of 

multicollinearity between exogenous variables. In order to decide the conditions to be 

studies for each independent variable, previous studies with similar manipulations were 

considered. 

 Sample size. Previous studies on comparing different latent interaction testing 

approaches were used as references to decide the sample size conditions. Chin, 

Marcolin, and Newsted (2003) test interaction effect with partial least squares approach 

on sample size conditions of 20, 50, 100, 150, 200, and 500. Maslowsky, Jager, and 

Hemken (2015) proposed a simulation study to test the performance of the LMS 

approach with non-normal data on the sample size condition of 500. Cham, West, Ma, 

and Aiken (2012) estimating interaction with nonnormal observed data on sample size 

condition of 100, 200, 500, 1000, and 5000. Marsh, Wen, & Hau (2004) compared three 

strategies in estimating latent interaction under sample size conditions of 100, 200, and 

500. Kelava, Werner et al (2011) studied how multicollinearity influence the estimation 

of nonlinear effect while both interaction and quadratic effects occurred in the model, 

with sample size equal to 400.   

Given the five studies mentioned above, sample sizes of 100, 200, and 500 has 

been shown as commonly occurred levels in simulation studies. In the present simulation 
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study, sample sizes of 500 were used to given small sample size have found to provide 

less precise estimates of the interaction effects in study 1. 

Reliability values. Studies that examine the multicollinearity of the exogenous 

predictors on nonlinear effects estimations have included the condition with reliability 

value equal to .8 (Kelava, Werner, et al., 2011; Kelava, Moosbrugger, Dimitruk, and 

Schermelleh-Engel, 2008). Cham, West, Ma, and Aiken (2012) investigated the impact 

of data non-normality on the estimation of latent interaction effects, and the latent 

variable parameters fixed in their study result in .6 reliability, based on equation 2. 

Reliability value of .6 was also a condition assumed in Lin, Wen, Marsh, and Lin (2010), 

which compared double-mean centering and orthogonalizing strategies on the estimation 

of the latent interaction effect. Marsh, Wen, and Hau (2004) proposed .6 and .71 

reliability values in their simulation studies for testing multiple latent interaction effect 

approaches.     

Overall, the reliability values of .6, .7, and .8 has had been proposed in previous 

simulation studies. In the present study, the reliability, 𝜌, for both 𝑋 and 𝑀 were 

manipulated to be .70. A Reliability of .70 represents 49% of the total variance being the 

true score variance and has been viewed as the acceptable lower boundary of reliability 

for group comparison in clinical research. Low reliability conditions (i.e., ρ < .70) were 

not considered in our simulation setting. 

Item factor loading and error variances. Under the SEM framework, both 

congeneric and tau-equivalent items (Lord & Novick, 1968) are allowed. In a CFA with 

zero latent means, tau-equivalent are defined as equal loadings but possibly unequal 
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error variance across items; congeneric items are created by allowing both the factor 

loadings and error variances to vary for all measures (Jöreskog, 1971;  Millsap & 

Everson, 1991). 

Items’ assumption in reliability has gain less attention in previous simulation 

studies on testing nonlinear effects.  For the simulation studies conducted by Cham, 

West, Ma, and Aiken (2012) and Marsh, Wen and Hau (2004), the error variance of the 

exogenous indicators are assumed to be 1 and the factor loadings are allowed to vary in a 

certain level. Lin, Wen, Marsh, and Lin (2010) even assumed both factor loadings and 

error variances of the indicators are homogenous in item levels. Kelava, Werner, et al. 

(2011) and Kelava, Moosbrugger, Dimitruk, and Schermelleh-Engel (2008) considered 

the unequal parameters on both item factor loadings and error variance, but limited their 

discussions on only two levels of differences. For example, for each factor and the 

corresponding three items in each measurement model, the factor loadings and the error 

variances for the first item were fixed at 1.0 and .25, respectively; and the second and 

third items were both fixed at .894 and .20, respectively.  

Since tau-equivalent items are hard to find in read data situation, we focus on the 

conditions with congeneric-equivalent items. Different values of population factor 

loadings for each indicator were randomly chosen from a uniform distribution within a 

range of 0.6 to 1 (rounded to two decimal places). The error variances for each of the 

three items are varied to explain 55%, 33%, and 12% of the variances in each latent 

predictor.  As mentioned earlier, intercepts were fix at zero in the simulation study, as 

group comparisons is beyond the scope of the present study.  
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 Multicollinearity. Multicollinearity refers to the high correlation between the 

exogenous variables in any model. In multiple regression, multicollinearity may result in 

parameter estimates with inflated standard errors and decreased power in detecting true 

effects. These become more serious issues in nonlinear latent model, given the 

unreliability of the indicators—the correlation between the latent factors is generally 

higher than the correlation between manifest indicators.  

Despite the potential issue of multicollinearity, few studies have investigate the 

impact of multicollinearity on parameter estimation in nonlinear latent model, even the 

correlation between the exogenous latent predictors were manipulated. For example, in 

their simulation studies, Jaccard and Wan (1995) and Marsh et al. (2004) manipulated 

the multicollinearity levels of (.2, .4) and (.2, .3, .4) respectively. However, the 

simulation results were organized by aggregating the multicollinearity conditions. On the 

other hand, two past methodological studies has found multicollinearity of the latent 

predictors influence the performances of the methods for estimating nonlinear effects in 

SEM. In the two simulation studies conducted by Kelava, Moosbrugger et al (2008) and 

Kelave, Werner, et al (2011), the correlations between latent factors were manipulated as 

(0, 0.5, 0.8) and (0, .375, .625), respectively, and they found: as the multicollinearity 

increase, the distributional approach (LMS and QML) and the Jöreskog and Yang 

approach (1996) have the advantage in obtaining more accurate parameter estimates of 

the nonlinear effects.  

 For the present study conditions with 0, .5, and .8 correlation between latent 

predictors were examined. These numbers were chosen to cover the correlation scope 
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designed in Jaccaed and Wan (1995) and Marsh et al (2004), and also be able to 

comparable to the conditions in the studies by Kelave et al (2008).  

The effect size of the nonlinear effect. In the past methodologist studies, the 

magnitude of the nonlinear effect varied by how large the effect can explain the latent 

criterion’s variance. Marsh, Wen, & Hau (2004) tested the performance of four different 

methods on estimating interaction effect, which explained 0%, 5% and 10% of the 

outcome variables’ variance. Kelava, Moosbrugger et al. (2008) manipulated 0% and 5% 

effect size of the nonlinear effects to investigate the impact of multicollinearity and 

missingness on the latent nonlinear effect estimations. Kelava, Werner, et al. (2011) 

included conditions of 2.2% in testing the power of the nonlinear effects among the 

LMS, QML, and the unconstrained approaches.  

In the present study, the magnitude of the nonlinear effects are set to explain 0% 

or 5% of the latent criterion variances. 0% effect size was selected to examine the Type I 

error rate when the null hypothesis is true (i.e., true nonlinear effects do not exist) 

(Cham, West, Ma, & Aiken, 2012). 5% effect size was chosen to investigate the power 

of detecting non-zero nonlinear effect. Three nonlinear models will be created base on 

the effect sizes of the quadratic and interaction effects: (1) interaction effects only 

(model 1), (2) quadratic effects only (model 2), and (3) both interaction and quadratic 

effects (model 3). Since the number of the nonlinear effects included in the analyses 

were different across the three population models, the corresponding path coefficients 

were differed among the three models. In model 1 and model 2, the nonlinear effects 

explained 0 % or 5% of the latent criterion’s variance. In model 3, the interaction effect 
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explained 0% or 5% of the latent criterion’s variance, whereas the two quadratic effects 

were set to be equal in size and explained a total of 0% or 5% of the latent criterion’s 

variance.  

Software and Implementation  

The data were generated in Mplus version 7.11 (Muthén & Muthén, 1998-2013) 

via Monte Carlo simulation procedure. Composite of item means and the mean-centered 

values for each exogenous variable were computed in R software (R core Team, 2013). 

The composites of the interaction or the quadratic terms were mean-centered and 

analyzed under conventional path analysis and models specified by using the RAPI and 

the LMS methods, using Mplus version 7.11. The different evaluation criteria measures, 

including standardized bias, standard errors of the parameter estimates, and the root 

mean square error were organized by using R software and Microsoft excel.  

Evaluation Criteria 

Six criteria were applied to evaluate the performance of the three methods in 

examining the nonlinear effect with observed composite scores. 

95% confidence interval (CI) coverage rate. The 95% confidence interval 

coverage rate was calculated as: 

 

𝑅− (𝑛𝑜. 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝐶𝐼 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝜃),                      (11) 
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where  𝑅 indicates the total number of replications and 𝜃 denotes the population 

parameter. For the 95% CI coverage, the Wald interval was obtained, with a coverage 

rate > 91% considered acceptable (Muthén & Muthén, 2002). 

Raw bias. The raw bias of each simulation condition, 𝐵(𝜃𝑐) was calculated as: 

 

𝐵(𝜃𝑐)  𝑅− ∑ (𝜃𝑟𝑐  𝜃𝑐)
𝑅
𝑟= ,                                    (12) 

 

where  𝜃𝑟𝑐 denotes the parameter estimate for replication 𝑟 in condition 𝑐, 𝜃𝑐 represents 

the population parameter for 𝜃 in condition 𝑐, and 𝑅 indicates the total number of 

replications. In this study, when 𝜃𝑐 equals zero, the raw bias equals the mean of 

parameter estimates over 2000 replications.  

Standardized bias. In addition to comparing the raw bias in its original 

magnitude, the raw bias will be interpreted in terms of parameter standard errors. The 

standard error of each population parameter will be calculated from 2000 replications. 

Thus, standardized bias 𝑆𝐵(𝜃𝑐) was defined as: 

 

𝑆𝐵(𝜃𝑐)  
𝐵(𝜃𝑐)

𝑆𝐸𝜃𝑐

,                                                    (13)  

 

where 𝑆𝐸𝜃𝑐
 is the standard error of 𝜃𝑐 (Collines, Schafer, & Kam, 2001; Merkle, 2011). 

The standardized bias of the latent interaction effect estimates was compared with the 
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cutoff value of 0.40. An absolute value < 0.40 was regarded as acceptable (Collins, 

Shafer, & Kam, 2001). 

  Relative standard error (SE) bias. The relative SE bias, 𝑆𝐸𝐵(𝜃𝑐) is calculated 

by the following formula:  

 

𝑆𝐸𝐵(𝜃𝑐)  𝑆𝐸𝜃𝑐

− [𝑅− ∑ (𝑆𝐸𝜃̂𝑟𝑐
 𝑆𝐸𝜃𝑐

)𝑅
𝑟= ],                               (14) 

 

where 𝑆𝐸𝜃̂𝑟𝑐
 indicates the standard error of parameter estimate for replication 𝑟 in 

condition 𝑐. The relative SE bias was designed to evaluate the precision of the paramter 

estimators. Estimators with smaller relative SE bias show less variability across 

simulation replications. As recommended by Hoogland and Boomsma (1998), relative 

SE bias values < 10% were considered acceptable.  

Root mean square error (RMSE). The RMSE quantifies the sampling 

variability (i.e., the standard deviation) of the parameter estimates. The RMSE was 

calculated to evaluate both the accuracy and precision of the parameter estimations for 

the three methods. The smaller the RMSE values, the more accurate the parameter 

estimations were across the 2,000 replications. A ratio of RMSE values for each design 

cell will be calculated to facilitate interpretation. For example, suppose the RMSE for 

the LMS method in a given design cell is 0.02, whereas the corresponding RMSE for an 

RAPI method is 0.03. The resulting ratio would be 1.50, suggesting that the RAPI 

estimates are, on average, 50% further away from the population nonlinear effect than 

the LMS estimates. 
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Power and Type I error rate. Both statistical power for detecting the non-zero 

nonlinear effects and Type I error of incorrectly detecting zero nonlinear effects as 

nonzero were examined. For conditions with zero nonlinear effects, Type I error rates 

refer to the percentage of retaining the null hypothesis of no nonlinear effect exist in the 

population data across replications. Type I error rate below .10 indicates acceptable. On 

the other hand, power estimates refers to the percentage of rejecting the null hypothesis 

when the nonlinear effect occur in the population data across replications. Power above 

.80 is consider sufficient in the present study. 

Results 

Three true models including true interaction model, true quadratic model, and the 

model with both true interaction and true quadratic effects, were specified.  The model 

with one true interaction effect and two quadratic effects were used to analyze simulated 

data, regardless of the true models being used to generate the data. The two latent 

variable approach—the RAPI and the LMS methods—were compared in terms of 

estimating precision, accuracy, and their power to detect true effects across three levels 

of the multicollinearity between the two latent exogenous variables  𝑋 and  𝑀. The true 

nonlinear effects along with the power for each true model are displayed in Table 5 

through Table7.  
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Table 5  

Results for Models with One True Interaction Effects 

Cor. Parameter True value (Sig.) Mean Est. Bias% Se ratio 95% CI  RMSE Type I error Power 

          

   Reliability-Adjusted Product-Indicator    

       

0 𝜔 2 0.224 (91.6%) 0.249 2.23% 0.982 93.8% 0.073 N.A. 89.60% 

 𝜔   0.000 (3.8%) -0.002 N.A. 0.982 95.0% 0.040 5% N.A. 

 𝜔22 0.000 (6.4%) 0.001 N.A. 0.906 91.6% 0.044 8% N.A. 

          

0.5 𝜔 2 0.200 (36.6%) 0.177 -11.55% 0.953 92.8% 0.089 N.A. 57.6% 

 𝜔   0.000 (4.4%) 0.023 N.A. 1.009 93.4% 0.051 6.4% N.A. 

 𝜔22 0.000 (6.4%) 0.025 N.A. 0.917 89.6% 0.056 10% N.A. 

          

0.8 𝜔 2 0.175 (13.0%) 0.121 -30.74% 0.937 89.8% 0.128 N.A. 22.2% 

 𝜔   0.000 (6.6%) 0.037 N.A. 1.001 89.4% 0.071 10% N.A. 

 𝜔22 0.000 (7.4%) 0.039 N.A. 0.923 87.0% 0.076 12.8% N.A. 

          

   Latent Moderate Structural Equations    

       

0 𝜔 2 0.224 (91.6%) 0.248 1.76% 0.990 94.8% 0.071 N.A. 90.4% 

 𝜔   0.000 (3.8%) -0.0018 N.A. 0.987 94.4% 0.049 5.6% N.A. 

 𝜔22 0.000 (6.4%) 0.0013 N.A. 0.910 91.8% 0.054 7.8% N.A. 

          

0.5 𝜔 2 0.200 (36.6%) 0.191 -4.46% 0.946 92.4% 0.111 N.A. 44.6% 

 𝜔   0.000 (4.4%) 0.014 N.A. 1.008 93.6% 0.066 6.4% N.A. 

 𝜔22 0.000 (6.4%) 0.016 N.A. 0.914 90.4% 0.073 9.4% N.A. 

          

0.8 𝜔 2 0.175 (13.0%) 0.139 -20.47% 0.928 91.4% 0.261 N.A. 12.2% 

 𝜔   0.000 (6.6%) 0.028 N.A. 0.975 93.0% 0.139 6.8% N.A. 

 𝜔22 0.000 (7.4%) 0.031 N.A. 0.918 90.6% 0.147 9.4% N.A. 
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Table 6  

Results for Models with Two True Quadratic Effects 

Cor. Parameter True value (Sig.) Mean Est. Bias% Se ratio 95% CI  RMSE Type I error Power 

          

   Reliability-Adjusted Product-Indicator    

       

0 𝜔 2 0.000 (5.0%) -0.002 N.A. 0.957 93.8% 0.073 5.8% N.A. 

 𝜔   0.158 (88.8%) 0.129 -18.04% 0.989 87.4% 0.050 N.A. 90.0% 

 𝜔22 0.158 (87.6%) 0.132 -16.36% 0.932 88.0% 0.051 N.A. 88.8% 

          

0.5 𝜔 2 0.000 (6.2%) 0.089 N.A. 0.947 78.6% 0.124 21.2% N.A. 

 𝜔   0.158 (55.0%) 0.119 -24.89% 0.998 85.6% 0.061 N.A. 73.2% 

 𝜔22 0.158 (56.0%) 0.121 -37.54% 0.924 84.6% 0.063 N.A. 71.4% 

          

0.8 𝜔 2 0.000 (9.2%) 0.153 N.A. 0.938 70.2% 0.193 29.4% N.A. 

 𝜔   0.158 (12.0%) 0.099 -37.54% 0.996 82.8% 0.085 N.A. 37.4% 

 𝜔22 0.158 (15.0%) 0.101 -36.38% 0.918 79.2% 0.088 N.A. 39.2% 

          

   Latent Moderate Structural Equations    

       

0 𝜔 2 0.000 (5.0%) -0.000 N.A. 0.975 93.4% 0.072 6.6% N.A. 

 𝜔   0.158 (88.8%) 0.160 1.45% 0.993 94.0% 0.050 N.A. 89.0% 

 𝜔22 0.158 (87.6%) 0.163 3.43% 0.946 93.2% 0.054 N.A. 87.8% 

          

0.5 𝜔 2 0.000 (6.2%) 0.046 N.A. 0.953 90.0% 0.121 10.0% N.A. 

 𝜔   0.158 (55.0%) 0.151 -4.23% 1.000 94.6% 0.068 N.A. 63.2% 

 𝜔22 0.158 (56.0%) 0.154 -2.78% 0.937 93.6% 0.072 N.A. 61.6% 

          

0.8 𝜔 2 0.000 (9.2%) 0.106 N.A. 0.935 89.0% 0.283 10.8% N.A. 

 𝜔   0.158 (12.0%) 0.127 -19.84% 0.975 92.0% 0.143 N.A. 17.8% 

 𝜔22 0.158 (15.0%) 0.129 -18.63% 0.928 93.4% 0.149 N.A. 19.8% 
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Table 7  

Results for Models with One True Interaction and Two True Quadratic Effects 

Cor. Parameter True value (Sig.) Mean Est. Bias% Se ratio 95% CI  RMSE Type I error Power 

          

   Reliability-Adjusted Product-Indicator    

       

0 𝜔 2 0.224 (87.2%) 0.229 2.27% 0.950 94.0% 0.076 N.A. 87.6% 

 𝜔   0.158 (86.0%) 0.130 -17.86% 0.966 87.4% 0.051 N.A. 89.0% 

 𝜔22 0.158 (86.2%) 0.132 -16.23% 0.902 85.8% 0.052 N.A. 86.4% 

          

0.5 𝜔 2 0.200 (35.8%) 0.268 34.02% 0.940 86.0% 0.113 N.A. 87.2% 

 𝜔   0.158 (54.6%) 0.143 -9.16% 0.985 91.4% 0.051 N.A. 85.6% 

 𝜔22 0.158 (54.2%) 0.145 -8.07% 0.899 91.2% 0.055 N.A. 81.8% 

          

0.8 𝜔 2 0.175 (11.4%) 0.277 58.03% 0.931 84.4% 0.l59 N.A. 66.8% 

 𝜔   0.158 (11.8%) 0.138 -12.96% 0.988 91.6% 0.067 N.A. 61.2% 

 𝜔22 0.158 (15.2%) 0.139 -12.03% 0.899 90.8% 0.072 N.A. 58.0% 

          

   Latent Moderate Structural Equations    

       

0 𝜔 2 0.224 (87.2%) 0.232  3.68% 0.974 94.6% 0.075 N.A. 88.0% 

 𝜔   0.158 (86.0%) 0.162 2.37% 0.981 94.0% 0.052 N.A. 87.2% 

 𝜔22 0.158 (86.2%) 0.165 4.66% 0.931 93.6% 0.056 N.A. 86.8% 

          

0.5 𝜔 2 0.200 (35.8%) 0.240 20.23% 0.952 91.6% 0.122 N.A. 60.6% 

 𝜔   0.158 (54.6%) 0.168 6.24% 1.004 94.2% 0.070 N.A. 68.2% 

 𝜔22 0.158 (54.2%) 0.170 7.63% 0.928 92.4% 0.076 N.A. 66.2% 

          

0.8 𝜔 2 0.175 (11.4%) 0.246 40.85% 0.936 91.2% 0.277 N.A. 21.2% 

 𝜔   0.158 (11.8%) 0.158 0.27% 0.978 94.6% 0.144 N.A. 24.0% 

 𝜔22 0.158 (15.2%) 0.160 1.38% 0.927 93.2% 0.152 N.A. 25.2% 
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True Interaction Model 

 The parameter estimates for the true interaction model are displayed in Table 5. 

As can be seen, when the correlation between the latent factors is zero, both approach 

resulted in unbiased parameter estimates. The relative biases for estimating interaction 

effects were below 3% and the quadratic effects estimates did not deviate from true 

values (0) by more than .002 in absolute value for both methods. In all cases, the SE 

ratios were within the range of 0.9 and 1.1 and the CI coverage rates were all above 

91%. The RMSE for detecting the true interaction effects were around 0.07, higher than 

that for estimating the two null quadratic effects at around .045. The power in detecting 

the interaction effects was 89.6% and 90.4% for the RAPI and the LMS methods, 

respectively, which were lower than the power of the true model by 1% to 2%. 

Compared to the type I error rates from the true models (3.8% and 6.4%), slighted higher 

Type I error rates were observed for the first quadratic effect (5%) and the second 

quadratic effect (8%). 

 Given a correlation of .50 between the two latent exogenous variables, biased 

parameter estimates were found for the RAPI method with underestimated interaction 

effects of 11.55%. The LMS method as well underestimated the interaction effects but 

was within the criteria of 10%. In all cases, the SE ratios were within the range of 0.9 

and 1.1. The CI coverage rates were all above 91% for the interaction effect and the first 

quadratic effect. The CI coverage rates for the second quadratic effect were 89.6% and 

90.4% for the RAPI and LMS methods, respectively. The RMSE values for testing the 

interaction effects were 0.089 for the RAPI method and 0.111 for the LMS method. 
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Compared to the true model, the power for detecting the true interaction effects 

increased 20% and 8% for the RAPI and the LMS methods, respectively. The type I 

error rates for the two quadratic effects were higher at 2% to 3% from that in the true 

model. 

 When the correlation between  𝑋 and  𝑀 increased to .80, both methods yielded 

seriously underestimated the interaction effects. The relatively bias for the RAPI method 

was -30.74% and for the LMS method was -20.47%. The SE ratios for both methods 

were within the range of 0.9 and 1.1, indicating the biased estimates were stable. The 

95% CI coverage were below the 91% criteria for the RAPI methods in estimating all the 

nonlinear effects, whereas the coverage rates for the LMS method were above 91% 

criteria for the interaction effect and the first quadratic effect. The RMSE values for 

estimating the nonlinear with the LMS methods were two times higher than that with the 

RAPI methods. Finally, both the power for detecting the interaction effects and the type 

I error rates for estimating the null quadratic effects were similar to or higher than the 

true model. 

True Quadratic Model 

 Under the conditions of independent latent exogenous variables, substantially 

underestimated mean quadratic effect estimates were yielded through the RAPI method 

(Bias% = 18.04% and -16.36%). On the other hand, unbiased mean quadratic estimates 

were obtained using the LMS method (Bias% = 1.45% and 3.43%). The SE ratio for 

both methods were above within the .9 to 1.1 criteria but the CI coverage rate for the 

quadratic effects were below 91% for the RAPI method. The RMSE for estimating the 
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interaction effects was around 0.07 and for examining the two quadratic effects were 

around .05 regardless of the methods. Slightly higher Type I error rate for the null 

interaction effect and power for the non-zero quadratic effects were observed for both 

methods. 

 When the correlation between  𝑋 and  𝑀 increased to .50, the quadratic effect 

estimates for the RAPI method yielded larger biases, with relatively bias of -24.89% and 

-37.54%. On the contrary, unbiased mean parameter estimates for the quadratic effects 

were obtained, with relatively bias of -4.23% and -2.78%). The SE ratio for both 

methods were within the range of 0.9 and 1.1. The 95% CI coverage rates for the LMS 

method were over 91% for all the three nonlinear effects estimates, whereas 78.6% of 

the CI for the interaction effects and 85% of the CI for the quadratic effects produced 

through the RAPI method can capture the true effects. The RMSE for detecting the 

(nonsexist) interaction effect increased to 0.120 for both methods. The type I error rate 

obtained from the RAPI method was three times larger than that from the true model 

(21.2% vs. 6.2%); an inflated Type I error rate was also observed from the LMS method 

but it was closer to the true model (10.0% vs. 6.2%). Compared to the power for 

detecting the true quadratic effects in the true model (55.0% and 56.0%), both methods 

produced higher power test on the quadratic effects, with the RAPI yielded 15% higher 

and the LMS method yielded 6% higher in power. 

 As the correlation between the two latent exogenous variables increased to .80, 

both the RAPI and the LMS obtained substantially biased mean estimates of the 

quadratic effects, with two times larger biases yielded from the RAPI method. The 95% 
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CI coverage rate of the nonlinear effects estimates were slightly decreased to 89.0% to 

93.4% for the LMS method, whereas the rate were decreased to 70.2% to 82.8% for the 

RAPI method. The type I error rate was once again more conservative for the LMS 

method (10.8%) than the RAPI method (29.4%). Likewise, the power was higher for the 

RAPI method than the LMS method. 

True Model with Interaction and Quadratic Effects 

 Similar to what we have seen in the previous two models, as long as the latent 

exogenous variables are uncorrelated, unbiased mean parameter estimates of the 

nonlinear effects were obtained for the LMS methods when a model with both effect 

types was estimated (Table XX). On the other hand, the quadratic effects yielded from 

the RAPI methods were substantially underestimated, whereas the interaction effect was 

unbiased. The power for detecting nonlinear effects were around 87%, which were 

similar to the power from the true model.  

 When the correlation between the two latent exogenous variables increased to 

.50, the relative biases of the interaction effects were 34.02% for the RAPI and 20.23% 

for the LMS methods. Likewise, the RMSE for estimating the interaction effects 

increased to 0.113 for the RAPI and 0.122 for the LMS. For the quadratic effects, 

underestimated estimates were observed from the RAPI method whereas the estimates in 

the LMS method were overly estimated, but all of them were below the 10% criteria in 

absolute value. In terms of power, the RAPI method maintain the power around 85% 

whereas the LMS method had power around 65%, both were higher than the power form 

the true model (35.8% to 54.6%).  
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  As the correlation between  𝑋 and  𝑀 increased to .80, the biases of the 

interaction effects increased to 58.03% for the RAPI method, and 40.85% for the LMS 

method. The quadratic effects for the RAPI methods were slightly over 10% criteria in 

absolute value, whereas the quadratic effects for the LMS methods were unbiased. 

Although higher biases were observed for the RAPI methods, the RMSE of the nonlinear 

effects for the RAPI methods were half the size of that for the LMS methods, indicating 

more variation among LMS parameter estimates. Both method provided higher power 

test than the true model, with the power for the RAPI method higher than the LMS 

method by 40%. 

Discussion 

The primary goal of this article is to investigate the robustness of the RAPI and 

the LMS methods to multicollinearity while estimating nonlinear effects (both 

interaction and quadratic effects) with composite scores. Our results reveal that each 

method perform differently in terms of the estimation of the interaction effects or 

quadratic effects, and differ from the robustness to multicollinearity. 

When the latent exogenous variables are uncorrelated, both the RAPI and the 

LMS methods provide unbiased estimates and have sufficient power for testing 

interaction effects. However, for estimating quadratic effects, the LMS method 

outperforms the RAPI method in providing unbiased estimates. Specifically, specifying 

model with both interaction effects and quadratic effects leads to unbiased estimates 

with the LMS method when latent exogenous variables are uncorrelated. The results are 



 

81 

 

consistent with Keleva et al., (2008), in which LMS method are used for testing 

nonlinear effects with multiple predictors and are found to be unbiased. 

Under increasing multicollinearity, both methods provide more biased estimates 

of the nonlinear effects, when the true models are only carrying interaction effects or 

quadratic effects. In all cases, the LMS method also has shown more accurate estimates 

of the nonlinear effects than the RAPI method. However, for true models with both 

interaction effects and quadratic effects, the estimation of the quadratic effects are 

unbiased in the LMS method and showing more robustness in the RAPI method, 

regardless of the level of multicollinearity. On the other hand, the interaction effects 

estimates are overestimated in a true model with both nonlinear effects, as opposed to 

underestimated in a true model with only interaction effect. Hence, specifying both 

interaction effects and quadratic effects in a model can be beneficial for examining 

quadratic effects, but may not be so helpful for investigating interaction effects. 

The results of non-robustness of the interaction effects are in contradict to Keleva 

et al. (2008), in which they found that the LMS method is robust to multicollinearity 

among the three true models. Compared to Keleva et al. (2008) in which the latent 

variables are specified with multiple predictors, the measurement error adjustment 

approach in the present study seems to be “over-killed” and result in less accurate 

estimates. However, both methods provide higher power test of the nonlinear effects 

regardless of the level of multicollinearity. For researchers only interested in whether the 

models are able to detect the nonlinear effects, but not the exact magnitude of the effects, 

both the RAPI and the LMS methods may be preferable.  
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Combine with the simulation setting in study 2, we can conclude that unbiased 

estimates of the interaction effects are obtained when the correlation between the two 

latent exogenous variables is within the range of 0 to 0.2. When specifying both 

interaction effects and quadratic effects in a model, the quadratic effects estimates are 

more robust to multicollinearity than the interaction effects. Hence, it is recommended to 

use models specifying both interaction effects and quadratic effects, when researchers 

are only interested in quadratic effects. Overall, LMS method is better than the RAPI 

method in all cases in this study. However, both methods are suffered from the 

multicollinearity of the latent exogenous variables. In sum, when testing nonlinear 

effects with observed composites, both the RAPI and LMS methods are not 

recommended with moderate or higher correlations between latent exogenous variables, 

unless only the quadratic effects are of interest.  
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CHAPTER V  

CONCLUSIONS  

 

The dissertation discuss the latent variable models and statistical methods which 

can be applied while estimating nonlinear effects (i.e., interaction effects and quadratic 

effects) with manifest composites. As composite scores have been widely used among 

substantive research and the latent factor components (i.e., true score and measurement 

errors) have commonly been overlooked, much more work is needed to address the 

importance of using latent variable models while estimating nonlinear effects. 

In the first manuscript of this dissertation, I evaluated two methods— reliability 

adjusted product indicator (RAPI) and latent moderate structural equations (LMS)—

which can be applied while estimating interaction effects with composite scores. The 

two methods were also compared with the conventional path analyses, in which the 

exogenous variables are all assumed to be perfectly measured. I found that when 

examining an interaction effect based on the observed composite scores without properly 

taking measurement errors into account, the result may be a considerable 

underestimation in the interaction effect. Thus, we encourage researchers to apply either 

the LMS or the RAPI method, which can directly specify the measurement errors of the 

manifest variables, for the estimation of interaction effects. For researchers who have 

very limited access to SEM programs, the RAPI model is by far the most feasible way 

(i.e., can be implemented in most of the SEM programs) to generate unbiased interaction 

estimates. Moreover, the overall model chi-square test and other commonly used model-
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fit indices are only available for the RAPI method. On the other hand, the LMS method 

produces relatively more conservative interaction effect estimates. Additionally, for 

those who have small data sets (with low sample sizes) or less reliable measures, the 

LMS method would be more preferable.  

One key feature of the RAPI and the LMS methods is to utilize the scale 

reliability to constrain the measurement error variance of the composite variables in the 

model. In the second manuscript, I evaluated the performance of both the RAPI and 

LMS methods with four different reliability estimates (i.e., Cronbach’s alpha, omega, 

Revelle’s omega, and greatest lower bond). The simulation results showed that 

incorporating with different reliability estimates would not substantially vary the power 

for testing the interaction effects. However, if the estimation accuracy and precision are 

of interest, Revelle’s omega outperform the other three reliability estimates and is 

recommended when items followed the congeneric assumptions.     

In the third manuscript, the focus is no longer only on the interaction effects, but 

is extended to quadratic effects as well. Results from the simulation showed that 

generally the LMS perform better than the RAPI methods while estimating for both 

interaction effects and quadratic effects in the model. However, when the correlation of 

the two latent exogenous variables are high (i.e., over .5), both the LMS and the RAPI 

methods are likely to yield biased estimations of the nonlinear effects. Additionally, the 

generated data were fitted with models assuming both interaction effects and quadratic 

effects occurred. Such models may increase the estimation accuracy while the 

researchers are only interested in quadratic effects, but may result in biased estimation 
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when interaction effects are the only interest. Hence, prior knowledge which provides 

theoretical support in the model specification process is important, given that fitting 

models with both nonlinear effects may not always yielded ideal estimation of the 

nonlinear effects. 

The findings of the three manuscripts in this dissertation can be summarized in 

the following recommendations. 

1. While estimating nonlinear effects with observed composites, always conduct 

latent variable models and apply both the RAPI and LMS methods. 

2. For items following congeneric assumption, applying the RAPI and LMS 

methods with the Revelle’s omega total yielded more accurate results; if only 

the power of the test is of interest, applying Cronbach’s alpha, omega, and 

GLB make less difference. 

3. Caution should be made for applying the RAPI and LMS methods when the 

correlation between the latent exogenous variables are high (i.e., over .5).  

4. To achieve better estimation, apply interaction effect models while only 

interested in estimating interaction effects; apply models with both 

interaction effects and quadratic effects while interested in estimating 

quadratic effects only. 
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APPENDIX A 

ERROR VARIANCE OF THE LATENT INTERACTION EFFECT 

The following is a summary of the derivation based on Bohrnstedt and Marwell 

(1978) and Busemeyer and Jones (1983). Let 𝑋 (predictor) and 𝑀 (moderator) be 

observable random variables with true scores  𝑋 and  𝑀 and error random variables 𝛿𝑋 

and 𝛿𝑀. We assume the following measurement models for 𝑋 and 𝑀, respectively:  

 

𝑋  𝜏𝑋  𝜆𝑋 𝑋  𝛿𝑋,                                                      (A1) 

𝑀  𝜏𝑀  𝜆𝑀 𝑀  𝛿𝑀.                                                  (A2) 

 

Both 𝑋 and 𝑀 are mean-centered variables so that 𝐸(𝑋)  𝐸(𝑀)  0. For identification 

purpose, both 𝐸( 𝑋) and 𝐸( 𝑀) are fixed to zero. Thus, the two intercepts, 𝜏𝑋 and 𝜏𝑀, 

would be equal to zero. 𝜆𝑋 and 𝜆𝑀 are factor loadings that are constrained to one for 

identification purpose; these constraints allow the observed variables and the true scores 

to share the same metric. 𝛿𝑋 and 𝛿𝑀 are assumed to be independent from each other as 

well as independent from  𝑥 and  𝑀, with 𝐸(𝛿𝑋)  𝐸(𝛿𝑀)  0. The variance of  𝑋 is 

defined as: 

 

𝑉𝑎𝑟( 𝑋)  𝐸( 𝑋
2)  (𝐸( 𝑋))

2
 𝐸( 𝑋

2),                                     (A3) 

 

and the variances of  𝑀, 𝛿𝑋, and 𝛿𝑀 can all be, respectively, found using the definition in 

Equation (A3):  𝑉𝑎𝑟( 𝑀)  𝐸( 𝑀
2), 𝑉𝑎𝑟(𝛿𝑋)  𝐸(𝛿𝑋

2), and 𝑉𝑎𝑟(𝛿𝑀)  𝐸(𝛿𝑀
2).   
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The observed interaction variable, 𝑋𝑀, is defined as the product term of the two 

observed composite variables 𝑋 and 𝑀. The corresponding latent true score of 𝑋𝑀,  𝑋𝑀 

is defined as the product term of  𝑋 and  𝑀, so  𝑋𝑀   𝑋 𝑀. As Lin and colleagues 

(2010) pointed out, the use of double-mean-centering strategy can produce more 

accurate results when estimating latent interaction effect. Therefore, we adopted the 

double-mean-centering strategy; 𝑋𝑀 is also a mean-centered variable. The variance of 

this observed interaction variable 𝑋𝑀 is defined as:  

 

𝑉𝑎𝑟(𝑋𝑀)  𝐸(𝑋2𝑀2)  (𝐸(𝑋𝑀))
2
,                                     (A4) 

 

in which, 

 

𝐸(𝑋2𝑀2)  𝐸(( 𝑋  𝛿𝑋)
2( 𝑀  𝛿𝑀)2) 

                    𝐸 (( 𝑋
2  2 𝑋𝛿𝑋  𝛿𝑋

2)( 𝑀
2  2 𝑀𝛿𝑀  𝛿𝑀

2)) 

                    𝐸( 𝑋
2 𝑀

2)  𝐸( 𝑋
2𝛿𝑀

2)  𝐸(𝛿𝑋
2 𝑀

2)  𝐸(𝛿𝑋
2𝛿𝑀

2) 

                        2𝐸(𝛿𝑀)𝐸( 𝑋
2 𝑀)  2𝐸(𝛿𝑋)𝐸( 𝑋 𝑀

2)  2𝐸(𝛿𝑋)𝐸( 𝑋𝛿𝑀
2)

 2𝐸(𝛿𝑀)𝐸( 𝑀𝛿𝑋
2) 

                        4𝐸(𝛿𝑋)𝐸( 𝑋 𝑀𝛿𝑀) 

                    𝐸( 𝑋𝑀
2)  𝐸( 𝑋

2)𝐸(𝛿𝑀
2)  𝐸(𝛿𝑋

2)𝐸( 𝑀
2)  𝐸(𝛿𝑋

2)𝐸(𝛿𝑀
2)  0  0  

                        0  0  0,                                                                                                (A5) 
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and 

 

(𝐸(𝑋𝑀))
2
 (𝐸(( 𝑋  𝛿𝑋)( 𝑀  𝛿𝑀)))2 

                      (𝐸( 𝑋 𝑀)  𝐸( 𝑀𝛿𝑋)  𝐸( 𝑋𝛿𝑀)  𝐸(𝛿𝑋𝛿𝑀))
2
 

                      (𝐸( 𝑋𝑀)  0  0  0)2.                                                                         (A6)  

 

In Bohrnstedt and Marwell (1978) and Busemeyer and Jones (1983), the derivations of 

both Equations (A5) and (A6) are based on the assumptions of bivariate normality in 𝑋 

and 𝑀. However, when applying the double-mean-centering strategy (Lin et al., 2010), 

Equations (A5) and (A6) may be derived without any distribution assumption on 𝑋 and 

𝑀 (other than the assumption that the variances of  𝑋,  𝑀, 𝛿𝑋, and 𝛿𝑀 are finite). When 

substituting Equations (A5) and (A6) back into Equation (A4), we get 

 

𝑉𝑎𝑟(𝑋𝑀)  [𝐸( 𝑋𝑀
2)  (𝐸( 𝑋𝑀))

2
]  𝐸( 𝑋

2)𝐸(𝛿𝑀
2)  𝐸(𝛿𝑋

2)𝐸( 𝑀
2)

 𝐸(𝛿𝑋
2)𝐸(𝛿𝑀

2) 

                     𝑉𝑎𝑟( 𝑋𝑀)  𝑉𝑎𝑟( 𝑋)𝑉𝑎𝑟(𝛿𝑀)  𝑉𝑎𝑟( 𝑀)𝑉𝑎𝑟(𝛿𝑋)  𝑉𝑎𝑟(𝛿𝑋)𝑉𝑎𝑟(𝛿𝑀).        

(A7) 
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APPENDIX B 

Mplus SYNTAX OF THE PATH MODEL, THE LATENT MODERATED 

STRUCTURAL EQUATIONS (LMS) METHOD, AND THE RELIABILITY 

ADJUSTED PRODUCT INDICATOR (RAPI) METHOD 

 

B1: Path Model 

TITLE: 

Estimate interaction effect with the path model 

DATA: 

File=exrep1996.dat; 

VARIABLE:  

Names = y xc mc;  

Usevariables=y xc mc xm; 

!xc and mc are the mean-centered composites; 

!The creation of xc and mc should be conducted outside the Mplus program;  

 

DEFINE: 

!xm is the product term of xc and mc; 

!grand mean center strategy apply to xm; 

xm=xc*mc; 

center xm (grandmean);    

ANALYSIS: 

MODEL: 

     y ON xc mc xm;   

OUTPUT:  

STDYX; 

 

B2: Latent Moderated Structural Equations (LMS) Method  

TITLE:  

Estimate interaction effect with the  

        latent moderated structural equations (LMS) method 

DATA:  

File=exrep1996.dat; 

VARIABLE: 

Names = y xc mc; 

Usevariables=y xc mc ; 

!xc and mc are the mean-centered composites; 
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!The creation of xc and mc should be conducted outside the Mplus program;  

 

ANALYSIS: 

            Type=Random; 

            Algorithm=integration; 

 

MODEL: 

            fx BY xc; 

            fm BY mc; 

 

!Mplus default function for LMS method; 

            fxm | fx xwith fm; 

 

            y ON fx fm fxm; 

 

!give labels for latent factor variance; 

           fx (vxc); 

           fm (vmc); 

 

!give labels for error variance; 

           xc (v_exc); 

           mc (v_emc); 

 

!specify mean structure 

            [fx@0 fm@0]; 

            [xc@0 mc@0]; 

 

    Model Constraint: 

! define v_ox and v_om to be the sum of the latent factor variance and error variance, 

or the total variance; 

           new (v_ox v_om); 

           v_ox = vxc + v_exc; 

           v_om = vmc + v_emc; 

 

!define the error variance to be the function of reliability and total variance 

!in this example, reliability is assumed to be .7; 

           v_exc = v_ox*(1-.7); 

           v_emc = v_om*(1-.7); 

 

OUTPUT:  

           STDYX; 
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B3: Reliability-Adjusted Product Indicator (RAPI) Method 

TITLE:  

            Estimate interaction effect with the  

            reliability-adjusted product indicator (RAPI) method 

DATA:  

            File=exrep1996.dat; 

VARIABLE: 

            Names = y xc mc; 

            Usevariables=y xc mc xm; 

!xc and mc are the mean-centered composites; 

!The creation of xc and mc should be conducted outside the Mplus program;  

 

 

DEFINE: 

!xm is the product term of xc and mc; 

!grand mean center strategy apply to xm; 

            xm=xc*mc;     

            center xm (grandmean); 

 

MODEL: 

!specify the model as shown in Figure 3; 

            fx BY xc; 

            fm BY mc; 

            fxm BY xm; 

            y ON fx fm fxm;  

 

!give labels for latent factor variance;    

            fx (vxc); 

            fm (vmc); 

            fxm (vxm); 

 

!give labels for error variance; 

            xc (v_exc); 

            mc (v_emc); 

            xm (v_exm); 

 

!specify mean structure 

            [fx@0 fm@0 fxm@0]; 

            [xc@0 mc@0 xm@0]; 

 

Model Constraint: 

! define v_ox, v_om, and v_oxm to be the sum of the latent factor variance and error 

variance, or the total variance; 
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            new (v_ox v_om v_oxm); 

            v_ox = vxc + v_exc; 

            v_om = vmc + v_emc; 

            v_oxm = vxm + v_exm; 

 

!define the error variance to be the function of reliability and total variance 

!in this example, reliability is assumed to be .7; 

            v_exc = v_ox*(1-.7); 

            v_emc = v_om*(1-.7); 

            v_exm = v_ox*.7*v_om*(1-.7)+ v_om*.7*v_ox*(1-.7) 

                          +v_ox*(1-.7)*v_om*(1-.7); 

 

OUTPUT: 

           STDYX; 

 

 




