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Theoretical physicists talk much about "fields,®
but « . . what is a field? VYears ago when I was first
getting into the subject, and had an intense horror of
+ «.» words which seemed to contribute . . . not at all
to the mathematical or observational content of the
theory, I confronted Permi with this blunt question., I
was very mnuch relieved that the great man did not
respond that this vas a stupid or irrelevant gquestion,
and that everyone that had any right to think about
such matters knew of course what a field was, but
appeared to take the question seriously. He stopped to
think for a nmoment, and then responded that, in his
judgement, "field" meant most basically the "occupation
numnber formalism." . . . I felt nuch reassured, if

not technically enlightened.

-- T. E. Seqal *

* Segal (1968), pp. 31-32.



INTRODUCTION

In elementary expositions of quantam field theory
{esg., [Mandl]) physical space is often treated, not as an
infinite Fuclidean space, but as a large finite "box", Usually
periodic boundary conditions are assumed; thus one is effectively
identifying opposite points on the boundary of the box and hence
imagining the universe to be a flat three-dimensional torus. 1In
a field theory constructed in this way the enerqy and momentun
operators have discrete spectrum and normalizabhle eigenvectors;
for certain purposes this offers conceptual and technical
advantages. Hovever, a ‘torus model is not invariant under
rotations or Lorentz transformations, and hence some of the most
powerful tools of the modern theoretical physicist are not
applicable,

Apparently it was Gutzwiller (1956) who first suggested
in print that the advantages of a finite universe could be
combined with the advantages of a high degree of geometrical
symmetry by considering a closed universe of constant

curvature.[1] (See also the remarks of Chernikov and Tagirov

[1] Following the traditional language of cosmology, we shall
call a space-time manifold of dimension s + 1 closed (or finite)
if the slice of space corresponding to a given time is a conmpact
manifold, with the topology (usually) of an s-dimensional sphere,
The range of the time coordinate is allowed to be infinite, For
the definition of "constant curvature" (which we shall never nse)
see Sec., III.4 below or Sec, 1 of Gutzwiller's paper.
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(1968).)‘ There is a space-time (essentially unrique -- see Sec,
I.1) which satisfies the two criteria of heing spatially closed
and of having a group of global 1isometries with the same nunmber
of parameters as the Poincare (inhomogeneous Lorentz) group
{i.e., ten parameters in the four-dimensicnal case). This is the

de Sitter universe, which will be described in detail in Chapter

I. The associated group, the de Sitter group, is not the same as

the Poincaré group, but rather stands to the Poincaré group in a
relation like that of the latter to the inhomogeneous Galilei
group. Hence one would expect de-Sitter-invariant physics to
have as many complications over special relativistic physics as
relativistic has over nonrelativistic physics, and one is not
disappointed. In de Sitter space spatial translations in
"different directions do not commute, and time translations are
hard even to define. These facts are related to the nonvanishing
curvature of de Sitter space, which introduces a modification in
the local geometry and physics which has no parallel in the torus
model, These and similar complications make Gutzwiller's
proposal harder to implement than one might think at first,

In the past decade torus models have heen important in
the developnment of constructive quantum field theory. Jaffe
(1965) constructed a self-interacting scalar field (with
interaction Lagrangian proportional to '¢(x)4) in a
tvo~-dimensional box, and this and other. kinds of space cutoffs
have been used in the process of constructing the ¢4 field theory

in infinite space (see bibiliography in Glimm and Jaffe (1970)).
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Here the purpose of the cutoff is not to make the momentun
spectrum discrete bhut to make the volume of space finite., Then
some of the mathematical pathologies characteristic of
Fuclidean-invariant field theories (see Wightman ({1964), Sec. 6)
do not arise., (In formal calculations these difficulties show up
in the form of divergent integrals over infinite space,)

The method of construction of the ¢+ theory in infinite
space is not Lorentz-covariant, and one of the hardest tasks of
the subject has been to prove that the model finally obtained
really possesses the symmetry under Lorentz transformations which
it intuitively ought to have., The idea arose, therefore, of
constructing an interacting field in the two-dimensional de
Sitter space in analogy with the work of Jaffe (1965), but taking
care to maintain invariance under the de Sitter group explicitly
throughout, This theory would involve the radius of the
universe, R, as a paranmeter. In the linit R --> o one could
hope to recover a clearly Ilorentz-invariant theory in flat
infinite space by methods like those used in ordinary
constructive field theory. This dissertation was intended to
accomplish at least the preliminary steps in this program. The
lorentz invariance of the ¢4 theory has recently been proved by
Streater (1971) by a different method.[2] The original

motivation for the present work is thereby weakened, One can

[2] At the time of this writing an error has been discovered in
the work which culminated in Streater's proof, so at least for
the time being the problem must be regarded as still open.
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still hope, however, that de Sitter space will provide an
alternative route to the ¢4 nodel with some techmical or
pedagogical advantages.

However, there 1is another reason, at present more
urgent, for studying gquantum field theory in de Sitter space.
This is the current interest in possible significant effects due
to the quantunm rature of patter in relativistic cosmology and
astrophysics. 3 theoretically coherent treatment of particles in
interaction with a given gravitational background requires a
general theory of gquantum fields in Riemannian space-tinmes. De
Sitter space is much more like the flat space-time of special
relativity than the most general universe is, but it nevertheless
possesses some of the features of the general case, such as
curvature. Consequently, a well-understood quantum field theory
for de Sitter space should be a comparatively easy intermediate
goal, and it should also be instructive in relation to the
general problem, TIn this context it is not necessary to consider
self-interacting fields to encounter interesting problems; the
so-called "free" field already presents considerable problems of
mathematical definition and, even more, of physical
interpretation,

In the course of three years the research reported here
has progressively reoriented itself from the first to the second
of these two problem areas. Thus it turns out that this study of
the free field in de Sitter space has very 1little to say about

interacting fields in de Sitter and Minkowski space, the <concern
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of constructive quantum field theory, bhut quite a bit to say
about free fields in general space-times, a concern of general
relativity theory. For the reader's guidance the work and the

document vill now be described in more detail.

1. Program.

In this dissertation quantization of a massive neutral
scalar field without self-interaction defined on a space-tinme
manifold with given metric is studied, with emphasis on the
two-dimensional spatially finite de  Sitter universe, as
indicated above, the work has been conducted with two purposes in

mind:

(1) To 1lay groundwork for the rigorous study of nmodel
interacting fields in de Sitter space, envisioned as a
covariant method of introducing a spatial cutoff in

constructive quantum field theory.

(2) To make a critical examination of the applicability of

the concepts of guantum field and particle in the context

of curved space-time -- a problem of current interest in

relativistic astrophysics and cosmology.

Let us elaborate on the first point. Note first that
the ©possibility of doing calculations in gquantum physics at all
is based on the possibility of abstracting a nearly closed systen
from its surroundings and idealizing 1its environment, For

instance, a scattering process is treated as an encounter between
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two particles in an otherwise enmpty universe, even though in
reality it takes place in a bubble chamber close to many rapidly
moving atoms, which give rise to electromagnetic fields, and so
on. The actual problem is hopeless to solve, or even to pose,
One must assume (and it is usually taken to be too physically
obvious to deserve mention) that the differences between the real
problem and the tractable problem are minuscule for any
gquantities of interest calculated. This is a basic
presupposition of the subject, of the same sort as the dogma of
stability in classical mechanics as described by [Abraham],
pp. 3-4,

The same reasoning is involved in the notion of a
cutoff in quantum field theory., A change in the global structure
of the spatial universe from a FEuclidean space to a torus or a
sphere (as in de Sitter space} produces a drastic change in the
mathematical structure of the qgunantum field theory. {Indeed,
that is the reason for introducing the cutoff,) VNevertheless,
one proceeds on the expectation that if the dimensions of the
finite space are taken 1large enough, the values of observed
physical quantities vill be indistinguishable from those
calculated in an infinite-space theory, For instance, 1if one
works in a bhox of cosmological size, say length I = 10@7 cm, the
energy and momentum spectra will be discrete, but with spacings

- - -4 . .
of the order of 2NX/L = 10 e sec ' 10 ? ergs. This quantity

]

is more than 25 orders of magnitude smaller than the smallest

energy differences commonly measured in physics, such as the Lamdb
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shift and the K,-Kl nass difference, So this momentunm
quantization, a striking qualitative difference between the
finite- and the infinite-space field theories, does not have
observable consequences.[3]

In the case of de Sitter space one has introduoced not
only a glohal periodicity but also a genuine local effect,
curvature, But this, like the weak electromagnetic field near an
atom of hydrogen in the bubble chamber, can safely be assumed to
be negligible -- 1if the radius of the universe is sufficiently
large, Indeed, the universe we live in is not really a Minkowski
space, or a de Sitter space either, but something more
complicated; yet we expect laboratory particle events to be
adequately described by theories based on the infinite flat
space-time of special relativity. ¥With equal Jjustification we
right use a de Sitter space-time, (In fact, the real universe
may well be spatially closed, in which case a de Sitter space may
be the better approximation.) In other words, we have good

physical reasons for believing that

(1) any thecry of physical processes onr the microscopic level
ought to come in both de-Sitter-space and Minkowski-space

versions;

[3] Prom a certain point of view it can be argued that within a
sufficiently small region of space-time the global structure of
the space (as opposed to local curvature) should have no effect
at all on the dynamics of the quantized field. This vwill be
discussed in Secs., IX.4 and 1X.7.
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(2) these should make the same experimental predictions in
the limit of large radius of the de Sitter space, and, in
fact, should already be practically indistinguishable by
the time the radius reaches a magnitude characteristic of

the actual universe.

This, then, 1is the physical reasoning underlying the
idea of a covariant cutoff. {Prom the point of view of
mathematical technology, of course, the observation that the real
universe may be finite is superfluous.) What would one expect to
happen on the level of mathematical apparatus as the radius tends
to infinity? From general information on the nature of field
theories in infinite space (Haag's theorem, etc., -- see Haag
{1955) and Wightman (1964)) and the experience with noncovariant
cutoffs (Glimm and Jaffe (1970)), we know that it would be
unrealistic to expect the state vectors and field operators of a
de-Sitter-space theory (with nontrivial interaction) to cosverge
to those of a Minkowski-space theory. The most one cam hope for
is that the expectation values of the field operators (or of an
associated algebra of bounded observables) in some state might
converge to distributions which can be interpreted as the vacuum
expectation values of a Lorentz-invariant field theory; then the
field theory can be reconstructed {[Streater-Wightman], Sec.
3.4). On the other hand, suppose that even this program fails.
Then, in view of what was said above, one could still hope to

take limits in observable quantities, If one could define an
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S-matrix in de Sitter space (a nontrivial task -- see Sec., 1IV,3
below), an acceptable Lorentz-covariant S-matrix should he
extractable from it, Then one would have successful field
theories in de Sitter space, though not in Minkowski space, and
the demands of practical physics would be satisfied.

The program of constructive field theory in de Sitter
space thus falls naturally into two parts: the construction of
field theories in de Sitter space and the taking of 1limits in
hopes of recovering field theories in Minkowski space.

We shall approach the first step in two ways, the
axiomatic and the constructive. In the axiomatic approach
{Chapter 1IV) an attempt is made to preserve the crucial role
played by the symmetry group in standard axiomatic quantum field
theory. Then a “"free" field in de Sitter space will be
constructed (Chapter 7V, parts of Chapters VIII and X) for
comparison. (The comparison will cast doubt on the central role
assumed at first for the group -~- see next section.) No attempt
#ill be made here to coanstruct a self-interacting field (one
satisfying a nonlinear field eguation).

A necessary preliminary to the second step seems to be
a clarification of the relationship between unitary
representations of the de Sitter group and those of the Poincareé
group, since the 1limiting procedure is expected somehow to
produce a representation of the one out of a representation of
the other. This is the problem of contraction of group

representations, discussed in Chapters II and VI,
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Any physicist who considers this subject must have some
qualms over wvhether the construction of "Ythe scalar £field"” in a
hypothetical space-time is a well-defined problem, operationally.
After all, vwe live in only one universe., A theory appropriate to
a different one cannot be experimentally tested, What, then,
does it mean to say that such a theory is correct? Of course, if
one is interested in a quantum field theory in de Sitter space
only as a mathermatical tool, a temporary construction leading
eventually to a field theory in flat space, ther this question is
irrelevant, One feels, however, that the fundamental ideas of
quantum field theory should have a unigque extension to curved
space, much as the Schr#dinger equation provides us with what we
believe to be the "true" behavior of a particle in an arbitrary
potential, even a potential which it is impossible to produce
experimentally. From this point of view it was natural to demand
a physical interpretation for a quantized field in de Sitter
space, and the author resolved to settle this question for the
“free? field before proceeding to the construction of interacting
fields.

In the absence of experimental tests, one is driven to
“internal” criteria for the goodness of a theory., It should be
the most natural generalization to the new context of the
successful theories with which we are already acquainted. It is
more important to generalize the physical ideas than the
superficial properties of the mathematical apparatus, To be

convincing the result must be as nearly as possible unique; the
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theory should be somehow "compelling™ in its claim to be the
right theory. 0f course, this goal cannot be conpletely
attained; what is a compelling argument to one person may be
unconvincing to others, and at some points arbitrary decisions
based on taste will have to be made.

The present author found a variety of approaches to
quantum mechanics and field theory in de Sitter space already in
the literature (see Sec. T.5). It seemed that these authors
either d4id not carry the project through to the construction of a
definite quantum theory (a Hilbert space of state vectors, etc.)
or did not realize that their prescriptions were not the only
ones possible. In particular, the present author was not
convinced that an approach which assigned to the de Sitter group
a role as close as possible to that of the Poincaré gqroup in
standard field theory was physically Jjustified, He resolved to
apply the criterion that a model field theory in de Sitter space
nust fit coherently into a physically convincing theory of field
gquantization in general Riemannian{#] space-tinmes, {(In the
general case, of course, there is no symmetry group; in special
cases there may bhe groups with fewer than the maximal number of
parameters.,)

This was the origin of the second, and eventually
dominant, theme of the research. In the absence of evidence to

the contrary, it was assumed as a wvorking hypothesis that the

[4) See footnote 1 of Chapter IIX,
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canonical field quantization precedure of the textbooks should
apply to the "free"” field on an arbitrary Riemannian manifold.
This field satisfies a linear equation (with variable
coefficients), so there is no reason to expect the canonical
commutation relations to break down, as presumably happens in
some nonlinear theories. Also, canonical quantization brings us
mnuch closer to the goal of unigueness than a more general
axiomatic scheme, and it is noteworthy that in flat-space
theories the canotical commutation relations are closely related
to the particle interpretation. It turns out, however, that the
canonical structure is not sufficient to determine a particle
interpretation uniquely. These matters are studied in Chapters
VII through X, and the results are summarized in the next section
of the Introduction.

The extension of the scope of the investigation from de
Sitter space to general netrics improves the situation with
regard to experimental relevance. Field guantization is now
being applied to various astrophysical and cosmological problenms
(e«g9., Ruffini and Bonazzola {1969); Parker (1968); Zel'dovich
(1970)). It is hoped that the present work will help to put the
nethods used on a more solid base o0f general theory. Thus there
is a connection between a general theory of field quantization on

Riemannian manifolds and actual observations., .
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The contributions of the work presented here to this

program can be summarized in several categories,

(1) The author hopes that this dissertation will be a
useful reference for a subject on which previous work has
been widely scattered and marked by a certain lack of
conmuynication, In this spirit many facts and formulas about
de Sitter spaces and groups, various coordinate systenms,
solutions of the field equation in the two-dimensional case,
etc.,, have been collected; much bibliographical information
has been passed along, even on topics which are treated only
tangentially here; and (as far as practical) efforts have
been made to keep the exposition comprehensible to general
relativity theorists without much background in field theory

and mathematical physics and vice versa.

(2) Three approaches to the quantization of the
"free" field in two-dimensional de Sitter space have been
considered: (d) second quantization of a single-particle
theory in which the states of the particle support an
irreducible representation of the de Sitter group (following
Tagirov et al. (1967)[5] and  Nachtmann {(1968b));
(B) canonical quantization of the field in a region where the

metric can be regarded as static; (C) canonical gquantization

[5] See also Chernikov and Tagirov (1968).
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in the whole space, regarded as a homogeneous universe of
time-varying radius. (See Chapters V¥, VIII, and ¥X.) In all
cases a Fock-like construction of a Hilbert space for the
quantunm theory has been attained, but the resulting
"particle" interpretations are incompatible (see (4) belov).
In particular, pair creation from vacuum occurs in theory (C)
(at least according to one definition of particle number
observables -- see Secs. X.5-6) and not in the others.. The
representations for the theories (A) and (C) can be shown to
be unitarily equivalent (Sec. ¥.9). Some observations on the
field in the spatially open de Sitter universe are included
(Secs. IIY.6 and V.8), with emphasis on the relation between
the structure of the space and the self-adjointness of the

Hamiltonian of the field theory.

(3) The <canonical formalism of {scalar) field
quantization has been developed for an arbitrary metric
{Chapter VII). Por a static metric one can proceed to the
standard construction of Fock space, with its particle
interpretation (Chapter VIII); the particle number is
conserved in such a theory. (See, however, points (4) and
{5) below.) 1In the nmore interesting case of an "expanding
universe" (Chapter X), where pair creation is expected, there
is no obvious unique analogue of the Fock repre-

sentation.[ 6] In Sec. X.5 a Pock representation at each time

[6] Cf. Parker (1966, 1969).
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is defined in a way which most plausibly generalizes the
usual condition of positive energy, and the representations
for different times are proved unitarily equivalent in the
case of a closed two-dimemsional universe. This result
fails, however, for infinite space and probably for higher

dimensions,

(4) Significant negative results appeared when the
general theory was applied to simple nmodels, The procedures
mentioned in (3) for constructing a representation of the
fields as operators in a Hilbert space are based on analogies
to the case of the free field in flat space which hold when
the metric of the Riemannian space-time has a special fornm
(static or rigidly expanding). If the metric has such
properties vwhen expressed in several different coordinate
systemrs, the quantization procedure 1is not unique. Tn
particular, one can arrive in this way at anomalous
representations of the free field in flat space {(Chapter IX
and Sec. Y.2). Por the same reason the three methods of
quantization for de Sitter space cited in (2) yield different
results, These ambiguities affect the physical concepts of
the vacuum, particles, and energy density. In Secs, VII.7
and X.7 it is argued that similar problems already arise in
principle in flat-space quantum field theories with external
potentials, but that in practice these questions are

dismissed as operationally meaningless, because an
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unambiguious scattering interpretation of the theory is

available in the cases of interest.

{5 The author concludes from (#) that the
requirement of a unique physical representation of the fields
is unrealistic in the general case.  This point of viewv is
consistent  with the unitary inequivalence of the
positive-energy representations at different times in the
most general expanding universe., It is suggested that one
rust work with an abstract algebra of observables associated
with the field (Secs. IX.4-5). The quanta associated with a
given representation need not have a direct physical
interpretation as particles. On the other hand, somne
representations are probably more directly related to
practical observables than ‘others. Some speculation is
of fered (Sec. IX.7) as to how particle phenomena may arise in
a field framework in a way which depends on global boundary
conditions. A deeper analysis of the physical process of
observation is  called for to <clarify the physical
interpretation of field theory. In Sec., ¥X,8 a proposal is
made for a general definition of particle observahles, based
on a condition of positive energy relative to a geodesic
hypersurface, which in flat space reduces to the standard
theory. (In a general static space this prescription does

not coincide with that suggested by the Fock representation
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{see (3) above).[7]) when applied to two-dimensional de
Sitter space this ansatz predicts a nonzero but very small

rate of creation of pairs out of the vacuum {(Sec. ¥X.10).

(6) The axiomatic approach has been applied to field
theory in de Sitter space (Chapter 1IV), with inconclusive
results. Most of the standard axioms generalize easily and
are satisfied by the free field theory (A) (see Sec. V.?%).
The most acceptable replacement <€found for the spectral
condition is the general condition of positive energy already
referred to in (3) and (5). This can be satisfied by a
theory of type (C), which seems to the author to be the most
convincing theory physically. In the two-dimensional case
theories (A) and (C) are unitarily equivalent, but the
invariant vacuum state loses its physical significance if the

proposed definition of particle observables is adopted.

(N The formal correspondences hetween the
irreducible Hermitian representations of the Lie algebra of
the de Sitter group and those of the 1L1ie algebra of the
Poincaré group are discussed in some detail (Chapter II)., Tt
is pointed out that in some contexts, when a discrete index
becomes continuous in the contraction, an ad hoc distinction

betveen even and odd indices seems to be required in order to

[7] Note that from the standpoint of the algebraic approach to
quantum theory this does not necessarily mean that the Pock
representation is useless,
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reproduce the representations of the contracted group
completely, This and other unsatisfying or mystifying
features of the formal approach to contraction of
representations can be clarified by studying, as a concrete
example, the contraction of the natural action of the group
on the scalar functions on its coset space relative to the
contraction subgroup. (In the case of the de Sitter group,
this is the universe we are studying.) This idea is
developed in detail for the rotation group in Appendix C and
di scussed briefly for the two-dimensional de Sitter group in

Chapter VI,

3. To Prevent a Case of Mistaken Identity.

A fev vords are in order about what this dissertation
does not do. First, there is no attempt to quantize the
gravitational field. The metric of space-time is alwvays assumed
to be given. In fact, it does not even have to satisfy the
Einstein equations to qualify as an interesting model. By the
same token, this work is not related to attempts (Deser (1957);
Isham et al. (1971) and related papers of A. Salam and covorkers)
to cure the diseases of Llagrangian quantum field theory by
including an interaction with the gravitational field. The de

Sitter model is relevant to only one class of the divergences of
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field theory[8], those connected with the infinite volume of
space, and, as explained above, it is intended in this connection
only as a way station on the road to a theory im flat space.
Pinally, this work has nothing at all to do with attempts to
relate the de Sitter group to internal symmetries, the mass
spectrum of elementary particles, and so on (e.g., Roman and
Aghassi (1966), BBhm (1966), Burcev (1968), Bakri (1969), Vigier

(1969) , Tait and Cornwell (1971)).

4, Mechanics.

In recognition of the fact that very few people will
read this entire volume, every effort has been made to facilitate
browsing and random access reference. The research reported in
this dissertation has a major theme, the general theory of
quantum fields in Riemannian space-time, and a minor theme, the
contraction of Lie groups (with its physical application to
physics in de Sitter space). The reader interested only in the
second will want to stop reading after Chapter VI, The reader
interested only in the first should omit Chapters II and VI and
Appendix C; indeed, if he is not particularly interested in de
Sitter space he might want to start with Chapter VII. The reader
in search of ideas (not final answers!) concerning the

fundamental question of the meaning of quantum field theory in

[8] It has been suggested that the finite volume of the de Sitter
universe may be helpful in treating the infrared divergences
{E. p. Wigner, private communication). However, not much
attention has been paid to massless fields in the present work.
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curved space-time will find the importance of the sections to be,
on the average, inversely proportional ¢to the density of
mathematical symbols. In addition to the qualitative sections,
he should read Secs. V.3-6 and X.9-10, vhere some relevant
axplicit results for the case of de Sitter space are obtained,

Certain background material has been relegated to
appendices. Two appendices contain original material: Appendix
€C is a digression, a preliminary exercise for the work of
Chapters II and VI, and Appendix G is an outqrowth of Secs. TX.5
and 1Y¥.7. For the reader who wants to read everything in its
logical order the following sequence is recommended: Secs. 4.1
and 1.2 before Chap. I; Sec. B.2 hefore Sec. I.#; Sec. A,3 after
Chap., I; Apps. B and C before Chap. TI; App. D before Chap. IIT;
App. E before Chap., IV; App. F before Chap. VIII; App. G after
Chap. IX.

In bibliographical references books are 1indicated by
author's name 1in brackets, and journal articles, etc., are
indicated hy author's name and date. "Eg. {1.3)" means the third
equation of Section 1 of the current chapter or appendix, "Egs.
{I.1.3-5)" means equations 3 through 5 inclusive of the first
section of Chapter I, and so forth.

We shall always use units such that ¥ = c¢ = 1. The
netric of space-time has one plus sign and three minuses on its
diagonal. A¥* and At are respectively the complex conjugate and
the adjoint of A. The letter ¥ denotes sometimes a space-tinme

variable (dimension n = s + 1) and sometimes a space variable
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(dimension s); this ambiquity seems less confusing than use of

boldface for a quantity which is not, in general, a vector.
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Chapter T

DE SITTER SPACES AND DE SITTER GROUPS

We shall study a spatially finite space-time of
constant curvature of dimension n and the symmetry group
associated with it. Of course, the case n = 84 is most relevant
to physics. It is wuseful to consider alson =2 and n = 3,
however, The importance of lower-dimensional models in the
constructive theory of interacting fields is well known (see
Glimm and Jaffe (1970) and references cited there); there one
postpones tackling the ultraviolet problem in its full fury while
dealing with other aspects of the subject., A rigorous study of
interacting fields in curved space would presumably alsc start in
tvo dimensions. On the other hand, in some contexts the
fundamental problems are the same in all dimensions, but the
incidental mathematical complexity increases with n., Then the
modest approach of starting with dimension 2 and generalizing
later to higher dimensions can be a help to both researcher and
reader; it allows the basic problem to stand out clearly amid a
minimum of inessential algebraic complications. The main
contribution of this dissertation is to bring up and, at least
partially, to ansver several questions of principle which arise
and can be studied for the scalar field in two-dimensional

space~-time just as well as in more complicated cases., Throughout
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this chapter it will be easy enough to do everything for generalr
ns later we shall usually specialize ton = 2 or n = &,
In this chapter vwe use the terminology and facts

concerning pseudo-orthogonal groups set forth in Appendix B.

1. The Closed De Sitter Space of Dimension n.

We define de Sitter space as a certainrn homogeneous
space of the qroup 300(1,n).. Recall that if G is a group of
transformations (not necessarily linear) on a set M, then ¥ is

called a homogeneous space of 6 if for every two points x amnd vy

in M there is an element A of G such that y = Ax. ¥ can be
identified with G/H, the space of left cosets of & rtelative to
the subgroup H (stability group) of transformations in 6 which
leave a given point of ¥ invariant. (See [Hermann], pp. 3-4.)
The n-dimensional Minkowski space is a homogeneous space under

the n-dimensional translation group and thus a fortiori under the

Poincaré group IS0 _(1,n=1).

Ve consider the n-dimensional de Sitter group 500(1,u)
{see Appendix A). Of course, R““ is not a homogeneous space of
this group, because only vectors with the same 1length in the
metric F{x) (Bq. {(A.1.2)) can be connected by transformations in

the group. The n-dimensional submanifold M of }"" defined by

the condition{ 1]

[1] The coordinates are vith respect to an orthonormal basis.
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0 2 1 ,
F(x) = (x ) - 351 (x) =-18, (1.1

vhere R is a positive real number, can easily be seen to be

homogeneous. We shall call it the (closed) de Sitter space of

dimension n., Its induced metric has the signature (¥ - ... -)
(n - 1 minus signs) appropriate to a space-time model of
dimension n, The stability subgroup H of any point in ¥ is
isororphic to the n-dimensional Lorentz group 500(1,n’1).

The two-dimensional de Sitter space is sketched in Fig.
1; it is a single-sheeted hyperboloid, The drawing is slightly
misleading, because it is hard to visualize the indefinite metric
of the enveloping three-dimensional space, For instance,
relative distances in the space in various directions may be
quite different from what they seem to the eye. Also, contrary
to appearance, all points and regions are equivalent in their
curvature and other intrinsic geometrical properties, since the
space is homogeneous. Geometrical matters will be discussed 1in
nore detail in Chapter III,

Consider a point O in ¥; for instance, the one with
coordinates

0 n-1 n
0: (X yesesX ¢eX ) = {0,0e.,0,R), {1.2)

R patch of the space around 0 whose linear dimensions are very
small compared to R will be almost indistinqguishable from a piece

of n-dimensional Minkowski space (Fig. 2). It is clear that the
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ALV N W et F\\/\\/‘\J“\'“~f3L~;f\/'\/’~/~./N\r\,

Fig. 1

Two-dimensional closed de Sitter space. The intersections of the
surface with the planes x° = € and x' = 0 and a neighborhood of
the point 0 (x* = + BR) are shown. A left-handed coordinate
system is used to make the orientation of Fig, 2 agree with the
standard ccnvention, (Figure adapted from Philips (1963).)



Sec. I,1 28

<

transformations which

e

leave O invariant (the

group H) act on  this
neighborhood similarly to

the action of the

n-dimensional homnogeneous
Lorentz group on flat

space.

fonrt s s s o i e f s — . — c— —

Physically, the

o (e o s e e ot o et i, e o it [t et
(o]
o e e e - - — ——
]

n-dimensional de Sitter
space can be interpreted - Fig. 2
as a universe of n -1 A neighborhood of the point O in
the limit of large B,

spacelike and one
timelike dimension, finite and closed in the spacelike
directions, The saobmanifold {x|x° = 0}, which represents the
spatial universe at one instant of time, 1is a hypersphere of
radius R. (There is another way of looking at de Sitter space,
according to which the spatial universe is open (infinite) -~ see
Sec. III.7.)

De Sitter space is a space of constant curvature, and
in fact possesses a Lie group of global isonmetries (viz.,

500(1,n)) with the maximal number of parameters, n(n+1)/2. (The

latter implies the former, but constant curvature implies maximal
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symmetry only in a local sense.[2]) The only[3] space-times with
this maximal symmetry are Minkowski space, closed de Sitter
space, and open de Sitter space (a homogeneous space of
S0 (2,n-1)). The closed de Sitter space which we are considering
is the only one in which space at each time has finite volume, 2
group~theoretical determination of all possible space-times of a
certain high degree of synmmetry was made in the thesis of
Hannabuss (1969a) (see his TIntroduction and Appendix 1), See

also Calabi and Markus (1962).

2. The Contraction Process.

The geometrical properties of a small neighborhood of
any point in de Sitter space are almost the same as those of a
neighborhood in Minkowski space. The global properties of the
spaces are very different, of course. In the Introduction we
argued that one should not expect events which occur on a
microscopic scale within a small region of space to he

significantly affected by the structure of space at cosmological

[2] [ Eisenhart], Sec, 27; J. W. York, Jr., private communication.
An ordinary circular cylinder is an example of a two-dimensional
space of constant curvature wvwithout a global three-paraneter
isometry group.

[3] This statement is not entirely accurate, because of the
existence of "covering spaces"™ with homomorphic isometry groups.
First, there is the possibility of considering a smaller space,
defined by identifying antipodal points in de Sitter space -- see
[ Schr¥dinger ], pp. 7-14, or Calabi and Markus (1962)., In Chapter
VII this space will be rejected for the purposes of field theory
because it does not have a consistent time orientation.
Conversely, the closed de Sitter space with n = 2 and the open de
Sitter spaces of any dimension (see Secs, III.6 and V.8 below)
have covering spaces from which they are obtained by identifying
points.
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distances., Cn the basis of this plausible physical idea ve
expect that to every physical theory set in Minkowski space there
corresponds a theory in de Sitter space which for sufficiently
large R (small curvature) gives virtually identical numerical
predictions for observable quantities in any local process (such
as elementary particle scattering).

In some sense the theory in de Sitter space should go
over smoothly into the Minkowski theory as R approaches infinity.
On the other hand, the mathematical structure of the theories is
likely to be quite different, For instance, for all finite R one
will have the de Sitter group 500(1,n) as a symmetry group, but
for R = o0 the symmetry group will be the quite different
Poincaré group, 1800(1,n-1). In field theory, functions on a
hypersphere, associated with discrete modes (spherical harmonic
expansions), will be replaced in the limit by functions on
Euclidean space, associated with continuum Fourier transforams.
It is likely, therefore, that for the mathematical apparatus of a
de Sitter theory the 1limit R -——> o wvill not exist, except
perhaps in some very "“weak" sense.,. It may be hard to formunlate
clearly defined mathematical concepts and rigorous, nontrivial
statements concerning the relationship between de Sitter theories
(with finite but large BR) and Minkowski theories, The problenm
just posed is a generalization of the problems surrounding the

notion of gqroup contraction.{4%] By analogy we <call the passage

[8] Segal (1951}, pp. 254-257; In8nH and Wigner (1953); Saletan
(196 1) ; Indnd  (1962); [{Hermann], pp. 86-101; Bacry and
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to the limit R —> oo in a de Sitter theory the contraction of
that theory to a theory in Minkowski space. In particular, it
will involve a contraction in the usual sense of a representation
of the de Sitter group to a representation of the Poincaré group.
In this section we discuss contraction as it applies to the
groups themselves. Contraction of unitary representations will
be discussed in Chapters IT and VI,

In investigating the 1linmit R —> o our general
approach will be to make a scaling transformation

X =X (0 £ n<n), (2. 1)

)
it
=~ 2 Y
[

-

starting from the orthonormal system of Egq. (1.1) as the unbarred
system, and then to let R —> oo in various equations and
expressions connected with de Sitter space, hoping to obtain
1imits that make sense in Minkowski space, The mathematical
rigor of the 1limiting processes varies with the context;
sometimes the limits are intended as aids to the intuition rather
than as proofs, It is helpful in keeping track of what is going
on to assign to xj the dimension of length and to note the
dimensions of other quantities whenever they first arise. Since

ve take E = c = 1 (dimensionless), we have

Lévy-leblond (1968); Philips and Wigner (1968), pp. 664-666;
Lévy-Nahas (1967, 1969).
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-1
[time] = [length] = [mass] .

Thus B is a 1length, Ax -- introduced in Eq. (A.1.3) -- is
dimensionless, and X of Bg. (2.1) is dimensionless.

We begin with a formal algebraic counterpart[{5] of the
intuitive 1imit process indicated in Fig. 2. Substituting Eq.
(2.1) into Eq. (1.7 and dividing by R* vields

_n2 -2
- {(x) +O0(R ) =-1. {(2.2)
So the transformation (2.1) seems to be an appropriate one to

rake wvhen studying the neighborhood of the point O characterized

by X" = + 1 (cf. Eq. (1.2)) in the limit R =——> o. Now consider

the action of a gererator 1 € ;1(500(1,n)):

j J ok
y = (1) X ((1) == (L) ). (2.3)
k 4k kd
Substitute from Eq. (2.1):
. BV p o _n
y = (L) x + (L) Rx , (2. 4a)
v n
-n n _p
Ry = (1) X o {2.4D)

R

Therefore, the matrix I which represents L with respect to the

nev basis is

[5] Cf. Rosen {1965).



Sec, 1.2 33

om = , (2.5a)
1% V

(L) = R(L) , (2.5b)
n n '

_n 1 n

(1) = -(L) . (2.5¢)
A R n

(ff; is a length and (ff; is dimensionless. So far we have
merely written the Llie algebra of the de Sitter group in a
different vay.
Next, hovwever, we let R —> oo ard require that the
barred quantities remain finite. Since
n 1 _»n

I =+—=@O ,
}J n

Py

=

in the limit we must have (ffL = 0, Now L has the form (A.2.6)
of a generator of the Poincare group, and in view of Fq. (2.2) we
can think of the de Sitter space M as having been replaced by the
hyperplane X =1 (i.e., Minkowski space -- see Sec., A.2). HWe
can extend the range of the variables x* from - o0 to + @, even
though the limit process just described makes literal sense only
for some finite neighborhood of O,

We have contracted a representation of 02(800(1,n)) to
a representation of 231500(1,n~1)). The group representations

generated by these representations of the Lie algebras are the
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representations which vere used to define the respective groups
in Appendix A, So we mnmay speak of a contraction of the
n-dimensional de Sitter group to the n-dimensional Poincaré
group. The subgroup of 500(1,n) with respect to which the
contraction takes place 1is the n-dimensional Lorentz group,
500(1,n—1), which leaves the point 0 invariant, and the resulting
Abelian invariant subgroup of 1500(1,n-1) is the n-dimensional

translation group.

ie 3lgebras of the De Sitter and Poincare Groups.

3.

{b

From Appendix A we have the following commutation
relations for the basis elements of the Lie algebras (Egs.,

(A;‘l.ﬂ)), (5.2.8), and (A.2011)):

De_sSitter group _SO_(1,n)
fv ,. 1=90 if a, b, ¢, d are all distinct, (3. 1a)
ab cd
[r ,L =13 & if b #a# c. {3.1)
ab ca a bc

Poincare_group__IS0.{(1,n-1)

0 if & B, Y, © are all distinct, (3.2a)

—
anl
-
td
o
]

n L ifBFaFY. (3. 2b)
o Yo o« By

~
[
-
[
e
il

[T ,T ] =0, (3. 2¢)
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—
[
-
-3
[Wer]
]

0 if x # Yy # B. (3.24)

~—
[
-
-3
[
1}

L qB‘i‘ if «# B. (3. 2e)
o

The numbers (L)i and (E)i of Sec. 1.2 are the
coefficients of the expansions of the elements L of the Lie
algebras with respect to these bases. The basis elements
transform contragrediently to the coefficients, Thus Egqs. (2.5)

suggest relating the basic generators of the Poincaré group to

those of the de Sitter group by

T =1L |, (3. 3a)
oB of
N 1
T =1 = lim - L , (3. 3Db)

(e & nx R—>0c R nax

where T, has dimension [length]'. If one substitutes Bgqs. (3.3)
into Egs. (3.1) and divides by appropriate powers of R before
taking the limit, one obtains Egs. (3.2). Group contraction is
usuvally discussed in terms of such a singular transformation on
the Lie algebra (see references listed above),

From now on let us omit the bars on the Poincaré
generators when there is no chance of confusion, It is helpful
to distinguish the generators which play different
geometrical-physical roles by different 1letters instead of
indices. Also, in discussing wunitary representations in a

Hilbert space it is convenient to have Hermitian (rather than
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skev-Hermitian) generators. To avoid proliferation of notation
let us carry out all these reforms at once.

let capital Latin indices range from 1 ton - 1, 1In
dealing with them we abandon the summation convention and relax
the distinction between contravariant and covariant indices.
When convenient ve shall also use vector notation:
= (X 00, X)), let € be the familiar completely

ABC
antisymmetric tensor in three-space, with the properties

Se € =6 &5 -5 & , (3. 8a)
€ ABC CDE AD BE AE BD

1
- 5 € € =6 . (3.4D)
2 B,C ARC BCD AD

C s . . ik
The indices of EABC and SAB are not to be raised with g’ N

With these conventions we define for the de Sitter

algebra

. ) (3.5)

and for the Poincaré algebra
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.Y

BE=-3iT, - P = 4+P = - iT ,

0 A 2
A - — (3.6)

K = - iL Fe J = - il .
AD AB AB
In the physical case, n = 4§, we let
A 1

J ==-- S e 3 (3.7a)

’
2 B,C ABC BC

or, equivalently,
I =-5e 3. (3.7b)
C

The JAB generate the group of rotations in space around

the point 0 (Eg. (1.2)). The transformations generated by the ph

can be identified with spatial translations. The J's and P

together generate the subgroup of isometries which map the
spatial universe {x)xo = 0} into itself, 1In the de Sitter group
this subgroup 1is isomorphic to S0{(n),. After contraction it
becomes ISO(n-1)., The J's and 'g generate the "local Lorentz
group” of the point 0 (the group called H in Sec. I.1). The
generator H behaves in the neighborhood of 0 like a generator of
time translations, but these are not global time translations, as
we shall see in Chapter III.

The sign conventions in these definitions have been

chosen to agree with standard usage for the Poincaré group. A

o
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translation in the direction of the four-vector b has the fornm

i} 0 A 1
U(b) = exp{ib P} =exp{ib H-i Db P }. (3.8) -
B A
The sign in Egq. (3.7a) 1is necessary for agreement with the
standard notation in quantum mechanics (e.g., [Messiah], Chap.
XI1I) -- see Eq. (3.10a) below. It is not useful to distinguish
contravariant and covariant components of E and 3, since they are —
not part of four-vectors.
Bacry and Llévy-leblond (1968) have introduced an -—

index-free notation for Lie brackets: If Y is a scalar and’; and -—

—p
Z are vectors, -

- - A A
[X,Y] =2 means [¥ ,Y¥] =2 {3.9a) —

{for A = 1, eee, -1}, If i and ? are vectors and Z is a scalar, -

- A B
[i,Y] = 3 means [x ,¥ ] = S Z. (3.9 _
AB
If n = 4 and Y,‘?, and 7 are all vectors, —
B B _ C
[i,?] = % means [x ,Y¥ 1= 2 € Z .. (3.9¢) —
C ABC

(Yote that [¥,X] = (X,¥] # - [1,X].) -
The commutation relations (3.1) and (3.2) for n = 4 can

be written
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50.(1,8) 150.01,3)
(3,31 =13 | (same) (3.10a)
(3,%) = i¥ (same) (3. 10b)
[E,f] = - 13 {(same) {3.10¢)
(3,41 =10 (same)  (3.104)
[3,3] = iP (samé) {3. 10e)
(K,H] = ib (same) (3. 10f)
[K,P] = in (same)  (3.10q)
(F,8] = ik [P,B] =0 (3.10h)
[B,8] = i3 (3,71 =0 (3.10i)

If o = 2 there is no J, and B and % have only one component each;
the Lie algebra reduces to Egs. (3.10f,g,h).. If n = 3, we Jet

J=-23 and have in addition to Egs., (3.10f,q,h) and (3.104)

(S

1 2 2 1
[d,K ] =+ iK , [J,K ] =~ iK , (3. 11a)

1 2
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1 2 2 1

1 2
[e ,p 3 =1iag {or 0, respectively]. {3.11d)
We observe from Egqs. {3.10) that in a representation of
one of the Lie algebras some of the coperators are conpletely
determined by the others. It follows that some of  the
comnutation relations are redundant. Por instance, we have the

following propositions:

{1) 1If operators H, E, 3} J are given, to check

Ag
that they form a representation of 500(1,n) or ISO°(1,n-1) it
suffices to verify Egs. (3.10b,c,f,g,h) (or their analogues

for general n}.

(2) If operators H and K are given, a representation
is obtained by defining JAB and 3 through ZFgs. {(3.10c) and
{3.10f), provided that H and X satisfy Egs. (3.10b,9,h), or,

equivalently,

n v
[[K ,K ],KP] =0 if p, ¥, o are distinct, (3.12a)

14

oy n
[{X ,XK ],K 1=K if p # v, {3.12D)
vhere K0 = H.

(3) In the case of SO _(1,n) the analogous statements

are valid with the roles of B and K interchanged.
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Proof: Given Egqs. (c,f), Egs. (b,d,g,h} are equivalent

to PFgs. {3.12), and the Jacobi identity shows that Egq. (4}
follows from the other cases of Eq. {3.12a).. Then, vwriting JAO
for PA' ve calculate

a

P
[ 3 1=-1i[J3 ,[K,K 1]
W po n

p o a P
=i {[K ,[K,J ]+I[K,[J ,£ 1}
g w

p v o
c- K, K-8 Kalerk. K -8 )
}10' o VIO pp

=i 3 -85 3 +6 3 -8 3y,
no vp ryo ap VP jile] )llo vo
vhich comprises the remaining equations (a,e,i). At the third
step ve used

p N
{J ,KP]=1(6 K -§ x),

i vp MP
which is still another way of writing Fgs. (3.12).

Statements essentially equivalent to these have been
used in representation theory for a long time (see, e.qg., Hirai
{1962a), ps. 84). The version given here, however, provides these
algebraic facts with physical significance, In particular,
consider the failure of statement (3) for ISO°(1,n-1), The

infinitesimal generators of a rTepresentation of the Poincaré
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group by tensor or spinor functions,

B -1
[O(b,2)¥] (x) = S(R) V(& (x~Db)),
o o B
are
) A ]
i = i—, P = = i\, (3.13)
&x° ax*
A A0 096
K = = i(X === ¢+ X —~=) + w ,
ox’ dxA 0RA
A9 B & (3.11)
J = j{X == =X ) + W ,
AB ox®? axA AB

wvhere the w's are infinitesimal operators of the representation
S{(A)., The commutation relations are still satisfied if the w
terms in Fgs. (3.14) are dropped. Then we have a direct sum of
several copies of the usual representation by scalar functions
(see Sec. A.3), where H and ? are still given by FEgs. {3.13).
The statement ({3) tells us that this cannot happen for the
representations of the de Sitter group. It 1is impossible to
separate "space" and "spin"™; in a representation with spin, H and
; vill contain spin ternms, This is related to the fact
(discussed in Chapter 1III) that the identification of exp(itH)

and exp(itPA) with translations is valid only in the neighborhood

of the point O.
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4, Casimir Operators.

The central elements of the universal enveloping
algebra of Z}Soo(p,g)) can be found from those of 7(sS0(n)),
n=p+ g, vhich vere deterrmined by Gel'fand (1950). The result
is that the invariants are the "scalars" (expressions with no
free indices) which can be formed from L., by contracting with

ob a, a &

g or the conpletely antisymmetric tensor € '™ » In

particular, there are the quantities{[6)

k a, a, a,
I =1 L ese L ’ {#.1a)
a, a, a
2k U, ¢se8 ab...ab
p =g L I ves L X
a1b( akbk
c,d, ¢ dy
€ L ane I; ¥ (aa 1b)
u'ul...uhlkcid'...ckdk
and, for even n,
172 8, 0008,
I = € L ses L . {4, 1c)
aa a a
t 2 ey N

An independent set of generators for the center consists of

[6] The notation is taken in part from Kihlberg (1965), p.. 126.

our DX is proportional to Kihlberg's p*. The sentence below Eq, -

{(4) of this reference is incorrect as it stands, It should read:
"The invariants [of 5S0_{(p,q)] are obtained from those [of
SO (p+q) ] by replacing ¥, i
i>p, 3%

i<p, 3<0p"

s

—

by il if i<p, J>p or -
Pr by - Ly Yif i>g, §>p, and by Ly if -
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either Ik or ﬂ( for all even k up to k = n - 1or n~- 2, plus 19&
for even n. In representations these objects are represented by
"Casimir operators", which comnute with all the group or Lie
algebra operators. They are multiples of the identity in any
irreducible representation.

let us write down these invariants for 50 _(1,n),
n=2, 3, 4, in the notation of ¥gs. (3.5 and study their

behavior under contraction, In all cases we have

2 2 2 2 2

©
i1}

1
NI
4
1
@0
-+
=
!

rad
!
MM
Cu
=
[ ]
L/

A<B 2B

(vhich is the Casimir operator in the strict sense). The

transformation (3.3) is

EY
X = K, I =3, (4. 3a)
AB AB
> 1 - - 1
P = lim - P' H= lim - Ha (5.31))
R=->m R R->x R
Substitution into Eg. (4.2) yields
2 1 2 2

R->x R*

This, of course, is the principal invariant of the Poincaré Lie
algebra (3.6).

500(1,3) has another independent invariant, which we
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take to be
-1/2 21 12

I =JH+KP -KP. (4.5)

Under contraction vwe have simply

1 21 12
Sz 1lim - Q =JH +#KP ~-KP {bars omitted)
R—>» R 2
1 abc
= - € L T (4.6)
2 ab ¢

as the corresponding invariant of the three-dimensional Poincaré
group. In an irreducible representation of ISOO(1,2) {see Sec.
B.2) with m = const. > 0, we have at the point of the spectrunm

where p' =" =0 and H =n
S = nd. (u|7)

Thus S characterizes the spin {the representation of the 1little
group). {The irreducible representations of S0(2) are labheled hy
the possible eigenvalues of J, vhich are 0, + 1/2, + 1, ....)
When n = 4 the simplest fourth-degree invariant is ﬁ4.
(14 is a linear combination of D*, 0%, and Q.) Tn our notation
1 4

2 - 2 -
0 =-—p =[JH+DBXE] - 3P + 3% . {4.8)
2 6l

In the limit

I

i

Wi
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1 2 . 2
¥= lim -—;Q = {3& + 7 X ?] - (E-P) {bars omitted) — =
R—>»> B 2
1 ab,c 4, b,e, 4,
z - - € L T € L T . (4.9) —
4 bec 4 abcd

The analogue of Bq. (4.7) is the well-known relation

R = m2 s{s + 1), {(4.10)
where s is the spin of the representation of the 1little group
S0 (3). The individual terms which appear squared in ®q., (4.8)
are the Casimir operators Ivk/B of various subhgroups: K-J is —
(up to sign) the operator 9, of 500(1,3), the group being _
interpreted now as the homogeneous Lorentz group; B-J is the —
analogous thing for the SO{4) subgroup (the spatial isometries).
Since the groups we are concerned with are not compact,
their representations are not completely characterized by the

values of the Casimir operators, as the results reviewed in

Appendix B show,

5. The History of Quantum Theory in De Sitter Space. .

Because of its unusual symmetry properties, de Sitter

space[7] has been nore often studied 1in relation to quantun

[7] Here we are primarily concerned with the closed de Sitter
space of dimension 4, although Dirac and some of the other
authors also considered the open space, The work of Philips and
Wigner deals with the two-dimensional spaces, as do some of the
papers of the Vienna and Dubna groups (see below).
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theory than any other curved space-tine,

Dirac (1935) proposed theories of the electromagnetic
field and the Dirac spinor field in de Sitter space. He employed
a very special construction, in which each physical quantity on
the de Sitter hyperboloid was regarded as the restriction of a
homogeneous function defined in the whole five-dimensional space
in which the hyperboloid was imbedded. The degree of the
homogeneity was decided for each guantity separately, on various
grounds. This approach has been related to the representation
theory of the de Sitter group and to more general definitions of
wvave equations in Riemannian space-times by GHrsey and Lee
{GHirsey (1962), GHrsey and Lee {1963)), Hannabuss (1969a,b), and
Castagnino (1970).

Philips and Wigner (Philips (1963), Philips and Wigner
{1968)) and Hannabuss (1969a,b, 1970) approached particle quantum
mechanics 1in de Sitter space in terms of the irreducible
representations of the de Sitter group. Their emphasis was on

analyzing the notion of localization, in analogy to the vork of

Newton and Wigner (1949) and Wightman (1962) in Minkowski space.
In these papers, as in the work of Dirac and of GHrsey and Lee
cited above, it was tacitly assumed that a covariant wave
equation in de Sitter space is an equation governing the wave
function of a single particle, whose possible gquantum states
transform under a representation of the group. (This viewpoint
will be disputed in Chapter V.)

The earliest paper Xnown to the present author on



Sec. I.5 48

quantum field theory in de Sitter space is that of Gutzwiller
{1956) (which apparently has gone uanoticed by all 1later workers
in the field except Scarf ({19%9)). He treated scalar,
electromagnetic, and spinor fields., His tools were primarily
_those of the classical theory of partial differential equations,
rather than group theory. However, he demanded (in effect) a
stable-particle interpretation of the €field theory, since he
adopted (at least for the spinor field) a time-independent
decomposition of the field into positive- and negative-frequency
parts.[8]

The Gruppenpest of the mid-sixties stimulated interest
in the de Sitter group among elementary particle physicists (see
references in Sec, 3 of the Introduction), In this period scalar
field theory in de Sitter space was studied by research qroups
located at Vienna (Thirring (1967), ¥achtmann (1967, 1968a,b)),
Dubna (Tagirov et al. (1967}, Chernikov and Tagirov (1968)), and
Munich (BBrner and DUrr (1969), B8rner (1970)), and by Castagnino

{(1969). {(Fronsdal (1965) and Castell (1969) considered the open

[8] Both Gutzwiller and Philips (1963) consider a definition of
positive frequency based on the asymptotic behavior of the
solutions of the wave equation -- viz., as f(t)exp(*imt), where nm
is the mass, t is an appropriate time coordinate, and f is real
-- and reject this definition on the grounds that it gives
different results when applied at t —> -c0 and at t -—> +co0.
Since from the standpoint of the present work such behavior has a
natural interpretation in terms of particle creation, the aunthor
re-examined the nmatter. He concluded that this asynmptotic
behavior comes into play only for wavelengths which, by virtue of
the expansion of the universe, have become very large on the
laboratory scale; it consequently has very 1little physical
significance, and should not be used +to define "incoming" and
Poutgoing® particles.
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de Sitter space.) The definition of particle annihilation and
creation operators was treated most cogently by the Vienna and
Dubna groups. Combining a maximum of group covariance with a
close correspondence to the flat-space theory, they both arrived
at the same theory of the scalar field in the two-dimensional
closed de Sitter space, one in which particles are not created
and destroyed., (This theory 1is discussed and criticized in a
broader context in Secs. V.6, X.4, and X.9 helow.)

Bt this point there appeared the landmark work of
Parker (1966, 1968, 1969, 1971) on particle creation in expanding
universes, which applies, in particular, to the de Sitter
universe. So we nust go back to pick up the story of a separate
tradition, the theory of field quantization and particle creation
in arbitrary space-tines,

SchrBdinger (1939) observed that 1in general the
solutions of a field equation in a space with time-dependent
metric cannot be separated into positive- and negative~frequency
solutions; if only one type of "vibration" is present at one
time, the other will appear at other times, He also remarked
that this bebavior could be interpreted in terms of creation and
annihilation of particles (cf. Sec. ¥X.3 below); but he considered
this an "alarming phenomenon” and concentrated on proving that it
did not occur under certain especially simple circumstances.

In the following years not much attention was paid to
the physical interpretation of quantum field theory in curved

space, although the formalism of fields of arbitrary spir as
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tensor- and spinor-valued distributions obeying covariant
commutation relations was developed to considerable
sophistication (Lichnerowicz (1961, 1962, and other papers)).
Scarf (1959) reported particle creation in a generalization of
the Thirring model{ 9] to curved space-time, but this work was
based on a definition of the S-matrix for the Thirring model in
flat space which later was found to he incorrect (A. S, Wightman,
private communication). Imamura (1960) defined particle
annihilation and creation operators and demonstrated particle
creation in the unambiguous and soluble but highly unrealistic
case of a universe whose radius is a step function in the time, .
Sexl and Urbantke (1967, 1969) discussed the cosmological
implications of particle creation guite concretely; but their
quantitative calculations were theoretically untenable in the
most interesting cases (e.g., a closed universe collapsing to a
singularity) because they treated only weak gravitational fields
against a Minkowski background (by Feynmar qraph methods).

In the papers cited L. E. Parker developed a theory of
field quantization in Robertson-Walker (homogeneous expanding)
universes, which 1is described in part in Chapter X of this
dissertation.[10] He shows that, in general, particle creation

must occur, although some uncertainty in the identification of

[9] The Thirring model in flat space is a theory of a massless
spinor field in dimension 2 satisfying an equation with a
nonlinear interaction term, which nevertheless can be solved in
terms of free fields., See Wightman (1964), pp. 218-231.

[10] A similar but much less thorough treatment was published by
Grib and Mamaev (1969). See Sec. X.5 for critical remarks.
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particle observables remains (see Secs. ¥X.3 and X.#6),. This
approach has recently been further developed, and applied to
cosmologically interesting situations, by Zel'dovich and
covorkers (Zelt'dovich (1970), Zel'dovich and Pitaevsky (1971),

Zel'dovich and Starobinsky (1971)) and by Parker (1972).
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Chapter IT

CONTRACTION OF THE REPRESENTATIONS OF THE DE SITTER GROUP
TO REPRESENTATIONS OF THE POINCARE GROUP:

FORMAL APPROACH

The goal of this chapter is to clarify the physical
significance of the irreducible unitary (ray) representations of
the de Sitter groups by correlating them with the irreducible
unitary representations  of the Poincaré groups. The
representations themselves {which are well known) are described
in Appendix B. We shall study the problem of contraction of
representations in detail for n = 2 and indicate briefly how our
observations extend to higher dimensions, We shall return to the

subject by a different approach in Chapter VI,

1. Contraction to the Real-Mass QRepresentations of the

Two-Dimensional Poincaré Group.

The ipfinitesimal form of an irreducible unitary
representation of the two-dimensional de Sitter group SO _(1,2)
is given by Egqs. (B.3.8). ¥He want to study the behavior of these
formulas under the contraction transformation (T.4.3).{1] If one

attempts to take this limit directly in Fgs. (B.3.8), the result

[1] The reader who wishes to follow this discussion down +to the
last detail should read Appendix C first, since in this section
calculations and motivational arguments are sometimes summarized
as "analogous to those in Appendix C."
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is a (reducible) representation of the two-dimensional Poincaré
Lie algebra in which # = P = 0, so that in the corresponding
group representation the space and time translations are all
represented by the identity. This class of representations is
not of much physical interest.

The experience of In#n# and Wigner with the rotation
group {Sec. C,3) suggests that we should consider a sequence {or
a one-parameter family) of 1inegquivalent representations, scaling
the value of the Casimir operator along with the parameter R, On
the basis of Eq. (I.8.4) we expect to obtain the representation

with mass m and timelike momenta if we set

m = ==~ = const, (1.1

and let the representation range up the principal series (Eq.
{B.3.5a)) to q = oo.

our situation differs from the one studied by In8nH and
Wigner (1953) in that the subgroup which is diagonalized in Egs.
(B.3.8) is not the subgroup (viz,, exp(ikt)) with respect to
which the contraction takes place. (This situation is studied
for the rotation group in Sec. C.84,) The subgroup exp(iPt) is
more convenient for the study of the representations of the de
Sitter group both mathematically (because it 1is compact) and
physically (because in our model it is the symmetry group of the
spatial universe at one instant of time).

We express the representation formulas (B.3.8) in ternms
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of H, P, m, and

- P
p= ) (1.2)
R
We have
PY(P) = P ¥ (D),
by - 1 A - | by 1 vr:l. -, ! - 1
Hy (p) =;{m tplp-p) NP‘;) + V" + p(p + ) WPt )],
‘ R
- - R - _- =5 -
K¥(p) = ;—{\/u;* FRE P W) - fn* + 305 + ) B+ ).
2i F Jid

Then we pass to the limit, under the assumption that ¥ {p) (which
is defined only at discrete points, of course) is to be replaced
by a reasonably smooth function of a continuous variable, ¥(p).
The details of the calculation are precisely analogous to those

given for SO(3) in Sec. C.4. The result is (bars omitted)

PE(P) = p ¥(p), (1.3a)
HP(p) = Vo™ + p* ¥(p), (1.3b)
R d i P
KB(p) = iVe* + p* — + - ——————0, {1.3¢)
dp 2 Ve® + p*

Similarly, the scalar product (B.3.7) goes over into
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00
V,9) = j dp ¥*(p) #(p) . (1.4)
-0

The representation is put into a more familiar form by

writing

- L S
¥ip) = V2 Vo* + p* y(p). (1. 5)

In terms of the barred functions we have

P¥{p) = p ¥(p), {(1.6a)
HP (p) = Vo™ + p* ¥(p), (1. 6b)

- ___a¥y
K¥(p) = ivn* + p* — ; (1.6¢)

dp

2 2 _ 2 _
(H - P)¥(P) =n V(p) (1.7

00 dp - _

¥,9) = [ —— T*(D)Z (D) - (1.8)

-00 2Vm? + p2

This is the irreducible unitary representation of (IS0 (1,1))
with mass m and positive energy =-- see FEgs, (B.2,5-6) and
(B+2.2b).

However, as we know from the case studied in Sec. C.4,
in these formal manipulations with Lie algebra matrix elements
the choice of the phases of the basis vectors can influence the

outcome, In general we could have written
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16 (p)
¥ =5 v 1g;pde (1.9) —
P

instead of ®q. (B.3.€6). Ther Egs. (B.3.8b,c) would be replaced’

by
+ e _i(sB{p*n)) - 8(D)) - F
B Y(p) = Vg + p(pF1) ¥ (pthe ’
(1. 10)
1 4 - 1 + -
H=°(A *A)' K':"""‘(A - A )o —
2 2i

If we make the substitutions (I.4.3) and (1.1-2) into

Egs. {1.10) and try to take R ——> o, we find that the expression -—

for E, —_
- 1 -ie(R®p) o _ ie(Rp+1) ie (Rp-1)
KV (p) = ——e (RYn* + 5~ ¥ (p) (e -e ) -
P 2i P
. av_ P 18 (Rp+1) i8 (Rp~1)
- [VnX + b~ f’+ —— § (e + e ) -
dp 2t +t p -p F
-1
+ O(R )], (1.11)

becomes infinite unless

8(Rp - 1) = @(Rp + 1) (mod 2Mm) (1.12) -

for all p. In arriving at ®q. (1.11) it has been assumed that
the ¥(p)¢ p =0, + 2, «vs, are replaced in the 1limit by a

differentiable function ¥ ‘(5), and that the ), —5

+



Sec. II.1 - 87

p=4+1,4+3, ..., become a possibly different function ¥ (p). _— 7
il }

Because of Egq. (1.12) we necessarily have

i8(Rp+1) ~-i®(Rp)

e e = cgo), c(+NYc(-1) = 1, (1.13) —
wvhere p = + 1 for even Rp, - 1 for odd Rp. Eg. (1.11) and its - §
partner now become {(bars omitted)

— d p
KV (p) = iclp) (VA" # p% ~L 4 ————=—§ (p)] (1.16a) —
P ap 2Vn* ¢ p=  -p
and
HY (p) = c(@Va® + P ¥ . (1. 1up) —
P Na
letting
|/ ——
V(p, o) = Va* + p* [ (p) + SC(AT (p) ], (1.15) — ¢
e -0
we finally obtain
- dy
K§(p,0) = icVn® + p~ =— (p,0), {1.16a) —
dp
A¥ (p,0) = 6Vn* + p* ¥(p,0) (1.16b) —

(along with the obvious generalizations of Egs. (1.62), (1.7),.
and (1.8)). This is a direct sum of two irreducible
representations of the Poincaré group, one with positive energy —

and one with negative energy.
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At this stage the  concept of contraction of
representations is so nebulous that it hardly makes semse to ask
which of ¥Egs., (1.6) and (1,16} represents the "correct”
contraction of the de Sitter representation (B.3.8). The problen
deserves attention, however, We shall see in.later chapters that
the major prohlem of quantum field theory in de Sitter space {and
in curved space-time in general) is to find a substitute for the
spectral condition (the requirement of positive energy). It is
surely relevant to enquire whether a representation of the
Poincaré group containing only positive energies can somehow bhe —
got out of a representation of the de Sitter group, in which
positive and negative enerqgies seem to be inescapably mixed.
This last property is related to the "local" nature of time
translation in de Sitter space, which we have mentioned already.
(This will be explained in Chapter TII.,) For this reason it is
fortunate that we have a geometrical interpretation of the
contraction of the representations of the rotation group which is
based on shrinking functions defined on the sphere to a point
{Secs. C.5-6), We shall apply this idea to the representations
of 300(1,2) after we study, in Chapter V, the functions on de —
Sitter space which support an irreducible representation of the
group.,

The most important conclusion from this discussion,
however, is well founded: The real-mass representations of the
Poincaré group are related to the principal series of —

representations of the de Sitter qroup in the 1limit of large q.
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We should concentrate on the principal series, therefore, when
searching for physically relevant theories of particles or fields

in de Sitter space using group-theoretical methods,

2. Contraction to the Other Representations of IS0 _(1,1), and a

pt-——y

Remark on the Scale of Physical Quantities.

To ohtain the representations with spacelike momentum
~
(H - P = - pl) we must allow the value of g to become large and

negative, by setting, for instance,
1

p=k (2.7)
R

in the discrete series (Eg. (B.3.5b)). 1All the formulas of the
previous section apply, with m = - p°, but the range of the
variable is restricted to |p} 2 pe

In this case, however, Fqs. (1.6-8) provide only a
fragment of a representation of the Poincaré group. To obtain a
complete irreducible representation it is mandatory to take the
route 1leading to Fgs. (1.16). This phenomenon is strictly
analogous to what happens in the contraction of the
representations of the rotation group as described in Sec. C.4,
and the discussion there concerning the non-self-adjointness of
one of the generators applies to the operator K of Eq. (1.6¢C).
The function i(p) is defined on the +top branch of the hyperbola
e’y =p - p*, .At the point p* = p*, K is attempting to push J

over the edge onto the bottom branch, which is missing. Thus X

— ¥
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does not generate a unitary operator, and there is no unitary
group representation corresponding to Egs. (1.6).

0 can be

fl

The representation of 1500(1,1) with =
obtained from either the continuous or the discrete series of
500(1,2) by making }jg{ approach infinity more slowly than R, or
not at all, In particular, g could be held constant at any
value., Then one is not varying the representation as R —>» o,
but merely changing the scale of the momentum variable p. This
is one of the rare situations where a unitary representation of
the contracted group in which the Abelian invariant subgroup is
represented nontrivially can be obtained from a  fixed
representation of the original group by a sinqular
transformation. (Another example was given by Tn8nf and Wigner
(1953).)

This observation brings up an interesting point, In
the Introduction and Sec. 1.2 we spoke of a family of "de Sitter
theories" which should "converge"™ for large P to an ordinary
relativistic flat-space theory, In the case of a2 system of
massless particles, we see now that all the theories in the
family could be the same theory, looked at in different ways;

namely, one varies the unit of length and confines his attention

to a region of space-time of "moderate"™ dimensions in each length
scale., For particles with mass, on the other hand, the theories
are expected to be different for each R, since the ratio of the
size of the universe to the Conmpton wavelengths of the particles

will change,
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For conceptual clarity one should distinguish three

natural units of length:

(1) B, the radius of the universe;

(2) L, some length characteristic of the observer or his

instruments (say I = 1 cm)

(3) )% = 1/m, the Compton wavelength of one of the massive
particles in the theory, (For simplicity we do not
consider the possibility of varying the ratios of the

elementary particle masses.)

The general condition for eguivalence in practice of a de Sitter

and a Poincaré theory is

R >> L, (2. 2)

However, in a theory of the electron (for instance) one will have

» <L, {2.3)

and, moreover, the ratio )/l will probably be held fixed at the
observed value throughout the discussion. Then Egq. {2,2) can be

replaced by
R O> N\, (2., 4)

and L need never be mentioned explicitly., The situation is
different if only massless particles are considered, O0Of course,

Eq. (2.4) is in perfect accord with the ansatz of Sec. Ti.1 (Eq.
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(1.1) with g —> o).

3. Contraction in a "Continuous Basis".

4

The general element of 13500(1,2)) is of the fornm
L = hH + kX - pP, (3.1

The one-parameter subgroups of 500(1,2) are classified as

elliptic, hyperbolic, and parabolic (or nilpotent) when their

generators have h1 + k% - p1 negative, positive, and zero,
respectively, Subgroups of the same class are geometrically
equivalent (conjugate). Hyperbolic and parabolic subgroups arte
noncompact (¥ R); elliptic subgroups are compact (£ S50(2)). In a
representation of the continuous series a generator L1 of the
hyperbolic class has a continuous spectrum of multiplicity 2
extending from -oo to +00; the spectrum of a parabolic 1L has the
same range but no doubling. In a representation of the discrete
series the spectrum is nondegenerate in both <cases and is
-~ < % < oo in the hyperbolic case and 0 < % < o or -co <y <0
in the parabolic case. {The spectrum of an elliptic element,
which is discrete, is described in 2ppenrdix B (Egs. (B.3.5)).)[2]

The representations have heen expressed by Mukunda
(1967) in a form in which the generator of a hyperbolic suhqroup

is diagonalized, 1If

[2] Bargmann (1947), pp. 588-589, 639-6u40.
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[P, d ]=1id, [Pd )= -1id, [J 40 ]=~-1iP, {3.2)

1 2 2 1 1 2

then for a representation of the principal series (Eq. (B.3.3a),

qg 2 1/4) with
1
gq=s *+ - (3.3
4

he gives the formulas (o =+ 1, 0 < ) < ®)

JZV(X:G7 =2 V09 (3. ba)
- i -
JUP0O,0) = a0+ (s ¢ ;)) O+ 1, 9, (3.4b)
+
1 1
P='(J +J,' J ="(J ‘J). (3-5)
2 0+ - 1 2 ¢ -

(The notation has been changed to resemble that of Sec., C.2.)
These equations make sense on a domain of analytic functions of

%+ Alternatively, one can work in the Pourier transform space:

1 00 iz)
#(z,0) = ~— d\ e PONO) (3.6)
on /-
dg
Jg = =j—, (3.7a)
2 dz
*z d 1

Jg=o0e [-1— +1i(- + is) ]g. (3.7b)
dz 2

i+
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If we identify the diagonalized hyperbolic generator Jd,
with K and J‘ with # (cf. Rgs. (B.3.1)) and apply the contraction —

transformation (I.%.3)} with

{3.8)

B3
[}
wobn

{equivalent in the 1limit to Eq. (1.1)), we obtain from Rgs, (3.4

or (3.7)
ag
K§ =% §, g = = 1— 3 {3.9%a)
dz
- - _ +z
JVIN,0) =+ 0on PN +1i, 0), Jg=+0one g. {(3.9b)
+ +

For each of the two values of o these operators (which are also —
discussed in Mukunda's paper) are the generators of a
representation of 1500(1,1) in a '"boost basis" (cf. Egs. —
{C.2.8,10,12) for the Fuclidean group in a rotation basis). This
is a close analogue of the InBnli-Wigner «contraction of the
rotation group {Sec. C.3). VNote that from this point of view an
irreducible representation of the de Sitter group contracts
unamhiguously to the direct sum of ¢two representations of the
Poincaré group.

On the other hand, one could take JA to be H, Onhe —
wvould expect that operators obeying the commutation relations of

the Poincaré group could be obtained by a contraction analogous —
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to Egs. (1.1-3) (in which ) as well as s is renormalized).
However, it 1is easy to check that it is impossible to obtain
formally convergent expressions, even if the phase of J{,9 is
changed similarly to Eq., (1.9) (vith 6 an analytic function of
e Any formal manipulation which 1led to the desired result
would have to be very artificial, since it would have to create a

gap in the spectrum in the interval

'IB(‘(IB. (3.10)

It seems unlikely that anything useful can be said about the

matter at this level, so we shall drop it until Sec. VI.1?.

4. Contraction of Representations in Dimension 3.

To obtain representations  of 1500(1,2) from
representations of 50 (1,3) we nust scale the Casimir invariants

* and S of Egs. (I.4.4,6) have finite

so that the quantities m
limits. From Eq. (R.04.8a) we see that for m # 0 either k, or d
nust approach infinity proportionally to R, If both do, S

becomes infinite, so that case should be excluded.

If we take
d=%+Rmn {(m>0), k = s sgn d, {4.1a)
0
we have (see Egqs. (B.4.8)).
1 2 1
-~ Q-—>un, -Q =—> S = ms, (4.1)

R R 2
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So we expect to obtain via ¥Fq. (4,73) a representation of
1500(1,2) with mass m and spin s (see Eq. (I.4.7) and surroundiag
discussion).

0n the other hand, if we let

k = Rp, d fixed (real), (4.2a)
0

then

mo=-a, S = nd, {#.2b)

This corresponds to a representation of 1500(1,2) with spacelike

momentum spectrum. Jf we set P =H =0 and ' = V-p* = p in Rq.

(I.4.,6), we have, analogously to Eq. {(I.4.7),

Therefore, in the limit 4 is the eigenvalue of Kl, the generator
of the little group SO _{(1,1).
Finally, the representations with m = 0 can be reached

by (for instance)

X = VR jal, d = VR a, (4.3a)

n 30' S=iao (u‘3b)

The representations with a #0 are analogues  of the

continuous-spin representations of the four-dimensional Poincaré
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group.

It remains to be shown that the representations of the
Lie algebra of 1500(1,2) can actually be obtained by formally
taking the 1limit R -——> 00 in the matrix elements of the
representations of Z(s0 (1,3)) (Egs. {B.4.3-6)). ¥e shall
devote the rest of the section to doing this for the case of real
mass.,

For simplicity assume that 4 is positive in Eg. (4.1a);
then we write 4 = Rn, ko = s, k = Rp. ¥We already know (Secs.
C.1-3) that PRgs. {(B.4.3) contract {for each P) to the
representation (C.2.12) of the two-dimensional Ruclidean group

{with ®" = p, m = n)., To investigate the other formulas we expand

all the coefficients to the two lowest orders in 1/R:

i o -2
C{k) = —Vp* + o* (1 + O(R )),

2p
i e 1 P 1 -2

C(k+1) = ~— Vp* + n* (1 + =[=—=——— - =]+ O(R )),
2p Rp +nm p
1 3 _ -2
V(k¥n+1) (k¥n+2) = Bp (1 + —— (- + n) + O(R )),

Rp 2

etc.,

As in the other cases studied, we take the limit R —> oo 1in

accordance with Egs. {C.4.3-4), The result is

H
-+



Sece Il 68

H¥ (p,n) = Vp* + n~ ¥{p,n), (4. ba)
_____ iy - i p _
K ¥(p,n) = i Vp* + 1> — (p,n+1) + = ——————— J(p,n+1)
4 dp 2 v§1 + n*
Vﬁif:.ﬁz 1 _ _ ims _
+ i~ (-~ + 1) ¥(p,ntl) * — F(p,n+1). {U.04Db)
p 2 p

(For ease of writing we follow the approach that leads to the
formulas for the positive-energy representation alone, The
modification that yields hoth siqns of the energy in analogy to
Fgs. (1.9-16) is obvious.,)

A few more steps are needed to bring the representation
to the form with which we are familiar (Sec. B.2). First, by
forming a PFourier series (i.e., Treversing the steps of Egs,

{Cs2.,7-13)), we attain the fornm

oy
J¥(p,?) = - i—, (4.%)
dg
*ig
P ¥(p,#) = pe P(p,?) ., (4.6)
+

HY (p,#) = Vp* + 0 V(P @), (4.7)
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— 4 tig
K §{p,#) =i Vp* + o~ —[e  ¥(p,#) ]
+ dp
i p g
+ - - e ¥({p,d
2 ¥p* + m*

Vot + m2 1 3 +ig
i —————— (=t i—) [e ¥(p,%) ]
p 2 dg

ins +ig
— e 9(p,8). (4.8)
p

Meanwhile, the integration in the scalar product has undergone

the contraction

o k w® 0 1 o0 2R
S S —f a S = mr dp[ ag. (4.9)
k=k, m=-k 0 m=-o0 21 Jo 0

In the final version we would expect a multiple of

dp oo n 2 2 -1,2
/m=jopdp [o dg [p + n ] (4.10)

{cf. Eq. {B.2.2b)). This, along with the expectation of a spin
term in the anqular momentum, suggests the transformation
1 2 2 1/4 -1/2 -~isg

Vi(p,#) =—[m +p 1 p e ¥(p, %) (5.11
v

as the analogue of Eq. (1.9 . This leaves Eqs. (4.6-7) unchanged

and converts Egqs. (4.5) and (4,8) to (bars omitted)
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oy
(8.12)

J¥ = - i-— + s,
og

tig Oy _ Vp? + n*  sig OF
K¥ =1 Vp* + n* e — } —— -—

+ dp p og
is e +ig
+ —(n - Vp* + n*) e V. (4.13)
p
Eg. {(4.13) is equivalent to
1 ———_ OF — -1 2
Kg=1VEi+nm — +s (B +n  +m) p ¥,
op'
2 L oy o -1 1 (4.14)
K§=1Vf + 0 = -s (> +n +m p V.
op

A calculation which we omit shows that Egs.

(4.6,7,12,14) are the infinitesimal generators of the ISOO(1,2)

representation (B.2.3) with

-18J -ies

Q(pﬂ'e 1P =e 7 (% 15)

(see Sec. C.2 for sign conventions), provided that we choose p,

(1,5) and choose C(q) as the

to have components (1,0,0) =

boost which maps p into q:

pure

I

—
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1 (q q 02 2 2
C{q) = - |, o -t o (ta) - q =mr). (4.16)
n \q m+ (q +m) qfg

5. Contraction of QRepresentations 1in Dimension 4, and Some

Remarks on the General Case.

The analoqous calculations for the de Sitter group,
properly so called, (500(1,u)) have 5een carried out by Str¥n
{1965).]3] His results correspond +to the cruder of the two
approaches we have taken above to 500(1,2). That is, he d4id not
treat even and odd values of the 3index 1 (see Sec. B.5)
separately when replacing 1/R by a continuous variable p, and
consequently arrived at expressions involving only one sign of
the energy; then the other sign had to be put in "hy brute
forcen, It is clear from the previous sections how to improve
this procedure.

Str8m's results for the correspondence of
representations of 500(1,3) and ISOO(1,3) are similar to those we
found for dimension 3. The real-mass representations are
obtained from the principal series {(Fgs. (B.5.3)) by taking

1 2

r fixed, o —> o, —f;o'——é n . {5.1a)
R

Then from Eqs. (B.5.1) we have

[3] See also Holman (1969) and BBhm (1970).
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1 2 1 2
~0 — =, -0 —>n r(r + 1),
R R 2

so that (see Fgs. {(T.4.4,9,10)) the contracted representation of

ISOO(1,3) should have

mass m and spin r., (5.1b)
If we set
1
o fixed, *r — @, =~ r --> 1 {5, 23a)
R

in the principal series, we obtain

n =-n, W=p o (5. 2b)

in the notation of Sec. T.4, These values of the Casimir
operators correspond to representations vwith spacelike momentum
{imaginary mass ip) and a representation of the little group
500(1,2) which belongs to the continuous series, with g = o (see
Sec. B.3). On the other hand, consider the discrete series of
300(1,4), subclass (a) (Eqs. (B.5.6)), and take

1

q fixed, t —> ®», -1 —> p. {5.3a)
R

Then
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2 2 2

n =-n, W==-p q(g -1, (5. 3b)
which corresponds to an imaginary-mass representation with the
little-group representation taken from the discrete series. The
trivial representation of 500(1,2) corresponds to the discrete
series, subclass {b) (Eg. (B.5.8)). (Thus there is a
correspondence hetween the representations of 500(1,2) and the
classes of representations of 500(1,ﬂ) which differ only in their
r values.) Str8m also gets the zero-mass continuous-spin

representations of ISOO(1,3) by taking

1 1 2
- o—> a, -r —>a (5. 4a)
R R
in the principal series, so that
2 2
n =0, W=a., {5.4b)

The 2zero-mass representations with discrete helicities are
degenerate cases of Egs. (5.2) or (5.4). Thus all the
representations of the Poincaré group are accounted for,

When any of these linmits is carried out in the formulas
for the representation of the lLie algebra, Str8m obtains a
representation of ,111500(1,3)) reduced with respect to the
subgroup ISO({3) (cf. Egs. (4.4)). The connections conjectured
on the basis of the behavior of the Casimir operators are
validated. The internal label 1 is replaced by the continuous

variable
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p = lim

1
-1,
R->o R

74

and the Casimir operators of the Euclidean group take the form

L2 2
P ¥(p,n;ism)

i

H

L .
J-P¥(p,n;jim)

In summary, this chapter has
contraction process induces the following
the various series of representations

Poincaré groups:

So.{1,n)

n = 2:
Continuous >
Discrete >

n= 3
Continuous \\\\\\\\\\\;

n = B
Continuous «<\\\\\\\\\:
Discrete -3

p V(p,n;

np ¥(p,n;

jim),

jim) .

established that the
correspondences hetween

of the de Sitter and

1s0.{1,n-1)

Timelike

Spacelike

Timelike

Spacelike

Timelike

Spacelike
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The irreducible representations of ;{(500(1,n)) for
general n have been classified by Hirai (1962a,b), Ottoson
(1968) , and Schwarz (1971). It 1is clear that the contraction
relationships with the representations of Iso {1,n=1) could in
principle be determined by studying the Casimir operators as has
been done for n < 4,

Ve have seen  explicitly for n €4 that the
representations of SO (1,n) which contract to the real-nmass
representations of Is0,(1,n-1) are those of the principal series,
the class of representations which can be induced from unitary

representations of the subgroup {SO(n-1) @ f(exp{itH)})-N, where
the generators of N are the components of X + 3.{&] (¥ and
{exp (1tH)} are the nilpotent and 2belian parts of the Tvasawva
decomposition of 500(1,n); H commutes with SO(n-1), vwhich 1is the
"rotation" part of the maxiral compact subgroup SO{(n) of
S0, (1,1n).) These representations are parametrized by the
representations of SO0 (n-1) & fexp(itH)}. Our observation about
the classification of the representations of 500(1,u) in terms of
repreéentations of s0_(7,2) plus a discrete parameter suggests
that a similar relationship must exist  bhetween the
representations of S0 _(1,n-2) @ {exp(itPl)], say, and the
representations of so_{(1,n) which contract to imaginary-mass

representations of 1500(1,n-1). This can be verified by

enumeration in the cases n < 4 which ve have studied., There is

[4] Takahashi (1962), especially pp. 382-384; Stein {1965); Strdnm
{(1971), Chapter VI.

{
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probably a deeper connection in terms of the structure of the
representations; it might be useful not only in the study of
contraction but in classifying the representations of 50_(1,n)
themselves, Unfortunately, no exact parallel of the inducing
construction exists in the case of the subgroup
500(1,n—2) ® Sn{2), since it cannot be made into a iarqer group
by adding a nilpotent subgroup (G. Zuckerman, private
communication), Thus whatever connection exists must be more

subt le,
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Chapter IIT

THE GEOMETRY OF DF SITTER SPACE

minkowski space and the de Sitter spacesA are
distinguished from all other space-times by their high degree of
symmetry. One way to describe the difference between de Sitter
space and Minkowski space is that in the former case the various
symmetries do not fit together as well as in flat space., In
Chapter T we have noted the noncommutativity of the geometrical
isometries which, as far as their effects on the neighhorhood of
a given point are concerned, are identified as time and space
translations. 1In this chapter several coordinate systems will be
introduced, each of which could be considered a natural
generalization of Cartesian coordinates in flat space, each of
which is especially appropriate for the exploitation of certain
of the special geometrical properties of de Sitter space. Each
of these ways of looking at de Sitter space suggests an answyer to
the question: How is physics in the de Sitter universe to be
formulated as a dynamical problenm?

In later chapters we will find a variety of
generalizations of the canonical quantization procedure for the
free scalar field in flat space,. These are mathematically
different -- they are not just transcriptions of one generally

covariant theory into terms of various coordinate systems., In
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the final <chapters it is argued that this is a fundamental
problem which must he faced by any theory of field quantization
in curved space-time, and that its resolution must be sought in a
closer analysis of the physical interpretation of field theory in
such a context,

The task of this chapter is to introduce these various
"pictures" of de Sitter space, to discuss their physical meaning
on a geometrical or "classical" level, and to record a few useful
facts and formulas related to the associated coordinate systenms.
He work 'mostly with the two-dimensional model, but we record
enough formulas for the four-dimensional case to establish that
the generalization to n > 2 is straightforwvard,

The terminology used for various kinds of canonical
coordinate systems and for types of space-time metrics with
special properties is explained in Appendix D.

For further discussion of the de Sitter universe from a
cosmological point of view see [Schr¥dinger}, pp. 1-80, Rindler
(1960), [Tolman], pp. 333-337, 346-360, and [Rohertson-Noonan],
pp. 365-371, The first of these references 1is especially
sensitive to the sort of question that concerns us in this
chapter. A more ahstract study of the geometry of the spaces of

constant curvature is Calabi and Markus (1962).
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1. De Sitter Space as a Closed BRobertson-Walker Universe

{Geodesic Gapssian Coordinates).

In the two-dimensional de Sitter space,

0 2 12 22
(x) - (x) -&x) =-1, (1.1

we introduce two independent coordinates defined by

n

¥ = sinh T,
1

x = cosh T sin o, (1.2)
2

x = cosh T cos o.

As they vary in the range

-1 0 -1 1 2
-0 < T = sinh x < o0, - N < o= tan (x /x) <N

1 1 (1. 3)
(0 o< Mif x > 0 - N <Co<0if ¥ < 0)
the whole space (1.1) is covered (see Fig. 3).
The nmetric of de Sitter space as a Riemannian

manifoldf{1] is 1induced by the indefinite metric of the

[1] We shall use the word "Riemannian®” in the broader sense: it
does not imply that the metric is positive definite. nanifolds
with the metric signature of space-time are sometimes called
"lLorentzian", but this might lead to confusion in field theory,
vhere lorentz invariance has traditionally been of such great
importance.
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—— - T _— —
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Fig, 3

Geodesic Gaussian coordinates in two-dimensional de Sitter space.
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three-dimensional space in which it is imbedded. The line
element is easily calculated to be

2 02 12 22 2 2 2
ds =z dx ) ~ (@x ) - (dx) =4dT¥T - cosh T do . (1.4

We observe the following about this metric:
(1) It is orthogonal (qh =0 for j # k).

(2) It is a Gaussian metric (Eq. (D.2)). {This is a
statement about the coordinate system.) The curve defined by
T = 0 is a geodesic, and o is an arc-length parameter along —
it {see Sec. ITI.4 for details). Thus (T,0) is the geodesic
Gaussian coordinate system based on the geodesic hypersarface

{xlxo = 0}.

(3) Tt 1is a Robertson-Walker metric (Egq. (D.6)).
(This is a statement abhout the space.) The universe

contracts from radius oo to radius 1 and then expands again.

{4) The ‘"space translation"® o —> o+ o, is the

elenent
1 0 0 —
-ig, P
,J(o’) = e = 0 cos O + sin © (1.5 —
0 0
D - sin o cos O

0 0
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of the de Sitter group (see Egs. (A.1.11,12a)[2]). This can

be seen by direct application to Egs. (1.2).
The generalization of the geodesic Gaussian coordinate
system to higher dimensions is
x = sinh ¥, {1.6a) _—

3 j o1 s
X = cosh T £ (6 '."'0/) (j = 1, seny n)' (1.6!’) —

where the f’ are such that (d‘,...,d’) {s=n-1 form a —

coordinate system on the s-sphere defined by

0
F(x) = - 1, X = const, (1.7

(notation of Eq, {I.1.71)). Since necessarily

j 2
2 (£) =1, —
3
5 of!
2 f — 3o =0, _
i,k oo x
the metric is
2 2 2 2
ds = 4¢Y - cosh T 4f, (1. 8a) —

[2] When n = 2, P denotes the contravariant momentum il
Fgs. (I.3.5)).

2
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vhere
s
an = — —— 0 40 (1. 8b)
jok

is the line element on the s-sphere.

The generalization of property (%) is that each
spacelike hypersurface of the form (1.7) 1is invariant under the
50(n) group generated by P and the JAB' The generalization of
property (2) is that the geodesics in the sphere {xi7 = 0} are
qgeodesics of the whole space; thus the sphere is a geodesic
hypersurface relative to any point in it, Property (3) remains
valid, and the coordinates on the sphere can bhe chosen so as to

make the systenm orthogonal,

For example, when n = 8 we can take Fgs. (1.6b) to be

1 1 n 1 n
X = cosh ¥ sin o (-~ <o £-),
2 2
2 1 2 n 2 N
¥ = cosh T cos o sin o (- -<o £-),
2 2
3 1 2 3 3
X = cosh T cos o cos o sin o (- <o <N,
u 1 2 3 (1.9

X = cosh T Ccos O COS O COS O

Then
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2 12 2 1 22 2.1 2 2 32
Al = (do0) +cos o (do) + cos o cos o (do) . (1.10)
In the neighborhood of the distinquished point O© of Egq. (I.1.2)

we have to first order

2 2 3 3 (1. 11)

So the coordinate system (1.,6a,9) ‘fcontracts" to Cartesian
coordinates in flat space. The transformations o’ -=> of t o
are the space translations generated by p3,

Alternatively, we could set

X = cosh T sin o sin o cos o,
r 8 I} {1.12)
2
X = cosh T sin o sin o sin o (-n"<o <&M,
r e ] g
3
x = cosh T sin 0 cos o (0o &N,
T 8 8
4
x = cosh T cos o (0o <M, s
r r

with



Sec, I1T.1 85

2 2 2 2 2 2
Al = do + sin o [do + sin o do ) {(1.13)
T r 8 8 [

In this case the transformations o, ——> o + o are the rotations
¢ o]

¢
about O generated by J3. In the neighhorhood of O we have

0 1
x 71, x T o sin o cos o,
r A o
2 3 (1.1
X T o sin o sin o, x T o cos ¢,
T @ & T 9

which corresponds to a spherical polar coordinate system in
Minkowski space.

0f course, all this generalizes the discussion in Secs.
C.5~6 of the relation between spherical coordinates on the
two-sphere and Cartesian and polar coordiates in the Euclidean
plane., Just as there, the coordinate systems can be related to
the group parameters through the construction of the homogeneous
space concerned as a space of cosets, For instance, the point in
Fgs. (1.9) is the coset

3 2 1
exp(ioc P ) exp(ic P ) exp{(io P ) exp{itH) SO (1,3), (1.15a)
3 2 1 0

vhile that of Egs. (1.12) is

3 2 3
exp(-io J ) exp{-ic J ) exp{(-ic P ) exp(iTH) S50 {1,3). ({1.15b)
-] 2] r 0
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In the de Sitter space of radius R (Eq. (I.1.1) in

place of Eq. (1.1)) we would write instead of PBgs. (1.2)

0 T
¥ = R sinh -,
R
1 T o
X = R cosh - sin -, {1. 16)
R B
2 T o
¥ = R cosh - cos -,
R R

Other definitions in this chapter would be modified similarly.
(In Egs., (1.12), for instance, U and o, should bhe scaled by 1/R
but the angular variables Gé and 6¢ should not be.) The
necessary changes in all +the formulas of this chapter to
accommodate this generalization are rather obvious. With this
definition ¥ and o are still the properly normalized arc length
parameters on the basic geodesics defining the coordinate systen,

and under contraction (R ~=> o) they beconme Cartesian

coordinates in Minkowski space {cf. Egs. (1.11,14)),

N

. De Sitter Space as a Static Universe (Geodesic Fernmi

Coordipates).
In the neighborhood of the point 0 in the
two-dimensional space (1.1) we can introduce another set of

coordinates by
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0
x = sinh X cos Pr
1
x = sin p, (2. 1)
2
X = cosh ¥ cos P
Then
-1 0 2
X = tanh {x /x ) {0 < ¥ < o) (2.2a)
and
-1 1
P = sin X
1 1

(0 <p<Mifx >0; -M<p<CO0if x <0) (2.2b)

are defined only if

0 2 1
lx 1 < x|} and (x| £ 1, {2.3)
{These are equivalent conditions if the second ineguality is made
strict.) The region covered when > 0, = M72 < P < M/2, is
shown in Fig. 4., Note that on the back side of the de Sitter
space, where x> < 0 and n/2 < ’f‘ < N, positive Y corresponds to

negative x°.

In this coordinate system the metric tensor takes the

form
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b
W
3%

-m/2
>
n

>
n
W

X

n
o
o

7] \\\\\
/ o
N/

Fig. 4

Geodesic Fermi coordinates in two-dimensional de Sitter space
(orthogonal prcjection onto x°-x' plane).
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2 2 2 2
ds = cos P dx - dp . {(2.4)

This metric has the following properties:

(1) It is orthogonal (and can bhe made so in higher

dimensions as well}.

{2) It is static {RBg. (D.5)). (This is a property of

the space.)

{(3) tx,P) is the geodesic Fermi coordinate systen

{Eqs. (D.3)) based on the timelike geodesic defined by p = 0.

(4) The "time translation® X -——> ¥ + Xo is the

element

cosh ¥ 0 sinh ¥
0 0
+i¥°H
Jlx) =e = 0 1 0 {(2.5)
0
sinh X 0 cosh ¥
0 0

of the de Sitter group.

In the neighhorhood of the points P and P?' where
IPI = N/2 this coordinate system coincides with the polar normal
system 1in the sense of Appendix D (see Fig., S). The other
regions of the space (the triangular regions above and below P
and P! in Figs. 4 and 5) appear in the normal coordinate system

as a Robertson-Walker universe with a sinqularity at time <zero.

it
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This is the two-dimensional analogue of "Case 5" of Robertson and
Noonan (see Appendix D).

In the general case we write

0
X = sink X cos P (2.6a)
j j 2 s
X = sin P I (8 ,seee,8) (3= 14 a0y S}, (2.6D)
n
X = cosh ¥ cos P {2.6¢C)

where 90,61,...,65) form at ¥ = 0 a polar normal coordinate
system (see Appendix D) on the s-sphere in the neighborhood of

the point 0. The metric takes the form

2 2 2 2 2 2
ds = cos P ax - qP - sin p an , (2.7a)
where
2 s df o k1 '
an = > —r — d8 4de . {2.75)
i k,1=2 08" 9@

This 4is the geodesic Permi coordinate system based on the
geodesic defined by p = 0 {cf. Fgs. (D.3)}. The hypersurfaces of
constant X are the intersections of the de Sitter hyperboloid
with the hyperplanes through the origin defined by

O n
x /x = const, < 1. {2.8)
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(Contrast the horizontal slices (1.7) in the other picture,)
These are geodesic hypersurfaces; they are s-spheres
geometrically similar to {x}x° = 0}. They are mapped into one ~—
another by a one-parameter subgroup of 500(1,n), wvhich, as in —
Eq. (2.5), 1is expressed in the PFermi coordinate system as
translation in the variable X.

There is a coordinate sinqularity (horizon) at p = W/2.
For fixed ¥ the coordinates (P,el,...,as) cover half of the —
s-sphere as p ranges between ¢ and MN/2, Of course, the region of -
space where x°/x" > 1 is not covered at all, -

In particular, when n = 4 we set

x = sin P sin 8 cos 4,
{2.9)
2
x = sin P sin © sin ¢ (-1 <g<my, -
3
x = sin p cos 8 p<a<m —
and have
2 2 2 2 2 2 2 2

ds = cos P ax - dp - sin P {de + sin 8 d¢ 1. (2.10)

If we set r = sin Io, Eq. (2.10) becomes —
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2 2 2 2 -1 2
ds = (1 -r) dx - (1 -1r) dr

2 2 2 2
-r [d80 + sin B8 dg ], (2.11)
the form in which the static de Sitter metric is most often
written (e.q., [Tolman], p. 346). Near ©C we have

0 1
x T A X ”,o sin 8 cos 4,

2 3 (2. 12)
x"/osinesin;d, x T p cos e,

Consequently, ¥gs. (2.9) are just as reasonable as Egs. (1.12) as
a generalization to a finite region of the polar coordinate

system in the infinitesimal neighborhood of 0. The analoque of

Fq. (1.15b) is

3 2 3
exp (iyH) exp(-igJ ) exp{-iBJ ) exp(-%pP } SO {1,3). ({(2.13a)
4]

2 locally Cartesian coordinate system analogous to Rgs.

{1.9) corresponds to the coset parametrization

3 2 1
exp (i¥H) exp{(i® P ) exp(~i8 P ) exp(i® P} SO (1,3). (2.13M
3 2 1 0

Identifying 500(1,3) with 0 (Fq. {I.1.2)), we calculate
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0
x = sinh  cos ® cos ® cos 8,
1 2 3
1 n n
X = sin © (- -<£98 £,
1 2 12
2 n n
X = cos ® sin 8 --<8 £-),
1 2 2 2 2
3
X = cos 8 cos ® sin © (-n<e8 <M,
1 2 3 3
4 (2.18)
X =coshy cos® cos® cos 9
1 2 3

for the point (2.13h), This <coordinate change, of course,
maintains the static form of the metric; it Jjust amounts to
rotating the spherical coordinate system on the three-sphere so
that 0 becomes an "equatorial" point.

The spatial coordinate system chosen on the s-sphere at
each instant of time 1is not really very important for our

considerations; the crucial point is that the separation of tipe

and space is different according to the two ways of looking at de
Sitter space -- the "static" point of view of this section or the
spatially homogeneous and isotropic "Robertson-Walker" point of

view of Sec. I1T7.1,
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3. Physical Significance of the Coordinate Systems..

These two types of coordinate system {or, perhaps more
accurately, the two definitions of ‘"constant time" reflected in
them) provide alternative kinematical frameworks for describing
physical processes 1in de Sitter space, On the classical level
these descriptions are equivalent, That is, the behavior of test
particles and light rays {(namely, motion along geodesics) can be
described in terms of intrinsic "geometrical®” concepts, and one
is free to transcrite their confiqurations into terms of any
space-time coordinate system he likes, It will turn out,
however, that fairly convincing generalizations of the canonical
guantization procedure for quantum fields 1lead to different
results, depending on which of these kinematical pictures is
adopted as bhasic.

These remarks are relevant to dynamical formulations in
which the state of a system is specified by the configuration of
the system at an instant of +time, and the equations of motion
tell how the configuration changes with tinme. For instance, in
the simplest type[{3] of scalar field theory one has an

operator-valued distribution,

[3] There is evidence (e.g., Powers (1967)) that in more singular
models than have been constructed so far -- 1in particular, in
most four-dimensional field theories with interaction -- it will
be impossible to define field operators at fixed time (i.e., an
integration over a test function depending on time as well as
space will he needed in order to get an operator),



Sec. TIT.3 96

3 > L -
> d k ik-x t -ik-x -
#E) = [——=Tla,e +a,e 1=g0,10,
Viw: k k

which determines the expectation values of field measurements in
various regions of space at a fixed time, given the state vector
of the system, In the Heisenherg picture the field operator at
different times is
I PR S

vhere H is a global Hamiltonian operator. 1In the absence of a
better idea, one would like to look at field theory in curved
space from this point of view, too. (But see Sec, III,6 Dbhelow
for a complication which must be expected in the general case.)

' ¥e are trying to generalize the following picture in
Minkowski space: 2An observer, idealized as a classical point
particle moving at some fixed velocity, travels along a timelike
geodesic (straight 1line). 1In a suitable orthonormal coordinate

systen (lLorentz frame) this line is the x°-axis,

T = eee = X = 0. 3.1

The spacelike hyperplanes orthogonal to this worldline are given

by

t = const. (3. 2)

ta]
H

Such a hyperplane represents the universe at time t in this
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observer's frane.

The natural generalization of these ideas to curved
space is the following: An observer travels along some timelike
geodesic, or worldline. The arc 1length t along the geodesic
plays the role of time for him, The set of points constituting
the "present" of the observer at time t is the hypersurface of
points lying on the spacelike geodesics which are orthogonal to
the worldline at the point labeled by t. For brevity let us call

such a hypersurface an instant, since it represents physical

space at an instant of time. Through each point of an instant
there is an orthogonal timelike geodesic, which is (potentially)
the worldline of an observer "at rest" at that point in space at
that instant,

In de Sitter space the curve defined by p =0 (or
a. = 0) is a timelike geodesic (call it W), and T = X 1is the
natural time scale along it, Similarly, the hypersurface defined
by T =0o0or ¥ =9 is an instant (call it J), and p =0 is the
distance of a point on it from the central observer at W. 2
coordinate system can be constructed which treats in this way the
whole family of geodesics parallel to ¥ at J {(Gaussian
coordinates), or  the family of geodesic  hypersurfaces
perpendicular to ¥ (Fermi coordinates), but not both at once.

In the Gaussian system of Fig. 3 the lines of constant
¢ can be interpreted as the worldlines of all possible observers

who are at rest at the instant ¥ = i, The surfaces of constant T

mark off 1intervals of egqual proper time on these worldlines.
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That is, for fixed o, T is the private time of the observer at o.
Sometimes T has been treated as a time coordinate in a global
sense in de Sitter space (e.g., Philips (1963), Tagirov et al.
{1967)}). However, this 1is contrary to the spirit of the
group-theoretical approach to dynamics. A translation in T is
not an element of the de Sitter group, and the hypersurfaces

¥ = const. are geometrically dissimilar -- in particular, they

are not geodesics if T # 0. As U increases these surfaces becone
increasingly distorted. The whole point of studying de Sitter
space instead of some more general manifold is to exploit the
existence of a symmetry group with the maximal number of
parameters, One would like, therefore, to £fit the kinematical
description into the group-theoretical framework in analogy to
ordinary special relativity, where time translation is an element
of the Poincaré group and one instant is just like another,
geometrically speaking.[ 4]

This ohjection is overcome if we identify time with the
coordinate X of the PFermi syster (see Figs, 4-%, On the

worldline ¥ ¥ is equivalent to T. The equal-x hypersurfaces are

{4] For the same reason the author disagrees with the statement
of Philips (1963), p. 49, that P (in our mnotation) should be
identified with the physical nomentum at each point of the
tvo-dimensional de Sitter space, Of course, this is partly an
arbitrary matter of definition, but a physically better
definition would seem to be the following: Choose a local
Lorentz frame at the point Q0 in question. In dimension 2 this
amounts to choosing a timelike geodesic I through Q. Then the
momentum at Q relative to this frame is the generator of the
subgroup of isometries (¥ S0(2)) which map the spacelike geodesic
hypersurface orthogonal to L at Q into itself,
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the images of J under the isometries jﬁxoy {Eq. {2.5)), and
these mappings preserve gp,e) as the position coordinates at each
instant (i.e., P is always the geodesic distance from W, and the
meaning of the angular coordinates is unchanged),

0f course, we have now lost the possibility of
describing the spacelike isometries by simple transformations on
the spatial coordinates, In fact, the situation is worse:
,f(c;) (Eq. (1.5)) maps the tTegion (2.3) covered by the
coordinate system out of itself, VNote also that the region
covered depends upon both the position and the velocity of the
standard observer,

Another disadvantage of this way of looking at de
Sitter space is that ‘?Tio) is not really analogous to a Poincaré
time translation except near the worldline #; on the other side
of the universe it is a translation in the negative direction,
and near p = # n/2 it resembles a homogeneous Lorentz
transforration (see Fig. 5). This probhlem reflects geometrical
peculiarities of the finite de Sitter space which no choice of
coordinate system can completely overcome. It is closely related
to the complicated relationship (see Chapters TT and VI) between
the irreducible representations of the de Sitter group and the
Poincaré group.
in a state § for which the expectation value of A (the generator
of ,57x°) = exp(ixoﬂ)) is positive and the system is localized

near 0, PFor this state H can with some justification be called
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the energy.. A translated state J(o;)v gives a positive
expectation value to 4ﬂd;)H4/(o;Y” « the generator of time
translations in the neighborhood of the new point of
localization, If the system is now translated in o~ by M, so that
it is 1localized near the antipodal point 0', the expectation
value of H clearly nust be negative, since here the
transformations exp(ix H) with Xo > % move the system in the
negative time direction, (In other words, 4/(n)ﬁ,j(nf‘ = - H.)
This explains why the spectrum of H must run through both
positive and negative values in a single irreducible
representation.[5] The possibility of contracting a
representation to either a positive-enerqy or a negative-enerqy
representation of the Poincaré group (Sec, 7TI.,1) corresponds to
the possibility of identifying Minkowski space with the
neighborhood of either O or 0' in the contraction of spaces
described in Sec. 7I1.2. The Hilbert space of states of a
localizable system in de Sitter space 1in some sense beconmes
limited, under contraction, to the states that are localized near
0. By correspondence with standard theory, one expects the
contracted operator H to be bounded below, as it is in Eg.
(IT.1.6b). However, the same formal contraction process must

also be capable of yielding the Hilbert space of states localized

[5] This relationship was pointed out by ¥. P. Wigner, It
stimulated the efforts of his students to define localized states
in Minkowski and de Sitter space: Newton (1949), Newton and
Wigner (1949), Philips (1963, 1964), Philips and Wigner (1968).
The 1last of these references discusses the subiject of this
paragraph thoroughly.
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near 0', in which case one would expect H to have the opposite
sign, This is achieved by a different choice of phase in Eq.
{(I7.1.9). (See also Chapters II and VI,)

If we accept the Fermi picture -~ that 1is, the
definition of the  T"present® of an observer as the geodesic
hypersurface orthogonal to his worldline -~ +the proper
description of the configuration of the system at that instant is
likely nevertheless to involve concepts related to the Gaussian
picture. As remarked above, for a localized system "energy" is
most convincingly associated with translation in the local time,
which corresponds locally to translation in T. At the instant J,
differentiation with respect to T has more physical significance
than differentiation with respect to X. For ¥ has the sanme
geometrical meaning at all points of J, while X depends strongly
on the position of the observer, which should be irrelevant to
describing the =state of the whole system at a given instant.
This principle will be applied in Secs, 1IV.2, V.3, and X.8-10.

211 the remarks of this section about de Sitter space
apply to more general Riemannian space-times, except for the
references to isometries, Tt is always possible, given a point
and a velocity through it, to construct Gaussian and Fermni
coordinate systems {which, in general, will not <cover the whole
space) -- see Appendix D. The geometrical reasons for
attributing physical significance to them are the same as here,
In the general case these canonical coordinate systems will not

be orthogonal away from the basic submanifolds W and J,
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One might object to this whole discussion along the

lines of Schr8dinger:{6]

Some authors hold, or at least favour, the view that
the static frame is that of an ‘ohserver! permanently at rest
at the spatial origin , . . . But there is no earthly reason
for compelling anybody to change the frame of reference he
uses in his computations whenever he takes a walk. . . . Let
me on this occasion denounce the abuse which has crept in
from popular exposes, viz, to connect any particular frame of
reference, e.g. in special relativity, with the behaviour
{(notion) of him who uses it., The physicist's whereabouts are
his private affair. It is the very gist of relativity that
anybody may use any frame, 1Indeed, we study, for example,
particle collisions alternately in the laboratory frame and
in the centre-of-mass frame without having to board a
supersonic aeroplane in the latter case,

0f course, a scientist will be aware of points of space-time
outside the region covered by his Permi coordinate system -- he
may even reach them himself[7] by changing his velocity -- and he
will, when appropriate, describe both these and nearer regions by
various kinds of coordinate systems, Conversely, the use of a
Fermi coordinate system does not necessarily imply that one's
laboratory 1is located on the central geodesic. Nevertheless, it
seems to the author that there are circumstances in which a
separation of space-time into space and time is useful, and that
the geodesic hypersurface construction is the most reasonable way
to define it. In applications of special relativity one does
sometimes refer to space and to time, and the meaning of these

words does depend on the Lorentz frame -- essentially, on the

velocity of +the observer., The canonical formalism of field

[6] [ Schr8dinger], p., 20, excerpts from text and footnote,.
[7] This assumes a life-span of cosmological magnitude!



Sec. IIT.3 103

theory constrains us to make a separation into space and time.
The ways of doing this described in Appendix D and Secs. IIT.1=2
have intrinsic geometrical significance, once a distinguished
position and velocity (most naturally interpreted as those of an
observer) are given.

A final remark: We have discussed coordinate systenms
of two different +types based on the same given fundamental
geodesics W and J. But even within one type, one must still
consider different frames, corresponding to different choices of
W and J. (These are analogues to lLorentz frames in special
relativity.,) It is not ohvious that a physical theory defined
by, say, a Hamiltonian formulation in a given frame will
automatically be equivalent to a theory defined by the same
prescription in a different frame. 1In fact, it will be seen in
Chapter TIX that the time-translation-invariant <quantizations
naturally associated vith the various static frames in de Sitter

space are different in this sense,

k, Geodesics.

The geodesics of the n~dimensional de Sitter space
(I.1.1) are its intersections with the planes through the origin
in the (n+1)-dimensional imbedding space ([ Schr8dinger}, p. 33
Calabi and Markus (1962)). However, they can also be determined

directly from the general definition:
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a2 y az" az”
+ [ — — =0 (4.1
ds’ n ds ds

{{ Fisenbart], p. 50).

In an orthogonal coordinate system the Christoffel

symbols and the Riemann curvature tensor

are easily calculated
([ Eisenhart], p. 44), The former are

% X -1 93q
r =o, r == (g9 ) =,
w pu ) dx
N -1 dg b -1 9dqg {4.2)
ro=(¢ ) —=, =) -—.
b} PSY dx* 13 N Ix*

In the Gaussian coordinates (1.2-4) for the two-dimensional de

Sitter space of radius 1, therefore, the Christoffel symbols

and
the geodesic equations {#,1) take the fornm
T o o
f =sinh T cosh T, [ =1 = tanh ¥ (others zero), (4.3) —_
oo * ot To
2
a'r do 2
=== ¢+ sinh Y cosh T (-—~) =0, —
ds” ds
a*o ar do (4. 1)
—~= 4+ 2 tanh T — — = 0, _
ds* ds ds

In the Fermi system (2.1-8) we have
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P X X
| =-sinpcosp, [ =1 =- tan P (others zero),
XX xp pPX
2
d ax dp
-— - 2 tanp — — =9,
das* ds ds
a*p ax 2
—= =~ sin cos (—) =0,
as® P s ds

In a two-dimensional manifold the curvature tensor

only one  independent  component, In the case

tvo-dimensional de Sitter space of radius R (see Eg. (I.1.1)) it

is

R = R =R cosh T =R {9 g - g g e
otto Yool gt To oo TT

This shows explicitly that de Sitter space is a gspace of constant

ot e .

From Fgs. {#4.4) it follows that the curves

T =20, o= s {or as + b}

and

0" = const., T =5

{#.5)

(4.6)

of the

4.7

(4.8)

{4.9)

are geodesics, as asserted in Sec, IXI.1. Egs., (4.6) show that

and

{4.10)

has

—
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X = const,, P =S {4.11)

are geodesics, as claimed in Sec. III, 2,

The other geodesics through 0 in the two-dimensional
space (with R = 1) can be found by transforming the curves (4,8)

and (4, 1C) by the homogeneous lorentz transformations at O,

cosh « sinh a 0
0 0
io K
Blo) = e = sinh a cosh « 0 (4.12)
0 0 0
0 0 1

{(see TFgs. {(2.1,12b) and (I.3.5)). Thus the nost general
spacelike geodesic through 0 is
0 1 2

x = sinh o sin s, x =coskh a sin s, X
0 0

cos s, (4.13)

and the general timelike geodesic is

0 1 2
x = cosh o sinh s, x = sinh o sinh s, X
0 0

cosh s. (4.14)

One could now use Fgs. (1.2-3) or Fgs. (2.1-2) to gét expressions
for these curves in the coordinate systems (U,0) or (X'P)'
However, one learns more ({Wigner (1961)) by graphing Egs.

(4.13-14) in the x'-x* plane. The spacelike geodesics are the

ellipses

1]
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12 2 2 2
{(x ) /cosh o + (x)} =1, (4.15)
)

and the timelike geodesics are the hyperbolas

12 2 22
(x ) /sinh o - (x) =- 1, (4.16)
¢
Moreover, the surfaces of constant ¢s (s = arc-length distance
from 0, €=+ 1[- 1] for timelike [respectively, spacelike]
2

geodesics) are the lines of constant coordinate x™.

From this it is clear that the lines

X = Yy X = 4% x =1 (s = 0) {4.17)
are the lightlike {(null) geodesics through 0. They are

-1 -1
sinh Ny o= + tanh ) {4.18a)

ﬁ
it

or

-1 -1
tanh e p = sin N {t.18hb)

X

i+

which are easily seen to satisfy Eqs. (#.4) and (4.6}.

5. Causal Conmnection, Horizons, Domains of Dependence, Geodesic

Completeness.
More important than the explicit form of the geodesics
is the information about the geometrical structure of de Sitter

space which can be deduced from their qualitative behavior. For
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the sake of visualizability let us discuss the two-dimensional
universe, It will be clear that the structure of the
higher-dimensional de Sitter spaces is quite similar. For more
information on these subjects see Penrose (1968), pp.. 186-19%,
and Geroch (1970), from which much of the information in this and
the next section is taken.

Some care is needed in extending to curved space-tine
the familiar notions of timelike, spacelike, and 1lightlike
separation of points, Two points will be said to be causally
connected if they are connected by a timelike or 1lightlike
curve{ 8] (not necessarily a geodesic), In the closed de Sitter
space, however, all the points causally connected to a point 0
lie on causal geodesics through 0. We shall always assume {see
remarks at the beginning of Chapter VII below) that the manifold
under consideration has a distinguished time orientation. Then

the points which are causally connected to Q0 can be further

classified as the past or the future of Q. (These are disjoint
unless the space admits closed timelike curves -- see Sec.
I1T1.6.)

Just as in flat space, through each point Q there is a
cone of lightlike geodesics, which in a two-dimensional space
degenerates to two curves, as in Eqs, {(4,17-18). The 1light cone
of O separates the points in the neighborhood of Q which are

connected to Q by a timelike geodesic from those which are

[8) T.e., a smooth curve with timelike or lightlike tangent
vector at each point.
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connected by a spacelike geodesic. In de Sitter space the

branches of the 1light cone of O asymptotically approach those

H

worldlines orthogonal to the instant J (T X = 0y which vpass

through the points P and P* (x' = + R, x° * =

x* = Q) located one

1]

quarter of the way around the world.

In de Sitter space the points inside and on the light
cone of the antipodal point ©0' (x* = - R, x° = x"eg {) are not
connected to O by any geodesic, Nevertheless, they are connected
by nongeodesic spacelike curves; in fact, it is easy to see that
any two points in de Sitter space can be connected by a spacelike
curve ({running all the way arounnd the closed universe if
necessary) . A timelike or 1lightlike geodesic throungh 0' can
never intersect one through 0. Thus, an observer at 0 and one at
0' are conmpletely isolated from each other; not only can they
never meet, hut they are not acted on by any common influence 1in
the past and cannot both influence any event in the future., This
situation has no analogue in Minkowski space. Por points inside
the future [past] light cone of 0' a similar statement can be
made about their contact with 0 in the future [past].

Another interesting separation of the space which has
no analogue 1in special relativity is defined relative to a
timelike geodesic., For our standard geodesic # (p =0o= 0) if is
marked out by the 1light cones of P and P', which meet W
asymptotically, (These are shown in Figs. 4 and 5.) The parts
of the cones which approach ¥ in the future form the gvgﬁg

orizon, which separates events which are observable by an
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observer on W from those which are not. That 1is, no
future-directed 1ligqhtlike (or timelike) curve through a point
heyond the horizon intersects W. (An observer at O can intercept
signals from this point, however, if he changes his velocity
appropriately, provided the point is not in the future part of
the geodesically isolated region discussed above,) The branches
of the cones which approach W in the past are called the particle
horizon. The points on the near side of the particle horizon are
those which an observer on % «can influence, in principle; or,
those from which he can be observed.

The intersection of the near reqgions defined hy the two
horizons is the region (Fq. (2.3) with x> > 0) covered by a
connected patch of the Fermi coordinate system (see Fig. U).

These are the points which at some time or another are

contemporaneous with the observer on W in what was argued in Sec.

ITI.3 to be the physically natural sense. These points could be

called historical (relative to W, and the others

o ettt -, S

extrahistorical.

Horizons can be defined for any timelike curve 1in any
space-time, but they are located at infinity (in other words, are
vacuous) in some cases, For instance, in Minkowski space all
points are historical with respect +to a timelike geodesic (but
not with respect to a timelike hyperbolic curve -- a situation
which will be studied in Chapter IX).

We will study the generalized Klein-Gordon equation in

de Sitter space in <Chapter V¥ and in more general spaces in
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Fig, 6

Domains of dependence and Cauchy horizons in flat space

for bounded and unbounded spacelike sets K and X',
Chapters VII-X, The lightlike geodesics are the characteristics
of +this equation. Let S be a segment of a  spacelike
hypersurface, A solution of the equation is conpletely
determined by prescribed values of the function and its tinme
derivative on S within a region called the domain of dependence
of 5.{9] Tt is the union of the set of points x such that every

timelike curve through x can be extended into the past to

intersect S and the set of x satisfying the analogous condition

[97 In general one expects it to be the maximal region with this
property, but see Sec, V.8 for a counterexample.
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with "past® replaced by "future"., If space-time has no closed
timelike curves and S is sufficiently nice, the domain of
dependence is, as suggested in FPig. 6, a diamond-shaped region

outlined by 1lightlike surfaces called Cauchy horizons. In

general space-time the domain may have such a bhoundary even if S
extends to infinity -- see the next section.
A hypersurface S whose domain of dependence 1is the

vhole space-time is called a Cauchy surface for that space-tinme.

Then the Cauchy problem with initial data on S is well-posed.

Not every space-time contains a Cauchy surface, Geroch (1970)

has proved:

(1) Existence of a Cauchy surface 1is equivalent to

global hyperbolicity, a technical condition needed to prove

existence and uniqueness theorems for hyperbolic partial
differential equations on a manifold {see, LT PO

Choquet-Bruhat (1968)).

(2) If a Cauchy surface S exists, the space-time is
topologically of the form S X 1, and the "slices" S X fa} can

be chosen so that they are all Cauchy surfaces.

In the course of this dissertation we shall consider
several examples of the situoation described in point (2) (cf.
Secs. IIT1.5,6,7, IX.1, X.?). In each case a portion of a space
of constant curvature will be covered by a coordinate systen of

either the Gaussian or the Fermi type, and the surfaces of
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constant time will be Cauchy surfaces for that region.
From the geometrical information at our disposal we can
draw the following conclusions about the Cauchy problem in closed

de Sitter space:

{1) A spacelike slice of the form (1.7) is a Cauchy

surface for the entire de Sitter space,

(2) The domain of dependence of half of a geodesic
spacelike hypersurface (where Ip! < N/2 and X = 0 in some
geodesic Permi coordinate system) is the set of points which
are historical (see above} with respect to the timelike
geodesic P = 0) which passes perpendicularly throngh the

center of that segment of hypersurface,

The latter is an important observation: it means that
within the connected region covered by a Fermi coordinate systen
the Cauchy problen is well-posed for each hypersurface
fx|X = const.}. Thus this patch of space may, as far as the wave
equation 1is concerned, be consistently considered a universe in
itself (static!), for which the surfaces of constant X are Cauchy
surfaces.

Although the static de Sitter universe is
Cauchy-conmplete, it is not geodesically complete. This 1is most
vividly explained in terms of the physical pictures introduced in
Sec. I1T.3. Consider one of the worldlines

R* = {x]0° = const. # 0} in relation to the PFermi coordinate
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system based on the worldline W. At some finite value of U, the
proper time of an observer traveling on W', W' hits the event
horizon of W and passes out of the (x,P) universe, 0f course,
this happens at time ¥ = oo from the point of view of an observer
on W.

Geodesic completeness can be characterized
intrinsically, without a priori knowledge of whether the space is
part of a larger space., One rTequires that on every geodesic
which has been extended as far as possible the values of an
affine parameter become arbitrarily large. (See Geroch (1968).)
De Sitter space is geodesically complete, because the spacelike
geodesics (4.13,15) are periodic and the timelike (4.714,16) and
lightlike (4.17,18) geodesics continue to infinity in their

affine paranmeters (e.g., U and )\ respectively).

6. The Open De Sitter Space.

The n-dimensional open de Sitter space is defined by

0 2 12 n-1 2 n 2 2

(x ) - (X ) = o0 = (% Yy + (x) =+ R, (6. 1)
In general it is topologically different from the closed space
with which we are primarily concerned, When n = 2, however, the
open space (50 (2,1)/50 (1,1)) is geometrically identical to the
closed space (500(1,2)/800(1,1)). Only the  physical
interpretation is different: time and space are interchanged.
The calculations of Secs. IIT.1,2,4 still apply, but now U and ¥

are space coordinates and o and p are time coordinates. One nust



Secs I11.6 115

look at Pigs., 3-5 from the side! The physically relevant
structural properties of the space, consequently, are quite
different from those of the closed space described in the
previous section, and provide an interesting comparison.

The differences are primarily due to the asymptotic
behavior of the light cones, schematically indicated in Fig. 7.
In the open space the light cone of a point 0 becomes at large
spatial distances asymptotically parallel to a geodesic spacelike
hypersurface W. The timelike geodesics normal to ¥ all cone
together at ¢ (cf. Figs. 4-5), As a consequence a geodesic
Gaussian coordinate systen {pexX) does not cover the whole space.
A geodesic Fermi system (o,U) does, however, and it gives rise to
a manifestly static metric.

It also follows that there are causal curves which
connect points which are not joined hy geodesics. In fact, all
points in open de Sitter space are causally connected,

It is easy to see that there are no event or particle
horizons relative to geodesics in this space.

The formulation of the Cauchy problem in open de Sitter
space is very complicated, First, the presence of closed
timelike curves wreaks havoc with an initial-value probdlem. 1In
the present case every point is in a position to influence every
other point, even points on the same spacelike hypersurface.
There are three possible ways out of this difficulty. (They will
all be investigated and related to each other in Sec. V.8.)

First, one could investigate whether 1imposing the
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condition that the solutions of the wave equation transform under

a unitary representation of the de
boundary condition of periodicity
with prescribed initial conditions,
Second, one could restrict
attention to the region covered by a Gaussian
closed

coordinate system., Here there are no

timelike curves, and each surface of constant

P is

space,

a Cauchy surface for the restricted

This model 1is the two-dimensional

analogue of "Case 6" of Robertson and Noomnan

-~ it is a Robertson-Walker universe which

expands from a singularity and then contracts
This is not

again {see Appendix D). space

geodesically complete, and, of course, it is

not invariant under the action of +the de
Sitter group.

Finally, one could <consider the
universal covering space of the hyperboloid

(6.1). That is, we allow o to range from -

to +c and values of o which differ by a

multiple of 2N are pnot identified, This

space is sketched in Fig. 8. (The spatial

infinities have been mapped in to finite

locations, and light cones appear as diagonal

straight 1lines.) Wigner (1950} has

Sitter group

in the time to he

argued

allows the
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| 2o !
o
I t=-=> |
! !
| P
| /\ |
/7 N
1/ \
VAN
I\ o=21 /|
I\ /1
g1 N/ 1t
S TN - B
- /\ !"
"t/ N\ ]K
L AN
N AR (LU N BN
INNCR IR
PN /o
YN /LR
| \P |
1 /\ ]
1 /7 N
1/ N
1.0 .\
iIN o=0 /]
P\ /|
AN
| \/ |
Fig. 8
Covering space
of open de
Sitter space,
The coordinate
o is defined in
Fq. (V.2.5).
that this is a

-S;Jes



Sec. III.5 118

physically reasonable space to study in quantum theory.. The
symmetry group is the infinite-sheeted universal coveriﬁg group
of S0,(2,1) (see Sec. B.1). Now the points which 1lie on
spacelike geodesics through O are not causally connected to 0.
(The o-translates of these points by a nultiple of JI, on the
other hand, are causally connected but not geodesically connected
to 0. The timelike geodesics through P are confined to the
sequence of diamonds in Fig. 8,)

The domain of dependence of the instant W = {xjo = 0}
is the diamond region covered by the Gaussian coordinates (just
discussed). PFor the whole covering space one would not expect
the Cauchy problem to be well-posed, The value of a solution of
the wave equation at a point beyond the Canchy horizon of the
initial instant can be influenced by "information which comes in
from infinity" along causal curves which do not intersect W,
This example points up a complication which will be encountered
in applying canonical field guantization to some Riemannian
space-times, even with static metrics. In Sec. Y.8 the
circumstances under which this problem arises in the open de

Sitter space will bhe determined.

7. De Sitter Space as a Euclidean PRobertson-Halker [niverse

Another coordinate system which has historically been
used 1in the study of the de Sitter universe is the systenm of

Lemaitre and Robertson, defined in the two-dimensional case by
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0 1 2 t
X =gsinh t + -1 e,
2
1 t
X = re, (7.1a)
2 1 2 t
X =cosht--1r e,
2

The extension to higher dimensions is simple:

X =r e (1<ji<n~-1 (7.1b)

defines a Cartesian spatial coordinate system. The range of the

coordinates is

y
-0 < t <o, - <r <o, (7.2)
The metric is
2 2 2t 2
ds =4t - e dr , {7.3a)
where in higher dimensions
2 12 n-1 2
dr = (Ar) + ... ¢+ {dr ) . (7.3

The coordinates cover half of the de Sitter hyperboloid
(Fig. 9), the region bounded (in dimension 2) by the lightlike
geodesics through P and P' which asymptotically approach the

worldline ¥ in the far past (the particle horizon of ®¥). Thus
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The lemaftre-Robertson or horospherical coordinate systenm.
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the universe consists of all the points our standard ohbhserver (or
an obhserver on any of the geodesics given by r = const.) can in
principle observe, The metric {7.3) displays this space as a
Robertson-Walker universe which is always expanding. (This
property explains the popularity of the Lenmaitre-Robertson
coordinates when de Sitter space is taken seriously as a model of
the actual universe =-- see [Robertson-Noonan], pp. 365=-367.[101)
It is clear that a change of the signs of t and xY in Egs. (7.1)
would vield a contracting universe bounded by the event horizon
of the central worldline,

The metric of Bg. (7.3) is Gaussian, but none of the
spaces of constant time, vwhich are the intersections of the
hyperboloid with the planes xo + x* = const., is a geodesic
hypersurface. However, (t,r) can he reqarded as the geodesic
Gaussian system built on the particle horizon; this cone 1is a
sort of linit as t —> - ® of the spacelike geodesic
hypersurfaces orthogonal to W, as we shall see at the end of this
section,

The hypersurfaces of constant time, given by

P{x) = -1, x + X = const., (7.1

are isomorphic to Euclidean (n-1)-space as Riemannian manifolds.

That is, they are not only open and infinite (cf. ©Egs. (7.2)),

[10] It is specifically this model which these authors call "the
de Sitter universe®,
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but actually flat. This is a trivial statement for n = 2, but it
is quite significant for n > 2, where the spacelike hypersurfaces
(1.7) and (2.8) are definitely curved.
The hypersurfaces (7.4) are Cauchy surfaces for the
half of de Sitter space which is covered by these coordinates,
The metric (7.3) 1is obviously invariant under the

transformations

r—>r+r {7.5)
and

The generator of the "spatial translations" (7.5) is

L +1 = i(Kk - P) (7.7
10 21

{(see Egs. (7.1), (A.1.11-12), (7.3.5)). So this is a parabolic
subgroup of SO _{1,2) (see Sec. II.3), The "dilation™ (7.f) is
just ;7Tto) (Eq. {(2.9)). The statemeant in [Robertson-Noonan]
(pp. 347, 348, 365) that "the de Sitter universe is the only
nonstatic stationary model" (doubly nonstandard terminology!)
refers to the existence of the symmetry (7.6) (see pp. 323 and

346-348 of the book).
The coordinate system - {7.1) corresponds to the coset

decomposition’
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ir(k - p) itH
e e S0 (1,1. {7. 8a)

In higher dimensions this becomes

it.- & - %) itn
e e 50 (1,n-M), (7.8h)
0

This deconmposition (which clearly does not cover the whole group)
is discussed by Hannabuss (1969a). Tt is closely related to the
Iwasawa decomposition{11] of 500(1,n), in which 500(1,n-1) is
replaced hy SO(n). The hypersurfaces (7.%) are the horospheres
which are widely used in modern harmonic analysis (€. g,
[Gel'fand 5}).

B8rner and DUrr (1969) have studied quantum field
theory in the four-dimensional de Sitter space using the
horospherical coordinate system (7.1-3). Their solution of the
eigenvalue problem for the Casimir operator (pp. 681-690) is
essentially the decomposition of the guasireqular representation
by the horospherical method, described in elementary ternms.

To see the relationship of horospherical to geodesic
Gaussian coordinates, operate on ®gs. (1.2) vwith J(X) (Eq.

(2.5)):

{11) See, e.qg., [Hermann], pp. U40-uu,
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0
¥ = sinh (T - ) - sinh A cosh T (cos o - 1),
1
x = cosh U sin o, (7.9)
2
x = cosh (U - ¥) - sinh ¥ sinh T {cos o - 1),

This maps the geodesic hypersurface {x|T = 0} on whichk the (T,0)

system is based back toward ¥ = - w; that is, to the light cone
at t = -c0 in the lemaftre-Robertson picture (Fig., 9). VNow let
1 X
2

let X — o (replacing cosh ¥ and sinkh X by éx/Z), and expand
the trigonometric functions up through order >, The result is
Egs. {7.7a). Thus we have exhibited the group of r-translations
(7.5,7) as a contraction of the group of o=translations (1.5},
or, better, as a limit of the S0(?) suhgroups of 500(1,2) in the
sense of Hermann ([ Hermannl], pp. Bb-107; see also [Hermann 217).
In the general case we have Iso_(1,mn-1), the symmetry group of
the spaces (7.4), as a limit of the SO(n) symmetry groups of the
spaces (1.7) and their images under ¢7Tk).

As explained in the Introduction, we are interested in
de Sitter space as a finite universe of constant curvature, We
shall work, therefore, mostly with the coordinate systems of
Secs. I1I.1-2. The horospherical picture has been discussed for

the sake of completeness and to emphasize that a given space-tinme
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manifold may be split into space and time in several different
vays, As we shall see 1in Chapters IX and X, these alternatives
are associated with different procedures of canonical

quantization of a fielad.
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Chapter IV

AXIOMS POR QUANTOM FIELD THEORY IN DE SITTER SPACE

¥ith the geometrical preliminaries out of the way, we
are ready to consider the possibility of quantum field theory in
de Sitter space. Let us first see how far we can go in rewriting
the Wightman axioms for general field theory {see Appendix E} so
that they apply to the closed de Sitter space.. We shall find the
spectral condition to be the major stumbling block. This might
have been anticipated from the absence of an obvious analogue of
the energy operator in the Lie algebra of the de Sitter group.
It is a major contention of this dissertation, however, that this
problem is only a special case of a gap in our wunderstanding of
the notion of gquantum field with respect to curved space-time in
general; the claim (see Philips (1963), Fronsdal (1965), Castell
{1969)) that there is no such ambiguity in the case of the open
de Sitter space (because there is a global time translation group
vhose generator can be made positive definite) deserves critical
examination from a physical point of view,

In later chapters ve shall try to construct the quantum
theory of a free (i.e., not self-interacting) neutral scalar
field in de Sitter space as a special case of such a field 1in a
general Riemannian space~time. The reader should be warned that

the conclusion will be that it is not obvious that the most
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reasonable theory on physical gqrounds must satisfy the axionms
proposed here, In the last section of the chapter the relation
between the contents of this chapter and vhat comes later will be
explainéd further,

As in Chapter I we shall denote the de Sitter

space-time manifold by ™.

1. Axioms with Straightforward Genmeralizations.

No change is needed in the first axiom, which deals
only with general principles of guantum theory, without reference

to space-tine:

1. Quantum theory. The states of the theory are

described by unit rays in a separable Hilbert space %.

Naturally, one expects to keep the second axiom with a

change in the symmetry group:

2, Relativistic invariance. The relativistic

transformation law of the states 1is given by a continuous
unitary representation U(A) of the universal covering group

of the de Sitter group 800(1,n).

See Sec, B.1 for a description of the covering group. One of our
ma jor concerns in later chapters will be whether Axiom 2 is
consistent with an approach to field theory in curved space which
generalizes to arbitrary space-times without any symmetry group.

The next group of axioms deals with the field
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operators. We are faced first with the problem of choosing a

test-function space,

3, Existence and temperedness of the fields. There is

a topological vector space J of functions defined on
space-time such that for each f €  there exists a set
“;(f" eess $,(f) of operators, These operators, together

vith their adjoints ¢l(ff-, ensy ¢“(f}1, are defined on a

linear domain D of vectors, dense in M. tThe gj(f) and -—j

¢j(ff' leave D invariant. If ¢, ¥ € D, then (¢,¢j(f)!) as a —

functional of f is a member of the dual space 7% (a space of —

distributions).
We shall write symbolically

#(£) =j ap(x) #(x)£(x) (1. 1a)
"

vhere

dp(x) = #TET dx1 vas dxn {1.1b)

is the invariant volume element on M, This convention makes bhoth
# and £ scalar objects if ¢ is a scalar field (cf. Sec. VII.3).

What test-function space ./ should we choose? Even in

the ordinary relativistic theory this is a somewhat arbitrary

choice. 1In Wightman and Ggrding {1965) it is taken to be &, the

space of C” functions of compact support; in [Streater-#ightman]

it is 4, the C” functions of fast decrease. There is no trouble
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in defining what it means to be a C” function of compact support —
on M, The likeliest analogue of the condition of rapid decrease

is

P 4 4
T 4 fsar ' —>» 0 as |l ~>» o for all integers p, q, (1.2) —

vhere T is the tine coordinate of Sec. 111,171, which is the —
geodesic arc length in a certain timelike direction., (Since the
universe is spatially finite, no falloff conditions are needed in
spacelike directions.) Then the topology in this space and its
dual can be defined by seminorms in the usual vay (see
[ Streater-Hightman], pp.. 33-34). The condition (1.2} is not
manifestly invariant under the de Sitter group, since it depends
on a particular Gaussian frame, (Feither 1is the standard
definition of < nmanifestly Lorentz-invariant.) But by comparing —
Fgs., (I111.1.2) and (I1I1,7.9) one sees that the time coordinates
in two Gaussian frames are asymptotically related by
av
TV~ T + £(0), — 1 (T — ), (1.3) -~
at
where f{o) 1is bounded, so that the definition is really —
independent of franme.
We state the transformation law of the fields only for

the scalar case:

4s. Tensorial character of the fields. The U(A) leave

D invariant, and the equation
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-1
U{a) g(f) U(a) = #(Af) (1.4a)

is valid when each side is applied to any vector im D, where

-1
AMf(x) = F(A X). (1. 4b)

There is a variety of ways to generalize the notions of tensor
and spinor field to Riemannian space-time in gemneral and
especially to de Sitter space (where the de Sitter group and its
representations are available to be thrown into the mathematical
mix) . Which of these formalisms to adopt seems to be at least
partly a matter of taste., (For some rival choices in the case of
de Sitter space see Dirac (1935), VNachtmann (1967), BSrner and
D8rr (1969), Hannabuss (1969a). The equivalence of several has
been shown by Castagnino (1970), Well-developed formalisms for .
arbitrary space-times are those of Lichnerowicz (1961) and
Penrose (1965).) Since the present work has been limited to
scalar fields, ve shall not go into this subject.

Every point ¥ in M has an associated 1light cone which
delimits the regions which are related to x in a causal way (see
Secs. ITI,4-5), One expects that measurements at points outside

the light cone will be independent of measurements at Xx.

5. local commutativity. TIf there is no pair of points

x € supp f and y € supp g such that x and y are causally

connected, then one or the other of
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(t) '
[g (B)e g (9] =20 (1. 5)
3 k X

holds for all j and k when the left-hand side is applied to

any vector in D.[1]

The three axioms expressing the existence, unigueness,

and cyclicity of the vacuum make sense as they stand:

6. Existence and uniqueness of the vacuum. There is a

state Vo, the vacuoum, invariant under U, unique up to a phase

factor,

7. Cyclicity of the fields. There is a state which |is

cyclic for the smeared fields; that is, polynomials in the
smeared field components, P(ﬂ‘(f),¢g)(g), .es), applied to

this state yield a set D of vectors demse in 7/,
8. Cyclicity of the vacuur, Wo is in D and is cyclic.

These axioms, like Axiom 2, are stated only tentatively. It is
not obvious that a theory in which the full role of the Poincaré
group in special relativistic field theory is attributed to the
de Sitter group 1is the physically most reasonable theory of
fields in de Sitter space. Let us be nmore specific., The
geodesic Gaussian (Sec. 1III.1) and horospherical (Sec., III.7)

coordinate systems represent de Sitter space as an expanding

[1] The superscript () stands for the presence or the absence of
an Hermitian conijugation.,

—
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universe, It is quite plausible that in suach a situation
particles will be produced by interaction with the gravitational
field. (This problem has been studied by Parker (1966, 1968,
1969, 1971) and is discussed in Chapter X.) Then the no-particle
state will not be invariant under the de Sitter group.[2] It is
conceivable that there will not be any de-Sitter-invariant state
in the theory at all. On the other hand, the de Sitter universe
is static from the point of viev of the Fermi system (Sec.
I11.2), but the theory (which has a no-particle state) which is
thereby suggested 1is not de-Sitter-invariant, for reasons to be
explained in Chapter IX.

Incidentally, it 1is not clear that RAxiom 7 is
equivalent to the statement that the algebra of field operators
is irreducible. The wusual proof {([Streater-Wightman], p. 141)
that cyclicity of the vacuum implies irreducibility depends

crucially on the spectral condition,

2. The Spectral Condition,

The crux of the spectral condition (Axiom 9, Appendix
E) is that the energy operator Po is positive. The generator we
have called H (see Secs. I.3 and TIT.2) 1is not positive in any
irreducible unitary representation of 500(1,2) (see Sec, II1.3).

As ve have seen in Sec, III.3, there is a good geometrical reason

[2] As it stands this assertion is a nop sequitur, since a time
translation in these coordinate systems is not an element of the
group. The claim will be substantiated in Chapters Vv and X,
however,
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for this. Philips and Wigner (1968) (pp. 632, 635-639) have
shown that no element of ;1500(1,4)) can be represented by a
positive operator, because each element can be transformed into
its negative by an element of the group..

Another aspect of the same problem is the difficulty of
separating the solutions of the wave equation in de Sitter space
into positive- and negative-energy functions according to any
convincing definition (see Philips (1963) and Secs. V.3-6 below).
This, however, is a general problem affecting field quantization
in all metrics which are not manifestly static (see Chapter ¥X).
The 1impression that it does not arise for the open de Sitter
space (see, e.g,, Philips (1963)) is due to the existence in that
case of a global coordinate system vhich gives the metric a
static form,

As we have seen in Chapter 1II, there is a
correspondence between the irreducihle representations of the de
Sitter group and those of the Poincaré group for space of the
same dimenéion. In particular, the principal series of
representations of 50_{1,n) contracts to the representations of
1500(1,n-1) with timelike momentum spectrum, A plausible first
step towvard incorporating a spectral condition into a
de-Sitter-invariant theory would be to require that only
representations of the principal series  appear in the
decomposition of U(A) into irreducibles, This axiom could not be
expected to 4o the entire job of the spectral condition, because

it does not touch the problem that both past-directed and
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fature-directed timelike momenta can be extracted by contraction
from the same irreducible representation of the de Sitter group
(Secs. IXI.t and IX.3). In physical terms it would be expected to
exclude tachyons but not slover-than-light particles with energy
unbounded belov.

Unfortunately, even this minimal restriction on the
representation U(A) is probably untenable., Pukdnszki {(1961) has
shown in the case of 500(1,2) that the tensor product of two
representations of the principal series contains representations
of the discrete series as direct summands.[3] So the proposed
axiom would exclude, for instance, a theory in which the states
of one stable particle form an irreducible representation{4] and
n-particle states are tensor products of these (second
quantization). This is not a conclusive argument, of course,
since we have other reasons, explained in later chapters, for
being suspicious of this approach of covariant second
gquantization. However, the complete exclusion of tensor products
as subrepresentations of I makes one suspect that this is the
¥rong track.

Let us, therefore, abandon elegant group-theoretical
conjectures and attack the problem by more direct physical
reasoning., Positivity of the energy seems to be related to the

behavior of a system (or perhaps part of a system) under

[3] Nachtmann (1968b) rediscovered this fact and interpreted it
as dynamical instability of a covariant second-quantized theory.
See Sec, X.4 below,

[4] Cf. Newton and Wigner (1949).
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infinitesimal time translation in the positive direction. The

failure of group theory has been traced to the absence of any
group elements corresponding to time translations in a spatially
global sense. However, we do have a notion of 1local time
translation at each point of a geodesic hypersurface; if we
choose the latter as the base of a Gaussian coordinate system of
the form (ITI.1.2-3), local time translation is tramnslation in T,
{The gradient of T is at each point of the hypersurface a unit
normal in a distinquished "positive" direction.)

These considerations suggest as a replacement for the

spectral condition the following sequence of conditions:

{1) The dynamics of the system is given (at least in the
neighborhood of ({x|7T = 0}) by a system of unitary

operators:

-1
g(T ,0) =0(T ,T) £(T ,00) O(T ,T) . (2.1)
2 2 1 1 2 1

(2) The propagator U is differentiable, in the sense that

U,y -1

(Y =~ i 1lim
TV >T -

(2.2)

exists, so that

o¢
g;(r'm = i[8(Y), #(T,0) ). (2.3)
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(3) H(0) is a positive operator.

Let us not pass judgment on this suggestion until we have had a
chance to compare it with some concrete proposals for the
quantization of the "free" scalar field in de Sitter space (see

Secs. X.8-10).

3. Asymptotic Completeness.

There remains the axiom of asymptotic completeness.,
One's first impulse is to formulate some condition on the
behavior of states (or, rather, observables, in the Heisenberg
picture) at large positive and negative times, where "time"™ is
taken to be a coordinate which runs along the axis of the de
Sitter hyperboloid, like T in the Gaussian system., The idea is
that in these 1limits +two particles should separate to large
distances 1in some sense (see the classical trajectories in
Pig. 10). However, this approach seems inappropriate for several

reasons:

(1) The notion of time is highly ambiquous in de
Sitter space, As we have seen in Secs. TIII,2-3, the

physically most reasonable definition of time for a given

observer assigns infinite time to a surface in de Sitter

space (the historical part of his event horizon) which is
located at finite time relative to other observers. The
physical significance in the large of the time coordinate T

i i

is probably not as great as has sometimes been assunmed,
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Fig. 10
Scattering in de Sitter space, Shown are (1) a universal time
coordinate ¥, disparaged in the text; (2) trajectories of two
particles, ® and §; {3) the curves t, = *®, where ts is the

proper time of an observer travelling with particle S; (#) an
elementary particle scattering event occurring near the
trajectcry of R.

—

e
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(2) As remarked at the end of Sec., IV.1, we may have
to deal not with a finite number of particles which are
stable except insofar as they interact with each other, but
with an indefinite, perhaps infinite, perhaps constantly

changing, number of particles.,

{3) Most importantly, quantum scattering theory deals
vith phenomena which take place in small Tregions of
space-tine, One expects nearly free particle hehavior at
particle separations which are large compared to the vange of
the interaction between the particles, but are nevertheless
finite -- and, in fact, small -- compared to the scale of the
curvature of the nuniverse (see PFig, 10). In flat-space
theory an extrapolation to infinite time is made as a
mathematical convenience; one could consider only finite
times at the cost of dealing with only "approximately freen®
parti¢le behavior. In de Sitter space the convenience of an
extrapolation to infinite time is lost, because the curvature

of the universe in the large interferss. .

Scattering theory in de Sitter space should be based on
an analysis of particle observables at finite separations, The
formulas obtained should reduce in the 1limit of small curvature
to the results of asymptotically complete Minkowski-space
theories. This task is beyond the scope of the present work, so

ve shall not consider asymptotic completeness further.
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4. Suppary and Previes.

In adapting the axioms of field theory to de Sitter
space there is no reason to change the principle of general
quantum theory. The axioms describing the fields {(including
locality), the representation of the geometrical symmetry group,
and the vacuum have natural analoques; however, those which
belong to the "group" side of the picture (see Appendix E) have
been asserted with some hesitation. The spectral condition is
highly problematical. Asymptotic completeness has been dismissed
with some qualitative remarks,

We cannot hope to formulate de-Sitter-space gquantun
field theory entirely 1in the abstract, Conjectured general
principles must be tested against particular nmodels, One hopes
that the study of models will shed 1light on (1) what, if
anything, can be substituted for the spectral condition of
Poincaré-invariant theory; (2) how much confidence can be placed
in Axioms 2, 6, and 8 (the "group" axioms).

Most of the rest of the dissertation is devoted to the
problen of constructing in de Sitter space an analogue of the
free scalar field in flat space, Tn Chapter V we shall study the
c-number solutions of the generalized Klein-Gordon equation and
consider the possibility of constructing a field theory by second
quantization of a single-particle theory. Doubts will arise
(related to the o0ld problem of the spectral condition) as to
whether +this theory is on as sound a physical basis as the

ordinary theory for flat space which suggested it. We shall then
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try a different approach, canonical quantization of the classical
field equation. This turns out to be applicable to an arbitrary
Riemannian  space-time (Chapters VII-X), Evidence will be
presented that a "physical® representation of the field operators
is not uniquely determined, and that the particle interpretations
naijvely associatéd wvith particular representations are of only
rather limited physical significance.

In an attempt to suggest a "best" or "most physically
significant" representation we arrive at one which for the case
of two-dimensional de Sitter space can be shown (Sec. ¥.8) to
satisfy a spectral condition in the sense of Sec. IV.,2 (and to
possess a Teasonable particle interpretation closely related
thereto) and also to satisfy the axioms of Sec, 1IV.1. However,
it vill do the latter only by accident, as it were: the vacuun
state in the group-theoretical sense will have nothing to do with
the absence of particles. Moreover, it is doubtful that the
theorem that the spectral condition and the group axioms can bhe
satisfied simultaneously can be extended to the four-dimensional
de Sitter space, If it should happen that in the
four-dimensional case there is one ("covariant") representation
which satisfies the axioms of Sec, IV.1 and a different
("positive-frequency") representation which satisfies some kind
of spectral condition and fits well into a general theory of
field quantization in curved space, then that would be an example

of a situation where different representations are useful for
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different purposes.[5] The first theory would probably be of
greater physical interest fronm the standpoint of general
relativity and cosmology, but the second would bhe the one to use
in the program of constroctive field theory outlined in the

Introduction and Secs. Y.2 and VI.3.

[5] See Sec, IX.H,
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Chapter V

THE FIELD EQUATION IN DE SITTER SPACE

AND SECOND QUANTIZATION

We begin the attempt to construct a "free" field in de
Sitter space by postulating a generalization of the Klein-Gordon
equation, This equation is easily solved in the coordinate
systems introduced in Chapter III, and we study the solutions in
some detail in the two-dimensional case,

When we try to mimic the familiar construction of the
free field in flat space by second quantization, we find
ourselves' at a loss for an analogue of the notion of
"positive-energy solution®, The ansatz which seenms nost
reasonable physically turns out to be inconsistent with the idea
of a particle as an elementary system vhose states transfornm
according to an 1irreducible representation of the de Sitter
group, Further development of this theory is postponed to
Chapter X, 1in the context of a general theory of canonical
quantization of fields in Robertson-Walker metrics. Likevise,
the gquantization suggested by the Fermi coordinate system is
absorbed into the theory of quantization in static metrics in
Chapter VIIT, A theory proposed by Tagirov et al. (1967), which
maintains the idea of a particle as an elementary system, is

discussed from the point of view of Chapter IV,
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In the final section the solutions of the field
equation in the open de Sitter space are studied briefly, This
problem provides an example of subtleties in the physical
significance of essential self-adjointness of operators in

quantun theory.

1. Differential Form of the Generators and the Casimir Operator.

In Sec. A.3 the basis elements of the Lie algebra of
500(1,n) are realized as differential operators 1in the imbedding
space Rr“ « These are vector fields which are tangent to the de
Sitter hyperboloid (Y.1.1). Consequently, they can be expressed
as differential operators on de Sitter space. Using Egs,
(I1IT.1.3), they can be expressed in terms of the Gaussian

coordinates:

)
P == -, {1.1a)
oc
0 o)
H = i[cos 0 — - tanh T sin o —], {1.1b)
oT oc
o) o)
K = i[sin 0 — + tanh T cos o ~—1]. {1.1c)
ot e

(Ve consider only the two-dimensional space for simplicity.)
Similarly, using Bgs. (III.2.2), ve find for the Permi coordinate

systen

—_—
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el 3
P = - j[cosh X — + tan P sinh ¥ —1, {1.2a)
dp ox
)
H=1i-—, (1.2h)
X
) o
K = i{sinh X — + tan P cosh X -] {1.2c)
op oX
Next we calculate the Casimir operator
2 2 2
Q=X +H -7P. (1.3)
In the Gaussian system we obtain
3? d 2 o
Q== — - tanh ¥ — + sech T —Z (1.4)
dT” aT o0
and in the Fermi systen
2 8 @
Q= - sec p -—— - tan — —— {1.5)

Prom either of these equations, generalized to radius R (see end

of Sec. IIX,1), one can verify that

2 1 9 nvv___ ) 2
Q=-R —— -—[g Vig|l—1=-1r [] (1.6)
Vig| dx ox” c

(g = det {g }). By [jc wve denote the Laplace-Beltrami operator
My

or covariant d'Alembertian ([Adler-Bazin-Schiffer], pp. 71-76),

n
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Being generally covariant, this expression for Q is valid in any
coordinate systen.

In dimension n the relation (%1.6) remains valid, .and
the higher-order Casimir operators are not independent. For
instance, Q. of Eq. (I.4.8) is identically zero. So to obtain
group representations with "spin"%, one must consider tensor or
spinor functions on space-time, as in the case of the Poincaré

group.

2. The Wave Eguation.

The Klein-Gordon equation in flat space has the
following group-theoretical interpretation:[ 1] A particle
{stable and without internal structure) is an "elementary system"
vhose possible quantum states support an irreducible unitary
Tepresentation of the Poincarée group. ¥hen the group and its Lie
algebra are realized as operators on the space of functions on
space-time, the condition that the Casimir operator have a
definite value is precisely the Klein-Gordon equation (cf. Egs.
(I.4.4) and (A.3.6a,h)). If a further condition of positive
enerqy is imposed, the solutions form an  irreducible
representation.

It is natural to attempt to construct the same type of

theory for de Sitter space. Accordingly, on the basis of Eq.

[1] See Wigner (1939, 1948, 1956); Bargmann and Wigner (1948);
Newton and Wigner (1349) ; [Streater-Wightman], Chap, 1.
Replacing scalar functions by tensor- or spinor-valued functions,
one obtains equations for particles of nonzero spin,

———
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{(1.6), we postulate the wave equation

1 9 o o -2
—= —[Viglg —1V(x) =~ R q ¥(x), (2.1)
Yigl ox” ox”

where g is a constant vhich plays a role like that of the sguare
of the mass in the flat-space theory. (From nov on we shall set
R = 1 except when contraction ({the large-R 1limit) is being
discussed.) This equation is 1identical to the one which 1s
obtained (without use of group theory) by variation of the
simplest lagrangian density for a scalar field in an arbitrary
Riemannian space-time (Sec., VII.1 below).

The only other scalar wave equation which seems to have

been seriously considered{2] is one with an extra ternm

n-2 g n{n - 2)
R = — 09, (2.2)
4n - 1) U3

where n is the dimension of space-tine, Ri is the scalar
curvature (contracted Ricci tensor), and R is the radius of the
de Sitter space. Since 1in a space of constant curvature this
term is a constant, it may be regarded as just a redefinition of
the mass. Horeover, it vanishes in the liait of large R. In the
context of de Sitter space, therefore, the controversy over
whether to include the term (2.2) seems pointless.

In the geodesic Gaussian coordinates (n = 2) the wave

[2] See references in Sec. VII.1,
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equation has the form (see Eq. (1.4%))

3y 32

o0

~~ = (cosh T —) ¥ + q cosh T ¥.
X dt

147

2

An dinteresting transformation of the equation involves

(2.3)

the

Gudermannian function ([Gradshteyn-Ryzhik], pp. 43-U44), which has

the properties

X dt

gd x = = 2 ta
0 cosh t

-1 X dt

0 cos ¢t

log tan [~ + -],
2

4

If we let
" n
oa=gd T (- - << =), (2.5
2 2
then
d 1 d
-—= - cosh T = sec o. (2,6)
0T cosh ¥ d«
So the equation beconmes
v &'y 2
— - = 4+ q (1 + tan o) § =0, (2.7
da*  doc?

Near O the deviation from the ordinary

Klein-Gordon equation

is

—



Sec. V.2 148

quadratic in 1/R if we take q = Raml.
Similarly, from Eq. (1.5) we obtain

Y d 2 2
= (cos P --) ¥ - q cos P ] (2.8)
op

<

s

o

in the static Fermi system, Setting

-1 n n
B = qd P (-0 < B <o for - - X P < =), (2.9
2 2
we have
¥y oy 2
- = =—— + q (1 - tanh B) ¥ = 0. {2.10)
o ¥pr

The possibility of reducing the wave equation to the
form of a flat-space Klein-Gordon equation with an external
scalar potential term (in other vwords, a space-time-dependent
mass) is peculiar to dimension 2 (see Sec., VII.1).

To solve Eq. (2.3) (Philips (71963)) set

z = i sinh T = sin iv, (2. 11)
o0 ipo’
T = D c(p) £ (2) e . (2.12)
p=-c0 p

(Since ¥ is periodic in o, p takes only integral values,) Then
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2 a"ff af, p?
(1-2z) -2z —~ - f =qf. (2.13) —
A~ ks
dz dz 1 -z P P

This is the associated legendre equation ([N.B.S.], p. 332) with

p=p and YW+ 1) = - q. (2.18) —

Thus the solutions are the associated Legendre functions gf(z)

and Qr(z) with
v

1
V:--+i¢q-$. (2.15) —

The existence of an imaginary part of )2 distinguishes the -—
representations of the vprincipal series (g > 1/4) from the
complementary and discrete series (see Sec. B.3).
i
Eq. (2.8) can be handled similarly. Let u = sin P and _

try a solution of the forn

_iv
U Wp) =£ (u) e . (2.16) -
by bY
Then
2 a’t at, N
(1 - u) -2u—~ ~-qgf + £ =0, (2.17) —
du* du b 1 - u* b

This is legendre's equation again, with
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1
=i V?'-“’i -Lo 2018
A } Y 5 q ¢ ( )
The solutions are ﬁf(u) and Qd(u), vith - 1 < u < 1, It remains
14

to be decided which values of % occur; this will be discussed in

Sec. V.7.

3, DPositive-Frequency Solutions in the Geodesic Gaussian Systen.

In this section we consider the case g > 1/4 and
attempt to interpret the solutions of the wave equation in terns
of particles in the closed de Sitter universe,

It will be convenient for us to use as the basic pair
of linearly indepenrdent solutions of E®Bgq. (2.13) not the

associated Legendre functions but

2 -p/2 1 1 102
E(2z) = (1~-2) F(- -w*p), -(1+0-p), -, 2 ], (3.13)
p 2 2 2
2 -p/2 1 1 3 2
0 (z) = (1-12) z F[~-(1=v=-p), 1 ¢ =(v-pP)y, =y 2 ], (3.1D)
p 2 2 2

vhere F is the hypergeometric function ([N.B.S.], Chap. 15). The

branch of (1 - zlfTA‘ should be chosen continuwously along the

imaginary axis with the value + 1 at z = 0. ET and OF are the

elementary even and odd solutions of Bq. (2.13):
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E(0) =1, E*{0) =0, (3. 2a)
p |4

o (0 =0, 0'"(0) = 1. {3.2b)
p p
They are independent of the sign of p. Formulas rtelating these
functions to Legendre functions with the standard branch cut and
phase conventions appear in [N.B.S.], ppP. 332-333 (%gs.
(8s1.4,M)).
Let

P () =F (i sinh 7) - Vg + p~ 0 (i sinh 0), (3. 3a)
p p P

N (T) = E (L sirh 7) + Vg + p~ 0 (i sinh 7) = P*(7). (3.3b)
P P p p

The series expansion of PF near = 0 is

e 1 2 2
P()=1-iVg+p C--(Q+p) ¢
p
i _ 2 3 b
+-Vg+pr(g+tp +NT +0(T). (3.8
6
Thus
ipo
e P (D) (3.5a)
P

and
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ipo
e N (D) (3.5b)
p
agree through order 7" with the plane-wvave solutions of the
Klein-Gordon equation:

- — ipos ———
exp(ipo + ivVm® ¢ p* T] = e [1+iva> + p> 7

1 2 2 2 i 2 2 3/2 3 4
- -(m +p) T +~-(m +p) T +0(T)) (3.6)
2 )
Accordingly, ve  shall call the  function (3. 5a) a

positive-frequency solution, and (3.5b) a negative-freguency

solution. In Sec, X.,5 it will be shown that field quantization
based on this identification leads to a ({time-dependent)
Hamiltonian which is a positive operator at ¢ = ¢ (cf., Sec.
IV.2)., For now we simply gamble, on the basis of the comparison
vith Eq. (3.6), that FEq. (3.4%) demonstrates "positive-energy
behavior” in some useful sense,

The most obvious next step would be to interpret the
solution (3.5a) as the wave function of a particle with momentum
p (cf. Sec. VITI.4 below). wé vould need a scalar product on the
space of all these solutions; 1let us assume that this has been
found (see Sec., V.5). Then we would have a "relativistic wvave
mechanics" analogous to that based on the ordinary Klein-Gordon
equation (as described, e.q., by [Schweber), pp. 54-64, and

[Corinaldesi], pp. 25-110). A many-particle theory could be

constructed by second gquantization ([Schweber], pp. 156-195);
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this would be equivalent to the field theory defined by

writing[3]

0o =172 ipo -ipo t
g(r,0) = > [2Vq *+ p° ] fe P (T)a +e N (Dal} (3.7
p== P p P P

and interpreting ar and a; as annihilation and creation operators
for particles in the state vith vave function (3.5a).
Unfortunately, this single-particle interpretation seems to be

untenable, €for reasons which we shall discuss in Sec., V.5. .

U. The Representation of the Group in the Space of Solutions.

There is a natural action of the de Sitter group on the
solutions of the wave egquation: if §(x) 1is a solution, then so

is U(A)¥(x) = V(K 'x). The expression

n 0 | op*
Wy ,¥) = i] do (9*(0,00 —> (0,00 - —-(0,0) ¥ (0,0)] (4.1)
1 2 -n 1 ot DT 2

defines an indefinite Hernmitian form on solutions whose initial
values are sufficiently integrable, This form is invariant under

the action of the group:

U@y, 0¥ ) = W(F LY ). (4.2)
1 2 1 2

Proof: This will follow from the general theory of

[3] The normalization factor in EBq. (3.7) 1is determined by the
condition that the a and a' satisfy the correct commutation
relations for annihilation and creation operators -~ see Sec,
X. 1.
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Secs. VI1.3,5. ¥ is the current fornm,

Vi )
WY ) = i[ a0 Viglg  [¥X(x) d ¥ (x) = & P*(x) ¥ (x)]
1 2 S v 1 2

! 2 pi 1
oy dpx
- ij do  cosh T [V*(T,0)— (T,0) - —-(T,0)¥ (1,001, (4.3
T=const. 1 T dT 2

evaluated on the hypersurface T = 0. Since the current fornm is
covariant, the integral has the same value in every Gaussian
frame; this is the "passive" interpretation of Eq. (4.2)..

Alternate proof: Invariance under o-translations is

obvious. If the functions considered are differentiable, it
suffices to consider infinitesimal transformations generated by H
and K, One mnust verify that H apnd K (the operators of Egs.

(1.1b,¢)) are Hermitian with Trespect to W, or that the ladder

i

operators . H + iK are Hermitian conjugates of each other
(RA"9, ,0) = W@ A 1)), This is a  straightforward
calculation, which we omit.

We shall use the form W to decompose the representation
of 500(1,2) in the space of solutions of EBg., {2.1) into two
irreducible unitary representations, A different  approach
(lecomposition of the guasiregular representation) will be
considered in Sec, VI.1 and related to this ome in Sec., X.4,

Ve begin by noting that for solutions of the elementary

fornm
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ipo -
V (T,0) =9 [A(P)E (z) - B(P)D (2)] (¢ = e/A2M)  (u.4)
p P p

we have (from Eqs. (3.2))

W(F L9 ) =08 [A¥(p )B (p) +BX(p)A (p)], (4.5a)
P p PP 11 2 1 11 2 1

} 3 [

W{¥y ,9) =2 Re{A*(p)B(p)). (4.5b)

P P
Let us choose a particular solution uo of the form (4.4) with
p = 0 such that ﬂ(vo,uo) = 1. Then by operating repeatedly with

At according to Eg. (B.3.2h),

-1/2 +

L} =[q+ p(px1) ] Ly, (4.6)
p+? P

+ 1, + 2, «os), of the

-— -

we obtain a set of vectors {UP} {p = 0,

form (4.4), such that
Ny L¥ ) =58 .
p p' pp’
Thus these vectors form an orthonormal basis for a Hilbert space
44+ with scalar product W(u|,!l), and the representation of the
de Sitter group in this space is the irreducible unitary

representation with 0 = q (Eq. {(B.3.5a)).

Proof: 1In terms of z the ladder operators are
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+ tio 21729 _ 2 =172 9

A =H+ikK=-¢ [(1-2) =— +iz{(1-2) —}.  (#.T7)
2 do

The derivatives of the hypergeometric functions may be calculated

from formulas (15.2.1,4,6,9 in [¥.B.S.], p. 557:

2 1/2 4§, 2 -1/2
(1 - z) -——=(z) =[q +p(p+N ] 0 (z) - pz(1 ~2) E (2)
dz p+1 P
2 =1/2
=[{q + p(p-1)]10 (z) +pz(1 - 2) E (z), (4.8a)
p-1 P
2 1/2 do; 2 -1/2
(1-2z) —=(2) = E (z) - pz(! - 2) 0 (2)
dz p+1 p
2 =172
= B (z}) + pz(t - z) 0 (2}, (4.8h)
p-1 p

Hence one obtains

+ ipo i(ptNo

Afe E (z2))]=-1Iq + p(ptD) ] e 0 {(z), (U.9%)
P pi1

: ipo i(paY)o
ATe 0 (z2)]=-~-e E {(z). {4.9b)
p p#1

It follows that

+ 4
WAB LAY ) =08  [q+piptN)] W(F V),
p p' pp* P P

which demonstrates the orthonormality of the vectors (U.6). The
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representation of the Lie algebra in this space is obviously that
given by Egs. (B¢3.2).

It can easily be seen{4] from Egs. (U4.5) that the
complex conjugates of the functions 'f span a Hilbert space .

with scalar product - V(W',wl), and that

e ,¥v) >0, W ,v) <90,
11 2 2

(4.10)

[}

Wy ,¥) =0 if ¥ € 4/, ¥ € .
1 2 1 + 2 -
Finally, 4¥+ and i exhaust the solutions of the wave equation,
in the sense that
V(C,0 =2 sV (1,00 + 3 t(p)¥*(T,0)
p p |2 p
can be solved (by Fourier transformation) for s(p) and t(p) in
terms of the Cauchy data §(0,0) and o9/dr(0,0), if the latter are
"sufficiently integrable™ but otherwise arbitrary. (The
vagueness in the integrability condition is discussed in Sec.
VII.5.)
The group representations in ’7J+ and ¥- are
equivalent, since we know from Sec. B.,3 that there is only one
irreducible unitary representation for each wvalue of g > 1/4,

This is what allowed the initial choice of l° to be guite

arbitrary. This situation is quite different from the case of

(4] Note that n Ef(z) is real, OF(Z) is imaginary;
(2) A(-p) = A(p), B(-p) = B{(p).

_—
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the Poincare group., The solutions of the Klein-Gordon equation
in Minkowski space can be separated uniquely into positive-energy

and negative-energy functions, which support ipequivalent

representations of 1500(1,1) (cf. Sec. B.2). It follows that
from any function which does not lie wholly in one of these
subspaces (but is a linear combination) the operators of the
Poincaré group generate the entire space of solutions =-- the

representation space of a reducible representation.

5. The Incompatibility of Positive Pregquency and Group

In accordance with the remarks at the beginning of
Sec. V.2, we vwould expect, if the notion of a stable spinless
gquantum~-mechanical particle in de Sitter space makes sense at
all, that the Hilbert space of states of such a particle would
support an irreducible unitary representation of the de Sitter
group. This is not the case for the space of positive-frequency
solutions defined in Sec. V.3. The positive-frequency solutions
of lowest momentum, normalized in the sense of Eq. (#.5b), are

-1/2 1 =174 +1/4
(2¥qg) P () = —[qg E (z) - g 0 (z)] (5. 1)
0 V2 0 0

=4

and



Sec. V.5 159

io -1/2
e (2Vg + 1) P (T)
1

i 1 -1/4 +1/4
=e —{(g+ 1) E(z) - (g +1) 0 {z)]. (5.2) —
£ 1 1

But the basis vector with p = 1 in the irreducible representation
generated by the vector (5.1) is, by EBgs. (4.6,9),

jo 1 =172 +1/4 +1/2 ~1/4

e -——[ (g +2) q B (z) - {(q + 2) q 0 (z)1, (5.3) —
V2 1 1

[ ]

vhich is not the same as the function (5.2). The space of

2

positive-frequency solutions is not invariant under the action o

3

the group.

One possible response to this realization is that our
identification of the positive-fregquency solutions is wrong: one
ought to choose a space of single-~particle wave functions which
is invariant under the group. This is the approach which has
been followed in most previous work on quantum field theory in de
Sitter space; it will be reviewed in Sec, V.6,

Another possibility, however, is that the assumption of
stable particles is wrong. The curvature of space is eguivalent
to a time-dependent gravitational field. WNow it is well known in
the context of external electromagnetic fields  that the
interaction of a quantized field with a time-dependent external
field can produce pairs of particles., (For examples of several

different approaches to this prohlem see Capri (1969), Brezin and
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Itzykson {1970), and Narozhny and Nikishov (1970). Moore (1970)
studies photon creation due to interaction with a moving
reflecting wall.) It is quite reasonable that the same effect
should occur in the gravitational case, If so, then a state
which describes a universe which contains exactly one particle at
time T = 0 will not necessarily have such a characterization at
sone other time {more generally, on a different spacelike
hypersurface). The same is true for the state in which no
particles are present in space at a given time, In particular,
if we consider the spaces of constant time in the PFermi picture
{see Secs. III.2-3), it follows that the space of one-particle
states (and the no-particle state) at U = X = § should not be
expected to be invariant under the de Sitter group.

However, once we abandon group theory as our guide in
the construction of a field theory, the de Sitter universe loses
nuch of its privileged position. We might as well consider any
Riemrannian space-time, or at least any for vwhich the wave
equation can he solved, as in Sec. V.2, by separation of
variables. This is what we shall do in Chapter X.

In such a theory the expansion (3.7) of the field will

. . . + .
still make sense, but the coefficients a() will not Dbe

F
interpreted in terms of stable particles. It is conceivable that
the field theory as a whole will be invariant under the de Sitter

group in the sense of Sec. IV,1; but the no-particle state at any

particular time X will not be an invariant vacuum satisfying —

Axiom 6. This conjecture will be verified in Sec. X.9.
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Finally, ohserve  that, although the space of
positive-frequency solutions {3.5a) does not support a
representation of the group, it is a Hilbert space with respect
to the form W {whose existence is independent of the symmetry
group). If we write an arhitrary (sufficiently integrable -- see

Sec. VIT.5) sclution as

o ipo -1/2
T BT S (2Yg + p?) (¥ (p)P (7)
p=-co + p
+ 4 (PN (D)}, (5.8)
- P
we have
x 2 o 2
WE,0 = S el o- 2 1% Pl .. {5.5)
p=-co  + p=-c0 -

Thus the solution space is the ¥W-orthogonal direct sum of a
positive-frequency and a negative-frequency Hilbert space with
oppositely-signed scalar products (cf. Egs. (4.10)) ; the
negative-frequency functions are the complex conjugates of the
positive~frequency ones. Such a decomposition gives rise to a
formally consistent canonical field quantization when the ¥ (p)
are replaced by annihilation and creation operators (see Secs.
X.1 and X.5).

It may appear that the inference fromn 1loss of
invariance under the geometrical symmetry group to particle

creation has been drawn rather guickly. Might it not still be

—
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possible to interpret the normalizable ©positive-frequency
solutions as the Hilbert space of states of a single particle?
If we are willing to contemplate a field theory which pay turn
out not to be invariant (see above), why not a particle theory
which is not 1invariant? The argument in favor of the
interpretation offered here can best be presented in terms of an
analogy. Consider the Klein-Gordon equation with an external
scalar potential (which depends only on time, for simplicity):

2
[Ju(t,x) + V{(BOH¥(t,x) + » T(t,x) = 0, (5.6) -

It has solutions analogous to the functions (3.5a):

ikx
¥{t,x) = ¢ P (t), (5.7
k
where
-iwkt .
e as t =—> - oo (wk=v’i"+m*), -
P o(t) ~ (5.8)
k “iwt +iw t
a* (k) e + Bx(k)e as t -——> + o,

and fok)1* - 1B(X)[* = 1. It would be folly to insist that Eq. —
(5.7} gives the vave function of a stable particle, because of
its positive-frequency behavior 1in the past, ignoring its mixed
behavior in the future. The physically sensible interpretation
of Eq. (5.6) is as the equation of a quantom field, Then the

behavior (5.8) indicates that particles are created by the action
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of the external potential., (This will be explained in detail in
a gravitational context in Sec. X.3.,) ¥Now it seems most probable
that the phenomenon demonstrated in Egs. (5.1-3) should be
interpreted in the same vay. The role of a large negative and a
large positive time in the example will be taken in de Sitter
space by tvo geodesic hypersurfaces (related by an isometry in
the group). 0f course, our criterion of positive frequency
remains to be justified; all these remarks are relative to that

assumption.

6. Quantization Leading to ar Invariant One-Particle Space.

Taqirov, Fedyun'kin, and Chernikov (1967) have proposed
a quantum theory of a scalar field in two-dimensional de Sitter
space 1in which there are a vacuum state and a space of
one-particle states which are both invariant under the de Sitter
group,[ 5] WNachtmann (1968b) independently arrived at the sanme
theory by a different route, enmphasizing the representation
theory of 500(1,2) {(see Sec. X.4), Here we shall follow the
Dubna qroup, since their approach 1is more physical and more
easily related to that of Secs, V.3-% and Chapters VII and X of
this dissertation. It is necessary for the calculations in Secs.
X.9-10 to express their solutions in terms of our basis solutioﬁs
(3.1); this requires several special-function identities, {The

result is Eq. (6.6} below.)

[5] The four-dimensional case was treated by Chernikov and
Tagirov (1968). Bronnikov and Tagirov (1968) +treated nmore
general spaces hy similar methods.
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It will then be verified that this theory fulfills the
axioms proposed 1in Sec, 1IV.1. To establish uniqueness of the
vacuum Tequires proving a simple but not trivial theorem about
the structure of tensor products of representations of 500(1,2),
vhich may be of interest in itself,

Tagirov et al. expand the scalar field obeying Eq.
(2.7) as follows:{6]

oa ipo -ipo +

gla,0) = 2 [¢ T () b +3¢ T* () b ], (6.1
pF- P p p P

VI(v41+4pl) M=/+ipl) -ilpla
T {0 = e
p V2 1pi!

1 - i tan o
X Flp+1, -v, tpl+l, ————————]

2

1 -1pl
= —=V((v#1+{pl) [ {-v+ip]|) P (z). (6. 2)
V2

14

{The last equality follows from Egs. (2.5,11) and formula (8.1.2)

of [N.B.S5.] (p. 332) -- P 1is a Legendre function.) They

interpret the time-independent operators br and b; as

annihilation and creation operators for particles; thus their

particles are stable, with respect both to a description in terms

of the time coordinate o (or 7) and to a description in terms of

[€] The notation has been wmodified to conform to ours, and a
factor of 1/V2 has been inserted in Eg. (f.2) to correct the
norralization (cf. Machtmann (1968b), Eg. {2.21)).
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a time variable defined by de Sitter isometries (such as X). —
Using Rgs. (3.1) and formula {(8.1.4) of {N.B.S.] (ps. 332), we can

write Eq. (6.2) as

=lpl-1/2 12

T (o) =2 n VIw+t+ip)) T(=v+ipl) X -
p
1 1 -1
== +ipN) TO+=@E+ipD) 1 E (2) B
2 2 p
1 1 -1
= 2{M-(1w+1p))T(=(-»+ip1))] O (z)}. (6.3} —
2 2 P
Since
v+ 1 = - p¥, (6. 4) —
1 2z-1/2 1
M2z) = — 2 Mz) Mz + -) (6.5) —
v2n 2

{{ N.B.S.], Bq, (6.1.18) {p. 256)), and [(z*) = [(2)*, this can bhe —

simplified to

1 [z (=v+1pD) (141 (+1p1))
T (@) = ~{ . ’w (z) - 2’ ' 0 (2)}. (6.6) —
p 2 IT(1+zv+tpIN)' p M =v+ipiNt p
Then the solutions
ipo
7 (x,0) = ¢ T (a) (6.7 —
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satisfy Bq. (4.6) and the normalization condition H(Ur,qr) =1
(see Eqs. (4.4-5)). (To verify Eq. (4.6) use Egqs, (4.9) and
2 2
g + p(p+1) = +isp] , g+ pp-1) = Wpl , {6.8)

along with Fq, (6.4) and the well-known relation z[(2) = [(z+1).)

We saw in Sec. V.4 that there are many such invariant
spaces of solutions on which W defines a positive definite scalar
product; they correspond to different choices of A(0) and B(0) in
Fq. (4.%), Since the basis vectors can be normalized and their
overall phase is arbhitrary, the different possibilities can be
labeled by two real parameters; Tagirov et al. determine the
basis functions irn the general case to be

ipo 1 p £*

Vo= ¢ freome——— T (0} + (= 1) ———— ™)}, (6.9)
p Vi - 1W* p 1- 1N

where ) is complex and (%] < 1. To establish that \ = 0 is the
physically relevant choice, they show that only in this case does
8, the phase of vr, obey in the limit of large |p| the classical

Hamilton-Jacobi equation
il
m =g 08608, {6.10)

A more elementary statement of what distinguishes the solutions
(6.7) from the other possibilities is that for 1large |[p] they

asymptotically approach positive-frequency solutions in the sense
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of Sec. V.3:

__ =172 =1
T (@) T [2fg +pF] P (gd o (Ipl > ®). (611 —
P |4

This can be verified by using

[z + a) a
—_— Tz as {z| —>» oo {6.12) —
(z)

(from [Gradshteyn-Ryzhik], ¥q. (8.328.2) (p. 937)). This is
rather reasonable physically; it says that the solotions behave
like positive-enerqgy plane waves in flat space provided that the
vave length is small compared to a length characteristic of the
curvature of space-tine,

In accordance with the particle interpretation, the
algebra of the creation and annihilation operators is realized in
the Fock representation, That is, a vacuum vector (0> is
postulated such that

b {6> =0 for all p. (6.13)

p
Then b?lﬂ) is interpreted as the vector of the state of the field -
in which one particle is present, in the =single-particle state

with wave function[7]}

[7] Tagirov et al. call the complex conjugate of Eq. (6.18) the
vave function, but this conflicts with the usual terminology for
the Klein-Gordon theory in flat space.
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+ ipo
<01g(o,0)b 10> = ¢ T (o). . (6. 14)
p P

Similarly, there are two-particle basis states of the form

t
b bT 10>, and so on., The Hilbert space of the theory (Fock

P,

P S
space) is the closure of the span of all the n-particle states,

0 <n<ow.

Let us verify that this theory fulfills the axioms
proposed in Sec, IV.,1, just as the ordinary free Klein-Gordon
field obeys the usual Wightman axioms. We have just constructed
the Hilbert space (Axiom 1) with cyclic vector 0> (2xiom 7).
The representation of the group im the space of one-particle wave
functions determines in an obvious way a unitary representation
in the whole Pock space (Axiom 2): the representation in the
n-particle subspace is the symmetrized n-fold tensor product of
the irreducible one-particle representation, and the vacuum 1is
invariant (Axiom 8). The generators of the total representation

are clearly

® +
= 3> pb b, (6. 152)
p=-00 p P
+ —— 1
A =5 Vg + p(pt!) b b . {6+ 15b)
P Pl p

(The Dubna authors obtain these expressions (modulo sign
conventions) by inteqrating the energy-momentum tensor of the

field, contracted with the Killing vectors of the isometries,
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over a spacelike hypersurface.)

We shall not dwell on the technicalities of Axioms 3
and 4, The field (6.1) makes sense as a distribution on suitably
smooth test functions. The finite sums of n-particle states with
smooth wave functions form an invariant domain. It is easy to
see from the definitions that the group operators transform the
field operators in the expected way,

The local commutativity (Bxiom 5) of any canonically
quantized scalar field will be shown in Sec, VII.4., 1In the
present case Tagirov et al. have given the commutator in closed
form:

i

[g(a o), gl ,0) ] = - E(x -, O=0) P (¥), (6.16)
2 2 1 01 2 1 2 1 2 v

where P is a legendre function,
v

sgn o« if jof > joi,

€{o,0) = { {6.17)
0 if Jaod < tof,

and

cos (0,-0;) - sin «a, sin o,
Yy = (6.18)
€os a, cos «,

{(vhich is the hyperbolic cosine of the geodesic distance between
the two points),
A1l that remains to be checked is the uniqueness part

of Axiom 6. That is, does the representation of 500(1,2) in the
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orthogonal complement of (0>, when decomposed into irreducibles,
contain the trivial representation as a discrete direct summand?
It suffices to ask this question of each of the n-particle
representations separately, or, in fact, to answer it negatively

for the tensor product

D &p ®, . . %D {(n factors) ({6.19)

(of which the n-particle space is an invariant subspace). Here
Dq denotes the irreducible unitary representation of the
principal series with 0 = q.

We start by proving the following theorenm:

Let D and D, be any two irreducible unitary representations
of 500(1,2), not both trivial., Then D' R Dx does not contain

the trivial representation as a discrete direct summand,

Proof (method suggested by Pukanszky  (1961), pp.
132-134): let the Casimir invariants of DI and D, be q and 9,
i
respectively. We nust show that no vector
y = E a I1q 5p > @ (g 3p > (infinite sum)
PP PP, 101 2 2
in the tensor product space is invariant under the entire group

-- equivalently, annihilated by all the basis elements of the Lie

algebra. The condition Py = 0 implies that § can bhe written



Sec. Vl6 ! 171

V=2aiq;p> 8 |q ;-p>
p p 1 2

Requiring that Ktv = 0 leads to the equations

——— et e s o s

a Vg +p(pt1) +a  ¥g + p(pt1)
p 1 p+1 2

(]

0,

]

a Vg +p(pth) +a Vg +p(pri) =0
2 1

p p+1
for all p. These are consistent only if q, =9, Then
a = = 3 ¥ (6.20)
p+1 p

except possibly at points where the coefficient VET—I_ETETTT
vanishes, However, the range of p where ap is nonzero must (by
definition of the tensor product) bte a suhset of the range of p
in some nontrivial irreducible representation (Egs. {(B.3.5)). It
follows that nonvarishing a's satisfying Bq. {(6.20) must extend
to infipity in at least one direction {the interval bhetween two
vanishing coefficients being forbidden). Consequently, the
sequence {ap} is not square-summable; no normalizable invariant
vector can exist,

We can now prove by induction that the representation
(6.19) does not contain the trivial representation discretely.

Por assume that this is true of the direct integral

deconposition[8] of the (n-1)-fold tensor product,

{8] See, e.g., [Maurin], Chap. V, or Coleman (1968), Sec. IV,
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® 3
5f an (@ 0,
J ] r
where Di stands for j copies (in direct sum) of the irreducible
representation D,. Then the product (6.19) has the form

] j 8 3
(5( ap m c 1@ =3 dp (@[> @D )
j r ]

] q B r q
® _ B (r) kj _ . ® 1
=S 3 ap 0T =3 ap(s) 0,
3 j k k s 1 1 s
where the trivial representation never occurs discretely. (He

have applied the asscciative 1law to the tensor product of a
direct sum and integral with another representation and then
applied the theorem to each term of the result.,) This completes
the procf cf the unigqueness of the vacuun.

In summary, the second-quantized theory proposed by the
Dubna group satisfies the axioms for quantum field theory in de
Sitter space proposed in Sec. 1IV,1., In this respect it is
attractive.

From a physical point of view, however, this theory is
vulnerable +to criticism along the lines of the argument at the
end of Sec. V.5, For small p the choice of TP as the
"pnositive-frequency" solution has not been physically motivated,

The argument that it fits into an irreducible representation with

functions which have the correct behavior at large p is

-
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conclusive only if the existence of an invariant space of
particle wave functions is assumed beforehand. For this reason
the conclusion of Tagirov et al. that particles are not created
or destroyed in de Sitter space seems to the present author to be
circular. Oon its face, at least, their definition of
annihilation and creation operators does not appear to have much
more justification than to ‘define such operators for the field
obeying Fq. {5.6) to be the annihilation and creation operators
for incoming particles (coefficients of the expansion for the
field in terms of the functions (5.7-8)), and to conclude
therefrom that particles are not created by the potential V{(t).
A deeper analysis of the notion of particle seems to be necessary
to settle this question. We shall return to the subject in

Chapter X, but no conclusive resolution will be clainmed.

7. The Solutions in the Static Picture.

We have seen that the wave equation in TFerni
coordinates has solutions of the form (2.16), where
u = sin P = tanh B and fx(u) is an associated Legendre function,
To study the completeness and normalization of these
eigenfunctions it is convenient to use the form (2.10) of the
wave equation.’ Substituting EBgqg. (2.16) into Egq. (2.0}, we

obtain

+ gsech Bf =3y f (7. 1)
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(vhich is equivalent, of course, to Eg. {(2.17)). Eq. (7.1) is
identical in form to a nonrelativistic one-dimensional
Schr8dinger equation with a smooth, everywhere positive poteantial
which falls off rapidly to zero at infinity. (Here }1 takes the
role of the enerqgy eigenvalue,) Consequently, most of the things
we need to know about the solutions are well-known results fronm
the one-dimensional barrier penetration problem ([Messiah], Chap.
I1I):

The spectrum of \a is continuous and extends from 0 to
+ . For each value of k = + V;f there are two linearly
independent eigenfunctions, f> = vk(B) and fx = m_k(B), which
respectively correspond in the nonrelativistic scattering problen
to beams of particles with energy k* incihent from the left
(momentum k) and from the right (momentum - k). There are no
"hound states™, The eigenfunctions form a complete set (that is,
the differential operator in Eq. (7.1 is essentially
self-adjoint), When \1 2 q the solutions are oscillatory over
the whole range of fB; when \2 < q there is a "classically
forbidden" region near B = 0 where the solutions have an
approximately exponential behavior. Implications of this
observation will be discussed in Secs. VI.1 and VIIZI,6.

One can check by counting that this spectrum coincides
with what one would expect on group-thzoretical grounds., On the
one hand, we know from the results of Sec. V.84 that the solutions
of the wave equation constitute two irreducible representations

of the principal series., The spectrum of ), therefore, should
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consist of all the real numbers with multiplicity 4 (see Sec,
IT.3). Cn the other hand, we know from Sec. III.5 that the
solutions are in one-one correspondence with the Cauchy data on
an initial geodesic hypersurface, R complete orthonormal set of
(generalized) functions on the initial surface wmust be used
twice, to expand the initial value of the function itself and of
its time derivative, However, this doubling corresponds
precisely to the freedom in the <choice of the sign of ) (cf.
Secs., VIII.1-2); for a given sign there 1is a one-one
correspondence between solutions and initial wvalues of the

functicn,. Now the mk and ¥ cover only the region of the

-k
hypersurface where Ipl < M/2;5 another similar set of
eigenfunctions is needed to expand functions on the "back side”
{(h/2 < ipl <M. Thus for each ) there are four 1independent
eigenfuncticns, as expected.

Conpleteness and orthogonality mean that every function

on the interval - < B < o can be expanded as

Q@

£(p) = f aptk) ¥ (B) k), (7.2)
-0 k
where
. 00
£(x) =f aB ¥*(B) £(B). (7.3)
-0 K

The measure p (k) remains to be determined; or, equivalently, the

J's must be normalized so that
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dp(k) = dk. (7.4)

This can be done easily by referring to the scattering-theory

interpretation of the wave functions. The result is[9]

ﬁ exp (-Mk/2) r(1#v-ik) ik
- Y- P (tanh B), {7.5a)

¥ B) =
k 2 sin M{p+ik) [(=ik) [(1+v+ik) v

¥ (B =9 (-B {(k 20y, (7.5b)
k k

where VY 1is given in Eq., (2.18). The rest of this section is
devoted to the derivation of Egs. (7.5).

As the basis {vk;v_k} we have chosen the in-states,
each of which is the sum of an "incoming" plane wave and a
scattered wave which asymptotically on each side of the barrier
shows "outgoing” behavior.[10] The asymptotic form of the sunm is
then (see [Messiah], Sec., ITI.11)

ikB -ikB

-] +R ¢ as B —» -,
k

v@® - ikB {7, 6a)
k 5 ¢ as B —> + ooy

[9] The branch of P}(u) understood here is described in the
course of the proof below,

{10] This is an arbitrary choice. One could equally well uyse
wave functions with outgoing plane vaves, or some linear
combination (cf. Sec. X.%4). However, once §, 1is chosen, '-k is
determined up to phase by the condition of orthogonality.
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S ) as B — ~ o,

vy B - -ikB ikB {(7.6h)
-k 9 + R @ as B —> +o0.

(see Fig., 11). The cedilla (¢ = e/V27) indicates that the
incoming part has the usval delta-function normalization of a
plane wave., It follows by a wave-packet arqument that these
functions are properly normalized, in the sense of Egs. (7.2-4).
Fq. (7.5b) now follows from the reflection symmetry of the

potential, q sech* B.
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In-states for the one-dimensional scattering problen.
Fach directed line stands for one of the terms im Fgs..

{7.6). The numeral 1 indicates the normalized
comrponent,

To find vk(B) in terms of legendre functions, we use

the relations ([N,B.S.], Egs. (8.1.2,6) (p. 332))

J
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ik 1 k
P (u) = F (u), {7.7a)
Y r(1=-iky 1
Rk ik 1 4 f(1+v+ik) [ (-ik) k
e Q (u) =-[(ik) ¥ (u) + F (u), (7.7b)
v 2 1 21 (1+2-1k) 2
k a ¢+ 1 ik/2 1 -1
P (u) =11 ] Pl-v, V+1, 1-ik, 1, {7.8a)
1 a - 1
k u -~ 11ik/2 1 -1
P (u) =T ] F[-», V41, 1+ik, i {7.8Db)
2 u + 1 2
The hypergeonetric series converge for {1 - u| < 2, The

ambiguity in the branch of the other factor (which 1is not just a
phase, since ik is imaginary!) is settled by putting a cut from
+ 1 to - o and stipulating that farqg (u *+ 1) | < N elsewhere in
the plane, Finally, let us define the functions on the interval

- 1< u<1as the linit from above the cut; thus
arg {0 + 1) =0, arg {(u - 1) = + N, {(7.9)

{(Another common definition of g?(u) differs by a factor of
exp(Nk/2) -- see [N.B.5.], Bgs. (8.3.1-2) (p. 33 .)

Next we investigate the asymptotic behavior as
B— +00, or u—> 1, Since F(a,b,c,y} —> t as y —» 0, we

need only study

u o+ 1 tanh B + 1 2B

-1 tanh B - 1
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vhere the minus sign must be written as exp(-il) in accordance
with Egs. {7.9). 5o we have
k -im 2B ix/2 +Mk/2  ikB
F (uy ~ (e e ) = e e . (7.10)
1
a pure transmitted wave. Thus Wk is proportional to FT (c€.. Eq.
(7.6a)) .
To find the normalization constant we must isolate the

coefficient of exp (ikB) in F? at B = -. The formula

ik +iMy ik 2 +Mk ik
P (-utic) = e P {u-ig) - -e sin M(v+ik)Q (u~-ig) (7.11)
v v n 3

((N.B.S.], Eq. (8.2.3) (p. 333)) yields

k imy 1 k
F (=luy+ie) = [e = =[(1-1ik) f{ik) sin N{v+ik) J F (Jui-ie)
1 n 1
1 (1-ik) [(=-ik) [(1+r +ik) k
- - sin M(r+iky P (ful-ie). (7.12)
" (14 -ik) 2

Now because of our branch convention,

k -NMk k
T (u-i¢) = e F (u+ie),

1 1

X sMX Kk (7.13)
F (u-ig) = e F {u+ig).

2 2

Therefore, as |ul — 1, B —> -0, ve have (using Eq. (7.10) and

—
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the analogue for F:)

k imy 1 -Nx/2 ik{Bl
F {-1u}) “[e - = (1-ik) [ (ik) sin Mv+ik) ] e e
1 n
1 -1 +Mk/2 -ikiB)
- - sin W{u+ik) A{p,X) e e e (718
n

where A(V,kfd is the quotient of gamma functions in Bq. (7.12).
The second term 1is the one which is to be normalized,
Consequently,
Jﬁ exp (=Mk/2) k
¥y® =-y- ———— A(v,k) F (u), (7.15)
k 2 sin M{y+ik) 1
which is the assertion {(7.%5a).

With each ‘k there are unambiquously associated a
positive-frequency and a negative-frequency solution, given by
Eq. (2.16) with positive and negative Y (fx(u) = 'k(B))" Hence
it seems obvious how to construct a field theory in analogy to
the quantization of the free lxlein-Gordon field, This can be
done equally well for any static space-time; it will be carried
out in Chapter VIIZ, The nonuniqueness of the quantization thus
obtained and the associated particle interpretation will be

discussed in Chapter IX.

eiﬂv



Sec, V.8 181

8., Solutions of the Wave Equation in the Open De Sitter Space.

Por the two-dimensional open de Sitter space (see Sec,
I11.6) the wave equation (2.1) again takes the forms (2.3,7) and
(2.8,10), except that, because of the interchange of space and
time, the physically relevant values of g are negative. {That
is, - q plays the role of the square of the mass.) We expect,
therefore, to encounter the discrete series of representations of
500(1,2).

The functions (2.16) are solutions in the geodesic
Gaussian coordinate systenm go,X). The exp(~-i)\X) are a complete —
set of functions on a spacelike  hypersurface. The time
dependence 1is given for each % by two 1linearly independent
functions obeying ¥Eq. (2.17). Certain linear combinations of
these have the correct properties to be interpreted as positive-
and negative-frequency functions in analogy to Sec. V.3. The
connection with the irreducible representations of 500(1,2) or —
its covering group is not at all clear in this picture,

Now 1let us turn to the static Fermi coordinate systen
{(0,7), and let us, to begin with, consider the wave equation on —
the covering space (Fig. 8). There are solutions of the forn

-ipo

f e v 8,1y —
p

vhere ff is a function of the space variable which satisfies a

differential equation which can be written in the various forms
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a’t 2 2
- ;-; -~-qgqsec ocof=p f¢£, (8. 2a)
&
d 2 2 2
- (cosh T ;—) f-qcosh TE=p £, {8.2b)
[

or Bq. (2.13). The last of these shows that €£(z) is an
associated Legendre function of order p = p (not necessarily an

integer) and degree
+ - - qv (8‘ 3)

(We take the positive square root for definiteness. The negative
root gives - v - 1,) FEq. (8.2a) is the easiest to discuss, since
it has the familiar form of a Schr¥dinger equation.

Since the Cauchy problem 1is not in general well-posed
in this space, as explained in Sec. III.6, one might expect that
the differential operator in Fq. (8.2a) would not be
self-adjoint, That 1is, in order to distinguish uniquely a
complete set of eigenfunctions {fr}, it should be necessary to
impose boundary conditions controlling the disposition of
"probability which reaches infinity within a finite time". {See
Wightman (1964), Sec. 8.) Different boundary conditions would
lead to a different spectrum of p1 and to different behavior at
other times of the solution with given initial data.

However, we shall see that this conjecture is pot true

.

except for very small mass (g > - 3/8). Thus the Canchy problen
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for the generalized Klein-Gordon equation with sufficiently large
mass is well-posed, at least if one demands that the data on each
hypersurface of constant time lie in a certain Hilbert space of
pairs of sufficiently integrable functions, A rule of thumdb is
that the Hamiltonian operator of a quantum-mechanical system is
self-adjoint if the corresponding classical particles cannot
reach spatial infinity within a finite time.[11] Thus a very
crude physical "explanation™ of this result is that, although
photons, following the light cones, can reach infinity within a
finite time (in marked distinction to the case of flat space),
the classical trajectories of massive particles (the geodesics)
never reach infinity at all (see Secs. III,4-6).

¥e now turn to the proof of the assertion. First the
general theory of self-adjoint extensions of differential
operators[ 12] will be briefly reviewed, since the problem at hand
is a special case of one which will arise in the general theory
of field quantization in static metrics {see Sec., VIII.?1). .

A real second-order differential operator of the form

dl

- g—; + V{x) {(8.4)
X

acting on functions defined on the interval a < x < b may have

[11] wightman (1968), pp. 266-268, Two gqualifications: (1)
There are counterexamples to the rule (E. ©Nelson, unpublished
lectures)., (2) The rule has always been applied to
nonrelativistic mechanics, 1not, as here, to a relativistic
problem (with a different relation between momentum and energy).
[12) See, e.g., [Akhiezer-Glazman], Appendix IT,
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0, 1, or 2 square-integrable eigenfunctions for a given
eigenvalue ) in the complex plane. This number is the same for
all nonreal ); we shall call it the deficiency of the operator.
It is the number of boundary conditions which must be added to
define the expression (B.4) as a self-adjoint operator in the
Hilbert space of 1* functions on the interval {a,b).

The deficiency 1is determined by the ©behavior of V at
the endpoints. If an endpoint (a or b) is finite and JV(x)1 |is
integrable in its neighborhood, the endpoint is reqular;
otherwise, singular. 2 regular endpoint contributes one unit to
the deficiency; however, this carn be immediately remedied by

imposing a boundary condition at that point on the "acceptable

eigenfunctions, (Examples: (1 £(a) 0 (reflecting wall

H

boundary condition); (2) f{a) + Yf?! (a) 0: (3) fay = £(,
f'{a) = £*(b) (periodic boundary conditions -- applicable if bhoth

endpoints are regular),) A singular endpoint may or may sot

i s e,

and limit point cases, respectively.

If the potential is syametric (V(-x) = V{x)), the
classification of the two endpoints must be the same, so the
deficiency can only be 0 (limit point) or 2 (regular or linmit
circle). 1In the first case the spectrum is uniquely determined;
the only square-integrable eigenfuctions of the operator (8.4)
are those belonging to the point spectrum. In the second case
all the eigenfuctions (two of them for each complex number as

eigenvalue) are square-integrable, and they will not all be
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rutually orthogonal, Then the boundary conditions pick out a
discrete set of real eigenvalues corresponding to a conplete
orthogonal system of eigenfunctions.

Let us see how the operator (8.2a) fits into this
framework. (Recall that the range of o is - W/2 < o < W/2.)

If g = 0 the endpoints are regular. The solutions are

too well known to require comment. The boundary conditions

corresponding to reflection at the boundaries with reversal of

phase, yield the spectrum
Ipt = 1, 2, <o

appropriate to a representation of the de Sitter group with q = 0
{Eqs. (B.3.5b)). Other boundary conditions give rise to Hilbert
spaces of solutions of the wave equation which are not invariant
under 800(1,2)*.

If q #0, the endpoints are singular. A series
solution ([Carrier-Krook-Pearson], pp. 198-202) of Egq. (8.2a)
about the point o = M/2 shows that for any p there are two
independent solutions which behave near that point as

- v+
X and X (8. 6)
(x = o« - N/2, v given by Eq. {8.3)). This asymptotic behavior

can also be observed from explicit expressions for the TLegendre
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functions at infinity, [N.B.S.], Fgs. (8.1.3,5), p. 332. If

vy > 1/2 (9 £ - 3/4), only the second of the solutions (B8.,6) is —

square-integrable in the neighborhood of N/2, This 1is clearly a
limit point case., A normalizable eigenfunction exists only for
those discrete values of p such that a solution can be
square~-integrable at both ends of the interval simultaneously.
The spectrum of |p| must be that corresponding to the unitary
representations of the covering group 300(1,2)* with
g = -V ¢+ 1. In particular, if ¥ is an integer, the solutions
{8.1) are periodic in o and ve have the representations {B.3.,5b)
of s50,(1,2).

If0>qg >~ 3/8 (v < 1/2), both solutions {8.6) are
square-integrable for all p, and we have the limit circle case,
No single-valued representations of 500(1,2) {(integral p) fall in
this range.

The eigenvalue equation in +the form (8.2b} can be
transformed by the substitution

1/2
f = cosh T #

to the fornm

d 2 dg 1 3 2 2
= —~{cosh T —) + -g - (@ +-) cosh Tg=p ¢,
at at 4 ¢

vhere the operator is Hermitian with respect to the 1* scalar

product, Here the qualitative change at q = - 3/4# 1is clearly

—
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shown in the behavior of the zeroth-order term.

In the solution spaces which support group
representations each admissible value of p appears once, and so
does - p. Hence ve have a direct sum of the tvo inequivalent
irreducible representations with the given value of g, This
count is consistent with the results on the decomposition of the
quasireqular representation cited in Sec., VI.1, and with the fact
that in the space of solutions in the Gaussian system described
at the beginning of this section the spectrun of ) has

pultiplicity 2 {(cf. Sec. 11.3).
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Chapter VI

CONTRACTION OF THE REPRESFNTATIONS OF THE DE SITTER GROUOP
TO REPRESENTATIONS OF THE POINCARE GROUP:

GEOMETRICAL APPROACH

Clearly one cannot rest satisfied with the treatment of
contraction of group representations in Chapter IT. vhat it
reans for unitary representations of two groups to he related by
contraction has never been precisely defined. Some intuitive
relationships among various series of representations have been
pointed out, but the algebraic manipulations employed involved so
many ad hoc procedures and had to be modified so often to yield
the desired results that they can hardly he said to constitute
derivations of anything., Finally, the mysterious role of the
phases of the basis vectors, which should be arbitrary, cries out
for explanation,.

In Secs. C.5-6 some of these problems are resolved in
the case of the contraction of SO0(3) to IS0(2) by paying close
attention to the geometrical meaning of contraction. (The basic
idea is that the contracted group is a local approximation to the
action of the original group on a homogenepus space near a point
vhose stability group is the subgroup which defines the
contraction,) Also, in Sec. III1.3 an ohservation of Wigner

(vhich has bheen elaborated upon by Philips and Wigner (1968),



Chap. VI 189

Sec, VIII) wvas cited, to the effect that the separation of
positive and negative energies in the contraction of an
irreducible representation of the de Sitter group must be related
to the choice of the point of de Sitter space at which the
contraction is regarded as taking place, The author's original
intention was to present in this chapter a thorough treatment of
the contraction of the representations of 500(1,2) from the point
of viev of functions on the homogeneous space 500(3,2)/300(1,1)
{the closed de Sitter space). Time and space did not allow this
program to be carried out, VNevertheless, in order not to leave
the subject hanging, the basic ideas will be presented here in a

qualitative way.

1. The Quasiregqular Representation of 500(1,2).[1]

The natural (quasireqular) action of the de Sitter
group and its Lie algebra on the smooth scalar functions of
compact suppert on de Sitter space has been discussed in Secs.,
A.3 and V.1. Integration with respect to the volume element of
the manifold defines an invariant scalar product on this space of
functions, with respect to which it can be completed to form a
Hilbert space. The unitary representation of the group in this
Hilbert space is also called the quasireqular representation,

The quasiregular representation can be decomposed into

{1] In this section we shall keep the two-dimensional de Sitter
space in mind, but most of the remarks apply to higher dimensions
as well.



Sec. VI, 190

a direct integral of irreducible representations.{2] Each
representation of the principal series occurs twice, as might be
expected from our count of the linearly independent solutions of
the wave equation in Chapter V (see Secs., V.4 and V.7). Discrete
representations also appear (once each in dimension 2 -- cf. Sec.
v.8).

0f course, the gquasireqular representation of the
Poincare group on Minkowski space can also be decomposed into
irreducibles, The familiar PFourier transform does just that,
{(The plane waves with four-momenta satisfying g“p“ = const.
support one or more irreducible representations corresponding to
that value of the Casimir operator (T.,4.4) -- cf. Sec. B.2.) It
vould also be possible to use basis functions which diagonalize
the Lorentz transformations, rather than the translations, within
each irreducible representation. In this case the dependence on
the coordinate corresponding to geodesic distance from the origin
vould be given by certain Bessel functions {(cf, Chapter IX and
Sec., X,2).

The contraction of the quasiregular representation of
the de Sitter group to that of the Poincaré group, therefore,
provides a natural geometrical setting for the contraction of the
respective irreducible representations which are imbedded in

then. In fact, this wmay be used as the definition of the

{2) [Gelfand 5] (case n = 3); Molchanov (1966); LimiZ et al.
(1967). Cf. also BYrner and DHrr (1969) (see Sec. ITI.7 above)
and Nachtmann (1968b),
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contraction relation for the irreducible representations. One
proceeds in analogy to the treatment of the rotation group in
Appendix C, Consider a function with compact support near the
point of contraction; let the radius of the space go to infinity;
but "shrink™ the function in some systematic (but not unique) way
so as to keep the size of the support roughly fixed, (The
easiest way to do this is to use one of the standard coordinate
systems which, as was explained at length in Chapter 117, are
closely related to various coset decompositions of the group.
Rescale some of the coordinates proportionally to R, and keep the

explicit form of the function in terms of the coordinates fixed,

See the exanmples in Secs, C.5-6,) Then, if the relative phases
of the basis vectors are correctly chosen, the coefficients of
the expansion of the function with respect to the basis elements
of the gquasireqular representation on the hyperboloid will
converge to the expansion coefficients of a function on the plane
with respect to a basis for the quasireqular representation of
the Poincaré group. In particular, the correspondence of
irreducible components of the representations appears in this
way; it is manifested in asymptotic expressions for somre special
functions in terms of others, analogous to Egs. (C.5.3) and
(Ce646).

For instance, let the point of contraction be the point
0 in Fig, 3 and use bases of the form (V.6,7) £for the
principal-series contributions to the quasireqular representation

of 500(1,2). Then when T and o are rescaled as in Fq. (IIT.1.16)
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one will recover the Fourier transform in Minkowski space, the
Legendre functions being approximated by complex exponentials
when U is small and p is 1large. (The spacelike momenta are
contributed by the representations of the discrete series, in
accordance with Sec., IT1.2.)

The same is true if one uses the static coordinates of
Fig. 4 around 0, or the coordinates of Fig. 9, although the
family of functions through which a given initial function is
mapped as R changes will be different in each of the three cases.
In connection with the static case it shonld be noted that the
vave functions discussed in Sec, V.7 have "dips" near O when
)? < q, since this is the classically forbidden region inside the
potential barrier. Consequently, as a function shrinks down
tovard O 1its components along these basis vectors will rapidly
vanish. Thus the energy gap between - m and + m in the
representations of the Poincaré group arises naturally, even
though ) ranges continuously from -o to +o in the original de
Sitter representation (cf. Sec. TI.3).

Finally, if one contracts around P in Fig, 5 and uses
basis functions adapted to the coordinates indicated in that
figure, one obtains an expansion in the plane in terms of the

Bessel functions mentioned above,[3]

[3] To prevent misunderstanding, it should be stated again that
the author has not actually performed for these cases the
detailed manipulations with special functions analogous to those
in Secs. C.5-6, Nevertheless, it is obvious that relationships
of the type indicated must hold.



Sec. VI.? 193

2. Geometrical Contraction of anm Irreducible Representation.

The indefinite metric of de Sitter space, as contrasted
vith the positive definite metric of the sphere considered in
Appendix C, has an important consequence for the structure of the
set of functions on the space which supports an irreducible
representation of the principal series. The partial differential
equation (V.2.1) which helps determine the set is hyperbolic
instead of elliptic, and hence a Cauchy initial value problem can
be posed for it, When initial Jata are specified on a spacelike
hypersurface through the point of contraction, all sufficiently
well-behaved initial data occur, including those with compact
support near the point of contraction, Hence it 1s possible in
this case to apply directly to ap irreducible representation a
geometrical approach to contraction similar to that of the last
section,

Construct an irreducible representation of 500(1,n) as
in Sec, V.4, That is, choose a particular solution WO of the
wave equation such that W(wo,uo) # 0 (W defined by Eq. (V.U4.1)).
The space generated fron vo by the mnatural action of the
operators of the group (or of the Lie algebra) consists of
vectors with the same sign of W, which thus defines a scalar
product, The space becomes a Hilbert space supporting an
irreducible unitary representation,

The  functions in this  space are in one-one
correspondence with their initial values omn a  spacelike

hypersurface, which may be taken to be an {n-1)-dimensional
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hypersphere. Let the radius of the de Sitter space, and hence of
the sphere, tend to infinity, confining one's attention to wave
functions whose 1initial values have support within a fixed
geodesic distance from the poiht of contraction. (The entire
function, of course, does not have support near the point, and
neither does the 1initial value of its normal derivative on the
hypersphere.) As in Secs. C.5-6, the coefficients of the
spherical harmonic expansion of the initial value of such a
function will converge to the coefficients of an expansion of a
function on the (n-1)-dimensional Buclidean plane with respect to
a basis of eigenfunctions of the laplacian.[4] In this process
certain discrete parameters will become continuous,

Do thése wave functions thenselves now converge to
solutions of the wave equation on the n-dimensional Minkowskian
plane which  form the core of an irreducible unitary
representation of the Poincaré group? This will be true only if
the basis functions corresponding to adjacent values of the
confluent discrete paremeters just mentioned agree in the limit.
For example, consider the two-dimensional case, where the only
parameter is the Fourier series index p. When R >> 1 and q, p,

and so on have been rescaled as in Sec., II.1, Fgs. (V.U.6) arnd

(4] In the case of two-dimensional de Sitter space, "converge'" is
an understatement, 2s an initial value g{x) is replaced by g (Rx)
and x is rescaled compensatingly, its Fourier series coefficients
for various finite values of R and the values of the Fourier
transform (R — o0o) are all values of the sape analytic
function, §(k). But this is an accident of the low dinmension ~--
a one-dimensional manifold has no intrinsic curvature,
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{V.4.,9) become approximately

v =(m +p ] Ay, (2.1)
p+1 p
+ ipx _ 2 _2  i(prpx
Afe E@)]=~-[n + le 0 t),
p p+1
+ ipx _ i(prg)x _ (2.2)
Afe 0 ()] =+~ e F (t).
P p+1

(The bars on the functions ¥ and O indicate that the independent
variable (the time) has been appropriately transfornmed.) The
basis vectors 'F are of the form {(V.4.4), It is easy to see that
the 'P for odd p will be consistent with those for even p only if
A{p) and B(p) in Fg. (V.4.4) have very special values. Namely,

up to phase, we must have

-1
A(p) = (V2 Va* + p*] ,  B(p) =+ W+ 5%, (2.3)

1
;%‘
the sign in B corresponding to that of W. The contracted basis
functions are then the plane waves which support the
representation of the Poincaré qroup with positive or negative
enerqgy, respectively.

Note that according to this version of the geometrical
picture an irreducible principal~series representation of the de
Sitter group contracts to one irreducible representation of the

Poincaré group, not to two.
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3. The GNS Construction; Contraction and Reconstruction of Field

Theories.

———-

Feither the approach to contraction in terms of Lie
algebra matrix elements (Chapter IT} nor that in terms of
functions on a homogeneous space (Secs., VI.1-2) lends itself
easily to the formulation of a precise definition., In this
section still another approach 1is suggested, which has the
advantage that a rigorous definition can be stated. 1A possible
application to field theory is described.

A unitary representation of a Lie group G determines an
Hermitian representation of its Lie algebra, JZ{G), and hence of
the associative algebra generated by the Lie algebra, which is
the (complex) universal envelopina algebra Z{(G). For %(G)
there applies the correspondence between (cyclic) representations
and "states" which is given by the Gel'fand-Naimark-Segal
construction., The version of the GNS theorem which applies to an
algebra of unbounded operators is stated hy Powers (1971), Sec.
6. Davies (1971) has recently studied Lie algebras in this vway,
but he did not consider the subject of contraction.

If (A(3)} (1 £ J £ n) is a basis for J(G), then

by}

0T a6 n (3 €3 €eea €, B=0,1, 0)
k=1 k

is a basis for “(G). This statement is true for all Lie
algebras of dimension n, So it Z(6) and Z(6'Y are

nonisomorphic Lie algebras of the same dimension, then  7{(G) and

—

—



Sec, VI.3 197

T4(6") as vector spaces are the sane; only the multiplicative
structure (in effect, the rules for expressing products of the
A(j) in the "wrong order"™ in terms of the above basis elements)
is different, Of course, the same thing is true if Z(G6) and
L (G') are isomorphic -- in other words, if one considers two
different bases for J(G) and then identifies, as vectors,
corresponding basis elements, Thus the enveloping algebra
regarded just as a vector space (which we can denote by UU(n))
provides a fixed arena within which contraction can take place.

The following definition is suggested:

A family {D{R)} (R —> o0) of wunitary representations of a
Lie group G contracts to a representation D' of a Lie group
G' if for each R there is a linear functional J(R) on U{n)

such that

{1} 9(R) is a vector state from D(R) on U(G)

QA

—

{identified with 79((n) by a particular choice of basis): —

P(R)[A] = (¥,D(R)[A]V) (A € U(G)), —

where ¥ is in the Hilbert space wvhere the representation

D(R) acts;

(2) There is a vector state | & fron a
representation D' of U(G') such that P(R) —> V' in the

topology as R —> .,

. st s .

(This is a whole family of definitions, since the topology has
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not been specified, 7Tn the absence of any theorems, it is hard
to conmit oneself to a particular topology.)

The approach of Chapter IT and the geometrical approach
could be reformulated in this way, at the cost of studying one
particular formal basis vector or function (respectively) instead
of all of them at once. {(Part of the contracted representation
might be lost in this way because of loss of cyclicity.)

The approach to contraction in terms of a distinguished
state (or, more precisely, a family of states parametrized by R)
may be quite useful in the context of contraction of field
theories. By this is meant, as in Sec. T.2, the construction of
a Lorentz-covariant theory as a limit of a covariant theory in de
Sitter space. The most obvious method of doing this is by means
of the Wightman reconstruction theorem ([ Streater-Wightman], Sec.
3.9 .

First, assume that we have a field theory satisfying
the axioms stated in Sec. 7IV.1. Form the vacuum expectation
values (VEVs)

H (X JesesX ) = (P ,8(x) « « « Z{(x )V ).,
n 1 n 0 1 n 0
It 1is easy to show, in precise analogy to {Streater-Wightman],
Sec. 3.3, that the field's properties of covariance under the de
Sitter group, Hermiticity, 1local commutativity, and positive
definiteness of the scalar product are teflected in certain

relations satisfied by the VEVs. (One needs to assume that the
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nuclear theorem holds for <?7 the space of test functions.)

From the VEVs, which are multilinear distributions on
de Sitter space, one may obtain distributions on Minkowski space
by passing to the infinitesimal neighborhood of a point by a
rescaling of the coordinates (of the type described in Sec,
Vi.1). The properties of the VEVs expressing Hermiticity,
commutativity, and positivity will clearly bhe preserved in this
limit, Tt is to be expected that the limit VEVs will satisfy the
relations corresponding to Poincaré invariance of the contracted
theory. A theorem to this effect is needed, however, before the
program proposed in the 1Introduction can be inplemented.
Contraction of group representations as defined abové may turn
out to be a useful concept in this connection,

Once Lorentz covarianée of the contracted VFVs has heen
established, it remains to verify the spectral condition and the
cluster decomposition property. Then the recoastruction theorem
will provide a field theory in flat space satisfying the Wightman

axioms with the possible exception of asymptotic completeness,
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Chapter VII

THE NEUTRAL SCALAR FIELD IN RIEMANNIAYN SPACE-TIME

—- GENERAL KEMARKS

We shall apply the traditional canonical quantization
procedure to a real scalar field satisfyving a covariant wave
equation on a Riemannian manifold of dimension s + 1 and
signature (+ = ee. =) {s minus signs). We require (cf.
Choquet-Bruhat (1967), p. 89) that it be possible to define the
direction of time globally and continuously on the manifold.[ 1]
The geometry of the manifold 1is assumed given =~- it 1is an
"external gravitational field". That is, there is no attempt to
couple the metric of the space to the matter represented by the
gquantized field. Thus ve are studying the guantum-
field-theoretical analoque of the problem of determining the
notion of test particles in classical general relativity.

We shall find that the classical lLagrangian-Hamiltonian
treatment of the scalar field extends inmmediately to this
situation, and that the "smeared fields" needed in quantum theory

can be defined ir a manifestly covariant way (still on the

{1] As we shall see at the end of Sec. VII.4, it is hard to
imagine what the commutator of a canonically quantized field
would ke on a manifold for which there is no distinction between
past and future, (Cne should also note the physical probhlenms
associated with the second law of thermodynamics, etc., in such a
situaticn.) This requirement excludes from consideration the de
Sitter space with antipodal points identified (see Sec. I.1).
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classical level), Then in a formal sense one can proceed
immediately to an algebra of quantized fields obeying the
canonical comnutation relations. However, it 1s not at all
ohvious how to realize these objects as operators on a Hilbert
space. Iz the next three chapters we study this problem in two
special cases where the wave equation can be solved by separation
of variables.

In the fourth section of this chapter vwe study the
distribution solutions of the wave equation which generalize the
familiar A(x, - x,), etc., and their relation to the general
solutions of the wave equation, It is emphasized that some of
these objects are uniquely determined at the formal levgl and
some are not, 1In Sec. VII.S5 the generalization of the indefinite
scalar product or current form for the Klein-Gordon equation is
discussed. In the last section the problem of quantization is

discussed from a more abstract viewpoint.

1. The Cclassical Canponical Formalism.[ 2]

We follow the canonical Lagrangian formalism as
expounded by, e.q., Hill (1951). 1In keeping with the spirit of
this approach, integrals and derivatives will always be written
explicitly in the coordinates. That is, fdyﬂx means

jdx° dx' ... 4x®, and the factor V|g| (g = det {gﬂy} < 0) needed

[2] This material, and much of the rest of this chapter, is not
particularly new, but 1is treated in detail here in order to
establish a consistent framework for scalar quantum field theory
in curved space.
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to make the volume element covariant must be written explicitly.
Similarly, Q#_ or 0/3x” indicates the simple coordinate
derivative, not the covariant (semicolon) derivative Yﬂ.

We start with the generally covariant Lagrangian

density
1 -  nk 2 2
J=-Yigi g dpdg-n g), (1.1
2 )t S
wvhere g is a real scalar field, (The space-time variable x =

(xo,x',...,xs) is suppressed.) Under coordinate transformations
. transforms as a scalar density (not as a scalar), so that the
action inteqral I = jdiﬂx Z is a scalar. (Some authors write
ZL VTG— I and call the scalar function L the lagrangian.)
The Euler-lagrange equation resulting from the
variation of I with respect to g is
o) o oy

jiig 2
0= - =0 [YIglg d g1+ YVigl n 4.
ox” 6(b#¢) dg n v

This can be written

2
[Jg +ng=20 1.2)

C

where []C is the Laplace-Beltrami operator:
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1 nv 184
[0¢=-—=0(YIgl g dgl=g VVag. (1.3)
c  VYigl v n v
(See [Adler-Bazin-Schiffer ], Sec. 3.2, for the derivation of the
form in terms of covariant derivatives,)

The wave equation (1.2) reduces in flat space to the
Klein-Gordon equation, It is not the only covariant
generalization of the Klein-Gordon equation to curved space,
since there might be other terms which vanish when the curvature
is zero, such as R“yELzJ¢ or §£¢/6. But it seems to he the
simplest, and wve take it to be the gravitational analoque of
*minimal coupling" in the theory of external electromagnetic
fields.

On the other hand, a strong argqument has been made[ 3]
that the basic equation should contain a scalar curvature term
Rﬁ¢/6 in the case s = 3. (FPor the general case see Fgq. (V.2.2).)
Then the equation 1is conformally invariant when m = 0. This
could be accommodated by generalizing the present scheme to allow
a scalar potential:

[Jg +nmn(n-V)g=0, (1. 1)

c
V a function of space-time., With the possible exception of one
point, mentioned in Sec., VIII.2 below, all the results of this

and the next chapter extend directly to the case (1.4). There is

[3) Penrose (1963), pp. ©565-566; Penrose (1965), Sec. 23
Chernikov and Tagirov (1968); Tugov (1969).

-V
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evidence that the addition of the curvature terr pakes a
significant difference in predictions of particle creation in the
early stages of expansion of the universe (Parker (1972)).

Fhen s =1 it is always possible[84] to choose

coordinates in which the metric has the conformally flat form

2 a v 0 2 12
ds =qg dx dx = o«fx) [(dx ) - {(dx ) L.
Y

Then Eq. (1.2) becomes

[1g + mza(xm =0

wvhere [} is the ordinary d'Alembertian. Thus in two-dimensional
space-time the gravitational problem reduces to a  scalar
potential problen. In higher dimensions this fails for two
reasons: not every manifold is conformally flat, and in the
conformally flat case g”y and VTET do not cancel in Egq. (1.3) as
they do when s = 1, However, 1in some cases the eguation can
still be reduced to this form at the price of changing the
dependent variable (see Grib and Mamaev (1969)).

So far our formulation has been generally covariant,
However, the notions of conjugate momentum and Hamiltonian will
not make sense unless one coordinate is singled out as the tinme
coordinate, Consequently, we consider from now on only

coordinate systems in which the first coordinate, x°, is timelike

[4] {Eisenhart], Sec. 28,
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{see Appendix D), ¥oreover, we expect that a successful
Hamiltonian formulation of the theory will be possible only if
for each t the surface x° = t is a Cauchy surface for the entire
region of space covered by the coordinate system (see Secs.
ITI.5-6). In what follows we frequently denote x? by t and the
s-dimensional spatial coordinate hy x.

The momentum coniugate to g is defined in the usual

vay:

ax — D
= wewwa— = Vri.q! g ) Be (1.53)
3(3,#) n
In particular, if goj =0 for j # 0,

= Viq q 6¢ ‘/—-Wéﬂ {1.5b)

where g is the determinant of {(”gjk} = (- qjk} (j.k # €¢), the
metric of space at a fixed time.

Consider a family of coordinate systems in all of which
a given spacelike hypersurface has the form t = const. On this
hypersurface W acts as a density (proportional to V®g) relative

to changes of the space coordinates, and it is unchanged{ 5] under

transformations which leave the space coordinates 1in  the

[5] This statement refers to M regarded as a numerical gquantity
defined on +the manifold, The functional form of M(t,x) will
change, of course, when t and x are expressed in terms of new
coordinates, Covariance relative to a distinquished hypersurface
is discussed further in Sec. VIT,3.
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distinguished hypersurface and the direction of time unchanged
{because the change in local time scale affects ¥q® and éog in —
compensating ways), Under time reversal the sign of M changes. _

The canonical procedure yields the Hamiltonian density

Uxy =m 60;8 -

100 2 3 4k 2 2
=-VIgifg BOg - S ad ddd3g+ng ]l (1.6 —
2 0 3, %=1 ik

(This form is valid even if goJ # 0.) In terms of N we have —

_ 00 -1 __ 03
ao¢=[ﬁ§uq 1 In- Yigig 9 #), .71 —
j
s 1, s . 1 __ 03 2
H=de7~/=-fdxﬁg|{ = (M- Viglg o/ - -
2 Igtg 3
ik 2 2
S g 0 g+ngi. (1.8a) —
jok j ok

If goJ =0,

1,8 g, 2 4k 2 2
Ho=-fax (==K - Viglg 34 4+« Viging 1 (1.8b)
Vigl j X
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2. Formal Consistency of Canonical Quantization.{6)]

Ultimately we hope to impose the canonical commutation

relations (CCRs)
[B(t,x),8(t,y) ] = [N(t,x),TM(t, )] = 0, (2. 13)
[g(t,x),N(t,n ) =1id(x - 7). (2. 1b)

Note that &(x - y) is the ordinary delta function in the s
coordinates on the equal-time hypersurface (a density, not a
scalar). It is easily verified that FEgs. (2.7) and Heisenberg's
equation dp/dt = i[H,A], with H given by Eq. (1.8), formally lead
to the correct equations of motion ({1.7) and (1.2).

It can also be verified by explicit calculation that
the CCRs are formally consistent with the equations of motion, is
the sense that if Egs. (2.1) hold at one time, then they continue

to hold for all time. #e need the following delta-function

identities:
) 3
h(x) —d(x - y) = - —[b{Y)d(x - ) 15 (2. 2a)
ox by
3 ik 68 d ik ag
—=[h (x) —of(x - y)] = —[h (V)—0(x - ¥)]
dx’ dxk dy! dyk
jk k7
ifh =h . (2.2b

f6] Conclusions similar to those of +this section have been
published by Urbantke (1969).
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To verify Eq. (2.2a), smear each side with a test function{7] of
the form f(x)g{y) and integrate by parts:
3

fdx dy £(x)q(y) S—{h(y)S(x -p1-=- fax £(x) g* (x) h(x)
Y

= Idx g (x) j[fmh(x) 1=- de dy £{x)g(y)h(x) 35(1! V).
dx X _
(A slight generalization of integration by parts shows that the
same identity holds for an arbitrary test function f(x,v).) The
proof of Eq. (2.2b) is similar,

We can now see that the derivatives of the canonical
comnutators vanish by virtue of the equations of motion ({whence
the assertion follows). Eliminate time derivatives from the
computators by means of Eq. (1.7) and

1 40

M=-0([—=g T+
jg

__ 1 50 ¢k jk 2
3 (VIgi(—=9 9 =g )3 8]~ Yigin g, (2.3)
i q°° k
which is egquivalent to the wave equation (1.2). ({Egs. {1.7) and

(2.3) are the Hamiltonian equations derived from the Hamiltonian

(1.8a).) Then

[7] At the present level of rigor we do not need to be precise
about the test function space, the growth properties of the
function h, etc.
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d - .
;—w(x).n(y)] = [g(x),N(Y)] + [g(X),N(Y) ] =
t
07 00 0 d jo 00
-ig (x)/9 (X)—=6(x - y) - i——[g (y)/9 (N&(x -y ]=0.
ox! oy

Eq. (2.2b) similarly implies that ﬁ-{n(x),my) 1=0, and the
[B,8] case is immediate.

A generalization of the proposition just proved is the

following: The canonical <commutation relations (2.1) are

generally covariant, in the sense that if they are imposed on one

spacelike hypersurface, then they hold on any spacelike
hypersurface (by virtue of the equations of motion), (This is in
marked distinction to the noncovariance of various

natural-seening constructions of representations of the CCRs,

vhich will be a central theme of the rest of this dissertation.)
If two hypersurfaces do not intersect, they can both be regarded
as equal-time hypersurfaces in one coordinate system, and then
the assertion follows immediately from what has just been proved.
If they do intersect, one can argue that the CCRs on each are
equivalent to +the CCRs on an intermediate hypersurface which

intersects neither.

3. Covariant Smearing.

In the classical Lagrangian theory of Sec, VITY,1 the
field @ (x) has been taken to be a true scalar quantity (rather

than a scalar density). On the other hand, wvwe know that in
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quantum theory g(x) will be a distribution w«hich must be
integrated over test functions, If the test functions are also
taken to be scalars and we wish the result of the smearing to be

invariant, we must define the smeared field as follows:

s+ _—
g{f) = fd X ﬁgl g(x)f(x). 3.1

In the canonical formalism it is natural to smear
#(t,x) and R{t,x) over a spacelike hypersurface of constant tine,
Let us, therefore, elaborate on the remark in Sec, VII.1 that 1
is a covariant density on a hypersurface, Call a coordinate
system compatible with a hypersurface S if S is defined by an
equation of the form t = const. in that system. An expression is
S-covariant if it has the same form in all  S-compatible
coordinate systems. An integral over S 1is S-covariant if the
integrand is the zeroth component of a contravariant vector
density. (In the language of differential forms, one constructs

an s~-form from a contravariant vector by duoality.) if

f(x) = £(t,x) is a scalar function on space-time, then

— M2
Df = Vigl g~ & f 3.2) " —

R

is such an object, Thus, in particalar,

s _ Ou
2 x g(x) Viglg "3 £(x) (3.3a)

4(0f) = i
t=tonst. A
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and

] s
me = | ax MR E(M) = /d x Dg(x) £(x)
t=const.
are S-covariant scalars:
s S
1 a2 M (X)E(x') = [ a x M(x)E(x),
t'=const. t=const.

21

(3.3Db)

and so on, when the hypersurfaces of integration coincide,

¥hen the coordinate system is not necessarily

S-compatible, this type of inteqral is written

o
f ao 197 § (x),
s p

where Vig| jM is the vector demsity and

1 /\1 s
dG = dx . 99 dx . 8 & dx L ]

n

The covariant divergence of a vector function

the scalar

. R 1 — B
div § = 0§ = ——= d (Vigii).
1 Vigl »n

If div §j = 0, then it follows from Gauss's theorem that

3%(x) is

3.4)

hit
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s 0 0
’ d x VTgl i (x) {x = const. on 5) (3.5)
S

is independent of the hypersurface, and thus is completely

covariant ([Adler-Bazin-Schiffer ]}, pp. 71-75).

4, The Comnmutator and PRelated Distributions.

Let us assume now that the field theory of Sec. VII.?
has been quantized, so that we have operator-valued distributions
satisfying the equal-time commutation relations (2.1) and the
eguations of motion (1.5) and {(1.2) (or {2.3)). Llet I denote the
operator ch + m°. We consider the commutator of the fields at

arbitrary times,

i

[#(x ), #(x )] =1i6(x ,x ) = iG(t ,x ;t ,x ). (4. 1
2 1 2 1 2 1 1

G is antisymmetric and satisfies the field equation in each

variable:

L G(x ,x) =0=1 G(x ,x). (4.2)
2 2 1 1 2 1

By virtue of Egs. (2.1) it fulfills the initial conditions

G{t,x ;t,x) = 0, {4.3a)

D G(t,x ;t,x ) = - D G(t,x ;t,x) = - &(x - x ). (4. 3b)
2 2 1 1 2 1 2 1

(D, indicates the contravariant time differentiation (3.2) acting

on the variable L We use the similar conventions Los qull,

1]
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601, and soO on,.)

G is the propagator for the Cauchy problem, when it is
vell-posed., That is, the unique solution[8] of the wave equation
{1.2-3) with the initial values (which may be distributions --

see beloi)

F(t,x)

f(x), DP(t,x) = £'(x) (4. 0)

on the hypersurface S {x|x° = t} is

s
F(x ) = -~ j dx {6(x,x) Df(x) -DG(x ,x) f(x )}, {4.5)
S 1 2 1 1 1 1 2 1 1

where Df = £f', This formula can be written (n = s + 1)

n ——————
r(x)=-jdxﬁqlc(x,x)f(x). (4.6a)
2 S 1 1 2 1 * 1

———

Vig 1f (x) =8t - t)fr(x)
1 % 1 1 1

"
3 (bt ‘t)ﬂﬁlq}}(x)]: (4. 6D)
nl 1 11 1

f* is a distribution in the sense of Eq. (3.1) and is

S-covariant,

it

Proof: It is obvious that L. F ¢ and that

F(t,xx) = fjxx). Let

[8] whenever numerical (rather than operator-valued) solutions of
the wave equation are considered, we allow complex values, even
in connection with the theory of an Hermitian field.
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s
D F{x) = - f’ dx DG(x ,x) D If(x) + A.
S 1 2 2 1 1 1

The first term here becomes the desired f'(xx). The second tern

is, with
s
W= id ¥ DG{x ,x) £(x),
1 1 2 1 1
_ 00 04
A=Vlg 1l (g (@ +3 -3 )W+gqg O W
2 2 02 01 01 2 §2
o0 24 00 075
= Vg | {g ——% ' -g 3 W+g d W
2 za(t' +t ) 1 (t, -t fixed) 2 01 2 j2
=3 + A + 1A,
1 2 3
When t, -t = 0, ¥ is independent of t + t. (by Eq. (4.3h)}), so
A, = 0. Using the wave equation for G in the form (2.3) (vith

X = x', g=6, 0= D,G), we have

.00 ;s
p =Yg Ig fdx f(x ) (@
2 2 2 11

00 -1 50

(g ) g DG
1 1

. 1 1

+ terns in G and § G}.

i1

But at t& = ta this is
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]
"

___00 /s 00 -1 jo
ivig |g fax (@ ) g [id(x -x)10d £(x) _
2 2 2 1 1 1 2 1 3j 1

- 03
=-Vig1g  df(x) =-1. —
2 2 4 2 3

]

So A 0.

In the rigorous theory of hyperbolic partial
differential equations on a manifold (surveyed by Choquet-Bruhat
(1967)) it is proved that if the manifold is globally hyperbolic

(cf. Sec, ITI,5), then the equation

L G {(x ,x ) = 8(x X {s.7) _

)
2 inhom 2 1 2 1

(vhere

n i A
[d x VIg 19(x ,x ) £(x ) = f(x ) (6.8) —
1 1 2 1 1 2

-- i,e,., $ is a scalar distribution) has a unique solation —
t

6" (X, .X,) such that its support in X, is "compact toward the —

past" -- and lies, in fact, inside the future light cone of x . —

This is the retarded Green function. The advanced Green function

satisfies Eq. (4.7) and has support in the past light cone of x,. —

The (unique) solution of
LP(x) = v(x) {(4.9)

which has support in the future of the support of v (that |is,

represents outgoing radiation from the source v) is
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ret n ——_ et
P o(x) = fd x Y1976 (x,x) v(x). (4.10)
2 11 21 1

(similarly, P" has support in the past.) 6°° is reqular: if
v is a smooth function, then so is F®t. It can be shown from
this that F7"°% is defined (as a distribution) even if v is a
distribution. (Proving this involves interchanging the roles of
X, and xa.)

Since the Green functions hoth satisfy Eq. (4.7),

is a solution of the homogeneous wave equation (4.2). We shall
show that G" = G. The general solution of LP = 0 (which we

already have in the form (4.6)) can be written

n Y v—
F(x ) = - jﬁ x1 VIg 16" (x
1

bX) V(X ), (#.11)
2 1 1

2
where v can be chosen to have support on S (Fourds-Bruhat
(1960)). Namely, let

Vix) =L [A(t - HF(x )} =1 {-8(t - t)F(x)} (8.12)
! 1 1 1 1

(which is well-defined since F does not have a sinqularity in ¢t

on S). Then by Fq. (4.10) the right-hand side of Fq. (4.11) is

4
F‘”“’(xl) - 7 V(xl), vhere
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ret adv
LF = LF = v
and
retfadv]
F (x) =0if t <t [>t]
2 2
By the uniqueness theorem, 't and F“dv are respectively the

functions 1in braces in Eq. {4.12); Eq. {4.17) follovws

immediately. Now from Eq. (4.12) we calculate

— — 2 L
ﬁqlv(x1) = Vigim ®F + d [g Viq| 6)(9?)]

3

0k ik
+d[g Vgl bk{em + 319 Yigl bk{eF)} —
9 j ]

py oy
=ewr + 3 [6(t - t)g VIgIF]+ 8(t - t)(g Vigid F]
i 1 1

=0+ VigIf (x)
* 9

{see Eq. {4.6b))s In particular, this calculation shows that

- L {B{t -t )G(x ,x )1 =
2 2 1 2 1

1
— St -t )6(x - x) =6(x ,x);
Yigt, 2 1 2 1 2 1

since the distribution in the braces has no support in the past,
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it must be Gret(xl,x‘).
Thus we have recovered from the formula (4.11) the

formulas (4.5~6), with the identifications

adv ret
G(x ,x) =6 (x ,x) -G (x ,Xx ). (4.13)
2 1 2 1 2 1
ret
G {(x ,x) =~-8(t -t ) G{x ,x),
2 1 2 1 2 1

adv ret {4.14)
G (x ,x) =8t -t) 6G(x ,x) =6 (x ,x ).

2 1 1 2 2 1 1 2

It follows that (in the distribution sense, of course)

G{x ,x) = 0 unless x and x are causally connected {4.15)
2 1 2 1
(see Sec, IIT.5)., {In the case of the free field this follows
inmediately from Egs. (%.3) by lorentz invariance.)
Given any state vectors w‘ and ”1' let us define
(+)

G (¥ ,¥ 5x ,%)
2 1 2 1

#

<F 1g{x )g(x )I¥ >, (4,16a)
2 2 11

(=)
G (¥ ,% :5x ,x)
2 1 2 1

H

<F l1g(x)g(x )I¥ >, (4. 16Db)
2 1 2 1

{(n (+) (=)
G (¥ ,9 5x ,x) =6 + G, (4.17)
2 1 2 1
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G (¥ ,V 5x
1

X ) = <¥ AT{F(X )@g(x )}V >, (4.18)
F 2 1 2 2 1 1

2
vhere{ 9]

T{g(x )g(x )} = 6(t -t }g(x )g(x) + 6(t -t )g(x Jg(x ). (4.19)
2 1 2 1 2 1 T 2 1 2

(=)

) . .
G and G“ are solutions of the homogeneous equation (4.2);

moreover,

(+) (=)
iG =6 -G . (4.20)

GU) is symmetric in x,  and X,o Gp is analogous to the Feynman

propagator; iGF satisfies the inhomogeneous equation (4.7), and
ret =) adv (+)
\ G = - iG + G = - iG + G . {4.21)
F
In the case of the free scalar field in flat space one

traditionally chooses ¥_ = §

2 = ¥, , the vacuun, Then  the

]
distributions are all functions only of X, " X4 because of
translation invariance. 1In this case the relation hetween our
notation and the most widely used one ([Bjorken-Drell 2]}, pp.

387-390) is

[9] There should be no trouble in defining the distribution
products in Bq. (4.19), since, in analogy with the free field,
one expects fields smeared in space at sharp time to make sense
as operators. See the discussion of the Fock representation in
Sec, VIII.3.
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G{x ,x) = Alx - 1},
2 1 2 1

* M

G v ,¥3x ,x) =A (x -1x) (G similary,
0 0 2 1 + 2 1
ret{adv] {8.22)
G (x ,x ) = A (x -x),
2 1 retfadv] 2 1
G (9 ,¥ 3x ,x) =31A (x - x),
F 0 0 2 1 P2 1

The important point is that G, G

unique and intrinsic (determined by the manifold and the wave

. . 1)
equation), while G( ’ Gm

, and GF apparently must be defined in
terms of particular states in a quantum theory, Alternatively,
one would need some way of splitting G into ‘"positive-fregquency"
and "negative-frequency" parts {see Fq, {4,20)).

There is one gqualification to the statement that 4 is
unique, Time reversal changes the sign of the canonical
momentun, and hence (through 2q. (%.3b)) the sign of 6. (This is
true even for flat space, of course.) The same conclusion can be
drawn from the alternative definition (4.13), since the meaning
of "ret" and "adv" depends on the direction of time, WNote that
the uniqueness theorem and the vreality of Eq. (4.7) imply that

t d .
6°°" and 6%°Y are real. G is therefore real.

ad
, and 6%V are —
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5. The Current Fornm.

The generalization of the lagrangian (1.1) to complex ¢
is

-— 2
L=Vigl [g dg*d -0 g* gl (5.1 —
n s

It is invariant under the gauge transformation g —> exp(iy)g. —
The corresponding conserved quantity (obtained through Noether's

theorer -- see Hill {1951)) is
s
Wig,m = if A x (g 0F - g A, (5.2)  —
S

W{g,#) can he generalized to

s
i ) - if Tx ) WM D0 A W) 52—
S

2 1 2
Por solutions g, and g, of Fq. {1.2) whose initial values are —
sufficiently integrable for W(¢',¢k) to be defined, it is an ~—
indefinite Hermitian {i.e., sesquilinear and conjugate-symnetric)
form. It is independent of the hypersurface S (see Sec. VII.3),
since the divergence of

A s

J@,8) =i [g*dg -0 g*4g ] (5.4) —

12 1 v 2 v 1 2

is easily seen to be zero by virtue of the wave equation, Since

the initial values g and Dg can be chosen independently, W is not
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degenerate: there is no g' such ihat W(g,a") = 0 for all o.

If g is a copplex quantized field, W(g,#) can be
interpreted as the total charge of the system. Tor the Hermitian
field we are studying, W(#,9) = H. Hence we shall be interested
in @ only as a bilinear form defined on complex-valued nuperical
solutions of the wave equation,

Unlike the case of a positive definite form, there is
no unique maximal space of functions on which W 1is defined.
Since there is no Schwarz inequality, it does not follow from
"(¢.'¢|) <o and W(¢l,¢k) < that W(ﬂ,,ﬁl) makes sense. Thus
the wvague phrase "sufficiently integrable" covers a real
anbiguity. One obvious possibility is to consider only functions
for which both the initial wvalues, #{(x) and Dg(x), are 1
functions. Then the integrals 1in Bq., (5.3) always converge,
However, the case of the free field in flat space shows that this
is not necessarily the natural space to consider, Tn this case
{see Segal and Goodman (1965), p. 636) W(ﬁ',ﬂl) is defined for
positive-frequency solutions with initial values g{(x) in the
domain of the operator

2 2 1/4
C=[n -9 ] (5.%)

(defined via the Fourier transform). Then

2
Dg(x) = - iC g(x) (5.6)

is a function in the completion of 1* with respect to the norm
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-1
NEw =nc £ .
c 2

ﬁ(¢',¢1) is defined on the direct sum of the positive- and the

negative-frequency solutions,

A = %* 9 {2/-, {5.7)

which satisfies Egs, (V.#.10), The restriction on Dg(x) is
weaker than square-integrability, but the restriction on g(x) is
{(necessarily) stronger. On the other hand, one could define W on

a space of the form (5.7) with W* defined by the condition

Dg (%) - 1g(x)

instead of Egq. (5.6); then all the initial values would be
square-integrable,

Generalizations of the construction (5.5-7) are carried
out ({and applied to field quantization) for de Sitter space in
Chapter V, for static universes in Chapter VIII, and for

generalized Robertson-Walker universes in Chapter X,

In this chapter we have established the following for a
neutral scalar field in an external gravitational potential (in

other words, on a given space-time manifold):
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(1)

(2)

3)

)

(5)

The classical Lagrangian-Hamiltonian formalism can bhe
applied in a manifestly covariant way (except that one
coordinate is required to be timelike and the direction

of tine is significant).

Canonical quantization is formally consistent with the

equations of motion,

"Smeared" fields can be defined covariantly, either in

space-time or on a spacelike hypersurface,

The conmmutator of a quantized field can be related to the
Green functions of the wave equation and to the general
solution of the Cauchy problen. The generalization to
curved space of the other distribution solutions
associated with the Klein-Gordon equation 1is not unique
in the absence of a definition of the vacuum state, or of

"positive frequency".

The expression for the conserved current in a theory of a
complex field vyields a covariant Hermitian form on
solutions of the wave equation with sufficiently
integrable initial values, This form is positive on some
solutions and negative on others, but this fact does not
by itself lead to a unique characterization of
positive-frequency solutions. In fact, different notions
of positive frequency can sonmetimes lead to different

maximal vector spaces on which the form can be defined,
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In the standard treatment of the free scalar field in
Minkowski space (e.q., [Bjorken-Drell 2], Chaps. 11 and 12) the
next step in quantization is the solution of the wave equation by
separation of variables and the association of creation and
annihilation operators with the Fourier componments of ¢ and N,
This leads to the rigorous construction of the fields as
operator-valued distributions in Fock space. TIn Chapter VIII we
shall show that this entire procedure goes through for the case
of a static gravitational field; wve have an ambiquity, however,
if the nmetric has a static form in more than one coordinate
system (Chapter IX). Tn Chapter X we attack the nonstatic case

and encounter a more complicated situation.

7. The Axiomatic Approach.

In Chapter IV an attempt was made to adapt the general
principles of guantum field theory (2ppendix BY to de Sitter
space. Here we shall briefly discuss to what extent this can be
done for an arbitrary FRiemannian space-time. This approach is
logically independent of the rest of the chapter. The axionms
stated should apply to self- or mutually interacting fields in
curved space as well as to the "free” field described in the rest
of the chapter.

The word "free" 1is placed in gquotation marks here
because the deviation from the ordinary special relativistic free
field equations due to the nonconstant metric coefficients is

every bit as drastic as that due to, say, an interaction with an
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applied electromagnetic potential. One is tempted to describe
the field on a Riemannian manifold as a field coupled to an
external gravitational field, and thus to absorb it inte the
general class of external potential probhlens. There 1is a
distinction, of course: In special relativistic external
potential prohlems one thinks of the external force as something
superimposed on a fundamental flat space; there are distinquished
systens of Cartesian coordinates, In the gravitational case,
because of the universality of the gravitational interaction (the
principle of equivalence), it 1s operationally impossible to
define distinguished globhal coordinate systems, or to split the
tensor which appears in the eguations of motion wuniquely into a
space-time metric and an "external" field. 2lso, the topology of
the space may be different from that of Minkowski space. These
added complications do not affect the point that the nmetric of a
curved space, or even of flat space treated in curvilinear
coordinates, enters the dynamics of a field as an external
potential, We shall therefore broaden our discussion to include
external potentials in general,

We may define an external potential interactiom, as
opposed to a self~interaction or mutual interaction of guantized
fields, as any interaction described by a quadratic term in the
Lagrangian or Hamiltonian, and hence by a linear term in the
equations of nmotion of the quantum fields. (We could also
consider "external source" problems, where the interaction termn

is linear in the Hamiltonian and constant in the equations.)
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These include external electromagnetic (four-vector) potentials
and many other types of less relevance to nature, such as the
scalar potential introduced in Fqg. (V.5.6).

Pield theories involving only external potentials (no
true field interactions) are much less pathological
mathematically than interacting fields. Nevertheless, they
present a problem from the point of view of framing general
principles 1like those in Appendix BE. The reason is that
nontrivial external potential interactions are in general not
Lorentz-invariant, For instance, an applied electromagnetic
field must point in some direction, and the field strength may
vary from point to point in space and time, Under these
circumstances it 1is not possible to make the assumption of
Poincaré invariance (Axiom 2y which is normally imposed on -
relativistic field theories., Tt follows that all the axionms
which fall below Axiom 2 in the graph of Fig., 20 must at least
suffer re-examination; in fact, most of them become meaningless,

There is less difficulty with the "field" axionms, In
the case of an external potential in Minkowski space the meaning
of Axioms 3, 5, and 7 is clear, and there 1is no visible reason
not to keep them. In Riemannian space some modifications are
necessary along the lines indicated in Sec. 1IV.1. Local
commutativity, in particular, must be defined with respect to the
causal structure of the space (see Sec. I7I1.%5); with some risk of
oversimplification, we can say that the 1light cone at a point

divides those points which are causally related to it from those
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that are not. Finally, note that the various kinds of tensor and
spinor fields can be defined even though there is no longer a
relation with a group representation of the type described by
Axiom 4; in accordance with the ground rule laid down in Sec.
IV.1, vwe shall not discuss them.

The main problem, then, is to find reformulations of or
substitutes for the spectral condition, the vacuum axioms, and
the axiom of asymptotic completeness, or to get along without
thenm. The extent to which this can be done depends on the
properties of the potential. Therefore, we shall discuss sone
special cases.

If the potential, along with any other interactions in
the model, is independent of time, almost everything can be
recovered., Axiom 2 can be rTestated, with ISL{2,f) replaced by
just the time translation group, or possibly some larger symmetry
group containing it, Then there is a self-adjoint generator of
the time translations, H. One can require that the spectrum of H
be bounded helow (suhstitute for Axiom 9), that its ground state
be discrete and nondegenerate (for Axiom 6), and that this state
be cyclic for the fields (Axiom 8). If the potential does not
fall off to <zero at spatial infinity, however, asymptotic
completeness has no clear meaning, and there may be a difficulty
in giving the theory a particle interpretation, The static
situation will be discussed in the gravitational context in
Chapters VIII and IX.

The next best case seems to be that of a potential
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vhich vanishes, or at least becomes static, asymptotically in
time, Then during the periods when the interaction 1is "turned
of f¥ the states of the system can he classified in terms of the
appropriate free, or static, Hamiltonian. Thus the conditions of
positivity of the energy, etc., can be imposed at each end, The
only trouble is that the equations of motion may imply that the
field operator defined in this way at early times
{(in-representation), evaluated at late times, 1is not nuanitarily
equivalent to the field operator defined according to the axioms
at late times, Physically, one can say in such a case that
infinitely many particles are produced by the interaction, (Note
that even it this does not happen, the in- and out-vacuums will
not usually be the same state -- that 1is, there 1is sone
probability for the creation of finitely many particles,) This
sort of situation will be discussed further in Secs. X.2 and
X. 7,

In the general case it is not at all obhvious that any
remnant of the spectral condition, etc., can be salvaged.
Perhaps one can define a spectral condition at each time by the
method sketched in Sec, IV.2: but, for reasons similar to those
just discussed (for the asymptotically static case), one would
not expect this procedure applied at different times to yield the

same representation of the fields.[10]

[10] If the potential is quite smooth and falls off rapidly in
both space and time, a satisfactory theory (at least for spins 0
and 1/2) has heen developed, in which the in- and
out~representations are equivalent, See Capri (1967, 1969),
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¥hy have these difficulties not been considered nore
thoroughly in the literature of gquantum field theory in
connection with external potential problems? The most important
reason seems to be that in "laboratory" or "terrestrial®
applications of field theory one can always assume that the
external field is finite in spatial extent and either static or
asymptotically vanishing in tinme. {Bven when the expression
which is explicitly written down does not have these properties,
it is arqued that it is an idealized approximation to something
which does,) Hence the states of the syster have an asymptotic
particle structure vwhich enables one to recover most of the
consequences of positive energy. In particular, the theory has a
physical interpretation in terms of particles. Another reason
for the lack of attention to the problems which arise in singular
external potential problems 1is the feeling that whatever
pathologies appear are a punishment for treating the external
field classically instead of as a gquantized field in its own
right; they are expected to disappear in the complete,
Lorentz-invariant theory of the future,

In gravitational problems on the astrophysical or
cosmological scale, however, one cannot take these ways out,
(Fith respect to the first point, see the remarks of Secs, TV.?
and VITIT.4, The suggestion that a coherent treatment of

elementary particle processes in a gravitational background wmust

Capri et al. (1971), Schroer et al. (*970), Wightman (1968,

———— —

1971), Seiler (1972).
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await success in the conceptually nurky project of "quantizing
the gravitational field" is unwelcome, to say the least,) Tt
seemns quite probable, therefore, that the grovwing interest in
applications of gquantum field theory to astrophysics and
cosnology may force quantum field theory to confront certain

fundamental issues which up to nov have largely been evaded.
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Chapter VITI

QUANTIZATION IN A STATIC GRAVITATIONAL FIELD

In this chapter we assume that there exists a
coordinate system in which the metric is static (see Appendix
D).[1] That is, all the components ?ﬂy are independent of t
(= xo), and gq} =0 for j# 0. Topologically, space-time is
I X M, vhere I < } is the time axis and M is a manifold covered
by the s spacelike coordinates, {(Tn this chapter the letter x
will stand for just the spacelike coordinates of a point,)

Although what 1is done in this chapter is a very
straightforward generalization of the familiar quantization of
the free scalar field in Minkowski space, it does not appear to
have been written out in much detail hefore, Special cases have
been treated briefly, of course. For instance, Bonazzola and
Pacini (1966) quantized a scalar field in the general spherically
syametric static background metric in preparation for a
self-consistent treatment of a system of many particles in their
own strong gravitational field; this theory and the analogous one
for fermions were applied in neutron star calculations by Ruffini
and Bonazzola {1969). Also, since we shall find 1in Secs,

VITI.3-4 that the field theory constructed here is eguivalent

[1] The static coordinates may cover only part of space-time, in
which case we temporarily forget about the rest, See Sec, VITI.$
and Chapter IX.
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{under most circumstances) to a single-particle vave mechanics,
all attempts to do relativistic quantum mechanics in a static
gravitational field can be considered instances of this theory or
its higher-spin generalizations. {For example, Unruh (1971) has
studied the Dirac equation in the Schwarzschild metric.)

In short, the theory presented here seems to be
equivalent to what anyone would naturally do, and some theorists
have done, when confronted with the problem of describing matter
in a static gravitational field gquantum-theoretically., This
circunstance lends interest to the fact which will be established
in the next two chapters -- namely, that this gquantization is not
unique. In fact, in Sec, ¥.8 the present author will suggest a
method of quantization which does not agree, in general, with
this one. To what extent the ambiguities affect observable
quantities has not been fully determined, (See Secs, T¥.U4-5,

IX.7, and x.7-8¢)

1. Solution of the Wave Equation by Separation of Variables.

In the static case the wave equation (VII.?1.2,3) is

2 900 __ ik 2
-9 g=-—201[VIiglg 081 +q n g = Kd. (1.1
0 Vigl 3 k 00
The ansatz
-iE. t

J

Blt,x) =¥ (x)e
3

(1.2)

i
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leads to

K§ (x) =E ¥ (x). (1.3)
3 i 3

The operator K is Hermitian in the scalar product{2]

s __ 0¢
(F ,F) = fa x ¥iglg  FE ()P (x). (1.)
1 2 1 2
It is also positive:
__ Hk 2 2
(F ,KF ) =fdx Pr(x) O [VI9lg O F (1) ] +fdx Yigi n 17 (x)|
11 1 j k 1 1
_ {s) ik
g+}dxﬁ§| g O Fx(x) dF (x) >0
51 k 1
. 6 sk, _ ik . - - .
since {7 g’} = {-~qg } 1is a positive definite matrix. The

operator therefore has self-adjoint extensions (see [ Reed-Simon],
Sec. 8.6, and [Kato], Secs. VI.1-2).

If the Canchy problem is well-posed in this coordinate
system in the sense of Sec, IITI.5 {(i.e., each hypersurface
t = const. is a Cauchy surface for the region of space-time
covered by the coordinates), one expects on physical grounds that
K (with sonme obvidus boundary conditions, if necessary) will be

essentially self-adjoint, since particles cannot leak in or out

[2] Note that in Secs., V.7-8 coordinates were tacitly chosen so
that Vigiq® = 1.
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of the space, This can be verified in particular cases.
{"Obvious toundary conditions" refers to those vwhich are
necessitated by the topology of the manifold M, such as
periodicity in an angular coordinate, 1In contrast, in the open
de Sitter space (Secs III.6 and V.8) the Cauchy problem 1is not
well-posed, and for q > - 3/2 a bhoundary condition which is not
physically obvious is needed.)
Prom now on we assukme that K (on a suitable domain) is
a self-adjoint operator in the Hilbert space J of functions of s
variables with the norm
2 s o0 2
nen = fa xfala  1P(x)1 .
The spectral representation of K gives a unitary correspondence,
analogous to the Fourier transform, between _§ and another
Hilbert space La(p) of functions E(j), in terms of vwhich K is
"diagonal”: Kf(j) = Ejlg(j) {see, e.g., [Reed-Simon], Chaps., 7
and 8.)
For convenience we shall assume (as usual in elementary
quantur mechanics) that the numbers in the spectrum can be

classified as point spectrum U% or continnous spectrunm g {or

both), and that a corresponding complete set of generalized

eigenfunctions exists.[3] That is, an arbitrary function in J

[3] These assertions have been established only for certain
classes of differential operators. (For instance, Tkehe (1950)
has treated the ordinary Schr8dinger equation with a potential
vanishing at infinity.) In the general case the eigenfunction
notation should be regarded as formal shorthand for a rigorous
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can be expanded as

F(x) = fdu(j) £ (n,
]

(1.5

where wj(x) are the solutions (not square-inteqrable if Ef is in

the continuous spectrum) of the eigenvalue equation (1.3).

p is the measure vhich defines the scalar product in ﬁR(P):

2 5 2
nEN =japm|f(jn .

Here

{1.6)

For instance, if the wj(x) are suitahly normalized, /ﬁp(j) means

In any case, for consistency of Egs. (1.4) and (1.,6) e

choose the normalization so that

s __ 0o
[d x Vigly T () = TASE
3

nust

(1.7

vwhere fdp(k)&(j,k)g(k) = ?(i). Then we have the inversion

formula

_ s __ 0o
£ (4) =/d x Iglg ¥* (x) B (x)
3

and the completeness relation

(1.9)

treatment in terms of spectral projections, or perhaps of rigged

Hilbert spaces.

—_—
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. 0e -1
Japwrme m = (Viglg 1 dx - . (1.9)
J ]
(Egs. (1.7) and (1.9) just say that the mappings (1.5) and {1.8)
are inverse to each other,)

The general solution of the wave equation (1.7),

expanded in terms of the eigenfunctions (1.2), is

- 'ith + iE_;t
git) = [apie ¥ (e +0 ¥ (e ]
3 3 J 3
(1) (2)
+0 ¥ (M +0 ¥ (Dt (1.10)
0 0 n 0

'7.
J
of K. (To save writing it is assumed that this eigenvalue is not

The last tvwo terms occur only if E."= 0 is in the point spectrun
degenerate.) This happens, for example, in the case of the free
massless scalar field quantized in a finite ™"box" with periodic
boundary conditions. Since K is a positive operator, F; is

always nonnegative. We take g] 2 0 by definition,

2. Creation and Annihilation Operators.

Without loss of generality we may choose the Uj(x)
real. In some contexts it may be convenient to choose conmplex
basis functions (momentum eigenfunctions, for instance); they
will be considered at the end of this section.

The general solution (1.70) is determined by the Cauchy

initial data #{0,x) and m(0,x), which we can expand in

—
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eigenfunctions:

#00,%) = fap(d) a_¥ (0, (2. 1)
]

]

00, __ 00
n©,x) = Viglg  #(0,%) = Vigig }dpm JARUENCRL
Then
00
q = jdx Viglg 0% (x)8(0,x), (2. 22)
3 i
p = jdx Px (x)TW(0, %), (2. 2h)
3 j

(As written these formulas apply also to complex Wj.) If 4 and M
are Hermitian gquantum fields satisfying the CCRs ({VII.2.1), then

q. and p, are Hermitian (for ¥, real!), and
J J J

00
[q.,p ]=dede Yigla ¥ (0¥ (p id(x - v = i§(3, K.
b I 3 k
(Here and in what follows we use without comment the elementary
formulas recorded in the preceding section.)
Comparing Fgs. (2.1 with Xq. (1.10) and its time

derivative at t = 0, we find

(A
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- 1
Q"':'[q *ip./E 1
i 2 3 i3
+ 1 - %
¢ ==-(g -ip/E1=(0),
j 2 3 i3 b
and
(M {2)
Q =49, Q =P s {2.3)
0 0 0 0
and hence, for Ei > 0,
- + -1 - -
[0,01=@E) 6(,k), [Q,0]1=0.
j ok 3 j ok
This suggests that for Ej > 0 we set
_— t +
a =8 0, a =VE o, (2. 1)
i i g j i

in analogy to the familiar quantization of the free field of nmass

m. Then

.’
fa,a]=0, (a,a ]-= S(j:k)- (2.5)
i ok i ok

Substituting Egs. (2.71) into Eq. (VIT.1.8b), we have,

after integration by parts and use of Eq. (1.3),

——
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1 2 2 2
H = -z.id}l(j) (p + B g ) = Idu(]’)H‘. (2. 6)

)

J i 3 3

The contribution of each mode with ®. > 0 to the Hamiltonian is

i
H =-(p +E q )=F (aa +-). (2.7a)

In order for the total energy H to converge in the Pock
reptesentation to be constructed in the next section, we nust
discard the constant term E3/2 by normal ordering with respect to

a. and a;. Then

J

H =F aa = E N, (2q7b)

In any representation the operator of Eq. (2.7b) has the discrete
spectrum 0, Bj' 2Ej' vae nEj, «sse Therefore gj is regarded as
the number operator for quanta of the type 1§, each of which
carries energy Ej.

When Ej =E, =0, H = p°1/2 has continuous spectrum
from 0 to +c0o with multiplicity two. To obtain a complete set of
computing operators, H can be supplemented by sgn p_; this is
equivalent to using the spectral representation of Pe
Alternatively one might use iR and o, the parity under change of
sign of P, and q, (equivalently, of g{x)). The physical
interpretation of this spectrum will be discussed in Sec. VIII,S,

Since K 1is positive, we do not have to worry ahout

"jelly modes" with Rf'( O (Schiff et al. (1940); Schroer and

1
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Swieca (1977); Schroer (1971)). In external potential prohlens

these give contributions Hj = i(p; - iEjllqjl), vhich are not —
bounded below, to the enerqy, and exponential terns
Uj(x) exp (+ lEjlt) to the field, Their physical interpretation —
is obscure. It is conceivable that this complication might arise

in the conformally invariant theory ({see Sec., VII.MT) for
sufficiently large negative curvature.

Llet us now consider the possibility of complex
eigenfunctions. The conmnplex conjugates m?(x), like the Uj(x), —
make up a canmplete set of generalized eigenvectors. In general
UJ and W? are not orthogonal, but they are if they correspond to —
different eigenvalues (Ej 7 Ek)' (For the free field, where j is —

¥ - =3f2
the momentum vector k, PX(x) 1is (2N)
k

exp(—ig-x) = 7 i:()().) In -
Sec, VIII.4 scattering states will be defined for field theories
in static space-times which are asymptotically flat; in this case

;h sul

v-lz *(X) = v“.‘. (X), and —

s _ 00 in in in in - -
Jd xV1glq V. (X)UT (x) = (vi.*.w ) = S({-k,1), (2.8) —
k ]

an element of the S-matrix.)
If complex basis functions are allowed and the terms
for Ej = 0 are dropped, Egq. (1.10) (with the definitions (2.4) —

and (2.3)) generalizes to
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dp (3) -iF.t iE.t ¢
— [¥ (x)e ' a + px(x)e a 1 (2.9 —
2E, i i

4(t,x) =J

The Hermiticity of @ forces the occurrence of W * in the second
J

term. It is clear that the modes will not decouple as neatly as

in the treatment above for real eigenfunctions, but it is equally

clear that this complication is merely an inessential notational

nuisance, The canonical momentum is now

n(t,x) =

e e

__ 00 F; -iE;t iB;t ¢
- iviqig [dp(j) — ¥ (x)e a - P¥(x)e a le (2,10 —
2 3j 3 i 3

The last two equations are easily inverted to yield

1
a = —(VEq +ip WVE

, _
i V2 5 i
1 _ 00 i
= —[VE |axV]glg P*(x)@(0,x) + -:[dx PE(OMNO,x) ) (2.11) -
2 5 j v@; j

a} is given by the ad joint of this expression. A byproduct of —

this calculation is the observation that the creation operator

corresponding to the basis ([f*} is —
i

1 _ +
a = —(Fq -ip VE) =/dp(x> W, a. (212 —
i V2 33 i i k § 0k

The generalization of Eqs. (2.7) {(with normal ordering) is



Sec. VIII.2 243

Tt 2 ¢ t
H ==-3(pp +F gqg):=Faa. [(2.13)
i 2 33 B I J 33
So
+
H = jdp(j) Faa. (2. 14)
j i

A generalization of Eq. (1.9) is the fact that

f ap () v+ () ¥ () = J ap(H v (x) ¥+ (y)
E.=E j F. =F 1

is the kernel of the projection onto the space of vectors of

eigenvalue B, It follows that

fapry mvemae) - fﬁp(j>v*(x>w MAE ) (2.15)
i j i .

when A depends on j only through Bj' Fg. {2.15) is often useful

in manipulating complex basis functions.,

3. The Pock Representation.

In this section and the next we assume that the point
spectrun does not contain E = 0,

The formulas of the preceding sections do not yet
constitute a quantum theory in the common sense of the tern,
since the fields have not heen realized as operators on a Hilbert
space, Tt is well known that there are many inequivalent ways of
doing this, (See, e.g., Wightman and Schweber (1955).) In the

static case, hovever, as in the case of the free field, one
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representation stands out as a leading candidate for "correct" or
"physical" representation., It is determined by the requirement
that there be a cyclic vector (the vacuum or no-particle state)
which 1is annihilated by all the operators aj of Sec., VITI.3,
{("Cyclic" means that all the vectors in the Hilbert space are
limits of sums of vectors obtained by acting on the vacuun by
products of the field operators. 1In other wvords, we choose the
snallest space containing the vacuum consistent with the action

of the fields.) This is the TFock representation. It has a

particle interpretation (Sec. VIII.U).

Let 4¥ stand for the space Lz(p) introduced 1in Sec.
VIII.1T. Llet ‘ﬂo” be the Hilbert-space closure of the symmetrized
n-fold tensor product of %/ ; its elements are the
p-square-inteqgrable functions of n variables j', vsay j". An

element of the Fock space o is a sequence

~ o~ ~

£2(f, E (D0 £ (5,300 eoee £ AT seensd )y onad = (F]
12 1

0 1 2 n n n
. -~ 716 - Z ~ A
vith £, € H°" and JE4" = 3 QE I < 0. let 7 be the
n=o
sequences in 4 with f; = 0 for all n greater than some N. Let

JTZ: 7%/ be the space of functions f(j) which vanish whenever Ej

is greater than some maximum value {functions of compact support

in the energy), and let J ® be the syannmetrized n-fold tensor

product of this space (no closure implied), Let 4 be the

il
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sequences in % with each £, € 7% .[4]

We are rTeady to construct the operators of the
representation.
Creation and annihilation  operators. For f =
(F (3, eeerd)} €N and g €%, let
A@E = (A [GEHIHE (eI eeedd ) (3012)
n+1 1 n
f » ~ -
a (@Ef = (VnsyafT(GIE (5 4eeerd) D (3.1b)
1 n-1 2 n
In the standard way one verifies that the adjoint of a(¥) is (an
extension of) af(q*), and that
” t ~ -
[a(f), a (N ] = (£%, ), [a(f), a(@d 1= 0. (3. 2a)
T
Setting aﬁ)(q) = Jdp(j)ag)q(j), we have
[a,a 1=068(i%x, etc, {3.2h)
3 k

a {(f (3 seuvei N}
k n 1 n n+1 1 n

[4] The choice of J and % is arbitrary. Most of our results —

VR*T £ (K, peeesidls (3. 3a)

could be proved for larger domains; e.q., those built out of

functions of fast decrease in E; or sequences of fast decrease in —

n. On the other hand, one nmight in some contexts want to
restrict the functions in J by some condition of smoothness

in j.
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t

a (£ (J eeverd )Y = (V0 syn(8(k, 3 IE (5 4eers i) TN, (3.3D)
k n 1 n 1 n=-1 2 n
a |0> =0, {3.8)
k
{O' O' .." f (j '.ll'j )’ 0' ‘..} =
n 1 n
1 ~ t t
— jdu(j Yero@u(3) £ (4 seensida eowa 10 (3.5)
vn! 1 n n 1 n 3.
(oo =1, 0, 0, ...0).
Hamiltonian and number operator., With these

definitions the normal-ordered Hamiltonian (2.13) makes sense:

HE = {(E % vase #+ B ) F (5 yeeesd )]s (3. 6)
3, 3 n 1 n

"

H is manifestly self-adjoint on . Similarly, a total number

operator y = fdp(j)a;a. is defined and is essentially
J

self-adjoint on %; NP = nP if ¥ is the vector in Eq. (3.%).

Fields. Consider a function PF(x) and define its

transforn ?(j) by EBq. (1.8); let E(j) stand for the complex
conjugate of the transform of F*(x)., (Note that the map %'-—9 £

is linear (not antilinear). If the basis functions wj(x) are

real, £ = E: If P is real, £ = ?4.) Now define
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s __ 0o
4(t,F) = jd x VIaTg  #(t,x)EF(x)

an (§) _ -iEgt t . iEt
= [—=1ta The ' +a Fde ']
2F, 3
]
_ -iFt __ t _ iRt __
= a(fe /Y2%) + a (Fe /V2E)
and similarly

JE_-iEt ﬁ/nE-,,iEt

N{t,F) = - ifa(y— fe ) - a (y— fe )1
2 2

(3.7

(3. 8)

The field operators will not be defined (as unbounded

operators in <% with domain %) unless

]
— fe U for g(¥), (3. 9a)
Ve

VEfe 4 for n(r. (3. 9b)

{If the lower bound of the spectrum is not R = 00, the first of

these conditions holds for all f € #.) 1If these restrictions

are met, % is an invariant domain for the operators. L is an

invariant domain if f € 47?' Note that f € J7Jimplies Pg. (3.9h)

{but not (3.9a)). 1If f is in < and F is real we can show

that

#g(F) (= #(0,F)) and N (F) are essentially self-adjoint on & and

that the Weyl relations (exponentiated CCRs)

o~

o~

1]}
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ig(f) 1iR(G) -i({F,G) 1iW(G) 1ig(F)
e e = e e e (3.1%)
are satisfied. The easiest method (just as for the free field)
is to show that the n-particle vectors (3.5) are analytic vectors

for ¢(F)A + H(Gf' and then to apply the theorems of VNelson

{1959) .
Time translation group. Let
+iHt -
Uu £ =e £ = {exp(+i(E +.4+E )t) £ (9§ ,see,7 )} (3.11)
t 3, i, n 1 n
Then it is easy to verify that
-1
U g0,f)0 = g(t,F) (3.12)
t t

and similarly for MN(t,F). Equivalently, commutation with the
generator H yields rigorously the equations of nmotion discussed
in Chapter VIT, In the usval way one can pass from the
Heisenberg to the Schr8dinger picture with the propagator
exp(~iHt).

The Fock representation is irreducible. This follows

from the positivity of H Jjust as for Ilorentz-invariant field

theories ([Streater-Wightman], p. 1.

Vacuum expectation values {(n-point functions). Unlike

the general case discussed in Sec. VII.4, the field theory in a
static universe has an obvious distinguished state, the vacuunm

10>, We define (cf. Bq., (VII.4,15a))
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(+) (+)
G (t ,x it ,x) =6 (t ~t ,x ,x) = <018t ,x )@t ,x ) 10>
2 1 2 1 2 1 2 2 1 1
an ()
= j~—-- ¥ o(x )P*(x ) exp[- iE (t -t )], (3.13)
28, 3 2 4 1 i o2 1

It 1is easy to calculate, as for a free or generalized free

field[ 5], the expectation value of an arbitrary number of field

operators:
n
WX geeesXx ) = <01F(X ) o0oe Z(x )I0> {x = (t ,x)); (3.18)
n 1 n 1 n n n
2n+1
W {x seesgX ) =D, (3. 15a)
2n+1 1
2n {+)
W (X yeearx) = E G (x ' X | I
2n 1 i{2n) i(2n-1)
(+)
X G (x o X Y,  (3.15hb)
i) i(M

where the sum is over all partitions of the indices (1,...,2n)
into pairs with 1i(2k) > i{2k-1H. The field theory can Dbde
reconstructed from the vacuum expectation values in the usnal way

([ Streater-Wightman], Sec. 3.8).

Confiquration space and propagators. One can identify

the elements of the space 7/ with the ({(normalizable)

[5] Greenberqg (1961), pp. 161-163; [Streater-Wightman], p. 116,
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positive-frequency solutions of the wave equation (1.1} through

the formula

(t.x) = - (x)e (3) » (3.1%6)
VZEj 5
We write
. df
f{x) = £(0,x), f(x) = —(D,x). (3.17)
ot

The scalar product takes the forn
€ .5 = [noOBGF )
1 2 1 2

s 114]

=i [a x V1319 [£%(x) £ (x) - (£ )*(x) £ (%) ]
1 2 1 2

00

i

02

which is the covariant current form of Sec, VII.S5., (In contrast,
the +transform (7.5) 1leads to the noncovariant scalar product
(1.4).)

The solution (3, 16) is uniquely determined by either of

its initial values (3.17). Indeed, inversion of Egq. (3.16)

yields

s L «>
i ’a x Yiglg f£*(x) 8 £ (x) = W(f ,f), (3.18) —
1 1 2

-—
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s 00 (4 .
£(t ,x) =2aﬁ x Yigla 6 (t ,x 3t ,x JE(t ,x ) —
2 2 1 2 2 11 11
s 00 o (9
= =~ 2i{d b ¢ VTGIQ —G (t ,x 3t ,xYf{t ,x ) -
1 bt‘ 2 2 1 1 1 1
s __ 00 (M €«>
= ijd X V?q]q G (fr ,x st ,x ) 0 f(t ,x ). (3.19) -
1 2 2 11 0 1 1

. +)
For this reason G( could he called the forward propagator. O0f —

.

course, in the last form of Fg, (3.19) f and f cannot be chosen —
independently; any positive-frequency solution is characterized
by

00

£ = - ifapE ¥ 0 fay Visle wEmEm. G20 -
J 3 ]

In contrast, the full propagator of Sec. VITI.H4,

iG(t ,x 3t ,x ) = [g(t ,x ), #(t ,x )]
2 2 1 1 2 2 11
ap (9) -iF. (t -t ) iB. (t_~-t )
) J vV (x)p*(x) e P - 7 Ty, @32y —
ZEj i 2 4 1

gives a general solution in terms of a full (independent) set of

Cauchy initial data:

S _ 0¢ €«>
£(t ,x) = - /d x Viglg Gt ,x it ,x) O £t ,x ). (3.22) —
2 2 1 2211 0 1 1

The comnutator iG is determined by the CCRs and the wave
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equation, but the two-point vacuum expectation value G(+) depends —
on the representation. The latter fact 1is one aspect of a
problem which will occupy our attention throughout most of the
rest of this dissertation,

Using Egs. (3.16) and (2.11), we calculate
A t .

a () = fapha (3 = gD - MO ]
J

s ___00 «>
= ifﬁ x Viglg #(x) & f(x), (3.23a) —
0

a(f) = i[#(F) + M(E)] (= a(F) if ¥ (x) are real). (3.23b)
3

{The bar in Eq. (3.23h) is the price of requiring a(g) to be
linear in f -- see Sec., F.1. Note that complex conjugation in -
the f representation is equivalent to complex conjugation in the
¥ representation used earlier, so £ is anambiguous.) These -—
formulas appear to define a(f) and aT(E) in a manifestly —
covariant way (see Sec. VIT,3). However, one must remember that
f(x) is defined in terms of f (x) (which we take as given) through —
BEq. (3.19), and our definition of the forward propagator ¢ _
depends crucially on the splitting of the general solution of the
vave equation in a static coordinate system into positive- and
negative-frequency parts. Consequently, on the one hand, Egs.

{3.23) are of no use in the general case (nonstatic metric)

unless we <can give a more general definition of the forward

]
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propagator, On the other hand, our procedure is not well-defined
if the metric takes a static form in two different coordinate
systems., Such a situation will be studied in detail in the next
chapter.

At first sight Egs. (3.23a) amd (3.23b) may seen
contradictory, since the first implies that (since # and N are

Hermitian fields)

+ ¢ .
a (fy = i[- g((£)*) + N(f*x) ],

while the second equation says that

t _t — .
a (f) = a(f%) = i[+ g({f*) ) + N(f¥) ],
This brings out a subtle point: 1In our present notation f£*{t,x)
is defined in terms of the 1initial value f*(x) and the
positive-frequency time propagation; thus it is pot equal to
[f(,x)]*. In fact, in this context differentiation with respect

to time anticommutes with complex conjugation:

. a _dp(d) -iP.t __
(f¥) = —[|——=— ¥ (x)e ' f¥(§)]
dt V2E, 5 t=0
J

L
= - ijdp(j) — ¥ ),
2

but



Sec, VITI.? 254

—— e

. E. ¥ E; —_—
(£)* = i[dp(j) —Loprf @)=+ ifam =y wFO.
2 3 2 ]
(The last step uses
£(x) jdﬂ(j) X F i) dp (3) . f;* ] 3.8
X) = —= 0 XEE) = |—— *(x) (3, (3.28)
v’i‘s): j \/'2'EJ- §

which is also used in deriving Fq. (3.23b)., Substitute f* for f
in the first equality and complex coniugate to obtain the second

equality.)

4, Particle Interpretation.

Fach of the n-particle spaces is carried into itself hy
the action of ¢the time translation group. 1In other vords, the
particle number N is a constant of the motion, 2&lso, the
particles present in an n-particle state do not interact with
each other; they behave entirely independently, except for the
restrictions of Bose statistics. Consequently, this field
theory, like the theory based on the ordinary Klein-Gordon
equation, 1is essentially the second gquantization (see, e.g.,
[ Schweber], pp. 156-195) of a single-particle theory.

In fact, one «could have started with a one-particle
theory, or "relativistic wave mechanics", based on Eg. (1.1 . 1In
this approach the equation is to be solved for a conplex-valued
nunerical function instead of an Hermitian operator field. The
positive-frequency solutions are the possihle wave functions of a

particle. The solutions have the qgeneral form (3.16), with the
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scalar product (3.18). The wave functions for a system of n
identical particles are obtained from these by the symmetrized
tensor product. The annihilation and creation operators can be
defined as mappings between the n-particle spaces with adjacent
values of n. Finally, the Hilbert space of all possible states
of the world (when only particles of this one type are
considered) is defined as the direct sun of all the n-particle
spaces (including a no-particle state |0>)., The operator of the
scalar field in configquration space can be defined by PEBq. (2.9
(or (3.7)). |
Conversely, one can recover the single-particle theory
from the field theory by studying the one-particle states:
~ t
1£> = {0, £(3), €4 <o} = a (£) 10>, (4. N
The matrix element of the field between |f> and the vacuum gives

the x-space wave function:

dp (3) -iE. t t

Olg(t,x) 1> = <O |—==—= ¥ (X)e Joa jdp(k) g(k)a 10>
V,EEJ 3 i k
an () -iB.t _
= == v me 1 fi5) = fieem. (4. 2)

Eq. (4.2) can be loosely regarded as the scalar product of (|f>
with a continuum basis state g(t,x) | 0> associated with the point

X. However, these generalized states are not orthonormal, since
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ap (3)
<0150, 8(0,7) 10> = | ¥ ry # Stx -y,

2%,
j ] ]

On the other hand, if we define an operator

distribution
p(x) = jdp(j) ¥ (Ma ., (4. 3)
i
ve have
*-
<O1(X)® (10> = d(x - y), (4.1
QI8 16> = (ap(h) ¥ (EG) = Fio, (4.5)
3
% s ___ 00
a (f) = Jd x Vlala  F(x)d(x) (. 6)

(cf. Egs. (1.5,8)). 2An object analogous to § was introduced by
Friedrichs under the name "modified annihilation operator" in the
study of a field interacting with an external potential
({ Friedrichs], pp» 189-191). When the one-particle states are
represented by the functions F(x), the scalar product takes the
simple form (1.,4) and multiplication by x becomes a self-adjoint
operator, It is analogous to the Newton-Wigner position operator
for the free field in Minkowski space (Newton and Wigner (1949):
Wightman and Schweber (1955)}. Correspondingly, Qf(x)é(x) can he
interpreted as a particle number density operator in the field
theory. RAlthough this operator x has the correct mathematical

properties to he interpreted as a position ohservable in the
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universe under consideration, it is not thereby self-evident that
it has anything ¢to do with the particle bhehavior observed in
actual experiments.[6] Note that F(x) is still a solution of the
vave equation when the wmomentum conmponents are given their
natural time dependence; so is the Hermitian field
1 t

6"{@(!) +d (x) ] (4.7
This object, however, doess not commute at spacelike separations
{and in the case of flat space it is not Loremtz-invariant).

The results presented in the next chapter show that
there are limitations on how seriously  the particle
interpretation of field theory in static space-time developed in
this chapter can be taken. However, there is one situation in
which the particle picture seems to be beyond dispute -- the case
of an asymptotically flat space metric, This case fits into the
familiar framework of quantum-mechanical scattering theory.[7]

That 1is, the spectrum of the "squared single-particle
Hamiltonian”™ K (see Fg. (1.1)), except for possible discrete
bound states, coincides with the spectrum of K for £flat space,
In particular, the parameter j labeling the modes can be chosen

> -
to be a momentum vector k. In configuration space the hehavior

[¢] €f. remarks of Wightman (1982), p. 8U46,
[7] The brief discussion here cannot do justice to this powerful
but subtle framework of thought. The reader who 1is unfamiliar
with it is referred to the first three sections of Brenig and
Haag (19%9) and to [Messiah], pp. 269-2380,
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of wave functions 1is as follows: There are (possibly) bound
states, which always remain localized near the region where the
metric is not flat, For any given normalizable state orthogonal
to the bound states there is a time before which, and a time
after which, the particle it describes is essentially out of the
range of the curved part of the metric and closely follows "free"
or "flat" dynamics., Therefore, these scattering states can be
labeled by the configuration of the particles in the remote past

{the in representation) or the remote future (the out

. . on outl
representation). There are corresponding operators a? v af .

etc, The momenta labeling the annihilation and creation
operators in the in and out representations are associated with
the directions and epergies with which the observahle particles
approach and leave the potential, respectively. The

transformation between these two bases is given by the S-matrix:

5 s -> > >
1K in> = jd 313 out><§ out¥ in> = fd 313 out> s(3, 0. (4.9

(From the properties of the Schr8dinger equation under time

reversal it follows that

out in
¥, (x) =¥  *(x). (4. 9)
k -k

Thus the in- and out-states form a pair of mutually conijugate
basis sets, as discussed at the end of Sec. VIIY.Z. In

particular, Fq. {2.8) holds, and Bq. (2.12) inmplies that
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int s, out out out+ s, outt
a, = fd K (7, ¥ ,% a, =/d kS, a, (4. 10)
3 k -3 k k

{as was to be expected from Fg. (4.8)).)

The essential point here 1is that as 1long as the
particles are out of range of the gravitational field the
physical system essentially reduces to the ordinary free field,
whose physical interpretation, especially in momentun space, is
vell established. Thus one's accceptance of the asynptotic
particle interpretation of the field theory considered here
should be as strong as one's faith in the free field,

In most problems to which qguantum field theory is
applied the range of the interaction is microscopic, and the only
feasible experiments are scattering experiments (and perhaps
neasurements of bound state energies). In gravitational
problems, however, one normally has a gravitational field in a
region of mpacroscopic or even cosmological dimensions, and
experiments may take place entirely inside it. The emphasis,
therefore, in the physical interpretation of field theory can be
expected (even in the case of an asymptotically flat universe) to
shift to observables which have something to do with local
phenomena in x-space. As the remarks of the next two chapters
show, this is a subject which still remains to be satisfactorily

developed,
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5. The Case of Zero Frequency and the Infrared Case.

If there is an eigenvector of

K with ¥ = 0, it has been remarked 1in .
Sec, VIII.2 that the contribution of .

- meemmeeae 2E, +E,
that mode +to the total enerqy becomes $ ~mmrmme———- 2E,
continuous., (As the prototype of this
situation we may take a free scalar .
field with m = 0 in a finite "box" with .

- mem————— F,#4F
periodic  houndary conditions.) The e F 437

- e E #2F
field has the expansion (1.10). The t omeememeemm E, +E

- mmemeeee-- E
most obvious representation is the ‘
tensor product of the unique irreducible
representation of the canonical .
operators {qo,po} with the Fock + memmmc—e—— 4%,

- memmmm——— 3=,
representation (Egs. (2.%), {(3.1)) of 4 mmmem—m——— 28,

- - - Ee
all the higher modes. (Let us denote + e e———— 0
the Hilbert space of this Fock o ®

representation by  , as before.) In
Fig. 12
the tensor product representation there
Second quantization
is no (normalizable) vacuum state of of the spectrun
— (VITT.E5. 1.
zero energy. Por each state in Ff {with

energqy FE, say) there exists in the tensor product space a
continuun of states with energy running from E to #*o00. This
spectrum has multiplicity 2, corresponding to the two possible
parities ¢ of a state under reversal of sign of the field 4.

This structure is not at all surprising if one

— 00
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considers the theory as a limiting case of a theory for which the
lowest point of the spectrum of K is a discrete eigenvalue E_

slightly greater than 0, Let

0 <KF K=, {5. 1)
0 1

where E is the next lowest point of the spectrum of K. The
enerqgy spectrum of the field theory is shown in Fig., 12, Pach
band E + nE_extends to infinity. The quantum number o is the
parity of the number of particles (of all modes) in the state,
As E, —> 0 all the discrete states with energies E + nE
collapse into the level E. But what is 1left is a continunum of
states, with o-parity + and - for each energy above E, The state
of energy E which marked the bottom of the band (corresponding to
a vector in 577’is washed ont into the continuum. To the extent
that particle language makes sense at all when B = 0, every
state of the theory contains an infinite number of zero-energy
particles. The "amount of £, present" can be measured (by its
energy p*) hut not counted.

A related situation, which arises more often in
practice, is that 0, although not an eigenvalue, is a limit point
of the spectrum of K (usually, the lower endpoint of a continuous
spectrum)., The theory of massless scalar particles in Fuclidean
space is the simplest example. 1In this "infrared" case the Fock
representation as defined in Sec. VIII.3 makes perfect sense.

However, two points should be kept in mind in dealing with free
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infrared fields {in addition to the difficulties to be
encountered for interacting fields, well kxnown <from gquantam
electrodynamics).

First, there exist other representations besides the
Fock representation in which there 1is a continuous unitary time
translation group vwhose generator, the energy operator H, is
nonneqative (Borchers et al. (1963)). Intuitively, this reflects
the possibility of states of the field containing infinitely many
particles but, nevertheless, finite energy.

Second, as already remarked, Eq. (3.9a) becones a
nontrivial restriction on the test functions in x-space for which
the smeared field operators are defined. PFor example, in the
case of the massless scalar field in space-time of dimension 2
{but not higher Adimensions) @g(f) cannot be defined for all £ (t,x)
in the space 42 {see Sec, IV.1); it is necessary to require also —
that the Pourier transform of f vanish at zero momentum (see
dightman (1964), pp. 204-212), 1In this case the integral which
defines the two-point function (cf. Eq. {3.13)),

(+)

G (t ,x 3t ,x)
2 11

&~

1 ;o0 dp
j — cos[ip(x -x ) ] exp[- iIpI{t -t }], (5.2) —
2 1 2 1

2070 4p|

3 (+
does not converge in any usnal sense. But G ! does make sense as —

a functional on the restricted test function space just
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described, and Eq. (5.2) can then be given a wmeaning by formal
interchange of the order of inteqration. One should not bhe
surprised if similar phenomena occur in other theories with the
infrared property, such as those discussed in Sec, VITI,6 and

Chapter TX.

6. Summary; Application to De Sitter Space. ’

In this chapter we have considered static metrics for
vhich the squared single-particle Hamiltonian operator K (Eq.
(1.1)) is essentially self-adjoint., In the case when K does not
have the eigenvalue (§ we have arrived at the following

conclusions:

(1) Because there is a basis of solutions of the elementary
form (1.2), there is a clear notion of "Ypositive

frequency”. Hence a "forward propagator" can be defined,

(2) A Pock representation can be constructed in close analogy
to the theory of the free field, The two-point vacuunm
expectation value in this representation is the forward

propagator.

(3) This theory has an obvious particle interpretation. In
fact, since the particles are not created or destroyed,
the theory can be reinterpreted as a "wave mechanics" for
a single particle. A  position observable of the

Newton-Wigner-Wightman-Schweber type can be defined,
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An example of a space-time to which this theory applies
is the portion of two-dimensional de Sitter space covered by a
geodesic Permi coordinate system {see Secs. II1.2, TII.3, III.S,
V.é, and V.7). The eigenfunctions Uj(x) for this case are given
in Egs. (V.7.5). From this point of view the effect of the
curvature of space shows up as a smooth potential hill, and the
eigenfunctions display a nonvanishing probability for bhoth
reflection and transmission of particles.[8]

A classical free particle in de Sitter space follows a
timelike geodesic. Depending on whether the initial velocity of
the particle is high or low relative to the central worldline of
the Fermi coordinate system, such a path will seem to "penetrate”
or to "reflect"” from the center of the universe in terms of the
Fermi space coordinate B or p. (Imagine the geodesics labeled
"r = - 3" and "r = - ,5" in Fig., 9 (Sec. IIT.7) superimposed on
Pig. 4 {Sec., III.2). These are the paths of particles with high
and low velocity, respectively.) One would expect, therefore,
that in the quantum theory the transmission probabhility will be
very large for large momentum k and very small for small Kk,
relative to the mass parameter q. 0f course, this 1is to be
expected in general from a barrier penetration problem. An

explicit calculation, based on comparison of the appropriate

[8] Although the time dependence of the wave function 1is given
here by an ultrarelativistic energy-momentum relation, the
qualitative behavior of wave packets 1is the sane as in
nonrelativistic quantum mechanics, and hence the interpretation
of the coefficients in the eigenfunctions as reflection and
transnission amplitudes remains valid,
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coefficients in Egs. (V.7.10) and (Vv.7,14), yields for the ratio

of the reflection and transmission amplitudes

{Reflection] -Nk iny 1
= e e = = (1=-ik) "{ik) sin N(p+ik)
|Transmission| i
cosh WYy
= m—, (6.1)
sinh Nk
where

Yy =1Inp = yq - #. {6.2)

This expression shows the expected behavior, although the
transition from almost total transmission to almost total
reflection is perhaps not as abrupt as one might expect,

We shall not study the motion of wave packets in de
Sitter space in nmore detail, but in Sec, TIX,2?2 we shall

investigate a closely analogous case more quantitatively.

7. Stationary Metrics.

If, in a distinguished coordinate system, the metric
coefficients are independent  of time but the space~tine
orthogonality condition (D.4) does not hold, then the metric is
called stationary. An example of current interest 1is the
exterior Xerr metric (Kerr (1963)), the gravitational field
outside a rotating massive star or black hole. It wounld be

very surprising if the results of this chapter d4id not extend
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almost verhatim to such a case; however, there will be sonre
complications of the formalisn.

When the substitution (1.2) 1is made into the wvave
equation {VIT.1.2,3) wi{h a stationary metric, one obtains

(iropping the index on the energy and the eigenfunction)

2 00 05 1 04
-E g §~-2iEq O ¥ -iFE - d [Vigla 19
j gl j
1 _ ik 2
+ —— 3 [Viglg O W¥l+m ¥ =0. (7.0
igl J k

This is not an eigenvalue equation in the usual sense, since F
occurs both linearly and gquadratically. The same situation
arises in the study of the Klein-Gordon equation with an external
electrostatic field (Snyder and Weinberg (1940)). In the

electrostatic case two approaches have been followed:

(1) to work directly with the solutions of the equation
analogous to Eg. {7.1), which are not orthogonal for

different F (ibid.);

(2) to convert the wave equation, by a change of variables

whose analogue here would be (notation of Eq. (VYI.3,2))

1 ]
= ~—(v+u), DY = —{v - u), {7.2)
v2 V2

into a pair of first-order equations, which 1leads to a

—
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true eigenvalue problem (Feshbach and Villars (1958);

[Corinaldesi], Chaps. 2, %, 6; Veselid (1970)).[9]

These methods presumably would work when applied to the
stationary qravitational field.

The snbject will not be pursued here, since, unlike the
study of time-dependent metrics, it does not seem to involve any

nev matters of principle,

[9] 2 variant of method (2) is to use the covariant
five-component Petiau-Duffin-Kemmer formalism (see [Umezawa], pp.
85-91, 197).
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Chapter IX

THE FREE FIELD IN RINDLER COORDINATES

The theory presented in Chapter VIII is compelling,
because it 1is such a natural generalization of the familiar
qgquantization of the free field., However, the construction of the
Fock representation has been based on a particular eigenfunction
expansion associated with a coordinate system in which the wave
equation separates. If there is more than one coordinate system
in which the metric takes a static form, one must ask whether and
in what sense the corresponding field theories are equivalent,

These can he compared most easily in the <case of tvo
coordinate systems vwhich have one equal-time hypersurface 1in
common, For instance, in two-dimensional de Sitter space each
timelike geodesic is associated with a field theory, as described
in Sec. VIII.6. The Permi coordinate systems based on two
geodesics O‘ and 0a (see Piq. 13) cover different portions of the
space, but (in general) there is a region of overlap. The
spacelike curves of constant time coincide at the 1instant of
closest approach of 0, and 02' By symmetry, each of the two Fock
field theories is equally valid for the description of phenomena
occurring 1in the overlap region, To the extent that they
disaqree, either both theories must be rejected, or the concepts

and quantities involved in the disagreement must be shown to be
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X,=const. Xp=const,

-

< X|=X2=O

Fig. 13

Historical regions associated with two freely moving observers in
de Sitter space. Fegions extrahistorical for 0, are shaded ////;
regions extrahistorical for 01 are shaded \\\\.
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without true observational significance, or the theories nust be
interpreted as applying to different physical situations.

In this chapter we shall study in detail an even
simpler example, which exhibits the ambiguity of Fock
quantization in a very striking way. The physical situation
involved is a very familiar and, seemingly, well-understood one:

the free scalar field in ordinary flat space,

1. The Rindler nodel.

¥e consider the region f{(t,x)| It) < x} of two-

dimensional Minkowski space[1], and define coordinates (v,z) by

t = z sish v, X = 2z cosh v (1. 1)

(see Fig, 14). Then

-1t
v = tanh -y -0 < v <00, (1.23)
X
z = W - tY, 0 <z<oo, (1.2b)
and wvhen t = v = 0, 2 coincides with x. (Therefore n{0,x) =

N{0,z) is the same quantity in both systems ~-- see Sec. VII.1.)

We calculate

2 ) B 2 2 2
ds = g dx dx z dv - 4z , (1.3)

}IV

H

[1] It should not be hard to extend the results of this chapter
to four dimensions.

i
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VTET =z, g =2z . (1.4)

This metric 1is static,
The physical reason for
this is that the
operation of translation
in the time coordinate ¥

is simnply a honogeneous

Lorentz transforrmation,
wvhich is a symnetry of
Minkowski space., We have

restricted ourselves to

the region where the

Killing vector of this
Fig. 14

isometry is timelike and
Rindler coordinates.

future-directed. Each
surface v = const. is a Cauchy surface (see Sec. ITI.5) for this
region, so a self-contained field theory within the region should
exist,

The coordinates {1.2) are the Fermi coordinates (see
Appendix D) relative to a hyperbolic timelike curve z = const.
This, of course, is not a geodesic, but it is the worldline of an
observer who undergoes a constant acceleration and, consequently,
experiences a constant gravitational field. {(For instance, to

some degree of approximation an observer on the surface of the

earth has such a Fermi coordinate system; the exterior
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Schwarzschild metric with the usual static coordinate systen
would he a bhetter approximation for that situation.) The
numerical value of this acceleration is 1031 cm/sec times 1/z,
where 7z is measured 1in Compton wavelengths, Thus, if m is a
typical elementary particle mass, z = 1 corresponds to an
acceleration of 1();\Ci g's, and an observer accelerating at 1 g
would be 10‘3 kilometers distant from the horizon (z = 0) of his

Fermi coordinate systen,

¥We shall call these Rindler coordinates, because they

have been discussed most thoroughly by W. Rindler{2] (in the
four-dimensional case). He points out that the relation of this
system to Cartesian coordinates is very similar to the relation
between Schwarzschild and Kruskal coordinates for the space
surrounding an isolated point mass.[3] It 1is important to
realize that Rindler coordinates are just as appropriate for the
description of the region of flat space which they cover as
Schwarzschild coordinates are for the study of the space around a
massive bhody outside the radius r = 2M, Tf the theory of Chapter
¥III fails in this test case, it nmust also be rejected for the
Schwarzschild metric, and it cannot be applied as a general

method (but see Secs, IX.6-7 below),

[2] Rindler (1966) (also [Rindler 2], pp. 184-195); earlier
papers hy others are cited in BRefs., 1 and 2 of his paper, The
physics of the situation ("uniformly accelerated rigid rod") is
discussed in [Rindler], pp. 41-43 (or [Rindler 2], pp. 61-64).
[3] The Schwarzschild solution is discussed in most textbooks on
general relativity. The fundamental modern paper on the subject
is Kruskal (1960).
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It is also clear from a comparison of Fig. 14 with Figqg.
5 {Sec., III.2) that the situation under discussion here 1is very
similar to the relation between a geodesic Fermi coordinate
syster in de Sitter space and a geodesic Gaussian system (or any
system which is regular in the neighborhood of one of the two
singular points of the Permi system). The discussion of this
chapter applies with very little change to the situation in de
Sitter space.

We proceed to quantize the scalar field along the lines
of Chapter VIII, The eigenvalue eguation (VITI.1.3) (K defined

in Eq, {(VIII.1.1)) is in this case a Bessel equation

2 &* a 2 2 2
(zZ-— +2—=-mp2z2 +EE 1} 9% (2) =20, {1.5)
az> dz i 5

and the volume element in the scalar product (VIII.1.4) is

R oo dz
fdz Vigi ¢ = j —_— (1.6)
0 =z
We shall consider only the case m # 0. The solution of this
eigenvalue problem is given 1in [Titchmarsh], Sec. 4,15, The
spectrum of E? extends from 0 to + oo with unit multiplicity. We
can therefore use Ej itself as the parameter §; we have
0 € j < ow. The eigenfunctions are
1 1/2

¥ (z) = -(23 sinh (N]) ] K (mz), 1.7
3 n ij

—
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where Ki' is the Macdonald function (modified Bessel function) of _—
imaginary order. The functions (1.7) are normalized so that (see

Egs. (VIII.1.7,9))

oo dz
f — )V (2) = 5 - k), (1.8a) ~—
0 z j k
o0
[ 45 VR (1) =z 8(z - ). (1.8b) —
0. 3

From now on we set nm 1. This is no 1loss of
generality; it means we choose the unit of length to be the
Compton wavelength of the particle,
The expansion of the field in annihilation and creation
operators (Eq. {VIII.2.9)) is
oo adj -ijv ijv ¢

% (v,2) =j — V(e  a +e al 1.9y —
0 V23 i j j

The canonical momentunm is

1. dg
M(v,z) = - g(v,2) (=—) = —_
z dt
i (o ‘[3 -ijv ijv ¢
- - J dj y— ¥ (z)fe a -e a ]y (1.10) —
0 2 3 i 3

and Eq. (VIIT.2.11) becones

1 oo dz i oo
a = ‘:‘[Vﬁf —V (2)#(0,2) + --f dz ¥ (z)N(0,z) ] (1.11) —
j V2 0z 3 Vi /o i
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A field theory with a vacuum can be constructed as described in
Sec, VIIT.3., Since the spectrum of j extends all the way down
to 0, this model falls into the infrared category (see Sec,

VIII.5), even though m # 0,

2. Quasiclassical Behavior of Positive-Frequency Soluntions.

According to the theory proposed 1in Sec, VIII.H4, the
vave function of a particle in Rindler space is of the form
Qo ~ -1jv
Viv,2) =j a5 £(3) ¥ (me . (2.1
0 i
This is not a positive-frequency solution of the Klein-Gordon
eguation in the usual sense when transcribed back into terms of t
and X, but rather a superposition of positive- and
negative~-frequency solutions. (This can be demonstrated by a
calculation essentially the same as that carried out for the
quantized field in the next section,) Therefore, we are
considering a relativistic theory of a single free spinless
particle which differs in its details from the usual one, It is
of interest to verify that wave packets of the form (2.1)
approximately follow classical trajectories, If this should turn
out not to be the case, one would be inclined to throw out the
theory as physically unreasonable, However, we shall see that
the guasiclassical behavior is correct, which is an argument in
favor of taking the theory seriously despite its difference from

the usual one,
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If we let
u = log 2z, {(2.2)
Eq. (1.5) becones
2
49, 2u 2 u
-—ttre ¥ =39 0 =¥ (e)), (23
du j 3 3 i

which has the form of a nonrelativistic Schr¥dinger equation with
potential eau. We know, therefore, that its solutions will decay
rapidly as u — +o and will approach a sum of incoming and
outgoing plane waves as u ——> - oo, the oscillatory behavior
beginning at the classical turning point, e“ = 3. Explicitly,

there is the series expansion{4] (see [Vilenkin], p. 270)

z ij o k z 2k
K (z) = Re [ () 2 (=1 T[(-k-ij)/k? (=) 1L, (2.1
ij 2 k=0 2
wvhich gives for small z
u iju =-ij log 2 T(-1i7j) 1 -1 2u
JF(e) =¢ e — [1 + -1 + i]) e
3 I T(-13) | 4

4q
+ Ole )] * complex conjugate, (2.5)

since

[47 This expansion could have been used to determine the
normalization constant in Eq. (1.7), after the fashion of Sec.
Vo—’o
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e
Irij) ) = l;““*"“- (2.6)
i sinh Mj

For large z we have the asymptotic expansion

1 . =V2 -2 p= 1 (p-NH-9
V (z) ~ ~—V7 sinh W z e [1+ +
j ] 8z 2 (82)*
p - -9 (- 25 2
+ 3 t el (p=-83) (2.7)
31 (82)

({N.BeSe], Eqs (9.7.2) (ps 378)). One of the eigenfunctions is
graphed in Fig, 15,
Substituting Eq. (2.5) into Eq. (2.1) and applying the

principle of stationary phase to the incoming and outgoing waves

yields
v=au-ao-=-B(dH as v —>» -0,
{(2.8)
v=1u-o+ B{H as v — + o,
vhere
d ——
x == ~——farg £(9) 1}, (2.9a)
a5
d 1 1-4  2u By
B(j) = log 2 4 —arg ((ij) ¢+ - ———=— e + O(e ). (2.9Db)
R SRR
dj b1+ 3

(It is assumed that f(j) is peaked around a particular value of

j, and a can be chosen independently of j.) Now simple algebra
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Fig, 15

The eigenfunction § (2).
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]

{a) Cartesian coordinates

(b} Rindler coordinates

Fig. 16

Trajectory of a free particle in flat space.
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shows that the curve defined by u = v + a is just the straight
line x = t + e~, At first glance, then, Egs. (2.8) appear to bhe
an absurd result; they seem to say that the (free, massive)
particle enters the Rindler region at the velocity of 1light,
bounces (at a point depending on j), and departs at the speed of
light,

However, let us take a closer look at the general form

of the trajectory we vere expecting,

a
X = bt + ¢ (11 <1, c=e > 0. (2.10)
Substituting from Egs. (1.1), we obtain
1 v -y -u
-{(1 - ble + (1 + b)e } =ce , (2.11)
2

which can be regarded as a guadratic eguation 1in either e’ or
e'. The vanishing of the discriminant gives the maximum value
of u attained on the trajectory:
u 2 -1/2
e =3 =c(1-Db) . (2. 12a)
cl

(Trajectories with the same value of jd but different values of
¢ are images of each other under Lorentz boosts, Jjust as
trajectories with the same slope b are related by time

translation. We have already seen that in the quantum theory the

turning point is related to j, the variable conjugate to v as
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energy 1is conjugate to t.) One root of the solution for e

yields, for large negative u,

1 -1 2 =-2u 2 172
v = log { [ce + [c e - {1 -b1)] 1}
1 -1
1 -u 2 -2 2u
~ log { ce [2- (1-5b)c e 1}
1-5b
2 1 -2 2u
~ ~-1u 4+ a+ log - = e

1-b 4 cl

as v —> +00. To find an expansion for v —> -~ we use one of
. Y .
the solutions for e in the same way, Finally, we can add and

subtract 2a from the former expression, using

1
a = log j + -[log (1 + b) + log {1 - b)]J. {2.12b)
cl 2
The results are
2 1 -2 2u
v~ u=~-a- log + - 3 e as v —> -0,
1+Db 4 cl {2.13)
2 1 -2 2u
v™ -u~-a- log - =3 e + 2 log 23 as v —> +m.
14+ b 4 ¢l cl

Thus an exponentially small deviation in u-v space from a line
with unit slope corresponds in x~-t space to a finite change in

slope, and hence Eqs. (2.8) are not incorrect,



Sec, IX.2 281

If we identify i with jcl, comparison of Egs. {(2.13)

and {2.8) suggests
a=a~- log{l + b) - log i, {2. 14a)

-2 2u

B(j) == -3 e + log 27. (2. 14b)

N Y

Now for large j, when the most classical behavior is expected

because of the short wavelengths{5], we can write

1 -3 -2
—_— -3,
(1 +3H*
d d
-—arg {(ij) = — Im log [(ij)
dj aj
d 1 1 -1
= «— Imn [{(ij - =) log i - if + - log 2M + O(F )] =~ 1log jJ
a3 2 2

{({¥.B.S.], Eq. ({(6.1.81) ({(p. 257)). So %q. {2.9b) becones
identical to Eq. (2.14b), and the gquasiclassical behkavior is
verified. Eg. (2.1%a) then gives the j-dependent relationship
between o and a.

The trajectories are sketched in Pig. 16.

[5] Note, hovwever, that 1large j corresponds to large distaance
from the coordinate singularity as well as high energy.
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3. Comparison of the Two Representations.

We nov have tvo field-theoretical descriptions of the
behavior of scalar particles in the wedge of space-time where
lt] < x, the theory of Sec, I¥,1 and the ordinary textbook theory
of the free scalar field, Are these 1in some sense the same
theory?

The standard expansion of the free field at t = 0 and

its conjugate momentum into annihilation and creation operators

is (w, = Yk* + n?)

dk ikx ~ikx ¢

#(x) = "::: {e b + ¢ b 1, (3. 1a)
V24, k k
JZ): ikx -ikx ¢
Mx) = - i de <le b -¢ b ] (3. 1b)
2 X K

Substituting into the formula (1.11) for ?}' we find

a =

1 oo @ iky 1J.§ J:E
- tf dy ¥ (y) j ak ¢  [-Y— + ¥—1b
3 2 0 } -0 Y “% j X

]

o o -iky 1/5 /Za: t

cfavvm [ = =100 e

0 j - Yy w, j k

The kernel in the second term does not vanish. (4e shall study
it in more detail shortly.)

The presence of creation operators in this formula has

drastic consequences. It means that a vector which is

annihilated by the b's is not annihilated by the a's, and vice
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versa. So the vacuum of the Rindler-space theory is not the
ordinary vacuum of the free field. One-particle states in one
theory are not one-particle states in the other theory, and so

on, The notion of a pa

rticle is completely different in the two
cl

theories. T es or quanta of the Rindler Fock

I3

partic

representation cannot he identified with the physical particles

descrited ty the usual guantum theory of the free field.

The pinimal conclusion which must be drawn from this

observation is the following: In the context of the general

static universe treated in Chapter VIII the particle concept does

not have the same physical significance as in free field theory.

The theory of quantization in a static metric amounts to the
following: Given a manifold with a timelike Killing vector, we
have constructed a representation of the field algebra in which
the synmetry generated by the Killing vector field is implemented
by a group of unitary operators, Also, the generator of this
unitary group has been required to be a positive operator, and we
have wused it 1like the Hamiltonian in special-relativistic
theories, We found that the eigenstates of this operator can be
labeled in a way which is quite similar to the particle structure
of the states of the free field. This doesn't necessarily mean,
however, that these eigenstates have anything to do with physical
particles in the usual sense, things that +trigger detectors and
so on. It might be better to use the term "quanta" (or ‘'virtual

particles") instead of "particles".[6]

[6] Of course, when the metric is asymptotically flat as well as
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The difference between the two theories shows up in the
associated single-particle wave mechanics, because the definition
of M"positive-frequency solution" is different. A positive-
frequency solution in the ordinary sense (exp(-iuit)) is a
superposition of positive~- and negative-frequency solutions in
the sense of exp(+ijv). This probably leads to slight
differences in the way wave packets diffuse, and so forth, even
though, as shown in the previous section, the qualitative
behavior of a wave packet is correct in the Rindler theory,

In pondering the significance of the disconcerting
appearance of two different quantizations of the free field, it
wvould be helpful to know whether the two representations involved
are equivalent in the mathematical sense. In other words, can
the Hilbert spaces of the two theories be identified in a natural
way, even though the vacuum vectors (and associated particle
structure) are different?{7] The question makes sense only for
field operators for which both Trepresentations are defined. For
(s+1)-dimensionally smeared fields of the form (VITI.3.1) (the
type usually considered in axiomatic field theory) this nmeans
that the question should be asked for an algebra of field

operators with test functions f = f(v,z) with support inside the

static, the identification of the quanta with physical particles
is convincing -- see Secs., VII.7 and VITI.4.

[7] More precisely, two representations 1A (f) and A_(f) of an
algebra of elements f, on Hilbert 'spaces N, and %,
respectively, are unitarily egquivalent if there is a unitary

operator U from /4 onto 4, such that UA (£)U7' = A _(f) for — v

all f.
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Rindler region {and with sufficient smoothness properties, etc.,
for the field operators to be defined in both representations).
Alternatively, for a canonical theory omre can consider
s-dimensional smearing of the equal-time ({or Schr¥dinger-picture)

fields:
g(f) = ‘dx g{0,x)E£(x) = ]dz g{0,z)E(2) {(3.3)

and similarly for W(f)[8]; then we are interested in f's with
support on the positive part of the x-axis. In view of the
explicit canonical construction employed here, the latter
framework is easier to study in the present case,

let us call the standard representation of the free
field (in either the one- or the two-dimensional sense) the @§0K

representation (to distinguish it from the general notion of a

Fock representation used in Secs, VIII,3 ard TF.M). The
representation of Sec. IX.1 will be called the Rindler
representation,

On the basis of an abstract argument it can be shown

that the Rindler representation is at best a subrepresentation of

the $0K representation. The representation within Q0K space of
the subalgebra of field operators with support in the Rindler
region is reducible, for these operators commute with all the
fields with support in the symmetrically opposite region of

space-tinme, {{t,yx)] x < - {ti}. The Rindler representation,

{8] BEq. {3.3) and its partner can be written 1in the covariant
form (VII.3.3).

(2)
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however, is irreducible (Sec., VIII.3). (Hence it should have
been obvious from the beginning that the two vacuum states are
not identical; for if the Rindler representation contained the
90K vacuum, its Hilbert space would be the entire 30K space, by
the Reeh-Schlieder theorem ([Streater-wightman], pp. 138-139),
which would contradict its irreducibility.)

The possibility remains that Q0K space coantains a
vector, ¥ , which is annihilated by all the Rindler annihilation
operators é] (Eg. {3.2)) and, consequently, can be identified
with the Rindler vacuum. Then the Hilbert space of the Rindler
theory would be identified with a certain subspace of Q0K space
{perhaps not uniquely), Evidence against this possibility is the
fact, which will be demonstrated below, that the kernel in the
second term of Eq. (3.2} 1is not square-integrable, and so does
not represent a Hilbert-Schmridt operator. If the Bogolubov
transformation {3.2) vwere invertible, the theorem stated and
proved in Sec, F.,3 would imply that the vacuunm of one
representation cannot lie in the Pock space of the other. Since
the theoren has not been extended to noninvertible
transformations, the arqument offered here does not rigorously
establish that no Rindler vacuum Uﬁ exists in P0K space, but it
makes this conclusion more likely., (If Wo exists, it must 1lie
outside the quadratic-form domain of the #®§0K number operator,
since the expectation value of the number operator is the
Hilbert-Schmidt norm of the kernel in question plus a manifestly

positive term involving the field on the negative x-axis.)

(28)

—



Sec. IX.3 287

Let us turn to the evaluation of the integrals in Eq.

(3.2), fe have, at least formally,

00 00 t
a =j dk U(§,k) b +f ak v(i,k) b , (3. 4)
3 =00 k - X
1
U(i.x) = ; [A%(],k) + B*(3,k) ], (3.5a)
1
V{j«k) = ; [A(3,k) - B{j.,Xx) }» {3.5b)
F oo 1 -iky
AE R == dr-van e (3. 6a)
“ 70 y 3
JB: o0 -iky
Blik) <= f av v me (3.6b)
i /0 j

where vj(y) is given by EBq. (1.7). (Ve still take = = 1 for
convenience.} Eq. (3.83) really stands for a transformation of
smeared fields of the type (F.2.3) (with a and b interchanqged).
At first it is not obvious that the order of integration in REq.
(3.2) can be changed to yield bona fide 1integral operators, as
implied in Eq. (3.4). We shall find, however, that U(j,k) and
V{j,k) are simple smooth functions, given in Egs. (3.12) (to
wvhich the reader may skip if not interested in the details of the
integration).

Formulas ({6.699.3,4) of [Gradshteyn—-Byzhik] (p. 747)

yield
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@ bN 2 243417 |2
jdyyx(y)sinszkr( | x _
0 ij 2
243 +ij 24)-ij 3 2
F[ ’ ¢ ~r - X ] {Re ) > - 2), (3.7a) b
2 2 2
o Y »1 T+43+ij }2
j dy y K (y) cos ky = 2 !r( )| X —
0 ij 2
T +id Ie-i§ 1 2
P v r =r =~ k] {(Re Z > = ). {3.7H) —
2 2 2
In the integral (3.6a) we nust use Eq. {3.7b) with )\ = - 1, which

is outside the stated range of validity. So the convergence of

this integral deserves close attention. Let us vwrite

o0 IS -iky L
ERTY =j ay y ¥ (1) ¢
0 j
o {1+\)u u u
= J du e ¥ (e ) exp(-ike )/V2u . _
-0 j

Near u = -oo the integrand bhehaves like -

(1) u
e

1
- sin ju, . —_
n

and as u —> +o it falls off faster than exponentially {see Eqs. —
(2.5) and (2.7)). In effect we are taking Fourier transforms of

a family of tempered distributions which has a limit as y — - 1 —_
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from above, We can write I(j,k;)) as

0 (143 u
[ du e sin ju {3.8)
- 0o

plus a function of Jj which is swmooth in the whole range
-0 £ j < o {(being the sum of two Fourier transforms of a
distribution of rapid decrease). As % —> - 1, the distribution
(3.8) converges to the principal value of 1/(Nj). This pole is
included in the expression obtained by setting ) = - 1 directly
in Eq. (3.7b) (see Eq. (3.9a) below); there is no need to add a
singular term. S0 Fgq. {(3.7b) remains valid in a distribution
sense for \ = -1, and hence ¥fg., (3.6a) defines A{j,k) as a
distribution in j for fixed k, which happens to be a smooth
function in both j (away from 0) and k. 0f course, the same is
true of B, for which there 1is no problem of convergence in the
inteqral.

The expressions for A and B can be reduced to
elementary functions using formulas {(8.332.1,2) of
[Gradshteyn-Ryzhik] (p. 9337), (15.1.11,12) of [N.B.S.] {p. 556),

and (15.2.290,21,25) of [N.B.5.] (p. 558). The results are

1 =172 nj ij ij
A(j,k) = = [w M sinh Mj] [cosh — {{ + ] +[ -1}
2 X 2
iy} ij ij

-sinh;—{{w' - =111 {3.9%)



Sec., IX.3 290

1 -1/2 ik ij ij
B(j,k) = - [w N sinh Mj] [sinh — {[ + ] +I-11
2 k 2
i) ij ij
- cosh ; t+1 -0-11h (3.9
vhere
e _ =1
[ ¢+ 1=V1+x* +x=[7+1] . (3.10)
The relation
d d: JFE
—[{Yy— 2 (3,k)]1 = -1 y- B{(j, k), (3.11)
ak j w,

suggested by Egs. (3.6), 1is satisfied by these functions,

Pinally, one has (for general m)

“2Mj -1/2 W+ Kk if
U(3,k) =[2Rw (1 - e )] [ 1 . (3.12a)

k n
215 -1/2 w, + k 1]
V(j,k) = [2fw (e - 1] { 1 . (3.12h)
k m

Then we have

® 2 1 00 5 -1
/ dk[mdj IV(§.x)1 = — J dk[a;j [ViE + 0~ (e  -11 ,
-o /0 2n -0 /0

vhich diverges at large k and at small j. Therefore, V is not a

Hilbert-Schmidt operator.
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4. Can We Live With Two Different Quantizationg?

——— ——

In Chapter VII it was pointed out that the formalism of
field theory does not uniguely determine an explicit
representation of the fields as operators. {In the general case
this ambiguity has little to do with freedom in the choice of
coordinate system. It is misleading, therefore, to speak of the
problem we ave facing as primarily a breakdown of general
covariance.,) 1In the static case there appeared to be an obvious
choice of representation, based on the notion of positive
frequency. ¥ow, however, we have seen that in a few special
cases, such as flat space and de Sitter space, the availability
of several rival static coordinate systems makes even the natural
prescription for gquantization in a static universe ambigquous.
For the field in a certain region of Minkowski space a heretical
quantization has been proposed. What attitude should one adopt
toward it?

One possibility is to reject it outright. One could
arque as follows: We understand the free field in flat space.
The physically relevant representation of the fields is the 0K
representation; the definitions of the vacuum and the
number-of-particles operator are unambiguous. If any other
proposed theory disagrees with this one, so much the worse for
that theory!

More specifically, one might object that the Rindler
coordinate system covers only a part of space-time; that it has a

sinqularity at z = 0 which has nothing to do with the intrinsic
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structure of the space; that it is not an inertial frame, in the
sense that the curves of constant 2z are not geodesics[9]. PFor
these reasons, the critic would argue, it is pnot surprising that
a naive imitation of the quantization of the free field leads to
unphysical results in this context.

This, however, would be a very unvelcome conclusion,
R11 three of the above aspersions upon the Rindler coordinate
system also apply to the Schwarzschild system. The analogy
between these two situations has already been pointed out in Sec.
IX¥.1. It was argued there that Rindler space must be regarded as
a test case for any general theory of field quantization in
static metrics., In the case of a general static metric we do not
have an underlying flat space to tell us what the "right ansver®
is. The Fock quantization {(in the sense of Chapter VIII) 1is a
natural generalization from the theoretical ideas which have
evolved in the study of free fields and of external potential
problems. If it is wrong, the interpretation, both physical and
mathematical, of the formalism of quantum field theory is left
obscure,

The suggestion that a trustworthy field quantization
can only be performed on *"the whole space™®™ 1is especially

frightening.[10] Many of the solutions of Finstein's eguations

{9] This last objection does not apply to the situation in de
Sitter space, illustrated in Fig. 13. There one can set up many
different static coordinate systems based on timelike geodesics,
which can be regarded as the worldlines of unaccelerated
observers. These are related to ope another much as Rindler
coaordinates are related to <Cartesian, and none of them has any
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studied in modern general relativity are guite complicated
{multiply connected, and so forth), Must one really construct a
quantized field on the entire manifold in order to treat exactly
the particle phenomena in a small region? Furthermore, given a
manifold with a metric, it is sometimes hard to say whether it
constitutes "the whole space" {see, e.g., Geroch (1968)).

Cn the other hand, the conclusion is hard to accept on
general physical grounds, Quantum mechanics 1is physically a
local theory; it has to do with phenomena that happen on a
microscopic scale. As arqued in the Introduction and Sec. 17,3,
it is hard to believe that the global structure of space has nmore
than a negligible effect on any quantities that are physically
observable, But the construction of a Fock space 1is dinherently
global, because it 1is based on momentum space (the Fourier
decomposition).[11] If, as seems to be the case, we run into
trouble when we try to do quantum theory in terms of local
coordinate patches, then perhaps that 1is evidence for the
inadequacy of our present formulation of quantum field theory,
rather than for a breakdown of the principle of general
covariance,

These considerations suggest that before we discard the
theory of the free field in the Rindler wedge as physically

wvronqg, we should try to make sense out of it, adjusting our

reason to be preferred to the others.
{10] We shall return to this subject in Secs. IX.6-7.
[11] See further remarks in Sec. X.7.
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preconceived ideas 1if necessary., JIf ve succeed, we may learn
something from this model that will help us to understand field
theory in nonstatic spaces, the subject of the next chapter,
Such a reinterpretation, if it 1is not to be manifestly
inconsistent with the established interpretation of the Q0K
representation, nust somehow weaken the direct physical
significance of the gquanta of the general Fock representation,

let us start from the realization that these quanta
cannot be the basic observables of the theory. What, then, is
observable? Cn physical grounds one can argue that ohservations
take place via interactions of the system studied with other
physical systems; therefore, one ought to study the currents by
which our field might couple with other fields (the expressions
through which the field can occur in possible interaction terms
in the Hamiltonian or lagrangian). In particular, in
cosmological and astrophysical problems the energy-momentun
tensor, which couples to the gravitational field, 1is presumably
the most important cbject, Unfortunately, as will be
demonstrated in the next section, the ambiguities in particle
creation and annihilation operators carry over to the definition
of at least some current operators,

We are left with the fields themselves as observables,
The time evolution of the field operators (or their expectation
values) from given initial values is given by a classical formula
(Eqe (VII.4.5)), independent of representation. Similarly, the

expectation value of the product of n field operators is a
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distribution which satisfies the field equation in each of its n
arquments, and hence is determined by its initial values within a
domain of dependence. This suggests that, if the fields alone
are the basic observables, it is not necessary to choose a
representation, One can think of the fundamental dynamical
problem as the prediction of the outcome of field measurements at
later times on the basis of known results of measurements at
earlier times. A quantum state is just an intermediary apparatus
which summarizes (idealized) earlier measurements, ¥o practical
set of measurements can completely determine the state, or
distinquish between inequivalent representations ({see below), It
is proposed, then, that we should reject the demand for a unique
"physical®" representation, That 1is, we should be prepared to
admit all representations as possibly physically relevant, and to
give up the search for some absolute definition of the number of
particles in a general space~time. (In special situations some
analogue of the familiar particle notion may still have a limited
physical significance -- see below, See also Secs. IX.7 and
X.7.)

0f course, this point of view leaves the interpretation
of the field theory in terms of observable quantities still quite
vague, We are used to thinking of quantum processes in terms of
particles. 1In practice we never measure field strengths as such
{except for macroscopic electromagnetic and gravitational fields,
which are outside the quantum domain). But to label the states

in terms of a particle structure requires a definite
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representation of the canonical commutation relations, either for
the fields of the Heisenberg picture themselves or for asymptotic
free fields.[12] There is much work to be done in clarifying the
physical interpretation of quantum field theory in situations
where the asymptotic particle interpretation does not apply.
This dissertation claims only to pose and clarify the problem and
to suggest a program for future research,

_ Although the relation of field operators to particle
detectors is not obvious, we do know that the fields in a region
(Idx g(x) £(x), support of £ in the region) have something to do —
with experimental operations performed in the region. If the
region is rather small, this 1localization may be the nost
relevant fact about the experimental operation,[13]

Thus we have been 1led to the approach to guantunm
physics in terms of local algehbras, proposed in the fundamental
papers of Segal {1947y and Haaqg and Kastler (1964),
Unfortunately for our purposes, much of the recent work in this
area depends crucially on the assumptions of Poincaré covariance -—
{covariance under space-tine translations and Lorentz
transformations) and the existence of an invariant vacuum state,

ingredients which are missing here,

[ 12] For the purposes of interpretation we are concerned not Jjust
with the unitary equivalence class of the representation but also
with the 1identification of the vacuum state, the one-particle
states, etc. (cf. Sec. X.2 below).

[ 13] These ideas are basic to the work of R, Haag et al. (see
Araki and Haag (1967) and earlier papers and lecture notes of
Haag) on the relation between local fields and asymptotic
particle observables,
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However, the basic ideas behind the algebraic approach
are applicable.,[14] A state of a physical system is taken as any
functional W on the algebra of observables which can be
interpreted{ 15] as an expectation value; it does not have to be
related to a vector in a particular Hilbert space. Fach state is

related as a vector state,
W) = <YIAIP> > e Wy, @

to some representation of the algebra as operators in a Hilbert
space, but there are many inequivalent representations. It is
arqued, however, that all the faithful representations are
physically equivalent, because every representation contains a
state which 1is consistent with any given set of practical
observations.,[16] (This means that, given a list of results of a
finite set of measurements, these results can be reproduced to

arbitrary accuracy by a weighted average (density matrix) of the

expectation values with tespect to certain vectors in any one of

these Hilbert spaces.}) The mathematical basis for this claim is

[ 18] There is space here only for a sketchy discussion, The
reader is urged to read the paper of Haag and Kastler (1964).
[15) In 9particular, a state is required to bhe positive:
w(ATa) > 0 for all 2 in the algebra.

[16] Por a similar conclusion in the context of the canonical
formalism see Komar (1964). {(Note, however, that in this paper
the work of Wightman and Schweber {1955) was misinterpreted: in
the standard approach to field theory the Hilbert space is
separable, consisting of Jjust one of the equivalence classes
referred to by Komar. V¥ote also that the representations which
Komar considers explicitly are not all of the representations of
the canonical commutation relations, and not even all of the
tensor product representations.)
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a theorem proved by Fell (1960),

To forestall possible wmisunderstanding, it should be
emphasized that the doctrine of physical equivalence of
representations does not say that the vacuum of the Rindler Fock
representation is an approximation to the vacuum of the POK
representation, These are two different states, yielding
different expectation values for operators, and corresponding to
different notions of particle, The claim is that the Rindler
representation contains other vectors which approximate the §OK
vacuum with respect to any given finite set of observables.

The preceding discussion has emphasized the
arbitrariness in the choice of representation. The other side of
the coin is that frequently one representation recommends itself
as the best one to work with, because it has some especially nice
feature.[17] PFor instance, in Poincaré-covariant theories the
representation generated by an invariant vacuum state plays a
distinguished role. This is in analogy to the observation that
when studying a physical theory in flat space it would be folly
to refuse to use Cartesian coordinates for a calculation because
of the possibility of writing all the equations in a generally
covariant form,

In the external gravitational field problem there afe
several special cases where a "nice" representation is suggested

by special properties of the nmetric. If the nmetric is

[17] The author is grateful to J. E., Roberts for a conversation
in which he emphasized this point,



Sec. IX.4 299

asymptotically flat, or if it becomes actually flat in the renmote
past and future, we have an asymptotic particle interpretation
{see Secs, VII.7 and VIII.4, and the natural representations to
use are the in- and out-representations, in which there are
finitely wmany particles coming in or coming out in each state,
Oon the other hand, if the space has a symmetry group, we should
consider a representation which is invariant wunder the group.
{That is, in this representation the symmetry is implemented by a
unitary operator.) 1In particular, if there is a time translation
group, we have the static Fock representation of Chapter VIIT,
Whatever its relation to physical observables may be, 1in the
general static case one might expect the Yparticle" structure
based on the existence of a timelike symmetry to be the nmost
convenient way to label the states of the +theory.[18] (Rindler
space is a very special case in vwhich there is another way of
looking at the space which makes additional symmetries manifest

and, consequently, 1leads to a more useful notion of particle.)

{ 18] However, a contrary view will be tentatively developed in
Secs, JIX.7 and X.7. The position of the author is that our
present theoretical resources do not allow us confidently to
generalize quantum field theory to curved space-tine. A given
Riemannian geometry may suggest several methods of gquantization,
perhaps none of them entirely satisfactory. A decision among
these approaches cannot he made on the basis of pure thought. A
great deal of research is needed on particular models, to clarify
how the predictions of these approaches differ and how they
compare with astrophysical observation, It is to be hoped that a
coherent theory will develop, including (1) an understanding of
the relation of the mathematical apparatus to observation, and
(2) a practical understanding of what representation of the field
algebra it is either necessary or prudent to use for a given
purpose.
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Finally, in the case of a nonstatic universe, one might be able
to define particle observables in such a way that in one
representation there are finitely wmany particles present in a

finite volume at each time (cf. Secs. X.5-6 helow).

5. Bounded Observables, Currents, and the Fnergy~FMomentum

Tensor.

In this section we shall push a little farther the
study of the association of field operators with physical
observables, on which the algebraic interpretation of the field
theory formalism espoused in the last section depends. First,
the rigorous technical work on this subject deals with algebras
of bounded observables (C*-algebras), whereas the field operators
(vhether smeared in s or s + 1 dimensions) and the annihilation
and creation operators are necessarily unhounded. For a neutral
scalar field there 1is a variety of ways of defining from the
field a C*~algebra of bounded observables[19]; the matter will
not be discussed further here.

When charged {complex) fields or spinor fields are
under consideration, however, a difficulty which 1s more a
problem of principle arises, Such fields cannot be observables
at all, because they do not commute with the superselection rules
(see [Streater-Wightman], Sec. 1.1). In the C#-algebra approach

a remedy is to form a C*-algebra from all the fields and then to

[19] See, e.qg., [Segal], Kastler (1965), Manuceau (1968) ,
Dell*Antonio (1968), Wilde {(1971), Slawny (1972).
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distinguish a subalgebra of observables by their formal property
of commuting with the relevant gauge transformations or
superselection operators (see, e.g9., ¥ilde (1971), Chapter 2).

Oon a more intuitive level, however, the observables
associated with charged and spinor fields are usually assumed to
he currents -- quadratic (or higher-order) combinations of the
fields and their derivatives, Examples are the charge-current
vector ({VII.5.4#) of a charged scalar field, the famous five
tensors formed from the Dirac field ({Messiah], Sec. XX.14), and
the energy-momenturn tensor[20], T”V(k). These quantities are
also important because they appear in the interaction terms of
the Lagrangians and Hamiltonians of the nonlinear theories of
interacting fields. Indeed, they are assumed to be observable
precisely because it is through them that a field interacts vwith
other physical systems -~ such as experimental apparatus.

In astrophysics and cosmology, of course, the
energy-momentum tensor is surely the object of greatest interest,
since it is through it that the matter represented by the
quantized field interacts with the gravitational field, according

to the theory of general relativity, Observations of the

{20] In general one nmust distinguish between the canonical
energy-momentum tensor suggested by the canonical formalism, of
which the Hamiltonian density (VII.1.6) is one component, and the
symmetrized, covariant tensor appropriate to general relativity,
which is obtained by variation of the action with respect to the
metric tensor (Belinfante (1940)). For our neantral scalar field
vith minimal gravitational coupling these are the same. For the
rival neutral scalar field theory {(see Secs, V.2 and VII.1) they
are already different (Chernikov and Tagirov (1968)).
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presence of matter through its gravitational effects are more
likely than particle detection events of the kind familiar in
terrestrial laboratories. S0 one might be happy to forego
particle observables 1if the energy-momentum tensor could be
unamnbiquously defined. On the other hand, ™" conpares favorably
with the field itself as a plausible physical observable (even on
the microscopic level), given the absence of "pion field-strength
meters", Can one, then, regard this tensor field as the Dbasic
observable in an algebraic (representation-free) theory, rather
than the field itself as in Sec., IX.4?

Unfortunately, a current mnaivelvy defined in terms of
products of fields does not, in general, define a finite
operator-valued distribution in most representations of the
fields. The obvious extension of the procedure normally used to
make sense out of currents in the $OK representation of a free
field is the following: In a representation of the Fock type
(i.e., characterized by annihilation operators which annihilate a

certain state of no quanta) one is to pormal order the formal

expression for the current by changing all terms of the form a;a;
to a;a; and discarding any constant terms. Then the expression
will formally apnihilate the no-guantum state, and it will now
make sense as a bilinear form on a dense domain. The important
point is that this definition obviously depends upon the
representation (and upon the no-quantum state), It does not
provide an intrinsic algebraic obiject,

For instance, consider the time-time component of the

—_—
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ener gy-momentun tensor of the free scalar field in

two-dimensional Minkowski space,

00
T {x) =

1 2 og 2 22
-+ (—) +ng ], (5.1
2 ox
where the colons indicate normal ordering with respect to sonme
representation, We wish to compare the normal orderings
corresponding to the @§OCK and the Rindler representation (at
t = v =0). Note that in both cases we consider a component of
the tensor T with respect to the same field of basis vectors at
each point (tetrads); for convenience the familiar orthonormal
basis associated with Cartesian coordinates has been chosen, The
difference between the two definitions of T°° under discussion
has nothing to do with the transformation of tensor components
from one coordinate system or frame to another. {The
contravariant component T°° with respect to the tetrads
canonically associated with the Rindler coordinate system would
be a different physical quantity from that of Eg., (5.1), and we
are not interested in it.)

The comparison proceeds in analogy to a simpler case
which is discussed in detail in Sec, G.2. The fields in Eq.
{5.1) are expressed in terms of the opérators bk and b: {cf. Egs.

{3.1)), and the resulting expression is normal ordered. ({(This is

the standard energy density for the free field.) Then the b's
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are re-expressed in terms of the a's.{21] 0f course, no true
inverse of Rq. (3.2) exists, since the a's span only a subalgebra
of the whole equal-time scalar field algebra (the part associated

with the positive axis in x-space). One calculates

oo 00 t
b = f a3 urdma J 45 V(i,k)a
xk Jo j /o §
JZ’“ 0 -iky i 0 -iky
+ -—] dye g +==[ dre  Mp. .2
2 - V2w, '-00

When Eq. (5.2) 1is substituted 1into the expression for Too(x)
(x > 0), all the terms involving negative y cancel, as they nust,
since Too(x) depends only on the field and its derivatives at x.
What is left is a bilinear expression in the Rindler operators
which 1is not normal ordered. Our interest centers on the
constant[22] vwhich must be subtracted to make the expression
coincide with the Rindler-normal ordered version of Eq. (5.1).
Fbrmally this is

00

f6s) 00 oo -1/2 i{x-1)x
KT (x)> = f
-0

{ a7 {J dk a1l (0 o) e X
0 -0 k1

ot

[{21] One could, of course, work from the other direction, using
the transformation (3.2). The method chosen here leads to a
result free of Bessel functiomns.
[22] By this 1is meant a c-numher (multiple of the identity
operator); it may depend upon Xx.
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[lww -kl - mz)U(j,l)V(J'.k)
k1
2
t (ww * k1 + )V v, (.33 —
k1
where U and V have been calculated in Sec. IX,3.

Eq. (5.3) is not a determinate expression., (It is not
even unambiguously infinite -- its divergent parts conceivably
could formally cancel, as in the integral I” k dk.) It can he —
reqularized, in analogy to Eg. (G.2.%), withthe aid of smooth
test functions, But it is hard to tell vwhether even this
Ysmeared" guantity is zero, finite, or infinite.,[23] However,
the burden of proof is certainly upon him who would assert that
it is zero. It seems wost implausible that the energy density
can be unambiquously defined by normal ordering.

In Sec. I¥.7 another contrast of quantizations of the
free field will be developed (Fuclidean space vs. a finite hox}.

In Sec., G.2 it is shown that the difference between the 1local
energy densities of these two representations 1is infinite,
according to a reasonable interpretation of this statement.

For still another example we anticipate the results of
the next chapter. There it will be necessary to consider

different representations at differeant times, with their

respective annihilation-creation operators related by egquations

[23] An apparent divergence at the lower limit of the j
inteqgration is seen upon closer inspection to disappear for test
fanctions with support on the strictly positive axis.
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of the form {X.5.6) (where o{k) and B(k) depend on the initial -—
and final times, t, and ta)’ One easily calculates that Too(x), —
normal ordered at t has with respect to the no-particle state —
at ta the expectation value —

0C 2
KT (x)> =2 IB(t ,t 5K . {5.4) —
k 2 1

k
This guantity is generally nonzero[28 ] and possibly infinite,
Hawking ({1970} has pointed out that if :1%°: is defined —
by normal ordering with respect to a different no-particle state
at each time, then it 1is not obvious that it will satisfy the

usual divergence condition,
Y = 0, {5.5) _—

His arqument that this equation must fail is erroneous, however,

TMV

since it assumes that an expectation value <¥| {¥> must satisfy —

the classical condition

00 ny
TO210T 1, (5.6) -

and this is not generally true in quantum field theory.[ 25]

[24] This is true of any theory in which particle creation
occurs, not only that of Sec. X.5. See the discussion in Sec,
x. 6.

[25] That nonpositivity of the energy density is inevitable 1in a
field theory of the usual type was proved by Fpstein et al.
(1965) .
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Indeed, for the free field let ¥ = 0> + \{2>, where |0> is the
vacuum and |2> is a two-particle state, Then <0|:T°°(x):|w> is
of the form YA (x) + {IB(x), where A is contributed by the aa and
afaf terms in :T°°: and B by the ata terns. {A, B, and ) are
real.) Choose ¥ so that 3 # 0, PFor ) sufficiently small and of
opposite siqn from A, <UI:T°°(X):lv> is negative! That Hawking's
arqument should be reqgarded as disproving Eq. (5.6) rather than
Eq. (5.5) has also been pointed out by Zel'dovich and Pitaevsky
(1971), who have shown in perturbation theory how Eg. (5.56) is
violated during particle creation in a universe with weak but
nonstatic curvature,

Very recently Zel'dovich and Starobinsky (1971) have

used a renormalization technique to define (without reference to

normal ordering except at an initial time) a finite

energy-momentum tensor which obeys Fg. (5.5). Although the
rationale for their procedure is far from clear to the present
author, this work may point the way to a solution of the problen
of defining 1 as far as practical calculations are concerned.
It is noteworthy that the free-field nwmonentum density
components, Toj(x), seem to be largely immune to the ambiquity

noted here for T°°, +When field expansions are substituted into

—

01 0 0g dg Og
T o= [ — + — —1], (5.7)
2 Ox ot Ot dx

the result is aytomatically normal ordered in all representations

the author has had reason to consider., For the standard Pourier
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decompositions this well-known result (which is dwue to
cancellations from positive and negative k) is independent of the
mass of the field (see Sec., F.4) and of whether the quantization
is performed in a box or in infinjite space (see Sec. IX¥.7 and
Appendix G). It also holds for the Rindler representation, where

one finds for the vacuum expectation value

01 1 a5 5u J‘ JF 3.
KT >=-[ \)(z)+--[d3 ‘1(2)":-—’"}
2 V2302 2z 2 d

= 0, {5.8)

The same thing happens for the charge-current density of a
charged field, if one writes the time component in the

synmetrized form

0 i +og ogt o t opt
j =-[g —=-— g+ —~g -g— 1. (5.9)
2 ot Ot ot ot

Thus Egqs. (5.7) and (5.9) may provide intrinsic definitions of
these quantities, which yield the same result as normal ordering
in all representations which are "patural"™ in some sense. Since
the Bogolubov transformation for a charged field analogous to Eq.

(3.2) relates particle annihilation operators to antiparticle

creation operators, it is not surprising that the vacuum states
of the two representations are charge-free in the sane sense,
Similarly, the result for the momentum in the various POK-like

representations may be attrituted to the fact that in such
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transformations as (F.%.8) and (G6.2.3) the new annihilation
operators involve creation operators only for quanta with the
opposite momentum.[26] The result (5.8) is rather surprising,
however, since +the transformation (3.2) is not manifestly
diagonal in the momentum, and, in fact, the adoption of the
Rindler coordinate system disrupts and ohscures the translation

invariance of the space,

6., Geodesic Completeness and the Feynman Path Inteqral.

The reaction of many people to the troublesome
development described 1in this «chapter has been that the
responsibility for it somehow lies with the fact that the Rindler
coordinate system does not cover the whole Minkowski space-tinme.
The integral transformations (such as Fq. (1.11) and the Pourier
transformation) involved in the decomposition of the field into
modes {on which the PFock gunantizations are based) are global
operations., It is not surprising, therefore, that widely
separated reqgions of space turn out to be mixed up with each
other in the construction of quantum fields, It is urged that
field quantization should bte attempted only on geodesically
complete manifolds (see Sec. ITT.5), or at least that
quantization on an incomplete space should be regarded as a
distinct physical situation from quantizing on a complete space

in which that regqion is embedded and then restricting attention

{26] Note that the phenomenon seems to be linked to physical
quantities which, unlike enerqgy, can be carried with opposite
signs by particles,
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to the region. This viewpoint, if established, would refute our
assumption (cf. Sec, VIIT.1) that only completeness of the
Cauchy type is relevant to the dynamics of fields, For reasons
mentioned in Sec, IX.4, working only with complete spaces would
be a consideratle nuisance in practice, Of course, that is not a
convincing arqument against its necessity!

However, the arqgument of Sec. IX.3 is of a very general
type -- we shall meet it again in Sec. X,2 ~-- and it seems that
in equations like (3.2) the vanishing of the kernel of the second
term will be very much the exception rather than the rule. It
seens to the author, therefore, that the local distortion of the
"(3 + 1)" structure of space-time, rather than the global
mutilation of the space, is sufficient to lead to the phenomenon.
Unfortunately, there is ©no way to test this claim, since
apparently there is no example of a manifold with two 1linearly
independent globally timelike Killing vectors, (3 timelike
Killing vector is neceded to make the metric take a static form,
so that a criterion is available to define a Fock representation
uniquely.) On the other hand, admittedly, one can give an
example (Sec., IX,7) which shows that a change of the global
structure without a distortion of the time scale is sufficient to
change the definition of the vacuunm,

An arqument in favor of the "global" viewpoint has been
offered by L. H, Ford (private communication). If one formulates
quantum particle dynamics, following Feynman, in terms of a sunm

over virtual paths, one would expect to have a nonzero (although
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small) contribution from partially spacelike paths. In this
sense it 1is possible for the gquantum particle to leave and
re-enter the Rindler wedge, despite the latter's Cauchy
completeness. One might conjecture (pending an explicit
calculation, which the author has not attempted) that the entire
difference between the single-particle theories associated with
the two quantizations is due to neglect of these paths in one
case,

This suggests that it may bhe worthwhile +to generalize
to curved space-time Feynman's path-integral construction of the
propagator for the Klein-Gordon egquation {Feynman (1950),
Appendix 1), and to study its dimplications in various nodels,
Such a project is beyond the scope of this thesis, but some of
the +things which might be investigated in the future can be
outlined here.

Since the Lagrangian

Z=--9 -— — (6.1

yields the <classical equation of motion of a particle, Eg.
(I11.4.,1, it seems <clear[27] that the generalization of

Feynman's Eq. (43) should be

[27) Since the quadratic terms in the lagrangian have nonconstant
coefficients, different ways of breaking the action integral into
steps may yield different results -- see Peynman (1948), pp.
376"377.
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g{x ,u) =
n 0
-4 .
n=-1 Vigq1d X, in n n v v
([T —texp- =3 9 - x )0x - x ) #lx 0 —
j=0 4" ei 23=1 w i i-1 i i-1 0
y
sfd X K(X ,u 3ix ,0) #(x ,0) (6.2)
0 n 0 O 0

However, there seem to be obstacles in showing that this formula
is equivalent to a ©proper-time version of the wave equation
{analogue of Feynman's Eq. (2X)). If one has such a propagator
in u-space, the physically relevant propagator is to be found by

Fourier transforming:

G (x ,x ) =

o) 00 2
’ du f du exp{-im (u~-u )} /2] K{(x ,u3x ,u), {6.3)
: 0 2 1 0

This appears to be a generally covariant construction,
Then it would be interesting to study the follovwing

questions:

(1) If the nmetric 1is static, does GF(xa,x') coincide with
GF(vo,vo:xl,x'), defined in Eq., (VII.4.18), where Uo is
the Fock vacuum? {(In particular, is Pord's conjecture

about Rindler space true?)
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(+)

(2) In the general case, define G in terms of GF and the

{+) of

intrinsically defined 6" by Rq. (VII.U4.21). Is G
positive type, so that the reconstruction theorem can be
used to construct a representation with a cyclic vector

§? If so, what is the physical significance of §?

{3) On the other hand, if the metric is asymptotically static

(see Sec. ¥X.3 below), is GF(xl,x’) proportional to

G (¥°F ,¥" ;x_,x ) (definition of Eq. (VII.4.18))? Cf.,
F'lo o af "

€.9., Wightman (1968), p. 296. I1f so, does this fact

have any physically semsible extension to the general

case?

Similar questions could be asked of other proposed definitions of
the Feynman propagator =-- e.g., that of De Witt (1963), pp.

738-741, or that of Duistermaat and H8trmander (1971).

7. Further Thoughts on the Particle Concept in Static Spaces.

In this chapter and Sec, VIII.6 we have considered
certain proper subreqgions of Minkowski space and de Sitter space
and have tried to treat them as "universes™ in their own right,
because they are causally closed from the point of view of the
classical theory of fields (the Cauchy problem). We have had
cause to wonder whether this procedure is legitimate, and whether
the theory thus obtained is really physically eguivalent to a
theory which treats the entire space. Could we be ipadvertently

imposing some "boundary condition”, so that the theory describes
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the behavior of natter in anp isolated geodesically incomplete
space, but is not appropriate for a region which is actually part
of a larger space?

To shed some light on these questions let us consider
the representation of the algebra of fields in a bounded region
of space-time when it is regarded as a part of {(a) an ordinary
Minkowski space-time, and (b) a "box" universe of length L with
periodic boundary conditions, (is usual we consider a
two-dimensional space without 1loss of generality.) Of course,
these are different universes, and one would not expect the
quantized fields in the entire region {(t,x)] 0 £ x < L} to be
the same in the two theories. In the box (or torus) case a
boundary condition holds which means, physically, that a particle
which reaches one end of the box does not disappear into another
region of space, but re-enters at the other end of the box.

Nevertheless, this large-scale behavior should he

irrelevant to what happens inside the domain of dependence, D, of

an interval

I: a<x<bh (0 <a, b<L). (7.1

(D is a diamond-shaped regqgion, as in Fig. 6,) I is a Cauchy
surface for D, Thus, if the point of view tentatively espoused
in Sec. I¥.4 is correct, the field in D presents a self-contained
dynamical problen. The outcome of measurements in D should be
predictable (in the statistical sense in which predictions are

possible in quantum theory) on the basis of measurements in (or
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near) I. The dynamics within this region should depend only on
the field equation, the canonical commutation relations, and
whatever local interaction between the field and a measuring
apparatus gives the theory its physical content,

Cf course, the 1last of these, the nmneasurement
interaction, is the weakest 1link in the chain, The whole

arqument hinges on the assumption that observations and other

experimental operations pecformed in a region correspond strictly

to field operators{28] whose test fupctions have support in the

region. {In contrast, it necessarily follows that localized
particle observables, like the Newton-Wigner operator (see Sec,
VIIi.un), correspond to nonlocal nmeasurements and state
preparations,.{29]) This is the assumption which is usually made;
it is the nmotivation for the axiom of local commutativity (or
anticommutativity) of fields. Conversely, if it does not hold,
one would expect violations of the principle that information
does not travel faster than light., It is not, of course, an
unchallengeable article of faith, If it turns out to be
impossible to nmake physical sense out of field theories
interpreted in this way, we will have to change our way of

thinking. In the meantime, however, the statement stands as a

description of the type of theory we are trying to construct.

[ 28] More precisely, to observable operators in the algebra
generated by the fields of the reqion -- see Sec. IY.5.

[29] It is probably more realistic to say that, to the extent
that these "observables" can be measured at all, they can only be
measured approximately, by local operations.
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So the infinite- and finite-space quantizations of the
free field provide +two representations of the same algebra, the
algebra éf fields in D; and we are claiming also that the
physical situation, as far as observations entirely within D are
concerned, 1is also in some sense the same in the two contexts,
It is interesting, therefore, to compare the two representations,
We shall see that they are not the sane.

As explained in Sec. VIII.3, the representation is
determined by the two-point function (VITI,3.13)., TFor the box

the two-point function is

-1 ikx, -ikx,

2 (2u) ¢ ¢ expf{- iw (t -t )} (¢ = e/V), (7.2a) —

k k k 2 1
the sum being over the lattice {2Wn/L)}, and for infinite space —
{the Q0K representation) it is

- dk  ikx, -ikx

i . vy

}—-— s e expi- iw (t -t )} (¢ = e/¥IM). (T.2b) —

2wk k 2 1
These distributions are not the same, even for test functions
with compact support inside [ (see Appendix G).

The conclusion is that for the fields in D we have two

distinct vacuum states[30)], each of which, by virtue of its
origin in a respectable free field theory, has a good claim to be

a state in which no particles are present., What is the physical

[ 30] Here "state" is to be understood in the algebraic sense of a
linear functional. Actually, of course, we have a continuous
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origin of these two different notions of (absence of) particles?
How can this ambiguity be reconciled with the fact that particle
detection seems to be a well-defined experimental concept?

One way out is to conclude that the experimental act of
particle detection is actually different in the infinite and the
finite universe -- that it somehov inherently involves the whole
space. JTndeed, it is known (as a corollary of the Reeh-Schlieder
theorem) that an operator which annihilates the vacuum cannot be
a member of the local algebra associated with a bounded region.
For this reason Araki and Haag (1967) and Steinmann (1968)
explicitly associate a particle detector with an operator which
is only quasilocal {but annihilates the vacuum exactly).

However, 1t seems to +the present author that this
approach to the problem 1is backwards. Instead of taking the
hallowed concept of the vacuum to be the fundamental starting
point, one shounld model the measurement process in terms of
literally local operators and study to what extent particle
concepts (such as a no-particle state) can then be extracted. Of
course, not just any local operator will do, The intuitive
notion of a particle must somehov be input, to lead us to the
kind of structure we want to get out, We know by observation
(describable in crude terms) that there are entities which nmove
roughly in straight lines, except when they interact with each

other or with macroscopic bodies (cf. Steinmann (1968), Sec. 1).

family of states, one for each value of L greater than the length
of I,
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Ir an attempt to refine the notion of observation of particles,
ve are led to the idea of a detector as a system which interacts
with particles in its vicinity, but makes no response vwhen there
are no particles present,

On the basis of what was said above, it seems probable
that no such ideal detector 1is possible -- that is, every real
detector (which is surely contained in some finite region) has
some probability of making a response, whatever the state of the
quantum field system;[31} However, #e can understand the
definition of the no-particle state in terms of the following
analogy. The classical concept of length is abhstracted from the
stability and nmutual consistency of the ways in which it is
observed to be possible to juxtapose various material ohjects
("measuring rods"), although each of these objects is only
imperfectly rigid when re-examined in terms of this very
definition of 1length, Similarly, the concept of time 1is
abstracted from observational comparison of many natural
processes which individually manifest approximate regularity.[32]
In the same way, various systems (detector candidates) are
observed to tehave roughly in the way expected of an ideal

detector. In particular, under certain experimental conditions

[31] Probably for any actual detector this effect, which is
inherent in quantum field theory, is 1lost in the noise of the
concrete experimental arrangement,

{32] In particular, when measuring very short times ({or lengths)
one encounters limitations due to the quantunm ancertainty
principle; these are quite analogous to the problems of particle
detection,
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they are observed to give almost always (or perhaps alvays,
within some finite experimental error) no response, These
experimental conditions are taken to define a state of the field
in which no particles are present in the vicinity of the test
system, and the systems are regarded as particle detectors. A
true no-particle state for a reqion D would cause no response in
a detector placed anywhere in D.

Now it is plausible that for D there may he more than
one pair of the form (state + <class of successful detector
candidates) with these properties.[33] {Recall that any
norralized ©positive linear functional on the algebra of
observables is a state, The rival states mentioned here need not
be vector states in the same cyclic representation.) #hich of
these pairs will the community of scientists define to be (vacuun
+ detectors)? Surely the one such that the first member (the
state) is most likely to be encountered in actual experimental
practice. Our experience is that there is precisely one particle
concept of this type which 1is arrived at by natural and
straightforward experimental operations of state preparation and
particle detection,

The vacuum defined in this way seems to be a kind of

equilibrium state[34], of which the other observed states are

[33] 1t is known from the classic work of Bohr and Rosenfeld
{1933) that the vacuum is not just sheer emptiness as far as the
field is concerned, but is full of fluctuations. Could there not
be more than one such state of fluctuation with the qualitative
experimental rroperties of a vacuum?

{34] This 1is consistent with the fact that when the laws of
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excitations, {The analogy of phonons in a crystal is helpful
here.) 1In fact, in a field theory of the usual type the vacuunm
is the ground state, and hence precisely the zero-temperature
equilibrium state in the sense of statistical mechanics., The
experimenter?s production of a ‘"good vacuum®™ in a region by
pumping out almost all the particles {localizable field
excitations) is basically the same as the process of bringing a
system such as a crystal close to absolute zero temperature by
extracting energy.

We can now conjecture the following picture: There is
an equilibrium pure state of minimal excitation of the field,
which corresponds to the Fock vacuum for the universe under
consideration. There is a class § of physical systems which are
(practically) inert when placed in the vacuum., There are other
observed states for which the systems in S are not inmert. Given
a state (defined by the procedure for its experimental
preparation), study of the correlations among the responses of
these systems when placed at various positions reveals (at least
for some subset S c 3) a pattern of ‘tevents® which can be
interpreted as triggerings by particles (cf, Steinmann (1968)).
The systems 1in S are then called particle detectors. The
particle structure of the states, it is conjectured, turns out to
correspond to that defined by the creation operators of the Fock

representation. (One hopes that how this happens will eventually

pmotion of the field are invariant under time translation the
vacuum state is also expected to be invariant,

—
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be worked out rather explicitly.)

This picture makes the existence of many different
mathematically and physically acceptable vacuum states,
associated with different global structures of the universe, more
understandable, In the infinite universe free particles move
indefinitely to new frontiers; in a torus universe they keep
recirculating through the finite space. It is not too surprising
that the equilibrium state of the field in the region D should be
different in the two cases, If so, our earlier conclusions about
the self-contained nature of the field dynarics in a
Cauchy-complete region must be qualified: It is true that the
time development of expectation values is conpletely determined

by initial conditions, but which initial <conditions actunally

occur depends on the global setting of the region D. The
approach to equilibrium 1is something which happens over the
entire previous history of the wuniverse, so there is plenty of
time for information about the global geometry to reach D without
exceeding the velocity of light.

It remains to be explained how these different
equilibrium sitnations yield gualitatively the same physics,
Consider one of the pure equilibrium states of the algebra of D
in terms of the quanta of another vacuum state, which we call the
"original” one., It has a structure something like that indicated
in Fgs. (F.3.7,11). It is a "soup" of virtual particles or field
fluctuations, a mediur so uniform that nothing in particular ever

happens 1in it. Only excitations superimposed on this field
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substratum can be detected. There is a class of detectors which
are inert with respect to this new vacuum, {They might be the
same in their physical construction as the original detectors,
except that they have come to equilibrium with the soup by
attragting a cloud of virtual particles,) The equilibrium can be
disturbed by adding a particle (or several). These excitations
travel through the medium in qualitatively the same way as free
particles travel ¢through the original vacuum {cf. Sec, IX.2).
They are detected as particles by the new or "dressed" detectors.
If these conjectures are true, then the same basic physical laws
(lavs of notion of the field, laws of interaction with the
detectors) 1lead to qualitatively the sane phenomenological
physics in the infinite and the finite universe, but with
differences in detail which 1in principle could bhe observed,
{Again, justification of these conjectures by means of explicit
nodels of the measurement interaction would be highly desirable.)

What are the implications of all these considerations
for the gquantization of fields in the Rindler wedge and in the
analogous patches of de Sitter space which can be treated as
static universes? They tell us that we should not have expected
the Fock vacuum in such a theory to be the physical, observed
vacuum state arppropriate to the embedding of the reqion in a
larger, geodesically complete, universe. Such an embedding could
be done in different ways, and the physically appropriate vacuun

is probably different in each case. Our Fock vacuum might not
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correspond to any physically reasonable situation.[35] The
earlier arqument {Sec,IX.4) that all representations of the field
algebra are physically equivalent remains valid, if one accepts
the Fell-Haag-Kastler arqument for general quantum systens.
However, the evidence presented in this section strongly suggests
that {(and offers the beginning of an explanation why), in the
case of Rindler space, the particle structure of the §0X
representation has an especially direct connection to the
observable phenomena in our world, more so than the quanta of the
Rindler representation, An approach to field gquantization in
general space-times which incorporates this idea will be
suggested in Sec. X.8, after we have discussed the problems of

canonical guantization in time-dependent metrics,

[35] It is tempting to say that it corresponds to the region as
an isolated universe, as suggested at the beginning of this
section. But  this notion presents difficulties for a
geodesically incomplete space. There are classical particle
paths which leave and, even more disturbing, enter the space at
finite proper times; to and from where? The system seeas
underdetermined without some boundary condition. In the quantum
theory this means that we do not understand, physically, how the
equilibrium state of the field is determined in such a situation.
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Chapter X

PIELD QUANTIZATION IN AN EXPANDING UNIVERSE

Next in complexity after the static universes comes the
class of Gaussian metrics which are defined in Appendix D as
"generalized Robertson-Walker metrics". In these cases (see Eq.
{D.6)) the time dependence and the space dependence of the metric
are "separable", so that the field equation can still be solved
by reduction to uncoupled one-dimensional nmodes., ¥ow, however,
the time dependence of the solution is not a simple complex
exponential, but a solution of a more general second-order linear
ordinary differential equation (Eq. (1.14)). Consequently, there
are two important differences between this and the static case.
First, there is a possibility of particle creation. Since the
background is not static, there is no reason to expect to have
stationary-state solutions which can be interpreted as n-particle
states in the manner of <Chapter VIII, There are both physical
and mathematical reasons to believe that if particle number
observables can be defined at each time, then they will not be
constants of the motion., A great obstacle to making this idea
precise and quantitative is the second new feature, the
uncertainty in how to define particle observables at a fixed
time. For the solutions of the general equation (1.14) there is

no obvious analoque of the division into positive- and



Chap. X 325

negative-frequency functions, which 1led so naturally to the
introduction of the particle concept in the static case.

It seems unlikely that the study of the scalar field in
more general space-times (which will involve, in general, coupled
equations, or worse, for the time dependence) will 1lead to any
fundamentally new physical phenomena or conceptual difficulties.
{Investigations of particle creation in anisotropic universes,
based on tentative assumptions about the interpretation of the
field operators in terms of particles, are already in progress:
Zel'dovich (1970); Zel'dovich and Starobinsky (1971); B.-L. BHu,
dissertation, Princeton University, in preparation.)

The time-dependent case will not be treated here as
systematically as the static case was above because of lack of
space and because the subject has been treated thoroughly by
Parker (1966, 1968, 1969, 1971, 1972). The purposes of this
chapter are to set up a framework, slightly different fronm
Parker's, for studying the solutions of the field egquation, to

‘summarize critically the prevailing points of view on the
quantization problem, to present a few new technical results (see
particularly Secs., .5 and X.9-10), and to discuss the
implications of the observations of this anrd the preceding
chapters for future work tovard the acceptable physical
interpretation and mathematical definition of quantum field

theories in curved space-tinme,
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1. Solution of the Wave Egquation: the Ambigquity of Quantization.

We study a metric of the form (D.6):

2 0 2 2 0 j ok
ds = (dx) - R (x ) h (x) 4x 4x , {1. 1)
jk

so that

Vigl = R Vh, g =1 (h = det (b }). (1.2) —=
jk
{As always, s + 1 is the dimension of space-tinme.) Por
convenience this is called an "expanding universe", without any
implication that R must be an increasing function, Specializing

from the formalism of Sec. VII.1, we have

1 s 2 -2 dk 2 2
IZ=-R Vh[@®g -R h Ogdg-n g1, (1.3) -
2 0 i k
S
n==18 Vb d g, (1.4) -
0
2 -2 2
d g+sR/RIFg-R Ag+n g=0, (1.5y —
0 0 c
vhere
1 ik
Ag=—0([Vhh 39g] (1.6) —
c Vb j

ik
R' = dRsdx°, and [h' } is the inverse of {hjk}. — X
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The occurrences of the time-dependent quantity R in the

formalism can be minimized by introducing a new time variable
X -s
t = ’ R dx , (1.7

so that

2 25 2 2 j k
ds =R dt - R h dx dx . (1. 8)
jk

This is no longer a Gaussian metric, but we have nov a

time-independent three-space volume element

_ tt 2s -2s
Vigig =1r vh B = vh {1.9)

instead of Egqs. {1.2). Then Egs. (1.4-5) are replaced by

Nn=vhdg (1.10)
t

and

2 2s-2 2s 2
d g - R Ag+R n g=0, (1.1
t cC
Note that the first-order term has been eliminated.

We shall assume, as in Chapter VIII, that Ac has a

complete set of generalized eigenfunctions ¢j(x):
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2
Ag (0 =-e g (0 (e > 0. (1.12)
c ] i j
The substitution
gt,x) =g (0} (t) (1.13)
3 j
yields
2 2s 2 2 2
O P (t) +R [e /R +m ]¥ (t) =0. (1. 14a)
t 3 j j

{(In terms of x°, of course, we have the equation

2 2 2 2
0 ¥ +sR/RIF +[e /R +m J§ =0.) (1. 14b)
0 3 03 3 j

From nov on let us for simplicity consider primarily the case
. -
h =6 , A=Y, d=e =%k g.0=¢ . (1.15
j j k

The general case can be treated in exactly the same way; the
specialization is made primarily to make the formulas readable
with less effort, The range of the spatial variables in the
special case can be either infinite Fuclidean space or a finite
box; 1let us write fldk" and interpret it as a sum or as an
integral appropriately in each case., (Likewise, the 1implicit
normalization factor in g depends on the volume of the box.)

Also, the vector symbol over k will henceforth be omitted. Then

——
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the general real or Hermitian solution of the field equation is

ik-x -ik'x +
g(t,x) = [dk 6 ¥ (ha +g¢ (a1 (1.16)  —
k k k k
cur attention must now center on the equation (1.14a).
Eg. (1.16) does not define a, and a: until a particular solution —
Uk(t) is chosen from the two-dimensional complex vector space of —
pessibilities., The choice is not entirely arbitrary if one wants
the creation and annihilation operators to satisfy the canonical
commutation relations. From Fgs. (1.10) and {1.16) we have
ik‘x . -i_k'x . 1‘
e = [dk e B (ma e pemal, (L1 T
k k k k
where the dot nov indicates differentiation with respect to t.
It is reasonable to assume (or demand, according to one's point
T -

of view) that vk(t) depends only on k" (more generally, that vj A

depends only on ej).{1] Then we have

s -ik«x +
fd X @ g(t,x) = § (t)a + P*(t)a , -

k k k -k
S -lk X . . ‘l’
fd X9 M(t,x) = § (t)a + §*(t)a , -
k X k -k

[ 1] Alternatively, in order to avoid making this assumption for
the purpose of the calculation below, one could work, as in the
first part of Sec., VIII.2, with real basis functions §,  (here, —
sin X-x and cos k.-x). J —
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and hence
-1 . -ik.x -ik'x
a =w [vnt))(dxe ¢—v*(t>[dxe "L (1.18)
k k k k
where Uk is the Wronskian
W= P (B)U*(t) - § (t)Fx(t). (1.19)
k k k k k

The form of Eq. (1.1la) implies that wk is independent[2] of t;

it is obviously imaginary. When a} is found from Eq. (1.18) (or

*
k
solved for directly), it is easily seen that

+ i
[a,a ]= —&(k - k'),
k kt Ul
k
So vk must be chosen so that
v = i, {1.20)
k
#e can write
F(t) =2 E (t) + BO (¥), (1.21)
k k k k k

where Ek and 0 are standard solutions of Eq. (1.14a) satisfying

[2] With the original time coordinate x° one would have

Wooe R, and, at the last step, Vo= ir™*,
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]

1, B (0)
X

I
(o]
-

E (0) (1. 22a)
k

0 (0) =0, 0 (0)
k K

1. (1.22h)

{This notational convention is slightly different from that of
Sec. V.3, where an imaginary time coordinate was used for

technical convenience.) WNote that

A =9 (0), B =19 (0). (1.23)
kK X k k

The Hronskian of Ek and O is equal to 1. Therefore, the

k

condition (1.20) is equivalent to

2 Im A B* = 1, (1.24)
k k

if ¢l(t,x) and ¢, (t,x) are tvo solutions of the
J

elenentary type (1.13), the current form (VII.5.3) is

S * .
W .8) = ifd x [g*g - gtg ]

k j k j k j
-5 i{j-k)-x . -1(j-k)-x .
= 1(2Mm) {dx [e ()7 (L) - e Px(H)¥F (t) )
K j K j
= - iw S(k,9) = Sk, 9. (1.25)
X

Thus the condition (1.20) ensures that these functions span a
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space of solutions of positive norm with respect to ¥, and forn

an orthonormal basis in that space (cf. Secs. V.u-5),

2. A Flat Fxpanding Space-Tinme.

A tentative approach to the quantization of the field
equation solved in the 1last section is the following: The
Hilbert space is the Foc% space of the set of operators {ak, a;}
given by Eq. {1.18) with some <choice of the functions vk (Eq.
{1.21Y). (Cf. Secs. V.3-5 and VITI.3-4,) The wk should be
chosen (how?) so that the a, and a: are the annihilation and
creation operators for physical particles present (in mode k) in
the state of the universe at some tinme tos

The purpose of this section 1is to show that the
adoption of this point of view has serious implications. We
consider a simple model complementary to the one studied in
Chapter IX.[3] In two-dimensional Minkowski  space with
coordinates (xo,x) let

0 t t
e cosh v, X = e sinh y. (2. 1)

=
i

The coordinates (t,y) (-00o < t, y < c0) «cover the region vhere

© > |x}. The metric is of the type (1.8):

[3] This space has two four-dimensional analogues. One, which is
spherically symmetric, is one of the Robertson-Walker universes
of constant curvature (see Appendix D). The other is defined by
a transformation of the form (2,1) on one space coordinate, the
other two being unchanged; this is the degenerate Kasner universe
mentioned 1in passing by Zel'dovich (1970) and Zel'dovich and
Starobinsky {1971). Both of these models are merely patches of
Minkowski space in disquise,
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2 2t 2 2 t
ds = e (dt - dy ) (B(t) = e ). (2.2)

The equation (1.74a) for the time dependence of a mode of the

scalar field becomes

2 ' 2t 2 -2t 2
d F (t) +e [k e +m ]V () =0, (2. 3a)
t k k

or, in terms of the Gaussian time coordinate denoted 1in the

. . 0 . . . . t
previous section by x , which in this case is e = R,

2 1 2 2 2
O F (M +-3F (M) +[k/R +m )P (R) =0  (2.3b)

R k R Rk k
(cf. Egs. (1.7) and (1.141)). The solutions of Eq. (2.3b) are
linear combinations of the Bessel functions J;k(R) and N, (R),
but we shall not use this information in what follows. Instead,
let us continue to denote by vk(t) a generic solution of Rq.
{2.3a) satisfying Egs. (1.21-24),

We set t = 0 in the formula (1.18) for a:

-iky

. -1ky
a = - i£$*(0)fdy ¢ 2(0,y) - v*(O)de ¢ n,y) 1,
k k

k

and substitute for g and N the expressions in terms of Fourier

components in Cartesian coordinates:
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0
#(0,y) = g(x =cosh y, x=sinh y) =

--{e e ! b + ¢ e | b ], —

ip sinh y -iw cosh y -ip sinh y iw cosh y ¢
I V2w, P p

‘fd J:;- ip sinh y -iu,cosh y
- P

n,y) = —[¢ e b
2 p
-ip sinh y iu?cosh y ¢
- % e b 1, -
P
where w, = Vp* ¢ n*. The result is
- . 1
a = jdp J(c,p) [V*(O)VE - iB*(0)—] b B
X X p kK VW, p
- . 1 t
-Jdp IR (=K, p) [WH(O)VE + iP*(0)—==1b , (2.4 —
k P k “, p
vhere
-iky ip sinh ¥y -iwrcosh Y .
Jd(k,p) = —-—-fdy ¢ ¢ e
R 7
1 -1ke —ka -im cosh y
= — ———g ! e (p = m sinh 8 ), -
V2 on P

or
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-3/2 -ik6. Mmk/2 (?)
F e g (m) (2. 5)
ik

Ca
—
-~
-
e}
~
i
§
o
(L%
0]

{({Gradshteyn-Ryzhik], ©Bq. (8.421.2) (p. 955)). No <choice of
¥, (0) and ﬁk(O) (iee., of & and B in Egs. (1.21,24)) can nake
the kernel in the last term of Eq. (2.%4) vanish identically in p
(as a distribution), so that the vacuum of the free field be
annihilated by the g .

The conclusion is that for the free field in "expanding
Minkowski space" none of the tensor product representations
proposed at the beginning of this section coincides with the
standard representation of the free field.,[#4)] In previous work
on field quantization in expanding universes, to the hest of the
author's knowledge, it has usually been assumed that some
splitting of the Fourier components of the field into
annihilation and creation operators for physical particles is
possible, the rrroblem being to determine which splitting is

correct,[5] The arqument above drives one to one of two

conclusions:

[4] What is at issue here is not unitary equivalence but strict
identity of representations (better, identity of vacuum states),
leading to identical particle interpretations., Of course, only a
subalgebra of the full algebra of field operators in Minkowski
space would be involved in this identity.

[5] In his 1969 paper (p. 1064) Parker has emphasized, however,
that if vparticles are being produced as a result of metric
expansion, then the concept of particle number at a given time is
operationally fuzzy Lecause of the uncertainty principle, In
Parker (1966) particle number 1is defined only for a slowly
expanding universe,

— ol
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(1) Quantizaticn based on such a splitting is physically

wrong -- at least in sonme cases.
or

(2) There is no unique physically correct representation of

the fields {(cf. Sec. IX.U4).

In either case the interpretation of the operators ak of Eq.

{1.18) in terms of physical particles in weakened.

3. Asymptotically Static Metrics.

-——

For contrast to the negative result of the last section
we turn to a situation where the field has a clear interpretation
in terms of particles -- the case

R(t) =R fort >t , R(t) =R fort«<-t, (3. 1)

+ G - 0
{(With proper attention to technicalities one could make the same
statements about a metric for which E(t) nmerely approaches
constant values "sufficiently fast" in the past and future.) We

shall call this bhehavior asymptotically static. (Parker's term

is "statically bounded".) Of course, in the special case (1.15)
considered here the space-time is actually flat in the asymptotic
regions.

In the region of space-time where t > t, the equation

of motion is that of a free field. The general solution can be

Wwritten
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s =-1/2 ik.x s out
g(t,x) = jdk [2w R ] [e exp {-iw R t} a
k + k + k
-ik-x s out+t
+ @ exp {iw R t} a ] (t > t), (3.2
k + k 0

with
») =k /R +nm . {3.3)

It is hard to believe that in the quantum theory the coefficients

w t » - - -
a®™®  and am‘*> should not be interpreted as annihilation and

k
creation operators for physical, observable particles, In this

region of space-time we have simply a free field, whose physical
interpretation is well understood.

Similar statements hold, of course, for the region
where t ¢ - to' We have (extending the analogue of Eq. (3.2) to

general t)

ik.-x in in -ik-x in int
git,x) = ]dk (g ¥ (B a +¢ Pot(t) a1, (3.4
k k k k

where l:\(t) (= !iz(t)) satisfies Fq, (1.14a) and (W =

Vk*/R2 + n*)

in - 5 =172 - 5
P o(t) =[20R ] exp [-iw Rt} for t < -t , (3.5)
k - k - 0
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in s =-1/2 s
¥ () =[2WwR ] [a*(k) exp {-iw R t}
| 4 k + k +
s
+ B*(k) exp fiw R t}] for t > t : (3.6)
k + 0

)

a{k) and B{k) are certain coefficients which depend on the whole
function R(t). The solution ({3.5) is normalized according to
Egs. (1.19-20). Since the Wronskian is independent of t, we find
from Fq. {3.96)

2 2
fafk) 1 = 1B(x)1 = 1. (3.7

Comparing Egqs. (3.2) and {3.4,6), we find

out in int
a = a*(k)a + B(kya . (3.8)

k k -k
This is a Bogolubov transformation (Secs. F.2,4). Eg. (3.7) is
precisely the condition which assures that canonical comnmutation
relations for both the in- and the out-operators are consistent,
When B(kx) # 0, the import of Eq. (3.8) is that pairs of particles
in the modes %X and - k are created and destroyed during the
expansion of the universe. To be explicit, the operator of the

number of particles in the mode k after t, is

Y
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out outt out 2 in 2 in
N =za a = lak)l N+ (B (N + §(-k,~K))
k k k k -k
int int in in
+ oa{k)B(k) a a + ok(k)B*(k) a a . (3.9)
k -k -k k

{See remarks below on the interpretation of 6(-k,—k).) Thus, for —

example, if there are no particles hefore the expansion, the
expectation value of the number of particles in this mode
aftervards is

out 2

<0 in{¥ 10 in> = |B(k) 1 (3. 10a)

k
if space at fixed time is a finite hox with periodic boundary
conditions (torus). If one particle is present initially, we
have

out out ¢

<k ini¥ Ik ind> <0 inja ¥ a 10 in>
k k k k

= Itx(k)!2 + lB(k)Iz. (3. 10b)
and so on. For more details see Parker (1969), Sec. C.

In the case of a metric which is time-independent in
the limit of large positive and negative times but is not of the
generalized Robertson-Walker form (1.1), the field equations 1in
conjunction with the free field interpretation in the periods

bhefore and after the expansion will again predict particle

i
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creation, but the various modes will be coupled; that 1is, Rq.
{3.8) will be replaced by a Bogolubov transformation of the more
general type discussed in Secs, F.2-3.

According to Eq. (F.3.2),

2
fdk S(k,x) IB(K)| < oo (3. 11)

is a necessary and sufficient condition for the existence of a
unitary operator S such that for all k
in out -1
a = Sa S . (3.12)
k k
If space is infinite (k is a continuous variable), then § in Eq.
(3.11) is a Cirac delta function, and the condition (3.11) always
fails, (This is an infinite-volume divergence.) If space is
finite (k is a discrete variahle 2Wn/L), then § is a Kronecker
delta function, and Fg. (3.11) is a statement about the
ultraviolet behavior of B (k) (cf. Sec. F.4),
If S exists, the Fock space of the gut-operators can he
identified with the Fock space of the 1in-operators. The

in-vacuum is

10 in> = 5|0 out>, (3.13)

which is a linear combination of |0 out>, two-particle out-states

of the forn
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outt outy
a a {0 out>,
k -k

four-particle out-states, etc., such that Egs. (3.10) hold (see
Secs., F.3-4 or Parker (1969), pp. 1061-1062)). This 1is a
Heisenberg-picture approach; one looks at the late-tine
observables, such as N:“t, with respect to the fixed state vector
|G in> (or another imn-state). One can also look at the system in
the interaction picture, where S 1is interpreted as the limiting
vropagator U{oc,-c), which maps a state (of the free field)
initially containing no particles into a final state of the form
just described, and so forth,

If no S exists, it is no longer possible to regard the
Fock space of the in-operators as the "arena” in which the time
development of the systenm takes place (interaction picture), The
Heisenberg picture, in a fixed representation, does still make
sense; however, the ©possible states, as functionals on the
algebra of field operators (over all space-time), will be
different in the two asymptotic representations {(cf, Sec., TX.4).
But this "pathology" is entirely reasonable physically; it neans
that infinitely many particles are produced in the expansion, as
is to be expected from an interaction extending uniformly
throughout an infinite space.[6] 1In the author's opinion we

have here strong additional evidence that, as suggested in Sec.

[6] In this case convergence of the 1inteqral (3.11) for the
analogous hox case is of interest, since it has the significance
that the density of particles created 1is finite (cf. Parker
{1969), pp. 1062-1063).
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IX¥.4, the mathematically convenient framework of a single
irreducible representation of the field algebra is too narrow for
some applications of quantum field theory.

The important conclusion of this section 1is that, as
Parker (1966, 1969) has strongly emphasized, a time-dependent
space-time metric leads unambiguously to particle creation in
guantum field theory. This creation is independent of any
particle interpretation of the field theory during the period of
expansion.[7]

This kind of particle creation must be clearly
distinguished from two similar effects which have bheen discussed
in the 1literature, One is the production of new kinds of
particles in high-enerqy elementary particle processes, such as

+ = —
y + Yy -—>e + e {or p + p, etc.),
whose importance 1in early cosmology and in some astrophysical
situations has 1long been recognized. This is simply the
conversion of one type of particle into another via strong,
electromagnetic, or weak interactions, and has nothing to do with
the appearance of particles in what was initially the wvacuum
state of a free field theory. MAnother kind of particle creation
has been predicted in de Sitter space by Nachtmann (1968a,b). He

interprets the free field as a theory of stable particles, as in

[7] Por another statement of the same arqument 1in a different
context see Moore (1970), Sec. VII,
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Sec. V.h, Then he finds that the addition of a X¢4 interaction
leads in perturbation theory to creation of particles relative to
this definition of particle, at least if some particles are
already present, (That is, a one-particle state can evolve into
a three-particle state, and so on.) finlike Parkerts effect,
Nachtmann's depends on a nonlinear interaction term in the field

equation,

4, VNachtmann's Ansatz.

Nachtmann (1968b) proposes to define positive-frequency
solutions of the wave equation in two-dimensional de Sitter space
in the following way. The Hilbert space of the quasiregular
representation of the de Sitter group {(see Secs. V.4 and VI.T)
can be decomposed as a direct inteqral, the spectral

representation of the Casimir operator Q:

U = fﬁdp(qb A - (4. 1)

q
ﬁlq can be identified with the space of generalized eigenvectors
of Q with eigenvalue g =-- 1i,e.,, the sufficiently inteqgrable
solutions of the wave equation (V.2.1). The scalar product in
qu is defined up to a factor. The current form (V.4.1) is a
bounded Hermitian form on 4yq. Therefore, it determines an

Hermitian operator ¥ by the formula
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Wiy ,¥) = (¥ ,80 ). (4.2)
12 1 2
We pass to the spectral representation of N: ﬁyg is a direct
sum
= € (4.3)
R
where

KO =+§ forye 7
+

for some choice of the arbitrary constant in the scalar product.

Eq. (4.3) provides a distinquished decomposition of the type

{(Vv.s,10). 4¥+ is taken to be the space of positive-frequency
solutions. It turns out to coincide with the space chosen hy
Tagirov et al. (Sec. V.56).

Nachtmann remarks that this definition can be
generalized to an arbitrary Riemannian manifold, What 1is
intended is presumably the following., The spectral decomposition
of the laplace-Beltrami operator (VII.1.3) equips the solutions
of the wave equation (VII.1.2) with a positive definite scalar
product. This added structure suffices, as above, to remove the
ambiquity in the classification of the solutions as positive or
negative under the current form (VII.5.3): the positive
functions are those 1in the ©positive piece of the spectral
resolution (4.2-3) of the form. (The positive solutions can be

interpreted as particle wave functions and used to build a Fock
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space as in Sec. V.6 and Secs, VIII.1-4, Clearly, there is no
particle creation in such a theory,)

The physical relevance of this construction may be
challenged for the reason stated at the end of Sec. V.6, To
sharpen this argument we shall now investigate what Nachtmann's
prescription vyvields 1in the case of an asymptotically static
universe, where we already have a convincing physical
interpretation of the solutions. Unfortunately, for 1lack of
space the exposition will be rather sketchy.

Consider a two-dimensional asymptotically static metric
(BEgs. (1.1, (3.1)) with R, = R_-= 1. The Laplace-Beltrari
operator []C is Hermitian in the Hilbert space of functions on
the whole manifold square-inteqrable with respect to the volume
elesment V{g| dt dx = R*dt dx. The corresponding differential
equation, which is the wave equation (1.11), is

-2 2 2 2

F [ -3 Jg+n g-=0, (4. 1)
t X

A . . .
where m is the eigenvalue. There are eigensolutions of the fornm

ikx
2 (t,x) = ¢ ¥ (t) (0= 3%, (4.5)
B,k,0 m,k,0

wvhere for given m and |k| there are two independent solutions

vw,k + of

7

=
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-2 .2 2
B [(¥V+k ¥l+n 9 =0, (4.6)

one of which can be chosen to have the asymptotic form (3.&-5).

The probhlem is to normalize V. so that
2
/R dt dx g* g =6 Sk - k') S(m - m'ys  (4.7)
m,k,00 m',k*',o" oo?

then upon discarding the last delta function on the right-hand
side of this formula we will obtain a scalar product on the space
of solutions of the wave equation for a fixed m (by taking the
#g's as an crthonormal{ 8] basis).

Eq. (4.6) is identical to the Schr¥dinger equation for
a one-dimensional scattering problem (t = x; V(t) = - lel). Tn
the present problem, however, we must regard x* as a fixed
parameter and  as a varying eigenvalne (the reverse of the
situation for scattering), and the relevant scalar product
involves ledt instead of Lebesgue integration, Jdt.
Nevertheless, it can be shown that the orthonormalization of the
eigenfunctions is the same as in the familiar problen, Namely,
wve can choose

¥ =¥ , ¥ =¥ (v = VK* + n*), (4.8)
m,k,+ w m,k,- -

the functions with the structure indicated in Pig. 11 (Sec. V.T7)

[8] "Orthonormal"® is meant in the strict or the generalized
sense, depending on the nature of the spectrum of k.
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or Eqs. (V.7.6) with obvious notational suhstitutions. An
alternate basis is provided by their complex conjugates Umx and
bl 99)

cut

¥

o ! whose structure is schematically indicated by the first and
second line of Fig. 11, respectively, with the arrows reversed.
The notation here is that appropriate to the scattering analogy,
not to the actual physical situation; the function called U;" in
Egs. (3.5-6) is proportional to w:l under the present convention,
It is crucial to the following arqument {in particular, to the
equality in Eq. (4.10b)) that the absolute value of the constant
of proportionality (equivalently, of the transmission
coefficients S in Eqs. (V.7.6)) is independent of the sign of + w
(see [Messiah], p. 107).
For fixed values of hoth k and nm we have a
tvo-dimensional complex Hilbert space of solutions (4,5) with the
scalar product induced by Eq. (4.7). That is,
(2 . 9 )y =8 (4.9)

n,k,o m,k,o" ga?
for either of the two bases just defined, and the scalar product
of linear combinations of these is then determined. The current
form or Wronskian{9], however, is not diagonal in either of these

bases;: rather, we have

Wy ¥ ) =0, (4.10a)

[9] In the scattering analogy, - W(¥,¥)/2 is the flux in the
bean,



Sec., X.4 348

in in out out
(¥ L,V ) =~ W(9 .0 ) > 0, (4.10b)y —

- =W “
and similarly for u°“* and v;". Our task is to find a nevw basis —
- w
(¥ ,¥} which 1is orthogonal with respect to both the scalar —
- w
product and ¥,

It can be shown that if g, 6, and Y are defired by(10] —

i ix n
S = e cos #, R = e sin ¢ (0 <Cg <=y, (@W.I1H —
k k 2
so that
out -ie in -2i8 iy in
v = e cos g ¥ -e e sing 9§ , (4.12) —
) w -G

then a solution of the problem is

g 1in ifx - @) g in
J =cos - 1% - e sin -7 , (4, 13a) -
w 2 W 2 =-w
§ = P*x; (4. 13Db) -
- @
v ,v) =(v ,¥ ) =1, ¥ .§ ) = o, (4. 14a) ‘
w W -0 = w -
vy 9 )=-%({¥,7) >0, Wy ,¥ ) =0 (4. 14b) —
- =W woow w W

Thus the new basis is obtained by "rotating half way" from the

[10] See Eq. (V.7.%a) for the definition of Sk and Rk'
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Fig. 17
Relation of Nachtmann's basis to the asymptbtic hases.
Perpendicular vectors 1in the fiqure are orthogonal 1in the
positive definite scalar product ( , ). Vectors situated
symmetrically with respect to the central vertical axis are

mutually complex conjugate and are orthogonal with respect to the
current form W( , ).
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Fig. 17

Relation of Nachtmann's basis to the asymptotic bhases,
Perpendicular vectors in the figure are orthogonal in the
positive definite scalar product {, ) Vectors situated
symmetrically with respect to the central vertical axis are

nutually ccmplex conjugate and are orthogonal with respect to the
current form W( , ).
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in-hbasis to the out-basis, as indicated in Fig. 17. The

asymptotic hehavior of vw(t) is

g iwt ix 4 -iot
co0sS - ¢ + e sin - ¢ (4. 15a)
2 2

in the past (t < - to), and

i® g iwt i¥ ~-ie g ~iwt
e COo0s - ¢ - e e sin - ¢ {4.15h)
2 2
in the future.

¥hat is the significance of these functions? To

interpret the functions

as vave functions of a stable particle seems much less convincing
than the interpretation of the field expounded 1in Sec. X.3. As
remarked earlier, in the static portion of space-time one has a
free-field situation, and the usual interpretation of the free
field surely applies, Conseguently, the wvalidity of this
approach to other (not asymptotically static) manifolds, such as
de Sitter space, is questionable. The same objection obviously
applies to any attempt to define a unique notion of positive
frequency for solutions of the wave egquation in a nonstatic
space-time (for instance, the definition via a distinguished even

solution ¢ (cf. Eq. (VII.4.17)) by Lichnerowicz (1962)).
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Cn the other hand, Nachtmann's prescription gives an
interesting classification of the solutions which is intrinsic
{(independent of time, independent of any coordinate systenm). IFf,
as the results of this and the last chapter seem to indicate, the
notion of particle is a rather weak and ambiquous one in curved
space-time, then this ansatz may give as good a definition as any
of particle states for the free scalar field 1in an arbitrary
Riemannian universe, That 1is, it may be a mathematically
convenient way of «classifying the states in a certain
representation of the field algebra. (For instance, in a theory
with interactions it may be wuseful to do perturbation theory
starting from the Nachtmann states of the noninteracting theory
as unperturbed states.) The fact that for de Sitter space the
method leads to what was independently shown to be the only
qroup-covariant definition of particle which seems to be at all

—— . e o o b

physically sensible (Sec. V.6) is a point in its favor.

5. A Definition of Positive Freqguency at a Given Time, and Some

Theorens on Eguivalence of Representations.

Up to now we have succeeded in splitting the field
operator into annihilation and creation operators for particles
only 1in cases where the metric is constant, at least in some
finite interval of time. The criterion has been that the tinme
dependence of the annihilation operators for a mode characterized
by energy £ should have the time dependence exp(-iEt). Ts it

possible to place some related condition on the behavior of the
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functions mk(t) {(of Eqs. (1.16,21)) near a fixed value of t, so
that the ak in Eg. ({1.16) correspond to annihilation operators
for particles at that time? In a sense the result of Sec. X.2
answers this question in the negative, unless the example studied
there can te arqued away as 1illegitimate (because the space is
extendable, for instance -~ c¢cf., Sec. IX.6). However, in
accordance with the author's often-repeated opiniorn that a
particle notion may he of some value even if it is not unique,
definitions of this type will now be considered.

Let us take t = 0 to be the time at which particles are
to be defined., Then the problem is to make a sensible choice of
the coefficients Ak and B, in ¥Egs, {1.21-24), one which reduces

k
when R = const. in the neighborhood of 0 to

s -1/2 i
A ={2F R ] , B = - -4 (5. 1)
k k k 2
(cf., €94, BEg. (3.5)). The annihilation operator ak will then
be determined by Eq. (1.18).

The most obvious approach is to diagonalize the

instantaneous Hamiltonian H({).[11] That is, we are to choose

{11] See, for instance, Gribk and Mamaev (1969). (This paper
seens to the present author to contain several confusions, 1In
particular, Eg. (12) as written is not a solution of the field
equation; it becomes one (and the theory becomes equivalent to
that of this section) if the arqgument n of % (n,k) is replaced by
a separate parameter g . Also, the assertion {p., 724) that the
particle creation violates charge conservation is
incomprehensible to the present author; it seems to be based on a
confusion of particle and antiparticle creation operators.)
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the coefficients so that the contribution of the mode k to the
Hamiltonian 1is proportional to alak, which is regarded as a
nurber operator. Substituting the expressions of Sec, X.1 into

the Hamiltonian (VII.1.8b), we obtain

1 2 2t 2t ¢
H=—jdk{{B aa +B* aa + |B| (aa +aa)]
2 kK k-k k k- Kk  kk K

2s 2 2 2 2 2 t ¢
+R [k /R +m ][A aa + A* a a

2+t
+ A ] (aa +aa)l)ll. (5.2
k k k Xk X

{(This applies to the case (1.15); in the general case, but with
real eigenfunctions, one would have et for k- and at instead of
aka L etc,) So we must have

2 2s 2 2 2 2
-B =R {[k/R +mn ]2 . (5.3)
k k

Egs.  (5.3) and (1.28) together provide three real equations for
tvo complex quantities; the solution is unigue up to an overall

phase, If we arbitrarily require A, to be real and positive, the

k
solution is

o
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1 -s/2 2 2 2 =174
A = -—R [k,/B +m ] .
kK V2
1 +5/2 2 2 2 +1/4 i -1 (5. 4)
B =-i-—R [k /R +m ] =--13 ,
k V2 2 x

where R stands for R(0). This makes the Hamiltonian take the

form

s 2 2 212 ¢
H(0) = R ;

dk [k )R +n ] (aa + jé(k,k)), (5. 5)
k k 2
where the delta function term is an infinite constant which may
be discarded; H(0), thus normal ordered, is manifestly a positive
self-adjoint operator in the Fock space of the operators a . (1£
we had used the original Gaussian time scale x° {see Eq.
(1.7)), there would be no factor of F in H(C) )
Positive-frequency solutions in de Sitter space were
defined in this way in Sec. V.3. There it was remarked that
these solutions rtesemble the static-space positive-frequency
solutions up through order ta, In the general case this
correspondence holds only through first order., In de Sitter
space §(0) is zero, and hence the hehavior of the systenm is
static to one higher order in t. This slightly increases one's
confidence in the physical relevance of the particle number
defined in this way on a geodesic hypersurface in de Sitter
space.

Local particle observables of the Newton-Wigner-
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Wightman~Schweber type can be defined by Fourier-transforming 3y
back to x-space without the factor Ak’ in analogy to Eq. —
(VIII.H4.3).

Obviously, the procedure applied here at t = ( can be
applied at any time. For different times it will, in general,
vyield different definitions of a3 this 1is the phenomenon of —
particle creation. The operators aL and a: appropriate to —
different times t, and t. will be related by Bogolubov —
transformations of the form

2 1 1+
a = o¥(k)a + B(k)a , [5.6) —
k k -k
where the coefficients ohey Bq. (3.7). Let us calculate these

coefficients, For j = 1 and 2 define

j t. t,

() =& (t)E ) + B (tyo'! (v, (5.7 —
k kK § X kK 3§ k

i .
where E; and O:J obey the obvious generalization of Eqs., (1.22) —

and Ak(tj) and Bk(tj) are given by Egs. (5.4) with R = R(Fj). We —

have

ik-x 1 1 -ik-x 1 1+
g(t ,x) = [dk ¢V (t)a +¢ PE(t)a 1, (5.8
2 k 2 k k 2 k
ik'x .1 1 'ik'x 01 1*
M w o= [k e W (t)a +e  FE(EIa L _
2 kK 2 k k 2 k
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But ¢(tl,x) and W({t, ,x) can also be expressed in terms of the —
quantities with the index 2, and those equations can be inverted

as in Fq. (1.18)[12]:

2 -ik-x -ik«x
a = - i[- B (t )jdx ) g - 3 (t )}dx @ n. -
k k 2 k 2
Substituting, we obtain
1 .
ok(k) = i[B (t)F (£ ) + 2 ()9 ()], (5.9a) —
k 2 k 2 k 2 k 2
1 o 1
Bik) = i[B (t )P *(t ) + A (t )§ *(t ) ). (5.9b)
k 2 k 2 k 2 k 2

If B(k) = 0, Eq. {(5.6) 1s just a phase change and there —
is no particle creation., Otherwise, the Fock vacuum states of
the operators corresponding to different times must he different.
The question arises whether the Hilbert spaces of these Pock
representations are the same; in other words, whether there is a
unitary operator U(tz't|) such that

2 1 -1
a = Ut ,t)a U(t ,t) for all k. {5.10)

The statements about the S-operator in Sec. ¥.3 apply to U as

[12] Recall that &% = A that y: (£ = B (), —

kT M
e |
t.) = B (t.), d that = o
P () = B (t), and that ¥ =

2
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well., TIf the volume of space is finite and

2
% IB(k)| < oo, (5. 11)

then the Hilbert spaces are the same and U exists. 1In this case
the initial vacuum |0 t|> can be expanded in terms of the Fock

basis at t and the coefficients are to be interpreted as

27
probability amplitudes for finding (finitely many) particles
distributed in the various modes at t;, if the universe was empty
at t . Alternatively, ot ,t,) can he regarded as the time
evolution operator of the states in a Schr#dinger picture where
the number operator),

the particle operators a Nk (= a

Ta
k* k!
etc., are held fixed.[13] ¥Note, however, that for reasons about
to be explained the notion of a Schr8dinger picture for the a is
not quite the same as that of a Schr#dinger picture for the field
operators,

£Eq. {5.10) does not mean, unless B(t{) = R(t,), that
-1

gt ,x) =0(t ,t ) g(t ,x) U{t ,t) 3 (5.12)
2 21 1 2 1

because ¢(tj,x) and ai are related by a time-dependent Fourier

transform:

[13] In Sec. X.3 the phases of the a, in the asymptotic region —

were tacitly ‘Mrun back" to t = 0, anrd so an interaction picture
instead of a SchrBdinger picture was mentioned,
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ikex § -ikex it
gt ,x) = Idk A(t) [ a + ¢ a ], (5.13a) —
j K X k
ikex 3 -ik-x ¢
Tt %) =jdk B (t) [p a +¢ a1, (5.13) —
j K g X k

where Ak and Bk depend on tj through R(Fj) (see Eqs. (5.4)).[14] —
Eg. (5.12) would give us not FEg. {5.10) but unitary equivalence
of aL with canonical operators Ek defined from #{t,,x) by means —
of an equation like Eq. {(5.13a) (j = 2), but with Ak(t‘) in place
of Ak(tz) {and a similar equation for M(t,,x)). Any operator 1] —
satisfying Fg. (5.10) would have to be a composition of the U in
Eq. (5.12) with a unitary operator implementing the automorphisnm
Ek —> dz. -

We shall now determine when such an operator exists.
Analogously to Egs. (5.6,9) one finds that

2 D(k;2) D(k;1) _ 1 D(k;2) D(k31) _¢t

1
a =~ + lJa + -] - la ,
k 2 Dk D(k;2) k 2 D{k;1) D{k;?2) -k

vhere

s/2 2 2 2 1/4
D(k:j) = R (t) [k /R (t) +nm ] .
j j

Let

[14] Cf. Parker (1969), p. 1061,
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1 D(k3;2) D(k:1)
- { - 1.
2 D(k;1)  D(k;:2)

B(x) =

If s = 1 and we are working in finite space, the sum (5.11) is
precisely the one treated in Sec, F.4, which  converges;
therefore, aunitary equivalence of the fields is equivalent to
unitary equivalence of the particle operators. If R(tl) 7 R(Y))
and s # 1, B(k) approaches a nonzero constant as k —» oo ; thus
the sum (5.11) diverges, and hence equations of the forms (5.10)

/2 .
make +the <crucial

and (5.12) cannot both hold. The factors R
difference for s = 2 or 3 between this situation and the one
discussed in Sec. F.U,

The distinction between the two types of equivalence is
sufficiently confusing to Jjustify a restatenment, Our Dbasic
ansatz, expressed in Fgqs. (5.,2-5), defines at each tinme t, a
representation of the field operator g(t ,x) (a distribution in

the s-dimensional space variable x), which we may call the Fock

representation for time t,. However, the dynamics given by the

field equation defines in the Hilbert space of the Fock
representation for time t, a representation of the field at time
tl' ¢(tl,x), given by Eg. (5.8). One may ask whether this
representation is equivalent to the Fock representation for time
ta; an affirmative answer is Fg., (5.10)., An entirely different
question is whether the time evolution indicated in Eq. (5.8) is
unitarily isplementable within the Pock representation for time
t'; this is the content of Eq. (5.12).

In an asyaptotically static universe with ?+ Z F



Sec. ¥,.5 360

unitary equivalence in the sense (5.10) means that the in Pock
representation is equivalent to the out Fock representation,
wvhereas in the case (5.12) the in-representation is a "strange"
representation of the out-operators. This seems to indicate that
the more physically relevant type of equivalence is that of Eq.
(5.10) »

Another arqgument to the same point is the following.
When R(tl) # R(tz)' the spatial universes at the +two times are
geometrically different, and it is not obvious that the field
observables defined in these two spaces should be considered to
be the same algebra. 1In a generalized Robertson-Walker universe
the spaces at different times have the same "shape'"; it is only
this fact which allows one to make a nmnatural identification of
the points, so that Eq. {(5.12) makes sense, In a more general
universe there is no preferred coordinate system, and there is no
particular reason to expect Zq. (5.12) to hold for an arbitrary
system. Tndeed, the range of the spatial variable x could be
different at different times, as in the Kruskal metric (see
footnote 3 of Chapter IX). On the other hand, in this general
context it is still possible to define a Fock representation for
each spacelike hypersurface by diagonalizing the Hamiltonian,
One can then ask whether the Fock representations corresponding
to different times are equivalent; instead of Egs. (5.6-9) one
will have to consider a more complicated Bogolubov
transformation, like that discussed in Sec. IX.3. Equivalence in

this context simply means that the Fock representation for time
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tz is the samelas the representation of the field algebra at tine
ts defined by the dynamics (in analogy to Egq. {(5.8)) in the space
of the Fock representation for time t . This condition may no
longer be expressible as a momentum-space unitary equivalence of
the form (5.12), since the structure of the spectrum of the
Hamiltonian will, in general, be different at different times.
Finally, it will now be shown that Egq. (5.10) does hold
for any two-dimensional closed generalized Rohertson-Walker
universe, {In the two-dimensional case one can always choose the
spatial coordinate so that Egqs. (1.15) hold. The assumption that
the space is «closed (has finite circumference) is necessary to
make k a discrete variable,) It is assumed that R(t) is bounded
in the interval t, Lt < t& and sufficiently well-behaved that
the solutions of the wave equation (see Eq. (5.15) below) exist
and are bounded in this interval,
We must investigate the sum (5,11 for B{(k) given by

Eq. (5.9b); that is (taking t = 0, R(0) = 1, t_ = t, R(t) = R),

1 2 2214 2 2 -1/4

B(x) =-Tk +nR ] [k +m ] pP* (t)
2 k
i 2 22 ~-1/4 2 2 1/4 1 dP:(t)
+ ~[{Xx +nmn B ] (k +m ] — . (5. 1)
2 Yx* + o dt

where Pk(t) is the solution of Eq. (1.14a),



Sec. X.5 362

2

a’p, 2 22
— +[x +aR )P =0, (5.15)
at k
satisfying
ar, {0) —
P (0) =1, — = - iVk* ¢ p? (5. 16)
k at

{cf. Egs., (5.7) and (5.4)). Thus

1 -2 1 -2 i apgE()
B(k) = -[140(k )] P¥(t) + -[1+0(k ) ] - < (5.17)
2 k 2 KX ¥ a4t

{The expansion of the radicals is as in Sec. F.4.,) Hence if, for
a fixed t, Pk(t) and ﬁk(t) are bounded and
i de(t)

X (t) =P (t) - —————— (5.18)
k k VK ¢ m*  dt

vanishes as k =—> oo at least as fast as 1/k, we will have

2 -2
(B{ky1 = 0(k ),

and the sum will converge, which was to be proved.

Now P, obeys the integral equation

k

~iwt 1 .t 2 2
P (t) = e - f ds sin [wi{t-s) ] n (R {s)=1) P (s), (5.19)
k w/p X

where W = Vk* + m*. (Eq. (5.19) is constructed from the Green

function for Eqe. (5.15) with R = 1 appropriate to the initial

ot
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conditions (5.16). Eqs. {5.15-18) can Ee verified hy
differentiation of this eguation.) Therefore, the maximum value
of Pk(s) for 0 £ s £ t is

t 2 2

1P | <1 +—mn |R - 1] 1P | =14+ A|P | .
k max w max k max k max

For sufficiently large k (t fixed), 2 < 1/2 (say), and so

|P < < 2,

k max 1 -2

The same argument applied to the derivative of Eq. (5.19) shoyus
that ﬁkﬁg is bounded for large k. Also, we have
iot 1 ¢ 2 2 -ivs

X (t) = - e —jdsp(s)m(ﬁ(s)-ﬂe .
k w g x

Since P (s} and Rl(s) -~ 1 are bounded, it follows that

const. 1
1X(t) } < )
w k

as desired.

It 1is clear that this proof cannot be extended to
higher dimensions without some bhetter estimate on the decrease of
X(k) at infinity. 2Also, the theorem is certainly not true for
two-dimensional Robertson-Walker universes of infinite spatial
extent, for the reason indicated in connection with Egs.

(3.11-12) .
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6. Critique of the Definition; Parker's Alternatives.

The viewpoint of the last section, if pressed to its
extreme, is that the physical particles present in the universe
at time t are given by the expansion of the state in terms of the
stationary states of the instantaneous Hamiltonian H(t), these
eigenstates being given the particle interpretation they would
have if H(t) were a static Hamiltonian {see Chapter VIII). This
is equivalent to the assumption that 1in studying particle
creation between times t and t, one may replace the actual

t

mnetric by the asymptotically static one for which

R(t) = R(t ) if t <t , R(t) = R(t) for t >t ,
1 1 2 2
and R(t) coincides with the original R(t) in between, and one may
give the field in the static regions the usual interpretation.

Tt has been questioned (e.qg., Parker {1969), Sec. F)
whether this ansatz is justified physically., For one thing, it
is not obvious that the fact that the metric is changing in tinme
is irrelevant to the way in which the excitation of the field
manifests 1itself in particlelike behavior. After all, the
equivalent metric mentioned above 1involves a violent sudden
change in the behavior of R(t), which might be expected to affect
the particle number discontinuously, Also, since any actual
measurement takes a finite time, it 1is not clear that the
instantaneous particle "observables" have any operational meaning

when the metric is changing rapidly., "There is no reason why a
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precisely defined operator should correspond to the physical
particle number when [the creation rate] does not vanish,"[15]
Pinally, ©Parker (1966, 1969) finds that the particle nunmber
density defined by diagonalization of H(t) diverges when summed
over all modes (for s = 3) and has rapid oscillations which are
in principle unobservable,

Parker has suggested replacements for the instantaneous
particle operators of Sec. X.5 which avoid these divergences and
oscillations, They are based on the observation that

- t -2

P () = & (t) exp f- if att A (t') /2} (6. 1)
k k k
is a first-order adiabatic approximation to uk(t)' He rewrites
the field expansion (1.16) in terms of ﬁk {in effect), thus
factoring out and isolating the deviation from adiabatic behavior
of the time dependence of the field, In his thesis (Parker
(1966)) a second-order adiabatic approximation was used to define
an approximate number operator which is constant during the time
of a measurement. In the published version (Parker (1969)) he
introduced instead the postulate that Ak(t) in Eg. (f.1) should

be replaced by a new function, chosen to minimize the expectation

[15) Ibid. Cf. Moore {1970): "In [a period when the external
conditions are time-dependent] the very concept of photons
becomes nuddy, just because the absence of photons (namely, a
time-translationally invariant vacuum state) cannot be defined.”

-
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values of the derivatives of the number operator for mode k.[16]
The opinions of the present author concerning particle

operators at fixed time are the following:

{1) It is quite likely, for the reasons mentioned,
that the creation and annihilation operators defined in Sec.
¥.5 have very little to do with physical particles which
would actually be detected by some experimental apparatus,
In fact, the very idea of a particle may not be applicable to

the behavior of the field when R{t) is rapidly changing.

{(2) Nevertheless, the particles defined in terms of
the instantaneous creation and annihilation operators at a
fixed time may provide the wmost convenient way of labeling
the states when the evolution of the system between finite
times is studied, These quanta should he called wvirtuaal
particles. If the virtual particle concept turns out to be
useful in this context, how much reality one attributes to

these particles when they are, strictly speaking,

unobservable is largely a matter of taste,

{3) What operators, if any, correspond to real,
observable particles cannot be decided on the basis of

mathematical properties  alone. Apy identification of

{161 This is to be done (L. Parker, private communication)
consistently with the discussion surrounding FRq. {32} of the
paper, where W(k,t) is determined by R{t) and its derivatives.
Dr. Parker believes that for a slowly expanding universe this
procedure will agree with the one in his thesis,
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observables must ultimately be tested against some (perhaps
very crude) physical analysis of the measurement process
itself. Such a program is somewhat circular, because one
needs a complete theory, including interactions, before a
model of interaction of the field with some other system can
be studied with confidence, Nevertheless, this does not mean

that progress cannot be made.

{#) Since the 9practical interest in our subject
relates mostly to relativistic astrophysics and cosmology, it
may be wise to concentrate on the energy-momentum tensor as
the observable to he analyzed (cf. Sec., TX.5), rather than
the response of a hypothetical apparatus to detect individual
particles, (The investigation night or might mot still be

conducted in terms of a particle formalism.)

(5) A possible starting hypothesis for such an
investigation would be that physical particles (which are
detected directly or which indirectly (for instance, through
a normal-ordering prescription) enter the definition of
cbservable gquantities such as energy) corresponrd to some kind
of smoothed-out particle operators such as those defined by

Parker.

Such a project far exceeds the scope of the present

work. In the next section, however, are collected a few
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reflections concerning how the particle concept arises 1in
traditional field theories and why it threatens to lose 1its

validity in the situations of interest to us.

7. Remarks toward an Analysis of the Particle Concept.

The problem we face has to do with both the
mathematical definition and the physical interpretation of a
quantum field theory 1in a Piemanniar space-tinme, As to the
first, what constitutes a field theory, we early rejected the
naive notion that a field equation and a commutator function are
enough, and we set about +trying to define a Hilbert space of
state vectors in which the field would be represented as an
operator-valued distribution., When it turned out that the choice
of representation was problematical, a sophisticated cousin of
the mnaive idea presented itself: the doctrine of physical
equivalence of all faithful representations of an abstract
algebra of observables. This point of view, however, leaves us
still embarrassed with respect to interpretation,

The interplay of the mathematical and the observational
aspect of the problem is hinted at in the anecdote of I. ®. Segal
which stands at the beginning of this dissertation, Segal has
interpreted "the occupation number formalism"™ to mean the
algehraic structure of ‘the canonical commutation relations, to
which he gives an abstract formulation; most physicists would
think rather of the interpretation of the states of the theory in

terms of configurations of particles:; but they are concerned with
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the sanme prohlem, As long as our experiments involve
observations of particle events rather than measurements of field
strengths, it seems to be necessary to add some structure to the
abstract framework df quantun field theory in order %o complete
the link between theory and the world. Tndeed, in one of the
papers in which the Wightman axioms (see Appendix E) were
proposed, it was stated, "Practically, most measurements are made
on particles not fields, and a relativistic guantum theory is not
really complete unless it 1includes some kind of particle
observables,”"[ 17 ]

Why and how are field theories interpreted in terms of
particles? There seem to be two elements 1involved, a physical
one and a formal one. Let us review how the particle concept is
introduced into the theory of a free field, where the probhlen
seems to be conpletely under control., It arises first from the
physical fact that corpuscular behavior 1is observed ir the
situations where free field theory 1is applicable.[18] In
particular, one observes mnmotion in straight lines at constant
speeds, which, together with the <conservation obhserved in
interactions {interactions which our theory does not attempt to
describe, of course), leads to the concepts of momentum and

enerqy. Secondly, the solution of the field equation by

[ 17] Wightman and G8rding (1965), p. 156. See also Wightman and
Schweber (195%).

[18] This regime can be characterized only by a circular
statement such as "Particles hehave essentially freely when they
are far from one another.”
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separation of variables 1leads to an expansion in terms of

creation and annihilation operators:

3 e . =*
d k ik.x -1wkt -ik-x iw bt ¢
g(t,x) = I_-:: [¢ e a + g e a J« (7.1)
‘/iwk k k

The operator Nk = aia has the spectrum appropriate to a number

k
operator. It is natural to associate the 1index k with the
physical wmomentum of the particles “"counted"™ by N, This
interpretation has been found entirely consistent and
satisfactory,. {See any textbook on quantum field theory for
details.,)

In external potential problens, including the
gravitational, this treatment can be imitated only partially, and
only in special cases.[19] First of all, if the external field
is static[20], one can define elgenstates of the Hamiltonian
analogous to the momentum eigenstates 1in the case of the free
field, Thus the theory has a particle, or quantal, structure
{cf. Chapter VIII). However, if the potential does not vanish
asymptotically one might question the identification of these

gquanta with physical particles, especially in view of the

phenomena pointed out in Chapter IX,

[19] The reader ‘will note a tendency for this section to repeat
Sec, VII.7. This 1is simply a manifestation of the point
emphasized above; a discussion of the nmathematical structure of
field theory tends to parallel a discussion of its meaning.

[20] Tt must also be such that the single-particle squared
Hamiltonian is self-adjoint and has no "jelly modes" -- see Secs.
VIII.“‘Q.

—
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Cn the other hand, the asymptotic approach applies if
the potential falls off in space and at least becones
asymptotically static in time[21], or if it falls off in tinme,
Then there is a representation {(out-representation) such that
every vector state can be interpreted as describing a
configuration of particles which, after a sufficient time, are
either out of the range of the potential or 1in stable bound
states, Similarly, there is an in-representation; if these two
representations are unitarily equivalent (cf, Sec., ¥.3), one has
a distinguished representation for the fields and a particle
interpretation which is adegquate for the description of
scattering processes.,

In both these approaches the particle interpretation is
closely tied to the canonical structure, This is obviocus for the
first approach, which works from the formalism to the
interpretation, The asymptotic method works in the other
direction. Although in this case the canonical structure of the
Heisenberg-picture field does not play a role (and is not even
expected to bhe valid for general interacting fields), the
particle structure of the asymptotic states leads to asymptotic
fields, which are free fields obeying the canonical commutation
relations {see [Streater-Wightman], pp. 26-27).

It is the asymptotic approach which is usually taken in

field theory, both for external potential problems and for

[21) The latter condition is imposed to avoid the problem of a
time-dependent potential which continually emits particles,
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interacting fields. ¥%ightman and Ggrding (1965} say (p. 157):

In view of the current state of ignorance [concerning
the relation between particle observables and (nontrivially
interacting) fields], there 1is no alternative to setting
aside the notion of particle observable for further study and
accepting something much weaker, that of asymptotic particle
observable., This procedure is also advantageons from another
point of view, Tt is quite possible that relativistic field
theories exist 1in which asymptotic particle observables can
be defined but not particle observables at each fixed tinme.
This would not he unreasonable physically for it might bhe
that the notion of vparticle can only be defined in some
limiting sense 1in which the particles are far from one
another,

Hence the axiom of asymptotic completeness (see Appendix E),

In Sec, VII,7 it was arqued that in gravitational
external potential problems one cannot be satisfied with an
asymptotic particle interpretation, We must either return to the
unfinished thusiness of defining true particle observables, or
make physical sense out of field observables without the particle
concept,

The author has come to believe that the second of these
alternatives deserves serious consideration. He know from the
analysis of Wigner (see Sec, V,2) that the particle concept is
closely related to the representation theory of the Poincaré
group, the symmetry gqroup of flat space, Tt seems quite
reasonable that the notion of particles should weaken in an
external potential situation which departs greatly from the free
Lorentz-invariant one, Particle hehavior 1is recovered in
"asymptotic? theories because there 1s a region of space-tinme

within which the dynamics is approximately free, If there 1is no

such region, if it is 1impossible for the excitations 1in the
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quantized field to separate themselves from the irregularities in
the environment represented by the external field, then, as
Wightman and his collaborators have said, the nparticle concept
may simply not apply. FElementary particles may be very much like
the gquasiparticles of solid state physics. The quantur theory of
the physical system composed of the atoms or the electrons in a
crystal predicts particle-like excitations (phorons or plasmons).
But these quasiparticles are stable only for a perfect crystal.
The nmore severe the impurities or dislocations or external
perturbations, the faster the quasiparticles decay away, until
finally the concept becomes useless., Then omne must go back to
the substratum: 1in solid state physics, the atoms and electrons;
in more fundamental physics, the field.

In the case of guantum fields in curved space-time one
can expect on general physical grounds four regimes with respect
to the usefulness of the particle and field concepts, depending

on the properties of the metric:

(1) The single-particle domain: a convincing

definition of particle ohservables exists according to which
no particles are <created, or a negligible number., Then a
satisfactory single-particle quantum theory exists, and the
apparatus of field theory is not really needed. This would
he the case for the static theories of Chapter VIII, to the
extent that the definition of particle therein is regarded as

trustworthy., It is also true of time-dependent models where
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the creation is negligible.[22]

{2) The many-particle domain: a particle

interpretation exists, and the particle number is nonconstant
to a nonneqgligible extent, This is the regime which we have
implicitly assumed to be of interest earlier in this chapter.
It remains to ke shown, however, how wide +this band is, or

even that it exists at all.

(3) The field dopmain: the concept of an external

gravitational field[23) applies, but there 1is no particle

{22] The 1literature on relativistic wave mechanics (e.q.,
Feshbach and villars (1958)) often implies that the Klein-Gordon
or Dirac equation has an ohvious one-particle interpretation for
Ysyfficiently weak" external potentials, without any indication
of a crucial difference between time-independent and
time-dependent potentials, However, the observations of Secs.
¥.1 and X,3-5 apply to time-dependent electromagnetic (etc.) as
well as gravitational potentials: There is no obvious way to
separate the solutions of the wave equation into positive- and
negative-frequency parts, and, moreover, any physically plausible
definition of the splitting which is adopted will probably give
different results at different times -- that is, it will predict
particle creation, The origin of the conventional wisdor seenms
to lie in the fact that if the high-frequency Fourier components
of an asymptotically static potential are very small, the
vacuum-to-vacuum S-matrix element, <0 out|f in>, is very close to
1. That is, the out- and in-vacuums can be identified, and no
real" particles are created. {This effect is necessary for
conservation of enerqgy; the energy required to create a pair
> 2nc?) must be extracted from the modes of the external field
which carry sufficiently large enerqy, HN«.) In such a case the
virtual particles occurring at finite times in a
field-theoretical treatment can ke disregarded, and then the
field equation can be taken as the equation for the wave function
of a single particle, To the extent that the vacuum-to-vacuunm
amplitude differs from 1, this kind of +theory is troubled by a
version of the Klein paradox.

[23] Among the external gravitational field prohlems one should
include not only models in which the metric is prescribed once
and for all, but also theories in which the ({classical)
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interpretation of the gquantized scalar field theory.

(4) The domain of quantum general relativity: the

interaction of the gravitatioral field, as a dynamical object
in its own right, with the quantized matter fields must bhe
taken into account. PFor consistency it will ©probably be
necessary to treat the gravitational field in a
quantum-theoretical wmanner; yet it cannot be an ordinary
quantum field, since it itself determines the manifold on
which the fields must be defined. Let us leave this prohlen
to the physicists of the future and return to the external

field framework.

We have Dbeen speaking of "real"™ particles -- modes of
observable behavior which conform to our intuitive notion of
particle, which is derived from observation of particles which
are almost free, There are also definitions of virtual particles
which arise out of the field-theoretical formalisn, Any
splitting of the field into annihilation and creation parts, as
in Fq. (1.16), gives rise to a notion of virtual particles. Some
of these are more likely than others to be useful, just as in
ordinary quantum mechanics some choices of basis in the Hilbert
space are more convenient than others., (Compare the discussion

of Museful representations" near the end of Sec. IY,4,) A

gravitational field 1is influenced by the matter field through
some "self-consistency" scheme, such as the work of FRuffini and
Bonazzcla (1969).
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virtual particle language may be a useful way of classifying the
states of a field theory for certain purposes even if the virtual
particles have nothing to do with real particles., O©On the other
hand, a "good"” notion of virtual particles may turn out to
correspond to a 4Weakened notion of real particles (as just
described}, or may yield a physically relevant notion of current
or energy density (see Sec. IX.5). The nonuniqueness in
plausible definitions of virtual particles is mnot a conclusive
counterarqgument against this hope, since as the notion of real
particles weakens, there is more room for amhiguity in it, In
this spirit a general definition of particle observables at fixed
time for an arbitrary Riemanniar manifold will be offered in the
next section,

Let us consider an exanmple of how the particle concept
becomes fuzzy, and at the same time ambiguous, in a sequence of
external potential problems., Consider a nentral scalar field of
mass m interacting with a scalar potential; that 1is, a wave

equation of the fornm

30 + af(m - V(t,x))V = 0. (7. 2)

Assume at first that the potential has compact support

in time:

v(t,x) = 0 for jt} > T, {7.3)

There are clear definitions of particles in the asymptotic

regions {the in- and out-representations); the particle operators
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are defined in terms of the field operators g and 7N through a
Fourier transfcrmation {(cf. Fq. (3.2)). If the potential also
falls off sufficiently rapidly in space, Schroer et al. (1970)
have proved that the time evolution of the fields is unitarily
implementable in the in-representation (which is therefore
equivalent to the out-representation). Tt follows that |if
creation and annihilation operators at each time t are defined in
terms of g(t) and W(t) by a Fourier transformation {cf. FEgs.
(I1¥.3.1)), then the Fock representations of all these sets of
particle operators are equivalent (to each other and to the
asymptotic representations), If this is taken as the definition
of particles, the relation between the ohbservables and the field
at a given time is the same as for the free field., 1In particnlar
it does not depend on the time. The definition of the vacuum (as
a Heisenberg state) does not change with tinme, (0f course, the
evolution of the systen will take the vacuunm, as a
Schr8dinger-picture state, into states with a probability for the
presence ¢of particles at another tinme,)

On the other hand, consider a potential which is
independent of t. Then one is led, as in Chapter VITI, to define
particle operators via an expansion in the eigenfunctions of

2
-7 + m(m - V(x)), (7.4
rather than of the Laplacian alone, as above, It 1is crucial to

note that this natural procedure for the time-independent case,
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followed by Schroer and Swieca (1970), is fundamentally different
from that just described for the case of compact support in time,
adopted in the adjacent paper by the same authors (Schroer et al.
{(1970)).

He <can confront these methods with each other by

considering a potential satisfying ®q. (7.3) and also

V(t,Xx) =V (x) for |t] < T' < T, (7.5)
)

¥e may imagine T' to be many times larger than the age of the
actual universe, so that it would be absurd to claim that there
is a significant difference between this situation and the
previous one with trespect to the physics around the time t = 0,
But then for the potential of Bg. {(7.5) in the vicinity of t =0
the quantization based on a V-dependent integqral transform, as
for a static potential, 1is a serious competitor of the
guantization described above for a general potential of compact
support, based on the Fourier transform. For some potentials
these representations are unitarily inequivalent; in fact,
Schroer et al. remark that the former may have "jelly" (or
indefinite metric) trouhles while the latter (being an ordinary
Fock representation) is perfectly normal.

This example demonstrates that +the anmbiguity in the
definition of virtual particles can assert itself already in
external potential problems; it is pot inseparably connected to

the general covariance of the gravitational problem. Which of
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these particle notions, 1if either, corresponds to real,
observable particles? It seems to the author that if T' is very
large, a case can be made for the V-dependent definition, which
yields a vacuum (and one-particle eigenstates, etc,) wvhich are
stationary states during the long static period. O0n the other
hand, if T is rather small, the V-independent particle concept
may make more sense, since in that picture (if the potential is
of fast decrease 1in space) there are always only finitely many
particles present, before, during, and after the interaction,
Obviously, there must be a regime in between where the particle
notion hecomes fuzzy.

There 1s nothing to keep one from applying the
V-dependent guantization at each time, even if V¥ 1is not constant
in a finite time interval, although its physical relevance is
more guestionable in this situation, (This procedure can also be
specified as follows: At each time, choose the representation
which makes the instantaneous Hamiltonian a positive operator by
explicitly diagonalizing it into the form of a linear combination
{or inteqgral) of number operators. The method of Sec. X.5 was of
this type, and it will be recommended again in +the next section
(Eg, (8.1))s The other kind of quantization considered here for
the external scalar potential does not have a plausible analogue
in the generally covariant gravitational context, since it
essentially depends on a fixed Cartesian coordinate system,) If
this is done, the instantaneous vacuum is not constant, even in

the Heisenberq representation, because the relation between the
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particle observables and the field operators depends on time.[ 28]
The vacuum may even wander through mutually inequivalent
representations. Consequently, if the vacuum corresponding to
each time is to be a vector in the Hilbert space of the systen,
the Hilbert space cannot coincide with the cyclic space generated
by any one of these vacuum states, but is nuch larger. Thus one
would not have, as usually assumed, a single irreducible
representation of the fields, within which the time evolution is
unitarily irplemented.

Now let us consider potentials which do not satisfy Eg.
{7.3), and in fact fall off so slowly in space and time that no
asymptotic rerpresentations can be defined. Then if we are to
have particle ohservables at all, they must be definable at
finite times. In analogy to what has gone hefore, +two
definitions offer themselves: (1) a simple Fourier transform,
the potential being ignored; (2) a V-dependent decomposition at
each time,

Let us look at the implications of these two approaches

in the very special case

V(t,x) = const. 7 0, (7. €)

From point of view (2), the field is just a free field[?25] of

[24] Compare the distinction which was drawn in Sec. ¥X.5 between
two types of equivalence of representations.

[25] Is there no operational distinction between a free field of
mass M and a field of mass m interacting with a copnstant
potential V? The answer depends on whether it is possible to
have an apparatus which detects the guanta of mass m, as opposed
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mass ¥ = Vm(m - V). Tf the approach (1) is followed, however,
one has pair creation of the wildest sort: the representation of
the fields for which the ak(G) have a vacuoum state is not
equivalent to that for which the ak(t) have a vacuum state (ak(s)
being defined at each time 5 by a Fourier transform of the fornm
(I¥% 3.1) with the mass m). This statement follows[26] from the
discussion of Wightman (19f4), pp. 251-255, if one (1
interchanges the role of "free" (or "interaction-picture") and
"interacting" fields and (2) notes that +the m-particle operators
at different times are equivalently represented if and only if
the corresponding M-particle operators are, since the connection
between m- and M-particle operators at equal times is independent
of time. ({(The latter point also implies immediately that ak(O)
and ak(t) are unitarily equivalent in the Fock representation of
the M-operators. That is, there is a representation (which |is
not the Fock representation of the ak(O)!) in which the time
evolution of the ay is unitarily implementable, This, however,

is a special property of the interaction (7.6), which will not

to the quanta of mass M, given that the field obeys Eq. (7.2).
{Recall that atsence of quanta of one mass does not mean abhsence
of quanta of the other mass -- see Sec, F.4,) It seems that the
answer has traditionally been assumed to be no, since fields with
Lorentz~-invariant quadratic interactions (of which this is a
special case) are regarded as trivial since they are equivalent
to systems of free fields (see Jaffe (1965), Chapter XII, and
Wightman (19564), pp. 180-182). The author believes, but has not
been able to demonstrate in a mwodel, that any reasonable detector
will "come to equilibrium" with the ©physical (stable) vacuunm
state and hence will be sensitive only to M-guanta (cf. Sec,
VII. 7).

{267 See alsc Grib (1969).
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persist for geperal potentials.,)

Grib (19€9) has described the situation which exists
for the m-operators (and exists in general when there is a time
evolution which 1is not unitarily iuvplementable within a given

irreducible representation) as follows: The Heisenherq picture

exists, but the SchrBdinger picture does not. This statement may

be interpreted in two ways, depending orn what kind of quantum

theory one has in mind:

{1} If one insists on an irreducible representation,
it must be chosen arbitrarily (say as the Fock representation
for the particle operators defined at one particular tinme),
Then within this Hilbert space the time evolution of the
fields is defined as an automorphism, but there is no unitary
propagator U(tx,t|),

-1

a{t) =U(t ,t)a {(tYuex ,ty , (7.7)
k 2 2 1 k1 2 1

by means of which a Schr8dinger picture could be defined.

{2y 1f one allows a direct sum of many
representaticns, a propagator U(tl,t‘) can he defined, but

since it nmixes the representations it will not bhe

differentiable[27] in t,, and hence an infinitesimal form of

1277 If g(t) and ¥P(t + At) are unit vectors in two different
conponents of the orthogonal direct sum, their difference has
norm V2. Thus the difference quotient in the definition of the
derivative dces not converge as At —> 0.
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the Schr¥dinger picture,

ay du(t,,t,)
i-— = H(t)§ where ——————ro =~ jH(t ), (7. 8)
dt dt& tz?-t. 1

will not exist.

Another ©possible approach to systems of this type,
advocated by Kristensen gt al. (1967), is to identify the state
at each time with a nonnormalizable distribution in a rigqged
Hilbert space associated with +the Hilbert space of sone
irreducible representation (such as that corresponding to an
initial tinme).

Other examples for which a similar analysis could be

made are

V=90 fort«?o, V = const, # 0 for t > 0 (7.9

and

v=0 for |ty »T, V=const., # 0 for {t] < T. (7.10)

These will be left for the reader's contemplation. It should now
be clear that in the case of a general scalar potential the
splitting of the second term in Eg. {7.2) into a mass part and a
potential part 1is essentially arbitrary., (This ambiguity is
analogous to that 1in the gravitational problem which 1is
associated, at least in part, with general covariance. 1In the

electromagnetic case similar games may be played with the freedonm
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in the choice of gauge.) Moreover, (in general) no choice should
be expected to yield a Fock representation within whick the time
evolution 1is unitarily implemented. Thus it 1is impossible to
maintain a belief in a ynigue irreducibhle "physical®
representation,

A1l the virtual particle concepts are nonlocal, in +the
sense that they are based on eigenfunction expansions of the
field which involve integrations over a whole hypersurface. The
resulting ccncepts of vacuun necessarily have a very qglobal
character, as shown by the Reeh-Schlieder theorem (see Sec., IX.?3)
and by the ohbservations of Sec., IX.7. This situation is in
conflict with our intuitive notion of particles, As has been
stated above many times, an asymptotic interpretation of field
theory in Riemannian space-time is unsuitable; that is why vwe
have stuck so closely to the canonical formalism, in the hope of
extracting a more local definition of particles. Perhaps,
though, the canonical formalism itself is still too global. In
the language of J. A. Wheeler, physical intuition tells us that
the universe is a vast haystack[Z28], but the canonical formalism
forces us to regard it as a stack of automobile fenders[29].
This 1is an additional argument for the necessity of an
identification of observables directly in terms of fields,
avoiding the intermediate concept of particles,

However, in the absence of a brilliant idea which would

[28] Marzke and Wheeler (19A4), p. U2,
[29] Wheeler {1963), p. 346,
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tell us how to develop the field domain (3), we have little
choice but to continue trying to work in the many-particle domain
(2), at least in order to discover its limits. Out of the nany
possible ways to define virtual particles, which has the best
chance c¢f corresponding to something 1like vreal particles? An

answer is suggested in the next section.

#what follows does not contain any new ideas which will
resolve the impasse described in the previous section. Rather,
it combines some simple ideas which have guided the whole of this
dissertation -- namely, the straightforward extension of the
canonical formalism to a wmanifold and the geometrical or
kinematical ideas (stated in Appendix D and Sec. II1,3) which
motivate Gaussian and Fermi coordinate systems -- so as to
define, with as 1little ambiquity as possible, a guantization of
the scalar field., PRy a quantization is meant a splitting of the
field at each time into annihilation and creation parts, in ternms
of which a representation of the Fock type can be constructed as
in Chapter VIII and in the earlier sections of this chapter.
Thus it may also be regarded as a definition of particle
observables at each tinme, ddmittedly, it may be that this
approach is too naive, and that some totally new idea is needed,

What 1s intended here is to specify the physically nmost

reasonable ansatz of this type as a starting point for further

research (see the remarks at the end of the section).
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The first half of the proposal is:

To define particle observables on a spacelike
hypersurface, express all quantities in terms of the
Gaussian coordinate system based on that hypersurface,
and construct the Fock representation which makes the
corresponding instantaneous Hamiltonian a manifestly

positive self-adjoint operator. (8. 1)

(In other words, the Hamiltonian to be made positive is defined
in terms of a normalized normal derivative to the hypersurface --
see Sec., IV.2.) This procedure has already been carried out in
Secs. ¥.1 and X.% for the case that the field equation can be
solved bty separation of variables; a similar construction was
performed 1in Secs. VIII.1-3 1in greater detail under the
assumption that the wmetric 1is static ({but not necessarily
Gaussian), The important point to notice is that as long as only
one hypersurface is considered at a time, these restrictions are
unimportant, In the general <case one can still expand the
initial values of @ and N on the hypersurface 1in terms of
eigenfunctions “; of the laplace-Beltrami operator on the
hypersurface in such a way that the coefficients aj, a; satisfy
the commutation relations for creation and annihilation operators

and the Hamiltonian (VII.1.8b) assumes the ™diagonal" form
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t
H(D) = ]dp(j) F aa
j 3
{(cf. Sec. VITI.2).

The second suggestion is:

Define particle observables on the geodesic hyper-

surfaces orthogonal to a given timelike curve., {8.2)

(These are the surfaces of constant time in some Fermi coordinate
system.,) The point of this requirement is to take the distortion
out of the hypersurfaces as much as possible. In the
neighborhood of the point where it cuts the central worldline a
geodesic hypersurface is as near to a flat hyperplane as one can
come in a curved space, Unfortunately, such a hypersurface wmay
not he geodesic relative to another point{302], so this notion of
flatness is not ahsolute, but relative to a point. (Cf course, a
timelike direction at the point is also needed to determine the
hypersurface uniquely.) The 1imbedding of a given geodesic
hypersurface into a family of hypersurfaces orthogonal to a given
curve does not place any additional restriction on it, and hence
is not rteally necessary in the statement of the procedure. But
this seems to be the natural way to fit hypersurfaces together
into a full kinematical scheme in which to describe the history

of the system, The curve (which is not necessarily a geodesic)

[30] That is, a geodesic curve tangent to the hypersurface at a
point other than the original point may not lie entirely in the
hypersurface. See Appendix D.
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can be interpreted as the vworldline of an observer (see the
discussion in Sec. II1.3),

For the instruction ({8.1) to make sense, the
Laplace-Beltrami operator on each geodesic hypersurface must be
self-adjoint., Presumably -- at least if the wmetric coefficients
are smooth and bounded at finite points -- this will be true if
and only if the hypersurface is geodesically conmplete.

The energy-nomentum tensor can now be unambiguously
defined by normal ordering the formal expression for it with
respect to the aj, a} appropriate to a hypersurface on which it
is to be evaluated. From the point of view of cosmological and
astrophysical applications, Tﬂy(x) is presumably wmore important
than the particle observables themselves. As remarked in Sec.
IX.5, an enerqgy density defined this way will not be positive as
an operator,

Cne mnust be prepared for the possibility that the
representations defined by different hypersurfaces of the family
are inequivalent, and even that the difference hetween the
respective normal-ordered energy densities is infinite (does not
make sense even as a distribution). This would have to he either
taken as sufficient reason for redecting the theory, or
interpreted as creation of an infirite density of particles, In
the latter case, obviously, there will be difficulties in using
™ in the Tinstein equations, In the former case one might try
to define smoothed-out particle ohservables 1like Parker's (Sec.

X.6), or to develop a new kind of field observable, as urged in



Sec. X.8 389

the last section. Tt is too early to sav whether these neasures
are necessarys

A strong argument in favor of the proposal (8.1-2) |is
that it disposes of the ambiguities of quantization in Minkowski
space in the most conservative and reassuring way: it specifies
the standard free field quantization to be the correct
guantization, The type of alternative representation considered
in Sec., YX.2 is rejected because the hypersurfaces of constant
time violate the condition (B,2)., Tt is legitimate to take the
hypersurfaces of constant time to be the hyperplanes orthogonal
to the worldline of a nniformly accelerated observer (the lines
of constant v in Chapter TIX); however, one 1is told by the rule
{(8.1) to use the ordirary §OK representation on each of these
hyperplanes, rather +than the BRindler representation of Chapter
1¥, (Since the §CK representation 1is Lorentz-covariant, the
successive hyperplanes yvield the same definition of the vacuum in
this case,)

In the case cf de Sitter space, the principles (8.1-2)
tell us to reject the covariant quantization of Sec. V.6 and the
"static" quantization of Sec., VITI.f6 (and also, for instance, a
quantizaticn (of the type of Sec. ¥X.5) based on the horospherical
coordinate system of Sec, III.7). Tnstead, we are to use the
representation of Sec. X.5 (and Secs., V.3,5), but only in the

neighborhood of a geodesic hypersurface[31]s. The history of the

f§1] Recall that a geodesic hypersurface in two-dimensional de
Sitter space is the "neck" of the hyperholoid in Fig. 3, or any
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system is most naturally given in terms of the time coordinate of
the Fermi system of an inertial observer. In contrast to the
static theory, in this theory there may be particle creation when
the particle observables on different hypersurfaces of the Ferni
family are compared. This effect will be calculated in Sec.
X.106, In Sec. X,9 it will be shown that the representation
prescribed here for each time is unitarily equivalent to the
covariant representation; so the convenient properties of the
latter may be exploited as a technical tool, even though the
associated particle interpretation is not the physically correct
one according to our present point of view.

Cther simple models on which this method could be tried
out are the Schwarzschild solution and the various Friedmann
cosmological solutions, 1In each of these cases the prescription
(B.1-2) will give different results from the previously discussed
approaches.

In the Schwarzschild case quantization is to be based
on a Gaussian time coordinate relative to a hyperplane extending
through the entire Schwarzschild-fruskal solution, rather than on
the wusual time «coordinate t, defined in the exterior region
alone, with respect to which the exterior metric 1is static. One

therefore expects particle creation, even in the exterior region

{vhere one naturally compares ohservables on different

hypersurfaces of constant t, in accordance with Eq. (8.2)). This

curve isometrically related to it, such as the family of ellipses
of constant ¥ in Figs. U-5,.
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would reflect the dypamic nature of the Schwarzschild-Kruskal
solution as a whole, It would be interesting to see whether this
effect is significant and whether it is physically reasonable,.
One should make calculations in this theory and compare with the
quantization of the field in the exterior reqgion viewed as a
static space, which does not predict particle creation.

The Friedmann universes are special cases of the
Robertson-Walker metrics discussed in Sec. ¥X.1, and previous work
{see Parker (1968, 1969) and Grib and Mamaev (1969)) has bheen
carried out in the coordinate systen in which the
Robertson-#alker forr is manifest.[37] These hypersurfaces of
constant time are not, 1in general, geodesic hypersurfaces,
however., Therefore, the prescription (8.2) indicates a different

approach; a comparison would be interesting.

9. Unitary FEquivalence of Covariant and Positive-Freguency

Among the two-dimensional closed Robertson-Walker
universes is the de Sitter universe descrihed in geodesic
Gaussian coordinates, which has been discussed in Secs., I11.,1,
171.3, 1Iv.2, and V,1-6. We <can now apply the theory of this
chapter to that case,

For each Gaussian frame (i.e., each choice of a

spacelike geodesic to serve as the basic hypersurface T = 0 of a

[32] parker also used a different definition of particle
observakles -- see Sec. X.6 atove,
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Gaussian coordinate system (ITI.1.2)) we have, following Sec.
3

X.5, a definition of particle operators 2 at each time ¥. (This
(04

is the theory that was adumbrated in Secs., V.3 and V.5.) The
theorem proved at the end of Sec, ¥X.5 shows that the Fock
representations defined in this way at different times are
unitarily equivalent, In more physical terms, if there are
finitely many field gquanta present at one time, there are
finitely many at all times, Of course, the no-particle states at
different times will not be identical: there will be a particle
creation effect, to the extent +that these a:-quanta can he
identified with physical particles at time T,

The obvious next question is whether the
representations of the field built in this way on different
Gaussian frames are unitarily equivalent. Also, one would 1like
to know whether the representation <corresponding to a given
Gaussian frame is equivalent to the covariant representation of
Tagirov et al. and Nachtmann (see Secs. V.6 and X.4), An
affirmative answer to the second question 1is also an answer to
the first, since equivalence 1is transitive, {(There 1is, of
course, only one covariant representation, independent of the
particular Gaussian frame used in the explicit construction of it
in Sec. V.6.) In this section this equivalence will be ©proved,
and its implications will bhe discussed.

The Gaussian time coordinate, called x° in Sec. X.1, is
T, and R(U) = cosh T ({see Egq. {(TII.1.%)). The coordinate t,

therefore, is what was called o in Chapter Vv (according to Egs.

——



(1.7) and (V.2.4a,5)). Denote the annihilation operators in the
positive-frequency representation at ¥ = 0 by a, and those of the

covariant representation by b The expansion of the field 1in

F‘
terms of the a'7 is ¥®q. (V.3.7), where PF and NP

Fgs., {V.3.3). That is, in the notation of Egs. (5.7-8)

are defined by

0 e =172
¥ () = [2¥g + p*] P (T(x)). (9. 1)
P p
Note that
a0, (0)
= i (9.2)
da

{wvhen OP is defined as in Chapter V), The covariant expansion
of the field is Eq. (V.6.1), with Qr(a) = Tr(a) defined by Eq.
(V.6.6). Eq. (V.6.11) shows that mr and U; approach each other
in the limit of 1large 1p|, which 1is certainly a necessary
condition for unitary equivalence, Sufficiency depends on the
speed of this convergence,

The inverse of a field expansion is given by Eq. (1.18)

(vith Eq. (1.20)). Combining this with the formulas cited above,

one obtains
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0 .0

a = if§ *(0) T (0) - ¥ *(0) T ()] D
p p P p P P
0 L ] 00 t
+ A[P *(0) T*(0) - W X(0) T*(O)] Db , (9.3
P p P p -p
vhere
1 r(&(—wlpml . i -1
T (0) = - , ’ T (0) =-=7T(0) , (9.4)
p 2iT(+s v +iph) P 2 p
0 1 2 -1/4 .0 i 2 +1/4
¥ *(0) = —[g+ p] ' P *(0) = —-[q +p ] . (9.5)
P £ P V2

That 1s, in notation analogous to that of Fq. (5.6},

1 2 /4 1 2 -1/8 -1
B(p) = =(V2[q + p ] T (0) - —[q +p ) T (0) }. (9.6)
2 p V2 P

Now it follows from the asymptotic formula (6.71.47) of

[¥.BueSe ] (ps 257) for the quotient of two gamma functions that

fpl -»-1 -2 Ipl -1/2 =2
T (0) T | {—) frsoipt )3 = ) [1+00p) )1 (9.7
p 2 2

for large p. Combining this with the by now gquite familiar
Taylor expansion of the fourth root (cf. Secs. F.4 and X.5), one
sees that the leading term in B(p) 1is at most of order Ipl-l.

Therefore certainly
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o 2
> 1B < o, (9. 8)

p==00
which proves the equivalence, according to the theorem of Sec.
F. 3.

The meaning of this theorem is that the two ways of
quantizing the scalar field considered in Chapter V vyield the
same field, as an operator-valued distribution in an abstract
Hilbert space. 0Only the physical interpretation of the =states
differs. General mathematical properties, such as those
discussed in Chapter IV, which do not concern fixed-time
observatles can bte established in either framework. For
instance, we know now that +this field satisfies the axionms
proposed in Sec, IV.1, because this was proved in Sec, V.6 for
the theory in its covariant guise, We also know, on the other
hand, that the theory satisfies the spectral condition proposed
at the end of Sec., I1V,2, bhecause the Hamiltonian has been put
into the manifestly positive form (5.5) (with the divergent tern
discarded). (That U(T,,0) of ¥gs. (IV,2.1-2) exists in the
present case follows from the two unitary equivalence theorems of
Sec. X.5. Tt is clear from the construction in Sec, F.2 that U
is differentiable in T, provided that the operators of the
Bogolubov automorphism are. The derivative of U must he H(0) (up
to a constant), since H(0) exists as a self-adioint operator and
the formal calculation mentioned at the heginning of Sec., VII.2
shows that it has the correct commutation relations to generate

the dynamics {cf. Fq. {IV.2.3)). 7o the present case, where the
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Bogolubov transformation is diagonal, Fgq. (IV.2.2) can be derived
directly by approximating U by a unitary operator affecting only
finitely many modes (see Beed {1968), pp. 13-14) and applying an
Me/3" argument,)

In Sec, III.3 it was arqued that the most natural way
to frame a dynamical prohlem in de Sitter space is not to compare
the state of the world at various times U in a Gaussian franme,
but to look at the family of geodesic hypersurfaces orthogonal to
a given timelike geodesic. These are the various times X in a
Fermi frame, or the instants ¥ = 0 in a certain one-parameter
family of different Gaussian frames. Tt was also suqgested,
however, that the state of the system at a particular instant
should be characterized in terms of quantities defined in terms
of the Gaussian frame corresponding to that time, rather than the
(fixed) Fermi frame of the ohserver (see 35ecs., TII,3 and TV.2).
In the present case this means that the particle operators on a
geodesic hypersurface should he defined in the manner of this
chapter rather than in the way considered in Secs. V.7 and
ViII.6, where positive frequency was defined with respect to
Fermi coordinates, ks remarked near the beginning of this
section, the existence of a upitaryv propagator implementing this
kind of dynamics is an immediate corollary of the theorem just
proved, Cne can think of the no-particle state (as a function of
the time, X} as "precessing" around the vacuum vector of the
covariant representation,

What has just been described 1is the specialization to
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two-dimensional de Sitter space of the general proposal of Sec,
¥.8. In the next section a calculation will be done in this

framevwork.

1¢. Estipate of the Particle Creation in Two-Dimensional De

In the spirit of Sec., ¥,8 let us 4define particle number
observables on a geodesic hypersurface in ternms of
diagonalization of the Hamiltonian, H((), defined with respect to
the Gaussian coordinate system associated with that surface, and
let us frame the dynamical problem in terms of the family of
geodesic hypersurfaces orthogonal to a geodesic worldline. The
operator of the ({Fermi) time translation along the geodesic
defined by o = 0 is exp(ixH) -- whers H, as 1in Secs. 1.3, B.3,
I11.2, etc.,, is an element of the de Sitter Lie algebra, not to
be confused with the Hamiltonian H(0). For our present purposes
we might as well pass to a Schr8dinger picture and study the
operator exp(-iXH) as a mapping of the confiquration of the
system at time C into the confiquration at time ¥,

The calculation will be an approximation valid for
large R, where R, as in the earlier chapters, is the radius of
the de Sitter hyperboloid, not to bhe confused with the
coordinate-dependent  quantity R{t) used elsewhere 1in this
chapter. s discussed in Sec. 1IT7,2, large R signifies two

things:

(') The natural time scale is T = BRX, A reasonable
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interval of T corresponds to a very small interval in the
dimensionless "angular" coordinate X. Thus one should be

able to get away with expanding exp{~-ixH) to first order.

{(2) The mass parameter q {which takes the place of >

in the general formulas of this chapter -- cf. Sec. ¥.9) is
large. The physical mass is M = Vg/R, The assumption that
g > 1 will be used in the calculation to simplify the

expressions.

The transformation bhetween the covariant particle
operators bf and the operators af of the positive-freguency
representation (which we are tentatively accepting as the
physical particle operators) is given in Fgs. (9.3-6). Here o((p)
and B(p) are real and even in p. The inverse transformation is

¥
b = afpla - B(p)a (10. 1)
p p -pP
and the Hermitian conjugate of this equation. Tagirov et al.
have given the expression for H in the covariant Fock space (see

Eq. (V.6.15h)):

————— Y S |

1 I
SVYg+vp(etr) b b +-2Vg+p(p-1) b b. (10.2)
p 2 p

1
2 P+l p r~1p
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We shall express H in terms of ar and a; by means of Fgq. (10.1)
and normal order the result, The normal ordering affects only
the phase of exp(-ixH), which 1is physically arbitrary. This
convention makes H{{> orthoqonal to {0>, where |0> is the initial
no-particle state; the first-order calculation of the action of
exp{-ixH) on {0> is thus optimized.

The result of the substitution, after some

rearrangenent, 1is

1 e
H== 3> Vg + p(pt1) [o(ptT)a(p) + B(p+1)B(p) ]
2 p20
t t t t
X {a a + a a + aa +a a }
p+1 p =(p+1) -p p p+1 -p ~(p+1)
1 D YA S S——
- = S Va+p(ptT) [o(p+M)B(p) + (p)B(p+1) ]
2 p>0
t ¢ t t
X [a a t+ a a + a a + a al. (10,3)
p+t1 -p - (p*1) p p+1 -p =(pt1) p

Now o and B are to be read off from Egs. {9.3-5}. A considerable
simplification occurs in the particular combinations which appear

in Bq. (10.3) tecause (for p 2 0)
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1| Mz+p+n)
T (0)T (0) = - '
o p+1 b g1 + §0'+P+1))
1 -1 1 1
=-ly+pt+ 1] =< e
2 2 Vg + p(p+1)

(see Eg., (V.5,.,8)). One obtains

ofp+t)ole) + B{p+N)B(p) =

1 Vg v ()T Vg ¥ pt 172 g +p) 172
-{[ o b
2 g + p(p+1) Vg + (pr1)* Vg + p*

a(p+1)B(p) + o(p)B(p#l) =

1 Vg + (p+1)> vg + p* 1,2 g + p(p+1) 172
-{I 1 =1 1 1.
2 g + p(p+1) Vg + (p+t1)> Vg + p*
let
2
Q=g+ p.

400

(10. 4)

(10. 5a)

{(10.5h)

(10, 6)

Since g >> 1, we may assume that p and 1 are small compared to Q.

We expand everything in sight in Taylor series in 1/0. The

result is, through second order,

—

Apae
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Vg + (p+1)* Vg + p* 1,2 1 1 2 3
] = 14 == = =——=(p +2p +-), (10.7a) —
9+ plp+1) bo  40* 8
Afamu_
q + p(p*1) 1/2 1 12 5
[ ) = 1= — 4 —=(p +2p + =), (10,7b) —
CEECTE TN GO 4o st 8

We are now ready to compute the action of exp(-ixH) = -
1 - ixH + O(xg) on the initial no-particle state. The -—

first-order tern is

ix _ e
T =< ixHi0> =+ — % Vg + p(p+1) [a(p*VB(p) + «(p)B(p+N) ] —
1 2 p20
t ot t +
X[a a |9 +a a 10>] -
p+1 -p -{p+1) p
ix -1/2  + % % t
~ e E 0 [a a 0>+ a a |0>]. —_
8 p20 p+1 -p -(p+1) p

The basis vectors which appear in the sum (inside the second pair

of brackets) are all orthogonal and normalized. Hence we have

2 X 2 -1 nx _
W =— 2 (g+tpl] = — - (10.8) =
1 32 p20 64 Vq

In the last step the sum has been approximated by

o0 2 -1 n
f dp {g + p ] = -—. -
0

The number given in Fag., (10.8) is the probability (to
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lowest order in both ¢ and 1/q) that the state of the field is -
other than vacuum at time  1if it was vacuum at tipe 0. —

Introducing the physical units of time and mass, we have

2 1 7>

g 8 = - 5. (10.9 =
1 20 B M

{As always, H =c = 1,) Let us choose R to be a typical

. : 27 i3 - .
cosmological distance, 19 cm, and ¥ to be 10 cm ‘, a typical —_
elementary particle inverse Compton wavelength, Then

2 2 -95 =2 2 -59 =2
g n =T X 10 cm =T X (10 yr ). (10.10) —
1

Se it appears that 1039 years is needed before there is a —
significant probability (1G_3) of "decay" of the vacuunm. (We —
shall find that this is just an upper bound.)

One should question for what range of T this
calculation is valid, 2An attempt to estimate the second-order
term leads tc¢ an infinite result, because {9> 1is not 1in the
domain of Hg, However, inspection shows that the divergence —
comes entirely from the numher-preserving term of B (the first
term in Eg. (10.3)). The mnumher-changing term 1is bounded as an
operator on each n-particle subhspace of the Fock space. This
suggests that a Lbetter calculation of the creation probability
would proceed by standard time-dependent perturbation theory
{(esq+, [Messiah], pp. 722-739), with H,r the first term of Eg. —

{(10.3), as unperturbed Hamiltonian and V, the second term of Eq.
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(10.3), as the perturbation, {(The previous calculation, in
effect, treated all of H as a perturbation,)

The 1initial state (0> is an eigenstate of H, with
eigenvalue 0, The +transitionh probability from (0> to the

two-particle space is (i = 1)

2 ,
¥ = Iuv i f£OLE Ydp(b), (10.11)
50 b
where
2
f(X,E) = 2{(1 - cos E ¥)/E , (10.12)
b b b
v = <bvi0>, (10.13)
b0
and
H (D> =T | (10, 14)
0 b

for each two-particle state [bD, The uasual "golden rule"

aprroximation isf33)

[33) unlike Egs. (10.8-10), PRg. {10.15) exhihits the familiar
linear time dependence of a first-order transition probability.
The quadratic time dependence of our earlier result is due to the
use of an "unperturbed Hamiltonmian" which is identically zero.
Since the spectrum was entirely degenerate, the narrowing of the
peak of the function (10.12) did not have its usual effect,
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2

W= ;mj;v | dp (b) X, (10.15)  —
0

hi
where the integration is now over the states with E = 0. (The —
"density of states"™ is absorbed into the measures p and p_.)

Since the maximum value of the function (10,12) is Xl, —
an upper bound on ¥ of Fq. (10,11) is

2 2 2 2 2
X ]sv L dphy =% NvIody = pu N, _
h0 1

the result previously ohtained (Eq. (10.8)). ©Our only concern,
therefcre, is whether the exact «creation rate is much smaller
than indicated by Egq. (10.10).

Inspection of Egs. (10.3,5,7) shovs that H  consists of
(1) a term H* which, in terms of the aF, is identical 1in form to —
H, in terms of the bP {(Eq. (10.2)), and (2) a vresidual tern,
H, - H¥, which decreases even faster in g than V does., The _——
second term can be neglected. The spectrum of H* in the
two~particle space is the spectrum of a noncompact generator of
S0,(1,2) in the direct product of two irreducible representations —
of the group of the principal series. Therefore, 1f the {[b> are
properly normalized,

dy(b) (10. 16) -

]
[\
S—
§
8
D
=
—
|
2
jo N
=
N
-~

vhere h| and h?~ represent the spectrum of the generator in the —

factor representations, and indicates a sum over a discrete —
4
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variable which assumes four values, accounting for the
multiplicity of these spectra (see Sec. II.3). 1In Eg. (10.15) we
are to hold h! + h’~ = Eb fixed; hence

1 ®
ap () =-3% ( d(h ~h ). (10.17)
0 2 ~00

12

To evaluate W we need the matrix elements, with respect
to the generalized eigenfunctions of H¥, of V, which is expressed
in terms of the eigenbasis of the compact generator of 50,(1,2)
{(#ith spectrum p). The expansion with respect to the p-basis of
the eigenfunctions of a noncompact denerator within an
irreducible representation is available ({LlLindblad and Nagel
(197¢), PEq. (4.13)). The direct-product vectors can be
constructed from these. In principle, therefore, the desired
matrix elements vLo can he calculated from Fq. (10.,3). However,
quite a hit of work, analytic or numerical, would be needed to
extract a number. Our two-dimersional model, which has no direct
connection with experinment, does not warrant such treatment; its
purpose is just to show that particle creation can be calculated
in principle and is not unreasonably large in the theory proposed
in the last two sections,

Instead of an exact evaluation of the expression
{(10.15), then, let us stop with a rouqgh estinate. We note fron
the previous calculation that umlnx decreases as 1/Vq for large
g, while the individual matrix elements in the p-representation

go down as 1/gq. Let us assume that
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2 -0/2
’QV | dp () ~ ¢ . 10K 2. (10.18)
b0 0

Then by dimensional analysis we may write down for comparison

with Egq. (10.9)
¥ T - (BM) =T X 10 X (10 yr ). {10.19)
R

Recall that the quadratic estimate (10.9) 1is better than the
above for small T, when it is the smaller., If o =1, we find
that Eq. (10.9) is good up to T = 10'° yr, and W reaches 107 at
T = 10‘f6 yr. If o= 2, the estimate (10,9) is already too large
for T > 10-23 sec, and W = 1077 only when T = 1086 VL.

What about particle creation (or annihilation) when
matter is present initially? At one extreme is the vacuum of the
covariant theory, which is invariant under exp(-i}XH) -- hence all
expectation values are constant, On the other hand, consider a
state containing exactly ¥ particles. From Eq. (10.3) and the
formulas (F.1.4) for the action of creation and annihilation
operators in Fock space one can put a crude upper hound on its
decay probability of Nl times the vacunum value. If the estimate
{10.10) is used for the latter, which, we have seen, is probably
much too liberal, a cosmologically reasonable density of one
particle per centimeter would raise the ©probability of a
transition to a state with N + 1 or N - 1 particles to

2 .t - . . . .
T X (1¢ yr 1) at most, For any realistic matter distribution
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the -exact probability is probably much smaller., (Also, of
course, states differing by only one particle in the entire
universe will not be very distinguishable.)

Although a numher derived from a two-dimensional model
should not be taken too seriously, these estimates increase one's
confidence that our reasoning, based on the formalism of quantum
field theory, will not predict absurdly large creation rates, 1In
fact, the creation effect 1is so neqligible that we seem to bhe
still in the domain where single-particle quantumn mechanics is
quite adequate for any practical purpose (cf. Sec. X.7). It must
be remembered, however, that the theorem of Sec, ¥X.9, on which
this calculation hinges, wmay not hold for the four-dimensional

Case.

11. Summary of Chapter X.

The major points established in this chapter are:

(1) In a rigidly expanding (i.e., generalized Robertson-
Walker) universe there is a natural decomposition of the
field into modes, but the 1lack of an obvious splitting
into positive~- and negative-frequency parts means that

the associated "Fock" representation is not unique.

{2) A region of Minkowski space can be <cast into the
Robertson-Walker form in such a way that none of these
representations ({tensor products of the modes) <coincides

vith the standard quantization of the free field.
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3)

(#)

(5)

€

Examination of the asymptotically static case suggests
that a different representation is appropriate at each
time, and that it should be chosen on physical grounds

{e.g., particle interpretation).

Attempts to qive an abstract time-independent definition
of the representation will clash with the obvious
physical interpretation of the asymptotically static

situation.

The most natural generalization from the static case is
to define a Pock representation at each time by
diagonalizing the Hamiltonian into a linear combination
of number operators, The normal-ordered Hamiltonian 1is
then a positive self-adjoint operator. This procedure
can be extended to the general case, where the field
equation is not solvable by separation of variables. Tt
is this prescription which is assumed in the following

points.

In general the representations at different times will
not be unitarily equivalent. 1In particular, this is true
of generalized ©Robertson~-Walker universes of infinite

spatial extent,

For an expanding universe there are two distinct notions
of unitary implementability of +the dynamics. These are

coextensive For Jdimension 2 hut comoletely incompatinle
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(8)

(10)

(1)

(12)

for thigher dimensions, except when the radius of the

universe is constant,

In a two-dimensional expanding universe of finite
circumference, the dynamics is unitarily implementable,
{I.e., the representations at different times are

equivalent.)

A completely satisfactory approach +o field theory 1in
curved space-time may require abandoning the particle
concept, Also, the canonical formalism on hypersurfaces

may be inappropriate,

The ambiquities encountered here are instances of a
difficulty which afflicts external potential problems in
general, when the potentials do not fall off sufficiently
fast to allow an unambiguous asynptotic particle

interpretaticn,

It is proposed that representations defined as in (5) are
more likely to be physically appropriate if the

hypersurfaces involved are geodesic,

In two-dimensional closed de Sitter space the

representation specified by (5) and (11) is unitarily
equivalent to the one which 1is covariant under the de
Sitter group. The particle interpretations, however, are

different., This model satisfies both the M"group™ axions
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and the spectral condition formulated in Chapter IV.

(13) The particle creation in the ¢two-dimensional de Sitter

nodel is extremely small,
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Appendix A

THE PSEUDO-ORTHOGONAL GROUPS

Much of this material is taken from Bargmann (1947),
especially pp. 585-584, and Bargmann ({1954), especially pp.

3“"36 »

1. EHompgepeous Groups.
Consider n-dimensional real space 13 with a
nondegenerate but possibly indefinite scalar product given by a

{constant) metric tensor g.L (¢ < j,k < n). We use the
J

convention that an index is to be summed over when it appears

once in contravariant and once in covariant position, and we use
qjk and 1its inverse q’k to lower and raise indices in the

standard way. We may choose a basis for the vector space
{orthonormal basis) with respect to which for some index p the

metric has the forn

g =n =+1 if 0< < p,
33 3
q =3 =-1 ifp < j<n, (1. 1
33 j

g = 0 if § # k.

jk

All orthonormal bases yield the same p. We set g n - p.

n

1y
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The pseudo-orthogonal group O(p,q) 1is defined as the

group of linear +transformations which leave invariant the

quadratic form

F(X) =g X X. (1.2)

ik
The connected component of this group containing the identity is
denoted by Soo(p,q). Clearly SOo(p,q) is isomorphic to SOo(q,p).
Soo(p,O) is 50(p), the p-dimensional rotation group, We will te
particularly concerned with the group S0, (1,9), which we call the

q-dimensional (closed) de Sitter gronp or the (g+1)-dimensional

(homogeneous) Lorentz group, depending on the physical context in
whichk it is considered.
In a particular basis a transformation A € SOO(p,q) is

represented by a matrix: if y = Ax, then
i j 3
y = (Rx) =1 x. (1.3)

The condition F(y) = F(x) yields

ik y 0
A2 =§ (wvhere A =g A g ). (1.4
k 1 1 k mk n
Lat J]SOo(p,q)) be the 1ie algebra of SO (p,q). An

element of SOo(p,q) close to the identity can he written to first

order as

—

i1
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A= 1+ tL (1.5)

where 1 € ;{(Soo(p,q)). Then the condition (1.4) is equivalent
to
(L) + (L) = 0, (1. 6)
il 13
The matrices satisfying Fq. (1.6) are precisely the

linear combinations of the matrices L.y defined by
ey =6 g9 -8 g . (1.7

Since

L = -1 {and hence L = 0), (1. 8)
ba ah aa
only n{n-1}/2 cf the Lab are linearly independent. The L. with
a <b form a basis for g]soc(p,q)). Therefore, Soo(p,q) is a
connected Lie group of dimension n{n-1)/2,
The commutators of the Lab are
v ,1 1=g L -q L +q L -q L+ (1.9
ab cd hc ad ac bd ad hc bd ac
This is easily vproved by working in the defining representation
(1.7). ®g. (1.9) Dbecomes more transparent when an orthonormal
coordinate system is used and special cases are considered.
First note that we may assume a # b and ¢ # d, since otherwise

one of the 1L's is zero. RAlso, if the pair (a,b) is equal to the
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pair (c,d) in either order, the commutator is trivially zero, 1If

a, b, ¢, 4 are all distinct, Fq. (1.9) tells us that

f(r ,L 1=209, (1.10a)
ab cd

since the metric tensor is diagonal. The remaining cases have
exactly one index of the first pair equal to one 1index of the
second pair. Using EFgq. {1.8), we may assume without loss of

generality that a = d (and the indices are otherwise distinct).

Then

L ,L l1=13 L . (1.10b)

If 3, = By the one-parameter subgroup generated by
ab’

A(t) = exp(tlL ), 1.1
ab

is of the "rotation"” type, with matrices of the form

a ~--> cos t g sint 0
b
b --> -5 sin t cos t 0 ] (1. 12a)
b
j#a, b~--> 0 0 1

It qa = - qb, it is of the "boost" type,

7
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cosh t B sinh t 0
b

n sinh t cosh t 0y . (1.12b)
b

Some additional general information about the groups
SO (p,q} and their wunitary representations can bhe found in

Kihlberg (1965).

2. Inhomogenecus Groups.

Iet G be a group defined by an n-dimensional real
representation {such as SOe(p,n°p), £gs. {1.3-4)), The

corresponding inhomogeneous group, which we call IG, 1is the

semidirect product of G with the additive group of the
n-dimensional space (the translation group). That is, an element
of I6 is a vpair (b,A) (h €1, R€ G, and the defining

realization is

n R n 1 u p
y = ((b,A)x) = (Ax + b)) =h + A X . (2. 1)
14
It follovws that the group product is
A R v
(b,2) (b*,a*) = (b + Ab', AA") ((ap') =1 b') (2.2)
¥

and the inverse is

—_—

N
i
N

—
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-1 -1 -1
(b,d) = (-2 h, A ). (2.3)

If G = 500(1,n—1) (the n-dimensional Lorentz group), then 1IG is

» s . 7
the n-dimpensional Poincare group.

The realization (2.1) is not a linear representation
since the translations are not (homogeneous) linear
transformationns., However, it 1is entirely equivalent +to the
following (n+1)-dimensional representation. Identify ﬁ" with the
hyperplane x = 1 in ¥'''. (Recall our convention that indices
in B" run from 0 ton - 1. 7Tn what follows Greek indices will be
understood as running from 0 ton - 1, Latin indices fron 0 to

n.) Then the matrices *3 defined by

}‘ A n
¥ =1 , =1,
1% v n
o B n (2. 4)
¥ =b, =0,
n v
are a representation of IG, and they map the hyperplane ¥' = 1

into itself in accordance with Bq. (2.1):

J T T T

).} b ¥ Ax + b

—— 1 /] 1 = 1 . (2.5)
—0-— 1 1 1

It is easy to see that the elements of ;Z(IG) are

represented by matrices of the fornm
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|
L= —

F—=0—

n
(L* € Z(G), b € }). (2.6)

=T e e |

As a basis for /(IG) we can take a basis for _7(G) (represented
by matrices of the form (2.6) with b = 0) and add n basis

elements T , (0 < o < n) defined relative to some basis in } by

3j n
(T ) =0 = ('P ) ’
a a n
H (2.7)
(ry = 8p .
a n a

The T  conmute among themselves:

(r,T1=0. (2.8)
a B

In SGo(p,n-p) the other commutators can be expressed in any of

the equivalent forms

L 1
(d
-
=]
—
1
—
4
—
~3

(L € Z(G)): (2.9

[ ,7/]=9 T -9 T; (2.10)

or
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{r ,m1=290 y # o B), (2.11a)
of vy

[L ,T)]=1 T. (2. 11b)
o B B o

{Egs. (2.11), like Fgs. (1.,10), assume an orthonormal basis.)

3. Representation of the Lie Algebras by Differential

Operators.
Let ¥ he a homogeneous space under a group G. Consider
the vector space H(M) of complex-valued C* functions of compact

support on M, The gquasireqular representation of G is defined in

b (M) as follows: If A € G, its representation U(A) is

‘ -1
[TA)F(x) =V x) (€ HMm, x €m. (3.1
Pictorially speaking, T(A) moves the function around bodily in M;
the value which once was assigned to x € ¥ is now attached to Ax,
Let L € _Z{(G) have the matrix (L)Jk with respect to

some basis, Then the quasiregular representation of 1 is
u(L) = - (L) X =< (3.2)

as can be seen by expanding Eq. (3.1} to first order in the
parameter of the subgroup generated by I,
In the case of Soo(p,q) {(vith an orthonormal basis) we

obtain from Eq. (1.7)
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3
UL ) = x &

3
P X "':o (3g3) —_—
ab a ox b dx

{Note that the indices have heen lowered on the factors X; ) For —
ISOD(p,g-1) we have (in additiom to generators of the form (3.3)) —

the translation generators (see Eq. (2.7))

n d

o) n
(= - —
o ax" e

on the hyperplane x = 1). (3.4) -

According to Eq. {(I,.,3.3h), this operator must be the contraction

of
Lo n 9 Xo O
Uf=—) =~ x === = — . (3.5 —
R 6x* R ox

The connection is evident.

a """xo‘
As ccordinates in de Sitter space (Fq. {T.1.1)) the x —_
are not independent, VNevertheless, the transformations generated
by the operators {3.3) map the space into itself, since
T(L ) F(x) = 0. _
In the notation of Sec. I.3, Fqs. {3.3) for the de
Sitter qroup SG,(1,n) hecome (U omitted) —
n 9 0 4 d
H=1 {(x — +x —) i ——3], (3. 6a) _
ox° dx" dx
A n 3 L d
P =~-3i (x — - x —) [-1-—1, (3.6D) —_

3xP ax" ™
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A A 9 ¢ 9 A 0 A
K =1 (x =—— 4+ x -—) (=x #-x P}, (3.60)
3x° 3xh
A c 9 B C
J =i D€ X (= Se x P). (3.64)
B,C ABC ox B,C ABC

The operators in brackets in Eqs, {(3.6a,h) are the corresponding
generators of the associated Poincaré group ISOO(1,n—1). Tt is
easy to verify that all these operators have the correct
~commutation relations.

In Chapter TII we express these differential operators
in terms of coordinate <charts on the manifold M, Then the
Casimir operator ¢ {Eqs (I.4.2)) Dbecones a second-order

differential operator which defines a scalar wave eguation on M.
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Appendix B

IRREDUCIBLY UNITARY RAY REPRESENTATIONS

OF THE DE SITTER AND POINCARE GROUPS

1. Fay Representations.

In guantum theory a group of symmetries of a physical
system corresponds, in general, to a unitary ray representation
in the Hilbert space of state vectors. That 1is, every element g
of the qroup G is implemented by a unitary operator U{(g), and

U{g ) U(q) = wlg ,q) U(g9), (1.1

1 2 12 12

wvhere w(q‘,ql) is a complex number of modulus 1, Bargmann (7954)
showed that for connected Lie groups the classification of the
ray representations of G can be reduced to the study of the true
representations {w= 1 of 6 and some groups related to it
{namely, its universal covering group G6#* and the npontrivial
one-parameter central extensions of 6%, if any). In the same
paper Bargmann applied his method to the homogeneous and
inhomogeneous pseudo-orthogonal qroups, His findings are

summarized here,

(1) Every factor w for Sﬂo(p,q) with p + q > 2 and
every factor & for IS0 _(p,g) with p + q 2 3 is equivalent to

unity. It follows that every ray representation of one of



Sec. B.1 422

these groups 1is equivalent to a true unitary representation
of its universal covering group (which we call an "ordinary

representation”),

(2) In the case Isoo(p,q), p+q= 2, the set of
equivalence classes of factors has dimension 1. Hence
these groups possess ray representations which are not

equivalent to ordinary representations.

(3) The kernel of the homomorphism of the universal
covering qroup of S0,(p,7) or of ISOO(p,q) onto the group
itself is a direct product C(p) ® C(q), where C{p) and C{(q)
are cyclic groups. C{?) and C(1) are qroups of order one,
C(2) is infinite, and C{p) 1is of order two if p > 3.
Therefore, in particular, the ray representations of
500(1,n-1) {and 1500(1,n-1) if n > 3y are single-valued or
double-valued representations if n > 4, are single-valued if

n = 2, and may be many-valued if n = 3,

Tn the physical context we are considering, "dimension
n" refers to the de Sitter group 800(1,n) and the Poincaré group
ISOO(1,n-1). So the conclusions of the analysis are: If n > 4,
the only ray representations of either group other than the true
representations are the familiar double-valued spinor
representations. If n = 3, the de Sitter group again has only
true representations and spinor representations, but the Poincaré

group has many-valued representations. If n = 2, the de Sitter
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qgroup has many-valued representations; the Poincare qroup has no
many-valued ordinary representations (not even double-valued
ones) since it is its own covering group, hut in view of (2} it
has ray representations which are not equivalent to ordinary
representations. ¥For the nost part we shall consider only the
true (single-valued) representations in the case n = 2 and only

the single- and double-valued representations for n = 3,

2. TLerresentations of the Poincaré Groups.

The single- and double-valued irreducible unitary
representations of the four-dimensional Poincaré group are well
known, as 1s the Frobhenius-¥iagner "little gqroup"™ method of
deriving them (see Wigner (1939}, Wightman (1959, 1960)). The
same method works for any ISﬂo(p,g). Let us summarize the
results for 1500(1,n-1).

The space R” (regarded as its own dual, momentum space)
is divided into Morhits" or homogeneous spaces (see Sec, I.1)
under the action of 500(1,n—1). Typical of the conditions

defining an orbhit is

pp =nm, P >0 (PE€R). (2.7

let P, be an arbitrarily chosen point on an orhit M. The "little
group” 1is the subgroup of 500(1,n—1) which leaves Ps invariant,
An irreducible representation 1is defined in a Hilbert space of

functions on M with values in a "little" Hilbert space (spin

—
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space) which supports an irreducible unitary representation (or
spinor representation) Q(po,A) of the little group. The scalar

product is

V,9) = j afl (¥ (p) .B(p)), (2.2a)
M

where (¥(p),#(p)) 1is the scalar product in spin space and 1l is

an invariant measure on M, For the orbit (2.1) ve have

n n 2 Y
(V,9) = jd p &P -n) 6(p) (V(p),(p))
B
n-f >
P

ol per— U C RN
2 Vp~ + n*

in the last form U and ¢ are regarded as functions of the
independent variables 3'= (p',....ph-‘). The representation is
given by the formula

ip b“ -1 -1 -1
[U(b,A)F1(p) = e * Q(PO:C (PAC(A p)) [0(A P 1 (2.3

for each element (b,d) of ISOO(1,n-1)* (see Sec. 1,2). Here C{q)
is a canonically chosen transformation in SO {1,n-1) which maps
P, into g.

In the case n = 2 there are nine classes of irreducible
representations corresponding to the nine orbits of
two~dimensional Minkowski space (Fig. 18) {cf., Dubin (1978)).

The representations associated with orbits of the type laheled 1
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Ar°

Fig. 18

Orbits of the Lorentz group 1in Minkowski space. In dinension
greater than 2 the &pairs of orbits 3-4, 5-6, and 7-8 are
connected,
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in Fig., 18 (to which Egs, {(2.1) and (2.2b) apply) are analogues
of the positive-mass positive-energy representations of the
four-dimensional Poincaré group; the parameter m defining them is
the mass. Note that the representation on the positive-energy
part of the licht cone splits into two irreducible parts (3 and
4) bhecause of topological peculiarities of the two-dimensional
space; the spacelike momenta (7 and B) are likewise split,
For each m > 0 there is one representation of class 1,
It has the form
iE”p -1
U(b,2)¥(p) = e “ 9(a p), (2.4)
where § is an L1 function on the hyperbola of Eq. (2.1). There
is no little-group representation involved since the little group
of a vector on the hyperbola is the group with one element, which
has only the +trivial representation, The generators of the

representation (2.8%) are (cf. Fgs. (I.3.6) and (A.1.12h))

d 0

HNP) == i."o- {U(bo1)“] (py =+ p Jip), (2-53)
ob h=0
d 1

P¥(p) = =+ p ¥ip), {2.5b)

t i— [u(b, V] (p)
db b=0
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K¢ (p) =
o 0 1 0 1
~ j~— 9P(cosh 8 p - sinh @ p , - sinh @ p + cosh 8 p )
o8 a=0
109 0 o7
=jifp — +p -—}. (2.50)
3p° 3p'
1f p° = V(p')* + n* is regarded as a function of p', Eq. (2.5¢)
beconmes
0 dy
Kp(p) =ip —r. (2.6)
dp

In higher dimensions there are only six types of
orbits, Fig., 18 nmay be viewed as a plane cross-section of the
momentum space, Then sets 3 and 4 belong to the same orbit;
likewise 5 and 6, and 7 and 8.

When n = 3 the 1little group 1is S0(2) for timelike
nomenta and is isomorphic to the real 1line in the spacelike and
lightlike cases. The irreducible representations of these groups
are one-dimensional (but not trivial). In general the little
group 1is SG(n-1) 1in the timelike case, SOo(n—2,1) in the
spacelike case, and the common contraction of these groups,

IS0{n-2), on the light cone,
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3. DRepresentations of the Two-Dimensional De Sitter Group.

In this and the next two sections we vrecord the
irreducible self-adjoint[ 1] representations of the Lie algebras
of the groups 500(1,n) which correspond to unitary
representations of the groups or their covering groups. Ry
"unitary representation” we always mean a (weakly) <continuous
representation; then an associated self-adjoint representation of
the Iie algebra exists and can he found by differentiating the
one-parameter subgroups {see, e.9., Bargmann (1947y, pp.
598-600), The converse requires an additional condition: VNelson
(1959) proved that a Hermitian representation of the elements of
a basis for the Lie algebral[2] corresponds to a unitary
representation of the covering group if and only if the sum of
the squares of the basis elements is a densely defined operator
with a unigune self-adjoint extension, Now the representations of
;:(500(1,n)) are usually constructed in a form 1in which the
representation of the maximal compact subgroup S0O(n) 1is
explicitly decomposed into irreducibles (see Egs. (3.2) and (4.3)
below). Nelson's operator (for the usual choice of basis in the
Lie algebra) is the sum of the Casimir operator (I.4.2), which is
a multiple of the identity in an irreducible representation, and
twice the Casimir operator of the compact subgroup, which is

diagonalized and therefore nanifestly self-adjoint on an

[1] We use the convention of Sec, I.3: a one-parameter subgroup
is exp(itl), L € X(G).

[2] That 1is, a set of Hermitian operators with the proper
coarutation relations (o.g., Tas. {WL.7)).
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appropriate domain. Thus there is no prohlem in showing that the
Hermitian representations of 1(500(1,n)) actually generate qroup
representaticns,

The representations of 500(1,2) were found by Bargmann
{1947) (see especially pp. 598-609). The commutation relations

are (Egs. ({I.3.10£,9,h)))
[K,H] = iP, (K,P] = iH, [p,H] = iK. (3. 1)

Zqs. (3.1) correspond to the usual parametrization of so, (1,2),
according to which exp (2Tip} = 1, Por a single-valued
representation, therefore, the spectrum of P must consist of
integers, The irreducihkle representations are found by a method
parallel to the familiar derivation of the representations of

L (S0(3)). One arrives at the formulas <q;piq;p> = 1,

Plaip> = plg;p>, (3,2a)
+
A lg;p> = Vg + p(p + 1) 1g; ps1>, (3.2b)
2 2 2
Q1g;p> = qlqip> {(Q=%X +H =-P), (3.3
where
1 + - 1 4+ -
H=-(A +1}), K=—(@ -13). (3.4
2 2i

The representation is at least partially labeled by g, the

constant value of the Casimir operator Q. The requirement that H
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and K be Hermitian restricts the possible values of q and the
values of p which occur in an irreducible representation for a
given q.[ 2] The result 1is +that there are three classes of

single-valued representations:

(1) Trivial representation: gq = 0; p = 0.

(2) Continuous series: q > 0; p = all integers. (3. 5a)

(3) Discrete series: g = - k{k - 1), k =

1
—
-

2' sesy

(3.5D)
p =k, k +1, ... or p= -k, -k -1, ...

{two irreducible discrete representations for each k).

The continuous representations with q > 1/4 are called

the principal series; those with £ < q < 1/4 are called the

copplementary (or supplementary, or exceptional) series,  The

matrix elements of the qroup operators in a representation of the
complementary series have a different qualitative behavior. s a
result, these representations do not occur in the decomposition
of the quasiregular representation on the hyperboloid {see Sec.
VI.1). {(See also Rargmann (1947), pp. £09-639,)

There are other representations of ;1(300(1,2)) which
correspond to representations of a covering gronp of 500(1,2).
Tn such a case the p's need not be integers, but they still vary

in 1integral =steps within an 1irredncihle representation. The

[ 3] This analysis is performed by a clear and elegant graphical
method in Philips (1963).
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representations can be classified in the same way as above, with
similar results except that the possibilities becone more
complicated in the interval 0 < g £ 1/4 (Philips (1963), <Chap.
S W

The representation {3.2) can be Tewritten in a fornm
rore convenient for our purposes, A general vector 1in the

Hilbert space can he written

2
7= 9(p)Ig;p> C1U(P) 1 < o). (3.6)
p p

The scalar product of two vectors is

(V,9) =2 ¥*(p) B(p). (3.7
p

Fgs. {3.2) are equivalent to
PY(p) = p¥{(p), (3.8a)

1 i
HP(p) = -¥q + p(p-1) W(p-1) + ;vE + p(p*1) ¥(p+1), (3.8b)
2

1 e 1 I
KW(p) = —Vq + p{p-1) W(p-1) - —Vq + p(p+1) F(p+N. (3.8¢c)
2i 2i

4, Eepresentations of the Three-Dimensional De Sitter Group.

The symmetry group of the three-dimensional closed
universe of constant curvature has heen much studied under 1its

alias, the homogeneous Lorentz group., The irreducible unitary
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representations were found by Gel'fand and Naimark (1946, 1947)
and Bargmann (1947), pp. 57C-571 and 640, The following
information is taken from [Naimark], Sec. 8, with some changes in
notation. (In particular, the relative phase of the vectors
corresponding to different values of the parameter X has been
changed, to smooth the process of contraction in Sec, II.4.)

Let
p =P + iP , K =K + iK . {4.1)

An irreducible representation of the group is characterized by
two numbers, 4 and k,. It acts in a direct sum of vector spaces
Q&

generated hy J and T acts according to the irreducible

{(k = ko, k, + 1, «..} in each of which the 5S0(3) subgroup
representation of spin k. He shall write the representation of
the Lie algebra in the form amalogous to Egs. (3.6-8). A general
vector has the forn

X

S Ptk,m 1d,k ;kind. (4.2)
k—k° n=-k 0

nB

‘}:

Then the representation of the generators is

J¥(k,n) = n P(k,n), (4. 3a)

P P{k,n)} = Yk (k+1) - n(n¥1) m(k,n:1), (4. 3h)
+

0
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HY (k,n) = - i V(k+tn+1) (k-n+1) C(k+1) B(k+1,n)
-0 A(K) Fk,n) - i V(k+n) (k-n) C(k) W(k-1,n), (4.4
K W(k,n) = V(k¥Fn+1) (kFn+2) C(k+1) W(k+1,n+1)
b
+ i V(k+n) (k¥n+1) A(k) ¥ (k,n+1)
- ¥(kn) (kxn-1) C(k) §(k-1,n+1), (4.5)
where
-k, d
A(k) = v (4.6a)
k (k+1)
i 2 2 2 2 2 172
C(k)=‘-([(k -ko)(k +d)/x -1 . (4. 6h)
There are two kinds of unitary representations:
(1) Principal series: d real, k_ =0, 1/2, 1, csus {4.7a)

[o]

If ko = 0, 4 can be taken positive,

(2) Corplementary series: k, = 0, d imaginary,

0<Inmd< 1. (4.7b)

of course, there is also a trivial one-dimensional

representation. The Casinir operators (I.4.2) and (T.8.5)

the values

take

(2F)
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0 =-k +d4d + 1, {u4.8a)

0 =k 4 (4, 8b)

({ vaimark ], p. 167)., Unlike 500(1,n) with n even, 500(1,3) does

not have a discrete series of representations.

5., Representations of the Four-Dimensional De Sitter Group.

Str¥m (1965) has put the irreducible representations[ 4]
of 21500(1,a)) into the most convenient form for comparison with
the representations of thISOO(1,3)). He denotes our ? hy - Y.
The basis vectors have the labels |Jr,051l,n;j;m>, where r and o
are related to the constant values of the Casimir operators

{(Tl4.2,8) by

Q==-1r(r+ 1) + 09+ 2,
(5.1
0 =1r(r + NYo.
2
The representation is reduced with respect to the SO({4) suhgroup
generated by J and 3, which in turn is reduced with Tespect to

the S0(3) subgroup generated bty 3. The indices 1 andi n label the

SO (4) representations which occur{5]; the relationship to the

[4] The original references are Thomas (1941, Newton (1949,
1950}, Dixmier (1961), Takahashi (1963),

[5] SO(4) is the direct product of the SO(3) groups generatedi by
(j + ?)/2 and (3 - 3)/2. In an irreducible representation where
these factor groups have respective spins k' and k, one sets
1 =%k +k +1, n=k' -k,

—
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Casimir operatcrs of SO({4) is

- > (5.2
J‘P = 1]1-

Then j and m have the usual wmeaning with respect +to the 3

subgroup. The smallest value of 1 which occurs in a
representation of SO(4) is |nj.

The formulas for the representation of the Lie algebra
are complicated, so we shall not repeat them,[6] For instance,
K3|l,n;i;m> has 12 terms, the j index taking the values j - 1, 7,
j+ 1 and the (n,1}) pair taking the values (n, 1 + 1) and
(n + 1, 1),

The classification of the unitary irreducible
representations is the following ({in addition to the trivial

representation):

(1) Continuous series:

r = 0, ~y 1, ves (5.33)

[6] Dr. StrBm has supplied the following correction to his paper:
In the expression for o{j,1l,n) {(p. 461) the factor 1* - (5 - 1
should be 1* - j§*,

)i
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- 2ifr =20
o> 0ifr=1, 2, «ss {5.3b)
1 1
- if F = =, ease
4 2

The range of the internal parameters is

1=.r+1,1’.‘*2, es ey (50’4)

]
L]
IA
=}
I~

) (5' 5)

The representations with o > 1/4 are called the (first)

principal series.

(2) Discrete series:

r 1o oeenes {5.6a)

[ I Y

() = -qgq{g- "1, q

r=94q, q+ 1, ..e.a {5.6h)

The range of the internal parameters is given by Egq.

{5.4) and

gs<n{r or - q2n>-=-r7T {5.7)

(two irreduncible representations for each value of g

and r).



Seca. B.D 437

0. {5.8)

{b) og=0,r =1, 2, ee3 n
The range of 1 is given by Fgq. (5.4).

Half-integral values of r imply half-integral values of
j» and hence double-valued representations of SO (1,4).

Note the similarity of this «c¢lassification to the one
in Sec, B,3, o playing the role of the g of S0,(1,2). (Case (2h)
corresponds to the trivial representation of SO°(1,2).) In the
contraction to representations of TS0, (1,3) this parallelisa

shows up in an interesting way (Sec. (II.5)).

"



Appendix C

A STUDY OF THE CONTRACTION OF THFE REPRESENTATIONS OF SO (3)

For comparison with the discussion in Chapters TIT and
VI of the contraction of Tepresentations of 500(1,2) to
representations of 1500(1,1), we examine the analogous problen
for a more familiar pair of groups, S0(3) (the three-dimensional
rotation group} and TSC(2) (the two-dimensional Euclidear group,

often denoted T (2)).

1. Irreducitle Unitary BRepresentations of Z(S0(3)).

e L e s = s e e

In analogy with ®Rgs. (B.3.6-8) we re-express the
standard formulas for the irreducible representations of the Lie
algebra of SO(3) in terms of a Hilbert space of functions,. For

the representation of dimension 27 + 1 we write

p- S IR ICREEE (1.1
n=-7

then the representation is

Jav(m) = m P(m, (1.2a)
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]
J1v(m) = ; {(Yi(54+1) - n(n-1) ¥(o-1)
+ V5 (3+1) - n(e*+Y) V(m+N)}, (1.2D)
1
J ¥(n) = —{Vi(5¢1) - m{n-1) ¥ (n-1)
2 21

- Y9+ - n(@+l) P(m+N ). (1.20)

The representation is characterized by the value of the Casimir

operator

2 3 2
3 = > a3 (1.3)

A=1 1

22
J P =33+ 1 ¥(n). (1.4
The scalar product is
(V,9) = g W (m)g(n). (1.5)
=3

2+ Irreducible Unitary Representations of 7(IS0({2)).

The representations of TIS0(2) are similar to those of
1500(1,1) {see Sec. B,2). There are two types of orbits, the

origin (p = p, = 0) and the circles
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(p) + (p) =1, (2. 1)

In the first case the translations are represented
trivially, and the formula (B.2.,3) reduces to a representation of
the little group, which is the rotation group S$0{2). All these
representations are one-dimensional:

-is8d -ime
e im> = e |m> (2.2)
(m = integer or half-integer).

In the case (2,1) the little group has order 1. #e can

choose p, (- ¥ L P, < ¥ and o= sgn p, as independent variables.

The scalar product (B.2,2a) is

M dp,
wm>=§f e A NLEINLE (2.3)
w2V - p 2 1

The Tepresentation 1is given by a formula 1identical to Eq.

{(B.2.4), where in the present case bﬂp = b'p + hlp& and A is a
P [

rotation:

P, -i6d P, cos & p, - sin 8 pz
A = e = » (2. u)
p pl + sin © p, + cos e p,

b S

Then the generators are

PH(R) =p VD), sz(p) = ov¥* - p % ¥(p),  (2.5a)
1 1

L

i
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d -1 eee__av
J(p) = + i— (A p) =+ igvt - p® ~—.  (2.5h)
de =0 dp,

The representation is characterized by

F=n 7. (2.6)

This representation can be expressed in a form in which
the operator J 1is diagqonalized; in other words, 1in which the
restriction of the representation to the S0(2) subgroup exp{-i6J)
is explicitly reduced into a direct sum of irreducible S50(2)
representations. If we make the change of variables

p = M cos g, p = M sin ¢, (2.7
1 2

it is easy to see that

oy
Jg(g) = - i—, {2.8a)

dg

-".iBJ
e - J(g) = V(g - ©)., (2.8b)
The eigenfunctions of J are
ing
V (#) = e 3y (g) = a0 (g)). (2.9)
m m m

Then
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"
PY (B) =Mcosg ¥V (g) =~-[¥F (B +¥ (],
1 m i 2 m+1 n-1
¥ (2. 10)
PY (B =Msing ¥ (g) = —[F (& -8 (&)
2 n m 2i n+1 mn-1
Finally, writing
F=S9m v (9, (2.11)
m m

we put the representation into the form
J¥(m) = m §(m), (2. 12a)

"
Py(m) =-[§(n=-1) + P(n+1) ],
1 2

" (2. 12b)
pQu(m) = —{¥(n-1) Vim+1) 1.

2i

The scalar product (2.3) is

i
(v,8) = f@ g V* () # (2)

M2 ¥ (m) g (m) . (2.13)
m

Pron Egs. (2.10) it 1is clear that the spectrum of J in an
irreducible representation consists of all the numbers which are
separated by integers from some m . The group representation is

single-valued if m 1is an integer.
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3. Formal Contraction of the Irreducible Representations with

Respect to the Diagonalized Subkgroup.

Substituting
1 1
P =~-J, P =-J, J=J (3.1)
1 R 1 2 R 2 3

into the commutation relations of 2Z{S0(3)) (Eq., (I.3.10a)) and

taking R =3 oo leads to

(e ,p1=20, [J,p 1= iP, [3,p 1= ~-1ipP, (3.2)
1 2 1 2 2 1

the Lie algebra of I50(2)., Similarly, Eg. (1.3) yvields

2 1,2
B = lim — J . (3.3)
BR->m g*

Thus ISO0(2) is a contraction of S0(3) with respect to a
one-parameter subgroup.

When the SO{3) representation formulas (1.2) are
expressed in terms of P and J, an immediate passage to the limit
R —> o yields a vrepresentation of Z(ISN(2)) in which the
translations are represented trivially (3 z 0)., Tt is a direct
sum of 29 + 1 irreducible representations of the form (2.2).

In#n® and Wigner (1953} pointed out that a nmore
interesting relationship between the representations of S0(3) and
those o¢f TIS0Q(2) «can be observed by letting the S0 (3)

representation vary with B so that the wvalue of the Casinmir

N

W
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operator approaches a definite nonvanishing limit. FExpress FEgs.
(1.2), (1.4), and (1.5) in terms of B, J, and M = j/R. Take the

limit
j—» o0, R — w, ¥ —> const., ¥ @, (3.4)

multiplying each equation by the power of R necessary to keep
hoth sides firite and not identically zero, The results are Egs.
{(2.12), (2.5), and {(2.713). (The limits in ¥gs. (1.2b,c) are not
uniform in m; the prescription 1is to act as if bp/R << M,)
ZLA{IS0(2)) representations with inteqral and with thalf-integral
m values are ottained in this way. The fastest convergence

(O(R‘l) instead of O(R-')) is obtained by taking

1 1
M==-(3+-). (3.5)
R 2
As this example illustrates, "contraction of

representations” typically refers to a relation between whole

families or sequences of representations of the two groups.

4. Formal Contraction with Respect to a Subgroup which Is Not

Diagonalized.

Suppose that in place of REgs. (3.1 we set
J r J = J (L'. 1’

and attempt to carry out the limit (2.4} in Egqs. (1.2). We find

(i
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that to get a finite expression for P out of Egs. {1.2a) we must —

absorb a factor of R by setting
- (4,23

But then in the 1limit the distance between the values of P, -
vanishes, We tentatively postulate, therefore, that for R = 0 —
P, is a continuous variable ranging from - ¥ to + M, and that the —
vectors of the representation space are functions of P, The -~
scalar product (1.5), if divided by R, goes into

M
¥.9) = [ dp ¥*(p )d(p ).
-M 1 1 1

Next we attack Egs. {1.2b,c). We make the ansatz

1 1 1
-[W{p - ) +E( +-)]—>W(p), 8.3y —
2 1 R 1 R 1

R 1 1 d

-[¥(p --) - +-)]—>-—F(p). (8.4 — p

2 1 R 1 R dp, 1

Then
| 1 1 -1
PP(P) = -VEX <~ pX [P(p --) +P(p +-)]+O0(R ) -
2 1 2 1 1 R 1 R

—> - pf U(P1), _
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R _ ¥+ p, -2 1
J(p) = — (WX - p* 4 ———— +0(R )]¥(p - -)
1 2i 1 2rVW® - p % 1 R
S M- p, -2 1
ST 4 e s O(R )] V(P + -))
1 2RVHE - pj? 1 R
R S— 1 1
= —VNT-p 2 [P(p - -) - W(p +-)]+
2i 1 1 R 1 R
1 p, 1 1 -1
— == [¥{p ~-) + ¥(p +-)]+O(R )
4i vx - pF 1 R 1 R
d i P,

—> ifA* = pF ——y(p) - - —————
1

dp, 1 2 n* - p?

If we now set

- [
Fp) = V2 W - p* y(p) (4.5)

and rewrite all the formulas in terms of i, we have

PE(P) =p W(p),
1 1 1 1

PV{p) =V = p% Wip),
2 1 1 1
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Jﬁ(p1) =2 -p* {m(p1) A
Y 2 234 a4 2 2 18 _
= i -pX — + i( -p ) —[( -p ) 17 —
1 dp, 1 dp, 1
i P, - I : B
- - § = iW* - pX —q(p), -—
2 ¥ - p? 1 dp, 1

V,2) = ] e J*(p ) B(p ). —
4 1 1

Comparing with Sec., C.2, we observe that we have come
up with only half of a representation of 1S0(2), the part with
o = + 1, Our operators have the expected commutation relations, —
but they are not the infinitesimal generators of a representation
of the group,.
According to ¥elson {1959), in order to have a unitary

group representation P,y Pl, J, and
A=?P +? +J (4.6)

must be essentially self-adjoint (see Sec. B.3). In the present
case the functions in the Hilbert space are defined on a
semicircle in the upper half of the P, P, plane (Fig. 19). The —
infinitesimal transformation 1 + 8J + ... is attempting to
rotate the functions onto the other half of the circle, J cannot

be inteqrated to a finite wunitary operator (i.e., J cannot be
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made self-adjoint) unless we e

include the hottom half of

condition which, for instance,
functions back in at the right

it pushes them out at the

representations of IS0(2) with
latter cannot bhe done in such

But why 4id our

heuristic manipulation
give us the top half of
the circle rather than
the bhotton? Did we slip
in an unconscious
assumption that P;L is

positive? The resolution

of this perplexity is
amusing, The choice of
the relative phases of
the basis vectors in an
irreducible representa-
tion of LAS0(3)),
although almost uni-

versal, is really arbitrary.

of all the {j:2> with odd m,

hun

ither enlarge the Hilbert

the circle
requires the operator to feed
end of the semicircle
nonexistence

The

left.[1]

as soon

space to

or impose a bhoundary

the
as

of

only one sign of P, shows that the

a way that A is self-adjoint,

Py

Fig. 19

The 3 plane for a
representation of 7 {IS0(2)).

Suppose we were to change the

Then we would have

[1] Cf. Wightman

(1964), pp. 264-766,

sign

nonintegrable
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J 13im> = - V(34 - m(mt?) (Fim1> (4. 7)
+

instead of the standard formula without +he minus sign. There
will be a corresponding sign change in Egs. (1.2b,c). Then the
same procedure as above would lead to the opposite sign for the
operators P and J -- so we would obtain the part of the
representation with o = - 1, More generally, note that most
choices of the phases of |j;m> yield expressions for P and J

which do nct converge at all as B —» oo. {Also, the contraction

with the <canonical <choice of phases 1leads to this sort of
trouble.)

let wus scrutinize the arqument to see if it can be
fixed wup tc give a whole representation instead of a just a
fragment of one. The expressions on the left of Rgs. (&.3-4)
involve evaluations of § at points separated by 2/R; that 1is,
points corresponding to values of m that are both odd or hoth
even, Our reasoning was that in the limit, when these points
coalesce, the values of § at adjacent points must also approach
each other, =0 that the sequence §{(m) is replaced by a
differentiable function ¥p, ). However, the utility of Egs.
{4,3-4) will not be affected if we postulate that as F ~—> oo the
sequence P(m) with n even flows together into a smooth function

VY Ip ) anl the sequence T(m} with = ndl Pacamns a2 Jif{ferernt
' P ! ] Cilierarn’
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function § (pl). Then the same calculation as before results in —

PF (p)=1p 9 (p), (4.8a) —
1 P 1 1 P 1
PY (p) =M -p2 ¥ (p), (4.8b) —
2 P 1 1 -p 1
- a4 _
JV (p) =ive* - p* — § (p), (4.8c) -—
p 1 1 dp, -p 1
dp - -
(¥.9) E[ ——-::_—_::w*(pm (P ). (.80 ~
-u 2vVH* p 1 op 1
Now let
1 _
e ,1 =——[®% (p) + ¥ (p)) —
1 Y2 +1 1 -1 1
L _ (4.9
¥(p ,-1) = —[¥V (p)-¥ (P)1L
1 V2 -1 1 +1 1 -

Then for o=+ 1, p = (p‘,d), ve obtain equations identical with
Eqss {2.5) and {2.3).

So, starting with the advantage of knowing the answer
beforehand, we have pulled the representations of the Fuclidean
group out of the representations of the rotation group by hook
and crook, In what follows, some of the ad hoc features of this

discussion will he given a geometrical interpretation.
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Contraction of the Quasireqular Bepresentation at the Pole.

Contraction is

Intuitively, the action of SO0(3) on a sphere is

the neighborhocd of a point O by the
respect to the subgroup of rotations

which we shall take to ke the z-axis

fundamentally a

gqeometrical notion.
approximated 1in
contraction of S0{3) with
abtout the axis through 0,

in the following discussion,

This can be made precise in terms of a natural action of the

contracted grecup (TSO(2)) on the tangent plane to the sphere at 0

{see [Talman], pp. 206-209), Tt is reasonable to expect that the

contraction of the representations can he interpreted in terms of
this geometrical picture.

Such a connection was already established in the

original paper of InBnlH and Wigner (1953). (See also [Vilenkin],

228-2310,) They pointed out that the realization of the

PP

irreducible representations of SO(3) by basis vectors which are

the functions on the sphere

m m
Y (8,8) = (-1 |
3 41

2541 1/2 nm
] P (cos 8) e

(G+m) ! j

{j-m) ? ing

ism> = (5. 1)

is related (near the polar point, where 8 = 0) to the realization

of the irreducible representations of ISO(2) by the basis

functions in the plane
img

J (M8)e
m

[Msm> = (5. 2}

via the {previouslvy known) formula
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-m m X m
lim Pcos =) =J (x) = (-1 J (x). (5.3)
j—>ow 3 | -n m

{In Eq. (5.2) J, 1is a Bessel function, € and ¢ are polar

coordinates in a plane:

X =6 cos 4, y = 8 sin 4, {(5.4)

and M* is the value of the Casimir operator for the

representation (2.12). The (M;m> obey Egs. (2.10) with

9 o]
P = + j—, P = = j—; (5. 5)
1 oy 2 ax

these identifications are easily seen to be in keeping with the
geometrical picture,) A generalization of Eq. {5.3} ([Vilenkin],
p» 229) relates the matrix elements of the 50(3) representations
{(Jacobi polynomials) to the matrix elements of the 1ISN{2)
representations (Bessel functions).

Rq. (54 3) relates the hasis functions  of the
representations of the two groups near the pole., The irredncible
representation of spin i, however, comprises functions which are
nonzero in regions all over the sphere,[2] There is no reason,
therefore, to expect a representation of IS0(2) to bhe an overall
approximation to a representation of SC(3). It seems more to the

point to study the qroup action in the set of all functions which

[2] The Y? with m << j tend to be concentrated near the poles,
those with m ¥ § pear the equator. This 1is obviously related to
the nonuniform converagencre ohserved in Sec, 7,7,

—
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are concentrated near the pole, and this requires considering an
expansion with respect to 7.

The functions (5.1) are the eigenfunctions (of
eigenvalue J(j + 1)) of the Casimir operator of S50{(3) as a
differential operator on the sphere (cf. Sec. A.3 and Sec. V.1,
Any La function on the sphere can be expanded 1in terms of this
conplete orthonormal set, This provides a decomposition of the
quasireqular representation (see Sec., 1,3) of S0(3) into
irreducisle representations, Similarly, the functions of Zq.
{5.2) are eigenfunctions of the negative of the Laplacian in the
plane with eigenvalue Hl, and the same statements apply with the
obvious changes.

Let us write down the spherical harmonic expansion for
functions on a sphere of radius R, using a polar angle coordinate
8 which is scaled so as to measure the geodesic distance from the
pole in constant units (independent of R).[3] The range of the

variables is
0 <8< Iy, -nN<ag<

Define (cf. Egq. (3.5))

[3] That is, instead of shrinking a neighborhood of the pole down
to 2 point, we keep the dimensions of the neighborhood constant
and expand the radius of the sphere., These +two viewpoints are
obviously equivalent, but the one <chosen is simpler to handle
algebraically and also is more in keeping with the cosmological
motivation of ocur probhlenm,
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m n
7 (9,9) = VR Y (8/R, #). (5.6)
¥ AM=-1/2

Let g(8,84) be a function on the sphere with support in the region

where € < nﬂo (R, fixed, Ro ¢ R for all values of R considered).

Define the transform of g hy

b R 8 n
d¢‘ sin - d6 Z* (8,8)g9(8,4) . {5.7)
n

G{M,m) = {
0 R M

The inverse transformation is{4)]

1 |
g, = < 222 (8,7 (M,m, (5. 8a)
R mnmn #
1 1 1 1 2
- (RM - -) < m < RM - -, M- — =0, =, =4 sesa (5.8h)
2 2 2R R R

Note that J(M,nm) is defined (in fact, analytic) for all positive
M, even though only a discrete set of values enters the inversion

formula. The scalar product is

"

8 2 _ 2
22 13(M,m . (5.9)
Mm

nfag]sin - 46 1g(e.d) | =

=< QY

It should be noted that the rescaling of ® has a direct
connection with the <contraction +transformation (3.71). The

sphere, being a homogeneous space, can be identified with the

[4] The orthonormality and completeness relations for the
spherical harmonics are given in [ Messiah], p. 495,
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cosets S0(3) /S, where S = {exp(-itJa)} is the stability subgroup
of the pole 0. The elements of the group can be given the Fuler

angle parametrization:

exp(-igJ ) exp{(-ieJ )} exp(-itJ ). (5. 10)
3 2 3

The cosets are then labeled by 8 and ¢g; this is precisely the
familiar spherical coordinate system. (The elements of the coset
(8,#) map ¢ into the point (8,#).) Clearly, scaling Jz as in Eq., —
{3.1) redefines 8 by a factor of R.

Combining Eqs. (5.%) and (5.1) and a refined version[?’]
of Bg. (5.3}, we find that for ¥ >> 1/R, M >> |m|/R, and
8 < B, <R,

1 1 ing =2

m
-7 (B,8) = — VH I (MO)e +0(R ). .11 —
R M VEH m

(The 1/2 in Eg, (3.5) is essential to eliminate a term of order

R ‘.) Consequently, as R —» oo the inteqgral (5.7) approaches a __

limit:
(R) (o)
Jg(M,m) —> T(M,m) = -
10 owlor ? ] -ing
— j ag J ° age VM J (M8)e g(e,#). (5.12a) —
van J-m o Jo n

[5] [Gradshteyn-Ryzhik ], 8.722.1 (p. 100?). The formula contains
a misprint: the exponent Y on the left-hand side should be p.
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Likewise,

1 0 ) ing
3(8,9) = —-:I am S VEJ (Me)e  g(M,m).  (5.12b)
van ] M==-00 m

So we have recovered the eigenfunction expansion on the plane,

which is summarized by the standard formula

4 0] 1
j dM M J (MB)J (Me') = - &(8 - 8') (5.13)
0 m m 5]

(eeg., [Jackson], p. 77). The scalar product converges to
2

2
fa;a fe CRETCE TR LED ST (5. 14)
m

6. Contraction to an Eguatorial Point.

Another parametrization which yields the same
coordinate system as Bg. (5.10) is
n
exp(-igd ) exp(+iV¥J ) exp(-itJ ) (F=--8), (6.1)
3 2 1 2
Here the sphere is exhibited as the space of cosets relative to
the stability group of the origin of the (¢,¥) coordinates., 1In
the realizaticn of the irreducible representations in terms of
the spherical harmonics, the J3 subqgroup, which is the aroup of
"translations" in g, is diagonalized. Hence Tg. (6.1) provides a

natural setting for a contraction of the type of Sec. C.U,
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However, as remarked in Sec. C.4, the standard phases
for the spherical harmonics lead to divergent expressions when
contracted around the x‘-axis. To achieve success one nust

either change the phases or move to the x,-axis. We shall do the

a

latter. Then in place of Egq. (£,1) we have

exp(-iwd ) exp(-i®J ) exp(-itJd ), {6.22)
3 1 2
where
n i
W = g - =y u = - eo (5.2?’)
2 2 ,

Contraction according to Eq. (4.1) induces a rescaling of both w
and ¥ by a factor of R; from now on we enmploy the rescaled

variables. 1let

P RM-1/2 Rp PN w
X (0, ¥) = (- 1) Y (- ==y =t ") (6.3)
M RM-1/2 2 R 2 R

In analogy to Egs. (5.7,8a) we have a transforn

mE nR/2 v p
3 (1,p) -=/ awf cos - a¥ ¥* @, MW, B,  (6:4)
-7R ~-MR/2 R M
1 p
Tlw ) =5 22X (WIMD). (6.5)
¥ Mp N

The sum is over the range {5.8b), with p = m/R (m = integer or

half-integer), 1In what follows it is assumed that g has support
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where ©, ¥ < B , R << R,

Now for 8 not too far from N/2 and j large one has

o e . e

n m-172 [ 2 1 n o
P {cos 8) & 1 ——— cos [{]j + =)0 - -~ + —] (h.H)
3 T sin 8 2 6 2

({ Gradshteyn-Ryzhik ], Egq. (8.721.4) (p. 1003)). This formula is
valid only for |m| << j. A more uniform approximation can be
found, but the algebraic complications of carrying through the
following discussion in terms of it are enormous and would
obscure the main point, So the corrections needed for m= j will
only be stated at the end. ©One finds from Egs. (6.3), (5.1), and

(f.£) that an approximation to Xﬁ analogous to Fq. (5.11) is

P j+m 1 N ipw
¥ (v, ) = (- 1) -cos [~ M + (j+m-Je
M n 2
1
(j = RM - -, m = Rp).
2
That is,
1 ipw
X (w,J) = - cos M§ e if j + m is even, (6. 7a)
M n
P 1 ipw
X (w,9) = - 1- sin P e if § + n is odd. (6.7h)
M n

So, considering even and odd § + m separately, one is

led from Eq. (6.4) to two quantities,

|
"

|«
&
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1 o oo ~ipw
g (M,p) = - [ do f df cos MU e g(w,¥),
1 n'-o -0
i o ~ipw
g (M,p) = - j dw /m dy sin MF e Jw.T .
2 /- -0

The inversion formula (%.5) becomes

1 0 o cos M¥ ipw
G == | an [ ap § 3 (mp) e
2n J0 -¥ P=11 P - sin MY
{cos for P =+ 1, - sin for p=- 1. Let
1
J(M,p,0) = - [J (M,p) + 0T (¥,p)]
2 o -0
as in Fgs. (4.9). Then
1 ,00 00 ioMy -ipuw
I(M,p,0) = ——j dwj We e  qwW,
2W - e (6.8)
1 M ipw ~1iMP iny
3l = — dnj dpe e  JMp, M +e  AMp,-1) ]
200 -M

By now it should he obvious that our destination is the
ordinary Fourier transform in the Fuclidean plane. If a nmore
uniform asymptotic expression had been wused in place of Fq,
{6.£), there would have been two essential changes in Egs. {f.8):
the M in exp(-iMy) would be replaced hy |q| = V¥% = p3, and a

factor of 1/Vig] would appear 1in each eguation, Then the

-



Sec. C.kh 460

standard Fourier transform is recovered by changing variables
from (™, 0 to g (with sgn g = - ) and adjusting‘ the
normalization of & by a factor of Viq| (cf. Eq. (4.5)).

The nmost important point of this exercise is that in
the contraction of the quasireqular representation the
distinction between 1indices of different parity which was

introduced by fiat in Egs. (4.8) arises naturally from the

behavior of the basis functions in the neighborhood of the point

of contraction. Also, the choice of relative phases of the bhasis
vectors (56.3) is crucial. The phases of adjacent ({in 3 and m)
fupctions of the same parity of m must be coherent near the point
of contraction in order for the inteqral transform to make sense
in the 1limit of 1large R, when the variables bhecome continuous.
These same functions will not have coherent phases with respect
to apy other point except the antipodal point; this is consistent
with the results of attempts at formal contraction of Lie algebra
representations, Although the discussion in these last two
sections has not been very precise as to the nature of the limits
taken, it does indicate that the seemingly arbitrary elements
introduced in formal discussions of contraction of irreducible
group representations have perfectly clear geonetrical

counterparts in the structure of representations by functions on

homo geneous spaces.
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Appendix D

TYPES OF METRICS AND COORDINATE SYSTEMS

In Chapter IIT and later reference is often made to
coordinate systems in which the explicit form of the metric
tensor of space-time has certain convenient properties, and to
special classes of metrics which take on especially simple forms
in certain coordinate systems. In this appendix some terminoloay
is introduced, which is partly standard and partly idiosyncratic.
The approach to normal and Fermi coordinates via a polar forn is
unconventional, hut it brings out the geometrical motivation
behind the constructions,

Ye are considering Riemannian manifolds (see footnote 1
of Chapter TII) of dimension s + 1 and signature (+ - ... =) (s
minus signs)., We always consider coordinate systems in which one
coordinate, xo, is timelike[1] and the others are spacelike., -—
Thus, in a system in which the nmixed time-space components are
zero, the metric will have the form

2 02 i ok

ds =g (dx.)“ +q dx dx , (N
N0 jk

vhere qoo > 0 and {gjk} is a negative definite matrix at each —

{1] That is, all the tangent vectors to the hypersurfaces
{x]x° = const.} are spacelike.
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point. Our coordinate systems are not required to cover the
entire space; the desirable properties imposed locally may force
coordinate sinqularities to develop which mark a natural boundary
to the region covered,

It is well known that a point and a direction through
it (the latter specified, for example, by a vector of length 1 in

the timelike case) uniquely determine a geodesic (curve) through

the point in the given direction. A geodesic hypersurface is

defined similarly. Tor exanmple, consider the family of qeodesics
generated by all the spacelike vectors normal to a given timelike
vector at a given point P. The set of points obtained in this
way 1is an s-dimensional spacelike hypersurface, which we shall
call a geodesic hypersurface relative to P. (The hypersurface is
not necessarily geodesic relative to any other point in it, if
s > 1, Por instance, a surface defined by t = const. 1in the

——

three-dimensional metric

2 2 ? 2 2
ds =4t - dr =-r €£(t)ds

is generated by the geodesics © = const. through the point r = 0,
but these are the only geodesics which 1lie entirely 1in the
surface, 1In de Sitter space, however, because of the symmetry, a
geodesic hypersurface is geodesic relative to all 1its points --
see Sec, II1I.1.)

The construction which is about to he descrihed is most

easily visualized in a space with definite metric, such as the
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geodesic hypersurface Jjust discussed. Given a distinguished
point P, we define the radial coordinmate x' = r of each other
point Q as the geodesic distance from P to Q; that is, the arc
length of the segment of geodesic Jjoining 0 to P (which is
unigque, at least locally). To complete +the coordinate system we
assign the same "anqular" coordinates xa, cene xs to all the
points on a given geodesic through P, VYNow the geodesics are in
one-to-one correspondence to their unit tangent vectors at P,
Furthermore, the geometry of the space of tangent vectors is
ruclidean, and so, 4given an orthonormal basis in the tangent
space, one can assign anqular variables to the tangent vectors in
a standard way (e.g., spherical coordinates). We call these

norpal coordinates in polar form.

Using the standard formulas relating spherical and
Cartesian coordinates, one can pass to a guasi-Cartesian systenm
with origin at P corresponding to the orthonormal bhasis chosen,
At a finite distance from P these coordinates (y',...,vs) will
not he crthogomnal, in general, (That is, the metric will contain
terms in dy'dy'a and so on,) It is coordinates of this type which
are usually called normal (cf. [Synge], pp. 76-77).

In a space with indefinite nmetric an analogous
construction can be carried out, Instead of spherical one will
use "hyperboloidal" coordinates, related to Cartesian coordinates
by forrmulas involving hyperholic functions {(cf. Secs, IX.1 and

.2) s The polar form of this normal coordinate system is not

very useful, because it is sinqular not only at the origin but
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over the entire light cone of the origin.

Gaussian coordinates (TAdler-Bazin-Schiffer], PP,

59-62) are associated with a given spacelike hypersurface S (an
s-dimensional submanifold with a timelike normal vector at each
point) and a given coordinate systen (x',...,xs) on S, The curve
of points in space-time whose spatial coordinates are (x‘,...,xs)
is defined to te the geodesic throuqgh the ppint (x',...,xs) in S
in the direction normal to S, The time coordinate of a point on
one of these geodesics is (up to sign) 1ts geodesic distance from
S. Then it can easily be shown that the metric has the forn
2 0 2 i k
ds = {dx ) + g dx dx , (2)
jk

where gjk may be a function of x° as well as the xi. Note that
the hypersurfaces x° = const, are not, 1in gqgeneral, geodesic

hypersurfaces, even if S is geodesic.

Generalized Fermi coordinates are associated with a

given timelike curve C. The hypersurfaces of constant time are
the geodesic hypersurfaces normal to C at each point. (Rny
monotonic parametrization of C can provide the numerical value of
the time coordinate.) 1In each of these hypersurfaces we choose a
system of normal coordinates (polar or quasi-Cartesian)., TIn the

polar case the metric takes the form
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ds =g {dx )w + 2 g dx dx

< ;
-dr + > g dx dx . (3)
k

(The coefficients may be functions of any of the coordinate
variables.,) The metric has, relative to any hypersurface
r = const., the Gaussian form (2) {generalized in an obvious way
to hypersurfaces with spacelike normals),

In Permi coordinates[2], properly so called, the

angular {or quasi-Cartesian) coordinates at weach time are
determined hy those at anr initial tipe. Fermi defined an
angle-preserving mapping of +the unit normals attached to one
point of C to the unit normals at each other point of € (see
{Synge], pp. 12-15). Fermi's transport law gives a definite
meaning to the intuitive requirement that the coordinate axes
should not rotate,

A further specialization is to geodesic TFermi

coordinates{ 2], where the curve C is a geodesic and x° is the arc
length along it. Permi's transport law reduces in this case to
ordinary parallel transport. Tn analogy to the situation with
Gaussian coordinates, it should %e noted that the curves

A .
T = CONSt., X = CONSte, asaey xs = const. (other +than C itself)

[2] [Synge], pp. B3-85; 5Schild (1965), pp. 54-55, These are
Schild's "Fermi coordinates of the second kind",

{3] schild (1965), p. 55; Manasse and Misner (1963). Manasse and
misner call these Fermi norrpal coordinates.
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are not generally geodesics,

Analogously, we define a geodesic Gaussian coordinate

5ystem as a Gaussian system such that

(1) the initial hypersurface S is a geodesic hypersurface;

{(?) the coordinate system given a priori in S is a normal

systen,

Geodesic Gaussian and geodesic Fermi coordinate systenms
are very natural for physical applications. We may think of the
(instantaneous) vantage-point of an observer as being represented
by his position (a point P in space-time) and his velocity (a
timelike unit vector v), It 1is natural for this observer to
think of the geodesic C generated by v as the time axis ("here™)
and the geodesic hypersurface S normal to it at P as ‘'now",
These identifications are consistent with a normal coordinate
system based on P, a geodesic Gaussian system based on S, or a
geodesic Fermi system based on C (although 1in general thesge
systems will not coincide elsewhere), 0f conrse, to define each
of these systemns uniquely requires specifying a comnplete
orthonormal set of spacelike vectors normal to v. The normal
system is the natural extension to a finite region of the "local
Lorentz frame® determined infinitesimally at P ky v, However, in
the context of a theory which depends heavily on a distinction
between space and time, such as guantum mechanics in a

Hamiltonian formulation, the Gaussian and Fermi systems may be
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expected to play roles at least as important. This subject |is
discussed further in Secs, ITI.3 and X.8,

So far we have discussed forms into which any metric
can be cast hy a proper choice of coordinate system, We turn now
to two forms which put nontrivial restrictions on the metric.
Thus they define intrinsic properties of the metric itself, The
importance of these classes of metrics for us 1is that for thenm
the scalar wave equation can be solved by separation of variables
-- see Chapters Vv, VIIT, and X.

A static metric, as its name implies, is independent of

time; it is also required that

g =0, k=1, vasy 5. (4)

Thus

2 0 2 i ok
ds =g (dx ) + g dx dx {5)
00 ij
t
with the coefficients functions of X , see, x: only.

We call a generalized PRobertson-Walker metric any

metric of the form

2 62 20 j ok
ds = (dx ) - PR (x) h dx dx , (6)
jk

. t s . .
where the *h are functions of X , «..., X alone. This 1is A

Kk

special kind of Gaussian metric, describing a universe which may
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expand or contract but does not change its "shape",

A Robertson-Walker metricf#3] 1in the strict sense is

required to be homogeneous and isotropic at each time, This is a
restriction on the s-tensor hjk' or the manifold it describes,
In the case s = 3 there are three classic possihilities:
Buclidean space, the three-sphere, and the three-dimensional
analoque of lLobhachevsky space.

ITn their textbook Robertson and Noonan have listed all

the four-dimensional QRobertson-¥Walker universes of c¢onstant

curvature; there are six.{5] Models  with  different
RPobertson-Walker coordinate systems are regarded as distinct,
even if (at least locally) they have the same four-dimensional
geometry, Tn this dissertation two-dimensional analogues of all

six of these models will he encountered:[ 6]

{1) Ordinary Yinkowski universe,

{2) Fxpanding Minkowski universe: Sec. X.2,

{3) De Sitter universe, proper: Sec. III,7 {de Sitter space

in horospherical coordinates),

(4} Lanczos universe: Sec. TI1T.1 (de Sitter space in

geodesic Gaussian coordinates).

(8] [Adlgr-ﬁazin-Schiffer], pp. 338-349,

[5] [Robertson-Y¥oonan], pp. 362-371, See also pp. 335-3u8,

[6] The number and the name given first are those of
[Ro
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(5) : Sec, I1II.2 (a portion of de Sitter space in polar

normal coordinates),

(6) : Sec. III.6 {(a portion of open de Sitter space).
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Appendix E

THE AXIOMS OF RELATIVISTIC QUANTUM FIELD THEORY

The general principles of quantum field theory stated,
for instance, in [Streater-Wightman], pp. 96-102 and 29-30, or in
Wightman and Ggrding {1965), 1involve two basic mathematical
elements: the operator fields defined on space-time and the
representation of the Poincaré qroup. The second of these is not
availabhle 1in the theory of quantized fields coupled to fixed
external (c-number) fields, including the theory of fields in
curved space-time, where the curvature can bhe regarded as an
external gravitational field (see Sec. VII.7). {Tn the latter
case the structure of space-time is changed, and sonme
corresponding minor changes in the notion of local field
operators are needed in addition to some compensation for the
loss of Poincaré invariance.) TIn the de Sitter spaces one might
expect the role of the poincard group to be taken over by the
appropriate de Sitter group, hut the results of the present work
tend to a contrary conclusion.

In discussing these prohlems in Chapters IV and VIT,
therefore, it will be helpful to refer to a version of the axionms
in which the roles of group and field are clearly separated, In
this appendix the axioms are divided into ten statements which,

as 1indicated in Pig, 20, fall into four classes depending on
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whether they deal with neither, one or the other, or both of
these elements. An axiom which comes below another in the gqraph
of Fig. 20 either implies it and renders it redundant (as in the

case of Axiom B8) or tacitly assumes it (e.q., Axiom 9).

GROUE X§§1>< FIELD
//w\\
/ \/

10

BOTH
Fig. 20
Logical interdependence of the axionms
These are the axioms:

1. Quantum theory. The states of the theory are described

by unit rays in a separable Hilbert space ﬂv.

2 Relativistic invariance, The relativistic trans-

formation law of the states is given by a continuous unitary
representation of ISL(2,f), the universal covering group of the

Poincaré group: {a,A} —> U(a,d).

3. Existence and temperedness of the fields. For each test

function f € 4/ (the space of smooth functions of rapid decrease
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-- see [Streater-Wightman], Sec, 2.7) defined on space-time there
exists a set ¢'(f), ceey ¢n(f) of operators. These operators,
together with their adjoints ¢,(f)1, sees ¢ﬂ(f)f, are defined on
a linear domain D of vectors, dense in Qﬁ The ¢j(f) and {j(ﬂ*
leave D invariant. Tf o, T € D, then (¢,¢j1f)U) is a tempered

distripution, regarded as a functional of f.

4, Tepsorial character of the fields., The U{a,A) leave D

invariant, and the equation

-1 -1
U(a,d) ¢ (f) U(a,d) >Ss (A ) g ({a,B}f)
j ik k

is valid when each side is applied to any vector in D, Here S is

a representation of SL(2,§), and

-1
fa, Al f{(xy = £(4 (x - a)).

5 Local computativity. If the support of £ and the

support of g are spacelike separated, then one or the other of

(t)
(¢ (B}, (@] =0
j k ks

(anticommutator or commutator) holds for all j and k when the

left-hand side is applied to any vector in D.

6. Existence and uniqueness of the vacuum. There is a

state UQ, the vacuunm, invariant under U, unique up to a phase

Y
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factor.

7, Cyclicity of the fields. There 1is a state which is

cyclic for the smeared fields; that 1is, polynomials in the
. ) . .
smeared field conmponents, P(¢'(f), ¢a (9), «¢s}), applied to this

state yield a set Do of vectors dense in 4#.

8, Cyclicity of the vacuum, ¥ 1is in D and is cyclic,
&)

9, Spectral condition. The eigenvalues of P* lie in or on

the plus cone (i.e., Pﬂ2“ > ), where U{a,1) = exp(igua#).

10, Asymptotic completeness., The decomposition of U into

irreducible representations is one appropriate to a theory of
noninteracting particles of various nmasses and spins, TIn fact,
the states (rays 1in ﬂl) are 1in correspondence with all the
possible incoming (alternatively, outgoing) configqurations of the
stable particles described by the theory. (2 more explicit
formulation of this axiom would take *too much space here. See

Haag (1955) (Sec. I) or the Wightman references above,)
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Appendix F

REPRESENTATIONS OF THE CANONICAL COMMUTATION RELATTIONS

1. Definitionms.

The formal structure of the <canonical commutation
relations (CCRs), Egs. (VII.2.1) or {(VIII,2.5), can he treated
rigorously either in terms of an algebra of bounded operators
satisfying the so-called Weyl relations (VIII,3,10), or in terms
of an algebra of unbounded operators satisfying the "naive" CCRs
on a comrmonh invariant domain {cf. Powers (1971)). Reed (1969
has proved that every representation of the first type is
associated with one of the second type, bhut a famous exanmple of
E. ¥elson (see [Reed-Simon], Sec., 8.5) shows that the converse 1if
false, even for one deqgree of freedom and even if the field
operators are required +to bhe self-adjoint on a common dense
invariant domain, The first approach facilitates the proof of
abstract theorems, but the second is more intuitive and more
convenient for concrete calculations, Here we shall he primarily
concerned with the TFock representation and representations
defined from it by a certain kind of transformation, so a
formulation of the second type is sufficient, Also, for present
purposes it will not be necessary to impose any condition of
continuity in the test function,

Let % (the one-particle space) be a complex Hilhert
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space with an involution operation, f —> £, Without loss of —

generality we shall take ?V to bhe LK(M,p), where (M,n) is a

measure space and the involution is complex conjugation. let -

(the test function space) be a dense subspace of ¢/. Tet éf/be a —
Hilbert space and A a dense subspace of /. let a( ) he a

—

linear map of < into the (unbounded) <closable linear operators —

ér’

on with domain % , such that

(1) the a(f) (£ € <) and their adjoints a' (f) = a(f)T leave -

=

% invariant;

(2) [a(f), a{g)] = 0 and

t - -
f[a(f), a (9))] =fdp(x) f{x)g(x) = (g,f) = (f,q) (1.1 -

OH?Z.

Such a system will be called a representation of the canonical

cormutation relations. Formally we may write[ 1]

a(f) = ‘a(x)f(x) dp(x), 1.2y —

1
fatx), a (n1=8x-1y. (1.3) —

In vparticular, the Fock representation over U is

defined by taking {(cf. Sec, VIIT.3)

[1] One may call a(x) an "operator-valued distribution", although

no continuity condition in terms of a topology on J has heen —
stated, The delta function in FEg. (1.1} has meaning as a
bilinear form on % .
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T=9;
T = space of finite sequences of the form

]}=HJ,U(X),‘](X ,X), ...,V(X ,...,X), 0' o.:}
0 1 1 2 1 2 N1 N

N
with scalar product given bquuul =2 Hﬁﬂ“a, where §_ is
nz0

in ﬁugh, the Hilhert-space completion of the symmetrized

n-fold tensor product of %;
7 . . .
& = completion of 6&, with typical menmber

V=0 o 0 (X )y vene B (X soeesX )y oo} = (T (X goaasX )}
0 11 n 1 n n 1 n

a(f) § = {vn+1 Idp(x) £(X) B (X,X ,X ,eee,% )}, {1.8a)
n+1 1 2 n

t
a (£) ¥ = (Vn syn £(X )0 (X ,eee,X )} (1.4b)
1 n=1 2 n

In the - last equation sym denotes the symmetrizer

1
SYm ¢(x 'a:g'X ) = e E ﬂ(xi ,...,X‘- ) (105)
1 n nt 1 n

{sum over all permutations); in the present case it reduces to
- 2 F{X )V (X_.,000s% ;0e0,%X_%}. The vacuum sequence {0, 0, ...}
n ) n-1 % J FOLAE e A= R

§=t 30
is denoted by 0>,

These definitions can be formulated abstractly, without

8 . . . . .
reference to a concrete L realization or even a distinguished
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"involution, If the involution is abandoned, however, it 1is best
to take the map af( } as the basic object. Then the comnutation
relations are

t t 4 t+ ot
fa (f)y 2a (9} ] =0, [(a (£)) , a (9)]= (£,9), (1. 6)

and the Fock representation has the abstract characterization

t t
a (f) ¥=a ()W) =1(nsym (Fey )}, (1. 7a)

n n-1

t t —_—
(a (f)) ¥ = (Va1 (£,1 )}, (1. 7h)
n+1

where (f,¢‘®¢lﬁ...@¢") = (f,gl) ¢1®...®¢“, symn is defined on
vectors of the form 2 Q... 80 in the obvious way, and these
operations are extended to all of 4#0" {and hence ;y@") by
linearity and continuity., Now for each realization of 7/ as an
ﬂa space one can define a(f) = at(%)T and recover the commutation
relations and Fock representation formulas (1.1) and (3.4), VNote
that the meaning of a{f), unlike *that of aT(f), depends on the
realization (mcre precisely, on the involution).[ 2]

Hermitiarn operators nay be formed from these

annikilation and creatiocn operators in two ways. The first way,

[2] In physical terms, the decision to take aT( } rather than
a() as the realization-independent object is forced hy the
demand that the realization-independent description of a
one-particle state be linear in the wave function (at(f)10>), not
antilinear (a(f)T|0>).
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which is how field operators are usually related to annihilation
and creation  operators in quantum field theory, is
realization-dependent, but the fields depend linearly on the

complex function £:

1 t -1 t
B(F) = — (a(f) + a (£)), M(f) = — (a(fy - a (f));
V2 V2
[g(f), M) 1 =i(f,9); (1.8)

t -
g{f) = ¢(f), ¢g@Ef) =1ig(f), etc,

The other way is independent of realization, but the operators

are only real linear in f {and always Hermitian):

1 + ¥ t -1 t t t
Q{f) = — (a (f) +a (f)), P(f) =-— (a (f) - a (f));
V2 v2
[0(f), P{qg) ] = i(f,q9); (1.9
t I3
C(f) = Q(fy, o(if) = pP(f), etc.
If M is chosen to be a set of discrete points -- this
amounts to choosing an orthonormal basis in 4 -- the ccR algebra

{1.3) 1is that appropriate to a collection of one-dimensional

harmonic oscillators {cf. [ Messiahk], Chap. XII). A tensor-
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product representation[3] is constructed by considering a formal
product vector

00
§y= 8 7 ,
=1 X
where each Ux is some vector in the state space of the oscillator
with index x, and generating a Hilbert space by acting on § with
all the elements of the algebra in the obvious way. (Different
product vectors can yield unitarily eguivalent representations.
This happens if and only if the vectors are 'weakly equivalent"
-- =see the references,) The TFock representation is the

tensor-product representation in which each wx is the aground

state (annihilated by ax).

2. Bogolubov Transformations.

Consider a representation of the CCRs as defined above,
and let 4/' be another L space. (If ﬂJ is regarded abstractly,
M may be % itself in a different realization. In this case it
is important to remember that the involution £ will depend, 1in
general, on whether f is regarded as a memher of M or of 2/
Let U and V be operators from % to #/'. For the moment we

assume U and V to be bounded (and Adefined everywhere). Then UT

1.

and V' are hounded operators from 4/' to 4 . Also, we define the

- T
complex conjugate T: 4/ —> 4{' and the transpose U : 4 -— H

[2] Klauder et al. (1966); Streit (1967); Reed (1968, 1970). The
fundamental paper on infinite tensor products 1is von Neumann
(1938).
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of an orerator by

ug = Ug, {(2.1) —
T _t -;'
gy =0 =10, (2. 2) -
Under these conditions
T t+ T
b{g) = a(l q) + a (V q) (2.3) —

is an operator on érlif UTq and VTq are both 1in <5_: and the —
corresponding adjoint is

1 -t t t t
b {q) =b(g) =a (7 q) + a(V q). (2.8) — =

By direct <calculation we find that b{ ) is a representation of

the CCEs on J with test function space UT—'(é7§(] v Ny —

(vhich we assume dense in 74') if and only if —

+ +
gy = 1 + VY (2.5) —

and

T T
gy = VU ., (2. 6)

The transformation (2.3) is called a Rggolubov transformation, in

reference to an application in the theory of superconductivity,

Suppose that, in addition, the a's can be re-expressed
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in terms of the b's, at least for a dense set of f's in Z/:

T 4 T
a{f) = b(X f) + b (Y f). (2.7

Then

T T $ T + TT $ T
a(f) = a({U X + VY)E) +a ((VX +UY)f),

It is easy to see that necessarily

T T T
So (using Eq. (2.6)) we have - vuty' = uv'x = vo'x =7v - ywiy', —

and hence {using ZEq. (2.95)) v o= - V. Similarly, wusing the
complex conijugates of Eqs. (2.5-6), we have - VVTXT =7 - ﬁﬁTXT -

and hence X = 7. So Eq. (2.7) beconmes -

_ t
a(f) = b{UF) - b (VE), (2.83) —

t + -
a (f) = b (Uf) - b(Vf). (2.8h) —

On the other hand, Eq. (2.7) must be a Bogolubov transformation

itself, so Fgs., (2.5-6) applied to Egs. ({2.8) yield

CU=1+7v7, (2.9) —

V=V (2.10) —
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Egs. (2.9-10) are necessary anrd sufficient for the invertibhility

of the transformation (2.14),

3. The Theorerm on Egquivalence of Representations BRelated by

Bogolubov Transformations.[4]

Let {ak} be a system of annihilation operators in the —
Fock representation on a Hilbert space ., and (bj} another set —
of operators which also satisfy the CCRs and are related to the

t

a's and a 's by a linear +transformation, which may be —

schematically indicated by

b =S[Uu a +v a 1 (3.1 —
j k jk k ik k

Then, roughly speaking, the representation of the b's in JF is —
the Fock representation if and only if the "matrix" ij is —

Hilbert-Schmidt:
SS v 1 < . (3.2) —
j k

This condition is quite reasonable, since the expression on the
left-hand side of the inequality is the expectation value in the
a-vacuun of the total b-number operator Eb;bj. In general, i and —

k are continuous variables, and the sums in the condition (3.2)

[4] [Priedrichs], Part V; Shale (1962); [3erezin], Chapter IT;
Kristensen et al. (1967). The present exposition follows the
last two references, hut generalizes them by allowing different
realizations LQ(M,p) of the one-particle Hilhkert space at the two —
ends of the transformation,
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are to he interpreted as integrals,

In practice the kernels Ujk and ij usually are
ohtained by some formal calculation (cf. Secs, I¥.3 and X.2), and
their mathematical status may be dubious. Unfortunately, the
criterion stated above has heen proved rigorously only when these
kernels define hounded operators, U and V, in a Hilbert space.
Then we have a Bogolubov transformation in the sense of Sec. F.2,
{Eg. {2.3) is Egq. {3.1) smeared with a test function.,) Morenver,
the proof assumes that the transformation 1is invertible {(i,e.,

Eq. {3.1) can be solved for Ay, or Fgs. (2.7-12) hold).

Theorem: Assume the following:

(1) a{ ) is a Fock representation with one-particle space H

and Fock space g,

{2) U and V are bounded operators from % to another Hilbert

space {with involution) 7/'.

t + T T
(3) jy o= 1 + VY and UV = VO (3.3)

{so that b(g) = a(UTq) + at(vTﬁ) defines a representation in

vgfgf the CCRs with ope-particle space #/').

t T_ t T
4) UU=1+VV and U v=yvyy5n (3. 4)
{so that a( ) can be expressed in terms of b( ): alf)y =
h{Uf) - b*(Vf)).
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Then the condition
(5) V is a Hilbert-Schmidt operator

is necessary and sufficient for the conclusion:
There is a vector U( € érJ
c)

g € ég'.

In this case the representation b( ) is unitarily equivalent to a

such that b(q)v( =0 for all

°)

Fock representation.

Proof:

(1) U has a bounded inverse: U and nt have the polar

decompositions

+ 172 t t t 172
U= (U0) v, U =0 (UU) (3. 5)

where U 1is a partial isometry ([Kato], pp. 334-335), The kernel

1.

of U is the kernel of U U, and the range of u, is the closure of

the range of U; similarly, the kernel of U: is that of UUf, and

its range is the closure of the range of Uf.

1

On the other hand, the equation UU = 1 + vyt

shows

that UUT is a {strictly) positive definite self-adjoint operator.

-
There follows: {a) (Uﬂf) / exists and is bhounded; (h) Ug- is
injective, since UUT is. The same reasoning starting from
oTy = 1 4 VTQ shows that U  is injective, 50 U  1is actually a

unitary operator, and U: = Ugl. Consequently, U has the bounded
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. - -1 - X
inverse U = Uo (UUT) h‘. In passing we have proved that the —

T

ranges of U and ' are dense,

{2) The operator yY: Define

-1
y = - U VQ (3‘6)
since 07" is bounded, ¥ is Hilbert-Schmidt if and only if ¥ is. -
T
Since UV = VUT, one has y' = Y —

t t ot _
(3} Ayn < UO(-yy) =0 U0(1-yY) —1

t t -1 _-1 + t _-1 t+ T__=1

=y -000 VO V=0gOUO-UDYl V=0U=-vVoU V —

(Eqs. (2.9-10) have been used.) Since we know UTU has an —

inverse, this shows that 1 - yy* = (UTUf‘,, or YYT =1 - 04 UT-I. —

Thus for all £ € éy —_
+ 2 2 +-1 2 2
ty £ = WfN - guo  £U < FEN -
(The inequality is strict since UT-, is injective.) Therefore, —

the operator norm of Y is

f
By =gy <1
op op

(4) Solution for V(}i Consider the equation —
°
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b(q)vh)= 0, where .

¥ = [V (X yese,% )]s (3. N
o n 1 n

(We are using an explicit realization of 4 as an L space.)
Written out in terms of the definitions (2.3) and (1.4}, the

equation is

o T
(Vael fap<x> (U Q) (X) F (XeX paeert )}
n+1l 1 n

T
== [(asyn (Va)(x ) F (X ,eeerx )} (3.8) =
1 n-1 2 n

Let us consider the various component equations.

T
n = 0: Jdp(x) (U q) (x) $1(x) = 0,

If this is to hold for all g, we must have W'(x) = 0, since —

U (= 5;) has dense range.
T T
Rl VE[Gn 09 ¥ x) = (Talk) V. -
2 1 1 0
-1T
Substitute U g for g:

T
V2 jdp(x) g(x) ¥ (x,x) = (¥ @) (x) ¥ . _
2 1 1 0

If WO # 0, this equation states that y 1is an integral operator —
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with the symmetric kernel

Yi{x ,x) =v/§11_1 ¥ o(x ,x) SLZ(dx ax ). (3.9
1 2 0 2 1 2 1 2
This is equivalent to the Hilbert-Schmidt and symmetry properties
of the operator Y.
General n: W”+' is related homogeneously to [“,. Ry
induction, ¥, =0 for all odd n. It follows that ‘o # 0 for
nonzero ”hj: let us set wo = 1, For even n we obtain

fa73 [ap(x) GO T (KX yeee,x ) =
n+2 1 n+1

_ T
Vn*l sym (¥ g1 (x ) ¥ (X ,eeu,x ),
1 n 2 n+1
or
L (X ;0e0,x ) =
n+2 1 n+2
1 n+2
——— 2 Y(X ,X ) F (X se0esR ya0e,X ) (3. 10)
(n+1) (n+2) p=2 1 p n 2 p n+2

The solution of this recursion is (Kristensen et al. (1967))

A

- -n/2 a1
I (X seeu,sX) = Yot 2 [(-)!]
2

n 1 n

X sym [Y(X ,X )Y(X ,X ) +0a Y{(X X )1 (3011
102 3 4 n-1 n

—_—

—_—

—

p—
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. X . 2 .
for n even, which is a symmetric L function. _

{(5) ¥ is normalizable: Kristensen t 1, (1967) -—

{o - =

calculate that

2 0o ~ 1/2 2y
gy o =770 { )(~y Yy, (3.12) —
i ov=0 j

(0) j g
where the x} are the eigenvalues of (yTyfﬁ . The maximum Y. —
equals “y“°r « If all Y. are less than 1, the series converge, —

J
and
2 2 =172
e =TT -y ) < oo —

() ] 3

Otherwise the expression is infinite. Consequently, nyuop < 1is —

a necessary and sufficient condition for U( to be a member of -
°)

5. —

To summarige, it has been shown =so far that the

following are equivalent:
a, V is Hilbert-Schmidt,
be Y is Hilbert-Schmidt and Hy”‘? < 1,
C. There is a mu)e Jf’%uch that b(g)ﬂ” = 2 for all g € gy'. —

When w() exists, it is unique except for a constant factor,
o]

(6) The representation b( ) 1is Fock in the cyclic

subspace generated hy v(): let tZ—lbe the closed linear span of —
° ]

the vectors of the forn
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LI ¢ t
gt b (q ) ess b (g ) u (n = 0' 1’ Qoo)n (3.13) —
Vn! 1 n (0)
Tf such a vector is  identified with  the sequence

{2, Dy naey gl(x‘)...gh(x”), G, as+}, the action of b{(g) and —
+ . R

b {g) 1in af"ls seen to he that of the operators of +the Fock —

representation,

(7) The cyclic subspace is all of 7 : Repeating the —

entire arqument with a and b interchanged, we find (since - v ois —
Hilbert-Schmidt) that there is a unique vector 0> € é{z which is —
annihilated by all the a{f}y, and that the cyclic suhspace
generated by it 1is a subset of , + Since this vector is —
necessarily the original Fock vacuunm, I < éﬁ’. Thus 677; S, —
1f 4/ and ' are the same, the unitary equivalence of _
the twc Fock representations is implemented by the unitary
operator which maps each basis vector
1 t t

— a {q) +.. @8 (9) ID —
vn! 1 n

into the corresponding vector (3.13).

4, DPiagonal Bogglubov Transformations.

A special case of Eg. (3.1} (or (2.3)) 1is[5]

[S] Tn the applications in chapter Y (and below in this section),
where k is a momentum variable, afk appears instead of a:. The —_
extension of the following remarks to this case is easy.
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1
b = ak{k)a + B(k)a . (4s 1)
k k k

The condition {2.5) becomes

2 2
lo(ky | = Bk =1, (4e2)
(Fq. (2.6) is trivial here.) If k¥ 1is a discrete variable, the
representation of the b's in the Fock space of the a's is a
tensor-product representation. The theorem of the last section
certainly applies to the case (4,17), (The transformation has the
inverse

t
a = afk)b - Bx)d . (4. 3)

k k k
If either operator (of multiplication by « or B) is unbounded,
then B is not Hilbert-Schmidt; but in this case Yy of Fgq., (4.4)
below is not normalizable, so the conclusion of the theoren
ﬂolds.) The solution for the b-vacuum 1is given by Eg. (3,11

with

B(x,)
Yk ,k) = - Stk -Xx). (4.4
1 2 o (X ) 1 2

Note that if k is a continuous variable, Y is not normalizable,
and hence the representations are inequivalent. The test for

equivalence in the discrete case is
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2
SIB(k)| < oo (4.5)

{from Eq. {(3.2)}).
As an example of the application of the theorem let us
compare the TFock representations corresponding to different

choices of the mass for the scalar field in a bhox,

Write[6]
1 2 2 -1/4 ik-x -ik-x ¢
g(0,x) = =— 2 [k +m ] e a + g a1,
2 & k k
i 2 2 +1/48 ik.x -ik-x % (4. 6)
M0,x) = - — 210k +n] (e a - ¢ a ],
V2 X k k
and also
1 2 2 -1/4 ip-x -ip.x ¢
gO,x) = —==2[p +4 ] [e b +¢ b1,
V2 p p p
i 2 2 +1/4 ip-x ip.x ¢ (8. 7Y
NO,x) ==-—21[p +4 ] e h -¢ b 1.
V2 p p P

{These equations are Fourier expansions of the canonical field
operators at a fixed time; they define the a's and b's. Such an
expansion certainly makes sense (except possibly in a
representation with A very unusual test function space)
regardless of whether the wmass parameter involved is related to

the dynarmics of the field, which has not been specified.) Invert

[#] Here x and k are s-dimensional vectors.
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Egs. (4.7) and substitute from Egs. (4.6):

12 ;‘/p"'rui 7E*+m18
b o= -2 1 + Io(p - k)a
2 X KXo+t * X

p e

yﬁ& + MZ Lyk'-\ 4 ml S +
+ [ - Jo(p + kK)a }. (4.8)
K* v n p* &+ u k

Thus

1 4y M ‘17!(1 + nt
Vip,k) = - [f7 - 70+ 0 =BMEE R, (4.9
2k

+ml p’“+M

where at the last step one sets k = - p in the first factor. The
delta function is a Kronecker delta, since p and k are discrete
variables (=2Nn/L, where L is the length of the box).

We wish to know whether the Pock representation of the
a operators, which is always used when the field 1is to satisfy
the Klein-Gordon equation with mass m, is egquivalent to the Fock
representation of the b operators, appropriate to mass M, So let
us apply the criterion {4,5). Mt large p we have

P> o+ Mt 1/ 2 2 2
[(—<] =1+ (4 - m)/4p

) 22 ] i
= (3” + 2M ~ 5nm )/32p + 4 0 v

2 2 2 -4
B(p) = (M - m)/tp +0(p ),

i
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2 1 2 22 -4
SIB(p)| = finite term + — (M -n) Sp . (4, 10)
p 16 P

This sum converges if (and only if) s < 3; that is, in space-time
of dimension 2, 3, or 4.

So in a finite flat space (torus) of physical dimension
or smaller, the Fock representations for different wmasses are
egquivalent. Tn other words, the representation of the b's of
Fgs. {#.7) in the uswal Fock space for a free field of mass
m {# M) is just the Fock representation, Of course, the vacuunm
{better, no-particle) states and the rest of the particle
structure are different, Thus each mass determines a virtual
particle concept (see Sec., X.7); in the usual theory of the free
field the one related to the mass which appears in the field
equation or the Hamiltonian corresponds to real particles.

The sum (4.,10) grows proportionally +o the volume as
the size of the box approaches infinity (since the points of the
momentum lattice hecome denser)., Hence the 1inequivalence of the

representations in infinite space is not surprising, and is an

infinite-volume effect, For s > 3, hovever, one has
inequivalence even in a finite region -— an ultraviolet
divergence,

The equivalence of the a and b representations can also
he decided by determining whether the no-particle states are
weakly equivalent in the sense of infinite tensor products (see
Sec. F.1 and references cited there). The calculations necessary

to test for weak eguivalence are essentiallv identical to those
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of Jaffe (1965), pp. 197-200, for the slightly more complicated
case of two quadratically coupled fields, although he does not
use the language of tensor products, ({See also Haag (1955), Sec.
I1.1,) ©One is led again to a sum in which the terms fall off as

p_4, so the conclusions are consistent,
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Appendix G

PRCOF OF ASSERTIONS CONCERNING THE VACUUM

OF THE FREE FIELD IN A BOX

1. The Tuo-Point Function Depends on Global Boundary Conditions.

Let GTﬂ(xl,x') be the two-point function of the free
scalar field in a closed two~dimensional flat universe of length
L (with spatial coordinate - 1L/2 < x £ L/2}, In Sec. JIX,7 it is
asserted that

2 2 (+)
E{(f,q) = ‘d X fd ¥ f£*{x )Yg(x )& (x ,x ) (1.1
L 2 1 ? 11 2 1

is not equal to the analogous expression formed from the
two-point function of the scalar field in infinite
two-dimensional space, even when f{x) and g(x) have support in a
causal diamond with base inside the interval (- L/2, L/2). To
establish this claim {(for at least ome L) it clearly suffices to
prove that E 7 E when L # L' (for at least one pair of L's),
Since three-dimensional smearing is alloved in the standard Fock
representations, we may set v, = t1 = 0 and let x and x, denote

2

the one-dimensional space variables, Then

i
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1
2 — explik(x - x)],
K 2 1

k = O, i 2"/1;' seey (1-2) hand

m o1
B (£,0) = —S — £¥(K)G(K), (1.3) —~
L Lk ka
L/2 -ikx
3 (k) =j ax e  9(x (@it = 9@, (1yy —
-1/2

Take f(x) and g(x) to be the characteristic function of

the interval (- /2, N/2). Then

n/2 -ikx JE sin kn/2
gk = | axe =y ———, (1.5 —
-N/2 n k
Note that
2 mn
lﬁ(OH = "y -
2
2
13(k)] = 0 if k is a nonzero even integer,
2 2 =2
13{(k)1 = -k if kX is an odd integer, (1.6)
hif
2 1 -2
19(k)y = -k if k is half an odd integer, .

It follows that
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n 2 -1
E (g,9) =— + >[Ny k], (1.7)
N Um k k
and
n _ 2 -1 k 2 -1
F o{g,9) =— +>[2Mw k] +2[6Mw () 1 , (1.8
un 8nm k k k k 2

where, in all the sums, k = + 1, + 3, , . .

For sufficiently small m the expansion

-1 1 1n 2
w T - - e e )
k k 2 x

is valid. Therefore, as m — ( the sums in Fgqs. (1.7) and (1.8)
remain bounded and the k = 0 terms, which approach infinity,
dominate., But these differ from each other by a factor of 2,
Thus Elﬂ(g,g) # E4T(g,g) for sufficiently small m. Since it is
easy to see that each EL(q,q) is analytic in m for m positive,
they cannot coincide even for large nm, except possitly at some

discrete pcints,

2. The Difference between the PFnergy Densities Is Tnfinite,

As in the previous section, we regard the box of length
L =21 as enmbedded 1in the infinite nuniverse as the interval
(- N, M. Then the field algebra of the hox is a subalgebra of
the complete field algebra, and 1in analogy to Sec, IX.3 we can
solve for the box annihilation operators, which appear in the

expansions

—
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nd,x) =

498

-1/2  ikx -ikx +
20,x) = >Qu ) ¢ a +¢ a 1,
X k k k (2. 1)
_ /2 ikx -ikx +
- i 2w /2) [¢ a - ¢ a ]
kK k K k

(k integral), in terms of the annihilation and creation operators

( -
bf, of the OCK representation (terminology of Sec. IX.3). The
expressicn o¢f the a, in terms of the field 1is (cf. Eq.
(VIII.2.11))
1 V--In -ikx i M -ikx
a = —[Vuw dx ¢ #(x) + -—:f dx ¢ M(x) ]
k V2 x'-w o, ) -n
1 _ 00 -ikx i o0 -ikx
= ~—[Vw dx ¢ u(x)g(x) + -—-f ax ¢ u (x)W(x) 1,
where n is the characteristic function of the box. The Fourier
transforn of u is
ol -ipx _ sin Mp
a(p) = V21 u(p) = f ix ¢ u(x) = ve2n . (2.2)
- Mp
Hence, using the convolution theorem, we find

1 -
a = ———[VZ

k V2

or

o0 “ i 00
dp U(k - p)g(p) + —=
f-m «a;(-oo

] dp T(k - p)T(D) 1,

]

(an)
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0
a ={O dp U(k - p) X

k (o

{2 (Vo /o + Vo /4 10 +1[\/575--\/5’75—]bf Joo (2.3
2 k p P k p 2 k p P k -p

Since the second term does not vanish, the physical
quantities Nk = a';ak (k integral) which correspond to the quanta
of the Fock representation for the box are represented in the §OK
representation by operators which do not annihilate the vacuunm.
In fact, it is easy to see that the kernel of the «creation tern
in Eq. (2.3) is not Hilbert-Schmidt. That is, the box number
operatcr does not have finite vacuum expectation value in the Q0K

representation, and vice versa. (Cf. Sec. IX.3 and Appendix F.)
The enerqgy density of the scalar field, Too(x), which
has the classical expression (IX.5.1), is ordinarily made into a
quantum-theoretical operator in each of these Fock
representations by normal ordering with respect to the
appropriate set of annihilation and creation operators. This
procedure can be descrited as the discarding of an infinite
numerical term ({c-number) in each case, We ask whether the
difference between these two infinite guantities is in some sense
finite, or even zero, We can take the expression for Too, normal
ordered in terms of the a operators, and substitute from Eq,
(2.3), The resulting expression will contain terms in bph;,
which contribute a vacuum expectation value in the Q0K

representation. It is this guantity which we wish to
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investigate. (Let us denote it <T00>.)
The direct formal calculation just outlined leads to a

hopelessly indeterminate expression of the form

2 Ak ,k ),

where each A(k‘,k&) is a divergent integral whose phase depends

on the k's. So <7°%> npust be defined in a subtler way, taking

account of the distribution nature of the operator T%®, Let us
consider
00 1
T (9,9) = -fdy ‘dy g{y gy ) [:M{y )N(y )
2 1 2 1 2 1 2
dg og 2
+—(y )= ) tn g(y)g{y )], (2.4
dx 1 o6x 2 1 2

where the normal ordering is with respect to the a's, and g is a
smooth function with support in the box, One would naturally
define T°°(x) as the 1limit, if any, of this object as
g{y) —> 6(y - x). If <T°°(g,g)>, the vacuum expectation value
of Too(g,q) in the br—representation, is not finite, there is
little hope of interpreting the more sinqular <T°°(x)> as a
finite quantity {even as a distribution).

Tefining the Fourier transform of a function by Eq.

{2.2), vwe find from Egqs. (2.4) and (2.1)
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00 -1 2

T (9,9) =292 (Wow) f{lww *kk +m)
k k 12 1 2 12

X[3¢ k)3(k)a a +3(k)J(-k)a a ]
1 2 k 1 2 k k

PR 1 ] b8

2
- (we +kk - m)[3(- k)F(-k)a a

12 12 1 2 K, kl —_—

t ot
+g(k)3(k)a a T} (2.5)

1 2 k‘ kl

(vhere o' = k” + n*, etc). Let us substitute from Eg. (2.3) and

isclate the b-vacuum term, writing the p integration on the

outside:
00
T (9,9)> =
1.0 -1/2
-] dpSS Uk - UK - plww)  3-k)IIk) X
8/ -0 k:kz 1 2 12 1 2

4

2w \fZJ,'Zf \/LT w,

{lww *Xk +n)[— - = y—]
12 12 ﬁ)u) wF wl U¢
2w Vaw f [
t (o =~ kk - m)[ - -_— - Be (2.6)
12 12 v@'w;

The sums converge for fixed p, since §(k) decreases rapidly. The
integral over p converges for all terms except those proportional

to Wps which can be written
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1 ,00 2 0 k 9(k)y2
“IJ dp y sin Mp | S (- 1) — (2.7)
un~jo p == k-p
if g{(y) 1is real. This integral diverges at the upper linmit,
since the integrand falls off only as 1/p. (It can easily be
checked that the sum does not vanish identically as §(k)
approaches the Fourier coefficients of a delta function.)

oo(x): (unlike

Hence the quantum-field-theoretical :T
:To'(x):) seems to depend strongly on the representation with
respect to which the normal ordering is defined. This example
shows that normal ordering 1is highly suspect as a method of

defining a local energy density suitable for the purposes of

general relativity.

o



503

BIBLIOGRAPHY

I. Books

Abrahanm
Abraham, R., Foundations of Mechanics, New York, W. A,
Benjamin, Inc., 1967.

Adler-Bazin-Schiffer
Adler, R., Bazin, M., and Schiffer, M., Introducticn to
General Relativity, New York, McGraw-Hill Book Co., 1965.

Akhiezer-Glazman
Akhiezer, N, I.,, and Glazeman, I, M., Theory o9f Linear

Operators inm Hilbert Space, New York, ¥, Ungar Publ. Co.,
1961,

Berezin
Berezin, F., A., The Method of Second Quantization, New York,

Academic Fress, 1966,

Bjorken-Lrell 2
Bjorken, J. D., and Drell, S, D., DRelativistic Quantunm
Fields, Wew York, ¥cGraw-Hill Book Co., 1965.

Carrier~-Krook-Pearson
Carrier, G, F., Krook, ™., and Pearson, C. E., Functions of
a Complex Variable:  Theory and ZIechnigue, New  York,
McGraw-Hill Book Co., 1966,

Corinaldesi
Corinaldesi, E., BRelativistic H¥ave Mechanics, ed. by F.

Strocchi, Amsterdam, North-Holland Publ. Co., 1963,

Eisenhart
Eisenhart, L., P,, Riepappian Geometry, 2nd ed., Princeton,
N.J., Princeton Univ. Press, 19593,

Friedrichs
Friedrichs, X. 0., Mathematical Aspects of the Quantunm
Theory of Fields, New York, Interscience Publs., Inc., 1953,




504

Gel* fand 5
Gel'fand, I. M., Graev, M., I,.,, and Vilenkin, N. Ya.,
Generalized Functions, vol. 5, Integral Geometry and

Representation Theory, New York, Academic Press, 1966.

Gradshteyn-Ryzhik
Gradshteyn, I. S., and Eyzhik, TI. M,, Table of Inteqrals,

Series, and Products, New York, Academic Press, 1965,

Hermann
Herwann, K., Lie Groups for Physicists, New York, W. A.
Benjamin, Inc., 1966,

Hermann 2
Hermann, R., Fourier Analysis on Groups and Partial Wave
Analysis, WNew York, W. A. Benjamin, Inc., 1969.

Jack son
Jackson, J. D., Classical Flectrodynamics, New York, John
Wiley ard Scns, Inc., 1962,

Kato
Kato, T., Perturbation Theory for Linear Operators, New
York, Springer Verlag, 1966,

Mandl
Mandl, F., Introduction to Qua
Interscience Fubls., Inc., 1959

ntum Field Theory, New York,

Maurin
Maurin, X., General Tigenfunctio
Bepresentations of Iopological
Scientific Publishers, 1968,

roups, Warsaw, Polish

n
n
2

Messiah
Messiah, A., Quantum Mechanics, vols. I-II, Amsterdanm,
Nerth-Holland Publ. Co., 1961,

Naimark
Naimark, M. A., Linear Representations of the Lorentz Group,
Oxford, Pergamon Fress, 1964,

N.B. S
Handbock of Mathematical Functions WKith Formulas, Graphs,
and PFathematical Takles (National Bureau of Standards
Applied Mathematics Series, HNo, 55), ed, by M. Abramowitz
and I. A. Stegun, 7th printing, washingtomn, D.C., U. S.

Government Printing Office, 1968,




505

Reed-Sirmon
Reed, M., and Simon, B,, Methods of Modern Mathematical

Physics, vol. 1, Functiopal Analysis, New York, Acadenic
Press, 1972.

Rindler
Rindler, W., Special Relativity, 2nd ed., Edinburgh, Oliver
and Boyd, 1966,

Rindler 2
Rindler, W., Essential Relativity, New York, Van Nostrand

Reinhold Co., 1959,

Rokertscn-Xocnan
Robertson, H. P., and Noonan, T, #., Rela
1

ivity and
Schr8dinger

Schr8dinger, F., ZExpanding Universes, Cambridge, The
University Press, 1956,

Schweber
Schweber, S. S., An Introduction to Relativistic Quantum

Field Theory, New York, Harper and RSw, Inc., 19€1.

Seqal
Segal, I. F., Mathematical Problems of Relativistic Physics,
Providence, R. I., American Mathematical Society, 1963.

Streater-Wwightman
Streater, R. F,, and Wightman, A. S., BPBCI, Spin and
Statistics, and All That, New York, W. A. Benjamin, Inc.,

—— . sl i e

Synge
Synge, J. L., Relativity: The General Theory, Amsterdan,
Nerth-fHolland Pukl. Co., 1960,

Talman
Talman, J. D., Special Functions: A Group ic
Approach (based on lectures by E. P. Wigner), New ork,

W. A, Benjamin, Inc., 1968,

Titchmarsh
Titchmarsh, E. C., Eigenfunction Expapsions Associated with
Second-order Differential [Equations, 2nd ed., Part 1,
Cxford, Clarendon Fress, 1962.




506

Tolman
Tolman, R. C., Relativity, Thermodynamics, and Cosmology,

e . . e e . e e e e

Oxford, Clarendon Press, 1934,

Unezawvwa

Umezawa, H., Quantum Field Theory, Amsterdam, North-Holland
Publ., Cc., 1956.

VYilenkin
Vilenkin, N. J., Special Functions and the Theory of Group
Representations (Transl. HMath. Monographs, vol. 22) ,
Providence, R.I., American Mathematical Society, 1968.




507

II. Papers, Lecture Notes, and Lissertations

Araki, H., and Haag, R. {(1967)
Collision Cross Sections in Terms of Local Observables,
Ccmmun. Math. Fhys., 4, 77.

Bacry, H., and Lévy-Leblond, J.-M. (1968)
Possible Kinematics, J. Math. Phys. 9, 1605.

Bakri, ¥, M. {1969)
De Sitter Symmetric Field Theory. I. One-Particle Theory,
J. Math, Thys. 10, 298,

Bargmann, Vv, {1947)
Irreducible Unitary Representations of the Lorentz Group,
Ann, Math. 48, 568,

Bargmann, V. (1954)
On Unitary Ray BRepresentations of Continuous Groups, Ann.
Math. 53, 1.

Bargmpann, V., and Wigner, E., P. (1948)
Group Theoretical liscussion of Relativistic Wave Equations,
Ercc. Watl. Acad. Sci. U.S. 34, 211,

Belinfante, F. Jd. {194()
On the Current and the Density of the Electric Charge, the
Fnerqgy, the Linear Momentum and the Angqular Homentum of
Arbitrary Fields, Physica 7, 449,

BBhn, A. (1966)
The Dynamical Group of a Simple Particle Model, Lectures in
Theoretical Physics, vol, I¥B, High Energy and Particle
Physics (Theoretical FPhysics Institute, Unive of Colorado,

1966), ed. by W. E. Brittin apnd A. O, Barut (New York,
Gordon and EBreach, 1967), pp. 327-336,

B8hm, A. {197C)
Generalized ¥igenvectors and Group Fepresentations -- the
Connection Between Representations of S0(4,1) and the
Poincaré Group (lectures at Istanbul Summer Institute for
Mathewmatical Physics, 197{), preprint CPT-89 (Feb., 1971),
Center for Particle Thecory, University of Texas at Austin,



508

Bohr, X., and Fosenfeld, L. (1933)

Zur Frage der Messbarkeit der electromagnetischen
Feldgr8ssen, Kgl,., Lanske Videnskab. Selskab, Mat.-Fys. Medd.
12, No. 8.

Bonazzocla, S., and Pacini, F, (1966)
Equilibrium of a Large Assembly of Particles 1in General
Relativity, Phys. Rev, 148, 1269,

Borchers, H, J., Haag, R., and Schroer, B. (1963)
The vacuum State in Quantum Field Theory, Nuovo Cimento 29,
148,

B8irner, G. {197()
Mass Zero Particles in De Sitter Space, preprint,
Max-Planck-Institut fUr Fhysik und Astrophysik, Munich [to
appear in lectures in Theoretical Physics, vol. XIII, De
Sitter and <Copformal SGroups (Symposiunm, University of
Colorado, 197¢), ed. by A. O, Barut, to be published by
Gordon and Breach],

B#rner, G., and DUrr, B. P. (19£9)
Classical and Quantum Fields in de Sitter Space, Nuovo
Cimento A€4, 669,

Brenig, ¥., and Haag, R. (1959)
General (uantum Theory of Collision Processes, guantunr
Scattering Theory, «d. by M. Ross (Bloomington, Ind,,
Indiana Univ. Press, 1963), pp. 13-108 [tr. of Fortschr.
Phys. 7, 183].

Brezin, E., and Itzykson, C. (1970)
Pair Production in Vacuum by an Alternating Field, Phys.
Rev. D2, 1191.

Bronnikov, X. A., and Tagirov, E. 2. ({1968)
Quantum Theory of Scalar F¥Field in an Isotropic World,
preprint F2-4151, Labcratory of Theoretical Physics, Joint
Institute for Nuclear Research, Dubna [in Russian].

Burcev, P, (19£8)
Le Sitter Mocdel for Stable Particles, Nuovo Cimento
56a, 79E.

Calabi, E., and Markus, L. (1962)
Relativistic Space Forms, Ann. Math, 75, 63.

Capri, A. 2. (19€7)
¥xternal Field Problem for Higher Spin Particles,
dissertation, Princeton University.,



509

Capri, A. Z. (1969)
Electron in a Given Time-Dependent Electromagnetic Field, J.
Math. Phys. 10, 575.

Capri, A. %Z., labonté, G., Menon, D., and Shamaly, A. (1971)
The Eeconstruction Theorem with External Sources, Nuovo
Cimento 3B, 233,

Castagnino, M. {1969)
Ceuxi®me quantification des champs scalaires réels dans
1'espace-temps de De-Sitter, Compt, Rend. 268, A1157,

Castagnino, M. (1970)
Champs de spin entier dans l'espace-tenps de De Sitter, Ann.
Inst. Henri Poincaré 13, 263.

Castell, L. (1969)
Goldstone Particles in de-Sitter Space, Nuovo Cimento A61,
585,

Chernikov, ¥. A., and Tagirov, E. A. (1968)
Quantum Theory of Scalar Field in De Sitter Space-Time, Ann,
Inst. Henri Poincaré 9, 109.

Chogquet-Bruhat, Y. (1967)
Hyperkbolic Fartial T[Cifferential Equations on a Manifold,
Battelle [EKepcontres: 1967 Lectures in Mathematics and

—r il T

W. A. Benijamin, Inc., 1968), pp. B8U4-106,

Coleman, A. J. {1968)
Induced and Subduced Representations, Group Theory and 1Its

Applications, ed. by E., M, Loebl (New York, Academic Press,
1968) ’ ppa 57‘118-

Davies, F. B. (1971)
Hilbert Space Representations of lie Algebras, Commun, Math,
Ehys. 23, 159,

Dell'Antonio, G. F. (1968)
Structure of the Algekras of Some Free Systems, Comnmun.
Math. Phys. 9, 81,

Deser, S. {1957)
General Relativity and the Divergence Problem in Quantun
Field Theory, Rev., ¥od. Phys. 29, 417,



510

De Witt, B. S. (1963)
Dynamical Theory of Groups and Fields, Relativity, Groups
and Topology (Summer School of Theoretical Physics, Les
Houches, 1963), ed. by C. DeWitt and B. DeWitt (New York,
Gordon and Breach, 1964), pp. 585-820,

Dirac, F. A. M., (1935)
The Electron Wave Fquation in De-Sitter Space, Ann. Math.
36, 6E7.

Dixmier, J. (1961)
Représentations intégrables du groupe de LDe Sitter, Bull.
Sac. Math. France 89, 9.

bubin, L. A. (1970)
The Group-Theoretical Structure of Free Quantum Fields in
Twec Dimensions, Nuovo Cimento £7B, 39,

Duistermaat, J. J., and HBrmander, L. (1971)
Fourier Inteqgral Cperators. II, preprint, to be published in
Acta Math. [This mwmaterial also appeared in lectures of
H#8rmander at the Summer Symposium on Partial Differential
Fquations, Berkeley, Calif., 1971, to be published by
American Mathematical Society, ]

Epstein, H., Glazer, V., and Jaffe, A. (1965)
Nonpositivity of the Energy Density in Quantized Field
Theories, Nuovo Cimento 36, 1016,

Fell, J. M. G. (1960)
The Dual Spaces of C*-Ailgebras, Transac. Am. Math. Soc.
94, 365.

Feshbach, H.,, and Villars, F. {1958)
Elementary Relativistic Wave Mechanics of Spin 0 and Spin
1/2 Particles, Ekev, Mod. Phys. 30, 24.

Feynman, K. P. (1948)
Space-Time Approach to Non-Relativistic Quantum Mechanics,
Rev, Mcd., Phys. 20, 267.

Feynman, R, P. {1950)
Mathematical Formulation of the Quantum Theory of
Electromagnetic Interaction, Phys. Eev. 80, 440,

Four&s~Bruhat, Y. (1960)
Fropagateurs et solutions d'équations homog&nes
hyperboliques, Compt. Rend. 251, 29,



511

Fronsdal, C. (1965)
Elementary Particles in a Curved Space, Rev. Mod, Phys.
37, 221.

Gel'fand, I. M. (195Q)
The Center of an Infinitesimal Group Ring, Mat. Sb., N.S.,
26, 163 [{in Russian].

Gel'fand, I., and Neumark [Naimark], M. (1946)
Unitary Hepresentations of the Lorentz Group, J. Phys.
(U.S.S.R.} 10, 93.

Gel*fand, I. M., and Naimark, M. A. (1947)
Unitary BHRepresentations of the Lorentz Group, Izv. Akad.
Nauk, Ser., Mat,, 11, 411 {in Russian].

Geroch, R. (1968)
What 1is a Singularity 1in General Relativity?, Ann. Phys.
{N.Y.) 48, 526,

Geroch, R. {1970)
Lomain of Dependence, J. Math. Phys. 11, 437.

Glimm, J., and Jaffe, A, (1970)
Quantum Field Theory Models, Statistical Mechanics and
Luantum Field Theory (Summer School of Theoretical Physics,

Les Houches, 1970), ed. by C. DeWitt and R. Stora (New York,
Gordon and Breach, Inc., 1971), pp. 1-108,

Greenberg, C. 4. (1961)
Generalized Free Fields and Models of Local Field Theory,
Ann. Phys. (N.Y.) 16, 158,

Grib, A. A, (1969)
On a Possible Difference between the Heisenberg and
Schr8dinger Fictures in Quantum Field Theory, Vestnik
Leningrad., Univ. 1969, No. 10, 61 [in Russian ].

Grib, A. R., and Mamaev, S. G. {1969)
Contribution to the Field Theory in Friedmann Space, Sov. Jd.
Nucl. Phys. 106, 722 [tr. of Yad, Fiz., 13, 1276].

Glrsey, F. (1962)
Introducticn to the De Sitter Group, Group Theoretical
Concepts and Methods 1in Elementary Particle Physics
{Istanbul Summer School of Theoretical Physics, 1962), ed.
by F. GHUrsey {¥New York, Gordon and Breach, Inc., 1964), pp.
365-389.,




512

GUrsey, F., and lee, T. D. (1963)
Spin 1/2 Wave Equation in De-Sitter Space, Proc. Natl. Acad,
Sci, U.5. 49, 179,

Gutzwiller, M. {1956)
Quantum Theory of Wave Fields in a Curved Space, Helv. Phys.
Acta 29, 313.

Haag, R. (1955)
On Quantum Field Theories, Xgl. Danske Videnskab. Selskab,
Mat.—}?ys' Meddc 22' No. 120

Haag, R., and Kastler, D. (1964)
An Adlgebraic Approach to Quantum Field Theory, J. Math.
Phys. 5, 848,

Hannabuss, K. C. (1969a)
Quantum Cynamics in De Sitter Space, thesis, Oxford
University.

Hannabuss, K. C. (1969b)
The Dirac Fquation in de Sitter Space, J. Phys. A 2, 274,

Hannabuss, K. C. (1970)
The lLocalisability of Farticles in de Sitter Space,
preprint, Mathematical Institute, Oxford.

Hawking, S. (1970)
The Conservation of Matter in General Relativity, Comnmun.
Math., Phys. 18, 301.

Hill, E. L. (1951)
Hamilton's Principle and the Conservation Theorems of
Mathematical Physics, Rev. Mod. Phys. 23, 253.

Hirai, T. (1962a)
On Infinitesimal Cperators of Irreducible Representations of
the Lcrentz Group of n-th Order, Proc. Japan Acad., 38, 83.

Hirai, T. {1962%)
On Irreducible Representations of the Lorentz Group of n-th
Crder, Proc., Japan Acad. 38, 258.

Holman, W. J. (1969)
Representation Theory of SO(4,1) and E(3,1): An Explicit
Spinor Calculus, J. Math. Phys. 10, 1888.



513

Ikebe, T. (1960)
Eigenfunction Expansions Associated with the Schroedinger
Operators and their Applications to Scattering Theory, Arch.
Rat. Mech. Anal. 5, 1.

Imamura, T. (1960)
Quantized Meson Field in a Classical Gravitational Field,
Phys. Rev. 118, 1430.

In8ntl, F. (1962)
Contracticn of lLie Groups and their Representations, Group
Theoretical Concepts and Methods in Elementary Particle
Bhysics {Istanbul Summer School of Theoretical Physics,
1962), ed. by F. GUrsey (New York, Gordon and Breach, Inc.,
1964), rp. 397-442.

In¥n¥, E., and Wigner, E. P. (1953)
Or the Contraction of Groups and Their Representatioas,
Proc. VNatl. Acad. Sci, U.S. 39, 518; correction, On a
Particular Type of Convergence to a Singular Matrix, 40, 119
{1954y,

Isham, C. J., Salam, A., and Strathdee, J. (1971)
Infinity Suppression in Gravity-Modified Quantum
Electrodynamics, Fhys. Rev, D3, 1805,

Jaffe, A. M. {1965)
Cynanics of a Cut-Off \p
Princeton University.

y Field Theory, dissertation,

Kastler, D. {196%)
The C#*-Alqgebras of a Free Boson Field. I. Discussion of the
Basic Facts, Commun., Math. Phys. 1, 14,

Kerr, 5. P. (1963)
Gravitaticnal Field of a Spinning Mass as an Example of
Algebraically Special Metrics, Phys. Rev. Letters 11, 237.

Kihlberqg, A. (1965)
On the Unitary Representations of a Class of
Pseudo-Crthogonal Groups, Arkiv Fysik 30, 121.

Klauder, J. R., McKenna, J., and Woods, F. J. (1966)
Lirect-Froduct Representations of the Canonical Commutation
Relations, J. M¥ath. Phys. 7, 822,

Komar, A. (1964)
Undecidability of Macroscopically Distinguishable States in
Quantum Field Theory, Phys. Rev. 133E, 542,



514

Kristensen, P., Mejlko, L,, and Poulsen, E., T. (1967)
Tempered Distributions in Infinitely Many Dimensions. III.
Linear Transformations of Field Operators, Commun, Math.
Phys. 6, 29.

Kruskal, M. L. (1960)
Maximal Extension of Schwarzschild Metric, Phys. Rev. 119,
1743,

Lévy-Nahas, M. (1967)
Deformation and Contraction of Lie RAlgebras, J. Math. Phys.
8, 1211,

Lévy-Nahas, M. (1969)
Sur les déformaticns and contractions d'algdbres de lie et
de leurs représentations, thesis, University of Paris.

Lichperovicz, A. (1961)
Fropagateurs et conmmutateurs en relativité générale,
Institut de Hautes Etudes Scientifiques, Publications
Mathématiques, No. 14.

Lichnercwicz, A. (1962) ,
Propagateurs et gquantification en relativité génerale,
Conférence internationale sur les théories relativistes de

la gravitation (Warsaw and Jabtonna, 1962), ed. by L, Infeld

{Paris, Gauthier-villars, 1964), pp. 177-188.

Limié, N., Niederle, J., and Raczka, R. (1957)
Eigenfunction Expansions Associated with the Second-Order
Invariant Cperator on Hyperboloids and Cones., III, J. Math.
FPhys. &, 1079,

Lindblad, G., and Nagel, B. {1970)
Continuous Bases for Unitary Irreducible Representations of
su{1,1), Ann. Inst. Henri Poincaré A13, 27.

Manasse, F, K., and Misner, C. W, (1963)
Fermi ©Normal Coordinates and Some Basic Concepts in
Lifferential Geometry, J. Math. Phys. &, 735,

Manuceau, J. {1968)
C*-alg®bre de relations de commutation, Ann, Inst, Henri
Foincaré a8, 139.

Marzke, B. PF., and Wheeler, J. 2. (1964)
Gravitation as Geometry -- 1I: The Geometry of Space-Tinme
and the Geometrodynamical Standard Meter, Gravitation and

Relativity, ed. by H.-Y, Chiu arnd W. F. Hoffmann (New York,

¥. A. Benijamin, Inc., 1964), pp. 40-%4,

R



515

Mol€ancv [Molchanov], V. F. (1966)
Harmonic Analysis on a Hyperboloid of One Sheet, Sov. Math.
-- Dokl. 7, 1553 [tr. of Dokl. ikad. Nauk 171, 794].

Moore, G. T. (1970)
Cuantum Theory of the Electromagnetic Field in a
Variatle-Length One-Dimensional Cavity, J. Math. Phys. 11,
2679,

Mukunda, N. (1967)
Unitary Representations of the Group 0(2,1) in an O0({1,1)
Basis, J. Math. Fhys. &, 2210,

Nachtmann, C. (1967)
Quantum Theory in de~Sitter Space, Conmun, Math, Phys.
é, 10

Nachtmann, C. {1968a)
Continuous Creation in a Closed World Model, Z., Physik
208, 113.

Nachtmann, C, (1968bh) )
Dynamische Stabilit#t im de-Sitter-Raum, Sitzber. Osterr.
Akad. Wiss., Math.-naturw. Klasse, 167, 363.

Narozhnyl { ¥arozhny], N. B., and Nikishov, A. I. (1970)
The Simplest Processes in a Pair-Producing Electric Field,
Sov, J. Nucl. Phys. 11, 596 {tr. of Yad., Fiz. 11, 1072].

Nelson, E. {1959)
Analytic Vectors, Ann, Math., 7L, 572.

Newton, Ts. D. {(1949)
Iocalized States for Elementary Systems, dissertation,
Princetcn University.,

Mewton, T. D. (195C)
A Note on the Representations of the de Sitter Group, Ann.
Math., 51, 730.

Newton, T. D., and #Wigner, E. P. {1949)
localized States for Elementary Systems, Rev, Mod, Phys.
21, 400,

Ottoson, U, {1968)
A Classification of the Unitary Irreducible Representations
of SOO(N,1), Commun. Math. Fhys. 8, 228.



5186

Parker, L. E. {1966)
The Creation of Particles in an Expanding Universe, thesis,
Harvard University.

Parker, L. {1968)
Particle Creation in Bxpanding Universes, Phys. Rev. lLetters
21, 562.

Parker, L. (19569)
Quantized Fields and Particle Creation in Fxpanding
Universes. I, Phys. Rev. 183, 1057.

Parker, L. (1971)
Quantized Fields and Particle Creation in Expanding
Universes, II, Phys. RKev. D3, 346,

Parker, L. (1972)
Particle <Creation in Isotropic Cosmologies, Phys. Rev,
Letters 28, 705.

Penrose, R, (1963)
Conformal Treatment of Infinity, FRelativity, Groups and
Topology (Summer School of Theoretical Physics, Les Houches,
19¢63), ed. by C., [eWitt and B, De%Witt (New York, Gordon and

Breach, 1964), pp. 563-584,

Penrose, R, (1965)
7ero Rest-Mass Fields Including Gravitation: Asymptotic
Behavior, Froc. Roy. Soc. (London) 2284, 159.

Penrose, R. {(1967)
Structure of Space-Time, Battelle Rencontres: 1367 Legtures

in Mathematics and Physics, ed. by C. ®. De Witt and J. A.
Wheeler (New York, W. A. Benjamin, Inc., 1968), pp. 121-235.

Philips, T. C. (1963)
Localized States in de Sitter Space, dissertation, Princeton
University.

Philips, T. C. {1964)

lorentz Invariant localized States, Phys. Rev. 136B, 893.
philips, T. C., and ¥igrer, E. P. {1968)

De Sitter Space and Positive Energy, Group Theory and Its
Applications, ed. by E. M. Loebl (New York, Academic Press,
19€8), pp. 631-676.




517

Powers, R. T. {1967)
Absence of Interaction as a Consequence of Good ©Ultraviolet
Behavior in the Case of a Local Fermi Field, Commun. Math.
Phys. 4, 145,

Powers, R, T. (1971)
Self-Adjoint Algekras of Unbounded Operators, Commun. Math.
Phys. 21, 85,

Pukdnszky, L. (1961)
On the Kronecker Products of Irreducihle Representations of
the 2 X 2 Real Unimodular Group., I, Transac, Am. Math. Soc.
106, 11¢6.

Reed, #., C. {1968)
On the Self-Adjointness of Quantum Fields and Hamiltonians,
dissertation, Stanford University.

Reed, M. g. (1969)
A Garding Domain for Quantum Fields, Commun. Math., Phys.
14, 336,

Reed, M. C. (1970)
On Self-Adjcintness in 1Infinite Tensor Product Spaces, J.
Func. Anal., 5, 94.

Rindler, W. {1960)
Remarks on Schr8dinger's Model of de Sitter Space, Phys.,
Rev., 120, 1041,

Rindler, W. (1966)
Kruskal Space and the Uniformly Accelerated Frame, Am. J.
Fhys, 34, 1174.

Roman, P.,, and Aghassi, J. J. (1966)
on the Energy Spectrum of de Sitter World Theories, Nuovo
Cimentc 424, 193,

Rosen, J. (196%)
The Inhomogeneous Pseudo-Rotation Group as a Limiting Case
of a {Hcmogeneous) Pseudo-Rotation Group of One More
LCimension, Nuovo Cimento 35, 1234,

Ruffini, R., and Bonazzola, S. {(1969)
Systems of Self-Gravitating Particles in General BRelativity
and the Concept of an Equation of State, Phys. Rev., 187,
1767,

Saletan, E. J. (19%81)
Contracticn of lie Groups, J. Math. Phys. 2, 1.



518

Scarf, F. L. (1959)
A Soluble Quantum Field Theory in Curved Space, les théories
relativistes de la gravitation (conference, Royaumont, 1959)

(Faris, Centre National de la Recherche Scientifique, 1962),
pPp. 421-428,

Schiff, L. I., Snyder, H., and Weinberg, J. (1940)
Cn the Existence of Stationary States of the Mesotron Field,
Phys, Rev. 57, 3185,

Schild, A. {19&5)
Lectures on General Relativity Theory, Lectures in Applied
Mathematics, vol., 8, Relativity Theory and Astrophysics 1:
Relativity and Cosmology (Fourth Summer Seminar on Applied
Mathematics, Cornell Univ., 19€¢5), ed., by J. Ehlers
{Frovidence, R. I., American Mathematical Society, 1967),

ppo 1"16’40

Schr8dinger, E. (1939)
The Proper Vibrations of the Expanding Universe, Physica
6, 899,

Schroer, B. (1971) "
Quantization of ®m < (¢ Field Equations, Phys. Rev. D3,
1764,

Schroer, B., Seiler, R., and Swieca, J. A. {1970)
Prcblems of Stability for Quantum Fields in External
Time~Dependent Potentials, Phys. Rev., D2, 2927.

Schroer, B., and Swieca, J. A. {1970)
Indefinite Metric and Stationary External Interactions of
Quantized Fields, Phys. Rev., [2, 2938.

Schwarz, F. {1971)
Unitary Irreducible Representations of the Groups Soo(n,1),
J. Math, FEhys. 12, 131,

Segal, I. E. {1947)
Postulates for General Quantum Mechanics, Ann, Math,
48, 930,

Segal, I. E. {(1351)
A Class of Operator Algebras which 2re Determined by Groups,
Duke ¥ath. J. 18, 221,



519

Segal, I. E. (1968)
The Mathematical Theory of Quantum Fields, Lectures in
Modern Apalysis and Applications II (Lecture Notes in

Mathematics, vol. 140), ed. by C. 7. Taan (Berlin,
Springer-Verlag, 1970), pp. 30-57.

Segal, I. E., and Goodman, R. . {1965)
Anti-Locality of Certain Lorentz-Invariant Operators, J.
¥ath., & Mech., 14, 629,

Seiler, R. (1972)
Quantum Theory of Particles with Spin Zero and One Half in
External Fields, Commun. Math. Phys. 25, 127.

Sexl, R. U., and Urbantke, H. K. (1967)
Cosmic Farticle Creation Processes, Acta Phys, Austriaca 2§,
339,

Sexl, R. U., anrd Urbantke, H. K. (1969)
Production of Particles by Gravitational Fields, Phys. Rev.
179, 1247.

Shale, L. (1962)
Linear Synmmetries of Free Boson Fields, Transac. Am. Math.
Soc. 1€3, 149,

Slaway, J. (1972)
On Factor Representations and the C*-Algebra of Canonical
Commutation Relations, Cormun. Math, Fhys. 24, 151,

Snyder, H., and ¥einberqg, J. (1940)
Stationary States of Scalar and Vector Fields, Phys. Rev.
57, 3G7.

Stein, E, M. (1965)
A Survey of FEepresentations of VNon-Compact Groups,
High-Energy Physics and Elementary Particles (Senminar,
International Center for Theoretical Physics, Trieste, 1365)
(Vienna, 1International Atomic Energy Agency, 1965), pp.
563-584,

Steinmann, D. (1968)
Particle Localization in Field Theory, Commun. Math. Phys.
7, 112,

Streater, R. F. (1971)
Oon the Lorentz Invariance of P(ﬁ)l, preprint, Bedford
College, London.



520

Streit, L. (1967)
Test Function Spaces for Tirect Product Representations of
the Canonical Comnutation Relations, Commun, Math. Phys.
4, 22,
Str¥m, S. (1965)
Construction of Representations of the Inhomogeneous Lorentz
Group by Means of Contraction of Representations of the
(1 + 4) De Sitter Group, Arkiv Fysik 30, 45°5.

Str8m, S. {1971
Introduction to the Theory of Groups and Group
Representations, preprint CpT~120, Center for Particle
Theory, University of Texas at 2lustin.

Tagirov, E. A., Fedyun'kin, E. D., and Chernikov, N. A. (1967)
Quantum Theory o¢f a Scalar Field 1in Two-Dimensional De
Sitter Space, preprint P2-3392, Labtoratory of Theoretical
Physics, Joint Institute for Nuclear Research, Dubna [in
Russian], '

Tait, W., and Cornwell, J. F. (1971)
Ccupling ¢f de Sitter Space-Time and Internal Symmetry, J.
Math, Phys. 12, 1651.

Takahashi, R. (1963)
Sur les représentations unitaires des groupes de Lorentz
aénéralisés, Bull. Soc. Math., France 91, 289.

Thirring, #. (1967)
Quantum Field Theory in De Sitter Space, Special Problems in
High Energy Physics {6th Internationale Universit#tswochen
fdr Kernphysik, Schladming, Austria, 1967), ed. by P. Urban
{Vienna, Springer-Verlaqg, 1967), pp. 269-287.

Thomas, L. S. (1941)
On Unitary Representations of the Group of De Sitter Space,
Ann. Math., 42, 113,

Tugov, 1. I. {1969)
Conformal Covariance and Invariant Formulation of Scalar
Wave Equations, Ann, Inst., Henri Poincaré 11, 207.

Unruh, ¥. G. (1971)
Dirac Particles and Geometrodynamical Charge 1in Curved
Geometries, dissertation, Princeton University,

Urbantke, H., K. {19869)
Remark on VNoninvariance Groups and Field Quantization in
Curved Space, Nuovec Cimento 63B, z(C3.



521

Veselié, K. (1970)
A Spectral Theory for the Klein-Gordon Equation with an
External Electrostatic Potential, Nucl, Phys. A147, 215.

Vigier, J.-P. (1969)
Unification of External and Internal Hotions within SO,, and
Fossible Mass Splitting of SU; Baryon Multiplets without
Symmetry Breaking, lett, Nuovo Cimento 1, 445,

Von Neumann, J. (1938)
On Infinite Direct Products, Compos. Math. 6, 1.

Wheeler, J. A. (1963)
Geometrodynamics and the Issue of the Final State,
Relativity, Grougs and Iopology  (Summer  School of
Theoretical Physics, Les Houches, 19632), ed, by C., DeWitt
and B, DeWitt (Mew York, Gordon and Breach, 1964), pp.

315-520.

Wightman, 3. S. {1959)
Relativistic Invariance and Quantum Mechanics, Nuovo Cimento
Suppl. 14, 81,

Wightman, A4, S. (1960) ,
L'invariance dans la mecanigque quantigque relativiste,
Relations de dispersion et particules &lémentaires
{Université de Grenoble, Ecole d'été de physique théorique,
Les Hcuches, 1960), ed. by C. DeWitt and R, Omnes (Paris,

Hermann, 1960), pp. 159-226.

Wightman, A. S. (1962)
On the Localizability of Quantum Mechanical Systems, Rev.
Mod. Fhys. 34, 845,

Wightman, A. S. (1964)
Introducticn to Some Aspects of Relativistic Dynamics of
Cuantum Fields, Carg®se Lectures in Theoretical Physics:
High Enerqy Electromagnetic Interactions and Field Theory,
ed. by M. Lévy (New York, Gordon and Breach, 1967), pp.
171-291.

Wightman, A. S. {1968)
The Stability of Representations of the Poincaré Group,
Symmetry Principles at High Enerqy {5th <Coral Gables
Conference, 1968), ed. by A. Perlmutter, C. A. Hurst, and B.
Kursunoglu (New York, W®. A, Benjamin, Inc,, 1968), pp.
291-314.,




522

Wightman, A. S. (1971)
Relativistic Wave Equations as Singular Hyperbolic Systens,
lectures at the Summer Symposium on Partial Differential
Egunations, Berkeley, Calif., 1971, toc be published by
American Mathematical Society.,

Wightman, A. S., and Ggrdinq, L. {1965)
Fields as Operator-Valued Cistributions 1in Relativistic
Quantum Field Theory, Arkiv Fysik 28, 129,

Wightman, A, S., and Schweber, 5. S. (195%)
Confiquration Space Methods in Relativistic Quantum Field
Theory,., I, Fhys. BRev, 98, 812,

Wigner, E. P, (1939)
On Unitary QRepresentations of the Inhomogeneous Lorentz
Group, 2Ann. Math. 40, 149,

Wigner, E. E. {19u48)
Relativistische Wellengleichungen, 7, Physik 128, 665,

Wigner, E. E, {1950)
Some Remarks on the Infinite De Sitter Space, Proc. Natl.
Acad. Sci. U.S5. 36, 184,

Wigner, E. EF. {1958)
Relativistic Invariance in Quantum Mechanics, Nuovo Cimento
3, 517.

Wigner, E. E. (1961)
Geometry of Light Paths between Two Material Bodies, J.
Math, Ehys. 2, 207.

Wilde, I. F. (1971)
Algebraic gCuantuwm Field Theory, thesis, OUniversity of
London,

Zel'dovich, Ya. B. (1970)
Particle Production in Cosmology, JETP Llett. 12, 307 [tr. of
ZhETF Pis, Red, 12, 443].

Zeldovi® [Zel*dovich], Ya. B., and Pitaevskiil [Pitaevsky], L. P.
(1571
On the Fossibility of the Creation of Particles by a
Classical Gravitational Field, Commun, Math. Phys. 23, 185.



523

Zel'dovich, Ya. B., and Starobinsky, A. A. (1971)
Particle Creation and Vacuum Folarization in the Anisotropic
Gravitational Field, 2h. Eksp. Teor. Fiz, 61, 2161 [in
Russian; preliminary English tr., preprint, U.S5.S.R. Academy
of Sciences, Institute of Applied Mathematics].



524

ABSTRACT

Quantization of a massive neutral scalar field without
self-interaction defined on a space-time manifold with given
metric is studied, with emphasis on the two-dimensional de Sitter
space, Applications in both general relativity and constructive

quantum field theory are envisaged,

+

'he canonical formalism is developed for an arbitrary
metric, and for special classes of metrics a Fock space can he
constructed in analogy to the case of flat space, However, 1in
this way one is led to different theories for the same manifold,
with different definitions of vparticle observables and energy
density. Tn particular, two nonstandard quantizations of the
free field in flat space are exhibited, and three approaches to
the two~dimensional de Sitter space are compared: a covariant
theory in which the states of a particle transform according to a
representation of the symmetry group cf the space, a quantization
exploiting the static nature of a portion of the universe bhound=d
hy horizons, and an “expanding universe® theory in which the
particle observables diagonalize the field Hamiltonian at each
time and the particle number is not constant, The
representations of the canonical commutation relations in the
first and third cases are unitarily eguivalent,

It is concluded that in this context choice of a unigque

physical representation of the fields is impossible. (ne must
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deal with an abstract alqebra of observables associated with the
fields ¥evertheless, some representations are more likely to be
useful than others, In this spirit a proposal is made for a
definition of particle otservables tased on diagonalization of
the Hamiltonian on geodesic hypersurfaces. In HMinkowski space
this condition distinguishes the standard theory from the others.,
in two~-dimensional de Sitter space such a theory predicts finite
and reasonably srall creation of particles,

The relation of Ycontraction™ between the irreducible
unitary representations of the de Sitter group and those c¢f the
roincaré group of the same dimension is discussed in some detail,
Tt is indicated that some arbitrariness can be removed from the
treatment by considering concrete realizations of the
representations by functions on the respective Forogeneous
5pacesS. The analogous case of the three-dimensional rotation
group and the EFuclidean group of the plane is treated in an

appendix,
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