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1 

Theoretical physicists talk much about "fields," 

but •••. what is a field? Years ago when I was first 

getting into the subject, and had an intense horror of 

••• words which seemed to contribute ••• not at all 

to the mathematical or observational content of the 

theory, I confronted Fermi with this blunt question. I 

was very much relieved that the great man did not 

respond that this was a stupid or irrelevant question, 

and that everyone that had any right to think about 

such matters knew of course what a field was, but 

appeared to take the question seriously. He stopped to 

think for a moment, and then responded that, in his 

judgement, "fieldfl meant most basically the "occupation 

number formalism." . . . I felt much reassured, if 

not technically enlightened. 

-- I. E. Segal* 

*Segal (1968), pp. 31-32. 
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INTRODUCTION 

In elementary expositions of quantum field theory 

(e.g., (Mandl]) physical space is often treated, not as an 

infinite Euclidean space, but as a large finite "box". Usually 

periodic boundary conditions are assumed; thus one is effectively 

identifying opposite points on the boundary o.f the box and hence 

imagining the universe to be a fla·t three-dimensional torus. In 

a field theory constructed in this way the energy and momentum 

operators have discrete spectrum and normalizable eigenvectors; 

for certain purposes this offers conceptual and technical 

advantages. However, a torus model is not invariant under 

rotations or Lorentz transformations, and hence some of the most 

powerful tools of the modern theoretical physicist are not 

applicable. 

Apparently it was Gutzwiller (1956) who first suggested 

in print that the advantages of a finite universe could be 

combined with the advantages of a high degree of geometrical 

symmetry by considering a closed universe of constant 

curvature.[1] (See also the remarks of Chernikov and Tagirov 

rrfroIIoving the traditional language of cosmology, we shall 
call a space-time manifold of dimension s + 1 closed (or finite) 
if the slice of space corresponding to a given time is a compact 
manifold, with the topology (usually) of ans-dimensional sphere. 
The range of the time coordinate is al.lowed to be infinite. For 
the definition of "constant curvature" (which we shall never nse) 
see Sec. III.4 below or Sec. 1 of Gutzwiller's paper. 
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(196 8) • ) There is a space-time (essentially unique -- see Sec .• 

I.1) which satisfies the two criteria of being spatially closed 

and of having a group of global isometries with the same number 
/ 

of parameters as the Poincare (inhomogeneous torent2} group 

(i.e., ten parameters in the four-dimensional case). This is the 

de §it!f! universe, which will be described in detail in Chapter 

I. The associated group, the de Sitter il.ill!~, is not the same as 

the Poincar, group, but rather stands to the Poincar, group in a -

relation like that of the latter to the inhomogeneous Galilei 

group. Hence one would expect de-Sitter-invariant physics to 

have as many complications over special relativistic physics as 

relativistic has over nonrelativistic physics, and one is not 

disappointed. In de Sitter space spatial translations in 

· different directions do not commute, and time translations are 

hard even to define. These facts are related to the nonvanishing 

curvature of de Sitter space, which introduces a modification in 

the local geometry and physics which has no parallel in the torus 

model. These and similar complications make Gutzwiller•s 

proposal harder to implement than one might think at first. 

In the past decade torus models have been important in 

the development of constructive quantum field theory. t1affe 

(1 96 5) constructed a self-interacting scalar field (wi t.h 

in te rac ti on Lagrangian proportional to in a 

two-dimensional box, and this and other kinds of space cutoffs 

have been used in the process of constructing the - 4 field theory 

in infinite space (see bibiliography in Glimm and Jaffe (1970)). 
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Here the purpose of the cutoff is not to make the momentum 

spectrum discrete but to make the volume of space finite. Then 

some of the mathematical pathologies characteristic of 

Euclidean-invariant field theories (see Wightman (1964), Sec. 6) 

do not arise. (In .formal calculations these difficnl ties show up 

in the form of divergent integrals over infinite space.) 

The method of construction of the ~4 theory in infinite 

space is not Lorentz-covariant, and one of the hardest tasks of 

the subject has been to prove that the model finally obtained 

really possesses the symmetry under Lorentz transformations which 

it intuitively ought to have. The idea arose, therefore, of 

constructing an interacting field in the two-dimensional de 

Sitter space in analogy with the work of Jaffe (196~, but taking 

care to maintain invariance under the de Sitter group explicitly 

throughout. This theory would involve the radius of the 

universe, R, as a parameter. In the limit R ~ Q) one could 

hope to recover a clearly Lorentz-invariant theory in flat 

infinite space by methods like those used in ordinary 

constructive field theory. This dissertation was intended to 

accomplish at least the preliminary steps in this program. The 

Lorentz invariance of the¢~ theory has recently been proved by 

Streater (1971) by a different method.[2) The 

motivation .for the present work is thereby weakened. 

original 

one can 

[2] At the time of this writing an error has been discovered in 
the work which culminated in Streater•s proof, so at least for 
the time being the problem must be regarded as still open. 
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still hope, however, that de Sitter space will provide an 

alternative route to the - 4 model with some technical or 

pedagogical advantages. 

However, there is another reason, at present more 

urgent, for studying quantum field theory in de Sitter space. 

This is the current interest in possible significant effects due 

to the quantum nature of matter in relativistic cosmology and 

astrophysics. A theoretically coherent treatment of particles in 

interaction with a given gravitational background requires a 

general theory of quantum fields in Riemannian space-times. De 

Sitter space is much more like the flat space-time of special 

relativity than the most general uni verse is, but it nevertheless 

possesses some of the features of the general case, such as 

curvature. Consequently, a well-understood quantum field theory 

for de Sitter space should be a comparatively easy intermediate 

goal, and it should also be instructive in relation to the 

general problem. In this context it is not necessary to consider 

self-interacting fields to encounter interesting problems; the 

so-called "free" field already presents considerable problems of 

mathematical definition and, even more, of physical 

interpretation. 

In the course of three years the research reported here 

has progressively reoriented itself from the first to the second 

of these two problem areas. Thus it turns out that this study of 

the free field in de Sitter space has very little to say about 

interacting fields in de Sitter and Minkowski space, the concern 
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of constructive quantum field theory, but quite a bit to say 

about free fields in 

relativity theory. 

general 

For the 

space-times, a concern of general 

reader's guidance the work and the 

document will now be described in more detail. 

1. f!ogra]!. 

In this dissertation quantization of a massive neutral 

scalar field without self-interaction defined on a space-time 

manifold with given metric is studied, with emphasis on the 

two-dimensional spatially finite de Sitter universe. As 

indicated above, the work has been conducted with two purposes in 

mind: 

(1) To lay groundwork for the rigorous study of model 

interacting fields in de Sitter space, envisioned as a 

covariant method of introducing a spatial cutoff in 

constructive quantum field theory. 

(2) To make a critical examination of the applicability of 

the concepts of .9.Yantum field and 2art!cle in the context 

of curved space-time -- a problem of current interest in 

relativistic astrophysics and cosmology. 

Let us elaborate on the first point. Note first that 

the possibility of doing calculations in quantum physics at all 

is based on the possibility of abstracting a nearly closed system 

from its surroundings and idealizing its environment. For 

instance, a scattering process is treated as an encounter between 
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two particles in an otherwise empty universe, e•en though in 

reality it takes place in a bubble chamber close to many rapidly 

moving atoms, which give rise to electromagnetic fields, and so 

on. The actual problem is hopeless to solve, or even to pose. 

One most assume (and it is usually taken to be too physically 

obvious to deserve mention) that the differences between the real 

problem and the tractable problem 

calculated. 

are minuscule for any 

guan ti ties of interest This is a basic 

presupposition of the subject, of the same sort as the dogma of 

stability in classical mechanics as described by [Abraham], 

PP• 3-4. 

The same reasoning is involved in the notion of a 

cutoff in quantum field theory. A change in the global structure 

of the spatial universe from a Euclidean space to a torus or a 

sphere ~sin de Sitter space) produces a drastic change in the 

mathematical structure of the quantum field theory. {Indeed, 

that is the reason for introducing the cutoff.) Nevertheless, 

one proceeds on the expectation that if the dimensions of the 

finite space are taken large enough. the values of observed 

physical quantities will be indistinguishable from those 

calculated in an infinite-space theory. For instance, if one 
'J.7 

works in a box of cosmological size, say length L = 10 cm, the 

energy and momentum spectra will be discrete, but with spacings 
-IG -1 -'l-3 

of the order of 2ffff/L = 10 sec = 10 ergs. This quantity 

is more than 25 orders of magnitude smaller than the smallest 

energy differences commonly measured in physics, such as the Lamb 



Sec. o.1 8 

shift and mass difference. So this momentum 

quantization, a striking qualitative difference between the 

finite- and the infinite-space field theories, does not have 

obs~rvable consequences.(3] 

In the case of de Sitter space one has introduced not 

only a global periodicity but also a genuine local effect, 

curvature. But this, like the weak electromagnetic field near an 

atom of hydrogen in the bubble chamber, can safely be assumed to 

be negligible -- if the radius of the universe is sufficiently 

large. Indeed, the universe we live in is not really a Mintowski 

space, or a de Sitter space either, but something more 

complicated; yet we expect laboratory particle events to be 

adequately described by theories based on the infinite flat 

space-time of special relativity. With equal justification we 

might use a de sitter space-time. (In fact, the real universe 

may well be spatially closed, in which case a de Sitter space may 

be the better approximation.) 

physical reasons for believing that 

In other words, we have good 

(1) any theory of physical processes on the microscopic level 

ought to come in both de-Sitter-space and Minkowski-space 

versions; 

(3]From a certain point ofview it can be argued that within a 
sufficiently small region of space-time the global structure of 
the space (as opposed to local curvature) should have no effect 
at all on the dynamics of the quantized field. This will be 
discussed in Secs. IX.4 and !X.7. 
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(2) these should make the same experimental predictions in 

the limit of large radius of the de Sitter space, and, in 

fact, should already be practically indistinguishable by 

the time the radius reaches a magnitude characteristic of 

the actual universe. 

idea 

This, then, 

of a covariant 

is the physical reasoning 

cutoff. (From the point 

underlying the 

of view of 

mathematical technology, of course, the observation that the real 

universe may be finite is superfluous.) What would one expect to 

happen on the level of mathematical apparatus as the radius tends 

to infinity? From general information on the nature of field 

theories in infinite space (Haag's theorem, etc. -- see Haag 

(1955) and Wightman (1964)) and the experience with noncovariant 

cutoffs (Glimm and Jaffe (1970)), we know that it would be 

unrealistic to expect the state vectors and field operators of a 

de-Sitter-space theory (with nontrivial interaction) to con verge 

to those of a fllinkovski-space theory. The most one can hope for 

is that the expectation values of the field operators (or of an 

associated algebra of bounded observables) in some state might 

converge to distributions which can be interpreted as the vacuum 

expectation values 

field theory can 

of a Lorentz-invariant field theory; then the 

be reconstructed {[ strea te.r-Wightman ], Sec. 

3. 4) • On the other hand, suppose that even this prog.ram fails. 

Then, in view of what was said above, one could still hope to 

take limits in observable quantities. If one could define an 
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s-matrix in de Sitter space (a nontrivial task -- see Sec. IV.3 

be.low) , an acceptable 

extractable from it. 

Lorentz-covariant 

Then one would 

s-matrix should be 

have successful field 

theories in de Sitter space, though not in Minkowski space, and 

the demands of practical physics would be satisfied. 

The program of constructive field theory in de Sitter 

space thus falls naturally into two parts: the construction of 

field theories in de Sitter space and the taking of limits in 

hopes of recovering field theories in Minkowski space. 

We shall approach the first step in two ways, the 

axiomatic and the constructive. In the axiomatic approach 

(Chapter IV) an attempt is made to preserve the crucial role 

played by the symmetry group in standard axiomatic quantum field 

theory. Then a "free" field in de Sitter space will he 

constructed (Chapter v, parts of Chapters VIII and X) for 

comparison. (The comparison will cast doubt on the central role 

assumed at first for the group -- see next section.) No attempt 

will be made here to construct a self-interacting field (one 

satisfying a nonlinear field equation). 

A necessary preliminary to the second step seems to be 

a clarification of the relationship between unitary 

representations of the de Sitter group and those of the Poincar~ 

group, since the limiting procedure is expected somehow to 

produce a representation of the one out of a representation of 

the other. This is the problem of contraction of group 

representa Hons, discussed in Chapters II and VI. 
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Any physicist who considers this subject must have some 

qualms over whether the construction of "the scalar field" in a 

hypothetical space-time is a well-defined problem, operationally. 

After all, we live in only one universe. A theory appropriate to 

a different one cannot be experimentally tested. What, then, 

does it mean to say that such a theory is correct? Of course, if 

one is interested in a quantum field theory in de Sitter space 

only as a mathematical tool, a temporary construction leading 

eventually to a field theory in flat space, then this question is 

irrelevant. One feels, however, that the fundamental ideas o.f 

quantum field theory should have a unique extension to curved 

space, much as the Schrttdinger equation provides us with what we 

believe to be the 11 true'' behavior o.f a particle in an arbitrary 

potential, even a potential which it is impossible to produce 

experimentally. From this point of view it was natural to demand 

a physical interpretation for a quantized field in de Sitter 

space, and the author resolved to settle this question for the 

"free" field before proceeding to the construction of interacting 

fields. 

In the absence of experimental tests, one is driven to 

"internal" criteria for the goodness of a theory. It should be 

the most natural generalization to the new context of the 

successful theories with which we are already acquainted. It is 

more important to generalize the physical ideas than the 

superficial properties of the mathematical apparatus. To be 

convincing the result must be as nearly as possible unique; the 
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theory 

right 

should be 

theory. Of 

somehow "compelling" in its claim 

course, this goal cannot be 

12 

to be the 

completely 

attained; what is a compelling argument to one person may be 

unconvincing to others, and at some points arbitrary decisions 

based on taste will have to be made. 

The present author found a variety of approaches to 

quantum mechanics and field theory in de Sitter space already in 

the literature (see Sec. I.5). It seemed that these authors 

either did not carry the project through to the construction of a 

definite quantum theory (a Hilbert space of state vectors, etc.) 

or did not realize that their prescriptions were not the only 

ones possible. In particular, the present author was not 

convinced that an approach wh.ich assigned to the de Sitter group ~ 

a role as close as possible to that of the Poincar, group in 

standard field theory was physically justified. He resolved to 

apply the criterion that a model field theory in de Sitter space 

must fit coherently into a physically convincing theory of field 

quantization in general Riemannian[ 4] space-times. (In the 

general case, of course, there is no symmetry group; in special 

cases there may be groups with fewer than the maximal number of 

parameters.) 

This was the origin of the second, and eventually 

dominant, theme of the research •. In the absence of evidence to 

the contrary, it was assumed as a working hypothesis that the 

ITTsee footnote 1 of Chapter III. 
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canonical field quantization precedure of the textbooks should 

apply to the "free" field on an arbitrary Riemannian manifold. 

This field satisfies a linear equation {with variable 

coefficients), so there is no reason to expect the canonical 

commutation relations to break down, as pr~sumably happens in 

some nonlinear theories. Also, canonical quantization brings us 

much closer to the goal of uniqueness than a more general 

axiomatic scheme, and it is noteworthy that in flat-space 

theories the canonical commutation relations are closely related 

to the particle interpretation. It turns out, however, that the 

canonical structure is not sufficient to determine a 

interpretation uniquely. These matters are studied in 

particle 

Chapters 

VII through X, and the results are summarized in the next section 

of the Introduction. 

The extension of the scope of the investigation .from de 

Sitter space to general metrics improves the situation with 

regard to experimental relevance. Pield quantization is now 

being applied to various astrophysical and cosmological problems 

(e.g., Ruffini and Bonaz-zola (1969); Parker (1968); Zel'dovich 

(1970)). It is hoped that the present work will help to put the 

methods used on a more solid base of general theory. Thus there 

is a connection between a general theory of field quantization on 

Riemannian manifolds and actual observations •. 
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2. ~§li!!• 

The contributions of the wort presented here to this 

program can be summari2ed in several categories. 

{1) The author hopes that this dissertation will be a 

useful reference for a subject on which previous work has 

been widely scattered and marked by a certain lack of 

communication. In this spirit many facts and formulas about 

de Sitter spaces and groups, various coordinate systems, 

solutions of the field equation in the two-dimensional case, 

etc., have been collected; much bibliographical information 

has been passed along, even on topics w.hich are treated only 

tangentially here; and (as far as practical) efforts have 

been made to keep the exposition comprehensible to general 

relativity theorists without much background in field theory 

and mathematical physics and vice versa. 

(2} Three approaches to the quantization of the 

"free" field in two-dimensional de Sitter space have been 

considered: (A} second quantization of a single-particle 

theory in which the states of the particle support an 

irreducible representation of the de Sitter group (following 

Tagirov ,tl ~!• (1967) [ 5) and Nachtmann (1968b)); 

(B) canonical quantization of the field in a. region where t.he 

metric can be regarded as static; (C). canonical quantization 

[5] See also Chernikov and Tagirov (1968}. 
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in the whole space. regarded as a homogeneous universe of 

time-varying radius. (See Chapters V, VIII, and X.) In all 

cases a Fock-like construction of a Hilbert space for the 

guantum theory has been attained, but the resulting 

"particle" interpretations are i.!!£Ompatible (see (4) below). 

In particular, pair creation from vacuum occurs in theory (C) 

~t least according to one definition of particle number 

observables -- see Secs. X.5-6) and not in the others. The 

representations for the theories (A) and (C) can be shown to 

be unitarily equivalent {Sec. X.9). Some observations on the 

field in the spatially open de Sitter universe are included 

(Secs. III.6 and V.8), with emphasis on the relation between 

the structure of the space and the self-adjointness of the 

Hamiltonian of the field theory. 

(3) The canonical formalism of (scalar) field 

quantization has been developed for an arbitrary metric 

(Chapter VII) • For a .§tatic metric one can proceed to the 

standard construction of Fock space, with its particle 

interpretation (Chapter VIII); the particle number is 

conserved in such a theory. (See, however, points (4) and 

(5) below.) In the more interesting case of an "expanding 

universe" (Chapter X}, where pair creation is expected, there 

is no obvious unique analogue of the Fock repre-

sentation.[6) In Sec. X.5 a Pock representation at each time 

--------------------(6) Cf. Parker (1966, 1969). 
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is defined in a way which most plausibly generalizes the 

usual condition of positive energy, and the representations 

for different times are proved uni tarily egui valent in the 

case of a closed two-dimensional universe. This result 

fails, however, for infinite space and probably for higher 

dimensions. 

(4) Significant negative results appeared when the 

general theory was applied to simple models. The procedures 

mentioned in (3) for constructing a rep.re sen ta tion of the 

fields as operators in a Hilbert space are based on analogies 

to the case of the free field in flat space which hold when 

the metric of the 

(static or rigidly 

Riemannian space-time has a special form 

expanding). If the metric has such 

properties when expressed in several different coordinate 

systems, the quantization procedure is not unique. In 

particular, one can arrive in this way at anomalous 

representations of the free field in flat space (Chapter IX 

and Sec. X.2). For the same reason the three methods of 

quantization for de Sitter space cited in (2) yield different 

results. These ambiguities affect the physical concepts of 

the vacuum, particles, and energy density. In Secs. VT!.7 

and X.7 it is argued that similar problems already arise in 

principle in flat-space guantum field theories with external 

potentials, but that in practice these questions are 

dismissed as operationally meaningless, because an 
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unambiguious scattering interpretation of the theory is 

available in the cases of interest. 

The author concludes from (4) that the 

requirement of a unique physical representation of the fields 

is unrealistic in the general case. 

consistent with the unitary 

positive-energy 

most general 

representations 

expanding universe. 

at 

This point 

inequivalence 

of view is 

of the 

different times in the 

It is suggested that one 

must work with an abstract algebra of observables associated 

with the field (Secs. IX.4-5). The quanta associated with a 

given representation need not have a direct physical 

interpretation as particles. on the other hand, some 

representations are probably more directly related to 

practical observables than others. Some speculation is 

offered (Sec. IX.7) as to how particle phenomena may arise in 

a field framework in a way which depends on global boundary 

conditions. 

observation 

A deeper analysis of the physical process of 

is called for to clarify the physical 

interpretation of field theory. In Sec. X.8 a proposal is 

made for a general definition of particle observables, based 

on a condition of positive energy relative to a geodesic 

hypersurface, which in flat space reduces to the standard 

theory. (In a general static space this prescription does 

not coincide with that suggested by the Pock representation 
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(see (3) above). ( 7 )) When applied to two-dimensional de 

Sitter space this ansatz predicts a nonzero but very small 

rate of creation of pairs out of the vacuum (Sec. X.10). 

(6) The axiomatic approach has been applied to field 

theory in de Sitter space (Chapter IV), with inconclusive 

results. Most of the standard axioms generalize easily and 

are satisfied by the free field theory (A) (see Sec. V. 6). 

The most acceptable replacement found for the spectral 

condition is the general condition of positive energy already 

referred to in (3) and (5). This can be satisfied by a 

theory of type (C), which seems to the author to be the most 

convincing theory physically. In the two-dimensional case 

theories (A) and (C) are unitarily equivalent, but the 

invariant vacuum state loses its physical significance if the 

proposed definition of particle observables is adopted. 

{7) The formal correspondences between the 

irreducible Hermitian representations of the Lie algebra of 

the de Sitter group and those of the Lie algebra of the 

Poincar6 group are discussed in some detail (Chapter II). It 

is pointed out that in some contexts, when a discrete index 

becomes continuous in the contraction, an ad hoc distinction 

between even and odd indices seems to be required in order to 

[7] Note that from the standpoint of the algebraic approach to 
quantum theory this does not necessarily mean that the Pock 
representation is useless. 
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re produce the 

completely. 

features of 
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representations of the contracted group 

This and other unsatisfying or mystifying 

the formal approach to contraction of 

representations can be clarified by studying, as a concrete 

example, the contraction of the natural action of the group 

on the scalar functions on its coset space relative to the 

contraction subgroup. (In the case of the de Sitter group, 

this is the universe we are studying.) This idea is 

developed in detail for the rotation group in Appendix c and 

discussed briefly for the two-dimensional de Sitter group in 

Chapter VI. 

3. 12 ~fill! s £!2~ of ~istaJs£D Identity. 

A few words are in order about what this dissertation 

does not do. First, there is no attempt to quantize the 

gravitational field. The metric of space-time is always assumed 

to be .9.!!filt• In fact, it does not even have to satisfy the 

Einstein equations to qualify as an interesting model. By the 

same token, this work is not related to attempts (Deser (1957); 

Isham et !l• (1971) and related papers of A. Salam and coworkers) 

to cure the diseases of Lagrangian quantum field theory by 

including an interaction with the gravitational field. The de 

Sitter model is relevant to only one class of the divergences o.f 
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field theory[8], those co.nnected with the infinite volume of 

space, and, as explained above, it is intended in this connection 

only as a way station on the road to a theory in flat space. 

Finally, this work has nothing at all to do with attempts to 

relate the de Sitter group to .internal symmetries, the mass 

spectrum of elementary particles, and so on (e.g., Roman and 

Aghassi (1966), Bl'hm (1966), Burcev (1968), Bakri (1969), Vigier 

(1969), Tait and Cornwell (1971)}. 

4. Mechanics. 

In recognitio~ of the fact that very few people will 

read this entire volume, every effort has been made to facilitate 

browsing and random access reference. The research reported in 

this dissertation has a major theme, the general theory of 

quantum fields in Riemannian space-time, and a minor theme, the 

contraction of Lie groups (with its physical application to 

physics in de Sitter space} •. The reader interested only in the 

second will want to stop reading after Chapter VI. The reader 

interested only in the first should omit Chapters II and VI and 

Appendix C; indeed, if he is not particularly interested in de 

Sitter space be might want to start with Chapter VII. The reader 

in search of ideas (not final answers!) concerning the 

fundamental question of the meaning of quantum field theory in 

(8) It has been suggested that the finite volume of the de Sitter 
universe may be helpful in treating the infrared di verqences 
{E. P. Wigner, private communication) •. However, not much 
attention has been paid to massless fields in the present work. 
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curved space-time will find the importance of the sections to be, 

on the average, inversely proportional to the density of 

mathematical symbols.· In addition to the qualitative sections, 

he should read Secs. V.3-6 and X.9-10, where some relevant 

explicit results for the case of de Sitter space are obtained. 

Certain background material has been relegated to 

appendices. Two appendices contain original material: Appendix 

C is a digression, a preliminary exercise for the work of 

Chapters II and VI, and Appendix G is an outgrowth of Secs. IX.5 

and IX.7. For the reader who wants to read everything in its 

logical order the following sequence is recommencled: Secs. A. 1 

and A.2 before Chap. I; Sec. B.2 before Sec. I.4; Sec. A.3 after 

Chap. I; Apps. Band C before Chap. TI; App. D before Chap. III; 

App. E before Chap. IV; App. F before Chap. VIII; App. G after 

Chap. IX. 

In bibliographical references books are indicated by 

author's name in brackets, and journal articles, etc., are 

indicated by author's name and date. "Rq. (1. 3} u means the third 

equation of Section 1 of the current chapter or appendix, "Eqs. 

(I.1.3-5)" means equations 3 through 5 inclusive of the first 

section of Chapter I, and so forth. 

We shall always use units such that W = c = 1. The 

metric of space-time has one plus sign and three minuses on its 

diagonal. A* and At are respectively the complex conjugate and 

the adjoint of A. The letter x denotes sometimes a space-time 

variable (dimension n = s + 1) and sometimes a space variable 
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(dimensions); this ambiguity seems less confusing than use of 

boldface for a quantity which is not, in general, a vector.· 
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Chapter T 

DE SITTER SPACES AND DE SITTER GROUPS 

We shall study a spatially finite space-time of 

constant curvature of dimension n and the symmetry group 

associated with it. O.f course, the case n = ~ is most relevant 

to physics. It is useful to consider also n = 2 and n = 3, 

however. The importance of lower-dimensional models in the 

constructive theory of interacting fields is well known (see 

Glimm and Jaffe (1970) and references cited there); there one 

postpones tackling the ultraviolet problem in its full fury while 

dealing with other aspects of the subject. A rigorous study of 

interacting fields in curved space would presumably also start in 

two dimensions. on the other hand, in some contexts the 

fundamental problems are the same in all dimensions, but the 

incidental mathematical complexity increases with n. Then the 

modest approach of starting with dimension 2 and generalizing 

later to higher dimensions can he a help to both researcher and 

reader: it allows the basic problem to stand out clearly amid a 

minimum of inessential algebraic complications. The main 

contribution of this dissertation is to bring up and, at least 

partially, to answer several questions of principle which arise 

and can be studied for the scalar field in two-dimensional 

space-time just as well as in more complicated cases. Throughout 
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this chapter it will be easy enough to do everything for general 

n; later we shall usually speciali2e ton= 2 or n = 4. 

In this chapter we use t.he terminology and facts 

concerning pseudo-orthogonal groups set forth in Appendix A. 

1. Th!! Closed .Qg Si tte.c .§,Rg£~ 2! Dimension n. 

We define de Sitter space as a certain homogeneous 

space of the group so (1,n). 
0 

Recall that if G is a group of 

transformations (not necessarily linear) on a set "' then M is 

called a ho,m.2.9:eneous s:eac~ of G if for every two points x and y 

in M there is an element A of G such that y: Ax. M can be 

identified with G/H, the space of left cosets of G relative to 

the subgroup H (stability group) of transformations in G which 

leave a given point of M invariant. (See [Hermann], pp. 3-4.) 

Then-dimensional Minkowski space is a homogeneous space under 

then-dimensional translation group and thus a f.Qrtiori under the 

Poincare group ISO (1,n-1). 
0 

We consider the n-di me nsiona l de Sitter group so (1,n) 
0 

Tl-ti 

(see Appendix A). Of course, "F is not a homogeneous space of 

this group, because only vectors with the same length in the 

metric F (x) (Eq. (A .1. 2)) can be connected by transformations in 

the group. The n-dimensional submanif old M of t"t, +• defined by 

the condition( 1) 

-----------------------(1] The coordinates are with respect to an orthonormal basis. 
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0 2 
F (X} - (X ) 

n j 2 2 
} (X ) = - R , 

j-=1 

26 

(1.1) 

where Bis a positive real number, can easily be seen to be 

homogeneous. We shall call it the {closed) de il.lltl §£!~~ of 

dimension n. Its induced metric has the signature (+ - ••• -) 

(n - 1 minus signs) appropriate to a space-time model of 

dimension n. The stability subgroup H of any point .in 11 is 

isomorphic to then-dimensional Lorentz group so (1,n-1). 
0 

The two-dimensional de Sitter space is sketched in Fig. 

1; it is a single-sheeted hyperboloid. The drawing is slightly 

misleading, because it is hard to visualize the indefinite metric 

of the enveloping three-dimensional space. For instance, 

relative distances in the space in various directions may be 

quite different from what they seem to the eye. Also, contrary 

to appearance, all points and regions are equivalent in their 

curvature and other intrinsic geometrical properties, since the 

space is homogeneous. Geometrical matters will be discussed in 

more detail in Chapter III. 

Consider a point O in M; for instance, the one with 

coordinates 

0 n-1 n 
0 : ( X , • • • , X , X } = ( 0, • • • , 0, R) • ( 1. 2) 

A patch of the space around O whose linear dimensions are very 

small compared to R will be almost indistinguishable from a piece 

of n-dimensional Minkowski space (Fig. 2). It is clear that the 
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x' 

Two-dimensional closed de Sitter space. The intersections of the 
surface with the planes x0 = C and x' = 0 and a neighborhood of 
the point o (x~ = + R) are shown. A left-handed coordinate 
system is used to make the orientation of Fig. 2 agree with the 
standard convention. (Figure adapted from Philips (1963).) 



Sec. I.1 

transformations which 

leave o invariant (the 

group H) act on this 

neighborhood similarly to 

the action of the 

n-dimensional homogeneous 

Lorentz group on flat 

space. 

Ph,ysically, the 

n-dimensional de Sitter 

space can be interpreted 

as a universe of n - 1 

spacelike and one 

I O 
IX 
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I I I 
L_____ I 

Fig. 2 

A neighborhood of the point O in 
the limit of large R. 

time like dimension, finite and closed in the space like 

directions. The submanifold {xtx0 = 0}, which represents the 

spatial universe at one instant of time, is a hypersphere of 

radius R. {There is another way of looking at de Sitter space, 

according to which the spatial universe is open (infinite) -- see 

Sec. III.7.) 

De Sitter space is a space of constant curvature, and 

in fact possesses a Lie group of global isometries (viz., 

SO (1,n)) with the maximal number of parameters, n~+1)/2. (The 
0 

latter implies the former, but constant curvature implies maximal 
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symmetry only in a local sense.(2]) The only[3] space-times with 

this maximal symmetry are Minkowski space, closed de Sitter 

space, and open de Sitter space (a homogeneous space of 

S0
0
(2,n-1)). The closed de Sitter space which we are considering 

is the only one in which space at each time has finite volume. A 

group-theoretical determination of all possible space-times of a 

certain high degree of symmetry was made in the thesis of 

Hannabuss (1969a} (see his Introduction and Appendix A). See 

also Calabi and Markus (1962). 

2. !he Contraction frocess. 

The geometrical p.roperties o.f a small neighborhood of 

any point in de Sitter space are almost the same as those of a 

neighborhood in Minkowsk.i space. The global properties of the 

spaces are ve·ry different, of course. In the Introduction we 

argued that one should not expect events which occur on a 

microscopic scale within a small region of space to be 

significantly affected by the structure of space at cosmological 

[2] [Eisenhart], Sec. 27; J. W. York, Jr., private communication. 
An ordinary circular cylinder is an example of a two-dimensional 
space of constant curvature without a global three-parameter 
isometry group. 
[3) This statement is not entirely accurate, because of the 
existence of "covering spaces" with homomorphic isometry groups. 
First, there is the possibility of considering a smaller space, 
defined by identifying antipodal points in de Sitter space -- see 
(Schr~dinger], pp. 7-14, or Calabi and ~arkus (1962). In Chapter 
VII this space will be rejected for the purposes of field theory 
because it does not have a consistent time orientation. 
Conversely, the closed de Sitter space with n = 2 and the open de 
Sitter spaces of any dimension (see Secs. III.6 and v.e below) 
have covering spaces from which they are obtained by identifying 
points. 
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distances. Cn the basis of this plausible physical idea ve 

expect that to every physical theory set in Minkowski space there 

corresponds a theory in de Sitter space which for sufficiently 

large R (small curvature) gives virtually identical numerical 

predictions for observable quantities in any local process (such 

as elementary particle scattering). 

In some sense the theory in de Sitter space should go 

over smoothly into the Minkowski theory as R approaches infinity. 

On the other hand, the mathematical structure of the theories is 

likely to be quite different. For instance, for all finite Rone 

will have the de Sitter group so (1,n) as a symmetry group, but 
0 

for B = oo the symmetry group will be the quite different 

Poincar, group, ISO (1,n-1). 
C 

In field theory, functions on a 

hypersphere, associated with discrete modes (spherical harmonic 

expansions), will be replaced in the limit by functions on 

Euclidean space, associated with continuum Fourier transforms. 

It is likely, therefore, that for the mathematical apparatus of a 

de Sitter theory the limit R ~ o:, will not exist, except 

perhaps in some very "weak" sense. It may be hard to formulate 

clearly defined mathematical concepts and rigorous, nontrivial 

statements concerning the relationship between de Sitter theories 

(with finite but large R) and Minkowski theories. The problem 

just posed is a generalization of the problems surrounding the 

notion of .9.IQ.Y.Jl contraction. [ 4] By analogy we call the passage 

f4]Segal (1951), pp. 254-257; Inffnfl and Wigner (1953); Saletan 
{1961); IntJntt (1962); [Hermann], pp. 86-101; Bacry and 
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to the limit R--+ o:, in a de Sitter theory the fontr~.Q! of 

that theory to a theory in Minkowski space. In particular, it 

will involve a contraction in the usual sense of a representation 

of the de Sitter group to a representation of the Poincar, group. 

In this section we discuss contraction as it applies to the 

groups themselves. Contraction of unitary representations will 

be discussed in Chapters II and VI. 

In investigating the limit R ~ oo our general 

approach will be to make a scaling transformation 

_JI µ 
X = X (0 ~ p ( n) 1 

_n 1 n 
X = - X , 

R 
(2. 1) 

starting from the orthonormal system of Eq. (1.1} as the unbarred 

system, and then to let R ~ oo in various equations and 

expressions connected with de Sitter space, hoping to obtain 

limits that make sense in Minkowski space. The mathematical 

rigor of the limiting processes varies with the context; 

sometimes the limits are intended as aids to the intuition rather 

than as proofs. It is helpful in keeping track of what is going 
. 

on to assign to xJ the dimension of length and to note the 

dimensions of other quantities whenever they first arise. 

we take~= c = 1 (dimensionless), we have 

Since 

iivy-leblond(1968f;~Ilips-and Wigner (1968), PP• 664-666; 
Levy-Nahas (1967, 1969). 
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-1 
(time] = [length] = [mass] • 

Thus B is a length, introduced in Eq. 

32 

(A. 1. 3) is 

dimensionless, and in of Eg. (2.1) is dimensionless. 

We begin with a formal algebraic counterpart[S] of the 

intuitive limit process indicated in Fig. 2. Substituting Eq. 

l. (2.1) into Eq. (1.1) and dividing by R yields 

_n 2 
- (X ) 

-2 
+ O(R ) = - 1. (2. 2) 

So the transformation (2.1) seems to be an appropriate one to 

make when studying the neighborhood of the point o characterized 

by x")o\ = + 1 {cf. Eq. ( 1. 2) ) in the 1i mi t R ~ oo • Now consider 

the action of a generator t € lJSO (1,n}): 
0 

j j k 
y = (l) X ((L) : -

k jk 

Substitute from Eq. (2.1): 

_µ µ _ v µ _n 
y = (L) . :x + (L) Rx , 

n 

_n n _µ 
Ry = (L) X • 

Jl 

(L) ) • 
kj 

(2. 3) 

(2. 4a) 

(2.lJb) 

Therefore, the matrix L which represents L with respect to the 

new basis is 

[ 5] Cf. Rosen (1965). 
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- Jl 
(t) 

- Jl 
(L) 

n 
(L) 

n 

}1 

}l 
= (L) 

= R (L) 

1 
= - (L) 

R 

µ 

n 

, 

, 
n 

• 
µ 

_µ. -..U. 

(L) is a length and (L) is dimensionless. 
~ V 
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(2. Sa) 

,(2. Sb) 

(2. Sc) 

So far we have 

merely written the Lie algebra of the de Sitter group in a 

different way. 

Next, however, we let R ~ ro and require that the 

barred quantities remain finite. Since 

_ n 1 _ µ 
(L) = + -;:(L) , 

µ R n 

_.,, 
in the limit we must have (L) = o. Now L has the form (A. 2. 6) 

µ 

of a generator of the 
,I 

Poincare group, and in view of Eq. (2. 2) we 

can think of the de Sitter space P1 as having been replaced by the 

hyperplane 
_.,., 

1 (i.e., PUnkowski Sec. A. 2). We X = space -- see 

can extend the range of the variables i.,.,. from - oo to + (1) , even 

though the limit process just described makes literal sense only 

for some finite neighborhood of o. 

We have contracted a representation of .Z(S0
0 

(1,n)) to 

a representation of .:Z:(ISO (1,n-1)). 
0 

The group representations 

generated by these representations of the Lie algebras are the 

- /... 

~ 
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representations which were used to define the respective groups 

in Appendix A. So we may speak of a contraction of the 

n-dimensional de Sitter group to the n-dimensiona.l Poincare 

group. The subgroup of so (1,n) 
0 

with respect to which the 

contraction takes place is the n-dimensional Lorentz group, 

so (1,n-1), which leaves the point o invariant, and the resulting 
0 

Abelian invariant subgroup of 

translation group. 

ISO (1,n-1} is then-dimensional 
b 

3. 

Prom Appendix A we have the following commutation 

relations for the basis elements of the Lie algebras (Eqs. 

(A.1.10), (A.2.8), and (A.2.11)): 

(L ,t ] = 0 if a, b, c, dare all distinct. 
ab cd 

[L ,L ] = ~ L if b 1 a 1 c. 
ab ca a be 

ti: ,t J = 
aL3 ya 

[T ,T ] = O. 
ex l3 

if a,~, Y, Sare all distinct. 

(3. 1 a) 

{3. 1b) 

(3 .• 2a) 

(3.2b) 

(3. 2c) 
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[ L , T ] -= 0 if 0( I Y 1 ~. 
a~ y 

[.L ,T ] -= 
~ p 

1' T 
B oc 

if ex-; ~. 

The numbers (L)J 
k 

35 

{3.2d) 

(3. 2e) 

and - J (L) k of Sec. I. 2 are the 

coefficients of the expansions of the elements L of the Lie 

algebras with respect to these bases. The basis elements 

transform contragrediently to the coefficients. Thus Eqs. (2. 5) 

suggest relating the basic generators of the Poincar, group to 

those of the de Sitter group by 

-L = L , (3. 3a) 
exp <XP 

1 
T = L = lim - L , 
~ ncx R➔o:> R ncx 

where T°" has dimension [ length f 1 • If one substitutes Egs. (3. 3) 

in to Eqs. (3 .1) and di vi des by appropriate powers of R before 

taking the limit, one obtains Eqs. (3.2). Group contraction is 

usually discussed in terms of such a singular transformation on 

the Lie algebra (see references listed above). 

From now on let us omit the bars on the Poincare 

generators when there is no chance of confusion. It is helpful 

to distinguish the generators which play different 

geometrical-physical roles by different letters instead of 

indices. Also, in discussing unitary representations in a 

Hilbert space it is convenient to have Hermitian (rather than 
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skew-Hermitian) generators. To avoid proliferation of notation 

let as carry out all these reforms at once. 

let capital tatin indices range from 1 ton - 1. In 

dealing with them we abandon the summation convention and relax 

the distinction between contravariant and covariant indices. 

When convenient we shall also use vector notation: 
➔ I ,._, 

X = (X , ••• , X ) • Let € be 
At,c 

the familiar completely 

antisymmetric tensor in three-space, with the properties 

~ e 
C ABC 

€ 
CDE 

1 
- ~ € 
2 B,C ABC 

AD BE 

€ 
BCD 

- 6 , 
AE BD 

AD 

jk 
The indices of e and~ are not to be raised with g • 

A6c AS 

(3. 4a) 

(3. 4b) 

With these conventions we define for the de Sitter 

algebra 

0 
H = p = p 

0 

A 

= - it , 
no 

K = - it , 
10 

and for the Poincare algebra 

A 
- p = ♦ p 

A 

J = - it , 
AB AB 

= - iL , 
nA 

(3. 5) 
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A 
H : - iT , - p = + p = - iT , 

0 A l 

A (3. 6) 
K = - 11 I J = - it • 

AO AB AB 

In the physical case, n : 4, we let 

A 1 
J = ~ e J , (3. 7a) 

2 B,C ABC BC 

or, equivalently, 

C 
J - - ~ € J • (3. 7b) 

AB C ABC 

The JM generate the group of rotations in space around 

the point o (Eq. {1.2)). The transformations generated by the PA 
➔ 

can be identified with spatial translations. The J's and P 

together generate the subgroup of isometries which map the 

spatial universe {xtx 0 = OJ into itself. In the de Sitter group 

this subgroup is isomorphic to SO(n). After contraction it 
➔ 

becomes ISO(n-1). The J's and K generate the "local Lorentz 

group" of the point o (the group called H in sec. I.1). The 

generator H behaves in the neighborhood of o like a generator of 

time translations, but these are not qlobal time translations, as 

we shall see in Chapter III. 

The sign conventions in these definitions have been 

chosen to agree with standard usage for the Poincar, group. A 
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translation in the direction of the four-vector b has the form 

U (b) 
}1 

= exp {ib p } 

Jl 

0 
= exp fib 

A 
p }. (3. 8) 

The sign in Eq. (3. 7a) is necessary for agreement with the 

standard notation in quantum mechanics (e.g., [Messiah], Chap. 

XIII) -- see Eq. (3.10a) below. It is not useful to distinguish 
➔ --+ 

contravariant and covariant components of Kand J, since they are 

not part of four-vectors. 

Bacry and 1,vy-Leblond {1968) have introduced an 

-index-free notation for Lie brackets: If Y is a scalar and X and 

-Z are vecto.rs, 

➔ .. 
[X,Y] = Z means 

A A 
(X ,YJ = Z (.3. 9a) 

➔ ➔ 

(for A= 1, ••• , n-1). If X and Y are vectors and Z is a scalar, 

tl, YJ 
A B 

= z means {X ,Y ] = ~ z. ( 3. 9b) 
AB 

- - -If n .: 4 and x, Y, and z are all vectors, 

... ➔ ➔ 
A B C 

[ x, y] = z means (X ,Y ] = ~ € z • (3. 9c) 
C ABC 

➔ ➔ ➔ ➔ 

(Note that (Y,X] = (X,Y]; 

The commutation relations (3~1) and (3.2) for n = 4 can 

be written 
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§.Q.g (1, 4 l !.§Q O f 1.c.31 

... ~ -[JI J J : iJ (same} (3. 1 Oa) 

➔ .. 
(J,KJ = 

~ 

iK {same) (3. 10b) 

~ ... il (K,K) = - (same) (3. 1 Oc) 

~ 

[ J, HJ = 0 (same) (3. 1 Od) 

~ ➔ ... 
[J,P] = iP (same) p. 10e} 

➔ ~ 

[K,H] == iP (same) (3.10f) 

... ~ 
[ K, p J = iH (same) (3. 10g) 

... .+ -[ p, H] = 1K [P,H] = 0 (3. 1 Oh) 

~ - .. -~ --[P,P) = iJ [P ,P] = 0 (3.10i} 

• ..,.. ➔ -+ 
If n = 2 there 1s no J, and P and K have only one component each; 

the Lie algebra reduces to·Eqs. (3.10f,g,h). If n = 3, we let 

J = - J and have in addition to Eqs. (3.10£,g,h) and (3.10d) 
l'l, 

1 2 2 1 
[J,K ] = + iK I [ J, K ] = - iK I (3.11a) 

1 2 
[K ,K ] = - iJ. (3. 11b} 
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1 2 2 1 
[ J, P ] = + iP , { J, P ] = - iP , (3. 11c) 

1 2 
[ P ,P ) = iJ [or 0, respectively]. (3.11d) 

We observe from Eqs. {3.10) that in a representation of 

one of the Lie algebras some of the operators are completely 

determined by the others. It follows that some of the 

commutation relations are redundant. 

following propositions: 

For instance, we have the 

(1) If operators H, 
-, 
K, 

➔ 

P, JA~ are given, to check 

that they form a representation of so (1,n) or ISO (1,n-1) it 
b o 

suffices to verify Eqs. (3.10b,c,f ,g ,h) (or their analogues 

for general n). 

➔ 

(2) If operators Hand Kare given, a representation 
➔ 

is obtained by defining JAB and P through Eqs. (3.10c) and 
-,. 

(3.10£), provided that Hand K satisfy Eqs. (3.10b,g,h), or, 

eguivalently, 

µ V p 
([ K ,K J,K ] = 0 if p, v, p are distinct, 

0 
where K -= H. 

Jl }) )l y 

[(K ,K J,K ] = K if p 1 V, 

(3.12a) 

(3.12b} 

(3) In the case of SO
0

(1,n) the analogous statements 

-- ➔ are valid with the roles of P and K interchanged. 
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fI22.{: Given Eqs. (c,f), Egs. (b,d,g,b) are equivalent 

to Eqs. (3.12), and the Jacobi identity shows that Eg. (d) 

follows from the other cases of Eq. (3.12a). 

for PA, we calculate 

Then, writing JA 0 

which 

= 

p <f 

[J 
JlV 

,J ] 
per 

: - i (J ,[K ,K ]] 
µv 

p (j 

= i {[K ,[K ,J 
µv 

I) 

a 
] + (K ,[J 

µv 

<f p )1 Jl 
{( K , (b K - S K } ] + [ K ,<8 K 

per ye( Jlfl 

= i <h J & J + 6 J s 
µO" vp vO' pp Yf JlO' PP 

comprises the remaining equations (a,e,i). 

step we used 

p 
[J ,K ] = i 

)1 v 
K - b K ), 

µv JlP 

J) 

- b K ) ]} 
µp 

J ) , 
YO' 

At the third 

which is still another way of writing Eqs. (3.12). 

Statements essentially equivalent to these have been 

used in representation theory for a long time (see, e.g., Hirai 

(1962a), p. 84). The version given here, however, provides these 

algebraic facts with physical significance. In particular, 

consider the failure of statement (3) for IS0
0 

(1,n-1). The 

infinitesimal qenerators of a representation of the Poincar, 
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group by tensor or spinor functions, 

p -1 
[U(b,A)J] (x) = S(A) J (A (X - b)), 

are 

A 
K 

J 

0( (X ~ 

0 
ff = i-;, 

dX 

A 6 
= - i(x 

ox0 

A o 
= i(x 

AB ox 8 

A 
p 

+ X 

0 o 
-) 
ai 

'B 0 
- X -) 

oxA 

(3.1.3) 

+ w , 
OA 

(3.14) 
♦ V , 

AB 

where the w•s are infinitesimal operators of the representation 

S(A). The commutation relations are still satisfied if the w 

terms in Eqs. (3 .14) a re dropped. Then we have a direct sum of 

several copies of the usual representation by scalar functions 
➔ 

(see Sec. A. 3) , where H and P are still given by Egs. (3. 13). 

The statement (3) tells us that this cannot happen for the 

representations of the de Sitter group. It is impossible to 

separate "space" and "spinn; in a representation with spin, Hand 
➔ 

P will contain spin terms. This is related to the fact 

(discussed in Chapter III) that the identification of exp(itH) 

and exp(itPA) with translations is valid only in the neighborhood 

of the point o. 
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4. Casimir oee!at2!~• 

The central elements of the universal enveloping 

~(SO (n)) , algebra of ))SO (p,g)) 
0 

can be found from those of 

n = p + q, which were determined by Gel'fand (1950). The result 

is that the invariants are the "scalars" (expressions with no 

free indices) which can be formed from Lab by contracting with 

go.b or the completely antisymmetric tensor e a 1 a,_.·· CL,_. • In 

particular, there are the quantities[6) 

k a, 
I = L ••• I (4. 1a) 

2k u, u .t • • • u)f-i k a• b ' • • .ak bk 
D = e L ••• L X 

a b ak bk 1 I 

c 1d 1 ckdk 
e L ••• L , (4. 1b) 

u u ••• u kc d ••• cl\ 
I '-. .. -}.. 1 I 

and, for even n, 

1/2 a, ••• a .. 
I = e L • • . t • (4. 1c) 

a a a a 
I .:l_ 1'1• I ,., 

An independent set of generators for the center consists of 

f'6rThe notationis taken In-partTrom Kihlberg (1965), P• . 126. 
Our of< is proportional to Kihlberg' s t/. The sentence below Bg. 
(4) of this reference is incorrect as it stands. It should read: 
"The invariants [of S0 0 (p,q)] are obtained from those [of 
so (p+g)] by replacing P'_. by iL,- if i i p, j > p or 
i > p, j ,5 p, by - L :, J if i > ~, j > p, and by LiJ' if 
i i P, j ~ P•" 
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k I<. 'h. ' either I or D for all even k up to k = n - 1 or n - 2, plus I - i 

for even n. In representations these objects are represented by 

"Casimir operators11 , which commute with all the group or Lie 

algebra operators. They are multiples of the identity in any 

irreducible representation. 

Let us write down these invariants for S0
0

(1,n), 

n = 2, 3, 4, in the notation of Eqs. (3. 5) and study their 

behavior under contraction. In all cases we have 

1 2 2 
Q - - - I = H 

2 

➔2 ,.2 2 
+ K - p - ~ J 

A<B AB 
(4. 2) 

(which is the Casimir operator in the strict sense). The 

transformation (3.3) is 

~ 
➔ 

K = K, J = J I (4. 3a) 
AB AB 

➔ 1 1 - ➔ p = lim - P, H = lim - H •. (4.3b) 
R➔oo R R➔oo R 

Substitution into Eq. (4. 2) yields 

2 1 _2 
tn = lim -Q = H - P • 

R➔oo R;.. 
(4. 4) 

This, of course, is the principal invariant of the Poincar& Lie 

algebra (3. 6). 

so (1,3) has another independent invariant, which we 
0 
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take to be 

Q 
2 

1 

8 

1/2 2 1 
I :: JR + K P 

Under contraction we have simply 

1 2 1 1 2 
S = lim - Q = JH +KP - KP 

R➔n> R 2 

1 abc 
= - € L T 

2 ab c 

1 2 
- K p • 

45 

(bars omitted) 

as the corresponding invariant of the three-dimensional Poincare -

group. In an irreducible representation of ISO (1, 2) 
0 

(see Sec. 

B.2) with m = £Q~~i• > O, ve have at the point of the spectrum 
I A. 

where P = P : O and H = m 

S = mJ. (4. 7) 

Thuss characterizes the spin (the representation of the little 

group). (The irreducible representations of S0(2) are labeled by 

the possible eigenvalues of J, which are O, ! 1/2, ! 1, •••• J 

When n == 4 the simplest fourth-degree invariant is D
4

• 

(I~ is a linear combination of n', Q~, and Q.) In our notation 

1 q 
Q - - -D 

~ ~ '2'2 _,.~2 ,._,,.2 
= [ JH + P X i] - ( J ~ P) + ( J · K) • (4. 8) 

2 6li 

In the limit 
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1 
W = lim -Q 

R➔o:> R:t 2 

t 
b c 

I I 

T 
d 

I 

46 

(bars 011i t ted) 

€ • (4. 9) 
ab c d 

'2.. :t. :z.. 

The analogue of Eq. (4. 7) is the well-known relation 

2 
W=m s(s+ 1), 

wheres is the spin of the representation of the little group 

so (3). The indi vidua 1 terms which appear squared in l!.q. ( 4. 8) 

are the Casimir 

(up to sign) 

'/).. 
operators I /8 of 

the operator Q ,._ of 

➔ -+ 
various subgroups: K·J is 

so (1,3), 
C, 

the group being 
➔ ➔ 

interpreted now as the homogeneous Lorentz group; P·J is the 

analogous thing for the S0(4) subgroup (the spatial isometries). 

Since the groups we are concerned with are not compact, 

their representations are not completely characterized by the 

values of the Casimir operators, as the results reviewed in 

Appendix B show. 

Because of its unusual symmetry properties, de Sitter 

space( 7 J has been more often studied in relation to quantum 

[7] Here we are primarily concerned with the closed de Sitter 
space of dimension 4, although Dirac and some of the other 
authors also considered the open space. The work of Philips and 
Wigner deals with the two-dimensional spaces, as do some of the 
papers of the Vienna and Dubna groups (see belov). 



Sec. I.5 47 

theory than any other curved space-time. 

Dirac (1935) proposed theories of the electromagnetic 

field and the Dirac spinor field in de Sitter space. He employed 

a very special construction, in which each pbysical quantity on 

the de Sitter hyperboloid was regarded as the restriction of a 

homogeneous function defined in the whole five-dimensional 

in which the hyperboloid was imbedded. The degree 

space 

of the 

homogeneity was decided for each quantity separately, on various 

grounds. This approach has been related to the representation 

theory of the de Sitter group and to more general definitions of 

wave equations in Riemannian space-times by Gffrsey and Lee 

(Gttrsey (1962), Gttrsey and Lee (1963)), Hannabuss (1969a,b), and 

Castagnino (1970). 

Philips and Wigner (Philips (1963), Philips and Wigner 

(1968)) and Hannabuss (1q69a,b, 1970) approached particle quantum 

mechanics in de Sitter space in terms of the irreducible 

representations of the de Sitter group. Their emphasis was on 

anal y2ing the notion of 129!.!ll!io!!, in analog_y to the work of 

Newton and Wigner (1949) and Wightman (1962) in Minkowski space. 

In these papers, as in the work of Dirac and of Gffrsey and tee 

cited above, it was tacitly assumed that a covariant wave 

equation in de Sitter space is an equation governing the wave 

function of a single particle, whose possible quantum states 

transform under a representation of the group. (This viewpoint 

will be disputed in Chapter V.) 

The earliest paper known to the present author on 
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quantum fielg theory in de Sitter space is that of Gutzwiller 

(1956) (which apparently has gone unnoticed by all later workers 

in the field except Scarf {1959)). He treated scalar, 

electromagnetic, and spinor fields. His tools were primarily 

those of the classical theory of partial differential equations, 

rather than group theory. However, he demanded (in effect) a 

stable-particle interpretation of the field theory, since he 

adopted (at least for the spinor field) a time-independent 

decomposition of the field into positive- and negative-frequency 

parts. [ 8] 

The guppe!l£es! oft.he mid-sixties stimulated interest 

in the de Sitter group among elementary particle physicists (see 

references in sec. 3 of the Introduction). In this period scalar 

field theory in de Sitter space was studied by research groups 

located at Vienna (Thirring (1967), Nachtmann (1967, 1968a,b)), 

Dubna (Tagirov !1 !l• (1967), Chernikov and Tagirov (1968)}, and 

Munich (B6rner and Dttrr (1969), B6rner (1970)), and by Castagnino 

(1969). (Fronsdal (1965) and Castell (1969) considered the open 

-----------------------(8) Both Gutzwiller and Philips (1963) consider a definition of 
positive frequency based on the asymptotic behavior of the 
solutions of the wave equation -- viz., as f(t)exp(!imt), where m 
is the mass, tis an appropriate time coordinate, and f is real 

and reject this definition on the grounds that it gives 
different results when applied at t ~ - co and at t ~ + co. 
Since from the standpoint of the present work such behavior .has a 
natural interpretation in terms of particle creation, the author 
re-examined the matter. He concluded that this asymptotic 
behavior comes into play only for wavelengths which, by virtue of 
the expansion of the universe, have become very large on the 
laboratory scale: it consequently has very little physical 
significance, and should not be used to define "incoming" and 
"outgoing" particles. 
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de Sitter space.) The definition of particle annihilation and 

creation operators was treated most cogently by the Vienna and 

Dubna groups. Combining a maximum of group covariance with a 

close correspondence to the flat-space theory, they both arrived 

at the same theory of the scalar field in the two-dimensional 

closed de Sitter space, one in which particles are not created 

and destroyed. (This theory is discussed and criticized in a 

broader context in Secs. V.6, x.4, ana X.9 below.) 

~t this point there appeared the landmark work of 

Parker (1966. 1968, 1969 1 1971} on particle creation in expanding 

universes, which applies, in particular, to the de Sitter 

universe. So we must go back to pick up the story of a separate 

tradition, the theory of field quantization and particle creation 

in arbitrary space-times. 

Schredinger (1939) observed that in general the 

solutions of a field equation in a space with time-dependent 

metric cannot be separated into positive- and negative-frequency 

solutions, if only one type o.f "vibration" is present at one 

time, the other will appear at other times. He also remarked 

that this behavior could be interpreted in terms of creation and 

annihilation of particles (cf. Sec. X.3 below); but he considered 

this an "alarming phenomenon" and concentrated on proving that it 

did not occur under certain especially simple circumstances. 

In the following years not much attention was paid to 

the physical interpretation of quantum field theory in curved 

space, although the formalism of fields of arbitrary spin as 
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tensor- and spinor-valued distributions obeying covariant 

commutation relations was developed to considerable 

sophistication (Lichnerowicz (1961, 1962, and other papers)). 

Scarf (1959) reported particle creation in a generalization of 

the Thirring model(9] to curved space-time, but this work was 

based on a definition of the s-matrix for the Thirring model in 

flat space which later was found to be incorrect (A. s. Wightman, 

private communication). Imamura (1960) defined particle 

annihilation and creation operators and demonstrated particle 

creation in the unambiguous and soluble but highly unrealistic 

case of a universe whose radius is a step function in the time. 

Sexl and Urban tke (196 7, 196 9) discussed the cosmological 

implications of particle creation quite concretely; but their 

quantitative calculations were theoretically untenable in the 

most interesting cases (e.g., a closed universe collapsing to a 

singularity) because they treated only weak gravitational fields 

against a Minkowski background (by Feynman graph methods). 

In the papers cited t. E. Parker developed a theory of 

field quantization in Robertson-Walker (homogeneous expanding) 

universes, which .is described in part in Chapter X of this 

dissertation.[10] He shows that, in general, particle creation 

must occur, although some uncertainty in the identification of 

(9)-The-Thirring model in flat space-is a theory of a massless 
spinor field in dimension 2 satisfying an equation with a 
nonlinear interaction term, which nevertheless can be solved in 
terms of free fields. See Wightman (1964), pp. 218-231. 
[10) A similar but much less thorough treatment was published by 
Grib and ~amaev (1969). See Sec. X.5 for critical remarks. 
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particle observables remains (see Secs. X.3 and. X.6). This 

approach has recently been further developed, and applied to 

cosmologically interesting situations, by Zel'dovich and 

coworkers (Zel•dovich (1970), Zel•dovich and Pitaevsky (1971), 

Zel'dovich and Starobinsky (1971)) and by Parker (1972). 
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Chapter II 

CONTRACTION Ol' THE REPRESENTATIONS OF TH'E DE SITTER GROUP 

TO REPRESENTATIONS OF THE POINCARE GROUP: 

FORMAL APPROACH 

The goal of this chapter is to clarify the physical 

significance of the irreducible unitary (ray) representations of 

the de Sitter groups by correlating them with the irreducible 

unitary represen ta. tions of the Poincare groups. The 

representations themselves (which are well known) are described 

in Appendix B. We shall study the problem of contraction of 

representations in de tail for n = 2 and indicate hr iefl y how our 

observations extend to higher dimensions. We shall return to the 

subject by a different approach in Chapter VI. 

1. Contraction_ !Q !h~ _B_g~,l-11~§§ Representations 

I!Q-Dimensional Poincare QrOUE• 

The infinitesimal form of an irreducible unitary 

representation of the two-dimensional de Sitter group so ( 1, 2) 
0 

is given by Eqs. (B. 3. 8). We want to study the behavior of these 

formulas under the con traction transformation (I. 4. 3). [ 1] If one 

attempts to take this limit directly in Eqs. (B. 3. 8), the result 

----- -(1) The reader who wishes to follow this discussion down to the 
last detail should read Appendix C first, since in this section 
calculations and motivational arguments are sometimes summarized 
as "analogous to those in Appendix C." 
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is a (reducibl~ representation of the two-dimensional Poincari 

Lie algebra in which B = P = O, so that in the corresponding 

group representation the space and time translations are all 

represented by the identity. This class of representations is 

not of much physical interest. 

The experience of In6nff and Wigner with the rotation 

group (Sec. c.3) suggests that we should consider a sequence (or 

a one-parameter family) of inequivalent representations, scaling 

the value of the Casimir operator along with the parameter R. On 

the basis of Eq. (I.4.4) we expect to obtain the representation 

with mass m and timelike momenta if we set 

VQ 
m = = canst. (,. 1) 

R 

and let the representation range up the principal series (Eg. 

(B.3.5a)) to q = ex>. 

our situation differs from the one studied by Innntt and 

Wigner (1953) in that the subgroup which is diagonalized in Eqs. 

(B.3.8) is not the subqroup (viz., exp(iKt)) with respect t.o 

which the contraction takes place. (This situation is studied 

for the rotation group in Sec. C.4.) The subgroup exp(iPt) is 

more convenient for the study of the representations of the de 

Sitter group both mathematically (because it is compact) and 

physically (because in our model it is the symmetry group of the 

spatial universe at one instant of time). 

We express the representation formulas (B.3.8) in terms 
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of H, P, m, and 

p 
p = -. ( 1. 2) 

R 

We have 

- -
p' (p) = p ' (p) , 

a, (Pl 

Then we pass to the limit, under the assumption that lJ (p) (which 

is defined only at discrete points, of course) is to be replaced 

by a reasonably smooth function of a continuous variable, f(i). 

The details of the calculation are precisely analogous to those 

given for S0(3) in Sec. C.4. The result is (bars omitted) 

p' (p) = p '(p) , ( 1 • .Ja) 

( 1. 3b) 

KtJ (p) ( 1. 3c) 

Similarly, the scalar product (B.3.7) goes over into 
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00 

(IJ,91) = / dp ·• (p) r'(p) • 
-CX> 

( 1. 4) 

The representation is put into a more familiar form by 

writing 

In terms of the barred functions we have 

P'(p) = p '(p), (1.6a) 

(1.6b) -

-K' (p) (1.6c) -
dp 

2 2 _ 2 
(H - P ) f (p) = m '(p) (1. 7) 

<•, pf) ( 1. 8) -

This is the irreducible unitary representation of X,(ISO 
0 

(1, 1)) 

with mass m and positive energy see Eqs. (B. 2. 5-6) and 

(B.2.2b). 

However, as we know from the case studied in Sec. C.Q, 

in these formal manipulations with Lie algebra matrix elements 

the choice of the phases of the basis vectors can influence the 

outcome. In general ve could have written 
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10 (p) 
f • 2 '(p) fq;p>e (1. 9) -

p 

instead of Eq. (B.3.6). Then Egs. (B.3.8b,c) would be replaced' 

by 

+ ___ _ i(e(p+1) - e(p)) 
= Vq+p (p:f1) , (p+1) e A '(p) I 

( 1. 10) 

1 + 1 + 
H : - {A + .rt ) , K = - (A - .A ) • 

2 2i 

If we make the substitutions (I.4.3) and (1.1-2) into 

Eqs. (1.10) and try to take R ~ oo, we find that the expression 

for K, 

1 -ie (Rp) i0(Rp+1) ie (Rp-1) 
K1J (p) = -e {RVm~ + =~ 

' (p) (e - e ) p 
p 2i -p 

- [ rm1::- ♦ p k a '-I' p ie ( Rp+ 1) i8 (Rp-1) 
·-+ ' ](e + e ) 

dp 2v'm;:-+ I>J. -p 

-1 
+ 0 (R )} , (1.11) 

becomes infinite unless 

-
0 (Rp - 1) = 8 (Rp + 1) (mod 21t) ( 1. 12) 

-for all p. In arriving at Eq. (1.11) it has been assumed that 

the ,(p), p = 0, i 2, ••• , are replaced in the limit by a 

r 

-r 

differentiable function , (p), 
+I 

and that the '(p), - f 
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p = ! 1, ! 3, ••• , become a possibly different function J (j). 

Because of Eq. (1.12) we necessarily have 

e 
ie (Rp+1) -ie (Rp) 

e c(+1)c(-1) = 1, 

-, 

(1. 13) 

where p = + 1 for even R~, - 1 for odd R~. 

partner now become (bars omitted) 

Eq. (1.11) and its 

and 

Letting 

K' (p) 
p 

"' (p) p 

(1.14a) 

(1.1lJb) 

11 (p,<Y) = t?+p3=' [' {p} + d'C (o) Tf (p) ], (1.15) 
<:f' -0' 

we finally obtain 

K' (p ,<1) 
.rr-- dJ 

= i6vm- + p"l.. - (p, O"), (1. 16a) 
dp 

(1. 16b) 

(along with the obvious generalizations of Eqs. (1. 6a) , (1. 7),. 

and (1.8)). This is a direct sum of two irreducible 

representations of the Poincar~ group, one with positive energy 

and one with negative energy. 

- r 

p 

- 'f 
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At this stage the concept of contraction of 

representations is so nebulous that it hardly makes sense to ask 

which of Eqs. (1. 6) and (1.16) represents the "correct" 

contraction of the de Sitter representation (B.3.8). The problem 

deserves attention, however. We shall see in later chapters that 

the major problem of quantum field theory in de Sitter space (and 

in curved space-time in general) is to find a substitute for the 

spectral condition (the requirement of positive en@rgyJ. It is 

surely relevant to enquire whether a represen·tation of the 

Poincare group containing only positive energies can somehow be 

got out of a representation of the de Sitter group, in which 

positive and negative energies seem to be inescapably mixed. 

This last property is related to the n1ocal" nature of time 

translation in de Sitter space, which we have mentioned already. 

(This will be explained iri Chapter III.} For this reason it is 

fortunate that we have a geometrical interpretation of the 

contraction of the representations of the rotation group which is 

based on shrinking functions defined on the sphere to a point 

(Secs. c.5-6). We shall apply this idea to the representations 

of SO (1,2) after we study, in Chapter V, the functions on de 
0 

Sitter space which support an irreducible representation of the 

group. 

The most important conclusion from this discussion, 

however, is well founded: The real-mass representations of the 

Poincare group are related to the principal series of 

representations of the de Sitter group in the limit of large q. 
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We should concentrate on the principal series, therefore, when 

searching for physically relevant theories of particles or fields 

in de Sitter space using group-theoretical methods. 

2. Contra£1i~n to the Othe~ Representations of !S0
0

(1,1), ~ ~ 

Remark .Q!! th~ Scale Qf Physical Quantities. 

To obtain the representations with spacelike momentum 
,._ -,._ l. 

(H - P = - µ) we must allow the value of q to become large and 

n~gative, by setting, for instance, 

1 
)1 = - k 

R 
( 2. 1) 

in the discrete series (Eg. (B.3.Sb)). All the formulas of the 

previous section apply, with i.. .l. 
m = - P , but the range of the 

variable is restricted to IPI ~ P• 
In this case, however, Eqs. (1. 6-8) provide only a 

fraqment of a representation of the Poincar6 group. To obtain a 

complete irreducible representation it is mandatory to take the 

route leading to Eqs. (1.16). This phenomenon is strictly 

analogous to what happens in the con traction of the 

representations of the rotation group as described in Sec. c.4, 

and the discussion there concerning the non-self-adjointness of 

one of the generators applies to the operator K of Eg. (1.6c). 

The function ,(p) is defined on the top branch of the hyperbola 

(p0
)).. = p"' - µ"-. At the point p'- = µ~, K is attempting to push i - 'f 

over the edge onto the bottom branch, which is missing. Thus K 
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does not generate a unitary operator, and there is no unitary 

group represen tat.ion corresponding to Eqs. (1. 6). 

The representation of ISO (1,1) 
0 

with m = O can be 

obtained from either the continuous or the discrete series of 

so (1,2) by mating lql approach infinity more slowly than R, or 
0 

not at all. In particular, q could he held constant at any 

value. Then one is not varying the representation as R ~ <J> • 

but merely changing the scale of the momentum variable p. This 

is one of the rare situations where a .!H!ltafy representation of 

the contracted group in which the Abelian invariant suhqroup is 

nontrivially can be obtained from a represented 

representation of the original group by a singular 

transformation. (Another example was given by In~ntt and Wigner 

(1953).) 

This observation brings up an interesting point. In 

the Introduction and Sec. I.2 we spoke of a family of "de Sitter 

theories11 which should "converge" .for large R to an ordinary 

relativistic flat-space theory. In the case of a system of 

massless particles, we see now that all the theories in the 

family could be the ~ theory, looked at in different ways; 

namely, one varies the .!!!1!1 of 1~n9.!£ and confines his attention 

to a region of space-time of "moderate" dimensions in each length 

scale. For particles with mass, on the other band, the theories 

are expected to be diff~.!!! for each R, since the ratio of the 

size of the universe to the Compton wavelengths of the particles 

will change. 
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For conceptua 1 clarity one should distinguish three 

natural units of length: 

(1) B, the radius of the universe; 

(2) L, some length characteristic of the observer or his 

instruments (say L = 1 cm); 

(3) \ = 1/m, the Compton wavelength of one of the massive 

particles in the theory. (For simplicity we do not 

consider the possibility of varying the ratios of the 

elementary particle masses.) 

The general condition for equivalence in practice of a de Sitter 

and a Poincare theory is 

R >> L. (2. 2) 

However, in a theory of the electron (for instance) one will have 

and, moreover, the ratio ~/L will probably be held fixed at the 

observed value throughout the discussion. Then Eq. (2.2) can be 

replaced by 

F >> \, (2. 4) 

and L need never be mentioned explicitly. The situation is 

different if only massless particles are considered. Of course, 

Eq. (2.4) is in perfect accord with the ansatz of Sec,. !I.1 (Eq. 
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( 1. 1) with q ~ oo). 

3. Contraction in~ "Continuous l!lli2"• 

The general element of XJSO (1 , 2)) is of the form 
0 

L = hH + kK - pP. ( 3. 1) 

The one-parameter subgroups of so (1,2) 
0 

are classified as 

~!li~!i£, l!JperboJi£, and £!£!bolif (or nilpotent) when their 

generators have h~ + k~ - p~ negative, positive, and zero, 

respect.i vely. Subgroups of the same class are geometrically 

equivalent (conjugate) • Hyperbolic and parabolic subgroups are 

noncompact (~ J); elliptic subgroups are compact (~ S0(2)). In a 

representation of the continuous series a generator L of the 

hyperbolic class has a continuous spectrum of multiplicity 2 

extending from -co to +oo; the spectrum of a parabolic L has the 

same range but no doubling. In a representation of the discrete 

series the spectrum is nondegenerate in both cases and is 

- co < ). < oo in the hyperbolic case and O < ~ < o:> or - co < \ < 0 

in the parabolic case. {The spectrum of an elliptic element, 

which is discrete, is described in Appendix B (Eqs. (B.3.5)) .)[ 2) 

The representations have been expressed by Mukunda 

(1967) in a form in which the generator of a hyperbolic subgroup 

is diagonalized. If 

[2] Bargmann (1947), pp. 588-589, 639-640. 
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[ p ,J ] = iJ , ( p ,J ] = - iJ , 
1 2 2 1 

[ J ,J J = - iP, 
1 2 

63 

{3.2) 

then for a representation of the principal series (Eq. (B.3.5a), 

g ~ 1/4) with 

2 1 
q = s + -

4 

he gives the formulas (O" = .:t 1, - oo < "' < oo) 

- i -
J '1(~,0') = c1(~ + (s + -) ) ,c). .... i, O'), 

+ 2 

1 
p = -(J + J), 

2 + 

1 
J = - (J - J ) • 

1 2 + 

(3. 3) 

(3. 4a) 

( 3. 4h) 

(3. 5) 

(The notation has been changed to resemble that of Sec. c.2.) 

These egua tions make sense on a domain of analytic functions of 

\. Alternatively, one can work in the Fourier transform space: 

1 j°' iz). 
= - d~ e JJ ()._,oJ 

V2ff -CP 

-+z 

dpJ 
J SI = -i-, 

2 a-z 

d 1 
J,=o'e (-i 

+ 
± i (- + is) ]fl. 

dz 2 

(3. 6) 

(3. 7a) 

(3. 7b) 
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If we identify the diagonalized hyperbolic generator J~ 

with Kand 1.l, with H (cf. Egs. (B.3.1)) and apply the contraction 

transformation (I.4.3) with 

s 
m = (3. 8) 

R 

(equivalent in the 1.imit to Eq •. (1.1)), we obtain from Eqs. (3. 4) 

or (3. 7) 

- -
J 1' (\ , er) = + o' m J (\ + i , a') , 

a, 
K¢ = - i- ; 

dz 

+ + 

{3. 9a) 

JI. (3. 9b) 

For each of the two values of O' these operators (which are also 

discussed in Mukunda's paper) are the generators of a 

representation of ISO ( 1, 1) 
0 

in a "boost basis" (cf. Egs. 

(C.2.8,10,12) for the Euclidean group in a rotation basis). This 

is a close analogue of the In6ntt-Wigner contraction of the 

rotation group (Sec. c.3). Note that from this point of view an 

irreducible representation of the de Sitter group contracts 

unambiguously to the direct sum of two representations of the 

Poinca.te group. 

On the other hand, one could take J~ to be H. One 

would expect that operators obeying the commutation relations of 

the Poincare group could be obtained by a contraction analogous 
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to Egs. (1.1-3) (in which~ as well as sis renormalized}. 

However, it is easy to check that it is impossible to obtain 

formally convergent expressions, even if the phase of •<~,<1) is 

changed similarly to Eq. (1.9) (with e an analytic function of 

\). Any formal manipulation which led to the desired result 

would have to be very artificial, since it would have to create a 

gap in the spectrum in the interval 

- m < - < m. (3.10) 
R 

It seems unlikely that anything useful can be said about the 

matter at t.his level, so we shall drop it until Sec. vr.1. 

4. Contr!£tion of Representations in Dimension J. 

To obtain representations of ISO (1,2) 
0 

from 

representations of S0
0

(1,3) we must scale the Casimir invariants 

so that the quantities m~ and S of Eqs. (I.4.4,6) have finite 

limits. From Eq. (E.4.8a) we see that for m r O either k
0 

or d 

must approach infinity proportionally to R. If both do, S 

becomes infinite, so that case should be excluded. 

If we take 

d = + Bm (m > 0), 

we have (see Eqs. (B.4.8)). 

1 2 1 

k = s sgn d, 
0 

- Q -4 S = ms. 
R 2 

( 4. 1 a) 

(4. 1b) 
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So we expect to obtain via Eg. (4. 1a) a representation o.f 

ISO (1,2) with mass m and spin s (see Eq •. (I. 4. 7} and surrounding 
0 

discussion). 

on the other hand, if we let 

then 

k = Rp, 
0 

2 2 
m = - )1 , 

d fixed (real), 

S = pd. 

(4. 2a) 

(4. 2b) 

This corresponds to a representation of ISO (1,2) with spacelike 
0 

momentum spectrum. Jf we set P?. = H = 0 and P
1 

= t/-m" = J1 in Rq. 

(I.4.6), we have, analogously to Eq. (I.4.7), 

2 
S = J.1K • 

). 

There£ ore, in the limit a is the eigenvalue of K , the generator 

of the little group S0
0

(1,1). 

Finally, the representations with m = 0 can be reached 

by (for instance) 

k = v'R 1a I, d = o a, (4.3a) 
0 

2 2 
m = o, s = + a • (4. 3b) 

The representat.ions with a :; 0 are analogues of the 

continuous-spin representations of the four-dimensional Poincar€ 
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group. 

It remains to be shown that the representations of the 

Lie algebra of ISO (1,2) can actually be obtained by formally 
0 

taking the limit R ~ oo in the matrix elements of the 

representations of XJSO (1,3)) (Eqs. (B.4.3-6)). 
0 

Ve shall 

devote the rest of the section to doing this for the case of real 

mass. 

For simplicity assume that d is positive in Eq. {4.1a); 

then we write d = Rm, k = s, k = Rp. 
0 

We already know (Secs. 

c. 1- .3) that Eqs. (B. 4. 3) con tract (for each p) to the 

representation (C.2.12) of the two-dimensional Euclidean group 

(with M = p, m = n). To investigate the other formulas we expand 

all the coefficients to the two lowest orders in 1/R: 

i -2 
C (k) = -v'p'i-+ m~ (1 + 0 (R )) , 

2p 

i 
C (k+1) = 

2p 

1 p 1 -2 
Vp~+i~ (1 + -[--- - -] + O(R )), 

R pl. + mi. p 

1 3 _ -2 
= Rp ( 1 + - (- + n) + 0 (R ) ) , 

Rp 2 

etc. 

As in the other cases studied, we take the limit R ~ oo in 

accordance with Egs. (C.4.3-4). The result is 
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HlJ (p,n) = (p-;.. + m').. lJ(p,n), (4.4a) 

a, i p 
K J(p,n) = i ~ + m'l... - (p,n+1) + - 1J (p,n+1) 
+ dp 2 Vp?. + m:z.. 

V'p,.._ + m:i.. 1 ims 
-+ i (- + n) f(p,n+1) + r, (p,n+1). (4. 4 b) -

p 2 p 

(For ease of writing we follow the approach that leads to the 

formulas for the positive-energy representation alone. The 

modification that yields both signs of the energy in analogy to 

Egs. (1. 9-16) is obvious.) 

A few more steps are needed to brinq the representation 

to the form with which we are familiar (Sec. B.2). First, by 

forming a Fourier series (i.e., reversing the steps of Eqs. 

(C.2.7-13)), we attain the form 

0111 
J'(p,¢) = - i-, 

09 

±i~ 
P 11 ( p, 91) = pe fJ ( p , 91) , 

+ 
(4. 6) 

(4. 7) 
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d 
K '(p,?J) = i 1/p1+-m~ -(e 

+ dp 

i p 
+ -

2 vp,._ + 

vpl. + m2 1 
+ i (-

p 2 

!ifl 

mi 

+ 

'(p ,1') ) 

!i¢ 
e 

0 
i-) 

d?J 

t(p,pl) 

(e 
!i¢ 

• (p, 91) ) 

+ - e 
p 

tJ(p,jlf). (4.8} 

Meanwhile, the integration in the scalar product has undergone 

the contraction 

00 

~ 
k=k 

0 

1 o, 2Tt 
= -f dp f d~. 

2ff O 0 

In the final version we would expect a multiple of 

f 
dp Joo 2Tt 2 2 -1/2 

,t7♦n0 = I) p dp f O dfl (p + m ] 

(4. 9) 

( 4. 10) 

(cf. E q • { B. 2. 2b) ) • This, along with the expectation of a spin 

term in the angular momentum, suggests the transformation 

1 2 -
1J(p,¢) = -[m 

vrr 
2 1/4 

+ p ] 
-1/2 

p 
-is¢ 

e lJ {p,fA) (4.11) 

as the analogue of Eq. (1.~. This leaves Eqs. (4.6-n unchanged 

and converts Egs. (4. 5) and (!J. 8) to (bars omitted) 
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o, 
J' = - i- ♦ s, (4. 12) 

ofl 

!i~ d' -
Vp;:-;-;[" +ifl olf 

K ' -= i t/p'- + Ill '2. e + e 
+ dp p dpJ 

is ,±ir,1 
+ -(m - Vp"" + m:,2-) e ,. (4. 13) 

p 

Eq • ( 4. 13) is equivalent to 

1 o, -1 2 
K ' = i fp°:t' + m" + s (~-;:--;-~ + m) p ,, 

op' 

2 (f;l..--~ 6fJ -1 1 (4.14) 

K ' = i p + m - - s pip" + m-:a.. + m) p ,. 
0 J.. p 

A calculation which we omit shows that Egs. 

(4.6,7,12,14) a~e the infinitesimal 

representation (B.2.3) with 

generators of the ISO (1,2) 
0 

-ieJ -ies 
Q (p , e ) 11 : e 1J (4. 15} 

0 

(see Sec. c.2 for sign conventions), provided that we choose p0 

+ 
to have components (1,0,0) : (1,0) and choose C(g) as the pure 

boost which maps p into q: 

➔ 

f 
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1 
➔ 
q 

C (g) = -
m 

0 -, 
m + (g +m) 

0 2 
{(g ) 

2 
= m ) • 

71 

(4.16) 

The analogous calculations for the de Sitter group, 

properly so called, (SO {1, 4)) 
0 

have been carried out by Strnm 

(1965).[3] His results correspond to the cruder of the two 

approaches we have taken above to SO 
O 

(1, 2). That is, he did. not 

treat even and odd values of the index 1 (see Sec. B. 5) 

separately when replacing 1/R by a continuous variable p, and 

consequently arrived at expressions involving only one sign of 

the energy; then the other sign had to be put in "by brute 

force". It is clear from the previous sections how to improve 

this procedure. 

Str6m's results for the correspondence of 

representations of so (1,4} and ISO (1,3) are similar to those we 
0 O 

found for dimension 3. The real-mass representations are 

obtained from the principal series (Eqs. (B. 5. 3)) by taking 

1 2 
r fixed, (f ~ '00, ( s. 1 a} 

Then from Eqs. (B. 5. 1} we have 

[3] See also Holman (1969) and Behm (1970). 
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1 2 1 2 
~Q ~ m r(r + 1), 

R 2 

72 

so that (see Eqs. (I.4.ll,9,10)) the contracted re·presentation of 

ISO (1,3) should have 
0 

If we set 

mass m and spin r. 

1 
CJ" fixed, r ~ oo, - r ~ }1 

F 

in the principal series, we obtain 

2 2 2 
m = - Jl , w = Jl (j 

(5. 1b) 

(5. 2a) 

(5. 2b) 

in the notation of Sec. I.4. These values of the Casimir 

operators correspond to representations with spacelike momentum 

(imaginary mass iµ) and a representation of the little group 

S0
0
(1,2) which belongs to the continuous series, with q = ~ (see -r 

Sec. B. 3). On the other hand, consider the discrete series of 

so ( 1, 4), subclass (a) (Eqs. (B. 5. 6)) , and take 
0 

Then 

1 
q fixed, r ~ oo, - r ~ P• 

R 
( 5. 3a) 
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2 2 2 
m = - )l , W: - p q(q - 1), (5. 3b) 

which corresponds to an imaginary-mass representation with the 

little-group representation taken from the discrete series. The 

trivial representation of so ( 1, 2) 
0 

corresponds to the discrete 

series, subclass ( b) (Eq. (B. 5. 8) ) • 

correspondence between the representations 

(Thus there 

of so (1,2) 
0 

and 

is a 

the 

classes of representations of so (1,4) which differ only in their 
0 

r values.) Str6m also gets the zero-mass continuous-spin 

representations of ISO (1,3) by taking 
0 

1 
- O"'~ a, 
R 

in the principal series, so that 

2 
m = 0, 

1 2 
- r ~ a 
R 

2 
W = a • 

The zero-mass representations with discrete 

degenerate cases of Eqs. (5. 2) or (5. 4). 

(5. 4a) 

(5. 4b) 

helicities are 

Thus all the 
. ; 

representations of the Poincare group are accounted for. 

When any of these limits is carried out in the formulas 

for the representation of the Lie algebra, Strom obtains a 

representation o·f ,Z(!SO (1,3)) reduced with respect to the 
() 

subgroup ISO(3) (cf. Eqs. (4.4)). The connections conjectured 

on the basis of the behavior of the Casimir operators are 

validated. The internal label 1 is replaced by the continuous 

variable 
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1 
p = lim - 1, 

R➔oo R 

74 

(5 •. 5) 

and the Casimir operators of the Euclidean group take the ·form 

➔ 2 2 
P , (p, n; j; m) = p 1J {p, n; j; m) , 

➔ ➔ 
(5. 6) · 

J•P1J{p,n;j;m) = np ,(p,n;j;m). 

In summary, this chapter has established that the 

contraction process induces the following correspondences between 

the various series of representations of the de Sitter and 

Poincare groups: 

Continuous 

Discrete 

continuous 

Continuous 

Discrete 

n = 2: 

n = 3: 

n = 4: 

Timelike 

Spacel.ike 

Timelike 

Spacelike 

Timelike 

Spacelike 
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The irreducible representations of Z.(SO {1,n)} for 
C> 

general n have been classified by Hirai (1962a,b), Ottoson 

(1968), and Schwarz (1971). It is clear that the contraction 

relationships with the representations of ISO (1,n-1) could 
() 

in 

principle be determined by studying the Casimir operators as has 

been done for n ~ 4. 

We have seen explicitly for n i 4 that the 

representations of S0
0

(1,n) which contract to the real-mass 

representations of ISOb(1,n-1) are those of the principal series, 

the class of representations which can be induced from unitary 

representations of the subgroup (SO(n-1) « {exp(itH)J)•N, where 

the generators of N are the components of K + P.(4] (N and 

{exp(itH)} are the nilpotent and ibelian parts of the twasawa 

decomposition of so (1,n); H commutes with SO(n-1), which is the 
0 

"rotation" part of the maximal compact subgroup SO(nl of 

These re?resentations are parametrized by the 

representations of SO(n-1) ~ fexp(itH)}. our observation about 

the classification of the representations of S0
0

(1,4) in terms of 

representations of so (1, 2) 
0 

plus a discrete parameter suggests 

that a similar relationship must exist between the 

representations of s0
0

(1,n-2) m {exp(itP
1 
)J, say, and the - t 

representations of S0
0

(1,n) which contract to imaginary-mass 

representations of IS0
0

(1,n-1). This can be verified by 

enumeration in the cases n < 4 which we have studied. There is 

( 4] Takahashi (1963), especially pp. 382-384; Stein ( 1965) ; Strl:Jm 
(1971), Chapter VI. 
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probably a deeper connection in terms of the structure of the 

representations; it might be useful not only .in the study of 

contraction but in classifying the representations of SO (1,n) 
0 

themselves. 

construction 

Unfortunately, no exact parallel of the inducing 

exists in the case of the subgroup 

S0
0

(1,n-2) ~ S0(2), since it cannot be made into a larger group 

by adding a 

communication). 

subtle. 

nilpotent subgroup (G. Zuckerman, private 

Thus whatever connection exists must be more 
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Chapter III 

THE GEOMETRY OP DE SITTER SPACE 

Minkowski space and the de 

distinguished from all other space-times by 

Sitter spaces are 

their high degree of 

symmetry. one way to describe the difference between de Sitter 

space and Minkowski space is that in the former case the various 

symmetries do not fit together as well as in flat space. In 

Chapter I we have noted the noncommutativity of the geometrical 

isometries which, as far as their effects on the neighborhood of 

a given point are concerned, are identified as time and space 

translations. In this chapter several coordinate systems will be 

introduced, each of which could be considered a natural 

generalization of Cartesian coordinates in flat space, each of 

which is especially appropriate for the exploitation of certain 

of the special geometrical properties of de Sitter space. Each 

of these ways of looking at de Sitter space suggests an answer to 

the question: How is physics in the de Sitter universe to be 

formulated as a dynamical problem? 

In later chapters we will find a variety of 

generalizations of the canonical quantization procedure for the 

free scalar field in flat space. These are mathematically 

different they are not just transcriptions of one generally 

covariant theory into terms of various coordinate systems. In 
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the final chapters it is argued that this is a fundamental 

problem which must be faced by any theory of field quantization 

in curved space-time, and that its resolution must be sought in a 

closer analysis of the physical interpretation of field theory in 

such a context. 

The task of this chapter is to introduce these various 

"pictures" of de Sitter space, to discuss their physical meaninq 

on a geometrical or 11classica.l" level, and to record a few useful 

facts and formulas related to the associated coordinate systems. 

We work mostly with the two-dimensional model, but we record 

enough formulas for the four-dimensional case to establish that 

the generalization to n > 2 is straightforward. 

The terminology used for various kinds of canonical 

coordinate systems and for types of space-time metrics with 

special properties is explained in Appendix D. 

For further discussion of the de Sitter universe from a 

cosmological point of view see (Schr~dinger], pp. 1-40, Rindler 

(1960), [Tolman], pp. 333-337, 346-360, and [Robertson-Noonan], 

pp. 365-371. The first of these references is especially 

sensitive to the sort of question that concerns us in this 

chapter. A more abstract study of the geometry of the spaces of 

constant curvature is Calabi and Markus (1962). 



Sec. III.1 79 

1. !!~ Sitter 2.E~£!t ~ ,2: Closed Robertson-Walker Universe 

(Geode§ic Gaussian Coordinates). 

In the two-dimensional de Sitter space, 

2 2 0 2 
(X ) 

1 2 
- (X ) - (x ) = - 1, 

we introduce two independent coordinates defined by 

0 
X = sinh L, 

1 
x = cosh r sin <:1', 

2 
x = cosh t cos a. 

As they vary in the range 

-1 0 -1 1 2 

(1. 1) 

(1. 2) 

- co < t = sin h x < oo , - n (~=tan (X /X) ~ TI 

1 1 
(0 ( (f < 11' if K ) 0: - ff ( a ( 0 if X ( 0) 

the whole space (1.1) is covered (see Fig. 3). 

The metric of de Sitter space as 

manifold(1] is induced by the indefinite 

a 

metric 

( 1. 3) 

Riemannian 

of the 

( 1] We shall use the word-"Riemannian" in the broader sense: it 
does not imply that the metric is positive definite. Manifolds 
with the metric signature of space-time are sometimes called 
"Lorent~ian", but this might lead to confusion in field theory, 
where Lorentz invariance has traditionally been of such great 
importance. 
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0 T=O 

• 

Fig. 3 

Geodesic Gaussian coordinates in two-dimensional de Sitter space. 
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three-dimensional space in which it is imbedded. The line 

element is easily calculated to be 

2 0 2 1 2 2 2 2 2 2 
ds - (dx ) - (dx ) - (dx ) = dt" - cosh r d<1 • (1. 4) 

We observe the following about this metric: 

( 1) It is orthogonal (g h, = 0 for j 1 k) • 

(2) It is a Gaussian metric (Eg. (D.2)). (This is a 

statement about the coordinate system.) The curve defined by 

_., = 

1- = 0 is a geodesic, a.nd cr is an arc-length parameter along - r 

it (see Sec. III.4 for details). Thus fr, o1 is the geodesic 

Gaussian coordinate system based on the geodesic hypersurface 

0 
{XI X = 0} • 

(3) Tt is a Robertson-Walker metric (Eq. (D.6)). 

(This is a statement about the space.) The universe 

contracts from radius 00 to radius 1 and then expands again. 

(4) The "space 

element 

-i<1' p 
J (O") 

0 

- e = 
0 

translation" er ~ er+ cr is 
0 

1 0 0 

0 cos Cf + sin <1 
0 0 

0 - sin <1' cos (1 

0 0 

the 

(1. 5) -
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of the de Sitter group (see Eqs. (A.1. 11, 12a)[ 2]). This can 

be seen by direct application to Eqs. (1. 2). 

The generalization of the geodesic Gaussian coordinate 

system to higher dimensions is 

0 
x = sinh t, 

j j 1 s 
x = cosh 7: f (<f , ••• ,if ) 

where the are such that I S) -:: (Cf , ••• ,6 (s 

coordinate system on the s-sphere defined by 

0 
F (X) = - 1, x = const. 

(notation of Eq. {I.1.1)). Since necessarily 

the metric is 

j 2 
~ (f ) = 1, 
j 

j dfJ 
f do­

le 
= o, 

2 2 2 2 
ds = d~ - cosh ran, 

{1. 6a) 

... ., n), ( 1. 6b) 

n - 1) form a 

(1. 7) 

(1. Sa) 

( 2 J When n = 2, P denotes the contra variant momentum iL :li (see 
Eqs. (J.3.5)). 
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where 

2 
an = 

is the line element on the s-sphere. 

k 1 
def d<t 
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( 1. 8b) 

The generalization of property {4) is that each 

spacelike hypersurface of the form (1.7) is invariant under the 
➔ 

so (n) group generated by P and the JAB. The generalization of 

property (2) is that the geodesics in the sphere {xi!= OJ are 

qeodesics of the whole space; thus the sphere is a geodesic 

hypersurface relative to any point in it. Property (3) remains 

valid, and the coordinates on the sphere can be chosen so as to 

make the system orthogonal. 

For example, when n = 4 we can take Eqs. (1. 6b} to he 

1 1T 1 ff 
x = cosh T sin cr (- - < (1 ~ -) , 

2 2 

2 1 2 11 2 n 
x = cash t cos er sin a (- - ~ (J' ~ -) , 

2 2 

3 1 2 3 3 
x = cosh t cos er cos er sin er (- n < (f ~ 1\), 

4 1 2 3 (1. 9) 
x = cosh t cos o-- cos er cos er • 

Then 



Sec. III. 1 

2 
d.S't 

1 2 
= {dcr ) 

2 
+ cos 

1 
O' 

2 2 
( dcr ) 

2 , 2 
+ cos er cos cr 

2 3 2 
{do- ) • 
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{ 1. 10) 

In the neighborhood of the distinguished point O of Eq. (I. 1. 2) 

we have to first order 

0 1 
X - t, X (J , 

2 2 3 3 (1.11) 
X <:1 , X .- (J' • 

So the coordinate system ( 1. 6a, 9) "cont'r acts" to Cartesian 

coordinates in flat space. The transformations cr3 ~ cr3 + C1 , 
0 

are the space translations generated by p3. 

Al tern a ti vel y, we could set 

1 
X = cosh ! sin <r sin cf cos a' , 

r e 5' (1. 12) 

2 
X = cosh ·r sin <r sin (J' sin (J (- ff < (1' s lt) , 

r 9 f6 f6 

3 
X = cosh T sin er cos O' 

r e 

4 
X = cosh r cos O' --r 

with 
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2 2 2 2 2 2 
df\. = dO" + sin <1' [ do-' + sin <:f d<1' ]. (,. 13) 

r r e e ¢ 

In this case the transformations er,,, -4 er + <f are -the rotations 
T 'f, o 

about o generated hy J 3 • In the neighborhood of owe have 

0 1 
X <r sin 6 cos <'f , 

r A ~ 

2 3 (1.14) 
X <r sin <1' sin er , X - (J' cos (f I 

r B ¢ r e 

which corresponds to a spherical polar coordinate system in 

Mink ows.ki space. 

Of course, all this generalizes the discussion in Secs. 

c.5-6 of the relation between spherical coordinates on the 

two-sphere and Cartesian and polar coordiates in the Euclidean 

plane. Just as there, the coordinate systems can be related to 

the group parameters through the construction of the homogeneous 

space concerned as a space of cosets. For instance, the point in 

F,qs. ( 1. 9) is the coset 

3 2 1 
exp (iO' P ) exp (i<r P ) exp (i<r P ) exp (irH) so (1, 3), (1.15a) 

3 2 1 0 

while that of Eqs. (1.12) is 

3 2 3 
exp (-io- J ) exp (-ia- J ) exp (-i<r P ) exp (itH) SO (1, 3) • (1.15b) 

,ti e r o 
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In the de Sitter space of radius R (Eq. (I.1.1) in 

place of Eq. (1.1)) we would write instead of Bqs. (1.2) 

0 !. 
x = R sinh -, 

R 

1 T 
X = R cosh -

R 

2 r 
X ·- R cosh ·-

R 

er' 
sin -, ( 1. 16) 

R 

(J' 

cos -• 
R 

Other definitions in this chapter would be modified similarly. 

(In Eqs. (1.12), for instance, r and cf' should be scaled by 1/R 
(" 

but the angular variables ~ and 
e 

not be.) The 

necessary changes in all the formulas of this chapter to 

accommodate this generalization are rather obvious. With this 

definition~ and a are still the properly normalized arc length 

parameters on the basic geodesics defining the coordinate system, 

and under contraction they become Cartesian 

coordinates in Minkowski space (cf. Egs. (1.11,14)). 

fQ.Q£dinate~). 

In the neighborhood of the point o in the 

two-dimensional space (1.1) we can introduce another set of 

coordinates by 



Sec. III.2 

Then 

and 

-1 1 
f - sin x 

0 
x = sinh X cos f, 

1 
x = sin p, 

2 
x = cosh t, cos P• 

-1 0 2 
X = tanh (x /x) 

1 
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(2. 1) 

{- oo < X < oo) {2. 2a) 

1 
(0 < p < 1T if X > 0; - ff < f < 0 if X < 0) (2. 2h) 

are defined only if 

0 2 1 
Ix f < fx I and IX I -< 1. (2. 3) 

(These are equivalent conditions if the second inequality is made 

strict.) The region covered when a. 
X ) 0, - n/2 ( f ( n/2, is 

shown in Fig. 4. Note that on the back side of the de Sitter 

space, where x~ < 0 and ff/2 < ffl < ff, positive~ corresponds to 

,n~ga ti ve x0
• 

In this coordinate system the metric tensor takes the 

form 
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Fig. 4 

Geodesic Fermi coordinates in two-dimensional de Sitter space 
(orthogonal projection onto x0 -x' plane). 
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l 
-------t----:.::;t<.':~---t----t---x~2 - · I 

Fig. 5 

Geodesic Fermi coordinates (side view). 
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2 2 2 
ds = cos f dt 

2 
- dp • 

This metric has the following properties: 

90 

(2. 4) 

(1) It is orthogonal (and can be made so in higher 

dimensions as well). 

(2) It is static (Eg. (D.5)). (This is a property of 

the space.) 

(3) ~,p) is the geodesic Fermi coordinate system 

(Eqs. (D.1)) based on the timelike geodesic defined by p: O. 

(4) The "time translation 11 X ~ -X. + X. is the 
0 

element 

cosh 1/, 0 sinh X 
0 0 

+i)' H 
./Jlt > 

0 
0 1 0 (2. 5) - e = 

0 

sinh t- 0 cosh X 
0 0 

of the de Sitter group. 

In the neighborhood of the points P and P' where 

lpl = TI/2 this coordinate system coincides with the polar normal 

system in the sense of Appendix D (see Fig. 5). The other 

regions of the space (the triangular regions above and below P 

and P' in Figs. 4 and 5} appear in the normal coordinate system 

as a Robertson-Walker universe with a singularity at time zero. 
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This is the two-dimensional analogue of "Case 5n of Robertson and 

Noonan (see Appendix D}. 

In the general case we write 

0 
x = sinh X cos f, (2. 6a) 

j j 2 s 
x = sin p q ( e , ••• , e ) (j = 1, ••• , s), (2.6b} 

n 
x = cosh i cos p, (2. 6c) 

where 
;l s <f,e , ••• ,e) form at X = O a polar normal coordinate 

system (see Appendix D) on the s-sphere in the neighborhood of 

the point o. The metric takes the form 

where 

2 2 2 2 2 2 
ds = cos f d:t - df - sin p an , 

2 
an = 

. 
s hf J ofJ k 1 
~ -k de de • 

i, k, 1=2 oe oeJ 

(2. 7a} 

(2. 7b) 

This is the geodesic .Fermi coordinate system based on the 

geodesic defined by p = 0 {cf. Egs. (D. 3)) • The hypersurf aces of 

constant X are the intersections of the de Sitter hyperboloid 

with the hyperplanes through the origin defined by 

O n 
x /x = const. < 1. (2. 8) 
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(Contrast the horizontal slices { 1. 7) in the other picture.) 

These are geodesic hypersurfaces; they are s-spheres 

geometrically similar to {xtx0 = OJ. They are mapped into one 

another by a one-parameter subgroup of so {1 , n) , 
0 

which, as in 

·Eq. (2.5), is expressed in the Fermi coordinate system as 

translation in the variable t. 

There is a coordinate singularity (horizon) at p = TI/2. 

For fixed x. the 
l S coordinates (p,e , ••• ,e) cover half of the 

s-sphere asp ranges between o and W/2. Of course, the region of 

space where x 0 /x~) 1 is not covered at all. 

In particular, when n = 4 we set 

1 
X = sin p sin e cos ¢, 

(2. 9) 

2 
X = sin p sin e sin ti { • lt < - ~ TI) , 

3 
X = sin p cos e co :S e < ff) 

and have 

2 2 2 2 2 2 2 2 
ds - cos f d)( df - sin p (de + sin e df' ]. .. {2. 10) 

If we set r = sin f' Eq. (2.10} becomes 
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2 2 2 2 -1 2 
ds = ( 1 - r ) dX - { 1 - .r l dr 

2 2 2 2 
- r (de + sin 8 dfl ], ( 2. 11) 

the form in which the static de Sitter metric is most often 

written (e.g., [Tolman], p. 346). Near Owe have 

0 1 
X - X, x - p sin e cos f6, 

2 3 ( 2. 12) 
x - f sin e sin fi, X - p COS 0. 

Consequently, Eqs. (2.9) are just as reasonable as Eqs. (1.12) as 

a generalization to a finite region of the polar coordinate 

system in the infinitesimal neighborhood of o. The analogue of 

Eq. {1.15b) is 

3 2 3 
exp(itH) exp(-i~J) exp(-iBJ) exp(-ifP} so (1,3). (2.13a) 

0 

A loca 11 y Cartesian coordinate system analogous to Eqs. 

(1.9} corresponds to the coset parametrization 

3 2 1 
e.xp(iXH) exp{i9 P) exp(-i9 P) exp(ie P) SO (1,3}. (2.13h) 

3 2 1 0 

Identifying so (1,3) with o (Eg. (I.1.2)), we calculate 
0 

j!S 
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0 
J'. = slnh 1., cos e 

1 

1 
X = sin e 

1 

2 
X = cos e sin e 

1 2 

3 
X = cos 8 cos e 

1 2 

4 
X = cosh J( cos e 

1 

for the point (2.13b). 

cos e cos 8 I 

2 3 

sin e 
3 

cos e cos e 
2 3 

ff 
(- - i 8 

2 1 

n 
<- - i e 

2 2 

<- 1t < e 
3 
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1' 
i -) , 

2 

:f 1t) , 

(2.14) 

This coordinate change, of cou·rse, 

maintains the static form of the metric; it just amounts to 

rotating the spherical coordinate system on the three-sphere so 

that o becomes an "equatorial" point. 

The spatial coordinate system chosen on the s-sph~re at 

each instant of time is not really very important for our 

considerations; the crucia 1 point is that the seJlaration of i!.!'!s! 

fil:11 ~.2.f~ is different according to the two ways of looking at de 

Sitter space -- the "static" point of view of this section or the 

spatially homogeneous and isotropic "Robertson-Walker" point of 

view of Sec. III.1. 
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3. Physical Significance of the Coordinate sv.stems •. 

These two types of coordinate system (or, perhaps more 

accurately, the two definitions of "constant time" reflected in 

them} provide alternative kinematical frameworks for describing 

physical processes in de Sitter space. on the classical level 

these descriptions are equivalent. That is, the behavior of test 

particles and liqht rays (namely, motion along geodesics) can be 

described in terms of intrinsic "geometrical" concepts, and one 

is free to transcribe their configurations into terms of any 

space-time coordinate system he likes. It will turn out, 

however, that fairly convincing generalizations of the canonical 

quantization procedure for quantum fields lead to different 

results, depending on which of these kinematical pictures is 

adopted as basic. 

These remarks are relevant to dynamical formulations in 

which the state of a system is specified by the configuration of 

the system at an instant of time, and the equations of motion 

tell how the configuration changes with time. For instance, in 

the simplest type(3] of scalar 

operator-valued distribution, 

field theory one has an 

fJ1-~~ere is evidence {e.g., Powers (1~i,)) that in more singular 
models than have been constructed so far -- in particular, in 
most four-dimensional field theories with interaction -- it will 
be impossible to define field operators at fixed time (i.e., an 
integration over a test function depending on time as well as 
space will he needed in order to get an operator). 
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➔ 
¢ (X) 

t 
+ a -k 

96 

-1- -. 

-ik·x 
e ] = 

which determines the expectation values of field measurements in 

various regions of space at a fixed time, given the state vector 

of the system. In the Heisenberg picture the field operator at 

different times is 

➔ 
+iHt 

9f (t, X} = e I 

where Risa global Hamiltonian operator. In the absence of a 

better idea, one would like to look at field theory in curved 

space from this point of view, too. (But see Sec. III.6 below 

for a complication which must be expected in the general case.) 

We are trying to generalize the following picture in 

Minkowski space: An observer, idealized as a classical point 

particle moving at some fixed velocity, travels along a timelike 

geodesic (straight line). In a suitable orthonormal coordinate 

system (Lorentz frame) this line is t.he x0 -axis, 

1 n-1 
X = • • • -= X = o. (3 .1) 

The spacelike hyperplanes orthogonal to this worldline are given 

by 

0 
x -= t = const. (3. 2) 

such a hyperplane represents the universe at time tin this 
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observer's frame. 

The natural generalization of these ideas to curved 

space is the following: An observer travels along some timelike 

geodesic, or :worldline. The arc length t along the geodesic 

plays the role of time for him. The set of points constituting 

the "present" of the observer at time tis the hypersurface of 

points lying on the spacelike geodesics which are orthogonal to 

the worldline at the point labeled by t. Por brevity let us call 

such a hypersurface an instant, since it represents physical 

space at an inst.ant of time. Through each point of an instant 

there is an orthogonal timelike geodesic, which is (potentially} 

the worldline of an observer "at rest" at that point in space at 

that instant. 

In de Sitter space the curve defined by p = 0 (or 

<1".,,. = 0) is a timelike geodesic (call it W) , and r = x is the 

natural time scale along it. Similarly. the hypersurface defined 

by r = 0 or x. = 0 .is an instant (call it J), and p = cr-r is the 

distance of a point on it from the central observer at w. A 

coordinate system can be constructed which treats in this way the 

whole family of geodesics parallel to W at. J (Gaussian 

coordinates), or the famil v of geod.esic hypersnrfaces 

perpendicular to W (Fermi coordinates), but not both at once. 

In the Gaussian system of Fig. 3 the lines of constant 

d can be interpreted as the worldlines of all possible observers 

who are at rest at the instant t = o. The surfaces of constant r 

mark off intervals of equal proper time on these worldlines. 
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That is, for fixed if, t is the private time of the observer at r.r. 

Sometimes T has been treated as a time coordinate in a global 

sense in de Sitter space (e.g., Philips (1963), Tagirov et al. 

(1967)). However, this is contrary to the spirit of the 

group-theoretical approach to dynamics. A translation in r is 

not an element of the de Sitter group, and the hypersurfaces 

r = £2!.§i• are geometrically dissimilar -- in particular, they 

are not geodesics if r 1 o. Ast increases these surfaces become 

increasingly distorted. The whole point of studying de Sitter 

space instead of some more general manifold is to exploit the 

existence of a symmetry group with the maximal number of 

parameters. One would like, therefore, to fit the kinematical 

description into the group-theoretical framework in analogy to 

ordinary special relativity, where time translation is an element 

of the Poincar6 group and one instant is just like another, 

geometrically speaking.(4) 

This objection is overcome if we identify time with the 

coordinate t of the Fermi system (see Pigs. 4-5). On the 

vorldline W Xis equivalent tor. The equal-t hypersurfaces are 

----(4) For the same reason the author disagrees with the statement 
of Philips (1963}, p. 49, that P (in our notation) should be 
identified with the physical momentum ~t. ~~~h 1?.Qin.i of the 
two-dimensional de Sitter space. Of course, this is partly an 
arbitrary matter of definition, but a physically better 
definition would seem to be the following: Choose a local 
Lorentz frame at the point Qin question. In dimension 2 this 
amounts to choosing a timelike geodesic L through Q. Then the 
momentum at Q relative to this frame is the generator of the 
subgroup of isometries (~ S0(2)) which map the spacelike geodesic 
hypersurface orthogonal to Lat Q into itself. 
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the images of J under the isometries fix) 
0 

fEq. (2.5)), and 

these mappings preserve <f ,e) as the position coordinates at each 

instant (i.e., pis always the geodesic distance from w, and the 

meaning of the angular coordinates is unchanged). 

Of course, we have now lost the possibility of 

describing the SEacelike isometries by simple transformations on 

the spatial coordinates. In fact, the situation is worse: 

~(0-
0

) (Eq. (1.5)) maps the region (2.3) covered by the 

coordinate system out of itself. Note also that the region 

covered depends upon both the position and the velocity of the 

standard observer. 

Another disadvantage of this way of looking at de 

Sitter space is that !7fx ) is not reall v analogous to a Poincare 
0 • 

time translation except near the worldline w; on the other side 

of the universe it is a translation in the negative direction, 

and near f = + 1f/2 it resembles a homogeneous Lorentz 

transformation (see Fig. 5) • This problem reflects geometrical 

peculiarities of the finite de Sitter space which no choice of 

coordinate system can completely over:come. It is closely related 

to the complicated relationship (see Chapters IT and VI) between 

the irreducible representations of the de Sitter group and the 

Poincare group. 

Consider an (at least approximately) localizable system 

in a state, for which the expectation value of H (the generator 

of ftt ) = exp (i)( H)) is positive and the system is locali2ed 
Cl 0 

near o. For this state H can with some justification be called 
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the energy. A translated state .d(<:r
0
), gives a positive 

expectation value to }(rf ) H J (er' f' , the generator of time 
a o 

translations in the neighborhood of the new point of 

localization. If the system is now translated in ~by n, so that 

it is localized near the antipodal point 0', the expectation 

value of H clearly must be negative, since here the 

transformations exp (iX H) with XO > 0 move the system in t.he 
() 

negative time direction. {In other words, 4 cm aJ en,' = - H.) 

This explains why th@ spectrum of H must run through both 

positive and negative values in a single irreducible 

representation.[5) The possibility of contracting a 

representation to either a positive-energy or a negative-energy 

• ✓ representation of the Po1ncare group (Sec. II.1) corresponds to 

the possibility of identifying Minkowski space with the 

neighborhood of either O or 0' in the contraction of spaces 

described in Sec. I. 2. The Hilbert space of states of a 

localizable system in de Sitter space in some sense becomes 

limited, under contraction, to the states that are localized near 

o. By correspondence with standard theory, one expects the 

contracted operator H to be bounded below, as it is in Eq. 

(II.1.6b}. However, the same formal contraction process must 

also be capable of yielding the Hilbert space of states localized 

(SJ-This relationship was pointed out by E. P. Wigner. It 
stimulated the efforts of his students to define localized states 
in Minkowski and de Sitter space: Newton (1949), Newton and 
Wigner (194q), Philips (1963, 1964), Philips and Wigner (1968). 
The last. of these references discusses the subject of this 
paragraph thoroughly. 
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near o•, in which case one would expect H to have the opposite 

sign. This is achieved by a different choice of phase in Eq. 

(II. 1. 9) • (See also Chapters II and VI.) 

If we accept the Fermi picture that is, the 

definition of the "present" of an observer as the geodesic 

hypersurface orthogonal to his worldline the proper 

description of the configuration of the system at that instant is 

likely nevertheless to involve concepts related to the Gaussian 

picture. As remarked above, for a localized system "energy" is 

most convincingly associated with translation in the local time, 

which corresponds locally to translation int. it. !he instant J, 

differentiation with respect to l has more physical significance 

than differentiation with respect to x. Fort has the same 

geometrical meaning at all points of J, while X depends strongly 

on the position of the observer, which should be irrelevant to 

describing the state of the whole syst.em at a given instant. 

This principle will be applied in Secs. IV.2, V.3, and X.8-10. 

All the remarks of this section about de Sitter space 

apply to more general Riernannian space-times, except for the 

references to isometries. It is always possible, given a point 

and a velocity through it, to construct Gaussian and Fermi 

coordinate systems (which, in general, will not cover the whole 

space) see Appendix D. The geometrical reasons for 

attributing physical significance to them are the same as here. 

In the general case these canonical coordinate systems will not 

be orthogonal away from the basic submanifolds Wand J. 
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One might object to this whole discussion along the 

lines of Schr8dinqer:[6] 

Some authors hold, or at least favour, the view that 
the static frame is that of an 'observer• permanently at rest 
at the spatial origin •••• But there is no earthly reason 
for compelling anybody to change the frame of reference he 
uses in his computations whenever he takes a walk • ••• Let 
me on this occasion denounce the abuse which has crept in 
from popular ~!£Q§f§, viz. to connect any pai:ticular frame of 
reference, e.g. in special relativity, with the behaviour 
(motion) of him who uses it. The physicist's whereabouts are 
his private affair. It is the very gist of relativity that 
anybody may use any frame. Indeed, we study, for example, 
particle collisions alternately in the laboratory frame and 
in the centre-of-mass frame without having to board a 
supersonic aeroplane in the latter case. 

Of course, a scientist will be aware of points of space-time 

outside the region covered by his Fermi coordinate system -- he 

may even reach them himself[?) by chanqing his velocity -- and he 

will, when appropriate, describe both these and nearer regions by 

various kinds of coordinate systems. Conversely, the use of a 

Fermi coordinate system does not necessarily imply that one's 

laboratory is located on the central geodesic. Nevertheless, it 

seems to the author that there are circumstances in which a 

separation of space-time into space and time is useful, and that 

the geodesic hypersurface construction is the most reasonable way 

to define it. In applications of special relativity one does 

sometimes refer to ~Ef!Ce and to ti~, and the meaning of these 

words ~~~2 depend on the Lorentz frame essentially, on the 

velocity of tbe observer. The canonical formalism of field 

TTl-fschrOdinger], p. 20, excerpts from text and footnote. 
[7] This assumes a life-span of cosmological magnitude! 
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t.heory constrains us to make a separation into space and time. 

The ways of doing this described in Appendix D and Secs. III.1-2 

have intrinsic geometrical significance, once a distinguished 

position and velocity (most naturally interpreted as those of an 

observer) are given. 

A final remark: We have discussed coordinate systems 

of two different types based on the same given fundamental 

geodesics W and J. But even within one type, one must still 

consider different frames, corresponding to different choices of 

Wand J. (These are analogues to Lorentz frames in special 

relativity.) It is not obvious that a phys ica 1 theory def inefi 

by, say, a Hamiltonian formulation in a given frame will 

automatically be equivalent to a theory defined by the same 

prescription in a different frame. In fact, it will be seen in 

Chapter IX that the time-translation-invariant quantizations 

naturally associated with the various static frames in de Sitter 

space are different in this sense. 

4. Geodesics. 

The geodesics of the n-dimensional de Sitter space 

(I.1.1) are its intersections with the planes through the origin 

in the (n+1}-dimensional imbedding snace ((Schr6dinqer], p. 3; 

Calabi and ~arkus (196~). However, they can also be determined 

directly from the general definition: 
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lz\ ~ azA dzv 
- + r = o 
ds 2 µv ds ds 

([Eisenhart], p. 50). 

In an orthogonal coordinate system the Christoffel 

symbols and the Riemann curvature tensor are easily calculated 

([Eisenhart], p. 44). The former are 

\ ). -1 og_...,,.,. 
r = o, r = ..... (2g ) ·--, 
µv µµ ).~ OX). 

~ -1 og,_" ). 
_, 

dg)..'),, (4. 2) 
r = (2g ) I r = (2q ) • 
\µ ~). oxµ ).). ).). ox'>. 

In the Gaussian coordinates (1.2-4) for the two-dimensional de 

Sitter space of radius 1, therefore, the Christoffel symbols and 

the geodesic equations {4.1) take the form 

"'( (J' er 
r = sinh r cosh -r, r = r = tanh 't' (others zero), {4 • .3) 
60' • ot -ro 

d1,.. d<r 2 
+ sinh 1 cosh 't (-) = o, 

ds ')._ 

ds 

- + 2 tanh r = O. 
ds:2.. ds ds 

In the Fermi system (2.1-4) we have 
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rP Y- '/. 
= - sin p cos p, r = r = - tan p {others zero), (4. 5) 

XI- i-p pt. 

dlX dX dp 
2 tan p = o, 

ds1-.. ds ds 

d''p dX 2 (4. 6) 
- sin p cos p (-) = o. 

ds
2 

ds 

In a two-dimensional manifold the curvature tensor has 

only one independent component. In the case of the 

two-dimensional de Sitter space of radius R (see Eq. (I. 1.1)) lt 

is 

2 2 -2 
R = R = R cosh t = R { g g - g g ) • (4. 7) 

c,7-r O' ,: O'or or r O' crtr 1", 

This shows explicitly that de Sitter space is a §1!~~ of constant 

£Urvature (see (Eisenhart], pp. 83-84). 

From Egs. (4.U) it follows that the curves 

1: = 0, o- = s [ or as + b ] (4. 8) 

and 

er= const., t = s (4. 9) 

are geodesics, as asserted in Sec. III.1. Eqs. (4.6) show that 

p = o, x = s (4. 10) 

and 
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X = const., f = s (4.11) 

are geodesics, as claimed in Sec. III.2. 

The other qeodes.ics through o in the two-dimensional 

space (with B = 1) can be found by transforming the curves (4.8) 

and (4.10) by the homogeneous Lorentz transformations at O, 

cosh 0: sinh 
0 

13 (ex ) 
io:OK 

- e = sinh a. cosh 
0 0 

0 0 

(see Eqs. ( A. 1. 12b) and (I. 3. 5)) • Thus 

space like geodesic through o is 

0 1 
X = sinh 0: sin s, X = cosh a sin s, 

0 0 

and the general timelike geodesic is 

0 1 
x - cosh ~ sinh s, 

0 
x = sinh ex, sinh s, 

0 

0. 0 
0 

ex 0 (4. 12) 
0 

1 

the most general 

2 
.x = cos s, (4. 13) 

2 
x =coshs. (4.14) 

One could now use Eqs. (1. 2-3) or Eqs. (2.1-2) to get expressions 

for these curves in the coordinate systems (r,~ or (X,f>• 

However, one learns more (Wigner { 1961)) by graphing Eqs. 

(4.13-14) in the x' -x:i.. plane. The spacelike geodesics are the 

ellipses 
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1 2 2 
(x ) /cosh ex 

0 

2 2 
+ {X ) ·- 1, 

and the timelike geodesics are the hyperbolas 

1 2 2 
(x ) /sinh 

2 2 
0( - (X ) 

0 
= - 1. 
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(4. 15) 

Moreover, the surfaces of constant £S (s = arc-length distance 

from O, E = + 1 (- 1] for ti melike [ respecti ve1 y, space like] 

geodesics) are the lines of constant coordinate x~. 

From this it is clear that the lines 

0 1 2 
X = }., X = .! }., X = 1 (s = 0) (4. 17) 

are the lightlike (null} geodesics through o. They are 

-1 -1 
t = sinh <:J' = + tanh (4. 18a) 

or 

-1 -1 
X. = tanh p =+sin (4. 18b) 

which are easily seen to satisfy Egs. (4. 4) and {4. 6}. 

5. Causal Connection, Horizons, Domain~ of Dependence, Qeodesl£ 

More important than the explicit form of the geodesics 

is the information about the geometrical structure of de Sitter 

space which can be deduced from their qualitative behavior. For 
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the sake of visualizabili ty let us discuss the two-dimensional 

universe. It will be clear that the structure of the 

higher-dimensional de Sitter spaces is quite similar. For more 

information on these subjects see Penrose (1968)* pp. 186-196, 

and Geroch (19701, from which much of the information in this and 

the next section is taken. 

Some care is needed in extending to curved space-time 

the familiar notions of time like, spacelike, and lightlike 

separation of points. Two points will be said to be causally 

£2!!!1ected if they are connected by a timelike or lightlike 

f!!ll~[ 8] (not necessarily a geodesic). In the closed de Sitter 

space, however, all the points causally connected to a point Q 

lie on causal geodesics through Q. We shall always assume {see 

remarks at the beginning of Chapter VII below) that the manifold 

under consideration has a distinguished time orientation. Then 

the points which are causally connected to Q can be further 

classified as the .E~.2! or the future of Q. (These are disjoint 

unless the space admits closed timelike curves see Sec. 

III. 6.) 

Just as in flat space, through each point Q there is a 

cone of lightlike geodesics, which in a two-dimensional space 

degenerates to two curves, as in Egs. (4.17-18). The light cone 

of Q separates the points in the neighborhood of Q which are 

connected to Q by a timelike geodesic from those which are 

[8) I.e., a smooth curve with timelike or lightlike tangent 
vector at each point. 
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connected by a spacelike geodesic. In a.e Sitter space the 

branches of the light cone of O asymptotically approach those 

worldlines orthogonal to the instant J rr = X = 0) which pass 

through the points P and p• (x' -= + R, XO -= x~ = 0) located one 

quarter of the way around the world. 

In de Sitter space the points inside and on the light 

cone of the antipodal point 0' are not 

connected to Oby any geodesic. Nevertheless, they are connected 

by nongeodesic spacelike curves; in fact, it is easy to see that 

any two points in de Sitter space can be connected by a spacelike 

curve (running all the way around the closed universe if 

necessary) • l timelike or lightlike geodesic through o• can 

never intersect one through o. Thus, an observer at o and one at 

o• are completely isolated from each other; not only can they 

never meet, but they are not acted on by any common influence in 

the past and cannot both influence any event in the future. This 

situation has no analogue in Minkowski space. For points inside 

the future [past] light cone of o• a similar statement can be 

made about their contact with o in the future (past]. 

Another interesting separation of the space which has 

no analogue in special relativity is defined relative to a 

timelike geodesic. For our standard geodesic w <p = ff= 0) it is 

marked out by the light cones of P and P', which meet W 

asymptotically. (These are shown in Figs. 4 and 5.) The parts 

of the cones which approach Win the future form the !!!~nt 

h0!:!1.2.!!, which separates events which are observable by an 
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observer on W from those which are not. That is, no 

future-directed lightlike (or timelike} curve through a point 

beyond the horizon intersects w. (An observer at o can intercept 

signals from this point, however, if he changes his velocity 

appropriately, provided the point is not in the future part of 

the geodesically isolated region discussed above.) The branches 

of the cones which approach Win the past are called the £article 

h.2£!!52!!• The points on the near side of the prirticle horizon are 

those which an observer on W can influence, in principle; or, 

those from which he can be observed. 

The intersection of the near regions defined by the two 

horizons is the region (Eq. (2.3) with x~ > 0) covered by a 

connected patch of the Fermi coordinate system (see Fig. 4). 

These are the points which at some time or another are 

£Qntemporaneous with the observer on Win what was argued in Sec. 

III.3 to be the physically natural sense. These points could be 

called historical (relative to W), and the others 

~!trahistorical. 

Horizons can be defined for any timelike curve in .any 

space-time, but they are located at infinity (in other words, are 

vacuous) in some cases. For instance, in Minkowski space all 

points are historical with respect to a timelike geodesic (but 

not with respect to a timelike hyperbolic curve -- a situation 

which will be studied in Chapter IX). 

We will study the generalized Klein-Gordon equation in 

de Sitter space in Chapter V and in more general spaces in 
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L 

Fig. 6 

Domains of dependence and Cauchy horizons in flat space 
for bounded and unbounoed spacelike sets Kand K'. 

Chapters VII-X. The lightlike geodesics are the characteristics 

of this equation. Let S be a segment of a space like 

hypersurface. A solution of the equation is completely 

determined by prescribed values of the function and its time 

derivative on s within a region called the domain of dependence 

o.f s .( 9] It is the union of the set of points X such that !t!~!"I 

timelike curve through X can be extended into the past to 

intersect s and the set of X satisfying the analogous condition 

(9] In general one expects it to be the maximal region with this 
property, but see Sec. v.a for a counterexample. 
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with "pastff replaced by "future". If space-time has no closed 

timelike curves and S is sufficiently nice, the domain of 

dependence is, as suggested in Fig. 6, a diamond-shaped region 

outlined by lightlike surfaces called Cauchy horizons. In 

general space-time the domain may have such a boundary even if S 

extends to infinity -- see the .next section. 

A bypersurface S whose domain of dependence is the 

whole space-time is called a Cauchy surface for 

Then the Cauchy problem with initial data on 

Not every space-time contains a Cauchy surface. 

has proved: 

that space-time. 

Sis well-posed. 

Geroch (1970) 

(1) Existence of a Cauchy surface is equivalent to 

~!,ob~.! hyperbolicity, a technical condition needed to prove 

existence and uniqueness theorems for hyperbolic partial 

differential equations on a manifold {see, e.q., 

Choquet-Bruhat (1968)). 

(2) If a Cauchy surface S exists, the space-time is 

topologically of the form S X t, and the "slices" S X fa} can 

be chosen so that they are all Cauchy surfaces. 

In the course of this dissertation we shall consider 

several examples of the situation described in point (2) (cf. 

Secs. III.5,6,7, IX.1, X.2). In each case a portion of a space 

of constant curvature will be covered by a coordinate system of 

either the Gaussian or the Fermi type, and the surfaces of 
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constant time will be Cauchy surfaces for that region. 

From the geometrica 1 information at our disposal we can 

draw the following conclusions about the Cauchy problem in closed 

de Sitter space: 

(1) A spacelike slice of the form (1.7) is a Cauchy 

surface for the entire de Sitter space. 

(2) The domain of dependence of ,half of a geodesic 

spacelike bypersurface (where tpt < n;2 and X = 0 in some 

geodesic Fermi coordinate system) is the set of points which 

are historical (see above) with respect to the timelike 

geodesic (p = 0) which passes perpendicularly through the 

center of that segment of hypersurface. 

The latter is an important observation: it means that 

within the connected region covered by a Fermi coordinate system 

the Cauchy problem is well-posed fo~ each hypersurface 

{XIX= const.J. Thus this patch of space may. as far as the wave 

equation is concerned, be consistently considered a universe in 

itself (static!), for which the surfac@s of constant X are Cauchy 

surfaces. 

Although the static de Sitter universe is 

Cauchy-complete, it is not g~desical!.Y complete. This is most 

vividly explained in terms of the physical pictures introduced in 

Sec. III.3. Consider one of the worldlines 

w• = {xi~= const. 1 OJ in relation to the Fermi coordinate 
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system based on the worldline w. At some finite value of t, the 

proper time of an observer traveling on w•, w• hits the event 

horizon of wand passes out of the (X,p) universe. Of course, 

this happens at time t = ro from the point of view of an observer 

on w. 

Geodesic completeness can be characterized 

intrinsically, without!! .E!!.QI! knowledge of whether the space is 

part of a larger space. One requires that on every geodesic 

which has been extended as far as possible the values of an 

affine parameter become arbitrarily large. {See Geroch { 1968).) 

De Sitter space is geoa.esically complete, because the spacelike 

geodesics (4.13,15) are periodic and the timelike (4.iU,16) and 

lightlike (4.17,18) qeodesics continue to infinity in their 

affine parameters (e.g., rand\ respectively). 

Then-dimensional open de Sitter space is defined hy 

0 2 
(.x ) 

1 2 
- {X ) ... n-1 2 

- (X ) 
n 2 

-+ (X ) 
2 

= + R • ( 6. 1) 

In general it is topologically different. from the closed space 

with which we are primarily concerned. When n = 2, however, the 

open space (SO (2,1)/SO (1,1)) is geometrically identical to the 
0 0 

closed space ( SO { 1 , 2) / so ( 1 , 1 )) • 
o 0 

Only the physical 

interpretation is different: time and space are interchanged. 

The calculations of Secs. III.1,2,4 still apply, but nowt and X 

are space coordinates and er and f' are time coordina t.es. One must 
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look at Pigs. 3-5 from the side! The physically relevant 

structural properties of the space, consequently, are quite 

different from those of the closed space described in the 

previous section, and provide an interesting comparison. 

The differences are primarily due to the asymptotic 

behavior of the light cones, schematically indicated in Fig. 7. 

In the open space the light cone of a point O becomes at large 

spatial <listances asymptotically parallel to a geodesic spacelike 

hypersurface w. The timelike geodesics normal to W all come 

together at Q (cf. Figs. 4-5). As a consequence a geodesic 

Gaussian coordinate system ~,i) does not cover the whole space. 

A geodesic Fermi system (o'1 t) does, however, and it gives rise to 

a manifestly static metric. 

It also follows that there are causal curves which 

connect points which are not joined by geodesics. In fact, all 

points in open de Sitter space are causally connected. 

It is easy to see that there are no event or particle 

horizons relative to geodesics in this space. 

The formulation of the Cauchy problem in open de Sitter 

space is very complicated. First, the presence of closed 

timelike curves wreaks havoc with an initial-value problem. In 

the present case every point is in a position to influence every 

other point, even points on the same spacelike hypersurface. 

There are three possible ways out of this difficulty. (They will 

all be investigated and related to each other in Sec. V.8.) 

First, one could investigate whether imposing the 
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(a) ~inkowsti space 

(b) Closed de Sitter space 

(tj Open de Sitter space 

Behavior of light cones in universes of constant curvature. 
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condition that the solutions of the wave equation transform under 

a unitary representation of the de Sitter group allows the 

boundary condition of periodicity in the time to be reconciled 

with prescribed initial conditions. 

Second, one could restrict 
f<Y ' -t 

attention to the region covered by a Gaussian 

coordinate system. Here there are no closed 

timelike curves, and each surface of constant 

f is a Cauchy surface for the restricted 

space. This model is the two-dimensional 

analogue of "Case 6" of Robertson and Noonan 

-- it is a Robertson-Walker uni verse which 

expands from a singularity and then contracts 

again {see Appendix D). This space is not 

geodesically complete, and, of course, it is 

not invariant under the action of the de 

Sitter group. 

Finally, one could consider the 

universal covering space of the hyperboloid 

(6.1). That is, we allow~ to ranqe from -ro 

t,o + oo and values of <f which differ by a 

multiple of 2n are 

space is sketched in 

infinities have been 

.!!Q! identified. This 

Fig. 8. (The spatial 

mapped in to finite 

locations, and light cones appear as diagonal 

' 0( ' -t---➔ 1 
I 

P" I 
I\ I 

I \ t 
I \ I 

It'.'. ~I 
I\ o=211 / I 
t \ / I 

~ I \ / I ~ 
,~ I \P 1 t ~ 
I 1 /\ f -S'ides 

II I / \ I II 

~ I / \ I ~ 
,/ IL __ Q_' ~I 

0
, 

0 " <r-=lt /1 0 
,', I \ / I II 

\--i I \ / 11-i 
I \P I 
I /\ I 
1 / \ I 
1 / \ I 
It'.'. o . ~I 
I\ ct=O / I 
I \ / I 
t \ / I 
1 \/ I 

Fig. 8 

Covering space 
of open de 
Sitter space. 
The coordinate 
oc is defined in 
Eq. (V. 2. 5). 

-r 

-rr 

straight lines.) Wigner (1950) has argued that this is a 
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physically reasonable space to study in quantum theory. The 

symmetry group is the infinite-sheeted 

o.f SO 
O 

(2, 1) (see Sec. B. 1) • Now 

spacelike geodesics through Oare not 

(The cf-translates of these points 

universal covering group 

the points which lie on 

causally connected too. 

by a multiple of n, on the 

other hand, are causally connected hut not qeodesically connected 

too. The timelike geodesics through P are confined to the 

sequence of diamonds in Fig. 8.) 

The domain of dependence of the instant W = {xtif= O} 

is the diamond region covered by the Gaussian coordinates (just 

discussed). For the whole covering space one would not expect 

the Cauchy problem to be well-posed. The value of a solution of 

the wave equation at a point beyond the Cauchy horizon of the 

initial instant can be influenced by "information which comes i:n 

from infinity" along causal curves which do not intersect w. 

This example points up a complication which will be encountered 

in applying canonical field quantization to some Riemannian 

space-times, even 

circumstances under 

with static 

which this 

Sitter space will be determined. 

metrics. Tn 

problem arises 

Sec. 

in the 

V.8 

open 

the 

<le 

7. ~~ Sitt.er ~~£,gas ! r:ucli1gan. Robertson-Walker Universe 

(HorQ§Eherical Coordinates). 

Another coordinate system which has historically been 

used in the study of the de Sitter universe is the system of 

Lema!tre and Robertson, defined in the two-dimensional case by 



Sec. II!.7 119 

0 1 2 t 
X = sinh t + - r e I 

2 

1 t 
X = r e # (7. 1 a) 

2 1 2 t 
X = cosh t - - r e • 

2 

The extension to higher dimensions is simple: 

j j t 
x = r e ( 1 ~ j < n - 1 l (7. 1 b) 

defines a Cartesian spatial coordinate system. The range of the 

coordinates is 

; 
- co < t < oo, - co < r < ro. 

The metric is 

2 2 2t 2 
ds = dt - e dr, 

where in higher dimensions 

2 1 2 
dr = (dr ) + • • • + 

n-1 2 
(dr } • 

(7. 2) 

(7. 3a) 

(7. 3b) 

The coordinates cover half of the de Sitter hyperboloid 

(Fig. 9), the region bounded ~n dimension 2) by the liqhtlike 

geodesics through P and P' which asymptotically approach the 

worldline Win the far past (the particle horizon of W). Thus 



Sec. III.7 120 

Fig. 9 

The Iemattre-Robertson or horospherical coordinate system. 
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the universe consists of all the points our standard observer (or 

an observer on any of the geodesics given by r = £.Q.!!§!•} can in 

principle observe. The metric (7.3) displays this space as a 

Robertson-Walker universe which is always expanding. (This 

property explains the popularity of the Lemattre-Robertson 

coordinates when de Sitter space is taken seriously as a model of 

the actual universe -- see [Robertson-Noonan 1, pp. 165-367.[ 10)) 

It is clear that a change of the signs of t and x0 in Egs. (7.1) 

would yield a contracting universe bounded by the event horizon 

of the central worldline. 

The metric of ~q. (7.3) is Gaussian, but none of the 

spaces of constant time, which are the intersections of the 

hyperboloid with the planes is a geodesic 

hypersurface. However, (t,r) can he regarded as the geodesic 

Gaussian system built on the particle horizon; this cone is a 

sort o.f limit as t ~ - oo of the spacelike geodesic 

hypersurfaces orthogonal tow, as we shall see at the end of this 

section. 

The hypersurfaces of constant time, given by 

0 n 
F (X) = - 1, x + x = const., (7. 4) 

are isomorphic to Euclidean (n-1)-space as Riemannian manifolds. 

That is, they are not only open and infi.nite (cf. Eqs. {7. 2)), 

[10] It is specifically th.is model which these authors call "the 
de Sitter universe". 
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but actually f.!at. This is a trivial statement for n = 2, but it 

is quite significant for n > 2, where the spacelike hypersurfaces 

(1. 7) and (2. 8) are definitely curved. 

The hypersurfaces (7.4) are Cauchy surfaces for the 

half of de Sitter space which is covered by these coordinates. 

The metric (7.3) is obviously invariant under the 

transformations 

and 

t~t+t, 
0 

The generator of the "spatial translations« (7.5) is 

L + t = i (K - P) 
10 21 

(7. 5) 

(7. 6) 

(7. 7) 

(see Eqs. (7.1), (A.1.11-12), (I.3.5)). So this is a parabolic 

subgroup of s0
0 

{1, 2) (see Sec. II. 3). The "dilation" (7.6) is 

just ${t
0

) (Eq. (2.5)). The statement in fRobe.rtson-Noonan] 

(pp. 347, 348, 365) that 11 the de Sitter universe is the only 

nonstatic stationary model" (doubly nonstandard terminology!) 

refers to the existence of the symmetry (7. 6) (see pp. 323 and 

346-348 of the book). 

The coordinate system . (7.1) corresponds to the coset 

decomposition· 
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ir(K - P) itH 
e e 

In higher dimensions this becomes 

i~-(K - P) itH 
e e 

so ( 1, 1) • 
0 

so (1,n-1). 
0 

(7. 8a) 

(7. 8b) 

This decomposition (which clearly does not cover the whole group) 

is discussed by Hannabuss (1969a). It is closely related to the 

Iwasava decomposition[11] 0 f so ( 1 , .n) , 
0 

in which SO (1,n-1) 
0 

is 

replaced by SO(n}. The hypersurfaces (7. 4) are the hor2,Rpheres 

which are widely used in modern harmonic analysis 

[ Gel1 fand 5 ]} • 

( e. g • , 

B~rner and Dttrr (1969) have studied quantum field 

theory in the four-dimensional de Sitter space using the 

horospherical coordinate system (7.1-3). Their solution of the 

eigenvalue problem for the Casimir operator (pp. 681-690) is 

essentially the decomposition of the quasiregular representation 

by the horospherical method, described in elementary terms. 

To see the relationship of horospherical to geodesic 

Gaussian coordinates, operate on Rqs. ( 1. 2) with ,5(,() (Eq. 

(2.5)): 

[11] See, e.g., [Hermann], pp. 40-44. 
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0 
x - sinh (t - x) - sinh t.__ cash t (cos r:r - 1), 

1 
X = cosh r sin er, (7. 9) 

2 
x = cosh (t - t) - sinh X sinh t (cos er- 1). 

This maps the geodesic hypersurface {xtr = OJ on which the cr,a) 

system is based back toward X = - co; that is, to the light cone 

at t = -oo in the Lernattre-Robertson picture {Fig. 9). Now let 

1 'X. 
t = t - t., r=-cte, {7. 10) 

2 

let X ~ ex> (replacing cosh ,X. and sinh X by ~t /2), and expand 

the trigonometric functions up through order r~. Tb.e result is 

Eqs. (7.1a). Thus we have exhibited the group of r-translations 

(7.5,7) as a contraction of the group of if-translations (1.5), 

or, better, as a limit of the SO(2) subgroups of S0
0

(1,2) in the 

sense of Hermann ([Hermann], pp. 86-101; see also [Hermann 2]). 

In the general case we have !S0
0

(1,n-1), the symmetry group of 

the spaces (7.4), as a limit of the SO(n) symmetry groups of the 

spaces f1. 7) and their images under ..J°&). 
As explained in the Introduction, we are interested in 

de Sitter space as a finit! universe of constant curvature. We 

shall work, therefore, mostly with the coordinate svstems of 

Secs. III.1-2. The horospherical picture has been discussed for 

the sake of completeness and to emphasize that a given space-time 
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manifold may be split into~!~ and ti!~ in several different 

ways. As we shall see in Chapters TX and X, these alternatives 

are associated with different procedures of canonical 

quantization of a field. 
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Chapter IV 

AXIOMS FOR QUAHTOft FIELD THEORY IN DE SITTER SPACE 

Vith the geometrical preliminaries out of the way, we 

are ready to consider the possibility of quantum field theory in 

de Sitter space. Let us first see how far we can go in rewriting 

the Wightman axioms for general field theory (see Appendix E} so 

that they apply to the closed de Sitter space •. We shall find the 

spectral condition to be the major stumbling block. This might 

have been anticipated from the absence of an obvious analogue of 

the energy operator in the Lie alqebra of the de Sitter group. 

It is a major contention of this dissertation, however, that this 

prob~em is only a special case of a gap in our understanding of 

the notion of quantum field with respect to curved space-time in 

general~ the claim (see Philips (1963), Pronsdal (1965), Castell 

(1969)) that there is no such ambiguity in the case of the open 

de Sitter space (because there is a global time translation group 

whose generator can be made positive definite) deserves critical 

examination from a physical point of view. 

In later chapters we shall try to construct the quantum 

theory of a free (i.e., not self-interacting) neutral scalar 

field in de Sitter space as a special case of such a field in a 

general Riemannian space-time. 

the conclusion will be that 

The reader should be warned that 

it is not obvious that the most 
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reasonable theory on physical grounds must satisfy the axioms 

proposed here. In the last section of the chapter the relation 

between the contents of this chapter and what comes later will be 

explained further. 

As in Chapter I we shall denote the 

space-time manifold by~. 

de Sitter 

1. Axioms !i!h st,aiqhtforward Generalizations. 

No change is needed in the first axiom, which deals 

only with general principles of quantum theory, without reference 

to space-time: 

,. 2_yantum theory. The states of the theory are 

described by unit rays in a separable Hilbert space 1/. 

Naturally, one expects to keep the second axiom with a 

change in the symmetry group: 

2. Relativistic The relativistic 

transformation law of the states is given by a continuous 

unitary representation U(A) of the universal covering group 

of the de Sitter group so (1,n). 
b 

See Sec. B.1 for a description of the covering group. One of our 

major concerns in later chapters will be whether Axiom 2 is 

consistent with an approach to field theory in curved space which 

generali2es to arbitrary space-times without any symmetry group. 

The next group of axioms deals with the field 
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operators. We a·re faced first with the problem of choosing a 

test-function space. 

3. Existen~ and !!.!~Iftdn~!i§ of the !ields. There is 

a topological vector space S of functions defined on 

space-time such that for each f e Y"there exists a set 

rJ 
1 
(f), ••• , fin (f) of operators. These operators, together 

with their ad joints ~ 
1 
(f)t , ••• , si .... {f} t , are defined on a 

linear domain D of vectors, dense in 1/. The plj (f) and - J 

t 
¢ . (f) leave D invariant. If ♦, , e D, then ( ♦, 91. (f) f) as a 

J J 

functional of f is a member of the dual space :7'i- (a space of 

distributions). 

we shall write symbolically 

where 

1 
dp (X) : vTg'i dx ... n 

dx 

(1.1a) 

(1. 1 b} 

is the invariant volume element on M. This convention makes both 

- and f scalar objects if¢ is a scalar field (cf. Sec. VII.3). 

What test-function space ~should we choose? Even ln 

the ordinary relativistic theory this is a somewhat arbitrary 

choice. In Wightman and Garding (1965) it is taken to be JJ, the 

space of c""' functions of compact support; in [Streater-Wightman) 

it is ,J, the C
00 

fun ct ions of fast decrease. There is no trouble 
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in defining what it means to be a C~function of compact support 

on M. The likeliest analogue of-the condition of rapid decrease 

is 

p q q tt' d f/dt i --4 0 as I !1 -4 0:> for all integers p, q, (1. 2) 

where t is the time coordinate of Sec. III.1r which is the 

geodesic arc length in a certain timelike direction. (Since the 

universe is spatially finite, no falloff conditions are needed in 

spacelike directions.) Then the topology in this space and its 

dual can be defined by seminorms in the usual way (see 

[Streater-Wightman], pp •. 33-34). The condition (1.2) is not 

manifestly invariant under the de Sitter group, since it depends 

on a particular Gaussian frame. (Neither is the standard 

definition of J manifestly Lorentz-invariant.) But by comparing 

Egs. (III. 1. 2) and (III. 7. 9) one sees that the time coordinates 

in two Gaussian frames are asymptotically related by 

1'.' 1 - r + f {a') , - 1 
dt 

where f(a) is bounded, so that the definition is really 

independent of frame. 

We state the transformation law of the fields only for 

the scalar case: 

D invariant, and the equation 



Sec. IV .1 130 

-1 
U (A) si (f) U (A) = .¢ ( A f) ( 1. 4a) 

is Yalid when each side is applied to any vector in D, where 

-1 
Af (X) = f (A X) • (1.4b) 

There is a variety of ways to generalize the notions of tensor 

and spinor field to Riemannian space-time in general and 

especially to de Sitter space (where the de Sitter group and its 

representations are available to be thrown into the mathematical 

mix). Which of these formalisms to adopt seems to be at least 

partly a matter of taste. (For some rival choices in the case of 

de Sitter space see Dirac (1935), Nachtmann (1967), Bffrner and 

Dffrr (1969), Hannabuss (1969a) •. The equivalence of several has 

been shown by Castagnino (1970). Well-developed formalisms for. 

arbitrary space-times are those of Lichnerowicz (1961) and 

Penrose (1965) • ) Since the present work has been limited to 

scalar fields, we shall not go into this subject. 

Every point x in M has an associated light cone which 

delimits the regions which are related toxin a causal vay (see 

Secs. III.4-5). One expects that measurements at points outside 

the light cone vill be independent of measurements at x. 

5. 1.2.£.il £.Qmmutati.!!1..I• If there is no pair of points 

x € supp f and ye supp g such that x and y are causally 

connected, then one or the other of 
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(t) 
[ - (f) , 91 (g) ] = 0 (1. 5) 

j k .t 

holds for all j and k when the left-hand side is applied to 

any vector in D.(1] 

The three axioms expressing the existence, uniqueness, 

and cyclicity of the vacuum make sense as they stand: 

state ,
0

, the vacuum, invariant under u, unique up to a phase 

factor. 

7. £Iclicity of the fields. There is a state which is 

cyclic for the smeared fields; that is, polynomials in the 
(tj 

smeared field components, P(- (f) ,_ (g), ••• ), applied to 
I ~ 

this state yield a set D of vectors dense in 1/. 

8. £IclicitI of the ,acuum. , is in D and is cyclic. 
0 

These axioms, like Axiom 2, are stated only tentatively. It is 

not obvious that a theory in which the full role of the Poincare 

group in special relativistic field theory is attributed to the 

de Sitter group is the physically most reasonable theory of 

fields in de Sitter space. Let us be more specific. The 

geodesic Gaussian (Sec. III. 1) and horospherical (Sec. III. 7) 

coordinate systems represent de Sitter space as an ~!BA!lil!!9. 

----~--· ----------------(1] The superscript (t} stands for the presence or the absence of 
an Hermitian conjugation. 
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universe. It is quite plausible that in such a situation 

particles will be produced by interaction vi th the gravitational 

field. (This problem has been studied by Parker (1966, 1968, 

1969, 1971) and is discussed in Chapter X.) Then the no-particle 

state will not be invariant under the de Sitter group.[2] It is 

conceivable that there will not be any de-Sitter-invariant state 

in the theory at all. On the other hand, the de Sitter universe 

is static from the point of view of the Fermi system (Sec. 

III.2), but the theory (which has a no-particle state) which is 

thereby suggested is not de-Sitter-invariant, for reasons to be 

explained in Chapter IX. 

Incidentally, it is not clear that Axiom 7 ls 

equivalent to the statement that the algebra of field operators 

is irreducible. The usual proof ((Streater-Wightman], p. 141) 

that cyclicity of the vacuum implies irreducibility depends 

crucially on the spectral condition. 

The crux of ,the spectral condition (Axiom 9, Appendix 
0 

E) is that the energy operator P is positive. The generator we 

have called H (see Secs. I.3 and III.2) is not positive in any 

irreducible unitary representation of so (1,2) (see Sec. II. 3). 
0 

As we have seen in Sec. III.3~ there is a good geometrical reason 

[2] As it standsthis-aisertion is a !l.2ll 2eguitur, since a time 
translation in these coordinate systems is not an element of the 
group. The claim will be substantiated in Chapters V and X, 
however. 
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for this.· Philips and Wigner (1968) (pp. 632, 635-639) have 

shown that M element of J:_(50
0 

(1,4)) ca.n be represented by a -

positive operator, because each element can be transformed into 

its negative by an element of the group •. 

Another aspect of the same problem is the difficulty of 

separating the solutions of the wave equation in de Sitter space 

into positive- and negative-energy functions according to any 

convincing definition (see Philips (1963) and Secs. V.3-6 below). 

This, however, is a general problem affecting field quantization 

in all metrics which are not manifestly static (see Chapter X). 

The impression that it does not arise for the open de Sitter 

space (see, e.g., Philips (1963)) is due to the existence in that 

case of a global coordinate system which gives the metric a 

static form. 

As we have seen in Chapter II,, there is a 

correspondence between the irreducible representations of the de 

Sitter group and those of the Poincare group for space of the 

same dimension. In particular, the principal series of 

representations of 50
0

(1,n) contracts to the representations o.f 

ISO (1,n-1) with timelike momentum spectrum. A plausible first 
0 

step toward incorporating a spectral condition a 

de-Sitter-invariant theory would be to require 

into 

that only 

representations of the principal series appear in the 

decomposition of U(A) into irreducibles. This axiom could not be 

expected to do the entire job of the spectral condition, because 

it does not touch the problem that both past-directed and 
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future-directed timelike momenta can be extracted by contraction 

from the ~!~ irreducible rep.resenta tion of the de Sitter group 

(Secs. II.1 and II.3). In physical terms it would be expected to 

exclude tachyons but not slower-than-light particles vith energy 

unbounded below. 

Unfortunately, even this minimal restriction on the 

representation U(A) is probably untenable. Pukinszki (1961) has 

shown in the case of so (1,2) that the tensor product of two 
0 

representations of the principal series contains representations 

of the discrete series as direct sum ■ands.[3] So the proposed 

axiom would exclude, for instance, a theory in which the states 

of one stable particle form an irreducible representation[4] and 

n-particle states are tensor products of these (second 

quantization). This is not a conclusive argument, of course, 

since we have other reasons, explained in later chapters, for 

being suspicious of this approach of covariant second 

quantization. However, the complete exclusion of tensor products 

as subrepresentations of u makes one suspect that this is the 

vron g track. 

Let us, therefore, abandon elegant group-theoretical 

conjectures and attack the problem by more direct physical 

reasoning. Positivity of the energy seems to be related to the 

behavior of a system (or perhaps part of a system) under 

(3) Nachtmann (1968b) rediscoveredthisfact and interpreted it 
as dynamical instability of a covariant second-quantized theory. 
See Sec. X.4 below. 
(4) Cf. Newton and Wigner (1949). 
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!nflnitesimal tig translation i!! th! ~s.iti!,f directio_!!,. The 

failure of group theory has been traced to the absence of any 

group elements corresponding to time translations in a spatially 

global sense. However, we do have a notion of local time 

translation at each point of a geodesic hypersurface; if we 

choose the latter as the base of a Gaussian coordinate system of 

the form (III.1.2-3), local time translation is translation in r~ 

(The gradient of r is at each point of the hypersurface a unit 

normal in a distinguished "positive" direction.) 

These considerations suggest as a replacement for the 

spectral condition the following sequence of conditions: 

(1) The dynamics of the system is given (at least in the 

neighborhood of {xlt = 0}) by a system of 

operators: 

,er ,oJ 
2 

-1 
= u (t , t ) fl (t , o-) U ( t , r ) 

2 1 1 2 1 

unitary 

(2. 1) 

(2) The propagator U is differentiable, in the sense that 

H (T) :: - i lim 
!'➔! 

exists, so that 

0/d 

U (T', 1:) - 1 

- (t, a) = i [ B ( 1!.) , pl { t' * a) J. 
or 

(2. 2) 

(2. 3) 
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(3) H (0) is a positive opera tor. 

Let us not pass judgment on this suggestion until we have had a 

chance to compare it with some concrete proposals for the 

quantization of the "free" scalar field in de Sitter space {see 

Secs. X.8-10) • 

.3. A2I!fil.Q!.i£ con!~teness. 

There remains the 

One's first impulse is to 

axiom of asymptotic completeness. 

formulate some condition on the 

behavior of states (or, rather, observables, in the Heisenberg 

picture) at large positive and negative times, where "time" is 

taken to be a coordinate which runs along the axis of the de 

Sitter hyperboloid, liker in the Gaussian system. The idea is 

that in these limits two particles should separate to large 

distances in some sense (see the classical trajectories in 

Fig. 10). However, this approach seems inappropriate for several 

reasons: 

(1) The notion of time is highly ambiguous in de 

Sitter space. As we have seen in Secs. III.2-3, the 

physically most reasonable definition of time for ~ given_ 

observer assigns infinite time to a surface in de Sitter 

space (the .historical part of his event ho.rizon) which is 

located at finite time relative to other observers. The 

physical sig·nificance in .the !sI~ of the time coordinate t 

is probably not as g.reat as has sometimes been assumed. 
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Fig. 10 

Scattering in de Sitter space. Shown are (1) a universal time 
coordinate t, disparaged in the text; (2) trajectories of two 
particles, R and s; (3) the curves t 5 = ! oo, where t 5 is the 
proper time of an observer travelling with particle S; (4) an 
elementary particle scattering event occurring near the 
trajectory of R. 
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(2) As remarked at the end of Sec. IV.1, we may have 
I 

to deal not with a finite number of particles which are 

stable except insofar as they interact with each other, but 

with an indefinite, perhaps infinite, perhaps constantly 

changing, number of particles. 

(3) Most importantly, quantum scattering theory deals 

with phenomena which take place in .§..!all regions of 

space-time. One expects nearly free particle behavior at 

particle separations which are large compared to the range of 

the interaction between the particles, but are nevertheless 

finite -- and, in fact, small -- compared to the scale of the 

curvature of the universe (see Fiq. 10). In flat-space 

theory an extrapolation to infinite time is made as a 

mathematical convenience; one could consider only finite 

times at the cost of dealing with only "approximately free" 

particle behavior. In de Sitter space the convenience of an 

extra+iolation to infinite time is lost, because the curvature 

of the universe in the larqe interferos •. 

Scattering theory in de Sitter space should be based on 

an analysis of particle observables at finite separations. The 

formulas obtained should reduce in the limit of small curvature 

to the results of asymptotically complete Minkowski-space 

theories. This task is beyond the scope of the present work, so 

we shall not consider asymptotic completeness further. 
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4. summarx !RQ Previe!• 

In adapting the axioms of field theory to de Sitter 

space there is no reason to change the principle of general 

quantum theory. The axioms describing the fields (including 

locality), the representation of the geometrical symmetry group, 

and the vacuum have natural analogues; however, those ~hich 

belong to the "group" side of the picture {see Appendix E) have 

been asserted with some hesitation. The spectral condition is 

highly problematical. Asymptotic completeness has been dismissed 

with some qualitative remarks. 

we cannot hope to formulate de-Sitter-space quantum 

field theory entirely in the abstract. Conjectured general 

principles must be tested against particular models. One hopes 

that the study of models will shed light on (1) what, if 

anything, can be substituted for the spectral condition of 

Poincar,-invariant theory; (2) hov much confidence can be placed 

in Axioms 2, 6, and 8 (the "group" axioms). 

Most of the rest of the dissertation is devoted to the 

problem of constructing in de Sitter space an analogue of the 

free scalar field in flat space. In Chapter V we shall study the 

c- number solutions of the generalized Klein-Gordon equation and 

consider the possibility of constructing a field theory by second 

quantization of a single-particle theory. Doubts will arise 

(related to the old problem of the spectral condition) as to 

whether this theory is on as sound a physical basis as the 

ordinary theory for flat space which suggested it. We shall then 
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try a different approach, canonical quantization of the classical 

field equation. This turns out to be applicable to an arbitrary 

Riemannian space-time (Chapters VII-X). Evidence will be 

presented that a "physical" representation of the field operators 

is not uniquely determined, and that the particle interpretations 

naively associated with particular representations are of only 

rather limited physical significance. 

In an attempt to suggest a "best" or "most physically 

significant" representation we arrive at one which for the case 

of two-dimensional de Sitter space can be shown (Sec. 1.9) to 

satisfy a spectral condition in the sense of Sec. IV.2 (and to 

possess a reasonable particle interpretation closely related 

thereto) and also to satisfy the axioms of Sec. IV.1. However, 

it will do the latter only by accident, as it were: the vacuum 

state in the group-theoretical sense will have nothing to do with 

the absence of particles. Moreover, it is doubtful that the 

theorem that the spectral condition and the group axioms can be 

satisfied simultaneously can be extended to the four-dimensional 

de Sitter space. If it should happen that in the 

four-dimensional case there is one ("covariant") representation 

which satisfies the axioms of Sec. IV. 1 and a different 

("positive-frequency") representation which satisfies some kind 

of spectral condition and fits well into a general theory of 

field quantization in curved space, then that would be an example 

of a situation where different representations are useful for 
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different purposes.[5] The first theory would probably be of 

greater physical interest from the standpoint of general 

relativity and cosmology, but the second would be the one to use 

in the program of constructive field theory outlined in the 

Introduction and Secs. I.2 and VI.3. 

-- ---------(5] See Sec. IX.4. 
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THE FIELD EQUATION IN DE SITTER SPACE 

AND SECOND QUANTIZATION 

142 

We begin the attempt to construct a "free" field in de 

Sitter space by postulating a generalization of the Klein-Gordon 

equation. This equation is easily solved in the coordinate 

systems introduced in Chapter III, and we study the solutions in 

some detail in the two-dimensional case. 

When we try to mimic the familiar construct.ion of the 

free field in flat space by second quantization, we find 

ourselves at a loss for an analogue of the notion of 

"positive-energy solution". The ansatz which seems most 

reasonable physically turns out to be inconsistent with the idea 

of a particle as an elementary 

according to an irreducible 

group. Further dev~lopment 

Chapter x, in the context of 

system whose states transform 

representation of 

of this theory is 

a general theory 

the de Sitter 

postponed to 

of canonical 

quantization of fields in Robertson-Walker metrics. Likewise, 

the quantization suggested by the Fermi coordinate system is 

absorbed into the theory of quantization in static metrics in 

Chapter VIII. A theory proposed by Tagirov ~1 a!• (1967), which 

maintains the idea of a particle as an elementary system, is 

· discussed from the point of view of Chapter IV. 
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In the final section the solutions of the field 

equation in the open de Sitter space are studied briefly. This 

problem provides an example of subtleties in the physical 

significance of essential self-adjointness of operators in 

quantum theory. 

1. Differential fQ!:!!! Qf !h~ Generators inQ. th~ f!!_simir Q}?erator. 

In Sec. A.3 the basis elements of the Lie algebra of 

S0
0

(1,n) are reali2ed as differential operators in the imbedding 
11-+ I 

space J • These are vector fields which are tangent to the de 

Sitter hyperboloid (I.1.1). Consequently, they can be expressed 

as differential operators on de Sitter space. Using Eqs. 

(III.1.3), they can he expressed in terms of the Gaussian 

coordinates: 

0 
p = - i-, (1.1a) 

06 

0 0 
H = i[cos Cf - - tanh T sin (J' -], (1.1b) 

or ocr 

0 0 
K = i[ sin (f- + tanh r cos cr-J. ( 1. 1c) 

ot bcr 

(We consider only the two-di■ensional space for simplicity.) 

Similarly, using Eqs. (III. 2. 2), we find for the Fermi coordinate 

system 
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0 0 
p = - i[cosh -X - + tan f sinh -,. -], 

op t'iX. 

0 
H = i-, 

~{ 

a 0 
K = i( sinh x- + tan p cosh X -]. 

op ox 

Next we calculate the Casimir operator 

2 2 2 
Q = K + H - P • 

In the Gaussian system we obtain 

0 
Q - - tanh r - + sech 

and in the Fermi system 

2 
Q = - sec p - tan o 

ox"L ' op 

2 

+-
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( 1. 2a) 

( 1. 2b) 

( 1. 2c) 

(1. 3) 

( 1_. 4) 

(1. 5) 

From either of these equations, generalized to radius R (see end 

of Sec. III.1), one can verify that 

2 
Q = - R □ ( 1. 6) 

C 

(g = det {g }). By O we denote the Laplace•Beltrami operator 
_.,J\,J/ '-

or covariant d'Alembertian ((Adler-Bazin-Schiffer], pp. 11-76). 
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Being generally covariant, this expression for Q is valid in any 

coordinate system. 

In dimension n the relation (i.6) remains valid~ and 

the higher-order Casimir operators are not independent. For 

instance, Q:;z_, of Eq. (I. 4. 8) is identically zero. So to obtain 

group representations with "spin", one must consider tensor or 

spinor functions on space-time, as in the case of the Poincar, 

group. 

The Klein-Gordon equation in flat space has the 

following group-theoretical interpretation:[1] A particle 

(stable and without internal structure) is an 11 elementary system" 

whose possible quantum states support an irreducible unitary 

representation of the Poincar~ group. When the group and its Lie 

algeb1:a are realized as operators on the space of functions on 

space-time, the condition that the Casimir operator have a 

definite value is precisely the Klein-Gordon equation (cf. Eqs. 

(I.4.4) and (A.3.6a,b)). If a further condition of positive 

energy is imposed, the solutions form an irreducible 

representation. 

It is natural to attempt to construct the same type of 

theory for de Sitter space. Accordingly, on the basis of Eq. 

~-...... ----------------·---( 1) See Wigner (1939, 1948, 1956); Bargmann and Wigner (1948); 
Newton and Wigner (1949); [Streater-Wightman], Chap. 1. 
Replacing scalar functions by tensor- or spinor-valued functions, 
one obtains equations for particles of nonzero spin. 
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(1.6), we postulate the wave equation 

1 o JlJ) 6 -2 
-cVf9Tg -] J(x) = - R q f(x}, 

Vlgf ox.u oxµ 
(2. 1) 

where g is a constant which plays a role like that of the square 

of the mass in the flat-space theory. {From now on we shall set 

R: 1 except when contraction {the large-R limit) is being 

discussed.) This equation is identical to the one which is 

obtained (without use of group theory) by variation of the 

simplest Lagrangian density for a scalar field in an arbitrary 

Riemannian space-time (Sec. VII.1 belo~. 

The only other scalar wave equation which seems to have 

been seriously considered[2) is one with an extra term 

n - 2 Jl n (n - 2) 
R J = --- ,, 

4(n - 1) }l 4R~ 

where n is the dimension of space-time, 

(2. 2) - ~7. 

R~ is the scalar 
)"-

curvature (contracted Ricci tensor), and R is the radius of the 

de Sitter space. Since in a space of constant curvature this 

term is a constant, .it may be regarded as just a re definition of 

the mass. Moreover, it vanishes in the limit of large R •. In the 

context of de Sitter space, therefore, the controversy over 

whether to include the term (2.2) seems pointless. 

In the geodesic Gaussian coordinates (n = 2) the wave 

f2Ts'eereferencesin-Sec. vn:"'1: 
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equation has the form (see Eq. (1.4)) 

d 2 
= (cosh r -) 

OO'""J. o ! 
, + g cosh 
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2 
t ,. (2. 3} 

An interesting transformation of the equation involves the 

Gudermann.ian function ([ Gradshte_yn-Ry2hik ], pp. 43-44), which has 

the properties 

X dt 
_, 

X " gd X : fo = 2 tan e I 

cosh t ·2 

-1 f: dt X lt 
gd X = = log tan [- + - ]. 

cost 2 4 
(2.4b) -

If we let 

n n 
(- - < a < -) , (2. 5) -

2 2 

the.n 

1 d 
= I cosh t-= sec a. (2. 6) -

cosh 't" i)cx 

So the equation becomes 

o~, 2 
+ q ( 1 + tan ex} , = 0. · 

00" 1' 

(2. 7) 

Near O the deviation from the ordinary Klein-Gordon eguation is 
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~ :t 
quadratic in 1/R if ve take q =Rm. 

Similarly, from Eg, (1.5) we obtain 

2 o 2 
= (cos p -) 

op ' - q cos f' ' 

in the static Fermi system. Setting 

-1 n n 
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(2. 8) 

p = gd f (- ex> < ~ < oo for - - < p < -) , (2. 9) 
2 2 

we have 

(2. 10) 

The possibility of reducing the wave equation to the 

form of a flat-space Klein-Gordon equation with an external 

scalar potential term (in other words, a space-time-dependent 

mass) is peculiar to dimension 2 (see Sec. VII.1). 

To solve Eq. (2.3) (Philips (1q63)) set 

i = i sinh t = sin it, ( 2. 11) 

dJ ipO' 
1J (t, o) = ~ C {p) f ( Z) e (2. 12) 

p=- co p 

(Since , is periodic in a, p takes only integral values.) Then 
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f = q f • (2.13} -
p p 

Th.is is the associated Legendre equation ([ N. B. s. ], p. 332) with 

p = p and v(v + 1) = - q. {2. 14) 

Thus the solutions are 

and Qr (z) with 

the associated Legendre functions 

V 

._r--r 
v = - - + 1yq - ~• 

2 't 

1 
( 2. 15) 

The existence of an imaginary part of Y distinguishes the 

representations of the principal series (q > 1/4) from the 

complementary and discrete series (see Sec. B.3}. 

Eg. (2.8) can be handled similarly. 

try a solution of the form 

Then 

l. 
2 d f>-

(1 - u ) - 2u 
duA 

This is Legendre• s equation 

= f (U} e 
~ 

df~ 
- g f 

du ~ 

again, with 

• 

~;J.. 

+ 
1 - u 

Let 

.f 
2.. 

~ 
= 

,,,__.:t _,.µ. 
u = sin f and 

( 2. 16) 

o. (2. 17) 
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The solutions are P;~(u) ,,, 
:>. 

and Q (u), with - 1 i u ~ 1. 
I,) 

150 

(2.18) 

It remains 

to be decided which values of~ occur; this will be discussed in 

Sec. v. 7. 

3. Rositive-Fregy~ll£I Solutions in the GeodesiQ Gaussian Syste1. 

In this section we consider the case g > 1/4 and 

attempt to -interpret the solutions of the wave equation in terms 

of particles in the closed de Sitter universe. 

It will be convenient for us to use as the basic pair 

of linearly independent solutions of Eq. (2.13) 

associated Legendre functions but 

2 -p/2 
E (Z) : ( 1 - Z ) 

p 

1 1 1 2 
F[- -(v+p), - (1+V-p), -, Z ], 

2 2 2 

1 1 .3 2 
0 (Z) 

p 

2 -p/2 
= (1 - z ) z P[ - ( 1-µ -p) , 1 + - (v-p) , - , z J, 

2 2 2 

not the 

( 3. 1 a) 

(3.1b) 

where Fis the hypergeometric function ([N.B.S. ], Chap. 15). The 

branch of (1 - z2 )-ph should be chosen continuously along the 

imaginary axis with the value+ 1 at z ~ O. E and o are the 
r r 

elementary even and odd solutions of !g. (2.13): 
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E (0) = 1, 
p 

O (0) = 0, 
p 

E 1 (0) = 0, 
p 

0 ' (0) = 1. 
p 

151 

( 3. 2a) 

(3. 2b) 

They are independent of the sign of p. Formulas relating these 

functions to Legendre functions with the standard branch cut and 

phase conventions appear in [ N. B. s. ], pp. 332-333 (Eqs. 

Let 

p (t) = R {i sinh t) - v'q+-p'i- 0 (i sinh r), ( 3. 3a) 
p p p 

N (r) = E (i sinh t) + Vq+-pi" 0 (i sinh T) = P* (!) • (3.3b) 
p p p p 

The series expansion of p near r = 0 is 
r 

1 2 2 
p (t) = 1 - i vg + p:2. r - - (q + p ) { 
p 2 

i 2 3 4 
+ - V'g + pl.. (q + p + 1) t + 0 (t ) • (3. 4) 

6 

Thus 

ipo"' 
e P (t) (3. Sa) 

p 

and 
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ipo-
e N ('t) (3. Sb) 

p 

agree through order r1.. with the plane-wave solutions of the 

Klein-Gordon equation: 

ipcr - i rmr-;-pr exp( ipO- + ivm" + p~ t] -= e [ 1 + r 

1 2 2 2 i 2 2 3/2 3 4 
- -(m ♦ p ) r + - (m + p ) t + 0 (t ) ). ( 3. 6) 

2 6 

Accordingly, we shall call the function ( 3. Sa) a 

~Qluti.Q!!• In Sec. x.s it will be shown that field quantization 

based on this identification leads to a (time-dependent) 

Hamiltonian which is a positive operator at~= 0 (cf. Sec. 

IV.2). For now we simply gamble, on the basis of the comparison 

with Eq. (3.6), that Eq. (3.4) demonstrates ttpositive-energy 

behavior" in some useful sense. 

The most obvious next step would be to interpret the 

solution (3.5a) as the wave function of a particle with momentum 

p (cf. Sec. VIII.4 below). We would need a scalar product on the 

space of all these solutions; let us assume that this has been 

found (see Sec. V. 5). Then we would have a "relativistic wave 

mechanics" analogous to that based on the ordinary Klein-Gordon 

equation (as described, e.g., by (Schweber], pp. 54-6q, and 

{Corinaldesi], pp. 25-110). A many-particle theory could be 

constructed by second quantization ((Schweber], pp. 156-195); 
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this would be equivalent to the field theory defined by 

writing[3] 

~ -1/2 ipo- -ipo- t 
¢ (t ,a) ::: ~ [ 2Vq+-p~) (e P (t) a + e N (!) a } (3. 7) 

p:- co p p p p 

and interpreting and 
t annihilation and creation operators af a as 
f 

for particles in the state with wave function (3.5a). 

Unfortunately, this single-particle interpretation seems to be 

untenable, for reasons which we shall discuss in Sec. v. 5. 

4. lh~ Representatioq of 1h,g, GrQ!!.E in the ~£!Q~ 2! Solutions. 

There is a natural action of the de Sitter group on the 

solutions of the wave equation: if ,(x) is a solution, then so 
_, 

is U (A)J(x) = J(A x}. The expression 

n ~, o,• 
w ( 11 , ' ) = i j d ct ( 11 * ( 0 , a, _ _2. ( 0, O') - -' ( 0, <1) 1J ( 0, o) ] ( 4 • 1 l 

1 2 -n 1 o~ ot 2 

defines an indefinite Hermitian form on solutions whose initial 

values are sufficiently integrable. This form is invariant under 

the action of the group: 

W (U (A)' , U (A) ' ) = W (J , ' ) • (4. 2) 
1 2 1 2 

Proof: This will follow from the general theory of 

[3] The normalization factor in Eq. (3.7) is determined by the 
condition that the a and at satisfy the correct commutation 
relations for annihilation and creation operators -- see Sec. 
x. 1. 
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secs. VII.3,5. w is the current form, 

w (J , ' ) 
1 2 

a, ~'* = if dcr cosh r [1J*(t',o-)__:.(t,o) - -' ft,o)' (T,01 ], (4.3) 
1"=const. 1 or or 2 

evaluated on the hypersurface r = O. Since the current form is 

covariant, the integral has the same value in every Gaussian 

frame; this is the "passive" interpretation of Eq. (4.2) •. 

Alternate .R!Qof: Invariance under d"-translations is 

obvious. If the functions considered are differentiable, it 

suffices to consider infinitesimal transformations generated by H 

and K. One must verify that H and K (the operators of Egs. 

(1.1b,c)) are Hermitian with respect to W, or that the ladder 

operators A±'!: R !: iK are Hermitian conjugates of each other 

t -
( W (A IJ , J ) = W ( 1J , A 1J ) ) • 

I "- I ~ 
This is a straightforward 

calculation, which we omit. 

We shall use the form W to decompose the representation 

of SO 
O 

(1,2) in the space of solutions of Eq. (2. 1) into two 

irreducible unitary representations. 

(decomposition of the quasiregular 

A different approach 

representation) will be 

considered in Sec. VI.1 and related to this one in Sec. X.4. 

We begin by noting that for solutions of the elementary 

form 
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ipo-' 
e/(2n) ' (!, CJ) = 9 [A(p)E (Z) B(p)O (Z) ] (9 = (4. ~q 

p 

we have (from Eqs. 

W(f ,, 
p P,_ 

I 

p p 

( 3. 2) ) 

= & [A*(p )B (p) + B* (p ) A (p ) ], 

P. p~ 
, 1 2 1 1 

W(f ,1J) = 2 Re{A*(p)B(p)). 
p p 

1 2 1 
( 4. 5a) 

(4. 5b) 

Let us choose a particular solution J of the form (4.4) with 
0 

p = 0 such that we,,,) = 1. Then by operating repeatedly with 
0 0 

::t: 
A according to Eq. {B. 3. 2b) , 

-1/2 + 
-= [ g + P (P± 1) ] A 11 , 

we obtain a set of vectors 

form (4. 4) , such that 

W c, I' ) 
p P' 

p 

PP' 

of the 

Thus these vectors form an octhonormal basis for a Hilbert space 

rJJ-1 + with scalar product W c, 
1

, ,2..) , and the representation of the 

de Sitter group in this space is the irreducible unitary 

representation vi th Q : q (Eq. (B. 3. Sa)) • 

f!2of: In terms of z the ladder operators are 
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+ ,:tier- 2 1/2 d _ 2 ·-1/2 o 
A = ff! iK = - e { ( 1 - z ) + i z (1 - 2 ) -} • ( 4. 7) 

02 ~O' 

The derivatives of the hypergeometric functions may be calculated 

from formulas (15.2.1,4,6,9) in [N.B.s. ], p. 557: 

2 -1/2 2 1/2 dEr 
(1 - Z ) - (Z) 

dz 
= (g + p(p+1}] 0 (2) - pz(1 - z) E {Z) 

p+1 p 

2 -1/2 
= (q + p(p-1)] a (z) + pz(1 - z) E (z) 1 (4.8a) 

p-1 p 

2 1/2 dOr 2 -1/2 
(1 - z ) - (Z) = E (Z) - pz (1 - z ) O (z) 

dz p+1 p 

2 -1/2 
= E (z} + pz ( 1 - z ) o (2) , ( 4. 8b) 

p-1 p 

Hence one obtains 

! ip<f' i (p.! 1) er 
A [ e E (Z) ] = - [ q + p (P.! 1) ] e 0 (Z), (4. 9a) 

p P!.1 

! ipo- i(p!,1)0"' 
A [ e O (z) ] - - e E (Z) • (4. 9b) 

p P! 1 

It follows that 

+ + 
W (A 11 , A ' ) = S [ q ·• p (p;,!.1) ] W (' , J ) , 

p P' pp•· p p 

which demonstrates the orthonormality of the vectors (4.6). The 
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representation of the tie algebra in this space is obviously that 

given by Egs. (B.3.2). 

It can easily be seen( 4] from Eqs. (4. 5) that the 

complex conjugates of the functions, span 
f 

a Hilbert space 

with scala.r product - W(t ,1J ) , and that 
I :1.. 

W(f ,f ) > 0, 
1 1 

W ('1 , If } < 0, 
2 2 

W c, , , ) = 0 
1 2 

if ' € 1-./ , 
1 + 

' € 11 • 
2 

(4. 10) 

Finally, IJ.I+ and f)/_ exhaust the solutions of the wave equation, 

in the sense that 

1J{c,o1 = ~ s(p)' cr,o; + ~ t(p),*{!,<1} 
p p p p 

can be solved (by Fourier transformation) for s(p) and t(p) in 

terms of the Cauchy data , (0,0') and a,;or (0,01, if the latter are 

"suf ficien t1 y integrable11 but otherwise arbitrary. (The 

vagueness in the integrability condition is discussed in Sec. 

VII.5.) 

The group representations in 1)./+ and 1✓- are 

~9J!! lllfill!, since we know from Sec. B.3 that there 

irreducible unitary re pre sen ta ti on for each value 

This is what allowed the initial choice of 
'C> 

arbitrary. This situation .is quite different from 

-------- ----[ 4] Note that (1) Ef (z) is real, 
(2) A(-p) = A(p), B(-p) = B(p). 

0 (Z) 
f 

is 

is only one 

o.f g > 1/4. 

to be quite 

the case of 

imaginary; 
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h 
. / 

t e Poincare group. The solutions of the Klein-Gordon equation 

in rHnkowski space can be separated J!nigy~ly into positive-energy 

and negative-energy functions, which support !neggival!!!.t 

representations of ISO (1, 1) 
D 

(cf. Sec. B. 2). It follows that 

from any function which does not lie wholly in one of these 

subspaces (but is a linear combination) the operators of the 

Poincare group generate the entire space of solutions the 

representation space of a reducible representation. 

5. !.h~ 1ncompatibili!:I of Positive Freg~!l£Y !!t.d 

In accordance with the remarks at the beginning of 

Sec. V.2, we would expect, if the notion of a stable spinless 

quantum-mechanical particle in de Sitter space makes sense at 

all, that the Hilbert space of states of such a particle would 

support an irreducible unitary representation of the de Sitter 

group. This is not the case for the space of positive-frequency 

solutions defined in Sec. V.3. The positive-frequency solutions 

of lowest momentum, normalized in the sense of Eq. (Q.Sb), are 

and 

-1/2 
(2Vq) p (!) 

0 

1 -1/4 
= -[q 

15. 

+1/4 
E (Z) - g 

0 
o (z) ) 

0 
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iO' -- -1/2 
e (2Vq + 1) P {t) 

1 

i<r 1 -1/4 +1/4 
= e -( (q + 1) 

i2 
E (Z) - (q + 1) 0 (Z) ]• 

1 1 
(5. 2) 

But the basis vector with p = 1 in the irreducible representation 

generated by the vector (5.1) is, by Egs. (4.6,9), 

io-1 -1/2 +1/4 
e -[ (q + 2) g 

V2 

+1/2 -1/4 
E (Z) - (q + 2) q 

1 
0 (Z) ], 

1 
(5. 3) 

which is not the same as the function (5.2). !hell!!~~ of 

One possible response to this realization is that our 

identification of the positive-frequency solutions is wrong: one 

ought to choose a space of single-particle wave functions which 

is invariant under the group. This is the approach which has 

been followed in most previous work on quantum field theory in de 

Sitter space; it will be reviewed in Sec. v.6. 

Another possibility, however, is·that the assumption of 

stable particles is wrong. The curvature of space is equivalent 

to a time-dependent gravitational field. Now it is well known in 

the context of external electromagnetic fields that the 

interaction of a quantized field with a time-dependent external 

field can produce pairs of particles. (For examples of several 

different approaches to this problem see Capri (1969), Brezin and 
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Itzykson (1970), and Harozhny and Nikishov (1970). Moore ( 197 0) 

studies photon creation due to interaction with a moving 

reflecting wall.) It is quite reasonable that the same effect 

should occur in the gravitational case. If so, then a state 

which describes a universe which contains exactly one particle at 

time L: 0 will not necessarily have such a characterization at 

some other time (more genetally, on a different spacelike 

hypersurface). The same is true for the state in which no 

particles are present in space at a given time. In particular, 

if we consider the spaces of constant time in the Permi picture 

(see Secs. III.2-3), it follows that the space of one-particle 

states (and the no-particle state) at ~ = X = 0 should not be 

expected to be invariant under the de Sitter group. 

However, once we abandon group theory as our guide in 

the construction of a field theory, the de Sitter universe loses 

much of its privileged position. We might as well consider any 

Riemannian space-time, or at least any for which the wave 

equation can be solved, as in Sec. v. 2, by separation of 

variables. This is what we shall do in Chapter x. 

In such a theory the expansion (3.7) of the field will 

still make sense, but the coefficients will not be 

interpreted in terms of stable particles. It is conceivable that 

the field theory as a whole will be invariant under the de Sitter 

group in the sense of Sec. IV.1; but the no-particle state at any 

particular time X will not be an invariant vacuum satisfying -

Axiom 6. This conjecture will be verified in Sec. X.9. 
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1inally, 

positive-frequency 

observe that, 

solutions (3. Sa) 

161 

although the space of 

does not support a 

representation of the group, it is a Hilbert space with respect 

to the form w (whose existence is independent of the symmetry 

group). If we write an arbitrary (sufficiently integrable -- see 

Sec. VII.5) solution as 

we have 

CfJ 

w <t, ') = ~ 
p=-eo 

2 
If (p) I 

+ 

{f (p) p (l") 
+ p 

+' (p)N (t)}, (5.4) 
p 

2 
1, (p) I •. 

Thus the solution space is the v-orthogonal direct sum of a 

positive-frequency and a negative-frequency Hilbert space with 

oppositely-signed scalar products (cf. Eqs. (4.10)); the 

negative-frequency functions are the complex conjugates of the 

positive-frequency ones. Such a decomposition gives rise to a 

formally consistent canonical field guantization when the '1±(P) 

are replaced by annihilation and creation operators (see Secs. 

x.1 and x.5). 

It may appear that the inference from loss of 

invariance under the geometrical symmetry group to particle 

creation has been drawn rather quickly. Might it not still be 



Sec. v.s 162 

possible to interpret the normalizable positive-frequency 

solutions as the Hilbert space of states of a single particle? 

If we are willing to contemplate a field theory which !!l turn 

out not to be invariant (see above), why not a particle theory 

which is not invariant? The argument in favor of the 

interpretation offered here can best be presented in terms of an 

analogy. Consider the Klein-Gordon equation with an external 

scalar potential (which depends only on time, for simplicity): 

2 
01J(t,x) + V(t),(t,x) + m tJ(t,x) = 0~ 

It has solutions analogous to the functions (3.Sa): 

where 

p (t) 
k 

and I cx(k) 12 

ikx 
f( t, 1) = f P ( t) , 

k 

-i'-'\ t 
e as t ~ -co 

a* (k) e 
-iw t k 

(5. 7) 

ast~+a:>, 

11:3 (k) { = 1. It would be folly to insist that Eq. 

(5. 7) gives the wave function of a stable particle, because of 

its positive-frequency behavior in the past, ignoring its mixed 

behavior in the future. The physically sensible interpretation 

of Eq. (5.6) is as the equation of a quantum field. Then the 

behavior (5.8) indicates that particles are created by the action 
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of the external potential. {This will be explained in detail in 

a gravitational context in Sec. X.3.) Now it seems most probable 

that the phenomenon demonstrated in Egs. ( 5. 1- 3) should be 

interpreted in the same way. The role of a large negative and a 

large positive time in the example will be taken in de Sitter 

space by two geodesic bype.rsurface~ (related by an isometry in 

the group). Of course, our criterion of positive frequency 

remains to be justified; all these remarks are relative to that 

assumption. 

6. Quantization Leading to an Invariant .Q~-Parti£le ~g£~• . 

Tagirov, Fedyun•kin, and Chernikov {1967) have proposed 

a quantum theory of a scalar field in two-dimensional de Sitter 

space in which there are a vacuum state and a space of 

one-particle states which are both invariant under the de Sitter 

group.[5] Nachtmann (1968b) independently arrived at the same 

theory by a different route, emphasizing the representation 

theory of 50
0

(1,2) (see Sec. X.'4). Here we shall follow the -

Dubna group, since their approach is more physical ana more 

easily related to that of Secs. V.3-5 and Chapters VII and X of 

this dissertation. It is necessary for the calculations in Secs. 

X.9-10 to express their solutions in terms of our basis solutions 

(3.1); this requires several special-function identities. {The 

result is Eg. (6.6) below.) 

(S]Thefour-dimensional case was treated by 
Taqirov (1968). Bronnikov and Tagirov (1968) 
general spaces by similar methods. 

Chernikov and 
treated more 
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It will then be verified that this theory fulfills the 

axioms proposed in Sec. IV.1. To establish uniqueness of the 

vacuum requires proving a simple but not trivial theorem about 

the structure of tensor products of representations of 

which may be of interest in itself. 

so (1,2), 
0 

Tagirov !1 !!• expand the scalar field obeying Eg. 

(2.7) as follows:[6] 

¢ (ex, a) 

T (ex} = 
p 

0G ip<1 
= ~ [ 9 T (o.) b 

-ip<r t 
+ i T* ( o.) b ] , (6. 1) 

p=- 00 p p p p 

e 
V2 lpl! 

1 - i tan oc 
X F(v+1, -µ, fpf+1, ------] 

2 

1 ________ -tpl 
= -v'r(v+1+1pt) r(-1.n•lptf 1' (Z) • 

V2 µ 
(6. 2) 

(The last equality follows from Eqs. (2. 5, 11) and formula (8. 1. 2) 

of [N.B.S.] (p. 332) P is a Leqendre function.) They 

interpret the time-independent operators b 
r 

and as 

annihilation and creation operators for particles; thus their 

particles are stable, with respect both to a description .in terms 

of the time coordinate a (or T) and to a description in terms of 

(6]-The notation has been modified to conform to ours, and a 
factor of 1/V'2 has been inserted in Eq. (6.2) to correct the 
normalization (cf. Nachtmann (1968b), Eq. (2. 21)). 
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a time variable defined by de Sitter isometries (such as X). 

Using Egs. (3.1) and formula (8.1.4) of (N.B.S.) (P• 3.32), we can 

write Eg. (6. 2) as 

-lpl-1/2 1/2 
T {CX) ::: 2 Tt Vr(t/ + 1 +Ip I) rc-v+ f p I) X 

p 

1 1 -1 
{[ r<- ( 1-v + I p I ) ) r( 1 +- (v + I p ll ) ] E ( z l 

2 2 p 

1 1 -1 
- 2( r(-(1+V+lpl)) n-(-v+fpl))] 0 {Z} }. (6.3) 

Since 

2 2 p 

V + 1 = - v*, 

1 2z-1/2 
= _..__. 2 

m 
1 

f(z) nz + -) 
2 

(6. 4) 

(6. 5) 

([N.B.s.J, Eg. (6.1.18) (p. 256)), and r(z*) = r(z)*, this can be -

simplified to 

I I 

1 / r<;:c-11+1pn>/ 
1

_n1+:i:<v+1p1>>I 
T (a) = -{ ----- F. (Z) - 2 ----- 0 (Z)}. 

p 2 f(1+,t(v+lpl)) p r<{(-V+IPI)) p . 
(6. 6) 

Then the solutions 

ipcr 
9 ( ex, O') = ~ T ( a) (6. 7) 

p p 



sec. v.'5 166 

satisfy Eq. (4.6) and 

(see Egs. ( 4. 4-5)) • 

the normalization condition W{f ,, ) = 1 
r r 

(To verify Eg. (4 .6) use Eqs. (4. 9) and 

2 
g + p (p+1) = fv+1 +pt , 

2 
q + p (p-1) = tv + p I , (6. 8) 

along with Eg. (6.4) and the well-known relation zr(z} = r(z+1) .) 

We saw in Sec. V.4 that there are many such invariant 

spaces of solutions on which W defines a positive definite scalar 

product; they correspond to different choices of A(O) and B(O} in 

Eq. (4. 4). Since the basis vectors can be normalized and their 

overall phase is arbitrary, the different possibilities can be 

labeled by two real parameters; Tagirov et a!• determine t.he 

basis functions in the general case to be 

.i pcf 1 p ~-., = 9 { T (<X} + (- 1) T* (a)} , (6. 9) 
p v1 - I\ I'" p v,:-,i,~ p 

where ~ is complex and 1\1 < 1. To establish that \ = 0 is the 

physically relevant choice, they show that only in this case does 

e, the phase of 'r' obey in the limit of large 1 Pl the classical 

Ha mil ton-Jacobi equation 

2 
m 6 e o e. (6.10) 

Jl v 

A more elementary statement of what distinguishes the solutions 

(6. 7) from the other possibil.i ties is that for large Ip I they 

asymptotically approach positi ve-freguency solutions in the sense 
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of Sec. V.3: 

-1/2 
T (a) - [21/g + pa.] 

p 

This can be verified by using 

rcz + a) a 
z 

-1 
p (gd 

p 
o) (IPf ~ ex>). 

as tzl ~ oo 

167 

(6. 11) 

(6. 12) 

(from (Gradshteyn-Ryzhik), Eg. (8.328.2) (p. 937)). This is 

rather reasonable physically; it says that the solutions behave 

like positive-energy plane waves in flat space provided that the 

wave length is small com pa red to a length characteristic of tne 

curvature of space-time. 

In accordance with the particle interpretation, the 

algebra of the creation and annihilation operators is realized in 

the Fock representation. 

postulated such that 

That is, a vacuum vector tO> is 

b 10> = 0 for all p. 
p 

(6. 13) 

Then b
1

10> is interpreted as the vector of the state of the field 
F 

in which one particle is present, in the single-particle state 

with wave function(?] 

(7]-Tagirov~! !];. call the complex conjugate of Eq. (6.14} the 
wave function, but this conflicts with the usual terminology for 
the Klein-Gordon theory in flat space. 
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ipa' 
= 9 T {a)• (6. 14) 

p 

Similarly, there are two-particle basis states of the form 

bt bt tO>, and so on. The Hilbert space of the theory {Fock 
f, f ;I.. 

space) is the closure of the span of all the n-particle states, 

O~n<ro. 

Let us verify that this theory fulfills the axioms 

proposed in Sec. IV.1, just as the ordinary free Klein-Gordon 

field obeys the usual Wightman axioms. We have just constructed 

the Hilbert space (Axiom 1) with cyclic vector fO> (Axiom 7). 

The representation of the group in the space of one-particle wave 

functions determines in an obvious way a unitary representation 

in the whole Pock space (Axiom 2}: the representation in the 

n-particle subspace is the symmetrized n-fold tensor product of 

the irreducible one-particle representation, and the vacuum is 

invariant (Axiom 8). 

are clearly 

The generators of the total representation 

(,13 t 
p -= ~ p b b , (6.15a) 

p=-oo p p 

+ t 
A = ~ Vq + p(p,!1} b b . (6.15b) 

p P.±1 p 

(The Dubna authors obtain these expressions (modulo sign 

conventions) by integrating the energy-momentum tensor of the 

field, contracted with the Killing vectors of the isom etries, 
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over a spacelike hypersurface.) 

We shall not dwell on the technicalities of Axioms 3 

and 4. The field (6.1) makes sense as a distribution on suitably 

smooth test functions. The finite sums of n-particle states with 

smooth wave functions form an invariant domain. It is easy to 

see from the definitions that the group operators transform the 

field operators in the expected way. 

The local commutativity (Axiom 5) of any canonically 

quantized scalar field will be shown in Sec. VII.4. In the 

present case Tagirov !1 !l• have given the commutator in closed 

form: 

i 
[ Ill ( ex. , <r ) , ¢ ( <X , <Y l ] = - e ( ex. - o:. , <Y' - <r ) P ( Y) , (6.16) 

2 2 1 1 2 1 2 1 2 V 

where p 
JI 

is a Legendre function, 

r:n (X if 'a.1 > f o'f, 
€ (ex, CT) = 

if I <XI < '<11 , 
(6 .17) 

and 

cos (<r, -c,1-.) - sin (X_ I sin a,_ 
y = (6. 18) 

cos ex., cos Q'.l. 

(which is the hyperbolic cosine of the geodesic distance between 

the two points). 

All that remains to be checked is the uniqueness part 

of Axiom 6. That is, does the representation of SO (1,2) in the 
0 

-p 
j) 
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orthogonal complement of tO>, when decomposed into irreducihles, 

contain the trivial representation as a discrete direct summand? 

It suffices to ask this question of each of the n•part.icle 

representations separately, or, in fact, to answer it negatively 

for the tensor product 

D I D I • • • II D (n factors) (6. 19} 
g q q 

(of which then-particle space is an invariant subspace). Here 

denotes the irreducible unitary representation 

principal series with Q = g. 

We start by proving the following theorem: 

of the 

Let D
1 

and D~ be any two irreducible unitary representations 

of so 
0 

( 1, 2), not both trivial. Then D
1 

I! D;,.. does not contain 

the trivial representation as a discrete direct summand. 

Proof (method suggested by Pukanszky (1961), pp. 

132-134): Let the Casimir invariants of D
I 

and D~ be q
1 

and g1-., 

respectively. We must show that no vector 

lg ;p > ~ fq ;p > (infinite sum) 
1 1 2 2 

in the tensor product space is invariant under the entire group 

equivalently, annihilated by all the basis elements of the Lie 

algebra. The condition P': O implies that, can be written 
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J =~a fg ;p> I lg ;-p>. 
p p 1 2 

Reguiring that l=, = 0 leads to the equations 

a Vq+p(p+1) + a Vg + p(p+1} = O, 
p 1 p+1 2 

for all p. These are consistent only if g
1 

= 

a = - a , 
p+1 p 

q • ,. Then 

171 

(6.20) 

except possibly at points where the coefficient Vq + p(p+1) 
I 

vanishes. However, the range of p where af is nonzero must (by 

defini t.ion of the tensor product) be a suhset of the range of p 

in some nontrivial irreducible representation (Egs. (B.3.5)). It 

follows that non vanishing a' s satisfying Eq. (6. 20) must. extend 

to infinity in at least one direction (the interval between two 

vanishing coefficients being forbidden). Consequently, the 

sequence {a J is not square-summable; no normalizable invariant 
p 

vector can exist. 

We can now prove by induction that the representation 

(6.19) does not contain the trivial representation discretely. 

For assume that this is true of the direct integral 

decomposition[8] of the (n-1)-fold tensor product, 

[8] See, e.g., (Maurin], Chap. V, or Coleman (1968), Sec. IV. 
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'_fe j L. dµ (r) D , 
J j r 

where D~ stands for j copies (in direct sum) of the irreducible 

representation D. Then the product (6.19) has the form 
Y' 

j 
dµ (r} D ] iJ D 

j r q 
'./' j = L. d µ (r) [ D I D ] 
J j r q 

'.fi ftl (r) k j 
= L. dp {r) [~k dµ (s) D J 

J j k s 
= ~t dµ (s) 

1 1 

1 
D , 

s 

where the trivial representation never occurs discretely. {We 

have applied the associative law to the tensor product of a 

direct sum and integral with another representation and then 

applied the theorem to each term of the result.) This completes 

the procf of the uniqueness of the vacuum. 

In summary, the second-quantized theory proposed by the 

Dubna group satisfies the axioms for quantum field theory in de 

Sitter space proposed in Sec. IV.1. In this respect it is 

attractive. 

From a physical point of view, however, this theory is 

vulnerable to criticism along the lines of the argument at the 

end of Sec. V~S. For small p the choice of Tp as the 

"positive-frequency" solution has not been physically motivated. 

The argument that it fits into an irreducible representation with 

functions which have the correct behavior at large p is 
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conclusive only if the existence of an invariant space of 

particle wave func Hons is assumed beforehand. For this reason 

the conclusion of Tagirov g! ~.!• that particles are not created 

or destroyed in de Sitter space seems to the present author to be 

circular. on its face, at least, their definition of 

annihilation and creation operators does not appear to have much 

more justification than to define such operators for the field 

obeying Fq. (5.6) to be the annihilation and creation operators 

for incoming particles (coefficients of the expansion for the 

field in terms of the functions (5. 7-8)), and to conclude 

therefrom that particles are not created by the potential V(t). 

A deeper analysis of the notion of E~I!i£!~ seems to be necessary 

to settle this question. We shall return to the subject in 

Chapter X, but no conclusive resolution will be claimed. 

7. 1.b~ Solutions in the Static i!f!Ul'_g. 

We have seen that the wave equation in Fermi 

coordinates has solutions of the form (2.16), where 

u = sin f = tanh ~ and f~(u) is an associated Legendre function. 

To study the completeness and normalization of these 

eigenfunctions it is convenient to use the form (2.10) of the 

wave equation.· Substituting Eq. (2.16) into Eq. (2.10), we 

obtain 

2 
f 

). 
(7. 1) 
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{which is equivalent, of course, to Eq. (2.17)). Eq. (7.1) is 

identical in form to a nonrelativistic one-dimensional 

Schr6dinger equation with a smooth, everywhere positive potential 

which falls off rapidly to ze.co at infinity. (Here \.'l. takes the 

role of the energy eigenvalue.) Consequently, most of the things 

we need to know about the solutions are well-known results from 

the one-dimensional barrier penetration problem ([Messiah], Chap. 

III} : 

a 
The spectrum of).. is continuous and extends from Oto 

+ ro. For each value of k = + V)..a. there are two linearly - 00 

independent eigenfunctions, and f = W {P), which 
>.. -k 

respectively correspond in the nonrelativistic scattering problem 

to beams of particles with energy k~ inci~ent from the left 

(momentum k) and from the right (momentum - k). There are no 

"bound states". The eigenfunctions form a complete set (that is, 

the differential operator in Eq. (7. 1) is essentially 

self-adjoint). When \a 2 q the solutions are oscillatory over 

the whole range of ~; when '>. 2 < q there is a "classically 

forbid den" region near ~ -- 0 where the solutions 

approximately exponential behavior. Implications 

observation will be discussed in Secs. VI. 1 and VIII.6. 

have an 

of this 

One can check by counting that this spectrum coincides 

with what one would expect on group-theoretical grounds. On the 

one hand, we kno~ from the results of Sec. V.4 that the solutions 

of the wave equation constitute two irreducible representations 

of the principal series. The spectrum of\, therefore, should 
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consist of all the real numbers with multiplicity 4 (see Sec, 

II. 3). On the other hand, we know from Sec. III.5 that the 

solutions are in one-one correspondence with the Cauchy data on 

an initial geodesic hypersurface. A complete orthonormal set of 

(generalized) functions on the initial surface must be used 

twice, to expand the initial value of the function itself and of 

its time derivative. However, this doubling corresponds 

precisely to the freedom in the choice of the sign of \ (cf. 

Secs. VIII. 1-2) ; for a given sign there is a one-one 

correspondence between solutions and initial values of the 

function. Now the 'k and ' -k 
cover only the region of the 

hy persurface where lpl < 11/2; another similar set o.f 

eigenfunctions is needed to expand functions on the "back side" 

(TI/2 < lpl < TI). Thus for each~ there are four independent 

eigenfunctions, as expected. 

Completeness and orthogonality mean that every function 

on the interval - co < ~ < ex, can be expanded as 

f
(JJ ~ 

= -oo dµ(k) \ W) f (k), (7. 2) 

where 

(7. 3) 

The measureµ (k) remains to be determined; or, equivalently, the 

~•s must be normalized so that 
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dp(k) = dk. (7. 4) 

This can be done easily by referring to the scattering-theory 

interpretation of the wave functions. The result is[9] 

t exp (-ffk/2) r( 1+))-ik) ik 
11 <P> = p (tanh ~) , (7. Sa) 

k 2 sin 1f(v+ik) r(-i.k) r(1+v+ik) V 

' <IH = ' <- [3) (k > 0) , (7.5b) 
-k k 

where V is given in Eq. (2.18). The rest of this section is 

devoted to the derivation of Eqs. (7. 5). 

As the basis have chosen the in.-states, 

each of which is the sum of an "incoming" plane wave and a 

scattered wave which asymptotically on each side of the barrier 

shows "out going" behavior. [ 1 0] The asymptotic ·form of the sum is 

then (see (~essiah], Sec. !II.11) 

ik~ 
S 9 

k 

as p --? - co, 

{7. 6a) 
as ~ ~ +co; 

(9)-The branch of P~(u) understood here is described in the 
course of the proof below. 
[ 10] This is an arbitrary choice. One could equally well use 
wave functions with outgoing plane waves, or some linear 
combination (cf. Sec. X.4). However, once ,k is chosen, '-k is 
determined up to phase by the condition of orthogonality. 

-f) 
/I 
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' (1_3) -
-k 

-ikp 
s f! 

-k 

-ik~ 
9 + R 

-k 

ik~ 
9 

as ~ ~ - co, 

(7. 6b) 
as ~ ~ +co. 

(see Fig. 11). The cedilla (~ = e/V2lT) indicates that the 

incoming part has the usual delta-function normalization of a 

plane wave. It follows by a wave-packet argument that these 

functions are p.roperly normalized, in the sense of Eqs. (1. 2-4}. 

Eq. (7. 5b) now follows from the reflection symmetry of the 

potential, q sechJ.. [3. 

ff 
.k 

1 
= -------➔-------

1 

+ 1 fl --➔---'4(-- --➔-----·- ----

' - -------~-------
-k 

F.ig. 11 

In-states for the one-dimensional scattering problem. 
iich directed line stands for one of the terms in Egs •. 
(7.6). The numeral 1 indicates the normalized 
component. 

To find ,k(~) in terms of Legendre functions, we use 

the relations ([N.B.S. ], Eqs •. (8.1.2,6) {p. 332)) 
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ik 1 
P (u) = 

>' f(1-ik) 

k 
F (u), 

1 

1'k ik 1 k r(1 +v +ik} r(-ik) 

178 

(7. 7a) - J) 

k 
e Q (U} :: -r(ik) F (u} + F (u), 

2 
(7. 7b) -

The 

v 2 1 2r(1+v-ik) 

Jc 
F (u) 

1 

k 
F (u) 

2 

u + 1 ik/2 
= [--] 

u - 1 

u - 1 ik/2 
= [-] 

u + 1 

1 - u 
F[-Y,)) + 1, 1-ik, - ], 

2 

1 - u 
F[-jJ, v + 1, 1 +ik, - J. 

2 

hypergeometric series converge for 11 - ut < 2. 

(7. 8a) -

(7. 8b) 

The 

ambiguity in the branch of the other factor (which is not just a 

phase, since ik is imaginary!) is settled by putting a cut from 

+ 1 to - oo and stipulating that tarq (u !: 1) I < 11 elsewhere in 

the plane. Finally, let us define the functions on the interval 

- 1 < u < 1 as the limit from above the cut; thus 

a rg (u + 1) = 0, arg (u - 1) = + n. (7. 9) 

(Another common definition of 
a. 

P (u) differs by a factor of 
V 

exp(Tilc/2) -- see [N.B.S. ], Fgs. (8.3.1-2) {p. 333) .) 

Next we investigate the asymptotic behavior as 

[3 --+ + oo, or u ~ 1 • 

need only study 

Since F(a,b,c,y) -4 1 as y ~ O, we 

u + 1 

11 - 1 

tanh [3 + 1 

tanh ~ - 1 
= - e 

2[J 
, 
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where the minus sign must be written as exp(-iff) in accordance 

with Eqs. (7.q). so we have 

k -iff 
F (u) - (e 

1 

2~ ik/2 
e ) 

+ffk/2 
e , (7. 10) 

a pure transmitted wave. Thus ,k is proportional to pk (cf •. Eq. 

(7.6a)). 

To find the normalization constant we must isolate the 

coefficient o.f exp (ikl}) in pk at ~ = - co. The formula 
I 

ik 
P (-u+iE) 

JI 

+Ht P ik 
= e P (u-it) 

v 

2 +Ttk ik 
- -e sin n (v+ik) Q (u-if) 

1T }.) 

([N.B.S.J, Eq. (8.2.3) (p. 333)) yields 

1 k 

(7.11) 

ilfV 
= ( e -r(1-ik) r(ik) sin 1t(v+ik)] F (lul-ie.) 

ff 1 

1 ,-(1 - i k) n- ik) r( 1 + v + ik) k 
sin fl(v+ik) --------- F (lul-ie). (7.12} 

n n 1+" -ikl 2 

Now because of our branch convention, 

k 
r' (u-it) 

1 

k 
F (u-it:) 

2 

-Jfk k 
= e F (u+h), 

1 

+1fk k 
= e F (u+ i£). 

2 

(7.13) 

Therefore, as ful ~ 1, ~ ~ -oo, we have (using Eq. (7.10) and 
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k 
the analogue for F ) ,._ 

k iffy 
P (- I u I) - [ e , 

-I 

1 

" 
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1 -~k/2 iklPI 
-r(1-ik) f(ik) sin Yf(v+ik)] e e 
ff 

-1 
sin ff (J)+ik} A (p, k) e 

+ffk/2 
e , (7. 14) 

where A(V,k) is the quotient of gamma functions in Eq. (7.12). 

The second term is the one which is to 

Consequently, 

k 

be 

f exp (-lfk/2) 

2 sin ff (V +ik) 
A (v, k) F (u) , 

1 

which is the assertion (7.Sa}. 

normalized. 

(7.15) 

With each there are unambiguous! y associated a -

positive-frequency and a negative-frequency solution, given by 

Eg. (2.16) with positive and negative). (f>-.(u) = ,k {[3)) •. Hence 

it seems obvious how to construct a field theory in analogy to 

the quanti~ation of the free Klein-Gordon field. This can be 

done equally well for any static space-time; it will be carried 

out in Chapter VIII. The nonuniqueness of the quantization thus 

obtained and the associated pa·rticle interpretation will be 

discussed in Chapter IX. 
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8. .§.21.!!1.!fil!.2 o.f !h~ !!.!~ Equation ill .t!l~ Ql?filt De Sitter ~£~~­

For the two-dimensional open de Sitter space (see Sec. 

III.6) the wave equation (2.11 again takes the forms (2.3,7) and 

(2.8,10), except that, because of the interchange of space and 

time, the physically relevant values of g are negative. (That 

is, - q plays the role of the square of the mass.) We expect, 

therefore, to encounter the discrete series of representations of 

so (1,2). 
0 

The functions (2.16) are solutions in the geodesic 

Gaussian coordinate system ~,X). The exp(-i\X) are a complete 

set of functions on a spacelike hypersurface. The time 

dependence is given for each \ by two linearly independent 

functions obeying Eq. (2. 17). Certain linear combinations of 

these have the correct properties to be interpreted as positive­

and negative-frequency functions in analogy to Sec. V.3. The 

connection with the irreducible representations of so ( 1, 2) 
0 

or 

its covering group is not at all clear in this picture. 

Now let us turn to the static Fermi coordinate system 

(a,r), and let us, to begin with, consider the wave equation on 

the covering space (Fig. 8). There are solutions of the form 

f e 
p 

-i pc, 
(8. 1) 

where fr is a function of the space variable which sati s.fies a 

differential equation which can be written in the various forms 
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A. 
d f 2 2 

- g sec (X f = p f, (8.2a) 
da:" 

d 2 2 2 
- (cosb t -, f - g cosh t f = p f, ( 8. 2b) 

dr 

or Eq. (2. 13). The last of these shows that f(2) is an 

associated Legendre function of orderµ= p (not necessarily an 

in tege.r) and degree 

1 
V = - - + (8. 3) 

2 

(We take the positive square root for definiteness. The negative 

root gives - v - 1.) Eq. (8.2a) is the easiest to discuss, since 

it has the familiar form of a Schrffdinger equation. 

Since the Cauchy problem is not in general well-posed 

in this space, as explained in Sec. III.6, one might expect that 

the differential operator in Bg. (8. 2a) would not be 

self-ad joint. That is, in order to distinguish uniquely a 

complete set of eigenfunctions fff), it should be necessary to 

impose boundary conditions controlling the disposition of 

"probability which reaches infinity within a finite time". {See 

Wightaan (1964), Sec. 8.) Different boundary conditions would 

lead to a different spectrum of p
4 and to d.ifferent behavior at 

other times of the solution with given initial data. 

However, we shall see that this conjecture is !!.Ql 1!:J!~ 

except for very small mass (q > - 3/4). Thus the Cauchy problem 
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for the generalized Klein-Gordon equation with sufficiently large 

mass!! well-posed, at least if one demands that the data on each 

hypersurface of constant time lie in a certain Hilbert space of 

pairs of sufficiently integrable functions. A rule of thumb is 

that the Hamiltonian operator of a quantum-mechanical system is 

self-adjoint if the corresponding classical particles cannot 

reach spatial infinity within a finite time.[11] Thus a very 

crude physical flexplanationtt of this result is that, although 

photons, following the light cones, can reach infinity within a 

finite time (in marked distinction to the case of flat space), 

the classical trajectories of massive particles (the geodesics) 

never reach infinity at all (see Secs. III.4-6). 

We now turn to the proof of the assertion. 

general theory of self-adjoint extensions of 

First the 

differential 

operators[12] wlll be briefly reviewed, since the problem at hand 

is a special case of one which vill arise in the general theory 

of field quantization in static metrics (see Sec. VIII.1) •. 

A real second-order differential operator of the form 

+ V (X) 
dx" 

(8. 4) 

acting on functions defined on the interval a< x < b may have 

rrrrwightman(196iif;-pp:-266-268. Two qualifications: (1) 
There are counterexamples to the rule (E. Nelson, unpublished 
lectures). (2) The rule has always been applied to 
nonrelativistic mechanics, not, as here, to a relativistic 
problem (with a different relation between momentum and energy). 
[12) See, e.g., [Akhiezer-Glazman], Appendix II. 
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o, 1, or 2 square-integrable eigenfunctions for a given 

eigenvalue~ in the complex plane. This number is the same for 

all nonreal \; we shall call it the de.ficiep_£I of the operator. 

It is the number of boundary conditions which must be added to 

define the expression (8.4) as a self-adjoint operator in the 

Hilbert space of t"' functions on the .interval (a,b). 

The deficiency is determined by the behavior of Vat 

the endpoints. 

integrable in 

If 

its 

an endpoint (a orb) is finite and fV(~ t is 

neighborhood, the endpoint is Iegular; 

otherwise, singular• A regular endpoint contributes one unit to 

the deficiency; however, this can be immediately remedied by 

imposing a boundary condition at that point on the "acceptable" 

eigenfunctions. (Examples: (1) f(a) = O (reflecting wall 

boundary condition); (2) f (a) + y_f• (a) = O; (3) f (a) = f (h), 

f' (a) -= f' (b) (periodic boundary conditions applicable if both 

endpoints are regular).) A singular endpoint may or may not 

contribute to the deficiency; these are called the limit cicclg 

and limit .E.Qint cases, respectively. 

If the potential is symmetric (V(-x) = V(x)), the 

classification of the two endpoints must be the same, so the 

deficiency can only he O (limit point) or 2 (regular or limit 

circle). In the first case the spectrum is uniquely determined; 

the only square-integrable eigenfuctions of the operator (8.4) 

are those belonging to the point spectrum. In the second case 

11! the eigenfuctions (tvo of them for each complex number as 

eigenvalue) are square-integrable, and they will not all be 
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mutually orthogonal. Then the boundary conditions pick out a 

discrete set of real eigenvalues corresponding to a complete 

orthogonal system of eigenfunctions. 

Let us see how the operator (8.2a) fits into this 

framework. (Recall that the range of o. is - lt/2 < o: < 1'/2.) 

If q = 0 the endpoints are regular. The solutions are 

too well known to require comment. The boundary conditions 

f (ff/2) = f (-lt/2) = 0, (8. 5) 

corresponding to reflection at the boundaries with reversal of 

phase, yield the spectrum 

fpf = 1, 2, ••• 

appropriate to a representation of the de Sitter qroup with q = 0 

(Eqs. (B. 3. Sb)). Other boundary conditions give rise to Hilbert 

spaces of solutions of the wave equation which are not invariant 

under so (1, 2) *• 
0 

If q, 0, the endpoints are singular. A series 

solution ((Carrie.r-Krook-Pearson], pp. 198-202) of Eq. (8.2a) 

about the point~= ff/2 shows that for any p there are two 

independent solutions which behave near that point as 

-v 
X and 

(X = oc - lt/2, v given by Eq. (8. 3)) • 

X 

JI♦ 1 
(8. 6) 

This asymptotic behavior -v 

can also be observed from explicit expressions for the Legendre 
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functions at infinity, (N.B.S.J, Eqs. (8.1.3,5), P• 332. !f 

I) ~ 1/2 (q .:$_ - 3/4), only the second of the solutions (8.6) is 

square-integrable in the neighborhood of ff/2. This is clearly a 

limit point case. A normalizable eigenfunction exists only for 

those discrete values of p such that a solution can be 

square-integrable at both ends of the interval simultaneously. 

The spectrum of IPI must be that corresponding to the unitary 

representations of the covering group so (1,2) * 
0 

with 

q = -V(v + 1). In particular, if l is an integer, the solutions 

(8.1) are periodic in <J' and we have the representations {B. 3. Sb) 

of S0
0

(1,2). 

If O > q > - 3/4 ()) < 1/2), both solutions (8.6) are 

square-integrable for all p, and we have the limit circle case. 

No sing.le--valued representations of so (1,2) (integral JJ) fall in -J,J 
0 

this range. 

The eigenvalue equation in the form (8.2b) can be 

transformed by the substitution 

1/2 
f = cosh r ,s 

to the form 

a 2 d,S 1 3 2 2 
- -(cosh r -) + -91 - (q + -) cosh r fll = p fll, 

dt dr 4 4 

where the operator is Hermitian with respect to the La. scalar 

product .• Here the quali ta ti ve change at q ·= .... 3/4 is clearly 



Sec. V.8 187 

shown in the behavior of the zeroth-order term. 

In the solution spaces which support group 

representations each admissible value of p appears once, and so 

does - p. Hence we have a direct sum of the two inequivalent 

irreducible representations with the given value of q. This 

count is consistent with the results on the decomposition of the 

quasiregular representation cited in Sec. VI.1, and with the fact 

that. in the space of solutions in the Gaussian system described 

at the beginning of this section the spectrum of \. has 

multiplicity 2 (cf. Sec. II.3). 
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Chapter VI 

CONTRACTION OF THE REPRESFNTATIONS OF THE DE SITTER GROUP 

TO REPRESENTATIONS OF THE POINCARE GROUP: 

GEOP!ETRICAL APPROACH 

Clearly one cannot rest satisfied with the treatment of 

contraction of group representations in Chapter II. What it 

means for unitary representations of two groups to be related by 

contraction has never been precisely defined. Some in tui ti ve 

relationships among various series of representations have been 

pointed out, but the algebraic manipulations employed involved so 

many!~ h2f procedures and had to be modified so often to yield 

the desired results that they can hardly he said to constitute 

derivations of anything. Finally, the mysterious role of the 

phases of the basis vectors, which should be arbitrary, cries out 

for explanation. 

In Secs. c.5-6 some of these problems are resolved in 

the case of the contraction of S0(3) to 1S0(2) by paying close 

attention to the geometrical meaning of contraction. (The basic 

idea is that the contracted group is a local approximation to the 

action of the original group on a homogeneous space near a point 

whose stability group is the subgroup which defines the 

contraction.) Also, in sec. III.3 an observation of Wigner 

(which has been elaborated upon by Philips and Wigner (1968), 
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Sec. VIII) was cited, to the effect that the separation of 

positive and negative energies in the contraction of an 

irreducible representation of the de Sitter group must be related 

to the choice of the point of de Sitter space at which the 

contraction is regarded as taking place. The author's original 

intention was to present in this chapter a thorough treatment of 

the contraction of the representations of so (1,2) from the point 
0 

of view of functions on the homogeneous space so (1,2)/S0 (1,1) 
0 0 

(the closed de Sitter spac~. Time and space did not allow this 

program to be carried out. Nevertheless, in order not to leave 

the subject banging, the basic ideas will he presented here in a 

qualitative way. 

1. TJ!~ Q..q~sir~gtJl!I ~.Eresentat,!2!! of so (1. 2). [ 1] 
0 

The natural (quasiregular) action of the de Sitter 

group and its Lie algebra on the smooth scalar functions of 

compact support on de Sitter space has been discussed in Secs. 

A.3 and v.1. Integration with respect to the volume element of 

the manifold defines an invariant scalar product on this space of 

functions. with respect to which it can be completed to form a 

Hilbert space. The unitary representation of the group in this 

Hilbert space is also called the quasiregular representation. 

The quasiregular representation can be decomposed into 

(1] In this se~tion we shall keep the two-dimensional de Sitter 
space in mind, but most of the remarks apply to higher dimensions 
as well. 
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a direct integral of irreducible representations.[2] Each 

representation of the principal series occurs twice, as might ·be 

expected from our count of the linearly independent solutions of 

the wave equation in Chapter V (see Secs. V.4 and v.7). Discrete 

representations also appear (once each in dimension 2 -- cf. Sec. 

v. 8) • 

Of course, the quasiregular representation of the 
. / 

Po1ncare group on Minkowski space can also be decomposed into 

irred ucibles. The familiar Fourier transform does just that. 

(The plane waves with four-momenta satisfying 
µ. 

pp = const. 
,I-'- ----

support one or more irr~ducible representations corresponding to 

th at value of the Casimir operator (I. 4. 4) -- cf. Sec. B. 2.) It 

would also be possible to use basis functions which diagonalize 

the Lorentz transformations, rather than the translations, within 

each irreducible representation. In this case the dependence on 

the coordinate corresponding to geodesic distance from the origin 

would be given by certain Bessel functions (cf. Chapter IX and 

Sec. X. 2). 

The contraction of the quasiregular representation of 

the de Sitter group to that of the Poincar, group. therefore, 

provides a natural geometrical setting for the contraction of the 

respective irreducible representations which are imbedded in 

them. In fact, this may he used as the definition of the 

------------{ 2] [Gelfand 5] (case n = 3); Molchanov (1966); Limle et al. 
(1967). Cf. also BHrner and Dttrr ( 1969) (see Sec. III. 7-above) 
and Nachtmann (1968b). 
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contraction relation for the irreducible representations. One 

proceeds in analogy to the treatment of the rotation group in 

Appendix c. Consider a function with compact support near the 

point of contraction; let the radius of the space go to infinity; 

but "shrink" the function in some systematic (but not unique) way 

so as to keep the size of the support roughly fixed. {The 

easiest way to do this is to use one of the standard coordinate 

systems which, as was explained at length in Chapter III, are 

closely related to various coset decompositions of the qroup. 

Rescale some of the coordinates proportionally to R, and keep the 

g.!.E!i£i! !.2!!! of the function in terms of the coordinates fixed. 

See the examples in Secs. C.5-6.) Then, if the relative phases 

of the basis vectors are correctly chosen, the coefficients of 

the expansion of the function with respect to the basis elements 

of the guasiregular representation on the hyperboloid will 

converge to the expansion coefficients of a function on the plane 

with respect to a basis for the guasiregular representation of 

the Poincare group. In particular, the correspondence of 

irreducible components of the representations appears in this 

way: it is manifested in asymptotic expressions for some special 

functions in terms of others, analogous to Eqs. (C.5.3) and 

(C.6.6). 

For instance, let the point of contraction be the point 

O in Fig. 3 and use bases of the form (V.6.7) for the 

principal-series contributions to the quasiregular representation 

of SO ( 1, 2). Then when -r: and <1" are rescaled as in Eq. (IIJ. 1. 16) 
0 
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one will recover the Fourier transform in Minkowski space, the 

Legendre functions being approximated by complex exponentials 

when r is small and p is large. (The spacelike momenta are 

contributed by the representations of the discrete series, in 

accordance with Sec. II.2.) 

The same is true if one usP-s the static coordinates of 

Fig. 4 around o, or the coordinates of Fig. 9, although the 

family of functions through which a given initial function is 

mapped as R changes will be different in each of the three cases. 

In connection with the static case it should be noted that the 

wave functions discussed in Sec. V.7 have "dips" near o when 

: < g, since this is the classically forbidden region inside the 

potential barrier. consequently, as a function shrinks down 

toward O its components along these basis vectors will rapidly 

vanish. Thus the energy gap between - m and + m in the 

representations of the Poincari group arises naturally, even 

t.hough). ranges continuously from -oo to +co in the original de 

Sitt er representation (cf. Sec. II. J) • 

Finally, if one contracts around Pin Fig. 5 and uses 

basis functions adapte~ to the coordinates indicated in that 

figure, one obtains an expansion in the plane in terms of the 

Bessel functions mentioned above.[3] 

----~~---------------(3] To prevent misunderstanding, it should be stated again that 
the author has not actually performed for these cases the 
detailed manipulations with special functions analogous to those 
in secs. C.5-6. Nevertheless, it is obvious that relat.ionships 
of the type indicated must hold. 
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2. ~.Q]!tl.i;ical ~Qntractiol! of .21! Irreducible R~,Eresentation. 

The indefinite metric of de Sitter space, as contrasted 

with t~e positive definite metric of the sphere considered in 

Appendi~ c, has an important consequenc~ for the structure of the 

set of functions on the space which supports an irreducible 

representation of the principal series. The partial differential 

equation (V.2.1) which helps determine the set is hyperbolic 

instead of elliptic, and hence a Cauchy initial value problem can 

be posed for it. When initial data are specified on a spacelike 

hypersurface through the point of contraction, all sufficiently 

well-behaved initial data occur, including those with compact 

support near: the point of contraction. Hence it is possible in 

this case to apply directly to an irreducible representation a 

geometrical approach to contraction similar to that of the last 

section. 

Construct an irreducible representation of so (1,n) as 
0 

in Sec. v. 4. That is, choose a particular solution, of the 
0 

wave equation such that W(1f
0

,1f
0

) 1- 0 (W defined by Eq. (V.4.1)). 

The space generated from ,
0 

by the natural action of the 

operators of the group (or of the Lie algebra) consists of 

vectors with the same sign of W, which thus defines a scalar 

product. The space becomes a Hilbert space supporting an 

irreducible unitary representation. 

The functions in this space are 

correspondence with their initial values on a 

in one-one 

space like 

hypersurface, which may be taken to be an (n-1)-dimensional 
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hypersphere. Let the radius of the de Sitter space, and hence of 

the sphere, tend to infinity, confining one's attention to wave 

functions whose initial values have support within a fixed 

geodesic dis ta nee from the point of con traction. (The en tire 

function, o.f course, does not have support near the point, and 

neither does the initial value of its normal derivative on the 

hypersphere.) As in Secs. c.5-6, the coefficients of the 

spherical harmonic expansion of the initial value of such a 

function will converge to the coefficients of an expansion of a 

function on the (n-1)-dimensional Euclidean plane with respect to 

a basis of eigenfunctions of the Laplacian.(4] In this process 

certain discrete parameters will become continuous. 

Do these wave functions themselves now converqe to 

solutions of the wave equation on the n-dimensional Minkowskian 

plane which form the core of an irreducible unitary 

representation of the Poincar, group? This will be true only if 

the basis functions corresponding to adjacent values of the 

confluent discrete paremeters just mentioned agree in the limit. 

For example, consider the two-dimensional case, where the only 

parameter is the Fourier series index p. When R >> 1 and g, p, 

and so on have been rescaled as in Sec. II.1, Eqs. (V.4.6) and 

(4) In the case of two-dimensional de Sitter space, "converge" is 
an understatement. As an initial value g(~ is replaced by g(Rx) 
and xis rescaled compensatingly, its Fourier series coefficients 
for various finite values of R and the values of the Fourier 
transform (R ~ oo) are all values of the ~~ analytic 
function, 9(k). But this is an accident of the low dimension 
a one-dimensional manifold has no intrinsic curvature. 
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(V.4.9) become approximately 

2 _2 -1/2 + 

' = (11 + p ] A ' , p+1 p 

ipx 2 2 
-, 

+ i (p+~) X _ - -A [e E (t) ] = - [ m + p ] e o 
p p+1 

- I + ipx 
A ( e 0 (t) ] 

p 

i(p+il)x 
= - e F. (t) • 

p+1 

195 

(2. 1) 

(t) , 

(2. 2) 

(The bars on the functions E and o indicate that the independent 

variable {the time) has been appropriately transformed.) The 

basis vectors, 
f 

the ,P for odd p 

A {p) and B (p} in 

are of the form (V.4.4). It is easy to see that 

will be consistent with those for even p only if 

Eg. (V.4. 4) have very special values. Namely, 

up to phase, we must have 

, 
A (p) B(p) = + 

V2 
(2. 3} 

the sign in B corresponding to that of w. The contracted basis 

functions are then the plane waves which support the 

representation of the Poincare group with positive or negative 

energy, respectively. 

Note that according to this version of the geometrical 

picture an irreducible principal-series representation of the de 

Sitter group contracts to one irreducible representation of the 

. / 
Po1ncare group, not to two. 
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3. ,!he GN~ Con.§truction; Contraction £!!.Q. Reconstruct,iQ.!!. QI. "Field 

Neither the approach to contraction in terms of Lie 

algebra matrix elements (Chapter II) nor that in terms of 

functions on a homogeneous space (Secs. VI.1-2) lends itself 

easily to the formulation of a precise definition. In this 

section still another approach is suggested, which has the 

advantage that a rigorous definition can be stated. A possible 

application to field theory is aescribed. 

A unitary representation of a Lie group G determines an 

Hermitian representation of its Lie algebra, ~(G), and hence of 

the associative algebra generated by the Lie algebra, which is 

the (complex) universal envelopinq algebra i{(G). For U(G) 

there applies the correspondence between (cyclic) representations 

and "states" which is given by the Gel 1 fand-Naimark-Segal 

construction. The version of the GNS theorem which applies to an 

algebra of unbounded operators is stated by Powers (1971), Sec. 

6. Davies (1971) has recently studied lie algebras in this way, 

but he did not consider the subject of contraction. 

If {A (j)} (1 5 i ~ n) is a basis for l,(G), then 

(j ~ j i ••• ~ j , M = 0, 1, ••• ) 
1 2 M 

is a basis for 'U (G) • This statement is true for all Lie 

algebras of dimension n. So if X(G) and X:{G •) are 

nonisomorphic Lie algebras of the same dimension, then U(G) and 
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'U._(G') as vector spaces are the same; only the multiplicative 

structure (in effect, the rules for expressing products of the 

A(j) in the "wrong order" in terms of the above basis elements) 

is different. Of course, the same thing is true if t_(G) and 

~{G') are isomorphic -- in other words, if one considers two 

different bases for Z(G) and then identifies, as vectors, 

corresponding basis elements. Thus the enveloping algebra 

regarded just as a vector space (which we can denote by ~(n)) 

provides a fixed arena within which contraction can take place. 

The following definition is suggested: 

A family {D(R)} (R -4 oo) of unitary representations 

Lie group G contracts to a representation D' of a Lie 

G' if for each R there is a linear functional l(R) on 

such that 

of a 

group 

"U.(n) 

(1) 1J (R) is a vector state from D (R) on 'il(G) 

(identified with U(n) by a particular choice of basis): 

f(R}[A] = (,,D(R)[A]1J) (A€ U(G)), 

where J is in the Hilbert space where the representation 

D(R) acts; 

(2) There is a vector 

representation D' of U(G') such 

topology as R ~ o:>. 

state f' from a 

that V(R) ~,,in the 

(This is a whole family of definitions, since the topology has 
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not been specified. Jn the absence of any theorems, it is hard 

to commit oneself to a particular topology.) 

The approach of Chapter II and the geometrical approach 

could be reformulated in this way, at the cost of studying one 

particular formal basis vector or function (respectively) instead 

of all of them at once. (Part of the contracted representation 

might be lost in this way because of loss of cyclicity.) 

The approach to contraction in terms of a distinguished 

state (or, more precisely, a family of states parametrized by R) 

may be quite useful in the context of contraction of field 

theories. By this is meant, as in Sec. I.2, the construction of 

a Lorent~-covariant theory as a limit of a covariant theory in de 

Sitter space. The most obvious method of doing this is by means 

of the Wightman reconstruction theorem ([ Streater-tHghtman ], Sec. 

3. 4) • 

First, assume that we have a field theory satisfying 

the axioms stated in Sec. IV.1. 

values (VEVs) 

Form the vacuum expectation 

W (X 1•••1X) : (1J ,si(X) • • • ¢(X )JJ ). 
n 1 n O 1 n 0 

It is easy to show, in precise analogy to [Streater-Wightman], 

Sec. 3.3, that the field's properties of covariance under the de 

Sitter group, Hermiticity, local commutativity, and positive 

definiteness of the scalar product are reflected in certain 

relations satisfied by the VEVs. (One needs to assume that the 
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,:r;-' nuclear theorem holds for .J, the space of test functions.} 

From the VEVs, which are multilinear distributions on 

de Sitter space, one may obtain distributions on Minkowski space 

by passing to the infinitesimal neighborhood of a point by a 

rescaling of the coordinates (of the type described in Sec. 

VI .1) • The properties of the VEVs expressing Hermiticity, 

commutativity, and positivity will clearly be preserved in this 

limit. It is to be expected that the limit VEVs will satisfy the 

relations corresponding to Poincar, invariance of the contracted 

theory. A theorem to this effect is needed, however, before the 

program proposed in the Introduction can be implemented. 

Contraction of group representations as defined above may turn 

out to be a useful concept in this connection. 

Once Lorentz covariance of the contracted VF.Vs has heen 

established, it remains to verify the spectral condition and the 

cluster decomposition property. Then the reconstruction theorem 

will provide a field theory in flat space satisfying the Wightman 

axioms with the possible exception of asymptotic completeness. 
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THE NEUTRAL SCALAR FIELD IN RIEMANNIAN SPACE-TIME 

-- GENERAL FEMARKS 
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We shall apply the traditional canonical quantization 

procedure to a real scalar field satisfying a covariant wave 

equation on a Riemannian manifold of dimension s + 1 and 

signature (+ - ••• -) (s minus signs). We require (cf. 

Choq uet-Bruha t ( 19 6 7) , p. 89) that it .be possible to define the 

.Q:!£§Ct!.Q.!! of time globally and continuously on the manifold.[ 1] 

The geometry of the manifold is assumed given it is an 

"external gravitational field". '!hat is, there is no attempt to 

couple the metric of the space to the matter represented by the 

quantized field. Thus we are studying the quantum-

field-theoretical analogue of the problem of determining the 

motion of test particles in classical general relativity. 

We shall find that the classical Lagrangian-Hamiltonian 

treatment of the scalar field extends immediately to this 

situation, and that the "smeared fields" needed in quantum theory 

can be defined in a manifestly covariant way (still on the 

[ 1] As we shall see at the end of Sec. VII.4, it is hard to 
imagine what the commutator of a canonically quantized field 
would be on a manifold for which there is no distinction between 
past and future. (One should also note the physical problems 
associated with the second law of thermodynamics, etc., in such a 
situation.) This requirement excludes from consideration the de 
Sitter space ~ith antipodal points identified (see Sec. I.1). 
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classical level). Then in a formal sense one can proceed 

immediately to an algebra of guantized fields obeying the 

canonical commutation relations. However, it is not at all 

obvious how to realize these objects as operators on a Hilbert 

space. In the next three chapters we study this problem in two 

special cases where the wave equation can be solved by separation 

of variables. 

In the fourth section of this chapter we study the 

distribution solutions of the wave equation which generalize the 

familiar A<x, - x~)# etc., and their relation to the general 

solutions of the wave equation. It is emphasized that some of 

these objects are uniquely determined at the formal level and 

some are not. In Sec. VII.5 the generalization of the indefinite 

scalar product or current form for the Klein-Gordon equation is 

discussed. In the last section the problem of quantization is 

discussed from a more abstract viewpoint. 

1. Th~ £1~.§_ical Canonica]: Formalism. ( 2] 

We follow the canonical Lagrangian formalism as 

expounded by, e.g., Hill (1951). In keeping with the spirit of 

this approach, integrals and derivatives will always be written 

explicitly in the coordinates. That is, means 

Jax~ dx' ••• dxs, and the factor ,r,gf (g = det {g~vl < 0) needed 

(2) This material, and much of the rest of this chapter, is not 
particularly new, but is treated in detail here in order to 
establish a consistent framework for scalar quantum field theory 
in curved space. 
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to make the volume element covariant must be written explicitly. 

Similarly, a or d/dx }-'- indicates the 
~ 

simple coordinate 

derivative, not the covariant (semicolon) derivative V • .,,.,.. 

We start with the generally covariant Lagrangian 

density 

, ..r.-- µ ).,> ~ 2 ? 
l..= - vfgf (g o fl o ~ - m r' 1, 

2 }1 y 

{ 1. 1) 

where i is a real scalar field. (The space-time variable x = 

0 I S 
(x ,x , ••• ,x) is suppressed.) Under coordinate transformations 

J_ transforms as a sea lar densi t.y (not as a scalar), so that the 

action integral I = f drnx L. is a scalar. (Some authors write 

L = fig1 Land call the scalar function L the Lagrangian.) 

The Euler-Lagrange equation resulting from the 

variation of I with respect to¢ is 

0 = 
..r:-:-: Jl y .r.-- 2 

= o [ v I 919 6 ~] + v I g f m ~. 
)l JI 

This can be written 

(1. 2) 

where O is the Laplace-Beltrami operator: 
C. 
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□ fl 
C 

J1Y 
g V V '1• 

Jl )I 
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( 1. 3) 

(See (Adler-Ba2in-Schiffer], Sec. 3.2, for the derivation of the 

form in terms of covariant derivatives.) 

The wave equation (1.2) reduces in flat space to the 

Klein-Gordon equation. It is not the only covariant 

generalization of the Klein-Gordon equation to curved space, 

since there might be other terms which vanish when the curvature 
_µ.JJ 

Rµ ¢/6. is zero, such as R V V 9/ or But it seems to be the 
.J,1- J,I ?-

simplest, and we take it to be the gravitational analogue of 

"minimal coupling" in the theory of external electromagnetic 

fields. 

On the other hand, a strong argument has been made[3) 

that the basic equation should contain a scalar curvature term 

Rµ fclJ'/6 in the case s = 3. (For the general case see Eg. (V. 2. 2) • } _µ 

Then the equation is conformally invariant when m = O. This 

could be accommodated by gen~ralizing the present scheme to allow 

a scalar potential: 

-v 

D ~ + m(m - V)~ = 0, 
C 

(1. 4) -

Va function of space-time. With the possible exception of one 

point, mentioned in Sec. VIII.2 below, all the results of this 

and the next chapter extend directly to the case (1.4). There is 

[ 3 J Penrose (1963), pp. 565-566; Penrose {1965), 
Chernikov and Tagirov (1968); Tuqov (1969). 

sec. 
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evidence that the addition of the curvature term makes a 

significant difference in predictions of particle creation in the 

early stages of expansion of the universe (Parker (1972)). 

When s = 1 it is always possible[ 4 J to choose 

coordinates in which the metric has the conformally flat form 

2 
ds 

J1 }) 
= g dx dx 

}JP 

Then Eq. (1.2) becomes 

0 2 
= CX(X) ( (dX ) 

2 
□~ + m a(x)¢ = 0 

1 2 
- (dx ) J. 

where O is the ordinary d1 Alembertian. Thus in two-dimensional 

space-time the gravitational problem reduces to a scalar 

potential problem. In higher dimensions this fails for two 

reasons: not every manifold is conformally flat, and in the 

conformally flat case g;i.v and ,ffgi do not cancel in f.q. (1. 3) as 

they do when s = 1. However, in some cases the equation can 

still be reauced to this form at the price of changing the 

dependent variable (see Grib and Mamaev (1969)). 

So far our formulation has been generally covariant. 

However, the notions of conjugate momentum and Hamiltonian will 

not make sense unless one coordinate is singled out as the time 

coordinate. Consequently, we consider from now on only 

coordinate systems in which the first coordinate, x0
, is timelike 

---------------[ 4] [Eisenhart], Sec. 28. 
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(see Appendix D). tloreover, we expect that a successful 

Hamiltonian formulation of the theory will be possible only if 
0 ·for each t the surface x = t is a Cauchy surface .for the entire 

region of space covered by the coordinate system (see Secs. 

III. 5-6) ~ In what follows we frequent! y denote x0 by t and the 

s-dimensional spatial coordinate by x. 

The momentum conjuqate to¢ is defined in the usual 

way: 

dX.. 
ff = = {iq1 

Oµ 
g ~ ¢. ( 1. 5 a) 

c {o ¢) 
0 

µ 

In particular, if g 
oj 

= 0 for j , o, 

(1. Sb) 

where '-f> g is the determinant of { cs> g jk} = {- gj k} (j,k 1 C), the 

metric of space at a fixed time. 

Consider a family of coordinate systems in all of which 

a qiven spacelike hypersurface has the form t = £2D§!• On this 

hvpersurface 1J acts as a density (proportional to \l"TsTg) relative 

to chanqes of the space coordinates, and it is unchanged[S] under 

transformations which leave the space coordinates in the 

(51 This statement refers to 1f regarded as a numerical quantity 
defined on the manifold. The functional form of l7(t,x) will 
chanqe, of course, when t and x are expressed in terms of new 
coordinates. Covariance relative to a distinguished hypersurface 
is discussed further in Sec. VII.3. 
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distinguished hypersurface and the direction of time unchanged 

(because the change in local time scale affects ~ and <\ g in 

compensating ways). Under time reversal the sign of n changes. 

The canonical procedure yields the Hamiltonian density 

'}.J(x) = n d ¢ - rZ_ 
0 

1 00 2 
= -vtgf(g (0 ~, -

2 0 

3 
1 

j,k=1 

jk 2 2 
q. o ~d rJ + m rt ]. 

j k 
(1. 6) -

(This form is valid even if g
0

J 1 O.) In terms of n we have 

s 
H = Ja X 1J 

oo -1 o· 
d 91 = [ vtg, g J [ lY - vtqf q Jo rJ 1, 

0 j 

1/ s 1 Oj 2 
-= -2 d x vtgT { - (lt - v'Tgi g o fl) 

I g f 9 00 j 

jk 2 2 
g o ~d, + m, 1. 

j k 

( 1. 7) 

( 1. Ba) 

(1.8b) 
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2. lormal Consistenci Qf Canoni£~1 Quantization.(6] 

Ultimately we hope to impose the canonical commutation 

relations (CC Rs) 

[¢{t,x) ,¢(t,y)] = (TI(t,x) ,TI'(t,y)] = 0, (.2. 1a) 

[ ¢ (t. ,x) , ff (t, y) ] = iO (x - y) • ( 2. 1 b) 

Note that &(x - y) is the ordinary delta function in the s 

coordinates on the equal-time hypersurface (a density, not a 

scalar). It is easily verified that Eqs. (2.1) and Heisenberg's 

egua tion dA/dt = i[ H, A], with H given by Eq. ( 1. 8) , formally lead 

to the correct equations of motion (1.7) and (1.2). 

It can also be verified by explicit calculation that 

the CCRs are formally consistent with the equations of motion, in 

the sense that if Egs. (2.1) hold at one time, then they continue 

to hold for all time. 

iden t.i ties: 

We need the following delta-function 

0 0 
h{x) -d(x - y) = 

6x 
- -( h (y) b (X - y) ) ; 

by 

d jk o 
-. [ h (X) -O (X - y) ] 
dxl ~xk 

o jk d 
= -. [ h ( y) -S ( X - y) l 

~yJ 6yk 

jk 
if h 

{2.2a) 

kj 
-= h (2.2b} 

[6] Conclusions similar to those of this section have been 
published by Urbantke (1969). 
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To verify Eq. (2.2a), smear each side with a test function[?] of 

the form f(x)g(y) and integrate by parts: 

0 f dx dy f(x)g(y) o/h(y)S(x - y)] = - fix f(x) g' (x)h(x) 

d 
= Jax g (x) -( f (.x) h (x) ] 

dx 
= - Jdx dy f {X) g (y) h (x) ~6 (x - y), 

6x 

(A slight generalization of integration by parts shows that the 

same identity bolds for an arbitrary test function f(x,y).) The 

proof of Eq. (2 .. 2b) is similar. 

We can now see that the derivatives of the canonical 

commutators vanish by virtue of the equations of motion (whence 

the assertion follows). Eliminate time derivatives from the 

commutators by means of Eq. (1.7) and 

1 jO Ok jk 2 
d [Vfgt(-g g - g )o ~] - t{j"gim ~. (2.3) 

i goo k 

which is equivalent to the wave equation (1.2). (Egs. (1.7) and 

(2.3) are the Hamiltonian equations derived from the Hamiltonian 

(1.8a).) Then 

[7] At the present level of rigor we do not need to be precise 
about the test function space, the growth properties of the 
function h, etc. 
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d 
-(" (X) , t[ (y) ] = 
dt 
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• 
(pl(X) ,1{(y)) + [r'(X) ,ff(y)] = 

- ig 
Oj 

(X} /g 
00 o o jO 00 

(X)-:-~ (X - y) - i--:-[ g (y) /g (y) 8 (X - y) ] = 0. 
oxJ t;yJ 

Eq. (2.2b) similarly implies that d 
dt ( 1f ( X) , lt ( y) ] = 0, and the 

{~ 1 ¢] case is immediate. 

A generalization of the proposition just proved is the 

following: commutatiQn relations (2.1) !ff 

~ngn!l.I £Qiarifill!, in the sense that if they are imposed on one 

spacelike hypersurface, then they hold on any spacel.ike 

hypersurface (by virtue of the equations of motion). (This is in 

marked distinction to the noncovariance of various 

natural-seeming constructions of representat.ions of the CCRs, 

which will be a central theme of the rest of this dissertation.) 

If two hypersurfaces do not intersect, they can both be regarded 

as equal-time hypersurfaces in one coordinate system, and then 

the assertion follows immediately from what has just been proved. 

If they do intersect, one can argue that the CCRs on each are 

equivalent to the CCRs on an intermediate hypersurface which 

intersects neither. 

In the classical Lagrangian theory of Sec. VII.1 the 

field ~(x) has been taken to be a true scalar quantity (rather 

than a sea la r density) • On the other hand, we know that in 
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quantum theory ~(x) will be a distribution which must be 

integrated over test functions. If the test functions are also 

taken to be scalars and we wish the result of the smearing to be 

invariant, we must define the smeared field as follows: 

f 
s+1 

¢ (f) = d X Vfgl - (X) f (X) • (3.1) 

In the canonical formalism it is natural to smear 

,(t,x) and ff(t,x) over a spacelike hypersurface of constant time. 

Let us, therefore, elaborate on the remark in Sec. VII.1 that n 

is a covariant density on a hypersurface. Call a coordinate 

system ~ea tible with a hypersurface s if s is defined by an 

equation of the form t = const. in that system. An expression is 

S-£Q.!ariant if it has the same form in all s-compatible 

coordinate systems. An integral over s is s-covariant if the 

integrand is the zeroth component of a contravariant vector 

density. (In the language of differential forms, one constructs 

an s-form from a contravariant vector by duality.) If 

f(x) = f(t,x) is a scalar function on space-time, then 

0)1 
Df = Vlgf g 6 f 

)1 

is such an object. Thus, in particular, 

s Oµ 
¢ ( D f) - ( d X fl ( X} Vf9t g O f ( .X) 

t=bonst. p 
(3. 3a) - -
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and 

s 
lf (f) - f d X ff (X) f (X) 

t=const. 

s 
= /a X D-(X) f(X) (3. 3b) 

ares-covariant scalars: 

J 
s f s 

d x• Jf' {X')f' (X') = d X 1T{x)f(J:), 
t•=const. t:const. 

and so on, when the hypersurfaces of inteqration coincide. 

When t.he coordinate system is not necessarily 

s-compatible, this type of integral is written 

f 
.r:-- µ 

do' V I g I j ( X) , 
s }1 

where@ j~ is the vector density and 

1 
dO' -= d X 

µ 
• • • 

/\µ 
dx ••• 

s 
dx. 

The covcJ,riant dive£gence of a vector function j;'{x) is 

the scalar 

div j = V /
1 

µ 

1 . Jl 
= ---=. b ( figi j ) • 

"'9, }l 

If div j: O, then it follows from Gauss's theorem that 

(3. IJ) 
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0 

J 
s 0 

d x Vl91 j {x) 
s 

(x = const. on S} ( 3. 5) 

is independent of the hypersurface, and thus is completely 

covariant ([Adler-Bazin-Schiffer], pp. 71-75). 

4. Th~ commutato1: ang_ Pelated Distributions. 

Let us assume now that the field theory of Sec. VII.1 

has been quantized, so that we have operator-valued distributions 

satisfying the equal-time commutation relations (2.1} and the 

equations of motion (1. 5) and (1. 2) (or (2. 3)). Let L denote the 

operator O 
C. 

?.. 
+ m • We consider the commutator of the 

arbitrary times, 

(¢(x ), ¢(x)] = iG(x ,x) _ iG(t ,x ;t ,x ). 
2 1 2 1 ~ 2 1 1 

fie las at 

( 4. 1) 

G is antisymmetric and satisfies the field equation in each 

variable: 

L G (X , X ) = (\ = L G ( X , X ) • ( 4. 2) 
2 2 1 1 2 1 

By virtue of Eqs. (2.1) it fulfills the initial conditions 

G(t,x ;t,x) = O, (4. 3a) 
2 1 

D G(t,x ;t,x) = - D G(t,x ;t,x) = - O(x - x }. (4. 3b) -
2 2 1 1 2 1 2 1 

(D2 indicates the contravariant time differentiation (3.2) acting 

on the variable x~. We use the similar conventions ,ffg7, 
'].. 
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d , and so on.) 
Ol.. 
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G is the eropagatoI for the Cauchy problem, when it is 

well-posed. That is, the unique solution[ 8] of the wave equation 

(1.2-3) with the initial values (which may be distributions -­

see below) 

F(t,x) :: f (X), DF (t, x) -= f 1 (x) 

on the hypersurface s 0 = {x Ix = t} is 

F(x) 
2 

s 
d X 

1 
{G (X , X ) D f (X ) - D G {X , X ) f (X )} , 

2 1 1 1 1 2 1 1 

where Df = f'. This formula can be written (n = s + 1) 

P{X) 
2 

n 
d X 

1 

= bet - t)f'(x, 
1 1 

+ o [ o (t 
µ1 1 

.r.--- Op 
- t)vlg tg f(x )]; 

1 1 1 

f* is a distribution in the sense of Eg. (3.1) 

s-covariant. 

Proof: It is obvious that 

F(t,x;z..) -= f,(x.1.>• Let 

(4. 4) 

(4. 5) 

(4.6a) 

(4. 6b) 

and is 

(BJ-Whenever numerical-(rather than operator-valued) solutions of 
the wave equation are considered, we allow complex values, even 
in connection with the theory of an Hermitian field. 
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D F(x) = - f d
5

x D G(x ,x) D f(x) + A. 
2 2 S 1 2 2 1 1 1 

The first term here becomes the desired f' (x~)• The second term 

is, with 

W -= f c/ X 
1 

D G {X , X ) f (X ) , 
1 2 1 1 

00 
A= fig, {g (d 

2 2 02 
+ a 

01 

oo 2d 

0 . J 
- d ) w + q d W} 

01 2 ;2 

00 Oj 
= Vl9-, r g ------w J - g d w + g a w1 

2 2 d (t, + t,) (t, -t
1 

fixed) 2 01 2 j2 

_ A + A + A • 
1 2 3 

When t - t = 0, W is indepennen·t of t + t., (by Eq. (4. 3b)) ~ so 
I J., I .._ 

A1 = O. Using the wave equation for Gin the form (2.3) (with 

00 f s 00 -1 jO 
A = (fgf g d x

1 
f (x l {d ( (g ) g - D G) 

2 2 2 1 j1 1 1 1 

But at t~ = t
1 

this is 

+ terms in G and~ G}. 
j1 
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: i VJgl g d X 

00 -1 jO 
(g ) g [ i ~ (X A 

2 

00 f s 

2 2 1 1 1 2 

So A = 0. 

In t.he rigorous theory 

- X ) ] 0 f (X ) 
1 j 1 

of hyperbolic 
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- A • 
.3 

partial 

differential equations on a manifold (surveyed by Choguet-Bruhat 

(1967)) it is proved that if the manifold is globally hyperbolic 

(cf. Sec. III.5), then the equation 

L G (X , X ) = h (X , X ) (4. 7) 
2 inborn 2 1 2 1 

(where 

n 

/ 
d x

1 
\f'Tg-1 S ( X , X ) f ( X ) = f ( X ) 

1 2 1 1 2 
(4. 8) 

i.e., b is a scalar distribution) has a unique solution 
ret 

G (xA,x,) such that its support in x~ is ttcompact toward the 

past" -- and lies, in fact, inside the future light cone of x
1

• 

This is the retarded Green f!ill£1io.n. The ady~£ed Green function 

satisfies Eq. (4. 7) and has support in the past light cone of x 
1

• 

The (unique) solution of 

LP ( X) = V (X) (4. 9) 

which has support in the future of the support of v (that is, 

represents outgoing radiation from the source v) is 
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ret 
F (X ) = (4.10) 

2 

(Similarly, Fa.dv has support in the past.) G'("et is !:~.9]!!.~!'.: if 

V is a smooth function, then so is Fl'"et • It can be shown from 

this that f1""eC is defined (as a distribution) even if V is a 

distribution. (Proving this involves interchanging the roles of 

x 1 and x;i...) 

Since the Green functions both satisfy Eg. (4. 7) , 

adv ret 
G" = G - G 

is a solution of the homogeneous wave equation (4.2). We shall 

show that G" = G. The general solution of 

already have in the form (4.6)) can be written 

LF = 0 (which we 

n 
F ( X ) = - f d X 

1 
Vlg-f G" { X , X ) V ( X ) , 

2 1 2 1 1 
{4.11) 

where v can be chosen to have support on S (Four~s-Bruhat 

(1960)). Namely, let 

V (X ) = L (0 {t t) F ( X ) } = L {- 8 (t - t ) :P (X )} {4. 12) 
1 1 1 1 1 

(which is well-defined since F does not have a singularity in t, 

on S). Then by Eq. (4.10) the right-hand side of Eq. (4.11) is 

Frer(X ) - Fadv (X ) where 
.t :l. , 
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ret adv 
LP = LF = v 

and 

ret[adv] 
F (x ) = 0 if t < t [ > t ]. 

2 2 

By the uniqueness theorem, F, 'f'et d an Fadv are respectively the 

functions in braces in Eq. (4.12); Eg. 

immediately. 

V,gl v (x ) 
1 

Now from Eq. (4 .12) we calculate 

2 µO 
= vi g Im eF + o [ g V)gJ d {BF) ] 

µ 0 

(4.11) follows 

nt jk 
+ ~ r/ Vl916 <eF>J + d [g {igi' o <eF>J 

0 k j k 

µO Ov 
= et F + o r b c t - t) g (191 F J + b ( t - t }[ g Vlgi d F ] 

)l 1 1 v 

= 0 + {igi"t (X ) 
* 1 

{see Eq. {4. 6b)). In particular, this calculation shows that 

- L {e (t - t ) G (x , x ) l = 
2 2 1 2 1 

1 
--::= 6(t - t )&(x - X) = 
ytqf 2 1 2 1 

S (x ,x ) ; 
2 1 

since the distribution in the braces has no support in th€ past, 
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T€"t it must be G (x , x ) • 
,._ I 

Thus we have recovered from the formula (4.11) the 

formulas (4.5-6), with the identifications 

adv ret 
G (X , X ) = G {X ,x ) - G (X ,X ) , ( 4. 13} 

2 1 2 1 2 1 

ret 
G (.X I X ) = - 9 (t - t ) G (X , X ) , 

2 1 2 1 2 1 

adv ret (4.14) 
G (X , X ) = 9 (t - t ) G (X , X } = G (X , X ) • 

2 1 1 2 2 1 1 2 

It follows that {in the distribution sense, of course) 

G(x ,x) = 0 unless x and x are causally connected (4.15) 
2 1 2 1 

(see Sec. III. 5) • (In the case of the free field this fallows 

immediately from Eqs. (4.3) by Lorentz invariance.) 

Given any state vectors l and J, let us define 
I :z. 

(+) 
G (' , f ; X , X ) = <f f fi (X ) ¢ (X ) " ) , 

2 1 2 1 2 2 1 1 

(-) 
G Cf ,J ;x ,x) = <, 191(x )fi(x)" >, 

2 1 2 1 2 1 2 1 

(1) (+) 
G (f , tf ; X , X ) = G 

2 1 2 1 

(-) 
+ G , 

(4. 16a) 

(4. 16b) 

(4.17) 
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G ( tJ , 1f ; X , X ) = <, f T {¢ ( X ) ¢ ( X ) } f f > , ( 4. 18) 
F 2 1 2 1 2 2 1 1 

where( 9] 

Tb~(x )S,(x )} = 8_(t -t )j#(x );(x) + 8(t -t )Jif(x )¢(x ). (4.19) 
2 1 2 1 2 1 1 2 1 2 

and are solutions of the homogeneous equation (4.2); 

moreover, 

(+) (-) 

iG-= G - G (4. 2 0) 

G{I) • t . i d .1.s symme r1c n x, an xi.. G F is analogous to the Feynman 

propagator; iGF satisfies the inhomogeneous equation (4.7), and 

\ G 
F 

ret 
= - iG 

(-) 
+ G 

adv 
= - iG + G 

( +) 
(4. 21) 

In the case of the free scalar field in flat space one 

traditionally chooses JA = ,, = ,
0

, the vacuum. Then the 

distributions are all functions only of x~ - x,, because of 

translation in variance. In this case the .relation between our 

notation and the most widely used one ((Bjorken-Drell 2], pp. 

387- 390) is 

[ 9] There should be no trouble In--de.fining the distribution 
products in Eq. (4.19), since, in analogy with the free field, 
one expects fields smeared in space at sharp time to make sense 
as operators. See the discussion of the Fock representation in 
Sec. VIII. 3. 
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G (X , X ) = 6 (X - X ) , 
2 1 2 1 

(!:) 
G (J ,J iX ,x ) = A (X 

+ 2 
- X ) 

1 0 0 2 1 

(1) 
(G similar), 

ret( adv] (4. 22) 
G (X , X ) = 

2 1 
A (X 
ret[ adv] 2 

- X ), 
1 

G (' , f ; X , X ) = i_ti ( X - X ) • 
FOO 2 1 F 2 1 

The important point is that rct G, G , and 
a.dv G are 

unique and intrinsic (determined by the manifold and the wave 

• h • 1 C::t> eguat1on), w 1 e G Ge,, , and G tl t b d f · a , F apparen y mus . e e 1ne in 

terms of particular states in a quantum theory. Alternatively, 

one would need some way of splitting G into "positive-frequency" 

and "negative-frequency" parts (see F.q. (4.20)). 

There is one qualification to the statement that G is 

unique. Time reversal changes the sign of the canonical 

momentum, and hence (through Eq. (4. 3b)) the sign of G. (This is 

true even for flat space, of course.) The same conclusion can be 

drawn f·rom the alternative definition (4.13), since the meaning 

of "ret" and "adv" depends on the direction of time. Note that 

the uniqueness theorem and the reality of Eq. (4.71 imply that 
f"et adv G and G are real. G is therefore real. 
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The generalization of the Lagrangian (1.1) to complex -

is 

..r.-- JlY 
/_ = v I g I ( g o fll* o f6 - m 

2 
(5. 1) 

Jl )I 

It is invariant. under the gauge transformation - ~ exp (iY) pf. 

The corresponding conserved quantity {obtained through Noether•s 

theorem -- see Hill (1951)) is 

s 
d X [91* D- - D¢* 91]. (5. 2) 

W(_,,, can be generalized to 

For 

w (r' , fiJ ) 

1 2 

solutions d 'PI 

s 
d x f.sl*(x) D91 (X) - D-*{x) 91 (X) ]. {5. 3) 

1 2 1 2 

and~ of Eq. (1.2) whose initial values are 
'L 

sufficiently integrable for W (¢
1 

,¢J....) to be defined, i_t is an 

indefinite Hermitian (i.e., sesquilinear and conjugate-symmetric) 

form. It is independent of the hypersurface s {see Sec. VII.3), 

since the divergence of 

p 
j (¢ , ¢ ) 

1 2 

p.Y 
= iq [ 91* d ¢ 

1 V 2 
0 fi'l* ¢ ] 

V 1 2 
( 5. 4) 

is easily seen to be zero by virtue of the wave equation. Since 

the initial values¢ and D~ can be chosen independently, Wis not 
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degenerate: there is no¢' such that W{¢,-•) = 0 for all 1• 

If ¢ is a £QJ!.Qle! guantized field, W (fl,!'4) can be 

interpreted as the total charge of the system. For the Hermitian 

field we are studying, W(¢,¢) = O. Hence we shall be interested 

in w only as a bilinear form defined on complex-valued !rnmeri~al 

solutions of the wave equation. 

Unlike the case of a positive definite form, there is 

no unique maximal space of functions on which W is defined. 

Since there is no Schwarz inequality, it does not follow from 

W{¢ ,¢) <a:> and W(¢,,¢) <co that W(fl ,¢) makes sense. Thus 
l I .._ "- I l.. 

the vague phrase "sufficiently integrable" covers a r.eal 

ambiguity. One obvious possibility is to consider only functions 

for which both the initial values, ~(~ and D¢(x), are L~ 

.functions. Then the integrals in Eg. (5. 3) always converge. 

However, the case of the free field in flat space shows that this 

is not necessarily the natural space to consider. Tn this case 

(see Segal and Goodman (1965), p. 636) i(¢ ,¢) is defined for 
I ,l 

positive-frequency solutions with initial values ,(x) in the 

domain of the operator 

2 
C = (m 

2 1/4 
- V ] 

(defined via the Fourier transform). Then 

2 
D-(X) = - iC -(X) 

{S. 5) 

(5. 6) 

is a function in the completion of La with respect to the norm 
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II f 11 
C 

-1 
= IIC fll. 

2 
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W(¢ ,_) is defined on the direct sum of the positive- and the 
I ~ 

negative-frequency solutions, 

{5. 7) 

which satisfies Egs. (V.4.10). The restriction on D-(x) is 

weaker than square-integrability, but the·restriction on ,ex) is 

(necessarily) stronger. on the other hand, one could define W on 

a space of the form (5.7) with ~+ defined by the condition 

D9 (x) = - i¢ (X) 

instead of Eq. (5.6); then all the initial values would be 

square-integrable. 

Generalizations of the construction (5.5-7) are carried 

out (and applied to field quantization) for de Sitter space in 

Chapter V, for static universes in Chapter VIII, and for 

generalized Robertson-Walker universes in Chapter x. 

6. Conclusions. 

In this chapter we have established the following for a 

neutral scalar field in an external gravitational potential (in 

other words, on a given space-time manifold): 
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(1) The classical Lagrangian-Hamiltonian formalism can be 

applied in a manifestly covariant way (except that one 

coordinate is required to be timelike and the direction 

of time is significant). 

(2) Canonical quantization is formally consistent with the 

equations of motion. 

(3) "Smeared" fields can be defined covariantly, either in 

space-time or on a spacelike hypersurface. 

(4) The commutator of a quantized field can be related to the 

Green functions of the wave equation and to the general 

solution of the Cauchy problem. The generalization to 

curved space of the other distribution solutions 

associated with the Klein-Gordon equation is not unique 

in the absence of a definition of the vacuum state, or of 

"positive frequency". 

(5) The expression for the conserved current in a theory of a 

complex field yields a covariant Hermitian form on 

solutions of the wave equation with sufficiently 

integrable initial values. This form is positive on some 

solutions and negative on others, but this fact does not 

by itself lead to a unique characterization of 

positive-frequency solutions. In fact, different notions 

of positive frequency can sometimes lead to different 

maximal vector spaces on which the form can be defined. 
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In the standard treatment of the free scalar field in 

Minkowski space (e.g., [Bjorken-Drell 2], Chaps. 11 and 12) the 

next step in quantization is the solution of the wave eqnation by 

separation of variables and the association of creation and 

annihilation operators with the Pourier components of - and n. 
This leads to the rigorous construction of the fields as 

operator-valued distributions in Pock space. In Chapter VIII we 

shall show that this entire procedure goes through for the case 

of a static gravitational field; we have an ambiguity, however, 

if the metric has a static form in more than one coordinate 

system (Chapter IX). In Chapter X we attack the nonstatic case 

and encounter a more complicated situation. 

7. Ih~ Axiomatic !.Q~£Qg£h• 

In Chapter IV an attempt was made to adapt the general 

principles of quantum field theory (Appendix E) to de Sitter 

space. Here we shall briefly discuss to what extent this can be 

done for an arbitrary Riemannian space-time. This approach is 

logically independent of the rest of the chapter. The axioms 

stated should apply to self- or mutually interacting fields in 

curved space as well as to the "free" field described in the rest 

of the chapter. 

The word "free" is placed in quotation marks here 

because the deviation from the ordinary special relativistic free 

field equations doo to the nonconstant metric coefficients is 

every bit as drastic as that due to, say, an interaction with an 
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applied electromagnetic potential. One is 

the field on a Riemannian manifold as a 
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tempted to describe 

field coupled to an 

external gravitational field, 

general class of external 

and thus to absorb 

potential problems. 

it into the 

There is a 

distinction, of course: In special relativistic external 

potential problems one thinks of the external force as something 

superimposed on a fundamental flat space; there are distinguished 

systems of Cartesian coordinates. In the gravitational case, 

because of the universality of the gravitational interaction (the 

principle of equivalence), it is operationally impossible to 

define distinguished global coordinate systems, or to split the 

tensor which appears in the equations of motion uniquely into a 

space-time metric and an "external" field. Hso, the topology of 

the space may be different from that of Minkowski space. These 

added complications do not affect the point that the metric of a 

curved space, or even of flat space treated in curvilinear 

coordinates, enters the dynamics of a field as an external 

potential. We shall therefore broaden our discussion to include 

external potentials in general. 

We may define an external potential interaction, as 

opposed to a self-interaction or mutual interaction of quantized 

fields, as any interaction described by a quadratic term in the 

Lagrangian or Hamiltonian, and hence by a linear term in the 

equations of motion of the quantum fields. (We could also 

consider "external source" problems, where the interaction term 

is linear in the Hamiltonian and constant in the equations.) 
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These include external electromagnetic (four-vector) potentials 

and many other types of less relevance to nature, such as the 

scalar potential introduced in Eq. (V. 5.6). 

Field theories involving only external potentials {no 

true field interactions) are much less pathological 

mathematically than interacting fields. Nevertheless, they 

present a problem from the point of view of framing general 

principles like those in Appendix R. The reason is that 

nontrivial external potential interactions are in general not 

Lorentz-invariant. For instance, an applied electromagnetic 

field must point in some direction, and the field strength may 

vary from point to point in space and time. Under these 

circumstances it is not possible to make the assumption of 

Poincare invariance (Axiom 2) which is normally imposed on 

relativistic field theories. It follows that all the axioms 

which fall below Axiom 2 in the graph of Fig. 20 must a·t least 

suffer re-examination; in fact, most of them become meaningless. 

There is less difficulty with the "field" axioms. In 

the case of an external potential in Minkowski space the meaning 

of Axioms 3, 5, and 7 is clear, and there is no visible reason 

not to keep them. In Riemannian space some modifications are 

necessary along the lines indicated in Sec. TV.1. Local 

commutativity, in particular, must be defined with respect to the 

causal structure of the space (see Sec. III.5); with some risk of 

oversimplification, we can say that the light cone at a point 

divides those points which are causally related to it from those 
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that are not. Finally, note that the various kinds of tensor and 

spinor fields can be defined even though there is no lonqer a 

relation with a group representation of the type described by 

Axiom 4; in accordance with the ground rule laid down in Sec. 

TV.1, we shall not discuss them. 

The main problem, then, is to find reformulations of or 

substitutes for the spectral cond.i tion, the vacuum axioms, and 

the axiom of asymptotic completeness, or to get along without 

them. The extent to which this can be done depends on the 

properties of the potential. Therefore, we shall discuss some 

special cases. 

If the potential, along with any other interactions in 

the model, is independent of time, almost everything can be 

recovered. Axiom 2 can be restated, with ISL (2, f) replaced by 

just the time translation group, or possibly some larger symmetry 

group containing it. Then there is a self-adioint generator of 

the time translations, H. One can require that the spectrum of H 

be bounded below (substitute for Axiom 9), that its ground state 

be discrete and nondegenerate (for Axiom 6), and that this state 

be cyclic for the fields (Axiom 8). If the potential does not 

fall off to zero at spatial infinity, however, asymptotic 

completeness has no clear meaning, and there may be a difficulty 

in .giving the theory a particle interpretation. The static 

situation will be discussed in the gravitational context in 

Chapters VIII and IX. 

The next best case seems to he that of a potential 
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which vanishes, or at least becomes static, asymptotically in 

time. Then during the periods when the interaction is "turned 

off" the states of the system can be classified in terms of the 

appropriate free, or static, Hamiltonian. Thus the conditions of 

positivity of the energy, etc., can be imposed at each end. The 

only trouble is that the equations of motion may imply that the 

field operator defined in this way at early times 

U.n-representa tion), evaluated at late times, is not nnitarily 

equivalent to the field operator defined according to the axioms 

at late times. Physically, one can say in such a case that 

inf~nitely many particles are produced by the interaction. (Note 

that even it this does not happen, the in- and .Q!!!_-vacuums will 

not usually be the same state that is, there is some 

probability for the creation of finitely many particles.) This 

sort of situation will be discussed further in Secs. 1.3 and 

x. 7. 

In the general case it is not at all obvious that any 

remnant of the spectral condition, etc., can be salvaged. 

Perhaps one can define a spectral condition at each time by the 

method sketched in Sec. IV.2; but, for reasons similar to those 

just discussed (for the asymptotically static case) , one would 

not expect this procedure applied at different times to yield the 

same representation of the fields.[101 

(~OJ If the potential is-quite smooth and falls off rapidly in 
both space and time, a satisfactory theory (at least for spins 0 
and 1/2) has been developed, in which the in- and 
.QQt,-representations are equivalent. See Capri (1967, 1969), 
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Why have these difficulties not been considered more 

thoroughly in the literature of quantum field theory in 

connection with external potential problems? The most important 

reason seems to be that in "laboratory" or "terrestrial" 

applications of field theory one can always assume that the 

external field is finite in spatial extent and either static or 

asymptotically vanishing in time. (Even when the expression 

which is explicitly written down does not have these properties, 

it is argued that it is an idealized approximation to something 

which does.) Hence the states of the system have an asymptotic 

particle structure which enables one to recover most of the 

consequences of positive energy. Tn particular, the theory has a 

physical interpretation in terms of particles. Another reason 

for the lack of attention to the problems which arise in singular 

external potential problems is the feelinq that whatever 

pathologies appear are a punishment for treating the external 

field classically instead of as a quantized field in its own 

right: they are expected to disappear in the complete, 

Lorentz-invariant theory of the future. 

In gravitational problems on the astrophysical or 

cosmological scale, however, one cannot take these ways out. 

(With respect to the first point, see the remarks of Secs. IV.2 

and VIII. 4. The suqqestion that a coherent treatment of 

elementary particle processes in a gravitational background must 

Capri et a 1. ( 1 9 71 ) , Schroer tl a 1. ( 19 7 0) , W i q ht man ( 1 96 8, 
1971) , Seiler ( 1972) • 
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await success in the conceptually murky project of "quantizing 

the gravitational field" is unwelcome, to say the least.) It 

seems quite probable, therefore, that the growing interest in 

applications of quantum field theory to astrophysics and 

cosmology may force quantum field theory to confront certain 

fundamental issues which up to now have largely been evaded. 
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Chapter VIII 

QUANTIZATION IN A STATIC GRAVITATIONAL FIELD 

In this chapter we assume that there exists a 

coordinate system in which the metric is static (see Appendix 

D) • ( 1 ] That is, all the components g~v are independent of t 

(= 
0 

and 0 for j 1 o. Topologically, space-time is X ) , g . = 
OJ 

I X JIil, vhe.re I c.' is the time axis and M is a manifold covered 

by the s spacelike coordinates. (In this chapter the letter x 

will stand for just the spacelike coordinates of a point.) 

Although what is done in this chapter is a very 

straightforward generalization of the familiar quantization of 

the free scalar field in Minkowski space, it does not appear to 

have been written out in much detail before. Special cases have 

been treated briefly, of course. For instance, Bonazzola and 

Pacini (1966) quan ti'zed a scalar field in the general spherically 

symmetric static background metric in preparation for a 

self-consistent treatment of a system of many particles in their 

own strong gravitational field; this theory and the analogous one 

for fermions were applied in neutron star calculations by Ruffini 

and Bonazzola (1969). Also, since we shall find in Secs. 

VIII.3-4 that the field theory constructed here is equivalent 

[1] The static coordinates may cover only part of space-time, in 
which case we temporarily forget about the rest. See Sec. VI!I.6 
and Chapter IX. 
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(under most circumstances) to a single-particle wave mechanics, 

all attempts to do relativistic quantum mechanics in a static 

gravitational field can he considered instances of this theory or 

its higher-spin generalizations. (For example, Unruh (1971) has 

studied the Dirac equation in the Schwarzschild metric.) 

In short, the theory presented here seems to be 

equivalent to what anyone would naturally do, and some theorists 

have done, when confronted with the problem of describinq matter 

in a static gravitational field quantum-theoretically. This 

circumstance lends interest to the fact which will be established 

in the next two chapters -- namely, that this quantization is not 

unique. In fact, in Sec. X.8 the present author will suggest a 

method of quantization which does not agree, in general, with 

this one. To what extent the ambiguities affect observable 

quantities has not been fully determined. 

IX.7, and x.7-8.) 

(See Secs. TX.4-5, 

In the static case the wave equation (VII.1.2,3) is 

The ansatz 

- a 
0 

2 
(1 .1) 

-iE.t 
~ (t, X) = ' (X) e J (1. 2) 

i 
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leads to 

KJ (x) = E 
j j 

2 
f (X) • 

j 

The operator K is Hermitian in the scalar product(2] 

(F , F ) 
1 2 

F* (X) F (X). 
, 2 

It is also positive: 

(F , KP ) 
1 1 

1k f 2 F* ( X) 6 [ Vfgf g ., 0 F { X) ] + ox Vlgt m 
1 j k 1 

(s) j.k. 
Vigf g c} P* (X) d F (x) > 0 

j 1 k 1 
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(1. 3) 

(1. 4) 

2 
1 F {X) I 

1 

since is a positive definite matrix. The 

operator therefore has self-adjoint extensions (see (Reed-Simon], 

Sec. 8. 6, and (Kato], Secs. VI .1-2). 

If the Cauchy problem is well-posed in this coordinate 

system in the sense of Sec. III. 5 (i.e., each hypersurface 

t ~ const. is a Cauchy surface for the region of space-time 

covered by the coordinates), one expects on physical grounds that 

K ~ith some obvious boundary conditions, if necessary) will be 

essentially self-adjoint, since particles cannot leak in or out 

(2) Note that in Secs. V.7-8 coordinates were tacitly chosen so 
that v'fgi g 00 = 1. 
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of the space. This can be verified in particular cases. 

("Obvious boundary conditions" refers to those which are 

necessitated by the topology of the manifold M, such as 

periodicity in an angular coordinate. In contrast, in the open 

de Sitter space (Secs II!.6 and v.8) the Cauchy problem is not 

well-posed, and for q > - 3/2 a boundary condition which is not 

physically obvious is needed.) 

Prom now on we assume that K (on a suitable domain) is 

a self-adjoint operator in the Hilbert space )/ of functions of s 

variables with the norm 

II F II = a xvtgf g IF (x) I • 
2 f s 00 2 

The spectral representation of K gives a unitary correspondence, 

analogous to the Fourier transform, between )1, and another 

Hilbert space La(p) of functions i(j}, in terms of which K is 

"diagonal": Kf (j) = E / f ( j) (see, e.g., [Reed-Simon], Chaps. 
J 

7 

and 8.) 

For convenience we shall assume (as usual in elementary 

quantum mechanics) that the numbers in the spectrum can be 

classified as EQin1 EEectrum crp or continuous §Eectrum (f 
C 

(or 

both), and that a corresponding complete set of generalized 

eigenfunctions exists.(3] That is, an arbitrary function in~ 

[ 3] These assertions hav~ been estabiished only for certain 
classes of differential ope.rat.ors. (For instance, Jkebe (1960) 
has treated the ordinary Schr6dinger equation with a potential 
vanishing at infinity.) In the general case the eigenfunction 
notation should be regarded as formal shorthand for a rigorous 



Sec. VIII. 1 236 

can be expanded as 

(1. 5) 

where,. (x) are the solutions (not square-integrable if E~ is 
j J 

in 

the continuous spectrum) of the eigenvalue equation (1.3). Here 

)1 is the measure which defines the scalar product in L.;,. (p) : 

2 ? 

11f11 = japfj) 1f fjl, -. (1.6) 

For instance, if the•;<~ are suitably normalized, fapHl means 

~ + 1- dj • ;eo- V 
- f C 

In any case, for consistency of Eqs. (1.4) and ("1.6) 

choose the normalization so that 

-where 

formula 

f ( i) • Then we have 

,._, 

f (j) 

and the completeness relation 

00 
Vlgl g f* (x) F (x) 

j 

the 

we must 

(1. 7) 

inversion 

(1. 8) 

'treatment in terms of spectral projections, or perhaps of rigged 
Hilbert spaces. 
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J. d}l (i) f~ (X)'. (y) 
J ] 

00 -1 
= rvtgjg J Sex - r>• (1.. 9} 

(Egs. (1.7) and (1.9) just say that the mappings (1.5) and {1.8) 

are inverse to each other.) 

The general solution of the wave equation (1.1), 

expanded in terms of the eigenfunctions (1.2), is 

- -iE• t 
jd (t, X) = J dµ ( j) [ Q • f . {X) e J 

) J 

(2) 

+ 
+ Q 

j 

iE,t 
f (X) e J ] 

j 

(1) 
+ Q ' ( X) + Q ' ( X) t • 

0 0 0 0 
( 1 • 10) 

The last two terms occur only if E,~= 0 is in the point spectrum 
J 

of K. (To save writing it is assumed that this eigenvalue is not 

degenerate.) This happens, for example, in the case of the free 

massless scalar field quantized in a finite "box" with periodic 

boundary conditions. 

always nonnegative. 

Since K is a positive operator, 

We take F. > 0 by definition. 
J -

2. ~reation ind Annihilation QEerator§. 

Without loss of generality we may choose the 

F' ~ is 
j 

f, (X) 
j 

real. In some contexts it may be convenient to choose complex 

basis functions (momentum eigenfunctions, for instance); they 

will be considered at the end of this section. 

The general solution (1.10) is determined by the Cauchy 

initial data ~ (0,x) and n (0, x), which we can expand in 
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eigenfunctions: 

n (0, X) 

Then 

-(O,x) = faµ(j) q 
j 

IJ (x) , 
j 

00 
- v'fgt g 

• 00 
~ (Q, X) = figtg J dp (j) p 

j 

00 
v'jgig IT* (x) ~ (0,x), 

4 

' (Xl • 
j 
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(2.1a.) 

(2. 1 b) 

(2. 2a} 

p = fax t*(x)ff(O,x). (2.2b) 
j j 

(As written these formulas apply also to complex, •• ) lf - and n 
J 

are Hermitian quantum fields satisfying the CCRs (VII.2.1), then 

q, and p, are Hermitian (for tJ. real!), and 
J J J 

f (X), (J) i~{X - y) = i6(j,k). 
j k 

(Here and in what follows we use without comment the elementary 

formulas recorded in the preceding section.) 

Comparing Eqs. (2.1) with Eq. (1.10) and its time 

derivative at t = 0, we find 
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1 
Q = - [ q + i p /E ], 

j 2 j j j 

... 1 -
Q -= (g - i p /E ] ·- (Q ) 

_j 2 j j j j 

and 

(1) (2) 
Q = q , Q = p , 

0 0 0 0 

and hence, for E. 
J 

> 0, 

+ -1 
[Q , Q ] = (2 E ) b(j,k), ( Q , 

j k j j 

This suggests that for E, > 0 we set 
J 

t 
, 

Q 

k 

a = TIE- o, 
t + 

a = V"E Q , 
; j j j j j 
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(2. 3) 

] = o. 

(2. 4) 

in analogy to the familiar quantizatibn of the free field of mass 

m. Then 

[a, a ] = O, 
j k 

t 
[a, a ]=b(j,k). 

j k 
(2. 5) 

Substituting Eqs. (2.1) into .Eq. (VIT.1.8b}, we have, 

after integration by parts and use of Eq. (1. 3), 
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1 2 
H = -f dp(j) {p 

2 j 

The contribution of each mode 

1 ~ 
H = -(p + E 

j 2 j j 

2 

2 
+ E q 

j j 

with E· 
J 

2 
q ) = 

j 
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2 
) = (2. 6} 

> 0 to the Hamil ton ian is 

t 1 
E (a a + -) . (2.7a) 

j j j 2 

In order for the total energy H to converge in the Pock 

representation to be constructed in the next section, we must 

discard the constant term E•/2 by normal ordering with respect to 
J 

a. and aJ. Then 
J J 

t 
H = E a a = E N • {2.7b) 

j j j j j j 

In any representation the operator of Eq. (2.7b) has the discrete 

spectrum O, E., 2E,, ••• , nE., 
J j J 

.... Therefore N. is regarded as 
J 

the number operator for quanta of the type j, each of which 

carries energy E. • 
J 

When Ej = E
0 

= 0, He = p/" /2 has continuous spectrum 

from Oto +oo with multiplicity two. To obtain a complete set of 

commuting operators, H
0 

can be supplemented by sgn p
0

: this is 

equivalent to using the spectral representation of p • 
0 

Al te rna ti vel y one might use H and O" , the parity under change of 
0 

sign of and (equivalently, of ,t6(x)). The physical 

interpretation of this spectrum will be discussed in Sec. VIII.5. 

Since K is positive, we do not have to worry about 

"jelly modes" with 
~ 

E. < 0 (Schiff f!:.~1• (1940); Schroer and 
j 
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Swieca (1970); Schroer (1971)). In external potential problems 

these 

bounded 

give contributions H. 
J 

below, to the 

I :>.. '- ;7.. 
= -(p. - fE-1 q. ), 

~ J j J 
which 

energy, and exponential 

are not 

terms 

P~ (x) exp(,± IE.ft) to the field. The.ir physical interpretation 
J J 

is obscure. It is conceivable that this complic~tion might arise 

in the conformally invariant theory {see Sec. VII.1) for 

sufficiently large negative curvature. 

Let us now consider the possibility of complex 

eigenfunctions. The complex conjugates TJ! (x), like the 1J. (x), 
j j 

make up a complete set of generalized eigenvectors. In general 

,. and ,. are not orthogonal, but they are if they correspond to 
J k 

different eiqe nvalues (E. 1 E.} • (For the free fiela, where j is 
j k 

➔ (21f}3/.1.. ➔ 
the momentum vector k, IJ~ (X) is exp (-ik • X} = tJ ~(x).) In 

k -k 
Sec. VIII.4 scattering states will be defined for field theories 

in static space-times which are asymptotically flat; in this case 

J 
s 00 in in 

d x{igfq '➔ (X)'~ (X) 
k 1 

in in 
= (f_,,. .,, .. } -

k 1 

➔ -+ 
S(-k,l), { 2. 8) 

an element of the s-matrix.) 

If complex basis functions are allowed and the terms 

for E- = 0 are dropped, Eq. (1.10) (w.ith the definitions (2.4) .-
J 

and (2.3)) generalizes to 
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f
dµ (j) -iE.t iE- t t 

¢ ( t , x) = ~- [ , ( x) e J a + '1* ( x) e J a ] • 
~E • • • • • ] ] J 1 

J 

(2. 9) 

The Hermiticity of¢ forces the occurrence of ,, in the second 
J 

term. It is clear that the modes will not decouple as neatly as 

in the treatment above for real eigenfunctions, but it is equally 

clear that this complication is merely an inessential notational 

nuisance. The canonical momentum is now 

TI(t,x) = 

oof f-F· -iE• t ivtglg dµ(j) -.J f• (x)e 1 a 
2 j j 

iE.t 
J - J*(x)e 

j 

The last two equations are easily inverted to yield 

, 
a = -(v'E q + i 

j V2 j j 
P /VE> 

j j 

t 
a ]. 

j 
( 2. 10) 

a! is given by the adjoint of this expression. A byproduct of 
J 

this calculation is the observation that the creation operator 

corresponding to the basis r,~J is 

_t 
a = 

j 

1 
-(VE-q 
V2 j j 

J 

- i 
t 

a • 
k 

The generalization of Eqs. (2. 7) (with normal ordering) is 

( 2. 12) 
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H 
j 

1 t 
= -: (p p 

2 j j 
+ E 

j 

2 t 
g g ) : = 

j j 

t 
E a a • 

j j j 

t 
E a a • 

j j j 

A generalization of Eq. (1.9) is the fact that 

f dµ (j) J~ (X) '. (y) = j dp (j) 1f (X) f~ (y) 
E, =E J J E. =E j J J . . J . 
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( 2. 13) 

(2. 11') 

is the kernel of the projection onto the space of vectors of 

eigenvalue E. It follows that 

fdp(j)lJ_(x)IJ~(y)A(E)-= /dp(j),~(x),_(y)A(E_) 
l J j J J J 

(2. 15) 

when A depends on j only through Ej. Eg. (2.15) is often useful 

in manipulating complex basis functions. 

In this section and the next we assume that the point 

spectrum does not contain E = O. 

The formulas of the preceding sections do not yet 

constitute a quantum theory in the common sense of the term, 

since the fields have not been realized as operators on a Hilbert 

space. It is well known that there are many inequivalent ways of 

doing this. (See, e.g., Wightman and Schweber (1955).) In the 

static case, however, as in the case of the free field, one 
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representation stands out as a leading candidate .for "correct" or 

"physical 0 representation. It is cletermined by the requirement 

that there be a cyclic vector (the vacuum or no-particle state) 

which is annihilated by all the operators a. of Sec. VIII.3. 
J 

("Cyclic" means that all the vectors in the Hilbert space are 

limits of sums of vectors obtained hy acting on the vacuum by 

products of the field operators. In other words, we choose the 

smallest space containing the vacuum consistent wit.h the action 

of the fields.) This is the 12£! I~Qresentation. It has a 

particle interpretation (Sec. VIII.4). 

Let f/./- stand for the space L "(Ji) introduced in Sec. 

oJ/!)n 
VIII.1. Let H he the Hilbert-space closure of the symmetrized 

n-fold tensor product of I)/ its elements are 

µ-square-integrable functions of n variables 

element of the f.Q£! .§.E!f~ dii.s a sequence 

_j , ••• , ; • 
I ·,-, 

f = {f , f (i) , f (j , j ) , ••• , f (j , ••• ,j ), ••• } - {f } 
0 1 2 1 2 n 1 n n 

00 ~ ,._ "f ").. = I lffnll < ('j). Let 1/L be 
""=o 

with { e 14°.,, and 

sequences in rwith 

f c ~ be the space 

( = 0 for all n greater than some N. 

of functions f (j) which vanish whenever 

the 

An 

the 

Let 

E· 
J 

is greater than some maximum value (functions of compact support 

in the energy), and let f 0~ be the symmetrized n-fold tensor 

product of this space (no closure implied). Let b be the 
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sequences in dJrL with each f 11 € ~h • [ 4 ) 

We are ready to construct the operators of the 

representation. 

Creation !Ild annihilation operators. For _f = 

(f { j , ••• , j ) l € 1t and g € 1-/- , let 
\'\ I '11 

a (~) f = { Vn+f J dµ ( j) ~ ( j) f ( i, j , ••• , j )J, 
n+1 1 n 

(3. 1a) 

t 
a (g) f = {Vn sym( g ( j ) f ( j , ••• , j } )} • (3.1b) 

1 n-1 2 n 

In the standard way one verifies that the adjoint of a(g) is (an 

extension of) a1 {g*), and that 

t 
[ a (f) , a ( in ] = (f *, g) , [a(f), a(ZJ)] = o. ( 3. 2a) 

(t) } . (t) . 
Setting a FJ) = dp. (J} aj g (J), we have 

t 
(a, a]== &(j,k), etc., (3. ?.b) 

j k 

,,..,. 

a {f (j , ••• ,j )J -- {i/n+1 f ( k , j , ••• , j )} , ( 3. 3a) 
k n 1 n n+ 1 1 n 

(4] The choice of T and d)1., is arbitrary. Most of our results 
could be proved for larger domains; e.g., those built out of 
functions of fast decrease in Ej or sequences of fast decrease in 
n. on the other hana, one might in some contexts want to 
restrict the functions in .,g-by some condition of smoothness 
in j. 
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t -
a [f ( j , ••• , j ) } = { vn s y m ( <S ( k , j ) f ( j , • • • , j ) ]l , 

Jc n 1 n 1 n-1 2 n 

-

a 10> = O, 
k 

{O, 0, ••• , f (j , ••• , j ) , 0, ••• } = 
n 1 n 

, f ,...., t 
dµ(j) ••• dµ(j) f (j .... ,j )a ••• 

Vn! 1 n n 1 n j 
' 

(I O:> = { 1 , () , 0 , • • • } ) • 

With 
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(3.3bl 

(3. 4) 

(.3. 5) 

these 

definitions the normal-ordered Hamiltonian (2.14) makes sense: 

,v 

Hf -- { (E + • • • + E f ( j , ••• , j ) } • 
j 

I 
j,._ n 1 n 

H is manifestly self-adjoint on l}. Similarly, a total number 

operator N = f dµ (jl a~ a. is defined and is essentially 
J j 

self-adjoint on fl; NlJ = nlJ if ' is the vector in Eq. n. 5). 

Fields. Consider a function P(x) and define its 
-,,., 

transform f(j) by Eq. (1. 8) ; let f (j) stand for the complex - t 
,v -

conjugate of the trans.form of F* (X). (Note that the map f -+ f 

is linear (not antilinear). If the basis functions ,.{x) are 
J 

~ - ~ 
real, f = f. If Fis real, f = f*.) Now define 
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J 
s 00 

; ( t , F) = d X Vfgf g ~ ( t , X) F ( X) 

/

dµ (j} _ -iE. t 
= V2-- (a f(j)e J 

21<' • ., j 1 

t iE, t 
+ a f (j) e J ] 

j 

-iEt t iEt 
= a(fe /V2E) + a (fe /V2E) 

and similarly 

n(t,F) = 
f E -.iEt 

i[ao'- fe ) 
t f-E ~ i Et 

a ( - fe ) ]. (3. 8) - ,_ 
2 2 

The field operators will not be defined (as unbounded 

operators in S'with domain ~) unless 

for pJ{F), (3. 9a) 

for n(F). ( 3. 9b) 

(If the lower bound of the spectrum is not E = O, the first of 

these conditions holds for all f e f.l..) If these restrictions 

are met, fl is an invariant domain for the operators. f} is an 

invariant domain if f € _1/. Note that f € Yimplies Eq. (3.9b) 

(but not (3. 9a)). If f is in f and F is real we can show that -

~(F) {= ¢(0,F)) and JT(F) are essentially self-adjoint on Jy and 

that the Weyl relations (exponentiated CCRs) 
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i¢ (f) iff (G) -1 ( F, G) i lt ( G) if6 ( F) 
e e = e e e (3. 10) 

are satisfied. The easiest method (just as for the free field] 

is to show that then-particle vectors (3.5) are analytic vectors 

for , (F)~ + lt (G)'- and then to ap_ply the theorems of Nelson 

(1959). 

Tim~ ,translation g,!Q.!!£• Let 

+iHt ~ u f = e 
t 

f = {exp(+i(E + ••• +E )t) f (i , ••• ,; )}. (3. 11) 

\ j'" n 1 n 

Then it is easy to verify that 

-1 
U ~(0,F)U = -(t,F) (3.12) 

t t 

and similarly for ff(t,F). Equivalently, commutation with the 

generator H yields rigorously the equations of motion discussed 

in Chapter VII. In the usual way one can pass from the 

Heisenberg to the Schr6dinger picture with 

exp(-iRt). 

Th~ ?ock represent!!ion i§ irreducible. 

the propagator 

This follows 

from the positivity of H just as for Lorentz-invariant field 

theories ((Streater-Wightman]. p. 141). 

U.nlike 

the general case discussed in Sec. VTI.4, the field theory in a 

static universe has an obvious distinguished state, the vacuum 

IO>. We define (cf. Eq. (VII. 4.16a)) 
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(+) (+) 
G {t ,x ;t ,x ) = G (t -t ,x ,x ) -= <O I ¢ ( t. , x ) 9' ( t , x ) I O > 

2 2 1 1 2 1 2 1 2 2 1 1 

J
dµ (j) 

= - ' (X ) '~ { X ) exp(- i E (t -t ) J. 
2Ej j 2 J 1 j 2 1 

(3 ·• 13) 

It is easy to calculate, as for a free or generalized free 

field[5], the expectation value of an arbitrary number of field 

operators: 

n 
W (X , • • •, X ) 

n 1 
= <0 I¢ (X ) 

n 

2n+1 

••• ¢(x ) fO> 
1 

(X _ ( t , X ) ) ; (3. 14) 
n n n 

W (X , • • •, X ) = 0, {3.15a) 

2n 
W (X , • • • , X ) 

2n 1 

(+) 
G 

2n+1 1 

(X , X ) ••• 
i ( 2n) i ( 2n - 1) 

(+) 

X G (X ,x ), (3.15b) 
i(2) i(1) 

where the sum is over all partitions of the indices (1, ••• ,2n) 

into pairs with i(2k) > i(2k-1). The field theory can be 

reconstructed from the vacuum expectation values in the usual way 

([Streater-Wightman], Sec. 3.4). 

Configuration .§~.2~ ~£ propagators. One can identify 

the elements of the space ;-./ wi t.h the (normalizable) 

[5] Greenberg (1961), pp. 161-163; [Streater-Wightman], p. 116. 
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eo@i!.!Y!!-freguency solutions of the wave equation (1.-1) through 

thP. formula 

We write 

dµ(j) -iE. t 
f (t, X) = f--= f (X) e J f {j) • ru. ,· J .. 

f (X) = f (0 1 X) , f (X) 
of 

= -(0, x). 
ot 

The scalar product takes the form 

(f ,f ) = fdµ (j) f* (j) f (j) 
1 2 1 2 

I
s 00 ~ 

_ i d x figtg f*(x) ~ f (x) = 
1 0 2 

W(f ,f ), 
1 2 

( 3. 16) 

(3. 17) 

(3.18) 

which is the covariant cu.rrent form of Sec. VII. S. {In contrast, 

the transform (1.5) leads to the noncovariant scalar product 

(1.4) .) 

The solution (3.16) is uniquely determined by tl~ of 

its initial values {3.17). Indeed, inversion of Eq. (3.16) 

yields 
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r 00 (+) • 
f (t ,x) = 2i d x 

1 
VJgfg G (t I X ; t ,x ) f (t , X ) 

2 2 2 2 1 1 1 1 

00 0 (+) 
::: - 2if / x

1 
vtg1g -G (t 1 X ; t , X ) f (t , X ) 

?Jt, 2 2 1 1 1 

(+) ~ 

G (t , X ; t , X ) ?:J f (t , X ) • 

2 2 1 1 0 1 1 

, 

(3. 19) 

For this reason Gtt
1 

could be called the forward proRagatQt• Of . 
course, in the last form of Eq. (3.19) f and f cannot he chosen 

independently; any positive-frequency solution is characterized 

by 

. f I 00 f < x > = - i d Jl < j) E . , • < x) a y V1qf g , * < y) t < y) • 
J J j 

(3. 20) 

In contrast, the full propagator of Sec. VII.4, 

iG(t ,x ;t ,x } = [¢(t ,x ) , !6(t ,x ) ] 
2 2 1 1 2 2 1 1 

J
dµ(i) -iE, (t -t) 

II ( * [e J A. I = · ,, . X ) 1J . (X ) 

2E j J 2 J 1 

iE.(t-t) 
J ;t I ] - e , (3. 21) 

gives a g!neral solution in terms of a full (independent} set of 

Cauchy initial data: 

s 
f(t ,x) : - /d X 

2 2 1 

~ 

G (t , X ; t , X ) 6 f (t , X ) • 
2 2 1 1 0 1 1 

( .3. 22) 

The commutator iG is determined by the CCRs and the wave 

- -t, 
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equation, but the two-point vacuum expectation value G (+) depends 

on the representation. The latter fact is one aspect of a 

problem which will occupy our attention throughout most of the 

rest of this dissertation. 

t ~ 
a (.f) 

using Eg s. ( 3 • 1 6) and ( 2 • 11 ) , we ca 1 cu 1 ate 

t ~ • 
- jdµ(j) a. 'f (j) - i[ fl (fl - Jt(f)] 

J 

ifd\ 
00 ~ 

-= \figJg ¢ (X) <} f(x), ( 3. 23a) 
0 

• 
a (f) = i( f6 (f) + Jt (f) J (= a (f) if lJ (x) are real}. (3. 23b) 

j 

(The bar in Eq. (3.23b) is t.he price of requiring a(f) to be 

linear in i -- see Sec. F.1. Note that complex conjugation in 

the f representation is equivalent to complex conjugation in the 

-
, representation used earlier, so f is unambiguous.) These 

formulas appear to define a(f) and at(l) in a manifestly 

covariant way (see Sec. VII.1). However, one must remember that 
. 
f (x) is defined in terms of f (x) (which we take as given) through 

Eg. (3.19), and our definition of the forward propagator G<+J 

depends crucially on the splitting of the general solution of the 

wave equation in a static coordinate system into positive- and 

negative-frequency parts. Consequently, on the one hand, Eqs. 

(3.23) are of no use in the general case (nonstatic metric) 

unless we can give a more general definition of the forward 
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propagator. On the other hand, our procedure is not well-defined 

if the metric takes a static form in two different coordinate 

systems. Such a situation will be studied in detail in the nert 

chapter. 

At first sight Eqs. (3. 23a) and {3. 23b) may seem 

contradictory, since the first implies that (since - and n are 

Hermitian fields) 

t ,.. t 
a (f) =i[-9/((f)*) +1f(f*)], 

while the second equation says that 

t ,_ t 
a (f) 

.,,....._,, 
= a (f~) = i( + flf ( (f*) ) + ff (f*) ]. 

This brings out a subtle point: In our present notation f*{t,x) 

is defined in terms of the initial value f*(x) and the 

positive-frequency time propagation; thus it is ft.Qi equal to 

[ f (t ,x) ]*• In fact, in this context differentiation with respect 

to time ll.1!£.Q!!J!te~ with complex con;ugation: 

(f*) 
• d dµ(j) -LR.t __, 

= -rJ---==' (x)e j f*(j)] 
dt V2E. j t=O 

J 

but 
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• 
(f) * = + ijdp (j) (-1'.j l (X) f* (j), 

2 j 

(The last step uses 

f 
dµ ( j) _ __ f dp (j) __. * 

f(x) ~ __ J (x)f(j) -- '*(x)f* (j), 
V2E , J. ffi~ ]. 

J J . 

(3. 24) 

which is also used in deriving Eq. (3.23b). Substitute f* for f 

in the first equality and complex conjugate to obtain the second 

equality.) 

4. f~rticle Interpretation. 

Each of then-particle spaces is carried into itself by 

the action of the time translation group. In other words. the 

particle number N is a constant of the motion. Also, the 

particles present in an n-particle state do not interact with 

each other; they behave entirely independently, except for the 

restrictions of Bose statistics. Consequently, this field 

theory, like the theory based on the ordinary Klein-Gordon 

equation, is essentially the second quantization (see, e.g., 

(Schweber], pp. 156-195) of a single-particle theory. 

In fact, one could have started with a one-particle 

theory, or "relativistic wave mechanics", based on Fg. (1.1). In 

this approach the equation is to be solved for a complex-valued 

numerical function instead of an Hermitian operator field. The 

positive-frequency solutions are the possible wave functions of a 

particle. The solutions have the qeneral form (3.16), with the 
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scalar product (3.18). The wave functions for a system of n 

identical particles are obtained from these by the symmetrized 

tensor product. The annihilation and creation operators can be 

defined as mappings between then-particle spaces with adjacent 

values of n. Finally, the Hilbert space of all possible states 

of the world (when only particles of this one type are 

considered) is defined as the direct sum of all the n-particle 

spaces (including a no-particle state 10~. The operator of the 

scalar field in configuration space can he defined by Eq. (2. 9) 

(or (3. 7) ) • 

Conversely, one can recover the single-particle theory 

from the field theory by studying the one-particle states: 

,,... t 
If> = fO, f (j) , C, ••• } = a ( f) f O >. ( 4. 1) 

The matrix element of the field between If> and the vacuum gives 

the x-space wave function: 

dµ(j) -iE-t 
<01 ¢(t,x) If> = <otj -- 11 (X) e J 

V2E- i 
J 

j 
.,., t 

a dp(k) f(k)a 10> 
i k 

dµ (j) -iE. t ·~ 
= J __ ll (x)e J f(j) = f(t,x). 

V2F.j j 
(4. 2) 

Eq. (4.2) can be loosely regardea as the scalar product of tf> 

with a continuum basis state -(t,~ 10> associated with the point 

x. However, these generalized states are not orthonormal, since 
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Jd µ.(j) 
<O I¢ (0, x:) ¢ (0, y) I 0) = ' (X) '* (y) 1 ~ (X - y). 

2f · j j 
J 

On the other 

distribution 

hand, if we define an 

we have 

t 
< 0 Ii (X) t (y) I 0) = b (X - Y) , 

<Olt(x) If>= f dp(j) f (x) £(j) = P(x), 
j 

t s 00 
a (f) =Jax Vtgfg F(x)J(x) 

operator 

(4. 3) 

(4. 4) 

(4. 5) 

(4. 6) 

(cf. Eqs. (1. 5 ,8)). An object analogous to t was introduced by 

Friedrichs under the name "modified annihilation operator" in the 

study of a field interactinq with an external potential 

((Friedrichs], pp. 189-191). When the one-particle states are 

represented by the functions F(x), the scalar product takes the 

simple form (1.4) and multiplication by x becomes a self-adjoint 

operator. It is analogous to the Newton-Wigner position operator 

for the free field in Minkowski space (Newton and Wigner (1949): 

Wight.man and Schweber (1()55)). Correspondingly, tt (x) t(x) can be 

interpreted as a particle number density operator in the field 

theory. Although this operator x has the correct mathematical 

properties to he interpreted as a position observable in the 
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universe under consideration, it is not thereby self-evident that 

it has anything to do with the particle behavior observed in 

actual experiments.[6] Note that F(x) is still a solution of the 

wave equation when the momentum components are given their 

natural time dependence; so is the Hermitian field 

1 t 
-=-[t (X) + I (X) ]. 
T/2 

(4. 7} 

This object, however, does not commute at spacelike separations 

(and in the case of flat space it is not Lorentz-invariant). 

The results presented in the next chapter show that 

there are limitations on how seriously the particle 

interpretation of field theory in static space-time developed in 

this chapter can be taken. However, there is one situation in 

which the particle picture seems to be beyond dispute -- the case 

of an asymptotically flat space metric. This case fits into the 

familiar framework of quantum-mechanical scattering theory.[7] 

That is, the spectrum of the "squared single-particle 

Hamiltonian" K (see Eq. (1.1)), except for possible discrete 

bound states, coincides with the spectrum of K for flat space. 

In particular, the parameter j labeling the modes can be chosen 
➔ 

to be a momentum vector k. In configuration space the behavior 

(6] Cf. remarks of Wightman (1962), p. 846. 
[7] The brief discussion here cannot do justice to this powerful 
but subtle framework of thought. The r~ader who is unfamiliar 
with it is referred to the first three sections of Breniq and 
Haag ( 1959) and to (Messiah], pp. 369-380. 
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of wave functions is as follows: There are (possibly) bound 

states, which always remain localized near the region where the 

metric is not flat. For any given normalizable state orthogonal 

to the bound states there is a time before which, and a time 

after which, the particle it describes is essentially out of the 

range of the curved part of the metric and closely follows "free" 

or "flat" dynamics. Therefore, these scattering states can be 

labeled by the configuration of the particles in the remote past 

(the representation) or the remote future (the 

representation). There are corresponding 
\ Y\ OU. t 

operators at , at • 

etc. The momenta labeling the annihilation and creation 

operators in the in and Q.Y! representations are associated with 

the directions and energies with which the observable particles 

approach and leave the potential, respectively. The 

transformation between these two bases is given by the s-matrix: 

(From the properties of the Schr6dinqer equation under time 

reversal it follows that 

out 
'➔ (x) (4. 9} 

k 

Thus the!]- and 291-states form a pair of mutually conjugate 

basis sets, as discussed at the end of Sec. VIII.2. In 

particular, Eq. (2.8) holds, and Eq. (2.12) implies that 
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s out out 
= fd t c,.... I' --t *) 

k -J 

outt 
a_. 

k 

(as was to be expected from Eg. (4. 8)).) 

259 

{ 4. 10) 

The essential point here is that as long as the 

particles are out of range of the gravitational field the 

physical system essentially reduces to the ordinary free field, 

whose physical interpretation, especially in momentum space, is 

well established. Thus one's accceptance of the asymptotic 

particle interpretation of the field theory considered here 

should be as strong as one's faith in the free field. 

In most problems to which quantum field theory is 

applied the range of the interaction is microscopic, and the only 

feasible experiments are scatterinq experiments (and perhaps 

measurements of bound state energies). In gravitational 

problems, however, one normally has a gravitational field in a 

region of macroscopic or even cosmological dimensions, and 

experiments may take place entirely inside it. The emphasis, 

therefore, in the physical interpretation of field theory can be 

expected (even in the case of an asymptotically flat uni verse) to 

shift to observables which have something to do with local 

phenomena in x-space. As the remarks of the next two chapters 

show, this is a subject which still remains to be satisfactorily 

developed. 
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If there is an eigenvector of 

K with E = O, it has been remarked in 

Sec. VIII.2 that the contribution of 

that mode to the total energy becomes 

continuous. (As the prototype of this 

situation we may take a free scalar 

field with m = 0 in a finite "box" with 

periodic boundary conditions.) 

field has the expansion (1.10). 

most obvious representation is 

The 

The 

the 

tensor product of the unique irreducible 

representation 

operators 

of the 

with 

canonical 

the Fock 

representation (Eqs. (2.4), (3.1)) of 

all the higher modes. (Let us denote 

the Hilbert space of this Pock 

representation by f, as before.) In 

the tensor product representation there 

is no (normalizable) vacuum state of 

zero energy. For each state in f(with 
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• 

+ ----------

• 
• 

+ ----------

+ ---·-------

• 

+ .......... ..., .. _____ __ 

+ ----------

+ ----------

Fig. 12 

F 1 +4 'F. ~ 
p I +·lFt, 
E 1 +2E 0 

E1 +E
0 

El 

4E o 

3~ 0 

2Eo 
Ee 
0 

E 

Second quantization 
of the spectrum 
(VITI. 5. 1). 

energy E, say) there exists in the tensor product space a 

continuum of states with energy running from E to +co. This 

spectrum has multiplicity 2, corresponding to the two possible 

parities~ of a state under reversal of sign of the field,. 

This structure is not at all surprising if one 

- 00 
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considers the theory as a limiting case of a theory for which the 

lowest point of the spectrum of K is a discrete eigenvalue E
0 

slightly greater than O. Let 

where 

energy 

band E 

parity 

As Eo 

E, is the next 

0 < E 
0 

lowest 

<<EI 
1 

point of 

( 5. 1) 

the spectrum of K. The 

spectrum of the field theory is shown in Fig. 12. Each 

+ nE extends to infinity. The quantum number Cf is the 
0 

of the number of particles (of all modes) in the state. 

~ 0 all the discrete states with energies E + nE
0 

collapse into the level E. But what is left is a continuum of 

states, with <f-pa.rity + and - for each energy above E. The state 

of energy E which marked the bottom of the band (corresponding to 

a vector in .J1l is washed out into the continuum. To the extent 

that particle languaqe makes sense at all when E
0 

= O, every 

state of the theory contains an infinite number of zero-energy 

particles. The "amount of E
0 

present" can be measured (by its 

enerqy p .1.) but not counted. 
0 

A related situation, which arises more often in 

practice, is that 0, although not an eigenvalue, is a limit point 

of the spectrum of K (usually, the lower endpoint of a continuous 

spectrum). The theory of massless scalar particles in Euclidean 

space is the simplest example. In this "infrared" case the Fock 

representation as defined in Sec. VIII.3 makes perfect sense. 

However, two points should be kept in mind in dealing vith free 

-~ 

- e 
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infrared fields (in addition to the difficulties to be 

encountered for interacting fields, well known from quantum 

electrodynamics). 

First, there exist other representations besides t~e 

Pock representation in which there is a continuous unitary time 

translation group whose generator, the energy operator H, is 

nonnegative (Borchers et g_]:. (1963)). Intuitively, this reflects 

the possibility of states of the field containing infinitely many 

particles but, nevertheless, finite energy. 

Second, as already remarked, Eq. (3. 9a) becomes a 

nontrivial restriction on the test functions in x-space for which 

the smeared field operators are defined. For example, in the 

case of the massless scalar field in space-time of dimension 2 

(but not higher dimensions) -(n cannot be defined for all f(t,x) 

in the space J (see Sec. IV .1) ; it is necessary to require also 

that the Fourier transform of f vanish at zero momentum (see 

Wightman (1964), pp. 204-212). In this case the integral which 

defines the two-point function (cf. Eq. (3.13)), 

(+) 
G (t ,x ;t ,x ) 

2 2 1 1 

1 oo dp 
= -} - cos[ip(x -x) J exp[- if Pl {t -t) ), (5.2) 

2ft o Ip I 2 1 2 1 

does not converge in any usual sense. 

a functional on the restricted 

(+} 
But G does make sense as 

test function space just 
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described, and Eq. (5. 2) can then be given a meaning by formal 

interchange of the order of integration. one should not be 

surprised if similar phenomena occur in other theories with the 

infrared property, such as those discussed in Sec. VIII.6 and 

Chapte.r IX. 

6. SU!]!!!li; !llli£a1i.2!! to De Sitter ~s£~• 

In this chapter we have considered static metrics for 

which the squared single-particle Hamiltonian operator K (Eq. 

(1.1)) is essentially self-adjoint. In the case when K does not 

have the eigenvalue O we have arrived at the following 

conclusions: 

(1) Because there is a basis of solutions of the elementary 

form (1.2), there is a clear notion of "positive 

frequency". Renee a "forward propagator" can be defined. 

(2) A Fock representation can be constructed in close analogy 

to the theory of the free field. The two-point vacuum 

expectation value in this representation is the forward 

propagator. 

(3) This theory has an obvious particle interpretation. In 

fact, since the particles are not created or destroyed, 

the theory can be re.interpreted as a "wave mechanics" for 

a single particle. A position observable of the 

Newton-Wigner-Wightman-Schweber type can be defined. 
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An example of a space-time to which this theory applies 

is the portion of two-dimensional de Sitter space covered by a 

geodesic Fermi coordinate system (see Secs. III.2, III.3, III.5, 

V.2, and V.7). The eigenfunctions,. (x) for this case are given 
J 

in Eqs. (V.7.5). Prom this point of view the effect of the 

curvature of space shows up as a smooth potential hill, and the 

eigenfunctions display a nonvanishing probability 

reflection and transmission of particles.[8) 

for both 

A classical free particle in de Sitter space follows a 

timelike geodesic. Depending on whether the initial velocity of 

the particle is high or low relative to the central worldline of 

the Fermi coordinate system, such a path will seem to "penetrate" 

or to "reflect" from the center of the universe in terms of the 

Fermi space coordinate B or p. (Imagine the geodesics labeled 

"r = - 3" and "r = - .5" in Fig. 9 (Sec. III.7) superimposed on 

Fig. 4 (Sec. III.2). These are the paths of particles with high 

and low velocity, respectively.) One would expect, therefore, 

that in the quantum theory the transmission probability will be 

very large for large momentum k and very small for small k, 

relative to the mass parameter q. Of course, this is to be 

expected in general from a barrier penetration problem. An 

explicit calculation, based on comparison of the appropriate 

---------------------·---(8) Although the time dependence of the wave function is given 
here by an ultrarelativistic energy-momentum relation, the 
qualitative behavior of wave packets is the same as in 
nonrelativistic quantum mechanics, and hence the interpretation 
of the coefficients in the eigenfunctions as reflection and 
transmission amplitudes remains valid. 
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coefficients in Eqs. ( V. 7 .10) and (V. 7. 14) , yields for the ratio 

of the reflection and transmission amplitudes 

-1tk I iJTV 1 I 
= e e - : rc,-ik) r(ik) sin n (v+ik) 

ITra nsmission I n 

I Reflection I 

cosh ny 
I (6. 1) 

sinh 11k 

where 

y = Im V = {q - ;. (6. 2) 

This expression shows the expected behavior, 

transition from almost total transmission to 

although the 

almost total 

reflection is perhaps not as abrupt as one might expect. 

We shall not study the motion of wave packets in de 

Sitter space in more detail, but in Sec. IX.2 ve shall 

investigate a closely analogous case more quantitatively. 

7. Stationary Metrics. 

If, in a distinguished coordinate system. the metric 

coefficients are independent of time but the space-time 

orthogonality condition (D.4) does not hold, then the metric is 

called 2ta t_ignary. An example of current interest is the 

exterior Kerr metric (Kerr (1963)), the gravitational field 

outside a rotating massive star or black hole. It would be 

very surprising if the results of this chapter did not extend 

-V 
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almost verbatim to such a case; however, there will be some 

complications of the formalism. 

When the substitution (1.2) is made into the wave 

equation (VII.1.2,3) with a stationary metric, one obtains 

(dropping the index on the energy and the eigenfunction) 

2 00 
- E g 

0 • 1 0 . .. ) ..r.-:- ) 
' - 2iE g o ' - iE --- o [vfglg ]t 

j {jg, j 

1 . Jc 
+ - o [viag,/ . r.-- . .,, 

vfgl j 

2 
d v J + m 11 = o • 

k 

This is not an eigenvalue equation in the usual sense, since E 

occurs both linearly and quadratically. The same situation 

arises in the study of the Klein-Gordon equation with an external 

electrostatic field {Snyder and Weinberg (1940)). 

electrostatic case two approaches have been followed: 

In the 

(1) to work directly with the solutions of the equation 

analogous to Eg. (7.1) , which are not orthogonal for 

different E (ihi£•); 

(2) to convert the wave equation, by a change of variables 

whose analogue her.e would be (notation of Eq. (VII. 3. 2)) 

1 m 
, = - (v + u), 

V2 
DJ = -(v - u), 

V2 
(7. 2) 

into a pair of first-order equations, which leads to a 
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true eigenvalue problem (Feshhach and Villars (1958); 

(Corinaldesi], Chaps. 3, ~, 6; Veseli6 (1970)).[9] 

These methods presumably would work 

stationary gravitational field. 

when applied to the 

The subject will not be pursued here, since, unlike the 

study of time-dependent metrics, it does not seem to involve any 

new matters of principle. 

[ 9] A variant of method (2) is to use the covariant 
five-component Petiau-Duffin-Kemmer formalism (see (Umezawa], pp. 
85-91, 197). 
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Chapter IX 

THE FBEE FIELD IN RINDLER COORDINATES 

The theory presented in Chapter VIII is compelling, 

because it is such a natural generalization of the familiar 

quantization of the free field. However, the construction of the 

Pock representation has been based on a particular eigenfunction 

expansion associated with a coordinate system in which the wave 

equation separates. If there is more than one coordinate system 

in which the metric takes a static form, one must ask whether and 

in what sense the corresponding field theories are equivalent. 

These can be compared most easily in the case of two 

coordinate systems which have one equal-time hypersurface in 

common. For instance, in two-dimensional de Sitter space each 

timelike geodesic is associated with a field theory, as desccibed 

in Sec. VIII.6. The Fermi coordinate systems based on two 

geodesics o, and oa (see Fig. 13) cover different portions of the 

space, but (in general) there is a region of overlap. The 

spacelike curves of constant time coincide at the instant of 

closest approach of o 
I 

and o.,_. By symmetry, each of the two Fock 

field theories is equally valid for the description of phenomena 

occurring in the overlap region. To the extent that they 

disagree, either both theories must be rejected, or the concepts 

and quantities involved in the disagreement must be shown to be 
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Fig. 13 

Historical regions associated with two freely moving observers in 
de Sitter space. Regions extrahistorical for 0

1 
are shaded////; 

regionE extrahistorical for o~ are shaded\\\\. 
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without true observational significance, or the theories must be 

interpreted as applying to different physical situations. 

In this chapter we shall study in detail an even 

simpler example, which exhibits the ambiguity o.f Fock 

quantization in a very striking way. The physical situation 

involved is a very familiar and, seemingly, well-understood one: 

the free scalar field in ordinary flat space. 

we consider the region f (t, x) I It I < x} of two-

dimensional ~inkowski space(1], and define coordinates (v,z) by 

t = z sinh v, x = -z cosh v (,. 1) 

(see Fi g. 1 4) • Then 

-1 t 
v = tanh , -CO< V < oo, (1.2a) 

X 

( 1. 2b) 

and when t = v = 0, z coincides with x. (Therefore TI(O,x) = 

TI(O,z) is the same quantity in both systems -- see Sec. VII.1.) 

We calculate 

2 µ V 2 2 
ds _ g dx dx = z dv 

Jlj) 

2 
d-z , ( 1. 3) 

[ 1] It should not be hard to extend the ~esults of this chapter 
to four dimensions. 

-= 
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{igt 

This metric is static. 

The physical reason for 

this is that the 

operation of translation 

in the time coordinate v 

is simply a homogeneous 

Lorentz tra nsf orma tio·n, 

which is a symmetry of 

~inkovski space. We have 

restricted ourselves to 

the region where the 

Killing vector of this 

isometry is timelite and 

future-directed. Each 

·- z, g 
00 -2 

= z • 

Fig. 14 

Rindler coordinates. 

2 71 

{ 1. 4) 

surface v = canst. is a Cauchy surface (see Sec. III.SJ for this 

region, so a self-contained field theory within· the region should 

exist. 

The coordinates (1.2) are the Fermi coordinates {see 

Appendix D) relative to a hyperbolic timelike curve z::: f.Qll§!• 

This, of course, is not a geodesic, but it is the worldline of an 

observer w.ho underqoes a constant acceleration and, consequently, 

experiences a constant gravitational field. (For instance, to 

some degree of approximation an observer on the surface of the 

earth bas such a Fermi coordinate system; the exterior 
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Schwarzschild metric with the usual static coordinate system 

would be a better approximation for that situation.) The 

numerical value of this acceleration is 10 3l cm/sec times 1/z, 

where z is measured in Compton wavelengths. 

typical elementary particle mass, z = 1 

i'f ' acceleration of 10 g s, and an observer 
13 

Thus, if m is a 

corresponds to an 

accelerating at 1 g 

would be 10 kilometers distant from the horizon (z = 0) of his 

Fermi coordinate system. 

We shall call these Rindler coordinates, because they 

have been discussed most thoroughly by w. Rindler(2] (in the 

four-dimensional case). He points out that the relation of this 

system to Cartesian coordinates is very similar to the relation 

between Schvarzschild and Kruskal coordinates for the space 

surrounding an isolated point mass.(3] It is important to 

realize that Rindler coordinates are just as appropriate for the 

description of the region of flat space which they cover as 

Schwarzschild coordinates are for the study of the space around a 

massive body outside the radius r = 2M. If the theory of Chapter 

VIII fails in this test case, it must also be rejected for the 

Schwarzschild metric, and it cannot be applied as a general 

method (but see Secs. IX.6-7 below). 

[2]Rindler (1966) (also [ Rin<Her 2 ], pp. 184-195); earlier 
papers by others are cited in Refs. 1 and 2 of his paper. The 
physics of the situation {"uniformly accelerated rigid rod") is 
discussed in [ Rindler 1, pp. 41-43 (or [Rindler 2 ], pp. 61-64) • 
(3] The Schwar2schild solution is-discussed in most textbooks on 
general relativity. The fundamental modern paper on the subject 
is Kruskal (1960). 
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It is also clear from a comparison of Fig. 14 with Fig. 

5 (Sec. III.2) that the situation under discussion here is very 

similar to the relation between a geodesic Fermi coordinate 

system in de Sitter space and a geodesic Gaussian system (or any 

system which is regular in the neighborhood of one of the two 

singular points of the Fermi system). The discussion of this 

chapter applies with very little change to the situation in de 

Sitter space. 

We proceed to quantize the scalar field along the lines 

of Chapter VIII. The eigenvalue equation (VIII.1. 3) (K defined 

in Eq. (VIII. 1.1)} is in this case a Bessel equation 

d 
+ 2 

dz 

2 2 
- m z + E 

j 

2 
l '1 (Z) = 0, 

j 

and the volume element in the scalar product (VIII.1.4) is 

f dz {jgt g 
00 

= Joo dz. 
0 z 

( 1. 5) 

(1. 6) 

We shall consider only the case m 1 o. The solution of this 

eigenvalue problem is given in [Titchmarsh], Sec. 4.15. The 

spectrum of Ef extends from Oto+ oo with unit multiplicity. We 

can there.fore use E. itself as the parameter j; we have 
J 

0 < j < ro. The eigenfunctions ar-e 

' (z) 
j 

1 1/2 
-- -( 2 j sinh (ffj) ] 

n 
K (mz) , 
ij 

(1. 7) 
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where K,. is the ~acdonald function (modified Bessel function) of 
'J 

imaginary order. The functions (1.7) are normalized so that (see 

Eqs. (VIII. 1. 7, 9)) 

f 
<» dz 

If* (Z) tJ {:Z) = 
0 z . k ] 

(1.8a) 

00 f dj '*(z)• (y) = z S(z - y). 
0 . j j 

(1. 8b) 

From now on we set m = 1. This is no loss of 

generality; it means we choose the unit of length to be the 

Compton wavelength of the particle. 

The expansion of the field in annihilation and creation 

opera tors (Eq. (VII I. 2. 9) ) is 

l
oo dj -ijv ijv 

¢(v,z) = --= J (z)[e a + e 
0 V2j j j 

The canonical momentum is 

1 • 
Ff(v,z) = - fl(v,z) 

z 

and Eq. (VIII.2.11) becomes 

( = } = 
dt 

t 
a ]. (1. 9) 

1 

( 1. 10) 

1 oo dz i ~ 
a = -=-[Vjf -1} (z)¢(0,z) + --f dz' (.Z)ff(O,z) ]. (1.11) 

j v2 o z j Vj o i 
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A field theory with a vacuum can be constructed as described in 

Sec. VIII.3. Since the spectrum of j extends all the way down 

to O, this model falls into the infrared category (see Sec. 

VIII.5), even though m 1 O. 

2. Quasiclas§ifA! Behavior Ql Positive-,E,reguen.£I Solutions. 

According to the theory proposed in sec. VIII.4, the 

wave function of a particle in Rindler space is of the form 

,<v,-z) 
oo -ijv 

= j O d j f ( j) lf / Z) e • (2 .1) 

This is AQ1 a positive-frequency solution of the Klein-Gordon 

equation in the usual sense when transcribed back into terms oft 

and x, but rather a superposition of positive- and 

negative-frequency solutions. (This can be demonstrated by a 

calculation essentially the same as that carried out for the 

quanti2ed field in the next section.) Therefore, we are 

considering a relativistic theory of a single free spinless 

particle which ~iff~!~ in its details from the usual one. It is 

of interest to verify that wave packets of the form (2.1) 

approximately follow classical trajectories. If this should turn 

out not to be the case, one would be inclined to throw out the 

theory as physically unreasonable. However, we shall see that 

the quasiclassical behavior is correct, which is an argument in 

favor of taking the theory seriously despite its difference from 

the usual one. 
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If we .let 

u = log z, (2. 2) 

Eq. ( 1. 5) becomes 

l 
d 11. 2u 2 
,_:J, + e ' = j ' du.::t j i 

u 
(fJ -11' (e)), (2.3) 

i j 

which has the form of a nonrelativistic Schr~dinger equation with 

.2U. potential e • We know, therefore, that its solutions will decay 

rapidly as u ~ + co and will approach a sum of incoming and 

outgoing plane waves as u ~ - oo, the oscillatory behavior 

beginning at the classical turning point, u. e = j. Explicitly, 

there is the series expansion(4] (see [Vilenkin], p. 270) 

K (Z) 
ij 

'Z ij 
= Re ( (--) 

2 

which gives for small z 

u 

' (e ) 
j 

since 

iju -ij log 2 
::: 9 e 

oo k 
r-
2 (-1) 

k=O 

f(-ij) 

I r<-ij) I 

4u 

z 2k. 
r(-k-ij) /k! (-) ], 

2 

1 -1 2u 
[ 1 + -(1 + ij) e 

4 

(2. 4} 

+ O(e ) ) + complex conjugate, (2.5) 

[4] This expansion could have been used to determine the 
normalization constant in Eq. (1.7), after the fashion of Sec. 
V. 7. 
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I r<!ij) I =~-- (2. 6) 
j sinh Rj 

For large z we have the asymptotic expansion 

1 -1/2 -z µ - 1 (µ - 1) (µ - 9) 

' (Z) - -v'j-sinh JTj z e f1 + + 
j v'i Bz 2 ( 8z )" 

(µ - 1) (µ - 9) (µ - 25) 2 
+ + ... } {µ = - 4j ) (2. 7) 

3 ! (8z) 3 

((N.B.S.], Eq. (9.7.2) (p. 378)). One of the eigenfunctions is 

graphed in Fig. 15. 

Substituting Eq. (2. 5) into Eq. (2.1) and applying the 

principle of stationary phase to the incoming and outgoing waves 

yields 

V = U - CX - ~ ( j) as v ~ - m, 

(2. 8) 
V = U - 0: + ~ ( j) as v ~ + a:>, 

where 

d -ex·= - -farg f(j}}, (2. 9a) 
di 

d 1 1 ·"-- ] 2u 4u 
l3 ( j) = log 2 + -arg r(ij) + - ---- e 

d j 4 (1 + t>;t 
+ o (e ) • (2. 9b} 

,.,, 
(It is assumed that f(j) is peaked around a particular value of 

j, and a can be chosen independently of j.) Now simple algebra 
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Fig. 15 

1 
I 
I 

I 
I 
I 
J z:i: 10 ., 
I 

The eigenfunction, (z). 
10 

X 
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3 U=lo z 

u 

J 

...,__ _________ ._ _______ j 
(a) Cartesian coordinates (b) Rindler coordinates 

Fig. 16 

Trajectory of a free particle in flat space. 
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shows that the curve defined by u = v + a is just the straight 

line x = t 
Q. 

+ e • At first glance, then, Eqs. (2. 8) appear to be 

an absurd result; they seem to say that the (free, massive) 

particle enters the Rindler region at the velocity of light, 

bounces (at a point depending on j), and departs at the speed of 

light. 

However, let us take a closer look at the general form 

of the trajectory we were expecting, 

a 
X = bt + C (lbl < 1, c = e > 0). (2.10) 

Substituting from Egs. (1.1), we obtain 

1 V 

-((1 - b)e 
2 

-v 
+ (1 + b)e 

-u 
J = ce , (2.11) 

which can be regarded as a quadratic equation in either e~ or 

• The vanishing of the discriminant gives the maximum value 

of u attained on the trajectory: 

u 
e = j 

cl 

2 -1/2 
_ c(1 - b) • (2. 12a) 

(Trajectories with the same value of t 1 but different values of 

c are images of each other under Lorentz boosts, just as 

trajectories with the same slope b are related by time 

translation. We have already seen that in the quantum theory the 

turning point is related to j, the variable conjugate to v as 
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energy is conjugate to t.) 

yields, for la rqe negative u, 

1 
v = log (--

1 - h 

-u 
[ ce 

1 -u 
- log {- ce 

1 - b 

- - u +a+ log 

280 

One root of the solution fore~ 

2 1/2 2 -2u 
+ [ C e - (1 - b ) ] l} 

2 -2 
( 2 - (1 - b ) c 

2u 
e ]} 

2 1 

u 

-2 2u 

1 - b 
j 
cl 

e 

as v --+ + oo. To find an expansion for v ~ - co we use one o.f 
-V 

the solutions fore in the same way. Finally, we can add and 

subtract 2a from the former expression, using 

a = log j 

The results are 

V _._ u - a - log 
1 

v - - u - a - log 

1 
+ ·-[ log ( 1 + b) 

cl 2 

2 1 
+ -

+ b 4 

2 

1 + b 

j 

1 

4 

-2 2u 
e 

cl 

-2 2u 
i 
cl 

e 

+ log (1 - b) ]. (2.12b) 

as V ~ - ex,, 

+ 2 log 2j 
cl 

(2.13) 

as v ~ + co. 

Thus an exponentially small deviation in u-v space from a line 

with unit slope corresponds in x-t space to a finite change in 

slope, and hence Eqs. (2.8) are not incorrect. 
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If we .identify j with jd_, comparison of Eqs. (2.13) 

and (2.8) suggests 

~=a - log(1 + b} - log j, (2. 14a) 

1 -2 2u 
j e + log 2j. (2.14b} 

4 

Now for large j, when the most classical behavior is expected 

because of the short wavelengths[5], we can write 

1 
. ?. 

- J -2 
- j , 

d d 
-arg r(ij) = Im log r(ij) 
dj dj 

d 1 1 -1 
= Im [ (ij - -) log ij - ij + - log 2n + O(j ) ] log j 

dj 2 2 

([N.B.S. ], Eq. (6.1.41) (p. 257)). So !q. (2. 9b) becomes 

identical to Eq. (2.14b), and the quasiclassical behavior is 

verified. Eq. (2.14a) then gives the j-dependent relationship 

between <X and a. 

The trajectories are sketched in rig. 16. 

--------------------------(5] Note, however, that large j corresponds to large distance 
from the coordinate singularity as well as high energy. 
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We now have two field-theoretical descriptio.ns of the 

behavior of scalar particles in the wedqe of space-time where 

ttl < x, the theory of Sec. IX,1 and the ordinary textbook theory 

of the free scalar field. 

theory? 

Are these in some sense the same 

The standard expansion of the free field at t = 0 and 

its conjugate momentum into annihilation and creation operators 

is (w = Vk'- + m ~) 
k 

rk ikx -ikx t 
¢ (x) = v-- [i b + '1 b ], 

2c.Jl,,. k k 

Jdk IS ikx ·-ikx t 
1t (X) = - i [i b - ' b ]. 

2 k k 

Substituting into the formula (1.11) for a,, we find 
J 

, oo ro ik y , r · rw; 
a= tfody' (y) f dk~ (-y-2+ V--)b 

j 2 j -oo y wk j k 

(3. 1a) 

(3. 1b) 

oo <» -iky 1 f · 
+ Jo dy ~ (Yl / dk ~ [-'{2 

/w~ t 
f-J b }. (3.2) 

j -cc y wk j k 

The kernel in the second term does not vanish. (We shall study 

it in more detail shortly.) 

The presence of creation operators in this formula has 

drastic consequences. It means that a vector which is 

annihilated by the b's is not annihilated by the a•s, and vice 
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versa. So the vacuum of the Rindler-space theory is not the 

ordinary vacuum of the free field. One-particle states in one 

theory are not one-particle states in the other theory, and so 

on. The notion o:f a Earti&!~ is completely different in the two 

theories. .Ihe .Egfticle.§ Qf g~_!!ta o.f 1!!~ Rindler f.Q£! 

re~resentation ~!IBQ! 11~ identified ,!,ith th~ .e.ln~sical pa:rticles 

descril:ed ll the usual guantum theor1 QI ,the fr~ fig];g_. 

The minimal conclusion which must be drawn from thii 

observation is the following: r.n the con text of the general 

stat!£ J!niverse treated i!! Chapt~I !II,! thg :e~rticle £Q!!.£~tl do~§ 

11ot have the same ,Ehysical signific,gl!f~ as in free field ih£2!:I• 

The theory of quantization in a static metric amounts to the 

following: Given a manifold with a timelike Killing vector, we 

have constructed a representation of the field algebra in which 

the symmetry generated by the Killing vector field is implemented 

by a group of unitary operators. Also, the generator of this 

unitary group has been required to be a positive operator, and we 

have used it like the Hamiltonian in special-relativistic 

theories. We found that the eigenstates of this operator can be 

labeled in a way which is quite similar to the particle structure 

of the states of the free field. This doesn't necessarily mean, 

however, that these eiqensta tes have anything to do vi th physical 

particles in the usual sense, things that trigger detectors and 

so on. It might be better to use the term "quanta" (or ttvirtual 

particles") instead of "particles".[6) 

[ 6]-0f course, when the metric is asymptotically flat as well as 
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The difference between the two theories shows up in the 

associated single-particle wave mechanics, because the definition 

of "positive-frequency solution" is different. A positive-

frequency solution in the ordinary sense (exp{-iwkt)) is a 

superposition of positive- and negative-frequency solutions in 

the sense of exp(±ijv). This probably leads to slight 

differences in the way wave packets diffuse, and so forth, even 

though, as shown in the previous section, the qualitative 

behavior of a wave packet is correct in the Rindler theory. 

In pondering the significance of the disconcerting 

appearance of two different quantizations of the free field, it 

would be helpful to know whether the two representations involved 

are equivalent in the mathematical sense. In other words, can 

the Hilbert spaces of the two theories be identified in a natural 

way, even though the vacuum vectors (and associated particle 

structure) are different?[?] The question makes sense only for 

field operators for which both representations are defined. For 

(s+1)-dimensionally smeared fields of the form (VII.3.1) (the 

type usually considered in axiomatic field theory) this means 

that the question should be asked for an algebra of field 

operators with test functions f = f(v,z) with support inside the 

------ -------------static, the identification of the quanta with physical particles 
is convincing -- see Secs. VII.7 and VIII.4. 
[7] More precisely, two representations A (f) and A~(f) of an 
algebra of elements f, on Hilbert 'spaces '/.I and 1,/,._, 
respectively, are unitarily eguivalen! if there 

1
is a unitary 

operator U from i1,2./ onto 1-J'J- such that UA (fl u- 1 = A (f) for - v-• 
all f. 

1 
' '-
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Rindler region (and with sufficient smoothness properties, etc., 

for the field operators to be defined in both representations). 

Alternatively, for a canonical theory one can consider 

s-dimensional smearing of the equal-time (or Schr~dinger-picture) 

fields: 

(3. 3) 

and similarly for fl(f)[B]; then we are interested in f's with 

support on the positive part of the x-axis. In view of the 

explicit canonical construction employed here, 

framework is easier to study in the present case. 

the latter 

let us call the standard representation of the free 

field (in either the one- or the two-dimensional sense) 1.h~ !QI 

£!~resentation (to distinguish it from the general notion of! 

fQ£! representation used in Secs. VIII.3 and F. 1) • The 

representation 

representation. 

of Sec. IX.1 will be called the Rindler 

On the basis of an abstract argument it can be shown 

that the Rindler representation is at best a subre2resentation of 

the foK representation. The representation within ~OK space of 

the subalgebra of field operators with support in the Rindler 

region is reducible, for these operators commute with all the 

fields with support in the symmetrically opposite region of 

space-time, { (t, X) I x < - 1 t I}. The Rindler representation, 

--------( 8] Eq. (3. 3) and its partner can be Wt'itten in the covariant 
form (VII. 3. 3). 
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however, is irreducible (Sec. VIII.3). (Hence it should have 

been obvious from the beginning that the two vacuum states are 

not identical; for if the Rindler representation contained the 

~OK vacuum, its Hilbert space would be the entire ~OK space, by 

the Reeh-Schlieder theorem ((Streater-Wightman], pp. 138-139), 

which would contradict its irreducibility.) 

The possibility remains that tOK space contains a 

vector,,, which is annihilated by all the Rindler annihilation 
() 

operators~ (Eq. (3.2)) and, consequently, can be identified 

with the Rindler vacuum. Then the Hilbert space of the Rindler 

theory would be identified with a certain subspace of tOK space 

(perhaps not uniquely). Evidence against this possibility is the 

fact, which will be demonstrated below, that the kernel in the 

second term of Eq. (3. 2) is not square-integrable, and so does 

not represent a Hilbert-Schmidt operator. If the Bogolubov 

transformation (3.2) were invertible, the theorem stated and 

proved in Sec~ F.3 would imply that the vacuum of one 

Since representation cannot lie in the Pock space of the other. 

the theorem has not been extended to noninvertible 

transformations, the argument offered here does not rigorously 

establish that no Rindler vacuum l exists in fOK space, but it 
0 

makes this conclusion more likely. (If, exists, it must lie 
0 

outside the quadratic-form domain of the toK number operator, 

since the expectation value of the number operator is the 

Hilbert-Schmidt norm of the kernel in question plus a manifestly 

positive term involving the field on the negative x-axis.) 
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Let us turn to the evaluation of the integrals in Eq. 

(3.2). We have, at least formally, 

a = j oo d k U ( j, k) b + f ~- dk V ( j, k) b t. (3. 4) 
j -oo k ~ k 

1 
O(j,kl :::-[A*(j,k) + B*(j,k)], 

2 

1 
V(j,k) = - [A(j,k) - B(j,k) ], 

2 

P- 00 J dy 
1 -iky 

A ( j, k) = - ' (Y) ~ 
wk 0 y j 

f IJk 00 -iky 
B(j,k) = i j O dy 'j (y) i I 

(3. Sa) 

(3. Sb) 

I ( 3. 6a) 

(3. 6b) 

where ,.(y) is given by Eq. (1.7). 
J 

(We still take m = 1 for 

convenience.) Eq. {3.4) really stands for a transformation of 

smeared fields of the type (F. 2. 3) (with a and b interchanged). 

At first it is not obvious that the order of integration in Eq. 

(3.2) can be changed to yield 12Q!t~ fid~ integral operators, as 

implied in .Eq. (3.4). We shall find, however, that U (j,k) and 

V (j,k) are simple smooth .functions, given in Eqs. (3.12) (to 

which the reader may skip if not interested in the details of the 

integration). 

Formulas (6.699.3,4) of [Gradshteyn-Byzhik] (p. 7471 

yield 
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0) \ ~ 2+\+i_j 2 
fo dy y K (y) sin ky ·- 2 k n ) X 

ij 2 

2+).+ij 2+\-ij 3 2 
F( I I - , - k ] (Re \ > - 2), (3.7a) 

2 2 2 

I: dy 
\ ~-1 1+).+ij 2 

y K (y) cos ky -= 2 n ) X 
ij 2 

1+\+ij l+\-ij 1 2 
P( , , -, - k J (Re ). > - 1) • ( 3. 7b) 

2 2 2 

In the integral (3.6a) we must use Eq. (3. 7b) with \ = - 1, which 

is outside the stated range of validity. So the convergence of 

this integral deserves close attention. Let us write 

00 ). -iky 
I(j,k;\) = j O dy y 11 (Y) 9 

j 

rJO du 
(1 +).) u u u 

= e ' (e) exp (-.ike ) /ffi • 
-oo j 

Near u = -oo the integrand behaves like 

- - e sin ju, 
ff 

and as u ~ + co it falls off faster than exponentially (see Eqs. 

(2.5) and (2.1)). In effect we are taking Fourier transforms of 

a family of tempered distributions which has a limit as ). ~ - 1 
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from above. We can write I(j,k;~) as 

1 0 ( 1+">.) u 
- f due sin ju 
1t -oo 

(3. 8) 

plus a function of j which is smooth in the whole range 

- oo ~ j ,5 oo (being the sum of two Fourier transforms of a 

distribution of rapid decrease). As).~ - 1, the distribution 

(3.8) converges to the principal value of 1/(Tij). This pole is 

included in the expression obtained by setting~= - 1 directly 

in Eq. (3. lb) (see Eq. (3. 9a) below); there is no need t.o add a 

singular term. So Eq. (3. 7b) remains valid in a distribution 

sense for \ = - 1, and hence Eq. (3.6a) defines A(j,k) as a 

distribution in j for fixed k, which happens to be a smooth 

function in both j (away from 0) and k. Of course, the same is 

true of B, for which there is no problem of convergence in the 

integral. 

The expressions for A and B can be reduced to 

elementa.ry functions using formulas (8.332.1,2) of 

[Gradshteyn-Ryzhik] (p. 9 .37) , (15.1.11,12) of [N.B.S.] (p. 556), 

and (15.2.20,21,25) of (N.E.S.] (p. 558). The results are 

1 -1/2 JYj ij ij 
A(j,1t) = - [tJ 1f sinh 1tj] [cosh (( + 1 + [ - ] ] 

2 k 2 

n . 1 ij ij 
- sinh {[ + ] - ( - ] } ], (3. 9a) 

2 
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1 -1/2 
B(j,k) :: - [w " sinh lfj ] 

2 k 

- cosh 

where 

[ + 1 = v'1 + k2 

The relation 

d rw: -( y_: A (j, k) ] = 
dk j 

ltj ij 
[sinh {( + ] 

2 

Jtj ij 
{[ + ] - ( 

2 

- -1 
+ k = [ + ] • 

- i B(j,k), 

290 

i _j 
+ ( - ] } 

ij 
- ] J ], (3. 9b) 

(3.10) 

{.1.11) 

suggested by Eqs. (3. 6) , is satisfied by these functions. 

Finally, one has (for general m) 

TI (j, k) - [ 21f W 
k 

V ( j, k} ·- [ 2n w 
k 

Then we have 

f (l) dkr: a j IV (j, kl i2 = 
-oo 0 

-211j -1/2 Wk + k ij 
(1 - e ) ] [ ] , 

m 

2ffj -1/2 Wk+ k ij 
(e - 1) ] [ ] . 

m 

1 211 • 

J
oo dk ~j [ 6_1: + m~ (e J 

2Jf -o:, ) 0 <-

(3.12a) 

(3. 12b} 

-1 
1)] I 

which diverges at large k and at small j. Therefore, Vis not a 

Hilbert-Schmidt operator. 
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4. can !~ Liv~ With Two Different QQ.~!!!i~ations? 

In Chapter VII it was pointed out that the formalism of 

field theory does not uniquely determine an explicit. 

representation of the fields as operators. (In the general case 

this ambiguity has little to do with freedom in the choice of 

coordinate system. It is misleading, therefore, to speak of the 

problem we are facing as primarily a breakdown of general 

covariance.) In the static case there appeared to be an obvious 

choice of representation, based on the notion of positive 

frequency. Now, however, we have seen that in a few special 

cases, such as flat space and de Sitter space, the availability 

of several rival static coordinate systems makes even the natural 

prescription for quantization in a static universe ambiguous. 

For the field in a certain region of Minkowski space a heretical 

quantization has been proposed. What attitude should one adopt 

toward it? 

One possibility is to reject it outright. One could 

argue as follows: We understand the free field in flat space. 

The physically relevant representation of the fields is the toK 

representation; the definitions of the 

number-of-particles opera tor are unambiguous. 

vacuum and the 

If any other 

proposed theory disagrees with this one, so much the worse for 

that theory! 

More specifically, one might object that the Rindler 

coordinate system covers only a part of space-time: that it has a 

singularity at z = 0 which has nothing to do with the intrinsic 
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structure of the space; that it is not an inertial frame, in the 

sense that the curves of constant z are not geodesics[9]. For 

these reasons, the critic would argue, it is not surprising that 

a naive imitation of the quantization of the free field leads to 

unphysical results in this context. 

This, however, would be a very unwelcome conclusion. 

All three of the above aspersions upon the Rindler coordinate 

system also apply to the Schwarzschild system. The analogy 

between these two situations has already been pointed out in Sec. 

rx.1. It was argued there that Rindler space must be reqarded as 

a test case for any general theory of field quantization in 

static metrics. In the case of a general static metric we do not 

have an underlying flat space to tell us what the "riqht answer" 

is. The Pock quantization (in the sense of Chapter VIII) is a 

natural generalization from the theoretical ideas which have 

evolved in the study of free fields and of external potential 

problems. If it is wrong, the interpretation, both physical and 

mathematical, of the formalism of quantum field theory is left 

obscure. 

The suggestion that a trustworthy field quantization 

can only be performed on "the whole space" is especially 

frighteninq.(10] Many of the solutions of Einstein's equations 

-~~----------------(9] This last objection does not apply to the situation in de 
Sitter space, illustrated in Fig. 13. There one can set up many 
different static coordinate systems based on timelike geodesics, 
which can be regarded as the worldlines of unaccelerated 
observers. These are related to one another much as Rindler 
coordinates are related to Cartesian, and none of them has any 
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studied in modern general relativity are quite complicated 

(multiply connected, and so forth). Must one really construct a 

quantized field on the entire manifold in order to treat exactly 

the particle phenomena in a small region? Furthermore, given a 

manifold with a metric, it is sometimes hard to say whether it 

constitutes "the whole spacefl {see, e.g., Geroch (1968)). 

On the other hand, the conclusion is hard to accept on 

general physical grounds. Quantum mechanics is physically a 

local theory; it has to do with phenomena that happen on a 

microscopic scale. As argued in the Introduction and Sec. IV •. 3, 

it is hard to believe that the global structure of space has more 

than a negligible effect on any quantities that are physically 

observable. But the construction of a Fock space is inherently 

global, because it is based on momentum space {the Fourier 

decomposition).[111 If, as seems to be the case, we run into 

trouble when we try to do quantum theory in terms of local 

coordinate patches, then perhaps that is evidence for the 

inadequacy of our present formulation of quantum field theory, 

rather than for a breakdown of the principle of 

covariance. 

general 

These considerations suggest that before we discard the 

theory of the free field in the Rindler wedge as physically 

wrong, we should try to make sense out of it, adjustinq our 

----reason to be preferred to the others. 
[10] We shall return to this subject in Secs. IX.6-7. 
[11] See further remarks in Sec. x.7. 
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preconceived ideas if necessary. If we succeed, we may leacn 

something from this model that will help us to understand field 

theory in nonstatic spaces, the subject of the next chapter. 

Such a reinterpretation, if it is not to be manifestly 

inconsistent with the established interpretation of the iOK 

representation, must somehow weaken the direct physical 

significance of the quanta of the general Fock representation. 

Let us start from the realization that these quanta 

cannot be the basic observables of the theory. What, then, is 

observable? On physical grounds one can argue that observations 

take place via interactions of the system studied with other 

physical systems; therefore, one ought to study the currents by 

which our field might couple with other fields (the expressions 

through which the field can occur in possible interaction terms 

in the Hamiltonian or Lagrangian). In particular, in 

cosmological and astrophysical problems the energy-momentum 

tensor, which couples to the gravitational field, is presumably 

the most important object. Unfortunately, as will be 

demonstrated in the next section, the ambiguities in particle 

creation and annihilation operators carry over to the definition 

of at least some current operators. 

We are left with the fields themselves as observables. 

The time evolution of the field operators (or their expectation 

values) from given initial values is given by a classical formula 

(Eq. (VII.4.5)), independent of representation. Similarly, the 

expectation value of the product of n field operators is a 
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distribution which satisfies the field equation in each of its n 

arguments, and hence is determined by its initial values within a 

domain of dependence. This suggests that, if the fields alone 

are the basic observables, it is not necessary to choose a 

representation. One can think of the fundamental dynamical 

problem as the prediction of the outcome of field measurements at 

later times on the basis of known results of measurements at 

earlier times. A quantum state is just an intermediary apparatus 

which summarizes (idealized) earlier measurements. No practical 

set of measurements can completely determine the state, or 

distinguish between inequivalent representations (see below). It 

is proposed, then, that we should reject the demand for a unique 

"physical" representation. That is, we should be prepared to 

admit all representations as possibly physically relevant, and to 

give up the search for some absolute definition of the number of 

particles in a general space-time. (In special situations some 

analogue of the familiar particle notion may still have a limited 

physical significance -- see below. See also Secs. IX.7 and 

X. 7.) 

Of course, this point of view leaves the interpretation 

of the field theory in terms of observable quantities still quite 

vague. We are used to thinking of quantum processes in terms of 

Mrtic.1~~• In practice we .never measure field strengths as such 

{except for macroscopic electromagnetic and gravitational fields, 

which are outside the quantum domain). But to label the states 

in terms of a particle structure requires a definite 
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representation of the canonical commutation relations, either for 

the fields of the Heisenberg picture themselves or for asymptotic 

free fields.(12] The.re is much work to be done in clarifying the 

physical i.nterpretation of quantum field theory in situations 

where the asymptotic particle interpretation does not apply. 

This dissertation claims only to pose and clarify the problem and 

to suggest a program for future research. 

Although the relation of field operators to particle 

detectors is not obvious, we do know that the fields in a region 

1/ax ~(tj f(tj, support off in the region) have something to do 

with experimental operations performed in the region. If the 

region is rather small, this localization may he the most 

relevant fact about the experimental operation.[13] 

Thus we have been led to the approach to quantum 

physics in terms of local algebras, proposed in the fundamental 

papers of Segal (194 7) and Haag and Kastler (1964). 

Unfortunately for our purposes, much of the recent work in this 

area depends crucially on the assumptions of . / . Poincare covariance 

{covariance under space-time translations and Lorentz 

transformations) and the existence of an invariant vacuum state, 

ingredients which are missing here. 

( 12] For the purposes of interpretation we are concerned not just 
with the unitary equivalence class of the representation but also 
with the identification of the vacuum state, the one-particle 
states, etc. (cf. Sec. x. 2 below). 
(13] These ideas are basic to the work of R. Haag !1 !!• (see 
Araki and Haag (1967) and earlier papers and lecture notes of 
Haaq) on the relation between local fields and asymptotic 
particle observables. 
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However, the basic ideas behind the algebraic approach 

are applicable.[14] A .§J:,gte of a physical system is taken as any 

func tiona 1 w on the algebra of observables which can he 

interpreted(15] as an expectation value; it does not have to be 

related to a vector in a particular Hilbert space. Each state is 

related as a vector state, 

W( A ) - <ti A I '1 > ( llJ> € 1,/.) , (4. 1) 

to some representation of the algebra as operators in a Hilbert 

space, but there are many .inegui valent. representations. It is 

argued, however, that all the faithful representations are 

physically equivalent, because every representation contains a 

state which is consistent with any given set of practical 

observations.[16] {This means that, given a list of results of a 

finite set of measurements, these results can be reproduced to 

arbitrary accuracy by a weighted average (Qg!l2 it,Y matrix) of the 

expectation values with respect to certain vectors in any one of 

these Hilbert spaces.) The mathematical basis for this claim is 

(1~] There is space here only for a sketchy discussion. The 
reader is urged to read the paper of Haag and Kastler (1964). 
[15] In particular, a state is required to he positive: 
W(A~A) ~ 0 for all A in the algebra. 
[16] For a similar conclusion in the context of the canonical 
formalism see Komar (1964). (Note, however, that in this paper 
the work of Wightman and Schweber (1q5~ was misinterpreted: in 
the standard approach to field theory the Hilbert space is 
separable, consisting o.f just .Q.!!~ of the equivalence classes 
referred to by Komar. Note also that the representations which 
Komar considers explicitly are not all of the representations of 
the canonical commutation relations, and not even all of the 
tensor product representations.) 
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a theorem proved by Fell (1960). 

To forestall possible misunderstanding, it should be 

emphasized that the doctrine o.f physical equivalence of 

representations does not say that the vacuum of the Rindler Fock. 

representation is an approximation to the vacuum of the foK 

representation. These are two different states, yielding 

different expectation values for operators, and corresponding to 

different notions of particle. The claim is that the Rindler 

representation contains other vectors which approximate the IOK 

vacuum with respect to any given finite set of observables. 

The preced.ing discussion has emphasized the 

arbitrariness in the choice of representation. The other side of 

the coin is that frequently one representation recommends itself 

as the best one to work with, because it has some especially nice 

feature.[17] For instance, in Poincar,-covariant theories the 

representation generated by an invariant vacuum state plays a 

distinguished role. This is in analogy to the observation that 

when studying a physical theory in flat space it would be folly 

to refuse to use Cartesian coordinates for a calculation because 

of the possibility of writing all the equations in a generally 

covariant form. 

In the external gravitational field problem there are 

several special cases where a flnice" representation is suggested 

by special properties of the metric. If the metric is 

----·---------(17) The author is grateful to J. E. Roberts for a conversation 
in which he emphasized this point. 
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asymptotically flat, or if it becomes actually flat in the remote 

past and future, we have an asymptotic particle interpretation 

(see Secs. VII. 7 and VIII. 4), and the natural representations to 

use are the in- and Q!!_!-representations, in which thece are 

finitely many particles coming in or coming out in each state. 

on the other hand, if the space has a symmetry group, we should 

consider a representation which is invariant under the group. 

(That is, in this representation the symmetry is implemented by a 

unitary operator.) In particular, if there is a time translation 

group, we have the static Pock representation of Chapter VIII. 

Whatever its relation to physical observables may be, in the 

general static case one might expect the "particle" structure 

based on the existence of a timelike symmetry to be the most 

convenient way to label the states of the theory.(18] (Rindler 

space is a very special case in which there is another way of 

looking at the space which makes additional symmetries manifest 

and, consequently, leads to a more useful notion of particle~) 

[ 18) However, a contrary view will be tentatively developed in 
Secs. IX.7 and X.7. The position of the author is that our 
present theoretical resources do not allow us confidently to 
generalize quantum field theory to curved space-time. A given 
Riemannian geometry may suggest several methods of quantization, 
perhaps none of them entirely satisfactory. A decision among 
these approaches cannot be made on the basis of pure thought. A 
great deal of research is needed on particular models, to clarify 
how the predictions of these approaches differ and how they 
compare with astrophysical observation. It is to be hoped that a 
coherent theory will develop, including (1) an understanding of 
the relation of the mathematical apparatus to observation, and 
(2) a practical understanding of what representation of the field 
algebra it is either necessary or prudent to use for a given 
purpose. 
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Finally, in the case of a nonstatic universe, one might be able 

to define particle observables in such a way that in one 

representation there are finitely many particles present in a 

finite volume at each time (cf. Secs. X.5-6 below). 

s. Bound~Q Observables, Cug:~.!!!§, filll1 t.h~ 

In this section we shall push a little farther the 

study of the association of field operators with physical 

observables, on which the algebraic interpretation of the field 

theory formalism espoused in the last section depends. First, 

the rigorous technical work on this subject deals with algebras 

of !1.Q.!!!!.Q~.Q observables (C*-algebras), whereas the field operators 

(whether smeared ins ors+ 1 dimensions) and the annihilation 

and creation operators are necessarily unbounded. For a n~utral 

scalar field there is a variety of ways of defining from the 

field a c•-algebra of bounded observables[19]; the matter will 

not be discussed further here. 

When charged {complex) fields or spinor fields are 

under consideration, however, a difficulty which is more a 

problem of principle arises. Such fields cannot be observables 

at all, because they do not commute with the supecselection rules 

(see [Streater-Wightman], Sec. 1.1). In the c•-algebra approach 

a remedy is to form a C*-algebra from all the fields and then to 

[19) See, e.g., (Segal], Kastler (1965), Manuceau 
Dell'Antonio (1968), Wilde (1971}, Slawny (1972). 

(1968), 
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distinguish a subalqebra of observables by their formal property 

of commuting with the relevant gauge transformations or 

superselection operators (see, e.g., Wilde (1971), Chapter 2). 

On a more intuitive level, however, the observables 

associated with charged and spinor fields are usually assumed to 

quadratic (or higher-order) combinations of the 

fields and their derivatives. Examples are the charge-current 

vector (VII.5.4) of a charged scalar field, the famous five 

tensors formed from the Dirac field ((Messiah], Sec. XX.14), and 

the energy-momentum tensor[20], Tpv(x). These quantities are 

also important because they appear in the interaction terms of 

the Lagrangians and Hamiltonians of the nonlinear theories of 

interacting fields. Indeed, they are assumed to be observable 

precisely because it is through them that a field interacts with 

other physical systems -- such as experimental apparatus. 

In astrophysics and cosmology, of course, the 

energy-momentum tensor is surely the object of greatest interest, 

since it is through it that the matter represented by the 

quantized field interacts with the gravitational field, according 

to the theory of general relativity. Observations of the 

----------[20] In general one must distinguish between the canonical 
energy-momentum tensor suggested by the canonical formalism, of 
which the Hamiltonian density (VII.1.61 is one component, and the 
symmetrized, covariant tensor appropriate to general relativity, 
which is obtained by variation of the action with respect to the 
metric tensor (Belinfante (1940)). For our neutral scalar field 
with minimal gravitational coupling these are the same. For the 
rival neutral scalar field theory (see Secs. V.2 and VII.1) they 
are already different (Chernikov and Tagirov {1968)). 
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presence of matter throuqh its gravitational effects are more 

likely than particle detection events of the kind familiar in 

terrestrial laboratories. So one might be happy to forego 

particle observables if the energy-momentum tensor could he 

unambiguously defined. 
),ti) 

on the other hand, T compares favorably 

with the field itself as a plausible physical observable (even on 

the microscopic level), given the absence of "pion field-strength 

meters". Can one, then, regard this tensor field as the basic 

observable in an algebraic (representation-free) theory, rather 

than the field itself as in Sec. IX.4? 

Unfortunately, a current naively defined in terms of 

products of fields does not, in general, define a finite 

operator-valued distribution in most representations of the 

fields. The obvious extension of the procedure normally used to 

make sense out of currents in the jOK representation of a free 

field is the following: In a representation of the Pock type 

(i.e., characterized by annihilation operators which annihilate a 

certain state of no quanta) one is to normal order the formal 

expression for the current by changing all terms of the form a-a~ . .) 

t d d. . h to aja~ an 1scard1ng any constant terms. T_en 

will formally annihilate the no-quantum state, and 

the expression 

it will now 

make sense as a bilinear form on a dense domain. The important 

point is that this definition obviously depends upon the 

representation (and upon the no-quantum state). It does not 

provide an intrinsic algebraic object. 

For instance, consider the time-time component of the 
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enel"'gy-momentum tensor of the 

two-dimensional Minkowski space, 

00 
T (X) = 

1 2 
-: ( lt 
2 

0~ 2 
+ (-) 

ox 

303 

free scalar field in 

2 2 
+ m ;I ]: , (5. 1) 

where the colons indicate normal ordering with respect to some 

representation. We wish to compare the normal orderings 

correspondinq to the toK and the Rindler representation (at 

t = v = 0). Note that in both cases we consider a component of 

the tensor T with respect to the same field of basis vectors at 

each point (tetrads); for convenience the familiar orthonormal 

basis associated with Cartesian coordinates has been chosen. The 

difference between the two definitions of T
00 

under discussion 

has nothing to do with the transformation of tensor components 

from one coordinate system or frame 

contravariant component T00 with respect 

to another. 

to the 

(The 

tetrads 

canonically associated with the Rindler coordinate system would 

be a different physical quantity from that of Eq. (5.1), and we 

are not interested in it.) 

The comparison proceeds in analogy to a simpler case 

which is discussed in detail in Sec. G.2. The fields in Eq. 

T (5.1) are expressed in terms of the operators bk and bk {cf. Eqs. 

(3.1)), and the resulting expression is normal ordered. (This is 

the standard energy density for the free field.) Then the b's 
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are re-expressed in terms of the a•s.[21] Of course, no true 

inverse of Eq. (3.2) exists, since the a•s span only a subalgebra 

of the whole equal-time scalar field algebra (the part associated 

with the positive axis in x-space). one calculates 

b = f00 

dj U*(j,k)a - rOJO dj V(j,.k)at 
k O j j 

!Z
2

w~ f _0

00 

dy e -ik y i f o e -iky 
+ V- ~ (y) + -~-- d y ff (y) • 

V2l,\ -OO 
(5. 2) 

When Eq. ( 5. 2) is substituted into the expression 
00 

for T (X) 

(x > OJ, all the terms involving negative y cancel, as they must, 

since T
00 

(x) depends only on the field and its derivatives at x. 

What is left is a bilinear expression in the Rindler operators 

which is not normal ordered. our interest centers on the 

constant( 22] which must be subtracted to make the expression 

coincide with the Rind.ler-normal ordered version of Eq. (5.1). 

Formally this is 

00 
<T (X) ) 

1 00 00 O!) -1/2 
-= - f d j cf dk f d 1 ( w £J ) 

2 0 -oo -ro k 1 

i {k-1) X 

e )( 

------ -----[ 21] One could, of course, work from the other direction, using 
the transformation (3.2). The method chosen here leads to a 
result free of Bessel functions. 
[22] By this is meant a c-number (multiple of the identity 
operator}; it may depend upon x. 
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2 
[(wt.) -kl-m)U(j,l)V(j,k) 

Jc 1 
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2 
+ ((J W +kl+ m }V*(j,l)V(j,k) ]}, (5.3) 

k 1 

where U and V have been calculated in Sec. IX.3. 

Eq. (5.3) is not a determinate expression. (It is not 

even unambiguously infinite -- its divergent parts conceivably 

could formally cancel, as in the integral [ k dk,) It can be 

regularized, in analogy to Eq. (G.2.6}, with the aid of smooth 

test functions. But it is hard to tell whether even this 

"smeared" quantity is zero, finite, or infinite.[23] However, 

the burden of proof is certainly upon him who would assert that 

it is zero. It seems most implausible that the energy density 

can be unambiguously defined by normai ordering. 

In Sec. IX.7 another contrast of quantizations of the 

free field will be developed (Euclidean space vs. a finite box). 

In Sec. G.2 it is shown that the difference between the local 

energy densities of these two representations is infinite, 

according to a reasonable interpretation of this statement. 

For still another example we anticipate the results of 

the next chapter. There it will be necessary to consider 

different representations at different times, with their 

respective annihilation-creation operators related by equations 

(23] An apparent divergence at the lower limit 
integration is seen upon closer inspection to di~appear 
functions with support on the strictly positive axis. 

of the j 
for test 
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of the form (X-.5.6) (where ()((k) and {3(k) depend on the initial 

and final times, t
1 

and t~) .• One easily calculates that T 00 (x), 

normal ordered at t, has vith respect to the no-particle state 
I 

at t the expectation value 
a 

00 
<T (X)) = ~ (J 

2 
1[3(t ,t :k)I. 

2 1 
( s. 4) 

k k 

This quantity is generally nonzero[2U] and possibly infinite. 

Hawking (1970) has pointed out that if :T 00
: is defined 

by normal ordering with respect to a different no-particle state 

at each time, then it is not obvious that it will satisfy the 

usual divergence condition, 

µ 
VT = O .. 
µ 

(5. 5) 

His argument that this equation .!!J!§i fail is erroneous, however, 

since it assumes that an expectation value <,ITµ~IJ> must satisfy 

the classical condition 

00 µ)) 
T ~ IT I, {S. 6) 

and this is not generally true in quantum field theory.(25] 

(24)-This is true of 
occurs, not only that of 
x. 6. 
[25] That nonpositivity 
field theory of the 
(196!=i). 

any theory in which particle creation 
Sec. X.5. See the discussion in Sec. 

of the ene~gy density is inevitable in a 
usual type was proved by Rpstein g_1 ~1• 
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Indeed, for the free field let f = 10> + \12>, where 10> is the 

vacuum and 12> is a two-particle state. Then <'1 I :T 00 (X): Pf> is 

of the form \A(x) +? B(x), where A is contributed by the aa and 

at at terms in :T 00
: and B by the ata terms. (A, B, and \,, are 

real.) Choose, so that A 1 O. For\ sufficiently small and of 

o'O opposite sign from A, <tl:T (x): It> is negative! That Hawkinq•s 

argument should be regarded as disproving Eq. (5. 6) rather than 

Eq. (5.5) has also been pointed out by Zel'dovich a.nd Pitaevsky 

(1971), who have shown in perturbation theory how Eq. (5.6) is 

violated during particle creation in a universe with weak but 

nonstatic curvature. 

Very recently Zel'dovich and Starobinsky (1971) have 

used a renormalization technique to define (without reference to 

normal ordering except at an initia! ti,!!~) a finite 

energy-momentum tensor which obeys F.g. (5.5). Although t.he 

rationale for their procedure is far from clear to the present 

author, this work may point the way to a solution of the problem 

of defining T~~ as far as practical calculations are concerned. 

It is noteworthy that the free-field momentum density 

components, T
0 j (x), seem to be largely immune to the ambiguity 

noted here for T00
• When field expansions are suhstituted into 

01 
T 

1 0¢ 0/d 
·- - [- - + 

2 ch ot 
0¢ of/J - ], 
dt ox 

(5. 7) 

the result is gJito,m~i.!£~111 !!.Q.t!~l ordered in all representations 

the author has had reason to consider. For the standard Fourier 
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decompositions this well-known result (which is due to 

cancellations from positive and negative k) is independent of the 

mass of the field (see Sec. F.4) and of whether the quantization 

is performed in a box or in infinite space (see Sec. IX.7 and 

Appendix G). It also holds for the Rindler representation, where 

one finds for the vacuum expectation value 

01 
<T > = 

1 

2 f 
d j 01J. 

{--= .~ 
V2j oz z 2 

+ - ~ /dj ~. (Z) 1 3~ J 
z 2 j v'2j oz 

= o. (5. 8) 

The same thing happens for the charge-current density of a 

charged field, if one writes the time component in the 

symmetrized form 

0 i t ?:>¢ o~t 0¢ t o¢t 
j - [ r,1 r,1 + ~ - IA ]. (5. 9) 

2 at at ot ot 

Thus .Eqs. (5. 7) and (5. 9) may provide intrinsic definitions of 

these quantities, which yield the same result as normal ordering 

in a 11 representations which are "natural" in some sense. Since 

the Bogolubov transformation for a charged field analogous to Eq. 

(3. 2) relates particle annihilation operators to g_!!,ti.eartic!g 

creation operators, it is not surprising that the vacuum states 

of the two representations are charge-free in the same sense. 

Similarly, the result for the momentum in the various toK-like 

representations may be attributed to the fact that in such 
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tt'ansformations as (F.!J.8) and (G.2.3) the new annihilation 

operators involve creation operators only for quanta with the 

opposite momentum.[26] The result (5.8) is rather surprising, 

however, since the transformation (3.2) is not manifestly 

diagonal in the momentum, and, in fact, the adoption of the 

Rindler coordinate system disrupts and obscures the translation 

invariance of the space. 

6. Geodesic ~omeleteness and th~ Feynmag ,£at!!. Integral. 

The reaction of many people to the troublesome 

development described in this chapter has been that the 

responsibility for it somehow lies with the fact that the Rindler 

coordinate system does not cover the whole Minkowski space-time. 

The integral transformations (such as Eq. ( 1. 11) and the Pourier 

transformation) involved in the decomposition of the field into 

modes {on which the Pock quantizations are based) are qlobal 

operations. It is not surprising, therefore, that widely 

separated regions of space turn out to be mixed up with each 

other in the construction of quantum fields. It is urged that 

field quantization should be attempted only on geodesically 

complete man if olds (see sec. III.5), or at least that 

quantization on an incomplete space should be regarded as a 

distinct physical situation from quantizing on a complete space 

in which that region is embedded and then restricting attention 

[26] Note that the phenomenon seems 
quantities which, unlike energy, can 
signs by particles. 

to be linked to 
be carried with 

physical 
opposite 
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to the region. This viewpoint, if established, would refute ou~ 

assumption (cf. Sec. V.III.1) that only completeness of the 

Cauchy type is relevant to the dynamics of fields. For reasons 

mentioned in Sec. IX. 4, working only with complete spaces would 

be a considerable nuisance in practice. Of course, that is not a 

convincing argument against its necessity! 

However, the argument of Sec. IX.3 is of a very general 

type -- we shall meet it again in Sec. X.2 -- and it seems that 

in equations like (3.2) the vanishing of the kernel of the second 

term will be very much the exception rather than the rule. It 

seems to the author# therefore, that the !2£~1 distortion of the 

"(3 + 1)" structure of space-time, rather than the global 

mutilation of the space, is sufficient to lead to the phenomenon. 

Unfortunately, there is no way to test this claim, since 

apparently there is no example of a manifold with two linearly 

independent ~1.2.!!~11.1 timelike Killing vectors. (A timelike 

Killing vector is needed to make the metric take a static form, 

so that a criterion is available to define a Fock representation 

uniquely.) On the other hand, admittedly, one can qive an 

example (Sec. IX.7) which shows that a change of the global 

structure without a distortion of the time scale is sufficient to 

change the definition of the vacuum. 

An argument in favor of the "global" viewpoint has been 

offered by L. H. Ford (private communication}. If one formulates 

quantum particle dynamics, follo~ing Feynman, in terms of a sum 

over virtual paths, one would expect to have a nonzero (although 
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small) contribution from partially spacelike paths. In this 

sense it is possible for the quantum particle to leave and 

re-enter the Rindler wedge, despite the latter's 

co mp let.eness. One miqht conjecture (pending an 

Cauchy 

explicit 

calculation, which the author has not attempted) that the entire 

difference between the single-particle theories associated with 

the two quantizations is due to neglect of these paths in one 

case. 

This suggests that it may he worthwhile to generalize 

to curved space-time Feynman's path-integral construction of the 

propagator for the Klein-Gordon equation (Feynman (1950), 

Appendix A), and to study its implications in various models. 

Such a project is beyond the scope of this thesis, but some of 

the things which might be investigated in the future can be 

outlined here. 

Since the Lagrangian 

1 dz)( dz JI 

- g (6. 1) 
2 µv du du 

yields the classical equation of motion of a particle, Eq. 

(III. 4.1), it seems clear[ 27] that 

Feynman's Eq. (4A) should be 

the generalization of 

[27] Since the quadratic terms in the Lagrangian have nonconstant 
coefficients, different ways of breaking the action integral into 
steps may yield different results -- see Feynman (1948), pp. 
376-377. 
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¢(x ,u } -
n 0 

_,.-- 'l-
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n-1 v I g Id x. i -~ µ µ v v 

ITT J exp{- L. g (x - x ){x - x )} ¢(x ,0) 
j=O 4ff:t e~i 2e. j=1 Jl>' i i-1 i i-1 0 

4 
_ fa X 

0 
K ( X , U ; X ,. 0) ¢ (X 1 0) 

n O O 0 
(6. 2) - _ 

However, there seem to be obstacles in shoving that this formula 

is equivalent to a proper-time version of the wave equation 

(analogue of Feynman's Eq. (2A)) • If one has such a propagator 

in u-space, the physically relevant propagator is to be found by 

Fourier transforming: 

G (X , X ) = 
F 2 1 

0, 00 

) du f du 
-ro -oo 0 

2 
exp[ -i m (u-u ) /2] K (x , u; x , u ) • 

0 2 1 0 

This appears to be a generally covariant construction. 

(6. 3) 

Then it would be interesting to study the following 

questions: 

(1) If the metric is static, does GF(x ,x) coincide with a I 

G (11 ,1J ;x ,x ), defined in Eg. (VII.4.18), where 1J is 
f O O l. I 0 

the Pock vacuum? (In particular, is Ford's conjecture 

about Rindler space true?) 
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(2 h 1 d f . {+> . f d h ) Int e genera case, e 1ne G in terms o G an t e 
F 

intrinsically defined Getdv by Eq. (VII. 4. 21). Is l+) of 

positive type, so that the reconstruction theorem can be 

used to construct a representation with a cyclic vector 

~? If so, what is the physical significance of,? 

(3) On the other hand, if the metric is asymptotically static 

(see Sec. I.3 be low) , is G F {X , X ) 
a_ I 

proportional to 

G (' Ot.Lt 
1 

' ~"' ) iX , X 
F o 

O 
a 1 

( definition of Eq. (VII. 4. 18)) ? Cf., 

e.g., Wightman (1968), p. 296. If so, does this fact 

have any physically sensible extension to the general 

case? 

Similar questions could be asked of other proposed definitions of 

the Feynman propagator e.g., that of De Witt. {1963), pp. 

738-741, or that of Duistermaat and H~rmander (1971). 

7. Further Thoughts on the Particle Concept, i!l .§!.~!!£ 2!?.g,£~§• 

In this chapter and Sec. VIII.6 we have considered 

certain proper subregions of Minkowski space and de Sitter space 

and have tried to treat them as "uni verses" in their own right, 

because they are causally closed from the point of view of the 

classical theory of fields (the Cauchy problem). We have had 

cause to wonder whether this procedure is legitimate, and whether 

the theory thus obtained is really physically equivalent to a 

theory which treats the entire space. Could we be inadvertently 

imposing some "boundary condi tion 11 , so that t.he theory describes 
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the behavior of matter in an isolated geodesically incomplete 

space, but is not appropriate for a region which is actually part 

of a larger space? 

To shed some light on these questions let us consider 

the representation of the algebra of fields in a bounded region 

of space-time when it is regarded as a part of (a) an ordinary 

Minkowski space-time, and (b) a nbox" universe of length L with 

periodic boundary conditions. (As usual we consider a 

two-dimensional space 

these are differen! 

quantized fields in the 

the same in the two 

without loss of generality.) Of course, 

universes, and one would not expect the 

entire region {(t,x) I O ~ x < L} to be 

theories. In the box (or torus) case a 

boundary condition holds which means, physically, that a particle 

which reaches one end of the box does not disappear into another 

region of space, but re-enters at the other end of the box. 

Nevertheless, this large-scale behavior should be 

irrelevant to what happens inside the domain of dependence, D, of 

an interva 1 

I: a<x<.b (0 < a, b < L). (7 .• 1) 

(Dis a diamond-shaped region, as in Fig. 6.) I is a Cauchy 

surface for D. Thus, if the point of view tentatively espoused 

in Sec. IX.4 is correct, the field in D presents a self-contained 

dynamical problem. The outcome of measurements in D should be 

predictable (in the statistical sense in which predictions are 

possible in quantum theory) on the basis of measurements in (or 
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near) I. The dynamics within this region should depend only on 

the field equation, the canonical commutation relations, and 

whatever local interaction between the field and a measuring 

apparatus gives the theory its physical content. 

Of course, the last of these, the measurement 

interaction, is the weakest link in the chain. The whole 

argument hinges on the assumption that observations _g_!!f! Q1he£ 

!.Q fi~l.Q gperators[28] J!h.Q.2~ .!~1 functions .h~~ 2!!££2!:i i!! 1!!~ 

(In contrast, it necessarily follows that localized 

Earticle observables, like the Newton-Wiqner operator (see Sec. 

VIII. 4) , correspond to !!Onloca! measurements and state 

preparations.[29)) This is thP. assumption which is usually made; 

it is the motivation for the axiom of local commutativity (or 

anticommutativity) of fields. Conversely, if it does not hold, 

one would expect violations of the principle that information 

does not travel faster than light. It is not, of course, an 

unchallengeable article of faith. If it turns out to be 

impossible to make physical sense out. of field theories 

in terpret.ed in this way, we will have to change our way of 

thinking. In the meantime, however, the statement stands as a 

description of the type of theory we are tryinq to construct. 

----------( 28) More precisely, to Qbs~blf opera tors in the algebra 
generated by the fields of the reqion see Sec. rx.s. 
[29] It is probably more realistic to say that, to the extent 
that these "observables14 can be measured at all, they can only be 
measured !B]roximatel1, by local operations. 
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So the infinite- and finite-space quantizations of the 

free field provide two representations of the same algebra, the 

algebra of fields in D; and we are claiming also that the 

physical situation, as far as observations entirely within D are 

concerned, is also in some sense the same in the two contexts. 

It is interesting, therefore, to compare the two representations. 

We shall see that they are not the same. 

As explained in Sec. VIII.3, the representation is 

determined by the two-point function (VIII.3.13). For the box 

the two-point function is 

-1 
~ (2w} 
k k 

ikx;}_ 
i ~ 

-ikx 
I 

exp {- i£J (t -t ) } 
k 2 1 

p. 2a) 

the sum being over the lattice {2ffn/L}, and for infinite space 

(the ~OK representation) it is 

exp{- i~ (t -t )} {7. 2b) 
k 2 1 

These distributions are not the same, even for test functions 

with compact support inside D (see Appendix G). 

The conclusion is that for the fields in D we have two 

distinct vacuum states[30], each of which, by virtue of its 

origin in a respectable free field theory, has a good claim to be 

a state in which no particles are present. What is the physical 

[30] Here "state" is to be understood in the algebraic sense of a 
linear functional. Actually, of course, we have a continuous 
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origin of these two different notions of (absence of) particles? 

How can this ambiguity be reconciled with the fact that particle 

detection seems to be a well-defined experimental concept? 

One vay out is to conclude that the experimental act of 

particle detection is actually different in the infinite and the 

finite universe that it somehow inherently involves the whole 

space. Indeed, it is known ~s a corollary of the Reeh-Schlieder 

theorem) that an operator which annihilates the vacuum cannot be 

a member of the local algebra associated with a bounded region. 

For this reason Araki and Haag (1967) and Steinmann (1968) 

explicitly associate a particle detector with an operator which 

is only guasilocal (but annihilates the vacuum exactly). 

However, it seems to the present author that this 

approach to the problem is backwards. Instead of taking the 

hallowed concept of the vacuum to be the fundamental starting 

point, one should model the measurement process in terms of 

literally lo~!. operators and study to what extent particle 

concepts (such as a no-particle state) can then be extracted. Of 

course, not just any local operator will do. The intuitive 

notion of a particle must somehow be input, to lead us to the 

kind of structure we want to get out. We know by observation 

(describable in crude terms) that there are entities which move 

roughly in straight lines, except when they interact with each 

other or with macroscopic bodies (cf. Steinmann (1968), Sec. 1)~ 

family of statAs, one for each value of L greater than the length 
of I. 
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In an attempt to refine the notion of observation of particles, 

we are led to the idea of a detectof as a system which interacts 

with particles in its vicinity, but makes no response when there 

are no particles present. 

on the basis of what was said above, it seems probable 

that no such ideal detector is possible -- that is, every real 

detector (which is surely contained in some finite region) has 

some probability of makinq a response, whatever the state of the 

quantum field system.[31] However, we can understand the 

definition of the no-particle state in terms of the following 

analogy. The classical concept of length is abstracted from the 

stability and mutual consistency of the ways in which it is 

observed to be possible to juxtapose various material objects 

("measuring rods"), although each of these objects is only 

imperfectly rigid when re-examined in terms of this very 

time is definition of length. Similarly, the concept of 

abstracted from observational comparison of many natural 

processes which individually manifest approximate regularity.[ 32] 

In the same way, various systems (detector candidates) are 

observed to tehave roughly in the way expected of an ideal 

detector. In particular, .Y.!!Q!!! certain §_!,Eerimental conditions 

(31] Probably for any actual detector this effect, which is 
inherent in quantum field theory, is lost in the noise of the 
concrete experimental arrangement. 
[32] In particular, when measuring very short times (or length~ 
one encounters limitations due to the quantum uncertainty 
principle; these are quite analogous to the problems of particle 
detection. 
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they are observed to give almost always (or perhaps always, 

within some finite experimental error) no response. These 

experimental conditions are taken to define a state of the field 

in which no particles are present in the vicinity of the test 

system, and the systems are regarded as particle detectors. A 

true no-particle state for a region D would cause no response in 

a detector placed anywhere in D. 

Now it is plausible that for D there may be more than 

one pair of the form (state + class of successful detector 

candidates) with these properties.[33] {Recall that any 

normalized positive linear functional on the algebra of 

observables is a state. The rival states mentioned here need not 

be vector states in the same cyclic representation.) Which of 

these pairs will the community of scientists define to be (vacuum 

+ detectors)? Surely the one such that the first member (the 

state) is most likely to be encountered in actual experimental 

practice. Our experience is that there is precisely one particle 

concept of this type which is arrived at by natural and 

straightforward experimental operations of state preparation and 

particle detection. 

The vacuum defined in this way seems to be a kind of 

equilibrium state(34], of which the other observed states are 

(33] It is known from the classic work of Bohr and Rosenfeld 
(1933) that the vacuum is not just sheer emptiness as far as the 
field is concerned, but is full of fluctuations. Could there not 
be more than one such state of fluctuation with the qualitative 
experimental properties of a vacuum? 
(34] This is consistent with the fact that when the laws of 
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excitations. (The analogy of phonons in a crystal is helpful 

here.) In fact, in a field theory of the usual type the vacuum 

is the ground state, and hence precisely the zero-temperature 

equilib.rium state in the sense of statistical mechanics. The 

experimenter's production of a "good vacuum 19 in a region by 

pumping out almost all the particles (localizable field 

excitations) is basically the same as the process of bringing a 

system such as a crystal close to absolute zero temperature by 

extracting energy. 

We can now conjecture the followinq picture: There is 

an equilibrium pure state of minimal excitation of the field, 

which corresponds to the Fack vacuum for the universe under 
,-, 

consideration. There is a class S of physical systems which are 

(practically) inert when placed in the vacuum. There are other 
r-' 

observed states for which the systems in Sare not inert. Given 

a state (defined by the procedure for its experimental 

preparation), study of the correlations among the responses of 

these systems when placed at various positions reveals (at least 

-for some subset Sc S) a pattern of "events" which can be 

interpreted as triggerings by particles (cf. Steinmann (1968)). 

The systems in s are then called particle detectors. The 

particle structure of the states, it is conjectured, turns out to 

correspond to that defined by the creation operators of the Fock 

representation. (One hopes that how this happens will eventually 

-------------- ------motion of the field are invariant under time translation the 
vacuum state is also expected to be invariant. 
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be worked out rather explicitly.) 

This picture makes the existence 

mathematically and physicallv acceptable 

of many different 

vacuum states, 

associated with different global structures of the universe, more 

understandable. In the infinite universe free particles move 

indefinitely to new frontiers; in a torus universe they keep 

recirculating through the finite space. It is not too surprising 

that the equilibrium state of the field in the reqion D should be 

different in the two cases. If so, our earlier conclusions about 

the self-contained nature of the 

Cauchy-complete region must be qualified: 

field 

It is 

dynamics in a 

true that the 

time development of expectation values is completely determined 

by initial conditions, but .!hi.ch i!!itial 

occur depends on the global settinq of 

conditions actually 

the region D. The 

approach to equilibrium is something which happens over the 

entire previous history of the universe, so there is plenty of 

time for information about the global geometry to reach D without 

exceeding the velocity of light. 

It remains to be explained how these different 

equilibrium situations yield qualitatively the same physics. 

Consider one of the pure equilibrium states of the algebra of D 

in terms of the quanta of another vacuum state, which we call the 

"original" one. It has a structure something like that indicated 

in F.qs. (F. 3. 7, 11). It is a nsoup 11 of virtual particles or field 

fluctuations, a medium so uniform that nothing in particular ever 

happens in it. Only excitations superimposed on this field 
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substratum can be detected. There is a class of detectors which 

are inert with respect to this new vacuum. (They might be the 

same in their physical construction as the original detectors, 

except that they have come to equilibrium with the soup by 

attracting a cloud of virtual particles.) The equilibrium can be 

disturbed by adding a particle (or several). These excitations 

travel through the medium in qualitatively the same way as free 

particles travel through the original vacuum (cf. Sec. IX.2). 

They are detected as particles by the new or "dressed" detectors. 

If these conjectures are true, then the same basic physical laws 

(lav s of motion of the field, laws of interaction with the 

detectors) lead to qualitatively the same phenomenological 

physics in the infinite and the finite universe, but with 

differences in detail which in principle could be observed. 

~gain, justification of these conjectures by means of explicit 

models of the measurement interaction would be highly desirable.) 

What are the implications of all these considerations 

for the quantiza·tion of fields in the Rindler wedge and in the 

analogous patches of de Sitter space which can be treated as 

static universes? They tell us that ve should not have expected 

the Fack vacuum in such a theory to be the physical, observed 

vacuum state appropriate to the embedding of the region in a 

larger, geodesically complete, universe. Such an embedding could 

be done in different ways, and the physically appropriate vacuum 

is probably different in each case. our Fack vacuum might not 
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correspond to fill.I physically reasonable situation.(35] The 

earlier argument (Sec.IX.4) that all representations of the field 

algebra are physically equivalent remains valid, if one accepts 

the Fell-Haag-Kastler argument for general quantum systems. 

However, the evidence presented in this section strongly suggests 

that (and offers the beginning of an explanation why), in the 

case of Rindler space, the particle structure of the fOK 

representation has an especially direct connection to the 

observable phenomena in our world# more so than the quanta of the 

Rindler representation. An approach to field quantization in 

general space-times which incorporates this idea will be 

suggested in Sec. X.8, after we have discussed the problems of 

canonical quantization in time-dependent metrics. 

-------------------------(35] It is tempting to say that it corresponds to the region as 
an isolated universe, as suggested at the beginning of this 
section. But this notion presents difficulties for a 
geodesically incomplete space. There are classical particle 
paths which leave and, even more disturbing, enter the space at 
finite proper times; to and from where? The system seems 
underdetermined without some boundary condition. In the quantum 
theory this means that ve do not understand, physically, how the 
equilibrium state of the field is determined in such a situation. 



324 

Chapter I 

FIELD QUANTIZATION IN AN EXPANDING UNIVERSE 

Next in complexity after the static universes comes the 

class of Gaussian metrics which are defined in Appendix D as 

"generalized Robertson-Walker metrics". In these cases (see Eq. 

(D.6)) the time dependence and the space dependence of the metric 

are "separable", so that the field equation can still be solved 

by reduction to uncoupled one-dimensional modes. Now, however, 

the time dependence of the solution is not a simple complex 

exponential, but a solution of a more general second-order linear 

ordinary differential equ~tion (!q. (1.14)). Consequently, there 

are two important differences between this and the static case. 

First, there is a possibility of particle creation. Since the 

background is not static, there is no reason to expect to have 

stationary-state solutions which can be interpreted as n-particle 

states in the manner of Chapter VIII. There are both physical 

and mathematical reasons to believe that if particle number 

observables can be defined at each time, then they will not be 

constants of the motion. A great obstacle to making this idea 

precise and quantitative is the second new feature, the 

uncertainty in how to define particle observables at a fixed 

time. For the solutions of the general equation (1.14) there is 

no obvious analogue of the division into positive- and 
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negative-frequency functions, which led so naturally to the 

introduction of the particle concept in the static case. 

It seems unlikely that the study of the scalar field in 

more general space-times (which will involve, in general, coupled 

equations, or worse, for the time dependence) will lead to any 

fundamentally new physical phenomena or conceptual difficulties. 

(Investigations of particle creation in anisotropic universes, 

based on tentative assumptions about the interpretation of the 

field operators in terms of particles, are already in progress: 

Zel'dovich (1970); Zel'dovich and Starobinsky (1971}; B.-L. Hu, 

dissertation, Princeton University, in preparation.) 

The time-dependent case will not be treated here as 

systematically as the static case was above because of lack of 

space and because the subject has been treated thoroughly by 

Parker (1966, 1968, 1969, 1971, 1972). The purposes of this 

chapter are to set up a framework, slightly different from 

Parker's, for studying the solutions of the field equation, to 

summarize critically the prevailing points of view on the 

quantization problem, to present a few new technical results (see 

particularly Secs. X.5 and x.9-10), and to discuss the 

implications 

chapters for 

of the 

.future 

observations 

work toward 

of this and the preceding 

the acceptable physical 

interpretation and mathematical definition of quantum field 

theories in curved space-time. 



Sec. X. 1 326 

1. Solution Qi thg ]:,gve Equation; !.hg !mbiguity Q.f Qyantization. 

We study a metric of the form (D.6): 

2 0 2 2 0 j k 
ds - (dx ) - R (X ) h (X) dx dx , ( 1. , ) 

jk 

so that 

s 00 
Vfgf = R Vh, g = 1 (h _ det fh }). (1.2) 

.k J 

(As always, s + 1 is the dimension of space-time.) For 

convenience this is called an "expanding universe", without any 

implication that R must be an increasing function. Specializing 

from the formalism of Sec. VII.1, we have 

1 s 2 -2 jk 2 
1_ = - R v'h r (o fi> - R h o ¢ o ¢ - m 

2 0 j k 

s 
ff -= R n ~ ¢, 

0 

2 -2 2 
~ 1' + s R1 /R d fl - R A ¢ + m - = 0# 

0 0 C 

where 

1 jk 
fl ¢ = ·-d [Vh h a ~], 

v'h . J. C ] 

o jk 
R' = dR/dx, and {h } is the inverse of {h. l• 

J k. 

2 
¢ ], ( 1. J) 

(1 .4) 

( 1. 5) 

( 1. 6) 
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The occurrences of the time-dependent quantity R in the 

formalism can be minimized by introducing a new time variable 

0 

t = r R-s 

so that 

2 2s 2 2 
ds = R dt - R 

0 
dx , 

j k 
h dx dx. 

jk 

( 1. 7) 

( 1. 8) 

This is no longer a Gaussian metric, but we have now a 

time-independent three-space volume element 

tt 2s -2s 
,fjgT g - R Vh R = Vh ( 1. 9) 

instead of Eqs. (1. 2). Then Eqs. (1. 4-5) are replaced by 

and 

ff = Vh b Id 
t 

2 2s-2 2s 2 
o J}J - R /j_ f6 + R m f6 = 0. 
t C 

Note that the first-order term has been eliminated. 

We shall assume, as in Chapter VIII, 

complete set of generalized eigenfunctions ~.(x): 
J 

(1. 10) 

(1.11) 

that /J has a 
C 
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2 
fJ ¢ (x) = - e I' ( X) (e > 0). ( 1. 12} 

C j j j j 

The substitution 

~ (t,x) = ¢ (X) f (t) ( 1. 13) 
j j 

yields 

2 2s 2 2 2 
0 ., (t) + R [e /R + m ] ' (t) = o. (1.14a) 

t j j j 

{In terms of 0 
of we have the equation X , course, 

2 2 2 2 
ct ' + s R1 /R ~ ' + [ e /R + m ]f ·- o.) (1. 14b) 

0 j 0 j j j 

From now on let us for simplicity consider primarily the case 

h 
jk jk 

, A 
C 

2 
= V , j = e 

j 

..,) 

= k, ( 1. 15) 

The general case can be treated in exactly the same way; the 

specialization is made primarily to make the formulas readable 

with less effort. The range of the spatial variables in the 

special case can be either infinite Euclidean space or a finite 

box: let us write "] d k 11 and interpret it. as a sum or as an 

integral appropriately in each case. (Likewise, the implicit. 

normalization factor in~ depends on the volume of the box.) 

Also, the vector symbol over k will henceforth be omitted. Then 
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the general real or Hermitian solution of the field equation is 

¢(t,x) , ( t) a 
-ik' X 

+ fi 
t 

lJ*(t)a ]. (1.16) 
k k k k 

Cur attention must now center on the equation (1.14a). 

Eq. (1.16) does not define ak and a! until a particular solution 

,k(t) is chosen from the two-dimensional complex vector space of 

possibilities. The choice is not entirely arbitrary if one wants 

the creation and annihilation operators to satisfy the canonical 

commutation ce la tions. From Fqs. ( 1. 10) and ( 1. 16) we have 

Tr (t,x) 
ik•X. 

= f d k ( i fl ( t.) a 
k k 

-ik-x • t 
+ e IJ*(t)a ], 

k k 
( 1. 17) 

where the dot now indicates differentiation with respect tot. 

It is reasonable to assume (or demand, according to one's point 
?,, 

of view) that Jk (t) depends only on k (more generally, that ,. 
J 

depends only on ej ).[1] Then we have 

s -ik•x t 
fd x 9 56 (t,x) = ' (t) a + 11* (t) a , 

k k k -k 

f dsx 
-ik•X . . t 

i Tf(t,x) = " (t) a + {f* (t) a , 
k k k -k 

[ 1] Alternatively, in order to avoidfflaking this assumption for 
the purpose of the calculation below, one could work, as in the 
first part of Sec. VIII.2, with real basis functions ,. (here, 
sin krX and cos k•X). J 

I l • 
< ,J 
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and hence 

where wl is the Wronskian 

w = V (t) P* {t) - , (t) tJ*Ct). (, • , 9) 
k k k k k 

The form of Eq. (1.14a) implies that '\ is independent[2] oft: 

it is obviously imaginary. When at is found from Eq. {1.18) (or 

solved for directly), it is easily seen that 

t 
[ a , a ] 

k k I 

So V must be chosen so that 
k 

We can write 

w = i. 
k 

'(t) = A E (t) +BO (t), 
k k k k k 

(1.20) 

(1. 21) 

where El and Ok are standard solutions of Eq. (1.14a) satisfying 

[2] Wit~s the original-time-coordinate x
0 

w oc: R , a n d , at the 1 a st s te p , w = i R -s • 
k k 

one would have 
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E (0) = 1, 
k 

O (0) = 0, 
k 

E {O) = 0, 
k 

• 
O ( 0) = 1. 

k 

331 

(1.22a) 

(1.22b) 

(This notational convention is slightly different from that of 

Sec. V.3, where an imaginary time coordinate was used for 

technical convenience.) Note that 

A = '1 (0) , B = 11 (0) • (,. 2 3) 
k k k k 

The Wronskian of Ek and Ok is equal to 1. Therefore, the 

condition {1.20) is equivalent to 

2 Im AB*= 1. 
k k 

If ¢ 
1 
(t,x) and ¢j {t,x) are two solutions 

elementary type (1.13), the current form (VII.5.3) is 

-s -i ( j-k) • X • 

(1.24) 

of the 

= i (21T) 
i(j-k)•X 

[e '* (t)' (t) - e '* (t) f (t) ] 
k j k j 

= - iw ~(k,j) = b(k,j). 
k 

(1.25) 

Thus the condition (1.20) ensures that these functions span a 
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space of solutions of positive norm with respect to W, and form 

an orthonormal basis in that space (cf. Secs. V.4-5). 

A tentative approach to the quantization of the field 

equation solved in the last section is the following: The 

Hilbert space is the Fock space of the set of t opera tors (al::, \ } 

given by t:q. (1.18) with some choice of the functions 1\ (Eq. 

(1.21)). (Cf. Secs. V.3-5 and VIII.3-4.) The should be 

chosen (how?) so that the ak and a[ are the annihilation and 

creation opera tors for physical particles present (in mode k) in 

the state of the universe at some time t
0

• 

The purpose of this section is to show that th~ 

adoption of this point of view has serious implications. We 

consider a simple model complementary to the one studied in 

Chapter IX.[3] In two-dimensional Minkowski space with 

coordinates (x
0

,x) let 

0 t t 
x = e cosh y, x = e sinh y. ( 2. 1) 

The coordinates (t,y) (-oo < t, y < oo) cover the region where 

XO > I I X • The metric is of the type (1.8): 

[3] This space has two-four-dimensionalanalogues. one, which is 
spherically symmetric, is one of the Robertson-Walker universes 
of constant curvature (see Appendix D}. The other is define~ by 
a transformation of the form (2.1) on one space coordinate, the 
other two being unchanged; this is the degenerate Kasner universe 
mentioned in passing by Zel'dovich (1g70} and Zel'dovich ana 
Starobinsky (1971}. Both of these models are merely patches of 
Minkowski space in disguise. 
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2 2t 2 
ds = e (dt 

2 
dy} 

3B 

t 
(F(t) = e ). (2.2) 

The equation (1.14a) for the time dependence of a mode of the 

scalar field becomes 

2 
~ ' ( t) 

t k 

2t 2 -2t 
+ e ( k e 

2 
+ m ] f (t) = 0, (2. 3a) 

k 

or, in terms of the Gaussian time coordinate denoted in the 

previous section by x 0
, which in this case is et= R, 

2 1 2 2 2 
d ' (R) + - 6' (R) + [k /R + m ] '1 ( R) = 0 (2. 3b) 

R k R R k k 

(cf. Eqs. (1.7) and (1.14b)). The solutions of Eq. (2.1b) are 

linear combinations of the Bessel functions J ,1c. (R) and Na (R), 

but we shall not use this information in what follows. Instead, 

let us continue to denote by ,k (t) ~ generic solution of Eq. 

(2.3a) satisfying Eqs. (1.21-24). 

We set t = 0 in the for-mula ( 1. 18) for ak: 

and substitute for, and n the expressions in terms of Pourier 

components in Cartesian coordinates: 
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0 
¢(0,y) = ~(x =cash y, x=sinh y) = 

f 
d p ip sinh y -iw, cash y 

.r.: __ [j e b 
v2w, p 

-ip sinh y 
+ f 

f 
r~- ip sinh y -h.Jp cash y 

TI ( 0 , y) = - i d p V--
2
- [ i e b 

p 

-ip sinh y 
- ~ 
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iwr cash y t 
e b ], 

p 

iwf cash y t 
e b ], 

p 

where Wr= ifp~ + m~. !he result is 

f 
. 1 

a = dp J(k,p) [V*(O)VW- - if*(O)---:] b 
k k p k VWt' p 

- d p J * ( - k , F) [ If lf ( 0 ) rv.r + HJ* ( 0) - ] b , j 
• 1 t 

k p k ~ p 
(2. 4) 

where 

= 

or 

J (k, p) 
-iky ip sinh y -iwrcosh y 

i i e 

1 1 -iker q:, -iky -im cash y 
-e f dye e 

12 2n -Q> 

(p = m sinh e), 
p 
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J(k,p) = - i 
-3/2 

2 e 
- ike Tik/2 

f e 
(?.) 

H 
ik 

([Gradshteyn-Ryzhik], Eq. (8.421.2) (p. 955)). 

33'> 

( m} ( 2. 5) 

No choice of 

(j 
r 

11\ (0) and ik (O} (i.e., of \, and Bk in Eqs. ( 1 • 2 1 , 2 4 ) ) c an make - c(A-

th e k er n e 1 in t he last t e r m of E q • ( 2 • 1~ ) van i sh id en tic a 11 y i n p 

(as a distribution), so that the Vdcuum of the free field he 

annihilated by the ak. 

'Ihe conclusion is that for the free field in "expanding 

Minkow.ski space" .!l.Qllf of the tensor product representations 

proposed at the beginning of this section coincides with the 

standard representation of the free field.[4] In previous work 

on field quantization in expanding universes, to the best of the 

author's kno~ledqe, it has usually been assumed that some 

splitting of the Fourier components of the field into 

annihilation and creation operators for physical particles is 

possible, the problem being to determine which splitting is 

correct.[5] 

concluEions: 

ihe argument above drives one to one of two 

-----------·----[4] What is at issue here is not unitary equivalence but strict 
identity of representations (better, identity of vacuum states), 
leading to identical particle interpretations. Of course, only a 
subalgebra of the full algebra of field operators in Minkowski 
space would be involved in this identity. 
[ 5] In his 1969 paper (p. 1064) Parker has emphasized, however, 
that if particles arc being produced as a result of metric 
expansion, then the concept of particle number at a qiven time is 
operationally fuzzy because of the uncertainty principle. In 
Parker (1966) particle numher is defined only for a slowly 
expanding universe. 
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(1) Quantization based on such a splitting is physically 

wrong -- at least in some cases. 

(2) There is no unique physically correct representation of 

the fields (cf. Sec. IX.4). 

In either case the interpretation of the operators ak of Eq. 

(1.18) in terms of physical particles in weakened. 

3. As1rn,Etotical.1.Y Static Me!f.!f.§• 

For contrast to the negative result of the last section 

we turn to a situation where the field has a clear interpretation 

in terms of particles -- the case 

R (t) •- R for t > t , R(t) = R 
+ 0 

for t < - t • 
0 

( 3. 1} 

(With proper attention to technicalities one could make the same 

statements about a metric for which R(t) merely approaches 

constant values "sufficiently fast 11 in the past and future.) We 

shall call this behavior as1mEtoticall1 static. (Parker's term 

is "statically bounded".) Of course, in the special case (1.15) 

considered here the space-time is actually flat in the asymptotic 

regions. 

In the region of space-time where t > t
0 

the equation 

of motion is that of a free field. The general sol11tion can be 

written 
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¢ ( t, X} 
s -1/2 

= Jdk [2LJ R ] 
k + 

s out 
exp f-itJ ·R t} a 

k + k 

with 

-ik•x 
+ ~ 

s outt 
exp { itv R t} a ] 

k + k 

2 2 2 2 
W = k /R + m • 

. k + 

(t > t ) , 
0 

( 3. 2) 

(3. 3) 

It is hard to believe that in the quantum theory the coefficients 

and should not be interpreted as annihilation and 

creation operators for physical, observable particles. In this 

region of space-time we have simply a free field, whose physical 

interpretation is well understood. 

where t < 

general t) 

¢(t,·x) 

where 

Similar statements hold, of course, for the region 

t. We have {extending the analogue of Eq. (3.2) to 
C 

in in -ik•X 
+ ~ , (t) a 

k k 

,n 
(= ' (t)) 

- k. 

s -1/2 
( 2W R ] 

k -

satisfies F.q. 

- s 
exp {-iw R t} 

k -

in int 
1J *(t) a ], 

k k 

(1.14a) and 

fort< - t, 
0 

( 3. 4) 

(3. 5) 
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in s -1/2 s 

' (t) = 
k 

( 2W R ] [ <X* ( k ) e X p { - i W R t} 
k + k + 

s 
+ ~* (k) exp {iw R t}] for t > t ; (.3. 6) 

k + 0 

a(k) and ~(k) are certain coefficients which depend on the whole 

function R(t). The solution (3.5) is normalized according to 

Eqs. (1.19-20). Since the Wronskian is independent of t, we find 

from Eq.. (3. 6) 

2 
I cx(k) I 

2 
- I (:1 (k) I = 1. 

Comparing Egs. (]. 2) and (.3. 4, 6), we find 

out 
a 

k 

in 
= a*(k)a 

k 

int 
+ [3(k)a 

- le 
• 

This is a Bogolubov transformation (Secs. F.2,4). 

( 3. 7) 

(3. 8) 

Eq. (3. 7) is 

precisely the condition which assures that canonical commutation 

relations for both the!~- and the 2y1-operators are consistent. 

When l3 {k) 1 0, the import of Eq. (3.8) is that pairs of particles 

in the modes k and - k are created and destroyed during the 

expansion of the universe. To be explicit, the operator of the 

number of particles in the mode k after t is 
0 
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out 2 2 in out outt 
N _ a a = I o.(k) I 

in 
N t l[)(k)I (N + ~(-k,-k)) 

k k k k -k 

int int 
+ ex {.k) ~ ( k) a a + ex* ( k) ~ * { k) 

k -k 

in in 
a a 

-k k 

(See remarks below on the interpretation of b(-k,-k).) Thus, for 

example, if there are no particles before the expansion, the 

expectation value of the number of particles in this mode 

afterwards is 

out 
<O inlN 10 in> (3.10a) 

k 

if space at fixed time is a finite box with perio~ic boundary 

conditions (torus). If one particle is present initially, we 

have 

out 
<k inlN tk in> 

k 

out t 
= <O inla N a 10 in> 

k k k 

2 
= lcx(k)I 

2 
·+ IP(k)I, 

and so on. For more details see Parker (196q), Sec. c. 

(3.10b) 

In the case of a metric which is time-independent in 

the limit of large positive and negative times but is not of the 

generalized Robertson-Walker form (1.1), the field equations in 

conjunction with the free field interpretation in the periods 

before and after the expansion will again predict particle 
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creation, but the various modes will be coupled; that is, Rq. 

(3.8) will be replaced by a Boqolubov transformation of the more 

general type discussed in Secs. F.2-3. 

According to Eq. (F. 3. 2) , 

2 
fdk 6(k,k) l~(k)I < oo ( 3. 11) 

is a necessary and sufficient condition for the existence of a 

unitary operator S such that for all k 

in 
a 

k 

out -1 
= Sa S 

k 
(3. 12) 

If space is infinite (k is a continuous variable), then~ in Eq. 

(3.11) is a Cirac delta function, and the condition (1.11) ~l~~I§ 

fails. (This is an infinite-volume divergence.) If space is 

finite {k is a discrete variable 2ffn/L), then Sis a Kronecker 

delta function, and Eq. (3.11) is a statement about the 

ultraviolet behavior of ~ (k) (cf. Sec. F.4). 

Ifs exists, the Fock space of the .Q.!!!-operators can he 

identified with the Fock space of the ill-operators. The 

in-vacuum is 

JO in>= s10 out>, ( 3. 13) 

which is a linear combination of 10 out>, two-particle ~!!!.-states 

of the form 
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outt outt 
a a 10 out>, 

k -k 

four-particle Q.Y_1-states, etc., such that Eqs. (3.10) hold (see 

Secs. F. 3-4 er Parker (1969) , pp. 1061-1062)) • 

Heisenberg-picture approach; one looks at the 

This is a 

late-time 

b bl h o"" t . h . o serva es, sue as Nk , wit respect to the fixed state vector 

IO in) (or another iJ!-state}. One can also look at the system in 

the interaction picture, where S is interpreted as the limiting 

propagator U (oo ,-co), which maps a state (of the free field) 

initially containing no particles into a final state of the form 

just described, and so forth. 

If no Sexists, it is no longer possible to regard the 

Pock space of the !g-operators as the "arena" in which the time 

development of the system takes place (interaction picture). The 

Heisenberg picture, in a fixed representation, does still make 

sense; however, the possible states, as functionals on the 

algebra o.f field operators (over all space-time), will be 

different in the two asymptotic representations (cf. sec. JX.4). 

But this "pathology" is entirely reasonable physically; it means 

that infinitely many particles are produced in the expansion, as 

is to be expected from an interaction extending uniformly 

throughout an infinite space.[6] In the author's opinion we 

have here strong additional evidence that, as suggested in Sec. 

[ 6] In this case convergence of the integral (3. 11) for the 
analogous box case is of interest, since it has the siqnificancP. 
that the ggn§i!I of particles created is finite (cf. Parker 
(1969), PP• 1062-1063). 
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IX.4, the mathematically convenient framework of a sinqle 

irreducible representation of the field algebra is too narrow for 

some applications of quantum field theory. 

The important conclusion of this section is that, as 

Parker (1966, 196<J) has stronqly emphasized, a time-dependent 

space-time metric leads unambiguously to particle creation in 

quantum field theory. This creation is independ~nt of any 

particle interpretation of the field theory during the period of 

expansion.[?] 

This kind of particle creation must be clearly 

distinguished from two similar effects which have been discusse~ 

in the literature. One is the production of new kinds of 

particles in high-energy elementary particle processes, such as 

+ 
r + y -- ➔ e + e (or p + p, etc.), 

whose importance in early cosmology and in some astrophysical 

situations has long been recognized. This is simply the 

conversion of one type of particle into another via strong, 

electromagnetic, or weak interactions, and has nothing to do with 

the appearance of particles in what was initially the vacuum 

state of a free field theory. Another kind of particle creation 

has been predicted in de sitter space by Nach tmann ( 1 %Ba, b) • He 

interprets the free field as a theory of stable particles, as in 

-------- -------------[ 7] For another statement of the same argument in a different 
context see Moore (1970), Sec. VII. 
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Sec. V.6. Then he finds that the ad~ition of a ~¢ 4 interaction 

leads in perturbation theory to creation of particles relative to 

this definition of particle, at least if some particles are 

already present. (That is, a one-particle state can evolve into 

a three-particle state, and so on.) Onlike Parker's effect, 

Nachtmann's depends on a nonlinear interaction term in the field 

equation. 

4. Nachtmann 1 £ Ansatz. 

Nachtmann (1968b) proposes to define positive-frequency 

solutions of the wave equation in two-dimensional de Sitter space 

in the following way. The Hilbert space of the quasiregular 

representation of the de Sitter group (see Secs. V.4 and VI.1) 

can be decomposed as a direct integral, 

representation of the Casimir operator Q: 

9J 

1-J = f dµ ( g) '}j • 
g 

the spectral 

( 4. 1) 

~q can be identified with the space of generalized eigenvectors 

of Q with eigenvalue q i.e., the sufficiently integrable 

solutions of the wave equation (V.2.1). The scalar product in 

~g is defined up to a factor. The current form (V.4.1) is a 

bounded Hermitian form on 1/ q. Therefore, it determines an 

Hermitian operator N by the formula 
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w <• , ' ) = 
1 2 

(' ,NIJ ). 
1 2 

344 

(4. 2) 

We pass to the spectral representation of N: 'l/ q is a direct 

sum 

(4. 3) 

where 

N' = + f for t € 1/.f, 

for some choice of the arbitrary constant in the scalar product. 

Eq. (4.3) provides a distinguishgQ decomposition of the type 

{V.4.10). 1/J + is taken to be the space of positive-frequency 

solutions. It turns out to coincide with the space chosen hy 

Tagirov ~! ~J. (Sec. V. 6). 

Nachtmann remarks that this definition can be 

generalized to an arbitrary Riemannian manifold. What is 

intended is presumably the followinq. The spectral decomposition 

of the Laplace-Beltrami operator (VII. 1. 3) equips the solutions 

of the wave equation (VII.1.2) with a positive definite scalar 

product. This added structure suffices, as above, to remove thP 

ambiguity in the classification of the solutions as positive or 

negative under the current for-m (VII. 5. 3): the positive 

functions are those in the positive piece of the spectral 

resolution (4.2-3) of the form. (The positive solutions can be 

interpreted as particle wave functions and used to build a Fock 
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space as in Sec. V.6 and Secs. VIII.1-4. 

particle creation in such a theory.) 

Clearly, there is no 

The physical relevance of this construction may he 

challenged for the reason stated at the end of Sec. V.6. To 

sharpen this argument we shall now investigate what Nachtmann•s 

prescription yields in the case of an asymptotically static 

universe, where we already have a convincinq physical 

interpretation of the solutions. Unfortunately, for lack of 

space the exposition will be rather sketchy. 

Consider a two-dimensional asymptotically static metric 

{.Eqs. (1.1), (3.1)) with R = R = 1. + ·- The Laplace-Beltrami 

operator D is Hermitian in the Hilbert space of functions on 
c.. 

the whole manifold square-integrable with respect to the volume 

element v'Tgf dt dx = Ri dt d x. The corresponding differential 

equation, which is the wave equation (1. 11}, is 

-2 2 2 2 
F (o ~ ]¢ + m ¢ - 0, (4. t.q 

t X 

,. 
where m is the eigenvalue. There are eigensolutions of the form 

ikx: 
~ ( t, X) :: 9 ' ( t) 

m,k,O"' m,k,o--

where for given m and lkl there are two independent solutions 

of 
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-2 .. 2 2 
R [J + k ,J + m V = 0, ( 4. 6} 

one of which can be chosen to have the asymptotic form (3.4-5). 

The problem is to normalize V so that 
>'111 k,r 

JR
2 

dt dx ¢* ¢ = b ~{k - k') ~(m - m'); (4.7) 
m , k , er m ' , k • , cr" <fo'' 

then upon discarding the last delta function on the right-hand 

side of this formula we will obtain a scalar product on the space 

of solutions of tbe wave equation for a fixed m (by takinq the 

¢'s as an orthonormal[B] basis). 

Eq. (4.6) is identical to the Schr6dinqer equation for 

a one-dimensional scattering problem (t ~ x; V(t) = - R~m~). Jn 

the present problem, however, we must reqard ~ 
k as a fixer! 

parameter and m.t as a varying eigenvalue (the reverse of the 

situation for scatterinq), and the relevant scalar product 

involves instead of Lehesque inteqration, fat. 
Nevertheless, it can be shown that the orthonormalization of the 

eigenfunctions is the same as in the familiar problem. 

we can choose 

m,k,+ 

in 
= 11 

w 
I 

m,k,-

in 

= " 

Namely, 

( 4. 8) 

the functions with the structure indicated in Fig. 11 (Sec. V.7) 

---------
[8) "Orthonormal" is meant in the strict or the gPneralized 
sense, depending on the nature of the spectrum of k. 
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or Eqs. (V. 7 .6) with obvious notational suhstitutions. An 

alternate basis is provided by their complex conjugates l 0
~ and 

. - "" 
Cui; , , whose structure is schematically indicated by the first and 
w 

second line of fig. 11, respectively, with the arrows reversed. 

The notation here is that appropriate to the scattering analoqy, 

not to the actual physical situation; the function called ,;n in 
k 

01 

Egs. (3. 5-6) is propoC'tional to tp under the present convention. 
-w 

It is crucial to the following argument (in particular, to the 

equality in Eq. (4.10b}) that the absolute value of the constant 

of pcopo.rtionalit y (equivalently, of the transmission 

coefficients S in Eqs. (V.7.6)) is independent of the sign of!. w 

(see (Messiah], p. 107) • 

For fixed values of hath k and m we have a 

two-dimensional complex Hilbert space of solutions (4.S) with the 

scalar product induced by Eq. (LL, 7). That is, 

(,1 ~ ) = 8 (4. 9) 
m, k , a' m, k , cf• cf <5' 

for either of the two bases just defined, and the scalar product 

of linear combinations of these is then determined. The current 

form or Wronskian[9], however, is not diagonal in either of these 

bases; rather, we have 

in out 
W(TJ ,, ) = 0, (4.10a) 

-w w 

----------------[ 9] In the scattering analogy, - W(f,,)/2 is the flux in the 
beam. 
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out out in in 
w(, ,11 - - W('1 ,tJ ) > 0, 

and similarly for f 

-w -w 

ou.t-

-w 
and , 'YI. 

(..,> 

~ Lv 

Our task is to find 

348 

(4.10b) 

a new basis 

c, ,, J which is orthogonal with respect to both the scalar 
-w C,,J 

product and w. 

It can be shown that if,, e, and X are defined by( 10] 

S = e 
k 

so that 

ie 
cos¢, 

out 

' = e 
-ie 

R = e 
k 

cos 
in 

¢ 11 
w 

sin¢ 

-2ie 
- e 

then a solution of the problem is 

¢ in i(t - Q) 
J ~ cos - , - e 
w 2 w 

' 
" ,, ) = (11 ,, = 1, 

-w -w 

w(, ,, = - W (f , ' ) > 0 , 
-w -w 

e 

11 
(0 <¢<-), (4.11) 

2 

sin 
in 

¢ ' -w 

¢ in 
sin - 1f , 

2 -w 

= o, 

I 

w <• , ' = o. 
w -w 

( 4. 12) 

(4. 13a) 

(4. 13b) 

(4.14a) 

(4. 14b) 

Thus the new basis is obtained by "rotating half way" from the 

[10] See Eq. (V.7.6a) for the definition of\ and\• 
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W > 0 W < 0 

Fig. 17 

Relation of Nachtmann•s basis to the asymptotic hases. 
Perpendicular vectors in the figure are orthogonal in the 
po si ti v e def i n it e s ca 1 a r prod u c t ( , ) • Ve c to rs sit u ate d 
symmetrically with respect to the central vertical axis are 
mutually complex conjugate and are orthogonal with respect to the 
current form W(, ). 
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W > 0 W < 0 

Fig. 17 

Relation of Nachtmann•s basis to the asymptotic bases. 
Perpendicular vectors in the figure are orthogonal in the 
positive definite scalar product ( , ) • Vectors situated 
symmetrically with respect to the central vertical axis are 
mutually complex conjugate and are orthogonal with respect to the 
current form W ( , ) • 
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in.-basis to the Q,Y!,-basis, as indicated in Fig. 17. The 

asymptotic behavior of ' ( t) is w 

¢ iwt i)( ¢ -ic..>t 
cos - i + e sin - ~ (4. 15a) 

2 2 

in the past (t < - t ) , and 
0 

ie fl iwt ix --ie ~ -iwt 
e cos - fl - e e sin - i (4. 15b) 

2 2 

in the future. 

What is the significance of these functions? To 

interpret the functions 

ikx 
~ 1J (t) 

-w 

as wave functions of a stable particle seems much less convincing 

than the interpretation of the field expounded in Sec. X.3. As 

remarked earlier, in the static portion of space-time one has a 

free-field situation, and the usual interpretation of the free 

field surely applies. Consequently, the validity of this 

approach to other (not asymptotically static) manifolds, such as 

de Sitter space, is questionable. The same objection obviously 

applies to any attempt to define a unique notion of positiv~ 

frequency for solutions of the wave equation in a nonstatic 

space-time (for instance, the definition via a distinguished even 

1 
. (1) 

so u t1on G (cf. Eq. (VII.4.17)) by Lichnerowicz (1962)). 
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On the other hand, Nachtmann•s prescription gives an 

interesting classification of the solutions which is intrinsic 

(independent of time, indepenaent of any coordinate system). If, 

as the results of this and the last chapter seem to indicate, the 

notion of particle is a rather weak and ambiguous one in curved 

space-time, then this ansatz roay give as good a ~efinition as any 

of particle states for the free scalar field in an arbitrary 

Riemannian universe. That is, it may be a mathematically 

convenient way of classifying the states in a certain 

representation of the field algebra. (For instance, in a theory 

with interactions it may be useful to do perturbation theory 

starting from the Nachtmann states of the noninteracting theory 

as unperturbed states.) The fact that for de Sitter space the 

method leads to what was independently shown to he the only 

grouE-covariant definition of particle which seems to be at all 

physically sensible (Sec. V.6) is a point in its favor. 

5. A Definition of Positive Freguency at a Given Time, and SOE 

1'.h,gQigl!!.§ on ~i valence of Re11resenta tions. 

Up to now we have succeeded in splitting the field 

operator into annihilation and creation operators for particles 

only in cases where the metric is constant, at least in some 

finite interval of time. The criterion bas been that the time 

dependence of the annihilation operators for a mode characterized 

by energy E should have the time dependence exp(-iEt). Ts it 

possible to place some related condition on the behavior of the 
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functions !Jk (t) (of Eqs. (1.16,21)) near a fixed value of t, so 

that the akin Eq. (1.16) correspond to annihilation operators 

for particles at that time? In a sense the result of Sec. X.2 

answers this question in the negative, unless the example studied 

there can be argued away as illegitimate (because the space is 

extendable, for instance cf. Sec. 

accordance with the author's often-repeated opinion that a 

particle notion may be of some value even if it is not unique, 

definitions of this type will now be considered. 

Let us take t = 0 to be the time at which particles are 

to be defined. Then the problem is to make a sensible choice of 

the coefficients Ak and Bl in Eqs. (1.21-24), one which reduces 

when R = £.QJ!.§1• in the neighborhood of Oto 

A 
k 

s -1/2 
= [ 2E R ] 

k 
I B 

k 

i 

2 

-1 
A 
k 

(5. 1) 

(cf., e.g. 1 Eq. (3. 5)). The annihilation operator ak will then 

be determined by Eq. (1.18). 

The most obvious approach is to diagonalize the 

instantaneous Hamiltonian H(O) .(11] That is, we are to choose 

------------( 11] See, for instance, Grib and Mamaev (1969). (This paper 
seems to the present author to contain several confusions. In 
particular, Eq. (12) as written is not a solut.ion of the field 
equation; it becomes one (and the theory becomes equivalent to 
that of this section) if the argument q of ~(q,k) is replaced by 
a separate parameter Ile.. Also, the assertion (p. 724) t.hat the 
particle creation violates charge conservation is 
incomprehensible to the present author; it seems to be based on a 
confusion of particle and antiparticle creation operators.) 
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the coefficients so that the contribution of the mode k to the 

Ha mi 1 tonian is proportional to which is regarded as a 

numher operator. Substituting the expressions of Sec. X.1 into 

the Hamiltonian (VII.1.Bb), we obtain 

1 2 
H = -fdk {[B a a 

2 k k -k 

·2 t t 2 t t 
+ B* a a + I B I ( a a + a a ) ] 

k k -k k k k k k 

2s 2 2 2 2 2 t t 
+ R ( k /R + m ] [A a a + A* a a 

k k -k k k -k 

2 t t 
+ I A I (a a + a a ) 1}. (5. 2) 

k k k k k 

(This applies to the case (1. 15); in the general case, but with 

real eigenfunctions, one would have e~ fork~ and a~ instead of 
k k 

a a , etc.) So we must have 
k -k 

- B 
k 

2 2s 
= R 

2 2 
[ k /R 

2 2 
+ m ] A (5. 3) 

k 

Eqs. (5. 3) and (1. 24) together provide three real equations for 

two complex guantities; the solution is unique up to an overall 

phase. If we arbitrarily require Ak to be real and positive, the 

solution is 

--
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1 -s/2 2 2 2 -1/4 
A = -R [k /R ♦ m ) , 

k r/2 

1 +s/2 2 2 2 + 1/4 i -1 (5. 4) 
B = - i -R [k /R + m ] = A I 

k "2 2 k 

where R stands for R(O). 

form 

This makes the Hamiltonian take the 

H (0) 
s 2 2 

= R f dk [k /R 
2 1/2 t 

• m ] {a a 
k k 

1 
+ -~(k,k)), 

2 
(5. 5) 

where the delta function term is an infinite constant which may 

be discarded; H(O), thus normal ordered, is manifestly a positive 

self-adjoint operator in the Fack space of the operators ak. (If 

we had used the original Gaussian time scale x0 

( 1. 7)) , there "ould be no factor of rf in H (0).) 

(see Eq. 

Positive-frequency solutions in de Sitter space were 

defined in this way in Sec. v.3. There it was remarked that 

these solutions resemble the static-space positive-frequency 

solutions up through order t~ .. In the general case this 

correspondence holcls only through first order. In de Sitter 

• space R (0) is zero, and hence the behavior of the system is 

static to one higher order int. This slightly increases one's 

confidence in the physical relevance of the particle number 

defined in this way on a geodesic hypersurface in de Sitter 

space,. 

Local particle observables of the Newton-Wiqner-
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Wightman-Schweber type can he defined by Fourier-transforming ak 

back to x-space without the factor Ak, in analoqy to Eq. 

(VII I. 4. 3) • 

Obviously, the procedure applied here at t = 0 can be 

applied at any time. For different times it will, in general, 

yield different definitions of ak; this is the phenomenon of 

particle creation. 

different tiu~s t 
1 

The 
I 

operators ak and appropriate to 

and ta will be related by Bogolubov 

transformations of the form 

2 1 
a = CP(k)a 

k k 

1t 
+ ~(k)a , 

-k 
{5. 6) 

where the coefficients obey Eq. (3. 7). Let us calculate these 

coefficients. For j = 1 and 2 define 

j 
lJ (t) = 

k 

t. t. 
A (t ) E J (t) + B (t ) 0 J (t) , (5. 7) 

k j k k j k 

-t· t• 
where E/ and okJ obey the obvious generalization of Eqs. (1.22) 

and A k (tj) and Bk(\) are given by Eqs. (5.4) with R = R (tj). 

have 

ik•x 1 1 -ik• X 1 1t 

We 

J6 (t ,x) = fdk [~ 11 (t ) a + j , * (t ) a ], (5. 8) 
2 k 2 k k 2 k 

f dk 

ik•X • 1 1 -ik•X • 1 1t 
TI (t , X) = [~ IJ (t ) a . ~ , * (t ) a ]. 

2 k 2 k k 2 k 
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But ¢(t~ 1 x) and ff(t1 ,x) can also be expressed in terms of the 

quantities with the index 2, and those equations can be inverted 

as in Eq. (1.18)(12]: 

a
2 

= - i[- B (t )/dx ~-ik•x ¢ - A (t )fdx ,-ik•x ff]. 
k k 2 k 2 

Substituting, we obtain 

1 • 1 
C(ll' (k) = i( B (t ) tJ (t ) + A (t ) 1J (t ) ], (5. 9a) 

k 2 k 2 k 2 k 2 

1 • 1 
{l(k) = i[B (t )'1 *(t ) + Pi (t ){J *(t) ]. (S. 9b) 

k 2 k 2 k 2 k 2 

If p (k) : 0, Eq. (5. 6) is just a phase change and there 

is no particle creation. Otherwise, the Fock vacuum states of 

the operators corresponding to different times must be different. 

The question arises whether the Hilbert spaces of these Fock 

representations are the same; in other words, whether there is a 

unitary operator U(t ,t) such that 
;i_ I 

2 1 -1 
a = U(t ,t) a CT(t ,t) for all k. (S. 10) 

k 2 1 k 2 1 

The statements about the s-operator in Sec. X.3 apply to u as 

-------------- -------·---
[ 12 J Recall that A* -= A k I 

Bt -= - Bk, that ,1 (t.) = A. (t. ) , 
k k k J k J 

IJ j (t. ) = Bk{\), and that ' = ''k. k J - k ~ 
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well. If the volume of space is finite and 

2 
~ rn (k) f < oo, ( s. 11) 
k 

then the Hilbert spaces are the same and U exists. In this case 

the initial vacuum 10 t
1
> can be expanded in terms of the Fack 

basis at ti, and the coefficients are to be interpreted as 

probability amplitudes for fin~ing (finitely many) particles 

distributed in the various modes at t 2 if the universe was empty 

at t,. Alternatively, U(t~ 1 t
1

) can be regarded as the time 

evolution operator of the states in a Schr~dinger picture where 

t 
the particle operators ak, Nk (= akak, the number operator), 

etc., are held fixed.(13] Note, however, that for reasons about 

to be explained the notion of a Schr~dinger picture for the ak is 

not quite the same as that of a Schr~dinqer pictuce for the field 

opera tors. 

Eq. (5.10) does not mean, unless R(t} = R(t ), that 
4- f 

~ (t , x) 
2 

-1 
= U(t 1 t) ~(t ,x) U(t ,t) 

2 1 1 2 1 
(5. 12) 

because 91 (t, , x) and aJ are related by a ti.!!!~-dependent Fourier 
J k 

transf arm: 

f 13 fiii-sec:-x:-}-the phases of-the-a;- in the asymptotic region 
were tacitly "run back" tot= O, and so an interaction picture 
instead of a Schr~dinger picture was mentioned. 
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fdk 
ik•x i -ik. X jt 

.¢ (t , X) = A (t) (~ a + ~ a ], (5. 13a) 
j k j k k 

= j dk 
ik•X j -ik• X jt 

n t t , X) B (t) [~ a + ~ a ], (5.13b) 
j k j k k 

where Ak and Bk depend on tj through R(tj} (see Eqs. (5.4)).(141 

Eq. (5.12} would give us not Eq. (5. 10) but unitary equivalence 

I 
of ak with canonical operators ~k defined from ¢(t~ 1 x) by means 

of an equation like .Eq. (5.13a) (j = 2), but with A
1 
(t ) in place 

< I 

of A k <\) (and a similar equation for n (tl., x)). Any opera tor n 

satisfying Eq. (5. 10) would have to be a composition of the U in 

.Eq. ( 5. 12) with a unitary opera tor implementing the automorphism 

- ~ ',l 
a ~ ak.. 

I< 

We shall now determine when such an operator exists. 

Analogously to Eqs. (5. 6,9) one finds that 

where 

2 
a 

k 

1 D(k;2) 
= - (--

2 D(k;1) 
+ 

D (k; 1) 
--] a 
D(k;2) .k 

1 
+ -

2 

D ( k; 2} 
(--­

D(k;1) 

U(lc;1) _t 
---] a , 
D(k;2) -k 

s/2 2 2 2 1/4 
D(k:j) = R ( t ) [ k /R ( t ) + m ] • 

j j 

Let 

[ 14] Cf. .Parker (1969) , p. 1061. 
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1 D (k ; 2) 
P(k) = - [--

2 D (k; 1) 

359 

D ( k; 1) 
---]. 
D (k; 2) 

Ifs= 1 and we are working in finite space, the sum (5.11) is 

precisely the one treated in Sec. F. 4, which converges; 

therefore, unitary equivalence of the fields is equivalent to 

unitary equivalence of the particle operators. If R ( t ~} ,. ~ ( t I ) 

ands-, 1, ~(k) approaches a nonzero constant as k ~ oo; thus 

the sum (5.11) diverges, and hence equations of the forms (5.10) 

and (5.12) cannot both hold. The factors Rs/:i. make the crucial 

difference for s = 2 or 3 between this situation and the one 

discussea in Sec. F.4. 

The distinction between the two types of equivalence is 

sufficiently confusing to iustify a restatement. our basic 

ansa tz, ex pressed in Eqs. ( 5. 2- 5) , defines at each time t t a 

representation of the field operator ¢(t
1 

,x) (a distribution in 

the s-dimensional space variable x), which we may call the f2£! 

re_2£esentation !QI ii!!!~ t
1

• However, the dynamics given hy the 

field equation defines in the Hilbert space of the Fock 

representation for time t 1 a representation of the field at time 

t~, f6 (t;:i__, x}, given by Eq. (S. 8). One may ask whether this 

representation is equivalent to the Pock representation for time 

t ; an affirmative answer is Eg. (5.10). An entirely different 
~ 

question is whether the time evolution indicated in Eq. (5.8) is 

unitarily implementable within the Pock representation for time 

t ; this is the content of Eq. (5.12). 
I 

In -:HI n s y m pt o tic a 11 v st rt t i c u n i v Pr s 0 w i th ? 1 p 
+ 
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unitary equivalence in the sense (5.10) means that the in Pock 

re pre sen ta tion is equivalent to the .QUt Fock representation, 

whereas in the case (5.12) the in-representation is a "strange" 

representation of the .9_y_t-opera tors. This seems to indicate that 

the more physically relevant type of equivalence is that of Eq. 

(5.10). 

Another argument to the same point is the following. 

When R(t) 1 R(t), the spatial universes at the two times are 
I A 

geometrically different, and it is not obvious that the field 

observables defined in these two spaces should be considered to 

be the same algebra. In a generalized Robertson-Walker universe 

the spaces at different times have the same "shape"; it is only 

this fact which allows one to make a natural identification of 

the points, so that Eq. (5.12) makes sense. In a more general 

universe there is no preferred coordinate system, and there is no 

particular reason to expect Eg. (5.12) to hold for an arbitrary 

system. Indeed, the range of the spatial variable x could be 

different at different times, as in the Kruskal metric (see 

footnote 3 of Chapter IX). On the other hand, in this general 

context it is still possible to define a Fock representation for 

each s pace 1 i k e hype rs u rf ace by di a q on a 1 i z i n g the Ham i 1 ton i an. 

One can then ask whether the Fack representations corresponding 

to different times are equivalent; instead of Eqs. (5.6-9) one 

will have to consider a more complicated Bogol ubov 

transformation, like that discussed in Sec. IX.3. Equivalence in 

this context simply means that the Fack representation for time 
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t~ is the same as the representation of the field algebra at time 

ti defined by the dynamics (in analogy to Eq. (5.8)) in the space 

of t. he Fock representation for time t • 
I 

This condition may no 

longer be expressible as a momentum-space unitary equivalence of 

the form (5.12), since the structure of the spectrum of the 

Hamiltonian will, in general, be different at different times. 

Finally, it will now be shown that Eq. (5.10) does holrl 

for any two-dimensional closed generalized Robertson-Walker 

universe. (In the two-dimensional case one can always choose the 

spatial coordinate so that Eqs. (1.15) hold. The assumption that 

the space is closed (has finite circumference) is necessary to 

make k a disc['ete variable.) It is assumed that R (t) is bounded 

in the interval t
1 
it~ t~ and sufficiently well-behaved that 

the solutions of the wave equation (see Eq. (5.15) below) exist 

and are bounded in this interval. 

We must investiqate the sum (5.11) for 13(k) qiven by 

Eq. (5.9b); that is (taking t, = O, R (0) = 1, t
4 

= t, R(t) = R), 

l3 (k) 
1 2 

= - [k 
2 

i 2 
+ - (k 

2 

2 2 1/4 
-+ m R ) 

2 
[k 

2 -1/4 
+ m J 

2 2 -1/4 
+ m R ] 

2 
(k 

2 1/4 
+ m J 

P* (t} 
k 

where P (t} is the solution of Eq. (1.14a), 
k 

1 
I (5. 14) 

dt 
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satisfying 

P (0) - 1, 
k 

2 2 
+ Ill R ] P = 0, 

k 

dP ~ (0) 

dt 

(cf. Eqs. (5. 7} and (5. 4)). Thus 

1 -2 1 -2 i dP((t) 
- -[1+0(k ) ] P*(t) + -[1+0(k ) ] 

2 k 2 ~+m~ dt 

362 

(5.15) 

(5. 16) 

(5. 17) 

(The expansion of the radicals is as in Sec. F.4.) Hence if, for . 
a fixed t, Pk (t) and Pk (t) are bounded and 

X (t) = P (t) -
k k Vk~ 

i dPk (t) ----
+ m:r dt 

(5. 18) 

vanishes as k ·~ oo at least as fast as 1/k, we will have 

2 
I l3 (k) I 

-2 
·- O (k ) , 

and the sum will converge, which was to be proved. 

p (t) 
k 

Now Pk obeys the integral equation 

= e 
1 ft 2 2 

- - ds sin fw(t-s) 1 m (R (s) -1) P (s), 
w O k 

( 5. 19) 

where w = Vk'). + m1... (Eq. (5.19) is constructed from the Green 

function for Eq. (5.15) with R = 1 appropriate to the initial 
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conditions (5 .16) • Eqs. (5.15-16) can he verified by 

differentiation of this equation.) Therefore, the maximum value 

of Pk (s) for 0 < s < t is 

t 2 2 
IP I i 1 + - m IR -- 1 I IP I - 1 + AIP t • 

k max w max k max k max 

For sufficiently large k (t fixed), A< 1/2 (say), and so 

1 
IP I < < 2. 

k max 1 - A 

The same argument applied to the derivative of Eq. ( 5. 19) shows 

that Pk/w is bounded for large k. Also, we have 

X (t) -
Jc 

- e 
iwt 1 t 2 

w f ods Pk (s) m 
2 

(R (s)-1) 
-iws 

e 

J.. Since P (s) and R (s) - 1 are bounded, it follows that 
k 

const. 1 
IX(t) I < I 

ul .k 

as desired. 

• 

It is clear that this proof cannot be extended to 

higher dimensions without some better estimate on the decrease of 

X (k) at infinity. Also, the theorem is certainly not true for 

two-dime.nsional Robertson-Walker universes of infinit.e spatial 

extent, for the reason indicated in connection with Eqs. 

(3.11-12). 
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6. Critig~~ Qf 1!!~ Definition; Parker• 2 !lte;£natives. 

The viewpoint of the last section, if pressed to its 

extreme, is that the physical particles present in the universe 

at time t are given by the e.xpansion of the state in terms of the 

stationary states of the instantaneous Hamiltonian H(t), these 

eigenstates being given the particle interpretation they would 

have if H(t) were a static Hamiltonian (see Chapter VIII). This 

is equivalent to the assumption that in studyinq particle 

creation between times t, and t~ one may replace the actual 

metric by the asymptotically static one for which 

R ( t) = R (t ) if t < t , R (t) .:: R (t ) for t > t , 
1 1 2 2 

and R (t) coincides with the original R (t) in between, and one may 

qive the field in the static regions the usual interpretation. 

It has been questioned {e. q., Parker (1969), Sec. F) 

whether this ansatz is justified physically. For one thinq, it 

is not obvious that the fact that the metric is changing in time 

is irrelevant to the way in which the excitation of the field 

manifests itself in particlelike behavior. After all, the 

equivalent metric mentioned above involves a violent sudden 

change in the behavior of R(~, which might be expected to affect 

the particle number discontinuously. Also, since any actual 

measurement takes a finite time, it is not clear that the 

instantaneous particle "observables" have any operational meaning 

when the metric is changing rapidly. "There is no reason why a 
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precisely defined operator should correspond to the physical 

particle number when (the creation rate] does not vanish."(15] 

Finally, Parker (1966, 1969) finds that the particle number 

density defined by diagonalization of H(t) diverges when summed 

over all modes (for s = 3) and has rapid oscillations which are 

in principle unobservable. 

Parker has suggested replacements for the instantaneous 

particle operators of Sec. X.5 which avoid these divergences and 

oscillations. They are based on the observation that 

t -2 
'\ (t) = \ (t) exp f- if dt' \ (t') /21 (6. 1) 

is a first-order adiabatic approximation to Vk{t). He rewrites 

the field expansion (1.16) in terms of (in effect}, thus 

factoring out and isolating the deviation from adiabatic behavior 

of the time dependence of the field. In his thesis (Parker 

(1966)) a second-order adiabatic approximation was used to definP. 

an approximate number operator which is constant during the time 

of a measurement. In the publishe<l version (Parker (1969)) he 

introduced instead the postulate that Ak (t) in Eq. (6.1) should 

be replaced by a new function, chosen to minimi~e the expectation 

-------------[ 15] I.121,g. Cf. Moore (1970): "In [a period when t.he external 
conditions are time-dependent] the very concept of photons 
becomes muddy, just because the absence of photons (namely, a 
time-translationally invariant vacuum state) cannot be defined." 
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values of the derivatives of the number operator for mode k.(16] 

The opinions of the present author concerning particle 

operators at fixed time are the following: 

(1) It is quite likely, for the reasons mentioned, 

that the creation and annihilation operators defined in Sec, 

x~S have very little to do with physical particles which 

would actually be detected by some expecimental apparatus, 

In fact, the very idea of a particle may not be applicable to 

the behavior of the field when R{t) is rapidly chanqinq. 

(2) Nevertheless, the particles defined in terms of 

the instantaneous creation and annihilation operators at a 

fixed time may provide the most convenient way of labeling 

the states when the evolution of the system between finite 

times is studied. These quanta should he ca lied vir!.!!~l 

If the virtual particle concept turns out to be 

useful in this context, how much reality one attributes to 

these particles when they are, strictly speaking, 

unobservable is largely a matter of taste. 

(3) What operators, if any, correspond to real, 

observable particles cannot be decided on the basis of 

mathematical pro pe·rties alone. Any identification of 

( 16] This is to be done (L. Parke[': private communication) 
consistently with the discussion surrounding Fg. (32) of the 
paper, where W(k,t) is determined by R(t) and its derivatives. 
Dr. Parker believes that for a slowly expanding universe this 
procedure will agree with the one in his thesis. 
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observables must ultimately be tested aqainst some (perhaps 

very crude) physical analysis of the measurement process 

itself. Such a program is somewhat circular, because one 

needs a complete theory, including interactions, before a 

model of interaction of the field with some other system can 

be studied with confidence. Nevertheless, this does not mean 

that progress cannot be made. 

(4} Since the practical interest in our subject 

relates mostly to relativistic astrophysics and cosmology, it 

may be wise to concentrate on the energy-momentum tensor as 

the observable to he analyzed (cf. Sec. IX.5), rather than 

the response of a hypothetical apparatus to detect individual 

particles. (The investigation miqht or might not still be 

conducted in terms of a particle formalism.) 

(5) A possible starting hypothesis for such an 

investigation would be that physical particles (which are 

detected directly or which indirectly (for instance, through 

a normal-ordering prescription) enter the definition of 

observable quantities such as energy) correspond to some kind 

of smoothed-out particle operators such as those defined by 

Parker. 

work. 

Such a project far exceeds the scope of the present 

In the next section, however, are collected a few 



Sec. X,.F, 368 

reflections concerning how the particle concept arises in 

traditional field theories and why it threatens to lose its 

validity in the situations of interest to us. 

7. ,Bern ark§ to_]~rd ~!l Analysis Qf th£ farticle fQ.!!£~i• 

The problem we face has to do with both the 

mathematical definition and the physical interpretation of a 

quantum field theory in a Piemannian space-time. As to the 

first, what constitutes a field theory, we early rejected the 

naive notion that a field equation and a commutator function are 

enough, and we set about trying to define a Hilbert space of 

state vectors in which the field would be represented as an 

operator-valued distribution. When it turne~ out that the choice 

of representation was problematical, a sophisticated cousin of 

the naive idea presented itself: the doctrine of physical 

equivalence of all faithful representations of an abstract 

algebra of observables. This point of view, however, leaves us 

still embarrassed with respect to interpretation. 

The interplay of the mathematical and the observational 

aspect of the problem is hinted at in the anecdote of I. E. Segal 

which stands at the beginning of this dissertation. Segal has 

interpreted "the occupation number formalism" to mean the 

algebraic structure of the canonical commutation relations, to 

which he gives an abstract formulation; most physicists would 

think rather of the interpretation of the states of the theory in 

terms of configurations of particles; but they are concerned with 



Sec. x.7 369 

the same problem. As long as our experiments involve 

observations of particle events rather than measurements of field 

strenqths, it seems to be necessary to add some structure to the 

abstract framework of quantum field theory in order to complete 

the link between theory and the world. Indeed, in one of the 

papers in which the Wightman axioms (~e Appennix F,) were 

proposed, it was stated, "Practically, most measurements are made 

on particles not fields, and a relativistic quantum theory is not 

really complete unless it includes some kind of 

observables."[ 17] 

particle 

Why and how are field theories interpreted in terms of 

particles? There seem to be two elements involved, a physical 

one and a formal one. Let us review how the particle concept is 

introduced into the theory of a free field, where the prohlem 

seems to be completely under control. It arises first from the 

physical fact that corpuscular behavior is observed in the 

situations where free field theory is applicable.(18] In 

particular, one observes motion in straight lines at constant 

speeds, which, together with the conservation ohserved in 

interactions (interactions which our theory does not attempt to 

describe, of course), leads to the concepts of momentum and 

energy. Secondly, the solution of the field equation by 

[17]-Wightman-andG!rding-(1~65), p. 156. See also Wiqhtman and 
Schweber (1955). 
[18] This regime can he characterized only by a circular 
statement such as ttparticles behave essentially freely when they 
are far from one another." 
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separation of variables leads to an expansion in terms of 

creation and annihilation operators: 

¢(t,x} (7. 1) 

The opera tor N k t - akak has the spectrum appropriate to a number 

operator. It is natural to associate the index k with the 

physical momentum of the particles "counted" by Nk. This 

interpretation 

satisfactory. 

details.) 

In 

has been founo entirely consistent and 

(See any textbook on quantum field theory for 

externa 1 potential problems, including the 

gravitational, this treatment can be imitated only partially, and 

only in special cases.(19] First of all, if the external field 

is §tati£[20], one can define eigenstates of the Hamiltonian 

analoqous to the momentum eiqenstates in the case of the free 

field. Thus the theory has a particle, or quantal, structure 

(cf. Chapter VIII). However, if the potential does not vanish 

asymptotically one might question the identification of these 

quanta with physical particles, especially in view of the 

phenomena pointed out in Chapter IX. 

[19]-1he-reader~will-note-a-teno€ncy--for this section to repeat 
Sec. VII.7. This is simply a manifestation of the point 
emphasized above; a discussion of the mathematical structure of 
field theorv tends to parallel a discussion of its meaning. 
[20] It must also be such that the single-particle squared 
Hamiltonian is self-adjoint and has no 11 ;elly modes" -- see Secs. 
VIII.1-2. 
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en the other hand, the asymptotic approach applies if 

the potential falls off in space and at least becomes 

asymptotically static in time[21], or if it falls off in time. 

Then there is a representation (QYt-representation) such that 

every vector state can be interpreted as describing a 

configuration of particles which, after a sufficient time, are 

either out of the range of the potential or in stable hound 

states. Similarly, ther-e is an in-representation: if t.hese two 

representations are unitarily equivalent (cf. Sec. X.3), one has 

a distinguished representation for the fields and a particle 

interpretation which is adequate for the description of 

scattering processes. 

In both these approaches the particle interpretation is 

closely tied to the canonical structure. This is obvious for the 

first approach, which works from the formalism to the 

interpretation. The asymptotic method works in the other 

direction. Although in this case the canonical structure of the 

Heisenberg-picture field does not play a role (and is not even 

expected to be valid for general interacting fields), the 

particle structure of the asymptotic states leads to ~llfil.£!..21!£ 

fie!_g§, which are free fields obeying the canonical commutation 

relations (see (Streater-Wightman], pp. 26-27). 

It is the asymptotic approach which is usually taken in 

field theory, both for external potential problems and for 

--------[ 21] The latter condition is imposed to avoid the problem of a 
time-dependent potential which continually emits particles. 
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interacting fields. Wightman and Girding (1965} say (p. 157): 

In view of the current state of ignorance [concerning 
the relation between particle observables and (nontrivia]ly 
interacting) fields], there is no alternative to settinq 
aside the notion of particle observable for further study and 
accepting something much weaker, that of asymptotic particle 
observable. This procedure is also advantageous from another 
point of view. It is quite possible that relativistic field 
theories exist in which asymptotic particle observables can 
be defined but not particle observables at each fixed time. 
This would not he unreasonable phvsically for it might he 
that the notion of particle can o;ly be defined in some 
limiting sense in which the particles are far from one 
another. 

Hence the axiom of asymptotic completeness (see Appendix E). 

In Sec. VII.7 it was argued that in gravitational 

external potential problems one cannot be satisfied with an 

asymptotic particle interpretation. We must either return to the 

unfinished business of defining true particle observables, or 

make physical sense out of field observables without the particle 

concept. 

The author has come to believe that the second of these 

alternatives deserves serious consi~eration. We know from the 

analysis of Wigner (see Sec. V.2) that the particle concept is 

closely related to the representation theory of the Poincar~ 

group, the symmetry group of flat space. It seems quite 

reasonable that the notion of particles should weaken in an 

external potential situation which departs greatly from the free 

Lorentz-invariant one. Particle behavior is recovered in 

"asymptotic" theories because there is a reqion of space-time 

within which the dynamics is approximately free. If there is no 

such region, if it is impossible for the excitations in the 
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quantized field to separate themselves from the irreqularities in 

the environment represented by the external field, then, as 

Wightman and his collaborators have said, the particle concept 

may simply not apply. Elementary particles may be very much like 

the quasiparticles of solid state physics. The quantum theory of 

the physical system composed of the atoms or the electrons in a 

crystal predicts particle-like excitations {phonons or plasmons). 

But these quasiparticles are stable only for a perfect crystal. 

The more severe the impurities or dislocations or external 

perturbations, the faster the quasiparticles decay away, until 

finally the concept becomes useless. Then one must qo back to 

the substratum: in solid state physics, the atoms and electrons; 

in more funoamental physics, the field. 

In the case of quantum fields in curved space-time one 

can expect on general physical grounds four reqimes with respect 

to the usefulness of the particle and field concepts, depending 

on the properties of the metric: 

single-~article domain: a convincinq 

definition of particle observables exists according to which 

no particles are created, or a negligible number. Then a 

satisfactory single-particle quantum theory exists, and the 

apparatus of field theory is not really needed. This would 

be the case for the static theories of Chapter VIII, to the 

extent that the definition of particle therein is regarded as 

trustworthy. It is also true of time-dependent models where 
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the creation is neqligible.[22] 

man_y-_Qartic le domain: a particle 

interpretation exists, and the particle number is nonconstant 

to a nonnegligible extent. This is the regime which we have 

implicitly assumed to be of interest earlier in this chapter. 

It remains to be shown, however, how wide this band is, or 

even that it exists at all. 

(] ) !.!!~ fi.§1.s! 2.2.!!!~in : the concept of an ex t e r:n a 1 

gravitational field[23] applies, but there is no particle 

--------------------------·--------------[22] The literature on relativistic wave mechanics (e.g., 
Feshbach and Villars (1958)) often implies that the Klein-Gordon 
or Dirac equation has an obvious one-particle interpretation for 
"sufficiently weak" external potentials, without any indication 
of a crucial difference between time-independent and 
time-dependent potentials. However, the observations of Secs. 
X.1 and x .. 3-5 apply to time-dependent electromagnetic (etc.) as 
well as qravitational potentials: There is no obvious way to 
separate the solutions of the wave equation into positive- and 
negative-frequency parts, and, moreover, any physically plausihle 
definition of the splitting which is adopted will probably give 
different results at different times -- that is, it will predict 
particle creation. The origin of the conventional wisdom seems 
to lie in the fact that if the high-frequency Fourier components 
of an ~symptotically static potential are very small, the 
vacuum-to-vacuum S-matrix element, <O out!C in>, is very close to 
1. That is, the out- and in-vacuums can be identified, and no 
"real" particles;;; creai;a. (This effect is necessary for 
conservation of energy; the energy required to creatP a pair 
(~ 2mc~) must be extracted from the modes of the external field 
which carry sufficiently large energy, nw.) In such a case the 
virtual particles occurring at finite times in a 
field-theoretical treatment can be disregarded, and then the 
field equation can be.taken as the equation for the wave function 
of a single particle. To the extent that the vacuum-to-vacuum 
amplitude differs from 1, this kind of theory is troubled by a 
version of the Klein paradox. 
( 23] Among the· external gravitational field prohlems one should 
include not only models in which the metric is prescribed once 
and for all, but also theories in which the (classical) 
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interpretation of the quantized scalar field theory. 

(4) The domain Qf gQgn!~fil general £~l~tivi11: the 

interaction of the gravitational field, as a dynamical object 

in its own right, with the quantized matter fields must be 

taken into account. For- consistency it will probably he 

necessary to treat the gra vita t iona 1 field in a 

quantum-theoretical manner; yet it cannot be an ordinary 

quantum field, since it itself determines the manifold on 

which the fields must be defined. Let us leave this problem 

to the physicists of the future and return to the external 

field frame'Work. 

We have been speaking of "real" particles -- modes of 

observable behavior which conform to our intuitive notion of 

particle, which is derived from observation of particles which 

are almost free. There are also definitions of virtual particles 

which arise out of the field-theoretical formalism. Any 

splitting of the field into annihilation anrt creation parts, as 

in Eq. (1.16), gives rise to a notion of virtur1l particles. Som~ 

of these are more likely than others to be useful, just as in 

ordinary quantum mechanics some choices of basis in the Hilbert 

space are more convenient than others. (Compare the discussion 

o.f "useful representations" near the end of Sec. IX. 4.) A 

gravitational- field- is- influ;.nc;a-by-the matter fiela through 
some "self-consistency" scheme, such as the work of Ruffini and 
Bonazzola (1969). 
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virtual particle language may be a useful way of classifying the 

states of a field theory for certain purposes even if the virtual 

particles have nothing to do with real particles. On the other 

hand, a "qood" notion of virtual particles may turn out to 

correspond to a weakP-nea notion of real particles (as just 

described), or may yield a physically relevant notion of current 

or energy density (see Sec. IX.5). The nonuniqueness in 

plausible definitions of virtual particles is not a conclusive 

counterargument against this hope, since as the notion of real 

particles weakens, ther~ is more room for amhiguity in it. In 

this spirit a general definition of particle observables at fixed 

time for an arbitrary Riemannian manifold will be offered in the 

next section. 

Let us consider an example of how the particle concept 

becomes fuzzy, and at the same time ambiguous, in a sequence of 

external potential problems. Consider a neutral scalar field of 

mass m interacting with a scalar potential; that is, a wave 

equation of the form 

0'1 + m(m - V(t,x))V = O. (7.2) 

Assume at first that the potential has compact support 

in time: 

V(t,x) = 0 for It! > T. (7. 3) 

There are clear definitions of particles in the asymptotic 

regions (the 1.n- and Q.£:t-representations); the particle operators 
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are defined in terms of the field operators¢ an<l n through a 

Fourier transformation (cf. Eq. (3.2)). If the potential also 

falls off sufficiently rapidly in space, Schroer f.!: ~1.• (1970) 

have proved that the time evolution of the fields is unitarily 

implementable in the !_!!-representation (which is therefore 

equivalent to the QY!-representation). It follows that if 

creation and annihilation operators at each time tare defined in 

terms of ¢ (t) and lT (t) by a Fourier transformation (cf. Egs. 

(IX.3.1)}, then the Fock representations of all these sets of 

particle operators are equivalent (to each other and to the 

asymptotic representations). If this is taken as the definition 

of particles, the relation between the observables and the field 

at a qiven time is the same as for the free field. In particular 

it does not depend on the time. The definition of the vacuum (as 

a Heisenberg state) does not change with time. (Of course, the 

evolution of the system will take the vacuum, as a 

Schrijdinger-picture state, into states with a probability for the 

presence of particles at another time.} 

On the other hand, consider a potential which is 

independent oft. Then one is led, as in Chapter VIII, to define 

particle operators via an expansion in the eigenfunctions of 

2 
- V + m ( m - V (x)) , (7. 4) 

rather than of the Laplacian alone, as above. It is crucial to 

note that this natural procedure for the time-independent case, 
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followed by Schroer and Swieca (1970), is fundamentally different 

from that just described for the case of compact support in time, 

adopted in the adjacent pa per by the same authors (Schroer ~.t !!!.• 

(1 97 0) ) • 

We can confront these methods with each other by 

considering a potential satisfying Bq. (7. 3) a.nd also 

V(-t.,x) = V (x) for ltl < T' < T. (7. 5) 
0 

We may imagine T' to be many times larger than the age of the 

actual universe, so that it would be absurd to claim that there 

is a significant difference between this situation and the 

previous one with respect to the physics around the time t = O. 

But then for the potential of rg. (7.5) in the vicinity oft-= O 

the quantization based on a V-dependent integral transform, as 

for a static potential, is a serious competitor of the 

quantization described above for a general potential of compact 

support, based on the Fourier transform. For some potentials 

these representations are unitarily inequivalent; in fact, 

Schroer §! !!.• remark that the former may have "jelly" (or 

indefinite metric) troubles while the latter (being an ordinary 

Pock representation) is perfectly normal. 

This example demonstrates that the ambiguity in thP 

definition of virtual particles can assert itself already in 

external potential problems; it is not inseparably connected to 

the general covariance of the gravitational problem. Which of 
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these particle notions, if either, corresponds to real, 

observable particles? It seems to the author that if T' is very 

large, a case can be made for the V-dependent definition, which 

yields a vacuum (and one-particle eigenstates, etc.) which are 

stationary states during the long static period, On the other 

hand, if Tis rather small, the V-independent particle concept 

may make more sense, since in that picture (if the potential is 

of fast decrease in space) there are always only finitely many 

particles present, before, during, and after the interaction. 

Obviously, there must be a regime in between where the particle 

notion becomes fuzzy. 

There is nothing to keep one from applying the 

V-dependent quantization at each time, even if V is not constant 

in a finite time interval, although its physical relevance is 

more questionable in this situation. (This procedure can also be 

specified as follows: At each time, choose the representation 

which makes the instantaneous Hamiltonian a positive operator by 

explicitly diagonalizing it into the form of a linear combination 

(or integral) of number operators. The method of Sec. X.5 was of 

this type, and it will be recommended again in the next section 

(Eq. (8.1)). The other kind of guanti'lation considered here for 

the external scalar potential does not have a plausible analogue 

in the generally covariant gravitational context, since it 

essentially depends on a fixed Cartesian coordinate system.) If 

this is done, the instantaneous vacuum is not constant, even in 

the Heisenberg representation, because the relation between the 
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particle observables and the field operators depends on time.(241 

The vacuum may even wander through mutually inequivalent 

representations. Consequently, if the vacuum corresponding to 

each time is to be a vector in the Hilbert space of the svstem, 

the Hilbert space cannot coincide with the cyclic space qenerateo 

by any one of these vacuum states, but is much larger. Thus one 

would not have, as usually assurnea, a sinqle irreducible 

representation of the fields, within which the time evolution is 

unitarily irrplemented. 

Now let us consider potentials which do not satisfy Eq. 

(7.3), and in fact fall off so slowly in space and time that no 

asymptotic representations can be defined. Then if we are to 

have particle observables at all, they must be definable at 

finite times. In analogy to what has gone before, two 

definitions offer themselves: (1) a simple Fourier transform, 

the potential beinq ignored; (2) a 'I-dependent decomposition at. 

each time. 

Let us look at the implications of these two approaches 

in the very special case 

V(t,x) = const. r O. 

From point of view (2), the field is iust a free field[25] of 

(24] Compare the distinction which was drawn in Sec. X.5 between 
two types of equivalence of representations. 
[ 25] Is there no operational distinction between a free field of 
mass M and a field of mass m interacting with a constant 
potential V? The answer depends on whether it is possible to 
have an apparatus which detects the quanta of mass m, as opposed 
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mass M = im(m - V). If the approach (1) is followed, however, 

one has pair creation of the wildest sort: the representation of 

the fields for which the ak(O) have a vacuum state is not 

equivalent to that for which the ak(t) have a vacuum state (ak(s) 

being defined at each times by a Fourier transform of the form 

(IX. 3. 1) with the mass m). This statement follows[ 26] from the 

discussion of Wightman (1964), pp. 2'31-255, if one ( 1) 

int.e-rchanges the role of "free" (or "interaction-picture") and 

"interacting" fields and (2) notes that them-particle operators 

at different times are equivalently represented if and only if 

the corresponding M-particle operators are, since the connection 

between rn- and M-particle operators at equal times is independent 

of time~ (The latter point also implies immediately that ak(O) 

and ale: (t) g!~ unitarily equivalent in the Fock representation of 

the M-operators. That is, there is a representation (which is 

not the Pock representation of the ak (0) !) in which the time 

evolution of the ak is unitarily irnplementahle. This, however, 

is a special property of the interaction (7.6), which will not 

------------------------------------to the quanta of mass M, given that the field obeys Eq. (7. 2). 
{Recall that absence of quanta of one mass does not mean absence 
of quanta of the other mass -- see Sec. F. 4.) It seems that the 
answer has traditionally been assumed to be ll.Q, since fields with 
Lorentz-invariant quadratic interactions (of which this is a 
special case) are regarded as trivial since they are equivalent 
to systems of free fields (see Jaffe (1965), Chapter XII, anrl 
Wightman (1964), pp. 180-182). The author believes, but has not 
been able to demonstrate in a model, that any reasonable detector 
wi 11 "come to equilibrium" with thP. physical (stable) vacuum 
state and hence will be sensitive only to ~-quanta (cf. Sec. 
VII. 7) • 
(26] See also Grib (1969) .. 
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persist for general potentials.) 

Grib (1969) has described the situation which exists 

for them-operators (and exists in general when there is a time 

evolution which is not unitarily implementable within a given 

irreducible representation) as follows: Thg fieisenberg Ei.£.!l!I~ 

exists, but the Schrtldinger tlcture does not. This statement may 

be interpreted in two ways, depending on what kind of quantum 

theory one has in mind: 

(1) If one insists on an irreducible representation, 

it must be chosen arbitrarily (say as the Fack representation 

for the particle operators defined at one particular time). 

Then within this Hilbert space the time evolution of the 

fields is defined as an automorphism, but there is no unitary 

a (t ) 
k 2 

-1 
= U(t ,t )a. (t )U(t ,t} 

2 1 k 1 2 1 
, (7. 7) 

by means of which a Schr6dinger picture could be defined. 

(2) If one allows a direct sum of many 

representations, a propagator TT(t
2
,t

1
) can he defined, but 

since it mixes the representations it will not be 

differentiable[27] int~, and hence an infinitesimal form of 

----------------------------( 27] If f (t) and 1J (t + f)t) are unit vectors in two different 
components of the orthogonal direct sum, their difference has 
norm fl. Thus t.he difference quotient in the definition of the 
derivative does not converge as 6t ~ O. 



Sec. x.7 

the Schr~dinger picture, 

a, 
i- = 
dt 

H (t) If 

will not exist. 

where 
dU(t~ 1 t

1
) 

It =t a_ I 

= iH(t ), 
1 

383 

(7. 8) 

Another possible approach to systems of this type, 

advocated by Kristensen ~1 ~l• (1967), is to identify the state 

at each time with a nonnormalizable distribution in a rigqed 

Hilbert space associated with the Hilbert space of some 

irreducible representation (such as that correspondinq to an 

initial ti me). 

Other examples for which a similar analysis could be 

made are 

v = 0 fort< 0, V = canst. 1 0 fort> 0 (7. 9) 

and 

V = 0 for ttl > T, V = canst. 1 0 for ltl < T. (7.10) 

These will be left for the reader's contemplation. It should now 

be clear that in the case of a general scalar potential the 

splitting of the second term in Eq. (7.2) into a mass part and a 

potential part is essentially arbitrary. (This ambiguity is 

analogous to that in the gravitational problem which is 

associated, at least in part, with qeneral covariance. In the 

electromagnetic case similar games may he played with the freedom 
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in the choice of gauge.) Moreover, {in general) !l.Q choice should 

be expected to yield a Pock representation within which the time 

evolution is unitarily implemented. Thus it is impossible to 

maintain a belief in a unique irreducible "physical" 

representation. 

All the virtual particle concepts are nonlocal, in the 

sense that they are based on eigenfunction expansions of the 

field which involve integrations over a whole hypersurface. The 

resultinq ccncepts of !~£.!!]l!l necessarily have a very qlobal 

character, as shown by the Reeh-Schlieder theorem (see Sec. IX. 3} 

and by the observations of Sec. IX.7. This situation is in 

conflict with our intuitive notion of particles. As has been 

stated above many times, an asymptotic interpretation of fiela 

theory in Riemannian space-time is unsuitable; that is why we 

have stuck so closely to the canonical formalism, in the hope of 

extracting a more local definition of particles. Perhaps, 

though, the canonical formalism itself is still too global. In 

the language of J. A. Wheeler, physical intuition tells us that 

the universe is a vast haystack[28], but the canonical formalism 

forces us to regard it as a stack of automobile fenaers[29]. 

This is an additional argument for the necessity of an 

identification of observables directly in terms of fields, 

avoiding the intermediate concept of particles. 

However, in the absence of a brilliant idea which would 

-------·-----------------------------[28] Marzke and Wheeler (1964), p. lt2. 
[29] Wheeler {1963), p. 346. 
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tell us how to develop the field domain (3), we have little 

choice but to continue trying to work in the many-particle domain 

(2), at least in order to discover its limits. Out of the many 

possible ways to define virtual particles, which has the best 

chance cf corresponding to something like real particles? An 

answer is suggested in the next section. 

8 • ! .ffQ£.Q.§.21 • 

What follows does not contain any new ideas which will 

resolve the impasse described in the previous section. Rather, 

it combines some simple ideas which have guided the whole of this 

dissertation namely, the straightforward extension of the 

canonical formalism to a manifold and the geometrical or 

kinematical ideas (stated in Appendix D and Sec. III.3} which 

motivate Gaussian and Fermi coordinate systems -- so as to 

define, with as little ambiquity as possible, a quantization of 

the scalar field. By a quantization is meant a splitting of the 

field at each time into annihilation and creation parts, in terms 

of which a representation of the Fack type can be constructed as 

in Chapter VTII and in the earlier sections of this chapter. 

Thus it may also 

observables at each 

be regarded as a definition 

time. Admittedly, it may he 

of particle 

that this 

approach is too naive, and that some totally new idea is needed. 

What is intended here is to specify ih~ physical!! fil2§! 

reasonable ansatz 2f .thi.2 ii'.E~ as a startin<r point for furth?.r­

research (see the remarks at the en1 of the section). 
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The first half of the proposal is: 

To define particle o bser va bles on a spacelike 

hypersurface, express all quantities in terms of the 

Gaussian coordinate system based on that hypersurface, 

and construct the Fack representation which makes the 

corresponding instantaneous Hamiltonian a manifestly 

positive self-adjoint operator. ( 8. 1) 

(In other words, the Hamiltonian to be made positive is defined 

in terms of a normalized normal derivative to the hypersurface 

see Sec. IV.2.) This procedure has already been carried out in 

Secs. X.1 and l.5 for the case that the field equation can be 

solved by separation of variables; a similar construction was 

performed in Secs. VIII.1-3 in greater detail under the 

assumption that the metric is static (but not necessarily 

Gaussian). The important point to notice is that as long as only 

Q!lf hypersurface is considered at a time, these restrictions are 

unimportant. In the general case one can still expand the 

initial values of ¢ and non the hypersurface in terms of 

eigenfunctions of the Laplace-Beltrami operator on the 

hypersurface in such a way that the coefficients t a., a. 
J J 

satisfy 

the commutation relations for creation and annihilation operators 

and the Hamiltonian (VII.1.8b) assumes the "diagonal" form 
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(cf. Sec. VII.I. 2). 

R (0) = I dJl(j) E 
j 

The second suggestion is: 

t 
a a 

j j 

387 

Define particle observables on the geodesic hyper-

surfaces orthogonal to a given timelike curve. (8. 2) 

(These are the surfaces of constant time in some Fermi coordinate 

system.) The point of this requirement is to take the distortion 

out of the hypersurfaces as much as possible. In the 

neighborhood of the point where it cuts the central worldline a 

geodesic hypersurface is as near to a flat hyperplane as one can 

come in a curved space. Unfortunately, such a hypersurface may 

not be geodesic relative to another point[30], so this notion o~ 

flatness is not absolute, but relative to a point. (Of course, a 

timelike direction at the point is also needed to determine the 

hypersurface uniquely.) The imbedding of a given geodesic 

hypersurface into a family of hypersurfaces orthogonal to a given 

curve does not place any additional restriction on it, and hence 

is not really necessary in the statement of the procedure. But 

this seems to be the natural way to fit hypersurfaces toqethP.r 

into a full kinematical scheme in which to describe the history 

of the system. The curve (which is not necessarily a geodesic) 

------ ----------------------(30] That is 1 a geodesic curve tangP-nt to the hypersurface at a 
point other than the original point may not lie entirely in the 
hypersurface. See Appendix D. 
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can be interpreted as the worldline of an observer (see the 

discussion in Sec. III.3). 

For the instruction (8.1) to make sense, the 

Laplace-Beltrami operator on each geodesic hypersurface must be 

self-adjoint. Presumably -- at least if the metric coefficients 

are smooth and bounded at finite points -- this will be true if 

and only if the hypersurface is geodesically complete. 

The energy-momentum tensor can now be unambiguously 

defined by normal ordering the formal expression for it ~ith 

h t · t h f h. h . respect tote a1, ~ appropria e to a ypersur ace on w 1c it 

is to be evaluated. From the poi n t o f • F view o .... cosmoloqical and 

astrophysical applications, TP~(x) is presumably more important 

than the particle observables themselves. As remarked in Sec. 

IX.5, an energy density defined this way will not be positive as 

an operator. 

Cne must be prepared for the possibility that the 

representations defined by different hypersucfaces of the family 

are inequivalent, and even that the difference between the 

respective normal-ordered energy densities is infinite (does not 

make sense even as a distribution). This would have to be either 

taken as sufficient reason for rejecting the theory, or 

interpreted as creation of an infinite density of particles. In 

the latter case, obviously, there will be difficulties in usinq 

,...1-,4v 
I in the !instein equations. In the former case one might try 

to define smoothed-out particle observables like Parker's (Sec. 

X.6), or to develop a new kind of field observable, as urqed in 
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the last section. It is too early to say whether these measures 

are necessary. 

A strong argument in favor of the proposal (8.1-2} is 

that it disposes of the ambiguities of quantization in Minkowski 

space in the most conservative and reassuring way: it specifies 

the standard free fielo quantization to be the corr-ect 

quantization. The type of alternative representation considered 

in Sec. X.2 is rejected because the hypersurfaces of constant 

time violate the condition (8.2). It is leqitimate to take the 

hypersurfaces of constant time to be the hyperplanes orthogonal 

to the worldline of a uniformly accelerated observer (the lines 

of constant v in Chapter IX); however, one is toln by the rule 

(8.1) to use the ordinary ~OK representation on each of these 

hyperplanes, rather than the Rindler representation of Chapter 

IX. (Since the toK representation is Lorentz-covariant, the 

successive hyperplanes viel~ the same definition of the vacuum in 

this case.) 

In the case of de Sitter space, the principles (8.1-2) 

tell us to reject the covariant quantization of Sec. V.6 and the 

"static" quantization of Sec. VIT.I.6 (and also, for instance, a 

quantization (of the type of Sec. X.5) based on the horospherical 

coordinate system of Sec. III.7). Tnstead, we are to use the 

representation of Sec. X. 5 (and Secs. V. 3, 5) , but only i!! _!hg 

neighborhood of a geodesic hY£filJi.1!Ifac~[ 31 J. The history of the 

------~------------------------------(31] R@call that a geodesic hypersurface in two-dimensional de 
Sitter spac~ is the "neck" of the hyperboloid in Fig,. 3, or any 
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system is most naturally given in terms of the time coordinate of 

the Fermi system of an inertial observer. In contrast to the 

static theory, in this theory there may be particle creation when 

the particle observables on different hypersurfaces of the Fermi 

family are compared. This @ffect will be calculated in Sec. 

X.10. In Sec. X.9 it will be shown that the representation 

prescribed here for each time is unitarily equivalent to the 

covariant representation; so the convenient properties of the 

latter may be exploited as a technical tool, even though the 

associated particle interpretation is not the physically correct 

one according to our present point of view. 

Other simple models on which this method could be tried 

out are the Schwarzschild solution and the various Friedmann 

cosmological solutions. In each of these cases the prescription 

(8.1-2) will give different results from the previously discussed 

approaches. 

In the Schwarzschild case quantization is to be based 

on a Gaussian time coordinate relative to a hyperplane extending 

through the entire Schwarzschild-Kruskal solution, rather than on 

the usual time coordinate t, defined in the exterior region 

alone, with respect to which the exterior metric is static. one 

t. herefore expects pa.rticle creation, f.Y£..ll 1!!. ihg ~xtefi.2£ £~12!! 

(where one naturally compares observr1hles on different 

hypersurfaces of constant t, in accordance with r:q. (8.2)). This 

-----------------------------------curve isometrically related to it, such as the family of ellipses 
of constant X in ~igs. 4-5. 
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would reflect the 11nami£ nature of the Schwarzschild-Kruskal 

solution as a whole. It would be interesting to see whether this 

effect is significant and whether it is physically reasonable. 

One should make calculations in this theory and compare with the 

quantization of the field in the exterior reqion viewed as a 

static spac-e, which does not precHct particle creation. 

The Friedmann universes are special cases of the 

Robertson-Walker metrics discussed in Sec. x. 1, and previous work 

(see Parker (1968, 1969) and Grib and Mamaev (1969)) has been 

carried out in the coordinat.e system in which the 

Robertson-ialker form is manifest.[32] These hypersurfac~s of 

constant time are not, in qeneral, geodesic hyper.surfaces, 

however. Therefore, the prescription (8.2) indicates a different 

approach; a comparison would be interesting. 

9.- l!!!ilg,£1. _fuiui12:lgn.,gg Q!. Covariant fil!.2 Positive-Fr~uency 

Quantizations in. Two-Dimensional De Sitter SEace. 

Among the two-dimensional closed Robertson-Walker 

universes is the de Sitter universe descrited in geodesic 

Gaussian coordinates, which has been discussed in Secs. III.1, 

III.3, IV.2, and v.1-6. We can now apply the theory of this 

chapter to that case. 

For each Gaussian frame (i.e., each choice of a 

spacelike geodesic to serve as the basic hypersurface T = 0 of a 

----[32] Parker also used a different definition of particle 
observables -- see Sec. X.6 above. 
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Gaussian coordinate system (III.1.2)) we have, following Sec. 
"f" x.s, a definition of particle operators ak at each timer. (This 

is the theory that was adumbrated in Secs. V.3 and v.5.) The 

theorem proved at the end of Sec. X.5 shows that the Fack 

repLesentations defined in this way at oifferent times are 

unitarily eguivalent. In more physical terms, if there are 

finitely many field quanta present at one time, there are 

finitely many at all times. Of course, the no-particle states at 

different times will not be identical: there will be a particle 

7 
creation effect, to the extent that these ak-quanta can he 

identified with physical particles at timer. 

obvious next question is whether the 

representations of the field built in this way on different 

Gaussian frames are unitarily equivalent. Also, one would like 

to know whether the cepresentation corresponding to a given 

Gaussian frame is equivalent to the covariant representation of 

Tagirov ,gt ~1• and Nachtmann (see Secs. V. 6 and x. 4). An 

affirmative answer to the second question is also an answer to 

the first, since equivalence is transitive. (There is, of 

course, only one covariant representation, independent of the 

particular Gaussian frame used in the explicit construction of it 

in Sec. V.6.) In this section this equivalence will be proved, 

and its implications will he discussed. 

The Gaussian time coordinate, called x0 in Sec. X.1, is 

r, and R (t) = cos.h t (see Eg. (III .1. 1.1)). The coordinate t, 

therefore, is what was called a in Chapter V {according to Eqs. 
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(1.7) and (V.2.4a,5)). Denote the annihilation operators in the 

positive-frequency representation at r = 0 by af' and those of the 

covariant representation by bf. The expansion of the field in 

terms of the ar is Eq. (V. 3. 7) , where PF and NP are defined by 

Fqs. (V. 3. 3). That is, in the notation of Egs. (5. 7-8) 

Note that 

0 

' (<X) 
p 

-1/2 
= (2v'q + PA.] 

- i 

p er (ex)). 
p 

(9. 1) 

(when of is defined as in Chapter V). The covariant expansion 

of the fiel<l 

(V .6 .6). Eq. 

is Eq. (V. 6. 1) , vi th Tf (o.) = T (a) defined by Eq. 
r r 

(V.6.11) shows that, and t 0 approach each other 
r r 

in the limit of large tPI, which is certainly a necessary 

condition for unitary equivalence. 

speed of this convergence. 

Sufficiency depends on the 

The inverse of a field expansion is given by Eq. (1.18) 

(with Eg. (1.20)). Combining this with the formulas cited above, 

one obtains 
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0 • .o 
a = i[ 1J * (0) T (0) - ' * (0) T (0) ] b 

p p p p p p 

0 • .o t 
+ i[J *(0) T* (0) - ' * (0) T* (0) ] b , 

p p p p -p 

where 

I 

1 I r( ~ (-v + I p I )) l • i -1 
T (0) 

= ; re 1 +½_ (J-' + I p I ) ) , 
T (0} = - - T (0) , 

p p 2 p 

0 1 2 -1/4 .o i 2 +1/4 

' * (0) ·- -[g + p ] 1J * ( 0) = -[q + p ] • 
V2 V2 p p 

That is, in notation analogous to that of Eq. (5. 6), 

1 2 1/4 
= - f12[ q + p ] 

2 

1 2 -1/U 
T (0) - -[q + p ) 

p V2 

-1 
T (0) l • 

p 

(9. 3) 

(9. 4) 

(9. 5) 

(9.6) 

Now it follows from the asymptotic formula (6. 1.47} of 

[N.B.s.] (p. 257) for the quotient of two gamma functions that 

I 
t pt _,_, -1 -2 Ip I -1/2 -2 

T { O) -- (-) ( 1 +c> ( I p I ) ] = (-) [ 1 + o ( I p I ) ) ] 
p 2 2 

(9. 7) 

for large p. Combining this with the by now quite familiar 

Taylor expansion of the fourth root (cf. Secs. F.4 and x.5), one 

sees that the leading term in ~(p) 

Therefore certainly 

is at most of order -~ 
IP I • 
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~ 2 
~ f ~ (p) I < 00 , (9. 8) 

p-=-o::> 

which proves the equivalence, according to the theorem of Sec. 

F. J. 

The meaning of this theorem is that the two ways of 

quantizing the scalar field considered in Chapter V yield the 

same field, as an operator-valued distribution in an abstract 

Hilbert space. Only the physical interpretation of the states 

differs. Genera 1 mathematical properties, such as those 

discussed in Chapter IV, which do not 

observatles can be established in either 

concern fixed-time 

framework. For 

instance, we know now that this field satisfies the axioms 

proposed in Sec. rv.1, because this was proved in Sec. V.6 for 

the theory in its covariant guise. We also know, on the other 

hand, that the theory satisfies the spectral condition proposed 

at the end of Sec. IV.2, because the Hamiltonian has been put 

into the manifestly positive form (').5) (with the divergent term 

discarded}. (That U (rl..,0) of 'Eqs. (IV.2.1-2) exists in the 

present case follows from the two unitary equivalence theorems of 

Sec. X.5. It is clear from the construction in Sec. P.3 that U 

is differentiable in Y1 provided that the operators of the 

Bogolubov automorphism are. The derivative of U must he H (0) (up 

to a constant), since H(O) exists as a self-adioint operator and 

the formal calculation mentioned at the beginning of Sec. VII.2 

shows that it has the correct commutation relations to generate 
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Boqo lubov transformation is diagonal, Eq. (IV. 2. 2) can be derived 

directly by approximating U by a unitary operator affecting only 

finitely many modes (see Reed (1968), pp. 13-14) and applying an 

11 £/3" argument.) 

In Sec. III.3 it was argued that the most natural way 

to frame a dynamical problem in de Sitter space is not to compare 

the state of the world at various times r in a Gaussian frame, 

but to look at the family of geodesic hypersurfaces orthogonal to 

a given timelike geodesic. These are the various times X in a 

Fermi frame, or the instants r - 0 in a certain one-parameter 

family of differ~t!1! Gaussian frames. It was also suqqested, 

however, th~t the state of the system at a particular instant 

should be characterized in terms of quantities defined in terms 

of the Gaussian frame corresponding to that time, rather than the 

(fixed) Fermi frame of the observer (see Secs. III. 3 and rv. 2). 

In the present case this means that the particle operators on a 

geodesic hypersurface should be defined in the manner of this 

chapter rather than in the way considered in Secs. V.7 and 

VIII.6, where positive frequency was defined with respect to 

Fermi coordinates. As remarked near the beginning of this 

section, the existence of a unitary propaqator implementing this 

kind of dynamics is an immediate corollary of the theorem just 

proved. One can think of the no-particle state (as a function of 

the time, X) as "precessing" a round the vacuum vector of the 

covariant representation. 

What has just been described is the specialization to 
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two-dimensional de Sitter space of the general proposal of Sec. 

x. 8. In the next. section a calculation will be done in this 

f ram€work. 

10. Estimate £! !.h~ .R.2Iticl~ £reation i!!. TwQ-Dimensional ,!2g 

~i tt2.r §.E~fg. 

In the spirit of Sec. X.8 let us define particle number 

observables on a geodesic hypersurface in terms of 

diaqonalization of the Hamiltonian, H(O), defined with respect to 

the Gaussian coordinate system associated with that surface, and 

let us frame the dynamical problem in terms of the family of 

geodesic hypersurfaces orthogonal to a geodesic worldline. The 

operator of the (Fermi) time translation along the qeodesic 

defined by tf= 0 is exp(iXH) -- where H, as in Secs. I.3, B.3, 

III.2, etc., is an element of the de Sitter Lie algebra, not to 

be confused with the Hamiltonian H(O). For our present purposes 

we might as well pass to a Schr~dinqer picture and study the 

operator exp (-iX.H) as a mapping of the confiquration of the 

system at time C into the confiquration at time t. 

The calculation will be an approximation valid for 

large F, where R, as in the earlier 

the de Sitter hyperboloid, not 

chapters, is the radius of 

to he confused with the 

coordinate-dependent quantity R (t) used P.lsewhere in this 

chapter. 

things: 

As discussed in Sec. II.2, large R signifies two 

(1) The natural time scale is T = RX. A reasonable 
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interval of T corresponds to a very small interval in the 

dimensionless "angular 11 coordinate -x_. Thus one should be 

able to get away with expanding exp(-iXH) to first order. 

(2) The mass parameter q (which takes the place of m~ 

in the general formulas of this chapter 

large. The physical mass is M = i/q;R. 

cf. Sec. x. 9) is 

The assumption that 

q >> 1 will be used in the calculation to simplify the 

expressions. 

The tcansformation between the covariant particle 

operators bf and the operators af of the positive-frequency 

representation (which we are tentatively acceptinq as the 

physical particle operator-s} is given in Eqs. (9. J-6). Here <X(p) 

and ~(p) are real and even in p. The inverse transformation is 

b = <X(p} a 
p p 

t 
- ~ (p) a 

-p 
(10. 1) 

and the Hermitian conjugate of this equation. Tagirov et ~!• 

have given the expression for Hin the covariant Pock space (see 

Eq • ( V • 6 • 1 5b ) ) : 

1 + 
H = -(A +A) = 

2 

1 ~ Vg + p(p+1) bt b 
2 p p+1 p 

1 --- t 
+ - ~ {q + p ( p-1 ) b b • (10. 2) 

2 p p-1 p 
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t 
We shall express Hin terms of af and af by means of F.q. (10.1) 

and normal order the result. The normal ordering affects only 

the phase of exp (-iXH), which is physically arbitrary. This 

convention makes HtO> orthoqonal to 10>, where 10> is the initial 

no-particle state; the first-order calculation of the action of 

exp(-iXH) on 10> is thus optimized. 

The result of the substitution, 

rearrangement, is 

1 
H = - 2 Vq + p(p+1) (oc.(p+1)o:(p) + {_3(p+1}~(p)) 

2 P10 

t 
}( {a a 

p+ 1 p 

1 

t 
+ a a 

- (p+1) -p 

t 
+ a a 

p p+1 

~ v'q + p(p+1f (o:(p+1)~Cp) + oc.(p)P(p+1) J 
2 P20 

t t t t 

after some 

t 
+ a a J 

-p - (p+1) 

X {a a + a a + a a + a a } • 
p+1 -p - (p +-1 ) p p+1 -p -(p+1) p 

Now a and pare to be read off from !qs. (9.3-5). A considerable 

simplification occurs in the particular combinations which appear 

in Eq. (10.3) because (for p ~ 0) 
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T (O)T (0) 
p p+1 

I 

= , I ni (I.I + p + 1, ) I 
4 r<1 + {<v+p+1l> 

1 - 1 1 1 
= - IY + P + 11 = 

2 2 r/ q + p ( p+ 1) 

(see Eq. (V.6.8)). One obtains 

cx(p+1)cx.(p) + ~(p+1)P<Pl = 

1 \fq-+-(p+1P:- ifq-+7 1 /2 q + p(p+1) 1/2 
-[[------] 
2 g + p(p+1) 

+ [ .,------- .r--] 
V q + (p + 1) '- V q + p '-

} , 

o.(p+1)P (Pl + o(p}P (p+1) = 

q + p(p+1) 1/2 1 Vq + ( p + 1 p: {g + pi 1 /2 
-f[-------J 
2 q + p(p+1) 

- [ --=----_ -_---::.::.==] } . 
v'q + (p+1 )~ v'q + p1 

let 

2 
Q = g + p • 

400 

(10. 4) 

(10. 5a) 

(10.Sh) 

(10.6) 

Since q >> 1, we may assume that p and 1 are small compared to Q. 

We expand everything in sight in Taylor series in 1/Q. The 

result is, through second order, 
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v'q + (p+1);.- 1q-.-p~ 1/2 1 1 2 3 
[ ] = 1 + - -(p + 2p + -) , (10. 7a) 

q + p (p+1) 40 4Q'- 8 

q + p (p+1) 1/2 1 1 2 5 

( 1q-½-{p+1)£ v'q-+-pi"] 
-= 1 - + -(p + 2p + -) . (1 O. 7b, 

4Q 4Ql. 8 

We are now ready to compute the action of exp (- i)(H) -

1 - i-,X.H + 0 (X- l) on the initial no- particle state. The 

first-order term is 

i'X 
lJ = - ixH I 0> = + - ~ Vq-+-p (p+1) [ ex (p+1) f3 (p) + a(p) p (p+ 1) ] 

1 2 PLO 

t t t t 
X [a a 10> + a a 10>] 

p+1 -p -{p+1) p 

ix -112 t t t t 
~ Q [ a a IO> + a a IO>]. 

8 p~O p+1 -p -(p+1) p 

The basis vectors which appear in the sum (inside the second pair 

of brackets) are all orthogonal and normalized. Hence we have 

2 xl, 2 -1 n x" 
~ II 11 II -= (q + p ] 

,_ 
( 1 0. 8) ,..., • 

1 32 P20 64 Vq 

In the last step the sum has been approximated by 

00 2 -1 f o dp [ q + P l 
n 

The number •qiven in Fq. (10.8) is t.he prohability (t:o 

"'r<>JUL 

.::::::7 
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lowest order in both "'/.., and 1/q) that the state of the field is 

other than vacuum at time ~ if it was vacuum at time O. 

Introducing the physical units of time and mass, we have 

2 1 T~ 

11, II ~ 
1 20 R3 M • 

(10.9) 

(As always, fi = c -= 1.) Let us choose R to be a typical 

1 
. 

1 
. 

0
a1 13 _, 

cosmo og1ca distance, 1~ cm, and M to he 10 cm , a typical 

elementary particle inverse Compton wavelength. Then 

2 
n 11 n 

1 

2 -95 -2 
= T X 10 cm 

2 -59 
= T X (10 

-2 
yr ) • (10. 10) 

1. t OJ.fl • d So appears that 1 years 1s nee ed 

significant probability (10-
3

) of "decay" 

before there 

of the vacuum. 

is a 

(We 

shall find that this is just an upper bound.) 

One should question for what range of T this 

calculation is valid. An attempt to estimate the second-order 

term leads to an infinite result, because JO> is not in the 

domain of H~ .. However, inspection shows that the divergence 

comes entirely from the number-preserving term of H (the first 

term in Eq. {10 .. 3)). The number-changing term is bounded as an 

operator on each n-particle subspace of the Fock space. This 

suggests that a better calculation of the creation probability 

would proceed by standard time-dependent perturbation theory 

{e.g., [Messiah], pp. 722-739), with H
0

, the first term of Eq. 

(10.3), as unperturbed Hamiltonian and V, the second term of Eq. 
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( 1 0. 3) , a s t he pe rt u r b a ti o .n • (The previous calculation, in 

effect, treated all of Has a perturbation.) 

The initial state 10> is an eigenstate of R
0 

with 

eigenvalue O. The transition probability from 10> to the 

two-particle space is (I= 1) 

where 

and 

ll = f IV i2 f(X,E )dµ(b), 
bO b 

= 2(1 - cos E X)/E 
b b 

V = <btVIO>, 
bO 

H I b> -- E I b> 
0 b 

(10. 11) 

2 
, (10.12) 

(10. 13) 

(10.14) 

for each two-particle state lb>. 

approximation is[33] 

The usual "golden rule" 

[ 33] Unlike Eqs. (10. 8-10), Fq. (10.15) exhibits the familiar 
linear time dependence of a first-order transition probability. 
The quadratic time dependence of our earlier result is due to the 
use of an "unperturbed Hamiltonian" which is identically zero. 
Since the spectrum was entirely degenerate, the narrowing of the 
peak of the function (10.12) did not have its usual effect. 
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(10.15} 

whece the integration is now over t.he stat.es with Eh = O. {The 

"density of states" is absorbed into the measures p and p
0
.} 

Since the maximum value of the function (10.12) is X~, 

aa upper bound on W of Fq. (10.11) is 

2 
II VI O> If 

2 
-- U II 

1 

the result previously obtained (Eq. (10.8)). Our only concern, 

therefore, is whether the exact creation rate is much smaller 

than indicated hy Eq. (10.10). 

Inspection of Eqs. (10.3,S, 7) shows that H
0 

consists of 

(1) a term H* which, in terms of the ap, is iaentical in form to 

A, in terms of the b (Eq. (10. 2)), and (2) a residual ter.-m, 
p 

H
0 

- H*, which decreases even faster in g than V does. The 

second term can be neqlected. The spectrum of H* in the 

two-particle space is the spectrum of a noncompact generator of 

SO
0

(1,2) in the direct product of two irreducible representations 

of the group of the principal series. Therefore, if the th> are 

properly normalized, 

dp (b) 
00 00 

= ~ j dh J dh , 
-oo 1 -<$) 2 

(10. 16) 

where h
1 

and h~ represent the spectrum of the generator in the 

factor representations, and~ in~icatPs a sum over a aiscrpt0 
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variable which assumes four values, accounting for the 

multipl.ici ty of these spectra (see Sec. II. 3). In Eq. (10.15) we 

are to hold h
1 

+ h~ = Eb fixed; hence 

<lp (b) 
0 

1 00 

= - 2 ( d (h -h ) • 
2 -ex, 1 2 

(10.17) 

To evaluate W we need the matrix elements, with respect 

to the qeneralized eigenfunctions of H*, of V, which is expressed 

in terms of the eigenbasis of the fQMP~~i generator of S0
0

(1,2) 

(with spectrum p). The expansion with respect to the p-hasis of 

the eigenfunctions of a noncompact generator within an 

irreducible representation is available (Lindblad and Nagel 

( 197 (i) , Eq. ( 4. 1 3) ) • The direct-product vectors can be 

constructed from these. In principle, therefore, the desired 

matrix elements v,,
0 

can be calculated from F.q. (10.1). However, 

quite a bit of work, analytic or numerical, would be needed to 

extract a number. Our two-dimensional model, which has no direct 

connection with experiment, does not warrant such treatment; its 

purpose is just to show that particle creation can be calculated 

in principle and is not unreasonably large in the theory proposed 

in the last two sections. 

Instead of an exact evaluation of the expression 

(10.15), then, let us stop with a rouqh estimate. We note from 

the previous calculation that II IJ. Ill. decreases as 1/Vq for lr1rge 

q, while the individual matrix elements in the p-representation 

go down as 1/g. Let us assume that 
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2 

j IV I 
bO 

dp (b} 
0 

-0"/2 
g , 

40h 

( 10. 18) 

Then by dimensional analysis we may write down for comparison 

wi th E q • ( 1 0 • 9 ) 

T -o-
w - (RM} 

R 

-40<r -9 
- TX 10 X (10 

-1 
yr ) • (10.19) 

Recall that the quadratic estimate (10.9) is better than the 

above for small T, when it is the smaller. If if= 1, we find 

that Eq • (10.9) is good up to T = 10'
0 

y.r, and w reaches 10-.3 at 

T = 10 
,,, 

yr. If <f = 2, the estimate (10.9) is already too large 

for T ) 10-J.3 sec, and w = 10-J only when T = 1 og 6 yr. 

What about particle creation (or annihilation) when 

matter is present initially? At one extreme is the vacuum of the 

cova r.-iant theory, which is invariant under exp (-iX..H) -- hence all 

expectation values are constant. On the other hand, consider a 

state containing exactly N particles. From Eq. {10. 3) and the 

formulas (F. 1. 4) for the action of creation and annihilation 

operators in Fock space one can put a crude upper bound on its 

A 
decay probability of N times the vacuum value. If the estimate 

(10.10) is used for the latter, which, we have seen, is probably 

much too liberal, a cosmologically reasonable ~ensity of one 

particle per centimeter would raise the probability of a 

transition to a state with N + 1 or N - 1 particles to 

a -s -~ 
T X (10 yr ) at most. For any realistic Mtter distribution 
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the exact probability is probably much smaller. (Also, of 

course, states differing by only one particle in the entire 

universe will not be very distinguishable.) 

Although a number derived from a two-dimensional model 

should not be taken too seriously, these estimates increase one's 

confidence that our reasoning, based on the formalism of quantum 

field theory, will not predict absurdly large creation rates. In 

fact, the creation effect is so negligible that we seem to be 

still in the domain where single-particle quantum mechanics is 

quite adequate for any practical purpose (cf. Sec. X.7). It must 

be remembered, however, that the theorem of Sec. X.9, on which 

this calculation hinges, may not hold for the four-dimensional 

case. 

11. Summary of ChaEter x. 

The major points established in this chapter are: 

(1) In a rigidly expanding (i.e., generalized Robertson­

Walker) universe there is a natural decomposition of the 

field into modes, hut the lack of an obvious splitting 

into positive- and negative-frequency parts means that 

the associated "Fock" representation is not unique. 

~) A region of Minkowski space can be cast into the 

Robertson-Walker form in such a way that none of these 

representations (tensor products of the modes) coincides 

with the standard quantization of the free field. 
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(3) Examination of the asymptotically static case suggests 

that a different representation is appropriate at each 

time, and that it should be chosen on physical grounds 

{e.g., particle interpretation). 

(4) Attempts to qive an abstract time-independent definition 

of the representation will clash with the obvious 

physical interpretation of the asymptotically static 

situation. 

(5) The most natural generalization from the static case is 

to define a Fock representation at each time by 

diagonalizing the Hamiltonian into a linear combination 

of number operators. The normal-ordered Hamiltonian is 

then a positive self-adjoint operator. This procedure 

can he extended to the gen~ral case, where the field 

equation is not solvable by separation of variables. It 

is this prescription which is assumed in the following 

points. 

(6) In general the representations at different times will 

not be unitarily equivalent. In particular, this is true 

of generalized Robertson-Walker universes of infinite 

spatial extent. 

(7) For an expanding universe there are two distinct notions 

of unitary implementability of the dynamics. These are 

coextensive for aimension 2 hut comoletely incompati½l~ 
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for higher dimensions, except when the radius of the 

universe is constant. 

(8) In a two-dimensio~al expanding uni verse of finite 

circumference, 

(I.e., t.he 

equivalent.) 

the dynamics is unitarily implementable. 

representations at different times are 

(9) A completely satisfactory approach to field theory in 

curved space-time may require abandoning the particle 

concept. Also, the canonical formalism on hypersurfaces 

may be inappropriate. 

(10) The ambiguities encountered here are instances of a 

difficulty which afflicts external potential problems in 

general, when the potentials do not fall off sufficiently 

fast to allow an unambiguous asymptotic particle 

interpretation. 

(11) It is proposed that representations defined as in (5) are 

more likely to be physically appropriate if the 

hypersurfaces involved are geodesic. 

(12) Tn t wo-dimensiona 1 closed de Sitter space the 

representation specified by (5) and (11) is unitarily 

equivalent to the one which is covariant under the de 

Sitter group. The particle interpretations, however, are 

different. This model satisfies both the "group" axioms 
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~nd the spectral condition formulated in Chapter IV. 

(13) The particle creation in the two-dimensional de Sitter 

model is extremely small. 
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Appendix A 

THE PSEUDO-ORTHOGONAL GROUPS 

Much of this material is taken from Bargmann (1g47), 

especially pp. 585-586, and Bargmann (1954), especially pp. 

1. Homogeneous GrOUE§. 

Consider n-aimensional real space with 

nondeqenerate but possibly indefinite scalar product qiven by a 

(constant) metric tensor (C ~ j, k < n) • We use the 

convention that an index is to be summed over when it appears 

QQfg in contravariant and .Q.!!£§! :Lu f.Qva1:i2.!1.t 12osition, and we use 

and its inverse qjk to lower and raise indices in the 

standard way. We may choose a basis for the vector space 

(orthonormal basis) with respect to which for some index p the 

metric has the form 

g - q = + 1 if 0 i j < p, 
jj j 

g - q = - 1 if p < j < n, ( 1. 1) 
jj j 

g = 0 if i ; k. 
jk 

All orthonormal bases yield the same p. We set q = n - p. 



Sec. A.1 412 

The 2.§eudo-orthogQnal _grou_£ O (p, q) is defined as the 

group of linear transformations which 

quadratic form 

j k 
F ( X) = g X X • 

ik 

leave invariant the 

( 1. 2) 

The connected component of this group containing the identity is 

denoted by S0
0 

(p,q). Clearly S0
0 

{p,q) is isomorphic to S0
0 

(q, p). 

SO (p,0) is SO(p), the p-dimensional rotation group. We will he 
0 

particularly concerned with the group S0
0 

(1,q), which we call the 

q-diJ!!gnsiQTI..£1 (fl2§fQ) de Sitter _gron_e or the (q+1)-dimensional 

(hgmogeneous) Lorentz grou], depending on the physical context in 

which it is considered. 

In a particular basis a transformation A € S0
0 

(p,q) is 

represented by a matrix: if y = Ax, then 

j j j k 
y _ ( Ax) = ~ X • ( 1. 3) 

k 

The condition F (y) = F (x) yields 

j k oj j m nj 
1\ A = (where A = q A g ) . ( 1. 4) 

k 1 1 k mk n 

Let l_(SO (p, q) ) 
0 

he the Lie algebra of so {p,q). 
0 

An 

element of SO (p,q) close to the identity can he written to first 
0 

order as 
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A= 1 + tL ( 1. 5) 

where l € cZ_(S0
0 

(p,q)). Then the condition (1.4) is equivalent 

to 

(L) 
jl 

+ (1) = o. 
lj 

(1. 6) 

The matrices satisfying Eq. (1.6) are precisely the 

linear combinations of the matrices 1
4

i defined by 

Since 

_j 
(L ) 

ab k 

L = - L 
ba ab 

a 

j 
g - S 

bk b 
g • 
ak 

(and hence L = 0), 
aa 

( 1. 7) 

( 1. 8) 

only n(n-1)/2 of the L~b are linearly independent. The L~b with 

a< b form a basis for ~(SO (p,g)). Therefore, so (p,q) is a 
a o 

connected Lie group of dimension n(n-1)/2. 

The commutators of the L~h are 

[L ,1 ] = g L - g L + q L - g L ( 1. 9) 
ab cd be ad ac bn ad be bd ac 

This is easily proved by working in the defining representation 

(1.7). Eq. (1.9) becomes more transparent when an orthonormal 

coordinate system is used and special cases are considered. 

First note that we may assume a, band c 1 d, since otherwise 

one of the 1 1 s is zero. Uso, i.f the pair (a, h) is egual to the 
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pair (c,d) in either or~er, the commutator is trivially zero. If 

a, b, c, dare all distinct, Eq. (1.9) tells us that 

[L ,L ] = O, 
ab cd 

(1.10a) 

since the metric tensor is diagonal. The remaining cases have 

exactly one index of the first pair equal to one index of the 

second pair. Using Eq. ( 1. 8) , we may assume without 1 ass of 

generality that a= d (and the indices are otherwise distinct). 

Then 

f L ,L 
ab ca a 

L (1.10h) 
be 

If q( = qb, the one-parameter subgroup generated by 

A ( t) - exp (tL ) , 
ab 

is of the "rotation" type, with matrices of the form 

a --➔ cos t q sin t 0 
b 

b --➔ - I\ sin t cos t 0 • 
b 

j , a, b --➔ 0 0 1 

If qct = - !lb, it is of the "boost" type, 

(1. 11) 

(1.12a) 
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cosh t fl sinh t 0 
b 

!\ sinh t cosh t. 0 . (1.12b) 
b 

0 0 1 

Some additional general information about the groups 

so (p,q] and their unitary representations can be found in 
0 

Kihl berg ( 1965) • 

2. Inhomogenecus Q£Q~E~• 

Let G be a group defined by an n-dimensional real 

represent.a tion {such as SOe(p,n-p}, Egs. (1. 3-4)). The 

corresponding 1!!h2!!.Q.9:eneous group, which we call IG, is the 

semidirect product of G with the additive group of the 

n-dimensional space (the translation group). That is, an element 

of IG .is a pair {b,A) (h € ]J11
, A E G), and the defining 

realization is 

µ p JJ µ u J,) 

y _ ( (b, A) x) = ( Ax + b) _ b + A x • 
J/ 

It follows that the group product is 

µ µ J) 

( b, A) (b ' , A I ) = (b + Ab' , AA ') ( (Ab' ) = A b' ) (2. 2) 
y 

and the inverse is 
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-1 
{ b, A) 
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-1 -1 
-= (- A b, A }. (2. 3) 

If G = SO
0 

(1,n-1) (the n-dime.nsional Lorentz group), then IG is 

The realization (2.1) is not a linear representation 

since the translations are not (homogeneous) linear 

tran sf orma tions. However, it is entirely equivalent to the 

followinq (n+1)-dimensional representation. Identify f with the 

.,, • l1 i-1 
hyperplane x = 1 1.n , • (Recall our convention that indices 

in ,n run from Oto n - 1. Tn what follows Greek indices will be 

understood as running from Oto n - 1, Latin indices from O to 

n.) Then the matrices *A defined by 

}l µ n 
*A = A , *11. = 1, 

v v n 

µ µ n (2. 4) 
*A = h # *A ·- o, 

n V 

are a representation of IG, and they map the hyperplane .i1 - 1 

into itself in accordance with Eg. (2.1): 

T 
Ax + b 

1 . (2. 5) 

t-0--f 1 

It is easy to see that the elements of ):_ ( IG) are 

represented by matrices of the form 



Sec. A.2 417 

L = ( ~ I) 
t-0--f 0 

n 
( L ' € 2:( G) , b e f ) • ( 2. 6) 

As a basis for Z(IG) we can take a basis for ;z (G) (represented 

by matrices of the form (2.6) with b = 0) and add n basis 

elements T~ (0 i a< n) defined relative to some basis in,~ by 

j 
(T ) 

a µ 

n 
= 0 = (T ) 

o. n 

p 
(T ) 

a n a 

, 

The T~ commute among themselves: 

(T , T ] = O. 
a l3 

(2. 7) 

(2. 8) 

In so (p,n-p) the other commutators can be expressed in any of 
0 

the equivalent forms 

or 

~ 
f L, T ] : (L) 

a 
T 

0( ~ 

g T 
PY a 

g T ; 
or l3 

(L € ;t (G)) ; (2. 9) 

(2. 10) 
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[L ,T J ~ 0 
cxP y 

[L ,T ] = q T • 
qp p p Ci 
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(2.11a) 

(2.11h) 

{Egs. (2. 11) , 1 ike Fqs. ( 1. 10) , assume an orthonormal basis.) 

3. Representation QI ,!he Differential 

Let M be a homogeneous space under a group G. Consider 

the vector space b(M) of complex-valued c~ functions of compact 

snppoct on~. The guasireg_ular renesentation of G is defined in 

Jj- (M) as follows: If A € G, its representation U(A) is 

-1 
[U(A)1¥](x) = 1J(A X) 

Pictorially speaking, U(A} moves the function around bodily in M; 

the value which once was assigned to x €Mis now attached to Ax. 

Let L € cl.(G) have the matrix (L)j with respect to 
k 

some basis. Then the quasiregular representation of l is 

U (L) 
j 

= - (L) X 

k 

k 0 
( 3. 2) 

as can be seen by expanding Eq. (3.1) to first order in the 

parameter of the subgroup generated by L. 

In the case of so (p ,q) (with an orthonormal basis) we 
0 

obtain from Eq. (1. 7) 
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d 0 
U (L ) = X - - X • 

ab a 6i' b ~X
4 

(3. 3) 

(Note that the indices have been lowered on the factors X· .J For 
J 

IS0
0

(p,q-1} we have (in addition to generators of the form (3.3)) 

the translation generators (see Eq. (2.7)) 

n d n 
u (T ) = - x (= - on the hyperplane x = 1). (3.4) 

a: cxOL dxoL 

According to Eq. (I.3.3b), this operator must be the contraction 

of 

(3. 5) 
R 

The connection is evident. 

As coordinates in de Sitter space (Rq. {r.·1.1)) the x 
Cl, 

are not independent. Nevertheless, the transformations generated 

by the opera tors {3. 3) map the space into itself, since 

U{L
4

b) F(x) = O. 

In the notation of Sec. I.3, Eqs. {3.3) for the de 

Sitter group S0
0

(1,n) become (U omitted) 

n 0 0 a d 
H = i (X + X -) [i --;], { 3. 6a) 

dx0 oxl'I dx 

A n (} A c) 6 
p = - i (X X -) [- i AJ, (1. 6b) 

oxA OXYI ox 
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A A d 0 ct A 0 A 
K -- i. (x -♦ X -) (= X R - X p ) , 

dx0 OXA 
(3. 6c) 

A C c) B C 
J = :i ~ € X (= ~ € X p ) • 

B,C ABC 6x8 B,C ABC 
(3. 6d) 

The operators in brackets in Eqs. (3.6a,h) are the corresponding 

generators of the associated Poincar6 group ISO (1,n-1). 
0 

It. is 

easy to verify that all these operators have the correct 

commutation relations. 

In Chapter III we express these differential operators 

in terms of coordinate charts on the manifold M. Then the 

Casimir operator Q (Eq. (I. 4. 2)} becomes a second-order 

differential operator which defines a scalar wave equation on M. 
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IRREDUCIBLE UNITARY RAY R!PRESENTATIONS 

OF THE DE SITTER AND POINCARE GROUPS 

1. ]~,Y R~nresentations. 

421 

In quantum theory a group of symmetries of a physical 

system corresponds, in general, to a unitary I~I representation 

in the Hilbert space of state vectors. That is, every element q 

of the group G is implemented by a unitary operator U(q), and 

u (q ) u ( q ) = lJ{ g , g ) u ( g g ) , ( 1. 1) 
, 2 1 2 1 2 

where W(g ,q) is a complex number of modulus 1. Bargmann (1954) 
. . I 2. 

showed that for connected Lie groups the classification of the 

ray representations of G can be reduced to the study of the true 

representations (W ~ 1) of G and some groups related to it 

(namely, its universal covering group G* and the nontrivial 

one-parameter central extensions of G*, if any). In the same 

paper Bargmann applied his method to the homogeneous and 

inhomogeneous 

summarized here. 

pseudo-orthogonal qroups. His findings are 

( 1) Every factor w for SO (p,q) with 
0 

p + g ~ 2 and 

every factor w for IS0
0

(p,q) with p + q ~ 3 is equivalent to 

unity. It follows that every ray representation of one of 
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these groups is equivalent to a true unitary representation 

of its universal covering group (which we call an "ordinary 

representation"). 

(2) In the case ISO (p,q), p + q = 2, the set of 
0 

equivalence classes of factors has dimension 1. Hence 

these groups possess ray representations which are not 

equivalent to ordinary representations. 

(3) The kernel of the homomorphism of the universal 

covering group of SOO(p,q) or of ISO ( p, q) onto the group 
0 

itself is a dir.ect product C (p) I C (q) , where C (p) and C(q) 

are cyclic q roups. C (0) and C ( 1) are qronps of order one, 

C ( 2) is infinite, an<l C (p) is of order two 'F 1~ p ) 3. 

Therefore, in particular, the ray representations of 

S0
0

(1,n-1) (and IS0
0

(1,n-1) if n ~ 3) are single-valued or 

double-valued representations if n ~ 4, are single-valued if 

n = 2, and may be many-valued if n = 3. 

In the physical context we are considering, "dimension 

n" refers to the de Sitter group SO (1,n) and the Poincar~ group 
0 

ISO (1,n-1). So the conclusions of the analysis are: If n ~ 4, 
0 

the only ray representations of either group other than the true 

representations are the familiar double-valued spin or 

representations. If n = 3, the de Sitter group again has only 

true representations and spinor representations, but the Poincare 

qroup has many-valued representations. If n = 2, the de Sitter 
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qroup has many-valued representations; the Poincar; group has no 

many-valued ordinary representations (not even double-valued 

ones} since it is its own covering group, hut in view of (2) it 

has ray representations which are not equivalent to ordinary 

representations. For the most part we shall consi~er only the 

true (single-valued) representations in the case n = 2 and only 

the single- and double-valued representations for n = 3. 

2. . . / 
].~12resenta tl.Q]..§ Qf .th.g Po1ncare Grou_Qs. 

The single- and double-valuea irreducible unitary 

representations of the four-dimensional Poincar~ group are well 

known, as is the Frohenius-Wiqner "little qroup" method of 

deriving them (see Wigner {193q), Wightman (1959, 1960)). The 

same met. hod works for any ISO (p ,q). 
0 

Let us summarize the 

results for TSO (1,n-1). 
0 

~ ~ 

The space J (regarded as its own dual, momentum space) 

is divided into norhits" or homogeneous spaces (see Sec. I.1) 

under the action of SO (1,n-1). 
0 

defining an orbit is 

0 
p > 0 

Typical of the conditions 

'YI 

(p € ' ) • ( 2. 1) 

Let p be an arbitrarily chosen point on an orbit M. The "little 
0 

qroup" is the subgroup of S0
0

(1,n-1} 1,1hich leaves p
0 

invariant. 

~n irreducible representation is rlefined in a Hilbert space of 

functions on M with values in a "little" Hilbert space (spin 
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space) which supports an irreducible unitary representation (or 

spinor representation) Q(p ,A) of the little group. The scalar . 0 

product is 

(ll,Jil) - t d5l (lJ(p) ,¢ (pl l, (2. 2a) 

where (f(p) ,¢(p)) is the scalar product in spin space and fi is 

an invariant measure on M. Por the orbit (2. 1) we have 

n µ 2 0 
!W ,¢) = f d P b (p \ - m l e (p J (If (Pl , ¢ (p) J 

( 2. 2 h) 

in the last form V and~ are regarded as functions of the 
➔ I ")'1-1 

independent variables p = (p , ••• ,p ) • The representation is 

given by the formula 

[U(b,A)lp](p) 
ip bM 

- e ~ Q (p ,c 
0 

-1 -1 -1 
(p)AC{A p)) (tJ(A p) 1 (2. 3) 

for each element (b,A) of ISO (1,n-1)* (see Sec. A.2). Here C(q) 
0 

is a canonically chosen transformation in _S0
0

(1,n-1) which maps 

p
0 

into q. 

In the case n = 2 there are nine classes of irreducible 

representations corresponding to the nine orbits of 

two-dimensional Minkowski space (Fig. 18) (cf.. Dubin (1970)). 

The representations associated with orbits of the type labeled 1 
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Fig. 18 

Orbits of the Lorentz group in 
greater than 2 the pairs of 
connected. 

Minkowski space. In dimension 
orbits 3-4, 5-6, and 7-8 a~e 
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in Fig. 18 (to which Egs. (2.1) and (2. 2b) apply} are an<1loques 

of the positive-mass positive-energy representations of the 

four-dimensional Poincar~ group; the parameter m defining them is 

the mass. Note that the representation on the positive-energy 

part of the light cone splits into two irreducible parts (3 and 

4) because of topological peculiarities of the two-dimensional 

space; the spacelike momenta (7 and 8) are likewise split. 

For each m > 0 there is one representation of class 1. 

It has the form 

U(b,A)J(p) 

• .M 
1b p 

= e I'-

-1 
qJ(A p), 

where '1 is an 1"" function on the hyperbola of Eg. (2 .1). 

(2. 4) 

There 

is no little-group representation involved since the little group 

of a vector on the hyperbola is the group with one element, which 

has only the trivial representation. The generators of the 

representation (2 .. 4) are (cf. Eqs. (I. 3. 6) and (A. 1 .12b)) 

0 0 
H1J{p) = - i- [U(b*1)lJ] (p) = + p ' (p) , 

~bo b=O 
(2. Sal 

0 1 p' ( p) = + i- [U(b,1)11] (P) = + p '(p), 
ob1 

b=O 
(2. 5 b) 
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KV (p) -

b O 1 0 
- i- ,(cash e p - sinh e p, - sinh e p + cosh e 

c)e 

1 o1J o otf 
= i{p + p -}. 

op0 op1 

427 

1 

p > I 
0=0 

(2. Sc) 

If p0 = V(p 1 )1-. + m2.. is .regarded as a function of p1
, r:q. (2.5c) 

becomes 

K1J (p) = i p 
0 dV 

dp' 
( 2. 6) 

In higher dimensions there are only six types of 

orbits. 18 may be viewed as a plane cross-section of the 

momentum space. Then sets 3 and 4 belonq to the same orbit; 

likewise 5 and 6, and 7 and 8. 

When n ,: 3 the little group is S0(2) for timelike 

momenta and is isomorphic to the real line in the spacelike and 

lightlike cases. The irreducible representations of these qroups 

are one-dimensional (but not trivial). In general the little 

group is SO(n-1) in the timelike case, so (n-2,1) 
0 

in the 

spacelike case, and the common contraction of these groups, 

ISO(n-2), on the light cone. 
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.3. RepreseQ_tations of the Two-Dimensional De Sitter Grol!£. 

In this and the next two sections we record the 

irreducible self-adjoint[1] representations of the Lie alqehras 

o.f the groups SO (1,n) 
0 

which correspond to unitary 

representations of the groups or their covering groups. Ry 

"unitary representationn we always mean a (weakly) contin_QQ.!!§ 

representation; then an associated self-adioint representation of 

the lie algebra exists and can he found by differentiating the 

one-parameter subqroups (sec, e.g., Bargmann (1947), pp. 

598-600). The converse requires an additional condition: Nelson 

(1959) provPd that a Hermitian representation of the el?.ments of 

a basis for the Lie algebra[2] corresponds to a unitarv 

representation of the covering group if and only if the sum of 

the squares of the basis elements is a densely defined operator 

with a unique self-adjoint extension. Now the representations of 

l(SO (1,n)) are usually constructe~ in a form in which the 
0 

representation of the maximal compact subgroup SO(n} is 

explicitly decomposed into irrerlucibles (see Eqs. (3.2) and (4. 3) 

below). Nelson's operator (for the usual choice of basis in the 

Lie algebra) is the sum of the Casimir operator (I.4.2), which is 

a multiple of the identity in an irreducible representation, and 

twice the Casimir operator of the compact subqroup, which is 

diagonalized and therefore manifest 1 y self-adjoint on an 

------------( 1] We use the convention of Sec. I.3: a one-parameter subgroup 
is exp (itL), L E ;((G). 
[21 That is, a set of Hermitian operators with thP nrop@r 
comm u tat ion r c 1 at_ ions { c. q • , :' r_r:-.; • ( 1. , ) ) • 
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appropriate domain. Thus there is no problem in showing that the 

Hermitian representations of X(SO (1,n)) actually generate group 
0 

.representa ti ens. 

The representations of SO (1,2) were found by Bargmann 
0 

(1947) (see especially pp. 598-1?09). 

are (Eqs. (I.l.10f,q,h))) 

[K,H] = iP, (K,P) = iH, 

The commutation relations 

[P,H] = iK. ( 3. 1) 

Bqs. (3.1) correspond to the usual parametrization of S0
0 

(1,2), 

according to which exp ( 21fi P) = 1. For a single-valued 

representation, therefore, the spectrum of P must consist of 

integers. The irreducible representations are found by a method 

parallel to the familiar derivation of the representations of 

l_ (So ( 3) ) • one arrive s a t the form u1 as < q ; p I q ; p > = 1 , 

Pfq;p> = plq:p>, (3. 2a) 

+ 
A lq;p> = 1/q-+-p(p-±-1) fg; p~1>, (3. 2b) 

2 2 2 
Qlq;p> - glq;p> (Q = K + H - p ) , {3. 3) 

where 

1 + 1 + 
H ·- - (A + A ) , K = -(A - A ) . (3. 4) 

2 2i 

The representation is at least partially labeled by q, the 

constant value of the Casimir operator Q. The requirement that R 
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and K be Hermitian restricts the possible values of q and the 

values of p which occur in an irreducible representation for a 

given q.[ 3] The result is that there are three classes of 

single-valued representations: 

(1) 1.rivi21 renresent.ation: q = O: p = O. 

(2) COQ.11!!.!!0US §ff!~§: q > 0; p = all integers. ( 3. 5a) 

(3) q = - k ( k - 1) , k = 1, 2, .. 
• • • 1 

( 3. Sb) 
p = k, k + 1, ••• or p = - k, - k - 1, ••• 

(two irreducible discrete representations for each k). 

The continuous representations with q ~ 1/4 are called 

series· ---·---· those with 0 < q < 1 /4 are called the 

£Q.IDE1ementary (or su_e_elemP-ntary, or exceptional) series.· Th~ 

matrix elements of the qroup operators in a representation of the 

complementary series have a different qualitative behavior. As a 

result, these representations do not occur in the decomposition 

of the quasiregular representation on the hyperboloid {see Sec. 

VI.1}. {See also Bargmann (1947), pp. 609-639.) 

There are other representations of ;r_ ( so ( 1 , 2) ) 
0 

which 

correspond to representations of a covering group of S0
0

(1,2). 

In such a case the p's need not be integers, but they still vary 

in integral steps within an irreducihle representation. The 

---------------------------------
(3] This analysis is performed by a clear and elegant graphical 
method in Philips (1963). 
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representations can be classified in the same way as above, with 

similar results except that the possibilities become more 

complicated in the interval O ~ q ~ 1/4 (Philips (1963), Chap. 

5) • 

The representation (3.2) can he rewritten in a form 

more convenient for our purposes. 

Hilbert space can he written 

11 = 2 '(p)fq:p> 
p 

The scalar product of two vectors is 

A general vector in the 

2 
(21 lJ (p) I < oo). (3.6) 
p 

('1,¢) = ~ '* (p) ¢(p}. 
p 

(3. 7) 

Eqs. (3.2) are equivalent to 

PJ (p) = pJ {p), ( 3. Ba) 

1 1 
H 11 ( p) = -Vq + p ( p- 1 ) 1J ( p- 1 ) + - v'q + p ( p + 1 } ' ( p + 1 ) , ( 3 • 8 b) 

2 2 

1 --~ 1 
KIJJ{p) - -\'q+· p(p-1) lJ(p-1) - -Vq + p(p+1) 1J(p+1). (3.8c) 

2i 2i 

4. Re£resentations of the Three-Dimensional De Sitter GrouE• 

The symmetry group of the three-dimensional closed 

universe of constant curvature has been much studied under its 

alias, the homogeneous Lorentz group. The irreducible unitary 
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representations were found by Gel'fand and Naimark (19U6, 1947) 

and Bargmann (1947), pp. 57C-571 and 640. The following 

information is taken from [Naimark], Sec. 8, with some changes in 

notation. (In particular, the relative phase of the vectors 

corresponding to different values of the parameter k has been 

changed, to smooth the process of contraction in Sec. II.4.) 

Let 

1 2 
P -= P + iP , 

+ 

1 2 
K = K + iK. 

+ 
( 4. 1) 

An irreducible representation of the group is characterized by 

two numbers, d and k
0

• It acts in a direct sum of vector spaces 

(k = k , k + 1, ••• ) 
0 l:> 

in each of which the 

-+ generated hy J and P acts according to the 

SO (3) subgroup 

irreducible 

representation of spin k. We shall write the representation of 

the Lie algebra in the form analoqous to Eqs. (3.6-8). A general 

vector has the form 

k 
~ qJ(k,n) 

n:;:;:-k 
ld,k ;k;n>. 

0 

Then the representation of the generators is 

J'(k,n) = n ql(k,n), 

P , { k , n ) ·= Vk ( k + 1 )-- n ( n 1f 1 ) 1f ( k , n + 1 ) , 
+ 

(4. 2) 

(4. Ja) 

(4. 3h) - + 
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Hlf (k,n) ·- - i V(k+n+1) (k-n+1) C(k+1) IJ(k+1,n) 

- n A(k) lJ(k,n) - i \f(k+n) (k-n) C(k) t(k-1,n}, (4.4) 

K ll(k,n) = if(k+n+1) (k~n+2) C(k+1) IJ(k+1,n+1) 
+ 

where 

Of 

C (k) 
i 2 

= - [ (k 
k 

A (k) = , 
k (k+ 1) 

- k 
0 

2 2 
) (k 

2 2 
+ d )/(4k 

1/2 
- 1) ] • 

( 4. 6a) 

(4. 6b) 

There are two kinds of unitary representations: 

(4.7a) 

If k
0 

= 0, d can be taken positive. 

0 < Im d ~ 1. (4.7b) 

course, there is also a trivial one-dimensional 

representation. The Casimir operators (I.4.2) and (I.4.5) take 

the values 
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2 2 
Q = - k + d + 1 .. ( 4. 8a) 

0 

Q = k d (4.8b) 
2 0 

([ Naimark ], p. 167). Unlike SO (1,n) with n even, SO (1,3) 
0 0 

does 

not have a discrete series of representations. 

5. Fe_Eresentations of !h~ Four-Dimensional ne Sitter §:£QQE• 

Str~m (1965) has put the irreducible representations(4] 

of l(S0
0
(1,4)) into the most convenient form for comparison with 

the representations of o((ISO 
O 

(1,3)). 
➔ ➔ 

He denotes our K by - N. 

The basis vectors have the labels Ir, if; 1, n; j; m>, where r and <5 

are related to the constant values of the Casimir operators 

(T. 4. 2, 8) by 

The representation 

➔ 

generated by J and 

the so (3) subgroup 

Q = - r (r + 1) + o + 2, 

Q = r (r + 1) d. 
2 

(5. 1) 

is reduced with respect to the so (4) suhgroup 

➔ 

which P, in turn is reduced with respect. to 

➔ 

qeneratea by J. The indices 1 and n label the 

S0(4) representations which occurf5]; the relationship to the 

( 4] The oriqinal references are Thomas { 1 q41) , Newton ( 19 49, 
1950), Dixrnier (1961), Takahashi (1%3). 
[ 5] SO (U) is the direct product of the so ( 3) groups generated by 
(1 + i112 and (J - i)/2. In an irreducible repre~entation where 
these factor groups have respective spins k' and k, one sets 
1 = k' + k + 1, n = k' - k. 
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Casimir operators of S0(4) is 

+2 -+2 2 2 
J + p = 1 + n - 1, 

' -+ (5. 2) 
J•P -= ln. 

➔ 

Then j and m have the usual meaning with respect to the J 

subgroup. The smallest value of i which occurs in a 

representation of S0(4) is tnt. 

The formulas for the representation of the Lie alqebra 

are complicated, so we shall not repeat them.[6] For instance, 

K311,n;j;m> has 12 terms, the j index taking the values i - 1, j, 

j + 1 and the ( n , 1 ) pa i r ta k i ng t he va 1 u es ( n , 1 + 1 ) and 

(n :!:. 1 , 1) • 

The classification of the unitary irreducible 

representations is the following (in addition to the trivial 

representation): 

(1) Continuous series: 

1 
r = O, -, 1, 

2 

----------·-----

. . . . ' (5.3a) 

(6] Dr. Str~m has supplied the following correction to his paper: 
In the expression for Ol ( i , 1, n) ( p • 4 6 1 ) the factor 1 ~ - ( j - 1 ) ~ 
should he 1~ - j~. 
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- 2 if r = 0 

O' > 0 if r = 1, 2, ••• (5. 3b) 

1 1 
- if r = I •••• 
4 2 

The range of the internal parameters is 

1 = r + 1, r + 2, ••• , (5. 4) 

- r ~ n .Sr. (5. 5) 

The representations with if> 1/4 are called the (first) 

(2) ~i2crete series: 

{a) 
1 

<f= - q(q - 1), q = -, 1, ••• : (5.6a) 
2 

r = q, q + 1, •••• (5.6b) 

The range of the internal parameters is given by Eq. 

or {5. 7) 

(two irreducible representations for each value of q 

and r). 
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{h) er= 0, r - 1, 2, n = o. 

The range of 1 is given by F:q. (5. 4). 

Half-integral values of r imply half-integral values of 

j, and hence double-valued representations of S0
0

(1,4). 

Note the similarity of this classification to the one 

in Sec. B.3, if playing the role of the q of S0
0

(1,2). (Case (2b) 

corresponds to the trivial representation of S0
0

(1,2) .) In the 

contraction to representations of IS0
0 

(1,3) this parallelism 

shows up in an interesting way (Sec. (II. 5)). 
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Appendix c 

A STUDY OF THE CONTRACTION OF THR REPRESENTATIONS OF S0(3} 

For comparison with the discussion in Chapters IT and 

VI of the contraction of representations of so (1,2) 
0 

to 

representations of ISO (1,1), 
0 

we examine the analogous problem 

for a more familiar pair of qroups, S0(3) (the three-dimensional 

rotation group) and TS0(2) (the two-dimensional Euclidean qroup, 

often denoted E(2)). 

1. Irreduc_ible Unitar1 Re£resentations of Z.(S0(3)). 

In analogy with Fqs. (B.1. 6-8) we re-express the 

standard formulas for the irreducible representations of the Lie 

algebra of S0(3) in terms of a Hilbert space of functions. For 

the representation of dimension 2j + 1 we write 

, ( m) I j ; m> ; 

then the representa t.ion is 

J 1J(m) = m J{m), 
3 

( 1 • 1) 

(1.2a} 
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1 
J , (m) = - {v'j (j+1) - m (m-1) , (m-1) 

1 2 

+ Vj{j+1) - m(m+1) 1f(m+1)}, (1.2b) 

1 
J , (ro) = - {Vj(j+1) - m {m=1T V (m-1) 
2 2i 

Vi ( j + 1 ) - m ( m +1) 1J ( m + 1 )J • ( 1 • 2 c) 

The representation is characterized by the value of the Casimir 

operator 

➔ 2 3 2 
J - 2 J ( 1. 3) 

A=1 A 

~2 
J qr (m) = j(j + 1) ,cm). 

The scalar product is 

lJ* (m) pS (m). 

2. .Irreducible Unitary .E.~£resentations of ,Z(ISO {2) l. 

The representations of ISO (2) are similar to those of 

ISO (1,1) (see Sec. B.2). 
0 

There are two types of orbits, the 

origin (p = p = 0) and the circles 
. I ?,. 
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2 
(p) 

1 

2 2 
+ {p ) = M • ( 2. 1) 

2 

In the first case the translations are represented 

trivially, and the formula (B.2.3) reduces to a representation of 

the little group, which is the rotation group S0(2). 

representations are one-dimensional: 

-ieJ -ime 
e Im>= e Im> 

(m = integer or half-integer). 

All these 

(2. 2) 

In the case (2.1) the little group has order 1. ie can 

choose p
1 

(- M ~ p
1 

_$ M) and o--= sgn p;t as independent variables. 

The scalar product (B. 2. 2a) is 

(2. 3, - r, 

The representation is given by a formula 
I 

(B.2.4), where in the present case b_µp = b p 

rotation: 

CJ 
-ieJ (:J A ;; e 

Then the gener3tors are 

p '(p) = p 11 (p), 
1 1 

;.,. 

cos 
= ( + sin 

p IJ (p) 
2 

e p' 

8 P, 

identical to Eq. 

+ bAp and A is a 
I ;I.. 

- sin e 
p~ • (2. 4) 

+ cos e -
Pi. 

( 2. 5a) 
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a _, 
J' (p) = + i- qr (A p) l 

de e=O 
{2.Sh) 

The representation is characterized by 

(2. 6 l 

This representation can be expressed in a form in which 

the operator J is diagonalized: in other words, in which the 

restriction of the representation to the SO(2) subgroup exp(-i0J) 

is explicitly reduced into a direct sum of irreducible SO(2) 

representations. If we make the change of variables 

p = M cos ¢, p = M sin ¢, (2. 7) 
1 2 

it is easy to see that 

otJ 
JflJ (¢) = - i-, (2. 8a) a, 

-i0l.l 
e IJ (Ji) = lJ (JI - e). (2.8b) 

The eigenfunctions of J are 

' {¢) = e (JTJ (~) = m If (¢)) • (2. 9) 
m m m 

Then 
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M 
p lJ {pl) = M cos 

<j ' 
(<j) = - [' (¢) + ' (¢) ], 

1 m m 2 m+1 m-1 

M 

p ' (91) = M sin 
<j ' (rt) ·- -r, ($21) - ' (pJ) ]. 

2 m m 2i m+1 m-1 

Finally, writing 

lJ = ~ ' ( m) ' (¢) , 
m m 

we put the representation into the form 

J' (m) = m TJ (m) , 

M 
P , (m) = - (IJ(m-1) + J(m+1) ], 

1 2 

M 
P f (m) - -[, (m-1) - V (m+1) J. 

2 2i 

The scalar product (2.3) is 

2ft 
= /

0 
a, t*1,i,1,1 = 211~ '* ( m) ¢ { m) • 

m 

ll42 

(2. 10) 

( 2. 11) 

(2. 12a) 

(2.12b) 

( 2. 13} 

From Eqs. (2.10) it is clear that t.he spectrum of J in an 

irreducible representation consists of all the numbers which are 

separated by integers from some m. The group representation is 

single-valued if m is an integer. 
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3. !2!.!!E!! ~on traction 21 th~ Irreduci]:!!~ Representations !ith. 

E£2!!£ft !Q ..the Diagonalized ~u bgroup. 

Substituting 

1 1 
p = - J , p = - lJ , ,J -= J ( 3. 1) 

1 R 1 2 R 2 3 

into the commutation reLit.ions of .z_(S0(3)} (Eg. (I.3.10a)) and 

taking R ~ oo leads to 

[ p , p ] 
1 2 

= o, [ J, p ] 
1 

= iP , 
2 

( J, p ] 
2 

- - iP, 
1 

the Lie algebra of IS0(2). Similarly, Eq. (1.3) yields 

lim 
R4oo 

1 ~2 
J • 

(3. 2) 

( 3. 3) 

Thus ISO (2) is a contraction of S0(3) with respect to a 

one-parameter subgroup. 

When the S0(3) representation formulas (1.2} are 

expressed in terms of 1 and J, an immediate passage to the limit 

B ~ oo yit:dds a representation of 2:(ISO (2)) in which the - T. 

translations are represented trivially ct~ 0). :rt is a direct 

sum of 2j + 1 irreducible representations of the form (2.2). 

In~ntt and vliqner (1953) pointed out that a more 

interesting relationship between the representations of S0(1) and 

those of IS0(2) can be observed hy letting thA so (3) 

representation vary with P so that the value of the Casimir 
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operator.approaches a definite nonvanishinq limit. Express Eqs. 

(1.2), (1.4), and (1.5) in terms of P, J, and M = _j/R. Take the 

limit 

j~oo, R~oo, M ~ canst. 1 O, (.1.4} -

multiplying each equation by the power of R necessary to keep 

both sides finite and not identically zero. The results are Eqs. 

(2.12}, (2.6), and (2.13). (The limits in Fqs. (1.2b,c} are not 

uniform in m· 
' 

the prescription is to act as if I!l /R « M.) 

;[(ISO (2)) representations with inteqral and with half-inteqral 

m values are attained in this way. The fastest converqence 

-~ . -, 
{O(R ) instead of O(R )) is obtained by taking 

1 1 
M·-- (j +-). (3. 5) 

R 2 

As this example illustrates, 11 contraction of 

representations" typically refers to a relation between whole 

families or sequences of representations of the two groups. 

Di~ona1izea. 

Suppose that in place of Eqs. ( 3. 1) we set 

1 1 
p = - J , p = - J , J = J ( 4. , ) 

1 R 3 2 R 1 2 

and attempt to carry out the limit (3. 4) in Eqs. (1. 2). We find 
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that to get a finite expression for P out of Eqs. (1.2a) we must 
I 

absorb a factor of R by setting 

p 
1 

= 
m 

• ( 4. 2) 
R 

But then in the limit the distance between the values of p 
I 

vanishes. We tentatively postulate, therefore, that for R = oo 

p is a continuous variable ranging from - M to+ M, and that the 
I 

vectors of the representation space are functions of p • 
I 

The 

scalar product {1.5), if divided by R, goes into 

(IJ ,91) dp 11* (p ) ¢ ( p ) • 
1 1 1 

Next we attack E q s. ( 1 • 2 b , c) • We make the an sat. z 

1 1 1 
- [' (p - -} + '(p + -) ] ~ '(p ) , (4. 3) 
2 1 R 1 R 1 

R 1 1 d 
- [Y(P - -) - J{p 
2 1 R 1 

+ -) ] ~ - -,(p ). 
R dp, 1 

(4. 4) - r, 

Then 

1 1 1 -1 
P II (p ) = -f~~"" - p ~ [" (p - -) + IJ(p + -} ] + 0 (R ) 

2 1 2 1 1 R 1 R 

~ ~r-- p-2 tf(p ), 
1 1 
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R ____ M + P, -2 1 
JJ(p) --{[v'M;i.-p~ +----+O(R )],(p --) 

1 2i 1 2RVM;:--_-P! 1 R 

1 
+ -) ] + 

R 

1 p
1 

1 1 -1 
[ 1f (p - -) + lJ ( p + -) ] + 0 (R ) 

4i v'MA - P,.l. 1 R 1 R 

i P, 

If we now set 

= f2 ~r-:-P,:- V ( P ) 
1 1 

and rewrite all the formulas in terms of,, we have 

p '(p ) = p 
1 1 1 

lJ(p), 
1 

p 11 ( p ) = (i.i?t - p ~ ' ( p ) , 
2 1 1 1 

(4. 5) - 'f 
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JIJ (p } 
1 

'f 
- {2, ifM'-- p .1. [J1J](p) 

1 1 

d1J 2 
= i v'M"l - p :t - + i (M 

1 dp 
I 

2 3/4 
- p ) 

1 

d 2 
-( (M 
ap. 

447 

2 -1/4 _ 
- p ) ] lJ 

1 

Comparing with Sec. c.2, we observe that we have come 

up with only half of a representation of !S0{2). the part with 

~ = + 1. Our operators have the expected commutation relations, 

but they are not the infinitesimal generators of a representation 

of the group. 

According to Nelson {1959), in order to have a unitary 

group representation P
1 

, P;t, J, and 

2 2 2 
6 - p + p + J (4. 6) 

1 2 

must be essentially self-adjoint (see Sec. B.3). In the present 

case the functions in the Hilbert space are defined on a 

semicircle in the upper half of the P, -p?.. plane {Fig. 1g). Th13 

infinitesimal transformation 1 + eJ + ••• is attempting to 

rotate the functions onto the other half of the circle. J cannot 

be integrated to a finite unitary operator (i.e., J cannot be 
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made self-adjoint) unless we either enlarge the Hilbert space to 

include the bottom half of the circle or impose a boundary 

condition which, for instance, requires the operator to feed the 

functions hack in at the right end of the semicircle as soon as 

it pushes them out at the left.[1] The nonexistence of 

representations of IS0(7) with only one sign of p shows that the 
J. 

latter cannot be done in such a way that 6 is self-adjoint. 

But why did our 

heuristic manipulation 

give us the top half of 

the circle rather than 

the bottom? Did we slip 

in an unconscious 

assumption that P~ is 

positive? The resolution 

of this perplexity is 

amusing. The choice of 

the relative phases of 

the basis vectors in an 

irreducible represent.a-

tion of 

although almost uni-

I 
I 

I 
/ 

----

Fiq. 19 

➔ The p plane for a nonintegrable 
representation of ;t._ {ISO (2)). 

versal, is .really arbitrary. Suppose we were to change the sign 

of all the tj:m> with odd m. Then we would have 

( 1] Cf. Wightman (1964), pp. 264-?6n. 
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J fj;m>=-{j(j+1) -m(m:,!:1) tj;m!:_1> 
... 

instead of the standard formula without the minus sign. 

will be a corresponding sign change in Eqs,. (1. 2b,c). 

There 

Then the 

same procedure as above would lPad to the opposite sign for the 

operators Pa and J so we would obtain the part of the 

representation with if= - 1. More generally, note that most 

choices of the phases of lj;m> yield expressions for pa. and J 

which do net converge at all as R ~ 00. {Hso, the contraction 

1 1 
J = J , p = - J p ·- - J , 

1 1 R 2 2 R ] 

with the canonical choice of phases leads to this sort of 

trouble.) 

let us scrutinize the arqument to see if it can be 

fixed up to give a whole representation instead of a inst a 

fragment of one. The expressions on the left of Eqs. (U. 3-4) 

involve evaluations off at points separated by 2/R; that is, 

points corresponding to values of m that are both odd or hath 

even. Our reasoning was that in the limit, when these points 

coalesce, the values off at adjacent points must also approach 

each other, so that the sequence ~(m) is replaced hy ~ 

differentiable function f{p
1 
). However, the utility of Eqs. 

(4 • .3-4) will not be affected if we postulate that as P ~ oo thfl 

sequence 1l (m) with m even flows toqether into a smooth function 

V rp ) an·1 thE~ serpence w (m) with "I ocl,1 1--,,,r:0m:"!c-; .::i r1 iff1-•U-'f;t-
+1 - I 



Sec. C.4 450 

function V (p ). Then the same calculation as before results in 
-I I 

Now let 

p 1J (p ) = p 
1 p 1 1 

' (p ) , 
p 1 

p ' (p ) = ~ - p ~ ' (p ) , 
2 p 1 1 -p 1 

JIJ (p) : 
p 1 

tJ{p , 1) = 
1 

J(p ,-1) ·-
1 

i ~-=-p-~ 
1 

1 
1/2 [' {p ) 

2 +1 1 

1 
-=-[11 (p ) 
112 -1 1 

d 

' (p } , 
-p 1 

-
+ ' ( p ) J, 

-1 1 

- V {p ) ]. 
+1 1 

( 4. 8a) 

(4. 8 b} 

(4. 8c) 

(4. Bd} 

( 4. 9) 

Then for ct= .± 1, p = (p
1 
,<f), we obtain equations identical with 

Eqs. (2.5) and (2.J). 

So, starting with the advantage of knowing the answer 

beforehand, ~e have pulled the representations of the 1uclidean 

group out of the representations of the rotation group by hook 

and crook. In what follows, somR of the !i h2£ features of this 

discussion will be given a geometrical interpretation. 
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5. Contraction of the .QJ!i.§i~11!lar R~.eresentation at thg fol~. 

Contraction is fundamentally a geometrical notion. 

Intuitively, the action of S0(3) on a sphere is approximated in 

the neighborhood of a point o by the contraction of so 0) with 

respect to the subgroup of rotations about the axis throuqh o, 

which we shall take to be the z-axis in the following discussion. 

This can be made pC'ecise in terms of a natural action of the 

contracted qrcup (IS0(2)} on the tangent plane to the sphere at o 

(see [Talman], pp. 206-209). It is reasonable to expect that the 

contraction of the representations can he interpreted in terms of 

this geometrical picture. 

Such a connection was already established in the 

original paper of In6ntl and Wigner (1953). (See also [Vilenkin], 

pp. 2 28- 230. ) ~hey pointed out that the realization of the 

irreducible representations of SO (3) by basis vectors which are 

the functions on the sphere 

m m 
1 i ; rn> = Y ( e, ¢} = (- 1) 

j 

2j+1 (j-m) ! 1/2 
[---] 

4n (j+m) ! 

m imfll 
P (cos e) e 

j 

is related (near the polar point, where e = OJ to the realization 

of the irreducible representations of IS0(2) by the basis 

functions in the plane 

im¢ 
IM; m> = J ( Me) e 

m 

via the (Previously known) formula 

(5. 2) 
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lim 
j➔oo 

-m m x 
j P ( COS -) = J (X) 

j j -m 

m 
= (- 1) J (Xl • 

m 

452 

(5. 3) 

(In Eq. (5. 2) Jm is a Bessel function, e and ~ are polar 

coordinates in a plane: 

X = 0 COS ~, y = e sin ¢, 

and Ma is the value of the Casimir operator 

representation (2.12). The IM:m> obey Eqs. (2.10) with 

() 

p = + i-
1 ov 

0 
p = - i-

2 ox 

(5. 4) 

for the 

(5. 5) 

these identifications are easily seen to he in keeping with the 

geometrical picture.) A generalization of Bq. (5. 3) ([Vilenkin ], 

p. 229) relates the matrix elements of the S0(3) representations 

(Jacobi polynomials) to the matrix elements of the ISO (2) 

representations (Bessel functions). 

Eq. (5. 3) relates the basis functions of the 

representations of the two groups near the pole. The irreducible 

representation of spin j, however, comprises functions which arP 

nonzero in regions all over the sphRre.[2] There is no reason, 

therefore, to expect a representation of IS0(2) to be an overall 

approximation to a representation of S0(3). It seems more to the 

point to stu1y the group action in the set of all functions which 

(2) The Yf with m << j tend to he concentrate~ near the poles, 
those with m = j near the equator. ~his is obviously related to 
the nonuniform conv~rocnc0 ohservc~ i~ Sec. r.1. 
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are concentrated near the pole, and this requires considering an 

expansion with respect to j. 

The functions (5.1) are the eigenfunctions (of 

eigenvalue j(j + 1}) of the Casimir operator of S0(3) as a 

differential operator on the sphere (cf. Sec. A. 3 and Sec. V .1). 

~ . 
Any L function on the sphere can be expanded in terms of this 

complete orthonormal set. This provides a decomposition of the 

quasiregular representation (see Sec. A. 3) of SO(]) into 

irreducible representations. Similarly, the functions of Eq. 

(5.2) are eigenfunctions of the neqative of the Laplacian in the 

l. plane with eigenvalue M, and the same statements apply with the 

ohvious changes. 

Let us write down the spherical harmonic expansion for 

functions on a sphere of radius R, using a polar angle coordinate 

9 which is scaled so as to measure the geodesic distance from the 

pole in constant units (independent of R).[3] The range of the 

variables is 

0 .$ 8 _5 JfR, - lt < ~ ~ ,r. 

Define (cf. Eq. (3.5)) 

rrr That is, -instead-ofshrinkinq a neighbor-hood of the pole down 
to a point, we keep the dimensions of the neighborhood constant 
and expand the radius of the spher-e. These two viewpoints are 
obviously equivalent, but the one chosen is simpler- to handle 
algebraically and also is more in keeping with the cosmological 
motivation of our problem. 
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rn 
Z (9 ,¢) = 

M 

45U 

m 
VF Y (8/R, ¢). (5.6) 

RM-1/2 

Let g(€,¢) be a function on the sphere with support in the region 

where e < ffR
0 

(R
0 

fixed, R
0 

< R for all values of R considered). 

Define the transform of q hy 

e m 
q (M, m) sin - ae Z* (0,¢) g (0,¢). (5. 7) 

R M 

The inverse transformation is[4] 

1 m 
g (9,¢) = ~ ~ Z (0,¢}g (M,m), 

R:t M m M 
( 5. Ba) 

1 1 1 1 2 
- (RM - -) < m < RM - -, M - = 0, -, , .... ( 5. 8h) 

2 2 2R R R 

Note that g(M,m) is defined (in fact, analytic) for all positive 

M, even though only a discrete set of values enters the inversion 

formula. The scalar product is 

1 2 
- - 2 ~ I g ( M, m) I • 

R M m 

It should be noted that the rescaling of e has a direct 

connection with the contraction transformation (3.1). ThP 

sphere, being a homogeneous space, can be identified with the 

-----------(4] The orthonormality and completeness 
spherical harmonics are given in [Messiah], 

relations 
p. 4qs. 

for the 
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cosets S0(3)/S, where S = (exp~itJ
3

}} is the stability subgroup 

of the pole o. The elements of the group can be given the Fuler 

angle parametrization: 

exp (-i¢,J ) exp (-i9J ) exp (-itJ ) • { 5. 10) 
3 2 3 

The cosets are then labeled bye and ¢; this is precisely the 

familiar spherical coordinate system. (The elements of the coset 

(8,¢) map o into the point (8,¢) .) Clearly, scaling J~ as in Eg. 

(3.1) redefines e by a factor of R. 

Combining Eqs. (5. 6) and {5.1) and a refined version[ '3] 

of Eq. (5.3}, we find that for M » 1/R, M >> 1mt/R, and 

1 m 
- z (e,¢) = 
R M 

1 

nn 
im¢ 

v'M .. 1 (M9) e 
m 

-2 
+ 0 {R ) • {5.11} 

{The 1/2 in Eq. (3.5) is essential to eliminate a term of order 

R-
1
.) Consequently, as R ~ oo the integral (5. 7) approaches a 

limit: 

(R) ( 00) 
-g (M,m) ~ g(M,m) = 

----------·--·---[ 5] [Granshteyn-Pyzhikl, 8.722.1 (p. 100.~). The formula contains 
a misprint: the exponent~ on the left-hand side should hep. 
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Likewise, 

(5. 12b) 

So we have recovered the eigenfunction expansion on the plane, 

which is summarized by the standard formula 

(5. 13) 

(e.g., [Jackson], p. 77). The scalar product converges to 

2 
fa11 fe ae 1g{e,11i1 

6. Contractio!! 12 !!!! ~gua torial Point. 

Another parametrization which 

coordinate system as Eq. ( 5. 10) is 

exp(-i¢J) exp(+iJJ} exp(-it'"T) 
3 2 1 

( s. 14) 

yields the same 

n 
( lJ = - - 0) • ( 6 • 1} 

2 

Here the sphere is exhibited as the space of cosets relative to 

the stability group of the origin of the (¢,l) coordinates. In 

the realization of the irreducihle representations in terms of 

the spherical harmonics, the J
3 

subqroup, which is the group of 

"translations" in ¢, is diagonalized. Hence Eq. (6.1) provin.es a 

natural setting for a contraction of the type of Sec. C.4. 
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However, as remarked in Sec. c.4, the standard phases 

for the spherical h~rmonics lead to divergent expressions when 

contracted around the x
1
-axis. To achieve success one must 

either change the phases or move to the x~-axis. We shall do the 

latter. Then in place of Eq. (6. 1) we have 

where 

exp(-i£JJ) exp(-ifJ) exp(-it.J l, 
3 1 2 

ff 
I 

2 

n 
' - -- - e. 

2 

( 6. 2a) 

(6.2h) 

Contraction according to Eq. (4.1) induces a rescaling of ho.th w 

and f by a factor of R; from now on we employ the rescaled 

variables. Let 

p 
X (w, J) 

M 

.RM-1/2 
= (- i) 

Rp ff 
y c-

RM-1/2 2 

IJ 

R 

n w 
I - f- -) • 

2 R 

In analogy to Eqs. (5.7,Ba) we have a transform 

/

ffR jffR/2 V p 
~(M,p) = __ dw cos - df X* (~,,)q(W,,), 

-nR -ffR/2 R M 

g (w, 1') 

(6. 3) 

( 6. 4) 

(6. 5) 

The sum is over the range (~.Rb), with p = m/R (m = integer or 

half-integer). In what follows it is assumed that g has support 
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where u, f < 11R
0

, R
0 

« R. 

Now fore not too far from n12 and j large one has 

m 
P (cos e) 

j 

m-1/2 
j r~-

,, sine 

1 n mn 
cos ( c j + -) e - - + - J (6. 6) 

2 4 2 

([Gradshteyn-Ryzhi.k], Eq. (8.721.4) {p, 1003)). This formula is 

valid only for 1m1 << j. A more uniform approximation can b~ 

found, but the algebraic complications of carrying through the 

following discussion in terms of it are enormous and would 

obscure the main point. So the corrections needed form= j will 

only be stated at the end. One finds from Eqs. (6.3), (5.1), and 

(6.6) that an approximation to l analogous to :Rq. (5.11) is 
M 

p 
X (w, \l) 

M 

That is, 

p 
X (w, llJ) 

M 

p 
X (W, If) 

M 

~ 

-::::. 

j+m 1 
(- i) 

TI 

1 
- cos M' n 

1 
- i - sin 

lt 

n ipiJ 
cos [- M' + (j + m) - ] e 

ipev 
e 

ipw 
1'111 e 

2 

1 
(j = Rft! - -, m = Rp). 

2 

if j +mis even, (6. 7a) 

if j +mis oad. (n. 7b) 

So, considering even and odd i + m separately, one is 

led from Eq. (6. 4) to two guanti ties, 

-- lJ 



1 a, f(X.) -ip~ 
~ (M,p) = - f dw df cos Mf e g(Q,,), 

1 lt -Q> -oo 

The inversion formula (6.5) becomes 

1 Q:> M { cos f'1' 1 eip<v 
g ( w, ') = f d M f. _ d p ~ q { M, p) 

2lf O -M p=!.1 f - sin f1(f 

(cos for f = + 1 , - sin for p = - 1) • Let 

as in Eqs. (4.9). Then 

1 
- - [tf (M,p) + cf ?J 

2 O' 
(M,p)] 

-(1' 

cJ(M,p,O') 
1 f oo oo io'Mll -ipw 

-- - dw f dlf e e g (W, 11} , 
2lt -co -cc ( 6. 8) 

g (w, tJ) 
1 Joo / M ipl.v -iMIJ 

= - dM dp e (e 
2n O -M 

?f(M,p,1) + e 
iMf 

~(M,p,-1) ]. 

By now it should he obvious that our destination is the 

ordinary Fourier transform in the Euclidean plane. If a mol"e 

uniform asymptotic expression had been usea in place of Eq. 

(6.6), there would have been two essent.ial changes in Eqs. (6.8): 

the Min exp(-iMV) would be replaced hy lgl = VM~ - pa, and a 

factor of 1/vf9T would appear in each equation. Then the 

-lJ 

-W 

_w 
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standard Fourier transform is recovered by chanqing variables 

from (M,o-) to q (with sgn g = - d') and adjusting the 

normalization of cJ by a factor of @ (c.f. Eq. (4.5)). 

the 

The most important point of this 

contraction of the quasir~qular 

exercise is that in 

representation the 

distinction between indices of different parity which was 

introduced by fiat in Egs. 

behavior of the basis functions in the neighborhood of !:__hg £.Qi!lt. 

.Q.f £.QI! t rnction. A 1 so, the choice of relative phases of the ha.sis 

vectors (6.3) is crucial. The phases of adjacent (in i and m) 

functions of the same parity of m must be coherent near the point 

of contraction in order for the integral transform to make sense 

in the limit of large R, when the vari~bles become continuous. 

These same functions will not have coherent phases with respect 

to any other point except the antipodal point; this is consistent 

with the results of attempts at formal contraction of Lie algebra 

representations. Although the discussion in these last two 

sections has not been very precise as to the nature of the limits 

taken, it does indicate that the seemingly arbitrary elements 

introduced in formal discussions of contraction of irreducible 

group representations have perfectly clear geometrical 

counterparts in the structure of representations by functions on 

homogeneous spaces. 



461 

App en di X D 

TYPES OF METRICS AND COORDIN~TE SYSTEMS 

In Chapter III and later reference is often ma~e to 

coordinate systems in which the explicit form of the metric 

tensor of space-time has certain convenient properties, and to 

special classes of metrics which take on especially simple forms 

in certain coordinate svstems. In this appendix some terminoloqy 

is introduced, which is partly standard and partly idiosyncratic. 

The approach to normal and Fermi coordinates via a polar form is 

unconventional, but it brings out the qeometrical motivation 

behind the constructions. 

We are considering Riemannian manifolds (see footnote 1 

of Chapter !II) of dimension s + 1 and signatur-e (+ - ••• -) (s 

minus signs). We always consider coordinate systems in which one 

coordinate, 0 
X I is timelike( 1] and the others are spacelilce. -

Thus, in a system in which the mixed time-space components are 

zero, the metric will have the form 

where g > 0 and 
00 

2 
ds - q 

no 

0 2 
(d x: ) + g 

ik 

j k 
dx d.x, 

is a neqative definite 

( 1) 

matrix at each 

[1] That is, all the tangent vectors to the hypersurfaces 
{x1x 0 = const~} are spacelike. 
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point. Our coordinate systems are not required to cover the 

entire space; the desirable properties imposed locally may force 

coordinate singularities to develop which mark a natural boundary 

to the region covered. 

It is well known that a point and a direction through 

it (the latter specified, for example, by a vector of length 1 in 

the timelike case) uniquely determine a geodesic {curve) through 

the point in the given direction. A g~21g.§i£ h..YJ2ersurface is 

defined similarly. For example, consider the family of qeodesics 

generated by ~11 the spacelike vectors normal to a given timelike 

vector at a given point P. The set of points obtainen in this 

way is ans-dimensional spacelike hypersurface, which we shall 

call a geodesic hypersurface relative to P. (The hypersurface is 

not necessarily geodesic relative to any other point in it, if 

s > 1. For instance, a surface defined by t;; £Qnst. in the 

three-dimensional metric 

2 
as 

2 2 2 
= dt - dr - r 

2 
f(t)de 

is qenerated by the geodesics fl= £Q!!.§i• through the point r = O, 

but these are the only geodesics which lie entirely in the 

surface. In de Sitter space, however, because of the symmetry, a 

geodesic hypersurface is geodesic relative to all its points -­

see Sec. III.1.) 

The construction which is about to he describe~ is most 

easily visualized in a space with nefinite metric, such as the 
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geodesic hyper surf ace 7ust discussed. Given a a istinguisheil 

paint P, define the radial coordinate I 
o.f each other we X - r 

point Q as the geodesic distance from p to Q; that is, the arc 

length of the seqment of geodesic joining 0 to p (which is 

unique, at least locally). To complete the coordinate system we 

assign the nanqular" coordinatP.s 
J., .s same X , ... , X to all the 

points on a given geodesic through P. Now the geodesics are in 

one- to-one correspondence to their unit tangent vectors at P. 

Furthermore, the geometry of the space of tangent vectors is 

Euclidean, and so, given an orthonormal basis in the tangent 

space, one can assiqn angular variables to the tangent vectors in 

a standard way (e.g., spherical coordinates). 

l!2filllL1 cooroinates in £21.£1 form. 

We call these 

Using the standard formulas relating spherical and 

Cartesian coordinates, one can pass to a gQasi-Cartesian system 

with origin at P corresponding to the orthonormal basis chosen. 

At a finite distance from P these coordinates (y', ••• ,ys} will 

not be orthogonal, in general. (That is, th~ metric will contain 

I .l. 
terms in dy dy and so on.) It is coordinates of this type which 

are usually called !!Qfma,! (cf.. [ Synqe ], pp. 76-77}. 

In a space with indAfinite metric an analogous 

construction can be carried out. Instead of spherical one will 

use "hyperboloidal" coordinates, related to Cartesian coorrlinates 

by forroulas involving hyperbolic functions {cf. Secs. IX.1 and 

X. 2) • The polar form of this normal coordinate system is not 

very useful, because it is singular not only at the origin but 

- = 
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over the entire light cone of the origin. 

Gaussian ([Adler-Bazin-Schiffer], pp. 

59-62) are associated with a qiven spacelike hypersurface s (an 

s-dimensional submanifold with a timelike normal vector at each 
, s 

point) and a given coordinatP system (x , ••• ,x) on s. The curve 

. h . . I s of points in space-time w ose spatial coordinates are (x , ••• ,x) 

. d f" d h . h . I s • 1s e 1ne tote t e geodesic through t e point (x , ••• ,x) 1n s 

in the direction normal to s. The time coordinate of a point on 

one of these geodesics is (up to siqn) its geodesic distance from 

s. Then it can easily be shown that the metric has the form 

2 
ds 

0 2 
= {d x } + g 

jk 

j k 
dx d x , 

where gjk may be a function of x0 as well as the 

t he h f X
O t t 1· n ypersur aces = £Q!!.§_• are no ., 

hypersurfaces, even if Sis geodesic. 

(2) 

xL. Note that 

qeneral, geodesic 

Generalized X£f!i coordinates are associated with a 

given timelike curve c. The hypersurfaces of constant time are 

the geodesic hypersurfaces normal to C at each point. {Any 

monotonic parametrization of C can provide the numerical value of 

the time coordinate.) In each of these hypersurfaces we choose a 

system of normal coordinates (polar or quasi-Cartesian). In the 

polar case the metric takes the form 



~.pp. D 

2 
ds = g 

00 

0 2 
(dx ) + 2 

s 
2 q 

i=2 Oj 

0 j 
dx dx 

2 
dr 

s 
+ 2 

j,k=2 

465 

j k 
g dx dx. 

.k J 
( 3) 

(The coefficients roay he functions of any of the coordinate 

variables.) The metric has, relative to any hypersurface 

r = CO!L§!•, the Gaussian form (2) (generalized in an obvious way 

to hypersurfaces with spacelike normals). 

In fg£mi coordinates[2], properly so called, the 

angular (or quasi-Cartesian} coordinates at each time are 

determined by those at an initial time. Fermi defined an 

angle-preserving mapping of the unit normals attached to one 

point of C to the unit normals at each other point of C (see 

f Synge], pp. 12-15). r;, • ' ~ erm1 s transpor~ law gives a definite 

meaning to the intuitive requirement that the coordinate axes 

should not rotate. 

A further specialization is to 

coordinates[3], where the curve c is a geodesic ana x0 is the arc 

length alonq it. Fermi's transport law reduces in this case to 

ordinary parallel transport. In analogy to the situation with 

Gaussian coordinates, it should be noted that the curves 

~ s 
r = £211§1•, .x = £Q!l.§!.•, ••• , x -= £Q.!l~!.- (other than C itself) 

[2] (Synqe], pp. 83-85; Schild (1965), pp. 54-5'>. These are 
Schild•s "Fermi coordinates of the second kind". 
( 3] Schild (1965), p. 55; Manasse and Misner (1963). Manasse and 
Misner call these Fermi normal coor~inates. 
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are not generally geodesics. 

Analogously, we define a geodesic Gaussi!! coordinate 

.§yst~,m as a Gaussian system such that 

(1) the initial hypersurface Sis a geodesic hypersurface; 

(2) the coordinate system given I ~Ii2Ii in S is a normal 

system. 

Geodesic Gaussian and geodesic Fermi coordinate systems 

are very natural for physical applications. We may think of the 

(instantaneous) vantage-point of an observer as being represente~ 

by his position (a point P in space-time) and his velocity (a 

timelike unit vector v). It is natural for this o~server to 

think of the qeodesic C generated by v as the time axis ("here") 

and the geo<lesic hypersurface S normal to it at P as "now". 

These identifications are consistent with a normal coordinate 

system based on P, a geodesic Gaussian system based on s, or a 

geodesic Fermi system based on C (although in general these 

systems will not coincide elsewhere). Of course, to define each 

of these systems uniquely requires specifying a complete 

orthonormal set of spacelike vectors normijl to v. The normal 

system is the natural extension to a finite region of the "local 

Lorentz frame 1' determinen infinitesimally at P by v. However, in 

the context of a theory which depends heavily on a distinction 

between space and time, such as quantum mechanics in a 

Hamiltonian formulation, the Gaussian and Fermi systPms may he 
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expected to play roles at least as important. This subject is 

discussed further in Secs. III.3 and X.8. 

So far we have discussed forms into which any metric 

can be cast by a proper choice of coordinate system. We turn now 

to two forms which put nontrivial restrictions on the metric. 

Thus they define intrinsic properties of the metric itself. The 

importance of these classes of metrics for us is that for them 

the scalar wave equation can be solved by separation of variables 

-- see Chapters v, VIII, and x. 

A statif ..m_etric, as its name implies, is independent of 

time; it is also required that 

g = o, 
Ok 

k = 1 , ••• , s. ( 4) 

Thus 

2 
ds = g 

00 

0 2 
(dx ) 

i k 
+ g dx dx 

ij 

I ,I 
with the coefficients functions of x, ••. , x only. 

We call a gfngralizgQ Robertson-Walker metric any 

metric of the form 

where the 

2 0 2 
ds ; (dx ) 

2 0 
- R (x ) h 

jk 

I 
are functions of x, • • • I 

j k 
dx dx , 

s x alone. 

(6) 

This is a 

special kind of Gaussian metric, describing a universe which may 
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expand or contract but doP-s not change its "shape". 

A Robertson-Walker metricf4] in the strict sense is 

required to be homogeneous and isotropic at each time. This is a 

restriction on the s-tensor hjk' or the manifold it describes. 

In the case s = 3 there are three classic possibilities: 

Euclidean space, the three-sphere, and the three-dimensional 

analogue of Lobachevsky space. 

In their textbook Robertson and Noonan have listed all 

the four-dimensional Robertson-Walker univg~g,2 

there are six.[5) Monels with n.ifferent 

Robertson-Walker coordinate systems are regarded as distinct, 

even if (at least locally) they have the same four-dimensional 

geometry. Tn this dissertation two-dimensional analogues of all 

six of these models will be encountered:[6] 

(1) Ordinary Minkowski universe. 

(2) Expanding Minkowski universe: Sec. X.2. 

(3) De Sitter universe, proper: Sec. III.7 (de Sitter space 

in horospherical coordinates). 

(4) Lanczos uni verse: Sec. III. 1 (de Sitter space in 

geodesic Gaussian coordinates). 

( 4] [ Aoler-Bazin-Schiffer ], pp. 338-349. 
[ 5] (Robertson-Noonan], pp. 362-371. See also pp. 335-348. 
[6] The number ano the name given first are those of 
[Robertson-Noonan]. 
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(5) : Sec. III.2 (a portion of de Sitter space in polar 

normal coordinates). 

(6) : Sec. III.6 (a portion of open de Sitter space). 
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Appendix E 

TH! AXIOMS 01 RELATIVISTIC QUANTUM FIELD THEORY 

The general principles of quantum field theory stated, 

for instance, in (Streater-Wightman], pp. 96-102 and 29-30, or in 

. h ~ o ~· Wig tman anu GarL11ng (1965), involve two basic mathematical 

elements: the operator fields defined on space-time and the 

representation of the Poincar~ group. The second of these is not 

available in the theory of quantized fields coupled to fixea 

external (c-number) fields, including the theory of fiel~s in 

curved space-time, where the curvature can be regarded as an 

external gravitational field (see Sec. VII.7). {In the latter 

case the structure of space-time is changed, and some 

corresponding minor changes in the notion of local fieln 

operators are needed in addition to some compensation for the 

loss of Poincar~ invariance.) In the de Sitter spaces one might 

expect the role of the Poincar~ group to he taken over by the 

appropriate de Sitter group, but the results of the present work 

tend to a contrary conclusion. 

In discussing these prohlems in Chapters IV and VII, 

therefore, it ~ill be helpful to refer to a version of the axioms 

in which the roles of qroup and field are clearly separated. In 

this appendix the axioms are divided into ten st~tements which, 

as indicated in Fig. 20, fall into four classes depending on 
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whether they deal with neither, one or the other, or both of 

these elements. An axiom which comes below another in the graph 

of Fig. 20 either implies it and renders it redundant (as in the 

case of Axiom 8) or tacitly assumes it (e.g., Axiom 9). 

X X 
X 1 X 

GROUP ¾X FIELD 
2 X ] 

/2X¼~ 
9 6~ 4 ~7 5 

/ x"'/x 
10 .X 8 X 

X X 
BOTH 

Fig. 20 

Loqical interdependence of the axioms 

These are the axioms: 

1. Q.yantum theor1. The states of the theory are described 

by unit rays in a separable Hilbert space 'JI. 

2. Relativistic invariance. The relativistic trans-

formation law of the states is given by a continuous unitary 

representation of ISL(2,f), the universal covering group of the 

Poincare qroup: {a, A} ~ U {a,A). 

3. Existence and t_emperedness of the fields. For each test 

function f € ,/ (the space of smooth functions of rapid decrease 

/ 
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-- see [Streater-Wightman], Sec. 2. 1 ) defined on space-time there 

exists a set ¢ 
1 
(f), ••• , ~Yl(f) of operators. These operators, 

toqether with their ad joints 1 (f/, ... , ¢ (f/, are defined 
I '11 

on 

a linear domain D of vectors, dense in ')./. The ¢. (fl and 
J 

t 
¢. ( f) 
J 

leave D invariant. T.f 4>, lJ € D, then (<),¢'.'(f) 11) is a tempered 
J 

distribution, regarded as a functional off. 

4. ,!en§~H:1~1 chara.ct.§I .Q! the fi&!.Q.2 • The U {a,A) leave D 

invariant, and the equation 

-1 -1 
U(a,A) ¢' (f) U(a,A) = ~ S (A ) ¢ ({a,A}f) 

j jk k 

is valid when each side is applied to any vector in D. Here Sis 

a representation of SL(2,~), and 

-1 
{a,A}f{x) - f(A (x - a)). 

5. 1Q£g_J: com mu ta ti vi_ty. If the support off and the 

support of g are spacelike separated, then one or the other of 

(t) 
[ ¢ (f) , ¢ 

. k ] 

(g) ] 
+ 

(anticommutator or commutator} holds for all j and k when the 

left-hand side is applied to any vector in D. 

6. ~!.!§.tgncg 2-.!l!! unigueness Qf .thf vacuum. There is a 

state f
0

, the vacuum, invariant under u, unique up to a phase 
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factor. 

There is a state which is 

cyclic for the smeared fields; that is, polynomials in the 

smeared field components, P(S, (f), 
(t) 

applied this ~ ( q) , ... ) , to , 'J... 

state yield a set D of vectors dense in ~-0 

8. £Y£licity Qf ih.~ 1££.!!Um. ~ is in n and is cyclic. 
0 

9. SEect.ral condition. The eiqenvalues of pP" lie in or on 

the plus cone (i.e., PµPP- ~ 0), where u (a, 1) = exp (iPP aµ.). 

10. Asymnotic com12leteness. The decomposition of n into 

irreducible representations is one appropriate to a theory of 

noninteracting particles of various masses and spins. In fact, 

the states (rays in 'J../) are in correspondPnce with all the 

possible incoming (alternatively, outqoing) confiqura~ions of the 

stable particles described by th€ theory. (A more explicit 

formulation of this axiom would take too much space here. See 

Haag (1955) (Sec. I) or the Wightman references above.) 
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Appendix F 

REPRESENTATIONS OF THE CANONICAL COMMUTATION RELATIONS 

1. Definitions. 

The formal structure of the canonical commutation 

relations (CCRs), Eqs. (VII.2.1) or (VIII.2.5}, can be treated 

rigorously either in terms of an algebra of boun~ed operators 

satisfying the so-called Weyl relations {VIII. 3.10), or in terms 

of an algebra of unbounded operators satisfying the "naive" ccqs 

on a common invariant domain {cf. Powers (1971)). Reed (196g) 

has proved that every representation of the first. type is 

associated with one of the second type, but a famous example of 

E. Nelson (see [Reed-Simon], Sec. 8. ~) shows that the converse if 

false, even for one degree of freedom and even if the fiel~ 

operators are reguirert to be self-ad1oint on a common dense 

invariant domain. The first approach facilitates the proof of 

abstract theorems, hut the second is more intuitive and more 

convenient fer concrete calculations. Here we shall be primarily 

concerned with the Fack representation and representations 

defined from it by a certain kind of transformation, so a 

formulation of the second type is sufficient. Also, for present 

purposes it will not be necessary to impose any conrlition of 

continuity in the test function. 

Let lJc/- (the one-.12article §.2~£~) bP a complex HilhP-rt 
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-
space with an involution operation, f ~ f. Without loss of 

generality we shall take 1/ to he L ~(M,p), where (M,)1) is a 

measure space and the involution is complex conjugation. Let ff' 

(the test func.tion .§£if.§) be a dense subspace of 1)./. Let _f be a 

Hilbert space and 'il a dense subspace off. Let a ( l he a 

linear map of $into the (unbounded) closable linear operators 

on ~with domain~, such that 

(1) the a (f} (f € $) and their ad joints a 1 (f) _ a (f/ leave 

'It inva.riant; 

(2) (a(f), a(g)] = 0 and 

[a(f), /(g)J = Jdµ(x) f(x)g(x) = (g,f) = (f,g) (1.1) 

on 1/t • 

Such a system will be called a rgEI~~ntation of 1hg canonical 

co mm u ta tion reli t.iQ.!!.§• Formally we may write[ 1 ] 

a(.f) = fa(x)f(x) dµ(x), 

t 
[a(x), a (y)] = 6(x - y). 

(,. 2) 

( 1. 1) 

In particular, the fQ£& re£resentation over IJ.I is 

defined by taking (cf. Sec. VIIT.3} 

-------- ----(1] One may call a(x) an "operator-valued distribution", although 
no continuity condition in terms of a topology on F has heen 
stated. The delta function in Eq. (1.1) has meaning as a 
bilinear form on IJ-I. 
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* = space of finite sequences of the form 

lJ = f 1J , 1J (X ) , 1J {.X , X ) , ... , f (X , ••• ,X ), 0, •••} 
0 1 1 2 1 2 N 1 N 

with scalar product given by II 1J II,.. where ,.,., is 

m@n, in fa the Hilbert-space completion of the symmetrized 

n-fold tensor product of 1)/-; 

f = completion of 1l, vi th typical member 

J = {f , IIJ ( X ) , ... , 1J {X , .... ,X ), ... } - {' (X , • •., X ) } ; 

0 1 1 n 1 n n 1 n 

a (fl , : cifii+1 j aµ (xJ f ( xJ 1J (x,x ,x , ••• ,x )}, 
n+ 1 1 2 n 

(1.4a) 

t 
a (f) 1J = {Vn sym f(x ){J (x , ••• ,x )}. (1.4b) 

1 n-1 2 n 

In the, last equation 2 .Y.!l! denotes the symmetri -zer 

1 
sym ¢(x , ••• ,x) = ~ ¢(x. , .... ,x.) 

1 n n! ~1 <n 
( 1. 5) 

(sum over all permutations); in the present case it reduces to 
""' 

! ~ f(x.),J (x.._, ••• ,l. , ... ,x )1. The Y££!ll!1!! sequence fO, O, ••• } 
l'\ · J t1- I r J -,,a 

j =I /IC (j) 
is denoted by 10>. 

These definitions can be formulated abstractly, without 
,_, 

reference to a concrete L realization or even a distinauishe~ 



Sec. F. 1 1477 

· involution. If the involution is abandoned, however, it is best 

to take the map at(} as the basic ohiect. Then the commutation 

relations are 

t t t t t 
[a (f), a (g)] = 0, ((a (f}) , a (g)] = (f,g), ( 1. 6) 

and the Fock representation has the abstract characterization 

t t 
a (f) , = a (f) flJ } = {fti sym (f e fJ ) } , ( 1. 7a} 

n n-1 

t t 
{a (f)) , = r v'n+f < f , lI ) 1 , ( 1. 7b) 

n+1 

vectors of the form¢ ~ ••• 1¢ in the obvious way, and these 
I 'h 

operations are extended to all of 1)/fJn (and hence '}/@ti) hy 

linearity and continuity. Now for _g~£.h realization of ')J as an 

t" space one can define r1 (f) = at (f) t and recover the commutation - f 

relations and Fack representation formulas (1.1) and (1.4). Note 

that the meaning of a (f), unlike that of at(f), depends on the 

realization (mere precisely, on the involution) .[2] 

Hermit ia.n operators may he formed from these 

annihilation and creation operators in two wavs. The first way, 

------------------·---------- t 
[2] In physical terms, the decision to take a (} rather than 
a ( ) as the realization-independent object is forced hy the 
demand that the realization-independent description of a 
one-particle state be linear in the wave function (a 1 (f)t<'>), not 
antilinear (a(f)tlO>). 
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which is how field operators are usually related to annihilation 

and creation operators in quantum field theory, is 

realization-dependent, but the fields depend linearly on the 

complex function f: 

1 t - i t 
.¢ (f) - ( a ( f) + a ( f) ) , 

i2 
n(f) = (a(f) - a (f)); 

{"5_ 

[¢(f}, ff(g)] = i (f,q); ( 1. 8) 

¢(if) = ipJ(f), etc. 

The other way is independent of realization, but the operators 

are only ~1 linear in f (and always Hermitian): 

1 t t t - i 
Q (f) = 

V2 
(a (:f) + a (f)) , p (f) = 

12 

( Q (f) , p ( q) J = i (f, g) ; 

t 
Q(f) = Q(f), Q(if) = P(f), 

t t 
(a {f) 

etc. 

t 
a (f) ) ; 

(,. 9) 

If Mis chosen to be a set of discrete points -- this 

amounts to choosing an orthonormal basis in ')/ -- the CCR algebra 

(1.3) is that appropriate to a collection of one-dimensional 

harmonic oscillators (cf. [Messiah], Chap. XII). 
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.Ef.QQ!!f.! reEresenta tion[ 3] is constructea by considering a formal 

product vector 

, 
X 

where each, is some vector in the state space of the oscillator 
X 

with index x, and generating a Hilbert space by acting on , with 

all the elements of the algebra in the obvious way. (Different 

product vectors can yield unitarily equivalent representations. 

This happens if and only if the vectors are "weakly equivalent" 

see the references.} The Pock representation 

tensor-product representation in 

state (annihilated by a:x). 

2. Bogolubov Transformations. 

which each t is the 
'X, 

is the 

qrouna 

Consider a representation of the CCRs as defined above, 

and let o/c/' be another L-a space. (If 1),/, is reqardecl abstractly, 

1)./.' may he 1)../ itself in a different realization. In this case it 

is important to remember that the involution f will depend, in 

general, on whether f is regarded as a memher of 1)./ or of 11'.) 

Let TT and V be operators from ')../ to I)/'. For the moment we 

assume TI and V to be bounded {and defined everywhere). '1'1h T __ Jt _ en 

and vt are hounded operators frnm 1)/.• to~. Also, we define the 

complex coniuq-ate TT: I/./~ 9./.• and the transpose nT: VJ./' ~ I)/ 

[ 3 ] K 1 au de r £1 ~1 • ( i 96 fi) ; St. re i t ( 1 9 ~ 7 ) : Ree a ( 1 % 8 , 1 <J 7 0 ) • The 
fundamental paper on infinite tensor products is von Neumann 
{1938). 
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of an operator by 

- -Ug = Ug, 

T _t 
u = 0 = ut. 

Under these conditions 

T t T 
b (g) = a (U g) + a (V g) 

. c--'. T 
1.s an operator on ..;; 1.f U q 

corresponding adjoint is 

t 
b {q) -

- t 
b (q) 

and VTg are both in S-, and 

t t t 
= a (U q) + a (V g) • 

( 2. 1) 

(2. 2) 

(2. 3) 

the 

(2.ll.) - :::;. 

By direct calculation we find that b() is a representation of 

the CCBs on f with test function space UT-I (.ff} n VT-I (S) 

(which we assume dense in 1/./') if and only if 

t t 
uu = 1 + vv (2. 5) -

and 

T T 
UV = VU • (2. 6) 

The transformation (2. 3) is called a BogQluboy transformation, in 

reference to an application in the theory of superconductivity. 

Suppose that, in addition, the a•s can be re-expressed 
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in terms of the b' s, at least for a dense set of f's in ')/: 

Then 

a (f) 

T t T 
a (f) -= b (X f) + h (Y f) • 

T T 
= a ( (U X 

t T t T T 
+ V Y ) f) + a ( (V X 

It is easy to see that necessarily 

T T t T T 1r t T 

t T 
+ u y ) f). 

V X + 0 Y - 0, U X +VY = 1. 

(2. 7) 

So (using Eq. (2.6)) we have - uutyT = UVTXT -= VUTXT = V - vvtyT, 

and hence (using :Eq. (2. 5)) YT= - v. Similarly, usinq the 

complex conjugates of Eqs. 
-T, - -TT 

(2.5-6), we have - VV X = U - GU X 
,-

and hence X = u. So Eq. (2. 7} becomes 

t 
a (.f) = b {Uf) - h {Vf) , (2. 8a) 

t t 
a (f) = b (Uf) b (Vf) • (2.Ab) 

On the other hand, Eq. (2.7) must be a Bogolubov transformation 

itself, so Fqs. (2.5-6) applied to Eqs. (2.8) yield 

t T 
U U -- 1 + V V, (?. 9) -

t T -
U V = VU. ( 2. 10) 
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Egs. (2.9-1Q) are necessary and sufficient for the invertibility 

of the transformation (2. 4). 

J. 'Ihe Theorem on E_guiyalence Qf l!~12resentations .TI,g_!.,~teg_ hY 

122.921!!!rnY !fgnsforma tions. [ 4] 

let {ak} be a system of annihilation operators in the 

Fack representation on a Hilbert space f, and fb-} another set 
J 

of operators which also satisfy the CCRs and are related to the 

a•s and at's by a linear transformation, which may be 

schematically indicated by 

b = ~ ( U a. 
t 

+ V a ]. ( 3. 1) 
j k jk k ik k 

Then, roughly speaking, the representation of the b 's in ~ is 

the Pock re pre se nta tion if and only if the "matrix" VJ k is 

Hi. lbert-Schmid t: 

2 
~~ IV I <oo. (3. 2) 
j k jk 

This condition is quite reasonable, since the expression on the 

left-hand side of the inequality is the expectation value in the 

a-vacuum of the total b-numher operator ~b~b .• In general, 1 an~ 
J J 

k are continuous variables, and the sums in the condition (3.2) 

[4] [Frieorichs], Part v: Shale (1962); (BerezinJ, Chapter IT; 
Kristensen f1 ~l• (1967). The present exposition follows the 
last two references, but qeneralizes them by allowing different 
reali~ations L~(M,p) of the one-particle Hilbert space at the two 
ends of the transformation. 
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are to be interpreted as integrals. 

In practice the kernels and 

obtained by some formal calculation (cf. Secs. 

their mathematical status may be dubious. 

483 

V• 
J k 

usually an~ 

IX. 3 and x. 2), ana 

Unfortunately, the 

criterion stated above has been oroved rigorously only when these 

kernels define bounded operators, U ana V, in a Hilbert space. 

Then we have a Bogoluhov transformation in the sense of Sec. F.2. 

(Eq. (2.3) is Eg. {3.1) smeared with a test function.) Moreover, 

the proof assumes that the transformation is invertible (i.e., 

Eq. (3. 1) can be solved for a k' or Eqs. ( 2. 7-10) hold} • 

,1'._h_§.QI~l!!: Assume the followinq: 

(1) a ( ) is a Fock representation with one-particle space 11 
q 

and Fock space -d'• 

(2) U and V are bounded operators from #)/ to another Hilbert 

space {with involution) 1/'. 

t t T T 
(3) uu ·= 1 + vv and UV = VU (3. 3) 

(so that b (g) = a (UT q) + at (V Tg) defines a representation in 

. .j:of the CCRs with one-particle space i'). 

t T_ t T_ 
(4) U U = 1 + V V and U V = V U 

(so that a() can be expressed in terms of b(): 

b(Uf) - bt(Vf)). 

(3. 4) 

a (f) = 
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Then the condition 

(5) Vis a Hilbert-Schmidt operator 

is necessary and sufficient for the conclusion: 

There is a vector l € ,r such 
( o) 

that b(g)' = 0 for 
( o] 

all 

In this case the representation b() is unitarily equivalent to a 

Pock representation. 

decompositions 

t 1/2 
U - (UU ) U , 

0 

t t 
u = u 

0 

t 1/2 
(UU ) ( 3. 5) 

where u is a partial isometry ([Kato], pp. 334-335). The kernel 

of u is the kernel of utu, and the range of u is the closure of 
0 0 

the range of u; similarly, the kernel of ut is that of uut, and 
" 

its ranqe is the closure of the range of u t. 

On the other hand, th +· uut = 1 + ,,vt .. e equa,.1on shows 

that nut is a {strictly) positive definite self-adioint. operator. 

'rhere follo14s: {a) {UTTt)- '/1. exists and is hounded; (h) u: is 

• • t • • f.J TJ t 1_• S e inJec ive, since t • ~he same reasoninq startinq from 

utu 1 
-t-

shows that uo is injective. So Uc is actually = + V V a 

unitary operator, and rr t = u-1 • Consequently, u has the hounded 
~ () 
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• TJ - ' = TT - I ( TJ u t )- 'h.. • .inverse l 
0 

In passing we have proved that the 

ranges of U and n t a re dense. 

(2) I.hg 9perator Y: Define 

-1 
y = - u v. 

_, 
Since U is bounded~ y is Hilbert-Schmidt if and only if Vis. 

Since uv' = vuT, one has yT = y. 

t t t 
(3) IIYH < 1: u nc1 - yy) = u U(1 - YY) 

t 
= TJ u 

t -1 _-1_ t t _-1_ t T __ -1_ 
U UU VU V = U U - U VU V = 0 U - V UU V 

t T_ 
=UU-VV=1. 

(Eqs. (2.9-10) have been used.) Since we know utu has an 

inverse, this shows that 1 - _yyt = (Utur'., or yyt = 1 - 0-I ut-t. 

Th us for a 11 f e '/.I 

i" 2 
11 Y £ 11 = U f 11 

2 t·-1 2 
- 11 u f II 

2 
< If II • 

-V 

t-, (The inequality is strict since U is injective.) Therefore, -

the operator norm of y is 

IIYll 
op 

t 
-- II y II 

op 

' ( o} 

< 1. 

Consider the equation 



b(g)J = O, where 
(cJ 

' - nr (x , ••• ,x )}. 
(O} n 1 n 

486 

(1. 7) 

(We are using an explicit realization of ')./- as an L~ space.) 

Written out in terms of the definitions (2.3) and (1.4), the 

equation is 

T 
[Yn+1 f dµ{x) (U g) (x) tJ (x,x , ••• ,x)} 

n+ 1 1 n 

T 
= - {Vn sym (V g) (x) 1J (x , ••• ,x )}. (3.8) 

1 n-1 2 n 

Let us consider the various component equations. 

n = 0: 

If this is to hold for all g, we must have ' (x) = o, since 
I 

r 
( = rr+) u has dense range. 

tf2 f dµ (X) 
T T 

n = 1: (U g) (X) ' {X, X ) = - ( V g) (X ) lJ • 
2 1 1 0 

Substitute 
-tT 

u g for g: 

f2 f dµ(x) 
T 

g ( x) ' (X, X ) = CY q) ( X ) lf • 
2 1 1 0 

If If 1 O, this equation states that y is an integral operator -
0 
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with the symmetric kernel 

Y (X I X ) 

1 2 - V2 ' 
0 

-1 2 
1J (x ,x) € L (dx dx )• 

2 1 2 1 2 

This is equivalent to the Hilbert-Schmidt and symmetry properties 

of the operator y. 

General n: t is related homogeneously to, • Ry 
.-i+1 71-I 

induction, f : 0 for all odrl n. 
1'1 

It follows that ,
0 

1 0 for 

nonzero J ; let us set ,
0 

= 1. For even n we obtain 
(cJ 

fxi+2 f d µ ( X) g ( X) 1J ( X , X 1 • • • 1 X ) = 
n+2 1 n+1 

T 
fri+1 sym CY g)(x) f (x , ••• ,x ), 

1 n 2 n+1 

or 

1} (X 1 • -• • 1 X ) = 
n+2 1 n+2 

1 n+2 
~ Y (X IX ) 

v'(n+1) (n+2) p=2 1 p 
' (X , ••• ,1 , ••• ,x ). 

n 2 p n+2 
( 3. 10) 

The solution of this recursion is (Kristensen et al. (1967)) 

-n/2 n -1 
lJ (X 1 • • • 1 X ) = Vn! 2 ( (-) ! ] 

n 1 n 2 

X sy m [ Y (x , x ) Y (x , x ) ... Y (X , X ) ] (3.11) 
1 2 3 4 n-1 n 
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J.. 
for n even, which is a symmetric L function. 

(5) IJ ( o) 1.§ !!..QI.fil ali zabl~: 

calculate that 

Kristensen et al. (1967) 

2 
II ff II 

( 0) 

00 

= TT r 2 
j V=O 

(
- 1/2) 2 v 

(- y . ) ] , 
y j 

where the Yj are the eigenvalues of 

p. 12) 

The maximum Y· 
J 

eq u al s Q Y fl a r • 

and 

If all Y. are less than 1, 
J 

the series converge, 

2 
It 11 II 

(0) 

2 -1/? 
= TT c1 - r > 

j j 

Otherwise the expression is infinite. Consequently, ft YU
0

, < 1 is 

a necessary and sufficient condition for 

f. 

V to be a member of 
(a) 

To summarize, it has been shown so far that the 

following are equivalent: 

a. V is Hilbert-Schmidt. 

b. Y is Hilbert-Schmidt and II Y II < 1. cp 

c. There is a W € $such that b(g)J = 0 for all g € ~•• 
(o) (o) 

When , exists, it is unique except for a constant factor. 
( o) 

(6) .Th~ fepr~sentation b ( ) 12 FO£f .i.!! _ihe £Y£.!ic 

§J!Q§£~£f generated }u '1 : Let $ be the closed linear span of 
(o) I 

the vectors of the form 
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1 t t 
b (g ) ... b (g " (n = o, 1, ... ) . (3. 13) 

vnT 1 n (0) 

If such a vector is identified with the sequence 

(0, 0, 

b t (g) in 

g (x ) ••• g (x ), O, •.•• }, the 
I I >, 11 

r. is seen to be that of the 
I 

action of 

operators of 

h (q) and. 

the Fock 

representation. 

(7) .Ihg cyclic subs,2ace is all of ff: Repeating the 

entire argument with a and b interchange1, we find (since - VT is 

Hilbert-Schmidt) that there is a unique vector JO>€ f which is 
I 

annihilated hy all the a(f), an~ that the cyclic suhspace 

generated by it is a subset of 

necessarily the original Fack vacuum, 

r,. Since 

re~. 
I 

this vector is 

Thus f.= ff: 

If 3/./ and 1)./' are the same, the unitary equivalencP. of 

the twc Fack representations is implemented by the unitary 

operator which maps each basis vector 

1 t 
a (g ) 

v'nT 1 
... t 

a (g ) t O> 
n 

into the corresponding vector (3.13). 

4. Diagonal Bogolubov Transformations. 

A special case of Eq. (3.1} (or (2.3)) is[5] 

f~1 In the applications in rhapter X (ai~ below in this section), 
where k is a momentum variable, a!k appears instead of a!. The 
extension of the following remarks to this case is easy. 
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b = (X'lc (k) a 
k k 

The condition (2.5) becomes 

t 
+ [3 (k) a • 

k 

2 2 
I cx(k) I IO(k) I = 1. 

4 90 

( 4. 1) 

(Eg. (2.6) is trivial here.) If k is a discrete variable, the 

representation of the b's in the Fack space of the a•s is a 

tensor-product representation. The theorem of the last section 

certainly applies to the case (4.1). (ThP. transformation has the 

inverse 

a = cx(k) h 
k k 

t 
f?(k)b. 

k 
( 4. 3} 

If either operator (of multiplication by ex or B) is unbounded, 

then I? is not Hilbert-Schmidt; but in this case Y of f'q. (4. r.q 

below is not normalizable, so the conclusion of the theorem 

holds.) The solution for the b-vacuum is given by Eq. (3.11) 

with 

y (k , k ) = 
1 2 

~ (k I) 
d (k - k ) • 

~ (k ) 1 2 
I 

(4. 4) 

Note that if k is a continuous variable, y is not normalizable, 

and hence the representations are inequivalent. The test for 

equivalence in the discrete case is 
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2 
~l?(k)I < oo (4. 5} 

(from Eq. (3.2)). 

As an example of the application of the theorem let us 

compare the Fack representations corresponding to different 

choices of the mass for the scalar field in a box. 

Write[ 6] 

¢ (0, x) 
1 2 

= - ) [k 
f2. k 

i 2 
TI(O,x) = - - ~ [k 

~ k 

and also 

¢ (0 ,x} 

lt(O,x) 

1 2 

= - ~ [p 
v5. p 

i 2 
= - - ~ (p 

v'2 p 

2 -1/4 
+ m ] 

2 +1/4 
+ m ] 

2 -1/4 
+ M ] 

2 +1/4 
+ M ] 

ik•x 
[i 

ip.x 
[9 

ip•X 

a 
k 

a 
k 

b 
p 

[9 b 
p 

-ik•X 
- 9 

-ip-x 
+ 9 

ip•X 
- 9 

t 
a ], 

k 

t 
a ], 

k 

t 
b ], 

p 

t 
b ]. 

p 

(4. 6) 

( 4. 7) 

(These equations are Fourier expansions of the canonical field 

operators at a fixed time; they .d.§!!11!2 the a•s and b's. Such an 

expansion certainly makes sense (except possibly in a 

representation with a very unusual test function space) 

regardless of whether the mass parameter involved is related to 

the dynamics of the field, which has not been specified.) Invert 

---------- ------------(6) Here x and k ares-dimensional vectors. 
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Eqs. (4. 7) and substitute from Eqs. (4. 6) : 

1 {[ 'f-:+-p,,: f +m: 161p b = - ~ + - k)a 
p 2 k k~ + m" p + M k 

~ ~ t 
+ 

[ :3.. ?.. JS<p + k) a J • (4. 8) 
k + m p'- + M,. k 

Thus 

V(p,k) 

where at the l~st step one sets k = - pin the first factor. The 

delta function is a Kronecker delta, since p and k are discrete 

variables (=2ffn/L, where Lis the length of the box). 

We wish to know whether the Fock representation of the 

a operators, which is always used when the field is to satisfy 

the Klein-Gordon equation with mass m, is equivalent to the Fack 

representation of the b operators, appropriate to mass M. So let 

us apply the criterion (4.5). it large p we have 

2 
= 1 + (M 

2 2 
- m } /4p 

4 
- (3M 

2 2 4 4 
+ 2t1 m - Sm ) /32p + ••• , 

2 
= {M 

2 2 -4 
- m ) /4p + 0 (p ) , 

= 
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2 
llll(P)I 
p 

1 2 
= finite term + - (M 

16 

2 2 -4 
- m ) ~ p 

p 

493 

This sum converges if (and only if) s < 3; that is, in space-time 

of dimension 2, 3, or 4. 

So in a finite flat space (torus) of physical dimension 

or smaller, the Pock representations for ~ifferent masses are 

equivalent. Jn other words, the representation of the b's of 

Egs. (f~. 7) in the usual Fock sp<lce for a free fielo of mass 

m (1 M) is iust the Fack representation. Of course, the vacuum 

(better, no-particle) states and the rest of the particle 

structure are different. Thus each mass determines a virtual 

particle concept (see Sec. X.7); in the usual theory of the free 

field the one related to the mass which appears in the field 

equation or the Hamiltonian corresponds to real particles. 

The sum (U.10) qrows proportionally to the volume as 

the size of the box approaches infinity (sincP the points of the 

momentum lattice become denser). Hence the inequivalence of the 

representations in infinite space is not surprising, and is an 

infini te-volnme ef .fect. For s > 3, 

inequivalence even in a finite region 

divergence. 

however, one has 

an ultraviolet 

The equivalence of the a and b representations can also 

be decided by determining whether the no-par.ticl~ states are 

weakly equivalent in the sense of infinite tensor products (see 

Sec. F.1 and references cited there). The calculations necessary 

to test for weak equivalence are essentiallv identical to those 
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of Jaffe (1965), pp. 197-200, for the slightly more complicated 

case of two quadratically coupled fields, although he does not 

use the language of tensor products. (See also Haag (1955), Sec. 

II.1.) One is led again to a sum in which the terms fall off as 

p- 4, so the conclusions are consistent. 
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PROOF OF ASSERTIONS CONCERNING THR VACUU~ 

OF THE FREE FIELD IN A BOX 

1. !hg Two-Point Function De,2ends on Global Boundary Conditions. 

C+J 
Let GL (x~,x,) be the two-point function of the free 

scalar fie1a in a closed two-dimensional flat universe of length 

L ~ith spatial coordinate - 1/2 ix i L/2). In Sec. IX.7 it is 

asserted that 

E ( f, g) 
1 

la 2 x2_ fa 7 x 1 _, f*(x )q(x )G 
2 1 

(+) 
(X , X ) ( 1. 1) 

L 2 1 

is not equal to the analogous expression formed from the 

two-point. function of the scalar field in infinite 

two-dimensional space, even when f(x) and q(x) have support in a 

causal diamond with base inside the interv::il (- L/2, L/2}. To 

establish this claim (for at least one L) it clearly suffices to 

prove that EL -,. EL, when L 1 L • (for at least one pair of L's) • 

Since three-dimensional smearing is allowed in the standard Fock 

representations, we may set t
1 

= t~ = 0 and let x, and x
2 

denote 

the one-dimensional space variables. Then 
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(+} 1 1 
G (x ,x ) = - ~ exp(ik(x - X ) ) , 

.L 2 1 L k 2wlc 2 1 

k = o, -+ 2Jf/L, . ( 1. 2) ••• t 

2n 1 
E (f,g) = ·-~ " f* (le) q (k) , 

L L k 2W"-

L/2 -ikx 
q (k) = f dx j g ( x} 

-L/2 
{g(t,x) = g(x}b(t)l. (1.4) 

Take f(x) and g(x} to be the characteristic function of 

the interval (- n;2, ff/2). Then 

Note that 

2 
PHO) I 

2 
I~ (k) I 

2 
l<Hk) I 

2 
1<j(k) I 

= 

= 

= 

= 

It follows that 

(lt/2 -ikx 
g{kl = J dx 9 

-rr12 

sin kll/2 

k 

1T 
, 

2 

0 if k is a nonzero even integer, 

2 -2 
- k if k is an odd integer, ( 1. 6} 
1T 

1 -2 
- k if k is half an odd integer. 
1J 
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and 

E (g ,g) = 
2n 

11 

1f 

4m 
+ ~ flt CJ 

k k 

2 -1 
k ] , 

k 2 -1 
E ( g, g) = + ~ [21T (,.) 

2 -1 
k ] + ~ [ 411 CJ (-) ] 

41t 8m k k k k 2 

where, in all the sums, k = ~ 1, + 3, •••• 

For sufficiently small m the expansion 

w 
-1 

k 

1 1 m 2 
-(1 - -(-) + ••• ) 
k 2 k 

497 

( 1. 7) 

, ( 1. 8) 

is valid. Therefore, as m --.,. 0 the sums in "Eqs. (1. 7) anit (1. 8) 

remain bounded and the k = 0 terms, which approach infinity, 

dominate. But these differ from each other by a factor of 2. 

Thus E
2
n(g,g) J E

4
T(g,g) for sufficiently small m. Since it is 

easy to see that each EL(q,q) is analytic in m for m positive, 

they cannot coincide even for large m, except possibly at some 

discrete pcin t:s .• 

2. !h,g Difference between the F.n~y Densities Is Infinite. 

As in the previous section, we regard the box of length 

L = ?TI as embedded in the infinite universe as the interval 

(- 7t, TI). Then the field algebra of the box is a snhalqebra of 

the complete field algebra, and in analogy to Sec. IX.3 we can 

solve for the box annihilation operators, which appear in the 

expansions 
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~(0,x) 

TI(O,x) -

-1/2 
= 2 (2w ) 

k k 

ikx 
[i a 

k 

_ 1/2 ikx 
i 2(w /2) [9 a 

-ikx 
+ 9 

t 
a ], 

k 

-ikx t 
- 9 a ] 

k k k k 

498 

( 2. 1) 

(k integral), in terms of the annihilation and creation operators 
(tJ 

b of the ~CK representation (terminology of Sec. IX. 3). The 
p 

expression of the ak in terms of the field is (cf. Eq. 

(VIII.2.11)) 

1 n -ikx i TI -ikx 
a = ·-[V~-, dx fi ¢(x) + -j dx 9 lt(x)] 

k V2 k -ff VW- -11 
k 

1 o:i -ikx i oo -ikx 
= -[ fw-J dx fi u (x) ¢ (x} + -f d.x 9 u (x)lJ (x) ], 

f2. k -CD vZi:_ -oo 

where u is the characteristic function of the box. 

transform of u is 

The Fourier 

n (p) - 6ri 1l (p) 

(jj 

= f dx 
-oo 

-ipx 
9 U ( X} 

sin 1tp 
= v'2n --. 

ltp 

Hence, using the convolution theorem, we find 

(2. 2) 

1 00 _,__ i 00 ....._ 
a ·- -[ Vw-f d p tI ( k - p) ¢ { p) + - ( d p u ( k - p) 11 ( p) ] , 

k V2 k -co {w;_ -oo 

or 
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\ = [
00 

d p iI (k - P) )< 

(2. 3) 

Since the second term does not vanish, the physical 

quantities Nk = at ak (k integral) which correspond to the quanta 

of the Fack representation for the box are represented in the ~OK 

representation by operators which do not annihilate the vacuum. 

In fact, it is easy to see that the kernel of the creation term 

in Eq. (2.3) is not Hilbert-Schmidt. 'Ihat is, the box number 

operatcr does not have finite vacuum expectation value in the IDOK 

representation, and vice versa. (Cf. Sec. IX.3 and Appendix F.) 

1he energy density of the scalar field, T
00 

(x), which 

has the classical expression (IX.5.1), is ordinarily made into a 

quantum-theoretical 

representations by 

operator 

normal 

in each 

ordering with 

of these 

respect 

Fock 

to the 

appropriate set of annihilation and creation operators. This 

procedure can be described as the discarding of an infinite 

numerical term (c-number) in each case. We ask whether the 

difference between these two infinite quantities is in some sense 

finite, or even zero. We can take the expression for T00
, normal 

ordered in terms of the a operators, and substitute from Eq. 

(2 3) The resulting expression will contain terms in b b
1 

• • r r, 
which contribute a vacuum expectation value in the ijOK 

representation. It is this quantity which we wish to 
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investigate. (Let us denote it <T
00 >.) 

The direct formal calculation just outlined leads to a 

hopelessly indeterminate expression of the form 

~ A(k ,k ) , 
k , k 1 2 

I :t. 

where each A(k ,k) is a divergent integral whose phase depends 
I J... 

on the k's. So <T 00 > must be defined in a subtler way, taking 

account of the distribution nature of the operator T00
• Let us 

consider 

00 
T (g ,g) = 

1 
-fay Jay g{y )g(y) [:ff(y }TI(y > 
2 1 2 1 2 1 2 

6~ 0¢ 2 
+ - (y )- (y ) 

ox 1 ~x 2 
+m ¢(Y)sqy):], 

1 2 
( 2. 4) 

where the normal ordering is ~ith respect to the a•s, and g is a 

smooth function with support in the box. One would naturally 

def1. ne T 00 (X) th 1 · . t . f as e 1m1, 1 any, of this object as 

g (y) ~ o (y - x). If <'r
00 

(g ,g) .>, the vacuum expectation value 

of 00 
T { g I q) in the hr-representation, is not finite, there is 

little hope of interpreting the more singular <T 00 (x)> as a 

finite gua.ntity (even as a distribution). 

tefining the Fourier transfocm of a function by Eq. 

(2.2), we .find from Eqs. (2.4) and (2.1) 
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00 -1 2 
T ( g , g) = ~ ~ ( 4 ,rw-:,-) { ( w CJ + k k + m ) 

k k 1 2 1 2 1 2 
I '-
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t 
~ [~(- k )~(k )a a 

t 
+ ~(k )~(- k )a 

1 2 k.1.. k1 
1 2 k 

2 
- ( w ~ + k k - m ) [ g (- k ) g (- k ) a a 

1 2 1 2 1 2 k, k~ 

t t 
+ ~(k }<}(k )a a ]} (2.5) 

1 2 k
1 

kl. 

2 "- a. 
(where u, = k 1 + m , etc) • .Let us substitute from Eq. (2. 3) and 

isolate the b-vacuum term, writing the p integration on the 

outside: 

00 
<T ( g, g) > = 

1 a, -f dp 2 ~ ti (k 
8 -oo k, k.,_ 1 

-1/2 
- p) tI (k - p) { w w ) g (- k ) ~ (k ) X 

2 1 2 1 2 

2 WP ~~~-: f f {(w IJ + k k + m ) [ v:--- + ~- - - -] 
1 2 1 2 w c.Jl. '4.)j w,w, f 

vZv~ w~ f, f 2 <.Jp w1. 
+ (w w - k k - m ) [ fu--- - - + -]} . (2. 6) 

1 2 1 2 (Ji Wi, wr w~ iv, 

The sums converge for fixed p, since g{k} decreases rapidly. The 

integral over p converges for all terms except those proportional 

to wp, which can be written 
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_2_joodp fJ sin2 lrp l~ (-1/ ~(k) 2 
4ff1 0 p k:-a, k - p 

( 2. 7) 

if g(y) is real. This integral diverges at the upper limit, 

since the integrand falls off only as 1/p. (It can easily be 

checked that the sum does not vanish identically as ey(k) 

approaches the Fourier coefficients of a delta function.) 

Hence the 00 quantum-field-theoretical :T (x): (unlike 

01 :T (x) :) seems to depend strongly on the representation with 

respect to which the normal ordering is defined. This example 

shows that normal ordering is highly suspect as a method of 

defining a local energy density suitable for the purposes of 

general relativity. 



503 

BIBLIOGRAPHY 

I. Books 

Abra ham 
Abraham, R., Foundations Qf fl~f!rn.nif§, New York, w. A. 
Benjamin, Inc., 1967. 

Adler-Bazin-Schiffer 
Adler, R., Bazin, M., and Schiffer, M., Introductign i2 
General Relativit1, New York, McGraw-Hill Book Co., 1965. 

Akhiezer-Glazrnan 
Akhiezer, N. I., and Glazman, I. M., 
Q~f~!.QI& .!I! Hilbert S_eace, New York, F. 
1961. 

Berezin 

Theory 
Ungar 

Qf Li:g~~I 
Publ. Co., 

Berezin, F. A., The Method .Q! Second ~uantization, New York, 
Academic fress, 1966. 

Bjorken-Drell 2 
Bjerken, J. D., and Drell, s. D., Belativistic 2.Y~.!!1!!.!! 
I.i~lQ.§, New York, McGraw-Hi 11 Book Co., 196 5. 

Carrier-Krock-Pearson 
Carrier, G. F., Krook, M., and Pearson, c. E., Functions of 
1 f21!!.E.1g~ Variable: Theory and Technigue, New York, 
McGraw-Hill Book Co., 1966. 

Corinaldesi 
Corinaldesi, E., Relativistic Wave Mechanics, ed. by F. 
Strocchi, Amsterdam, North-Holland Fubl. co., 1963. 

Eisenhart 
Eisenhart, L. P., Riemannian §£Q!f!IY, 2nd ed., Princeton, 
N.J., Princeton Univ. Press, 1950. 

Fried.richs 
Friedrichs, K. c., Mathernatic~1 aspect§ 2.f thg Q.!!,g1!1.!!.fil 
1'.h§Q.I.Y 2! .Fields, New York, Interscience Pub ls., Inc., 1953. 



504 

Gel'fand 5 
Gel'fand, I. M., Graev, M. I., and Vilenkin, N. Ya., 
Generalizeg fynctions, vol. 5, 1..!!!.~.SU:~! Q!Ql!tet:ry fil!.1 
Re]rgsentation Theory, New York, Academic Press, 1966. 

Gradshteyn-Ryzhik 
Gradshteyn, I. s., and Ryzhik, I. M., Is!!l! QI Integrals, 
Series, and Products, New York, Academic Press, 1965. 

Hermann 
Hermann, B., 1ig 5f2YE§ fQf Physicists, New York, w. A. 
Benjamin, Inc., 1966. 

Hermann 2 
Hermann, R., fQurier !.nal1.§!§ QI! §.IQ~£.§ !!ll..1 f~rtJ&! R~yg 
!naly§J.§, New York, w. A. Benjamin, Inc., 1969. 

Jackson 

Kato 

Mandl 

Jackson, J. D., Classical Electrod1namics, New York, John 
Wiley and Sons, Inc., 1962. 

Kato, T., Perturbation Theor1 £Q£ 1i!!etl Q.egratQf§, New 
York, Springer Verlag, 1966. 

Mandl, F., Introduction to Quantum fie!~ Ih!2£1, New York, 
Interscience Publs., Inc., 1959. 

Maurin 
Maurin, K., Genera,! Eiggnfunction E.!£ansions and UniiiIY 
Be]resentations of To£ological Groups, Warsaw, Polish 
scientific Publishers, 1968. 

Messiah 
Messiah, A., Quantum Mechanics, vols. I-II, Amsterdam, 
North-Holland Puhl. Co., 1961. 

Naimark 
Nairnark, M. A., 1.!]~gf Iisrni:esentatio!rn QI ihg Lor.gg.t,~ GrOQE, 
Oxford, Pergamon Press, 1964. 

N. E. S. 
Ha]Q.!2.QQk Qi ]athematifg,1 Fu,nct_!Ql!§ With Formulas, Gra_ghs, 
and ~athematical Tatles (National Bureau of Standards 
Applied ~athematics Series, No. 55), ed. by~. Abramowitz 
and I. A. Stegun, 7th printing, Washington, D.c., u. s. 
Government Printing Office, 1968. 



505 

Reed-Simon 
Reed, M., and Simon, B., Methods of 
Ph1sics, vol. 1, Functional Anal1sis, 
Press, 1972. 

Modern Mathematical 
New York, Academic 

Rindler 
Rindler, w., ~Qecial Jg!!tivity, 2nd ed., Edinburgh, Oliver 
and Boyd, 1966. 

Rindler 2 
Rindler, w., Essential Relativity, New York, Van Nostrand 
Reinhold Co., 1969. 

Rotertscn-Noonan 
Robertson, H. P., and Noonan, T. w., Ii~la.H.r.ity ~!1£ 
~~~~Qlggy, Philadelphia, w. B. Saunders Co., 1968. 

Schr~dinger 
SchrBdinger, E., EXEanding 
University Press, 1956. 

rrni_ver-ses, Cambridge, The 

Schweber 

Segal 

Schweber, s. s., An Introduction 12 Relativistic QQ!Il1Y! 
Field Theory, New York, Harper and Row, Inc., 1961. 

Segal, I.E., Mathematical Problems of Relativistic Ph.Ysics, 
Providence, B. I., American Mathematical Society, 1963. 

Streater-Wightman 

Synge 

Streater, R. F., and Wightman, A. s., 
Statistics, 1.!!Q. A.!1 .!.h~!, New York, w. A. 
1964. 

££1, ~.ein ~!!si 
Benjamin, Inc., 

Synge, J. L., B.~l~,!ivit..Y! 1.hf !!f!lgf.9:1 Th~QI.Y, Amsterdam, 
Ncrth-Ho.lland Publ. Co., 1960. 

Talman 
Talman, J. D., S]ecial Functions: 
~EE!Q~£h (based on lectures by E. P. 
w. A. Benjamin, Inc., 1q68. 

Titchmarsh 

! 2IQY~ Th~Q~!ic 
Wigner), New York, 

!'itchmarsh, E. c., Ei_genfunction EKEansions Associated ,!!ith. 
Second-order Differ~ntial Equations, 2nd ed., Part I, 
Cxford, Clarendon Press, 1962. 



506 

Tolman 
Tolman, R. C., Rel a ti v it.I, Thermod_ynam ics, and £Q2!!olQSIY, 
Oxford, Clarendon Press, 1934. 

Umezawa 
Umezawa, H., .Q.!H!l!!.Y.!!! fig1g .The.QfY, Amsterdam, North-Holland 
Puhl. Co., 1956. 

Vilenkin 
Vilenkin, N. J., ~~&.i&! l.!!.!!£tiQ!!§ and the Theory of Gr-QY£ 
f!gEf:g~n!ations (Transl. Math. Monographs, vol. 22), 
Providence, R.I., American Mathematical Society, 1968. 



II. Papers, Lecture Notes, and Dissertations 

Araki, H., and Haag, R. (1967} 
Collision Cross Sections in Terms of Local Observables, 
Commun. Math. Phy~. E:, 77. 

Bacry, H., and Levy-Leblond, J.-M. (1968) 
Possible Kinematics, J. Math. Phys. .2, 1605. 

Bakri, ~. M. (1969} 
De Sitter Symmetric Field Theory. I. One-Particle Theory, 
J. Math. fhys. 1Q, 298. 

Bargmann, v. {1947) 
Irreducible Unitary Representations of the Lorentz Group, 
Ann. Ma th. ~§ , 5 6 8. 

Bargmann, v. {1954) 
On Unitary Ray Bepresentations of Continuous Groups, Ann. 
Math. 2.2, 1. 

Barg man n , V • , an a wig n er , E • P • ( 1 9 4 8 ) 
Group Theoretical Discussion of Relativistic Wave Equations, 
Pree. Natl. Acad. Sci. u.s. J.!i, 211. 

Belinfante, F. J. (1940) 
On the Current and the Density of the 
Energy, the Linear Momentum and the 
Arbitrary Fields, Physical, 449. 

B~ h m , A • ( 1 96 6 ) 

Electric Charge, the 
Angular Momentum of 

The Dynamical Group of a Simple Particle Model, Lectures i! 
1~~Q!~t1£~1 fh.y:sic§, vol. IXB, High ]ggfgy ind Particl~ 
fhl§if§ (Theoretical Physics Institute, Univ. of Colorado, 
1966), ed. by w. E. Brittin and A. o. Barut {New York, 
Gordon and Breach, 1967), pp. 127-336. 

B~hm, A. (197C) 
Generalized Eigenvectors and Group Fepresentations the 
Connection Between Representations of S0(4,1) and the 
Poincar~ Group (lectures at Istanbul Summer Institute for 
Mathematical Physics, 197C), preprint CPT-89 (Feb., 1971), 
Center for Particle Theory, University of Texas at Austin. 



508 

Bohr, N., and Eosenfeld, t. (1933) 
Zur Frage der Messbarkeit der electromagnetischen 
Feldgr6ssen, Kgl. Canske Videnskab. Selskab, Mat.-Fys. Medd. 
11, No. 8. 

Bonazzola, s., and Pacini, F. (1966) 
Equilibrium of a Large Assembly of Particles in General 
Relativity, Phys. Rev.. j48, 1269. 

Bo re hers , H • J • , Haag , R. , a n d sch roe r , B. ( 1 9 6 3) 
The vacuum State in Quantum Field Theory, Nuovo Cimento 12, 
148. 

BlJrner, G. (1970) 
~ass Zero Particles in De Sitter Space, preprint, 
Max-Planck-Institut fUr Fhysik und Astrophysik, Munich [to 
appear in Lectures in Theoretical Physics, vol. XIII, ~g 
Sitter and Conformal GrouEs (Symposium, University of 
Colorado, 1970), ed. by A. o. Barut, to be published by 
Gordon and Breach]. 

B6rner, G., and DUrr, ll. P. (1969) 
Classical and Quantum fields in de Sitter Space, Nuovo 
Cimento AE~, 669. 

Br en i q , w. , a n d Haag , R • ( 1 9 5 9) 
General Quantum Theory of 
Scattering Theor1, ed. by 
In di an a univ • Press , 1 96 3} , 
Phys. 1, 183 J. 

Collision Processes, .Q!!g_Jl!.Yl!l 
M. Ross (Bloomington, Ind., 
pp. 13-108 [ tr. of Fortschr. 

Br e-z in , E • , a n d It z y ks on , C. ( 19 7 0) 
Pair Production in Vacuum by an Alternating Field, Phys. 
Re V • J2J, 1191. 

Br on n i k O V , K • A • , an d '.[ a g i r O V, E • A. ( 196 8 ) 
Quantum Theory of Scalar Field in an Isotropic World, 
preprint P2-4151, Laboratory of Theoretical Physics, Joint 
Institute for Nuclear Besearch, Dubna (in Russian]. 

Burcev, P. (1968) 
Ce Sitter Model for Stable Particles, Nuovo Cimento 
.2&.a, 79 5. 

Calabi, E., and Markus, L. (1962) 
Relativistic Space Forms, Ann. Math. 1~, 63. 

Capri, A. z. ( 1967) 
External Field Problem for Higher Spin Particles, 
dissertation, Princeton University. 



509 

ca pr i , A • z • (196 9) 
Electron in a Given Time-Dependent Electromagnetic Field, J. 
Math~ Phys. 1Q, 575. 

Capr-i, A. z., labont~, G., Menon, D., and Shamaly, A. (1971) 
The Reconstruction Theorem with External Sources, Nuovo 
Cimento 1~, 233. 

Castagnino, M. ( 1969) 
Ceuxi~me quantification des champs scalaires r~els dans 
l'espace-temps de De-Sitter, Compt. Rend. Iii.§, A1157. 

Castagni no, M. ( 1970) 
Champs de spin entier dans l'espace-temps de De Sitter, Ann. 
Inst. Henri Poincare 13, 263. 

Castell, L. (1<J69) 
Goldstone Particles in de-Sitter Space, Nuovo Cimento !§1, 
585. 

Chernikov, N. A., and 'Iagirov, E. A. (1968) 
Quantum Theory of Scalar Field in De Sitter Space-Time, Ann. 
Inst. Henri Poincare 1, 109. 

Choquet-Bruhat, Y. {1967) 
Hyperbolic Partial Differential Equations on a Manifold, 
Battelle Rencontres: 1967 1££1]££§ in Mathematics and 
!:h.Y§ic.§~ ed. by C. M. De Witt and J. A. Wheeler (New York, 
w. A. Benjamin, Inc., 1%8), pp. 84-106. 

Coleman, A. J. (1968) 
Induced and Subduced Representations, ff2Y£ 
A,2£.!ications, ed. by E. M. Loebl (New York, 
1968}, pp. 57-11 8. 

Davies, E. B. (1971) 

T heorr and 1!:§ 
Academic Press, 

Hilbert Space Representations of lie Algebras, Commun. Math. 
_f h y s. ~l, 1 5 9 • 

Dell 1 Antonio, G. F. (1968) 
Structure of the Algebras of Some Free Systems, Commun. 
Ma th. Phys. .2, 81. 

Deser, s. (1957) 
General Relativity and the Divergence Problem in Quantum 
Field Theory, Rev. Mod. Phys. 12, 417. 



510 

De Witt, B. S. ( 19 63) 
Dynamical Theory of Groups and Fields, Relativity, Q£.QYE§ 
i!!.Q. I2.201Q.9.1 (Summer School of Theoretical Physics, Les 
Houches, 1963), ed. by c. DeWitt and B. DeWitt (New York, 
Gordon and Breach, 1964), pp. 585-820. 

Dirac, P. A. M. (1935) 
The Electron Wave Equation in De-Sitter Space, Ann. Math • 
. 1§, 657. 

Dixmier, J. {1961) 
Repr~sentations int~grables du groupe de De Sitter, Bull. 
Soc. Math. France ~2, 9. 

Dubin, I:. A. ( 19 7 0) 
The Group-Theoretical Structure of Free Quantum Fields in 
Two Dimensions, Nuovo Cimento ..§1~, 39. 

Duistermaat, J. J., and H6rmander, L. (1971) 
Fourier Integral Operators. II, preprint, to be published in 
Acta Math. (This material also appeared in lectures of 
H~rmander at the Summer Symposium on Partial Differential 
Equations, Berkeley, Calif., 1971, to be published by 
American Mathematical Society.] 

Epstein, H-. Glazer, v., and Jaffe, A. (1965) 
Nonpositi~ity of the Energy Density in Quantized Field 
Theories, Nuovo Cimento _}§, 1016. 

Fe 11 , J. M. G. ( 19 6 D) 
The Dual Spaces of C*-Alqebras, Transac. Am. Math. Soc. 
-2.~, 365. 

Feshbach, H., and Villars, F. (1958) 
Elementary Relativistic Wave Mechanics of Spin O and Spin 
1/2 Particles, Rev. Mod. Phys. JQ, 24. 

Feynman, R. P. {1948) 
Space-Time Approach to Non-Relativistic Quantum Mechanics, 
Rev. Mod. Phys. ~O, 267. 

Feynman, R. P. {1950) 
Mathematical Formulation of the 
Electromagnetic Interaction, Phys. Rev. 

Four~s-Eruhat, Y. (1960) 

Quantum Theory 
QQ, 440. 

Propagateurs et solutions a•~quations 
h y p e r b o 1 i g u es, Com pt. Rend • 1~1, 2 9 • 

of 



511 

Fron sda 1, c. ( 19 65) 
Elementary Particles in a Curved Space, Rev. Mod. Phys. 
ll, 221. 

Ge 1 1 fan d, I. M. ( 19 5 0) 
The Center of an Infinitesimal Group Ring, Mat. Sb., N.s., 
l_§, 103 [ in Russian J. 

Gel' fand, I., and Neumark [ Naimark ], M. ( 1946) 
Unitary Bepresentations of the Lorentz Group, J. Phys. 
( u • s • s • R. ) 1Q I 9 3 • 

Gel' fand, I. M., and Naimark, M. A. (1947) 
Unitary Eepresentations of the Lorentz Group, Izv. Akad. 
Nauk, Ser. I1at-., 11, 411 [in Russian]. 

Geroch, R. (1968) 
What is a Singularity in General Relativity?, Ann. Phys. 
(N. Y.) I§, 526. 

Geroch, R. (1970) 
tomain of Dependence, J. Math. Phys. 11, 437. 

Glimm, J., and Jaffe, A. (1970) 
Quantum Field Theory Models, Statistical Mechanics and 
~uantum Field Theory (Summer School of Theoretical Physics, 
Les Houches, 1970), ed. by c. DeWitt and R. Stora (New York, 
Gordon and Breach, Inc., 1971), pp. 1-108. 

Greenberg, o. W. ( 19 6 1) 
Generalized Free Fields and Models of Local Field Theory, 
Ann. Phys. (N.Y.) 1.§, 158. 

Grib, A. A. (1969) 
On a Possible Difference between the Heisenberg and 
Schr6dinger Pictures in Quantum Field Theory, Vestnik 
Leningrad. Univ. 1.2.§2, No. 10, 61 [ in Russian]. 

Grib, A. A., and t1amaev, s. G. (1969} 
Contribution to the Field Theory in Friedmann Space, Sov. J. 
Nu cl • Phys • 1Q , 7 2 2 [ tr. cf Ya d • Fi z • lQ , 1 2 7 6 J. 

Gttrsey, F. (1962) 
Introduction to the De Sitter Group, GrouE Theoretical 
concru2ts and MethOQ;§ i.n !ll§..!.Hrnill:Y Particle Physics 
(Istanbul Summer School of Theoretical Physics, 1962), ed. 
by F. Gttrsey (New York, Gordon and Breach, Inc., 1964), pp. 
36 5- 389. 



512 

GHrsey, F., and Lee, T. D. (1963) 
Spin 1/2 Wave Equation in De-Sitter Space, Proc. Natl. Acad. 
Sci. U.S. !!2, 179. 

Gutzwiller, M. (1956) 
Quantum Theory of Wave Fields in a Curved Space, Helv~ Phys. 
Ac ta 2 9 , ] 13 • 

Haag, n. (1g55) 
On Quantum Field Theories, Kgl. Danske Videnskab. Selskab, 
Mat. - Fys. Medd. 1.2, No. 12. 

Haag, B., and Kastler, D. (1964) 
An Algebraic Approach to Quantum Field Theory, J. Math. 
Phys. 2, 848. 

Hannabuss, K. c. (1969a) 
Quantum tynarnics in De 
University. 

Hann ab u ss , K • C • (1 96 9 b ) 

Sitter Space, thesis, Oxford 

The Dirac Equation in de Sitter Space, J. Phys. Al, 274. 

Hannabuss, K. c. (1970) 
The localisability of Farticles in de Sitter Space, 
preprint, Mathematical Institute, Oxford. 

Hawking, s. {1970) 
The Conservation of Matter in General Relativity, Commun. 
Math. Phys. j~, 301. 

Hill, E. L. (1951) 
Hamilton's Principle and the Conservation Theorems of 
Mathematical Physics, Rev. Mod. Phys. Jl, 253. 

Hirai, T. (1962a} 
On Infinitesimal Cperators of Irreducible Representations of 
the Lorentz Group of n-th Order, Proc. Japan Acad. l~, 83. 

Hirai, T. {1962b) 
On Irreducible Representations of the Lorentz Group of n-th 
Order, Proc. Japan Acad. J~, 258. 

Holman, w. J. (1969} 
Representation Theory of SO(4,1) and E(3,1): An Explicit 
Spinar Calculus, J. Math. Phys. 1.Q, 1888. 



513 

I k e be , 'I. '( 1 9 6 0) 
Eigenfunction Expansions Associated with the Schroedinger 
Operators and their Applications to Scattering Theory, Arch. 
Rat. Mech. Anal. ~, 1. 

Imamura, T. (1960} 
Quantized Meson Field in a Classical Gravitational Field, 
P h y s • Re v • jj_§, 1 4 3 0 • 

In fln f1, E. ( 1 % 2) 
Contraction of lie Groups and their Representations, GrQ~E 
Theoretical Conce]ts ~n~ Methods in Elementary Particle 
,!:hysif§ (Istanbul Summer School of Theoretical Physics, 
1962), ed. by F. GUrsey (New York, Gordon and Breach, Inc., 
1964), fP• 391-402. 

In6ntl, E., and Wigner, E. P. (1953) 
On the Contraction of Groups and Their Representations, 
P.roc. Natl. Acad. Sci. u.s. 12, 510; correction, On a 
Particular Type of Convergence to a Singular Matrix, !Q, 119 
(1954). 

Is ha m , C • J • , S a 1 a m , A. • , a n d S tr a th d e e , J • ( 1 9 71 ) 
Infinity Suppression in Gravity-Modified Quantum 
Elect rod y n am i cs , F h y s • Re v. .Q] , 1 8 0 5 • 

Ja-ffe, A. M. {1965) 
Dynamics of a Cut-Off ~-f Field Theory, dissertation, 
Princeton University. 

Kastler, D. (1965) 
The C*-Algebras of a Pree Boson Field. I. Discussion of the 
Basic Facts, Commun. Math. Phys. 1, 14. 

Kerr, E. P. (1963) 
Gravitational Field of a Spinning Mass as an Example of 
Algebraically Special Metrics, Phys. Rev. Letters 11, 237. 

Kihl berg, A. ( 1965) 
On the Unitary Representations of a 
Pseudo-Orthogonal Groups, Arkiv Fysik lQ, 121. 

Class of 

Klaude.r, J. R., McKenna, J., and Woods, F. J. (1966) 
Cirect-Eroduct Representations of the Canonical Commutation 
Relations, J. Math. Phys. 1, 622. 

Komar, A. (1964) 
Undecidability of Macroscopicallv Distinguishable States in 
Quantum Field Theory, Phys. Rev. 111], 542. 



514 

Kristensen, P., Mejlbo, L., and Poulsen, E. ·r. (1967) 
Tempered Distributions in Infinitely Many Dimensions. 
Linear Transformations of Field Operators, Commun. 
Phys. ,§, 29. 

Kruskal, M. D. (1960) 

III. 
Math. 

Maximal Extension of Schwarzschild Metric, Phys. Rev. 112, 
1743. 

Levy-Nahas, M. (1967) 
Deformation and Contraction of Lie Algebras, J. Math. Phys. 
_§, 1211. 

Levy-Nahas, M. (1969) 
Surles d~formaticns and contractions d'alg~bres de Lie et 
de leurs repr€sentations, thesis, University of Paris. 

Lichnerowicz, A,. (1961) 
Fropagateurs et cornmutateurs en relativit~ g~n~rale, 
Institut de Hautes Etudes Scientifiques, Publications 
Mathematiques, No. 10. 

Lichnercwicz, A. (1962) 
Propagateurs et quantification en relativit~ g~n~rale, 
Conf~rence internationale sur les th~ories felativistg§ ~g 
la gravitation (Warsaw and Jab¼onna, 1962), ed. by L. Infeld 
(Paris, Gauthier-Villars, 1964), pp. 177-188. 

Limic, N., Niederle, J., and R~czka, B. (1967) - '(t-

Eigenfunction Expansions Associated with the Second-Order 
Invariant Cperator on Hyperboloids and Cones. III, J. Math. 
Phys. .§, 1079. 

Lindblad, G., and Nagel, n. (1970) 
Continuous Bases for Unitary Irreducible Representations of 
SU (1, 1), Ann. Inst. Henri Poincare All, 27. 

Manasse, F. K., and Misner, c. w. (1963) 
Fermi Normal Coordinates and Some 
tifferential Geometry, J. Math. Phys. 

Manuceau, J. (1968) 

Basic 
~, 735. 

Concepts in 

c•-alg~bre de relations de commutation, Ann. Inst. Henri 
Foincare ~~, 139. 

Marzke, R. F., and Wheeler, J. A. (1964) 
Gravitation as Geometry -- I: The Geometry of Space-Time 
and the Geometrodynamical Standard Meter, Qr~vitation ~QQ 
Relativity, ed. by H.-Y. Chiu and w. F. Hoffmann (New York, 
w. A. Ben"jarnin, Inc., 1964), pp. 40-64. 



515 

Molcanov [~olchanov], V. F. (1966) 
Harmonic Analysis on a Hyperboloid of One Sheet, Sov. 
-- Dokl. 1, 1553 (tr. of Dokl. Akad. Nauk 111, 794 ], 

Moore, G. T. (1970) 
Quantum Theory of the Electromagnetic Field 
Variable-Length One-Dimensional Cavity, J. Math. Phys. 
2679. 

Mukunda, N. (1967) 

Math. 

in a 
11, 

Unitary Representations of the Group 0(2,1) in an 0(1,1) 
Basis, J. Math. Fhys. g, 2210. 

Nach trnann, o. 
Quantum 
.§ I , • 

( 196 7) 
Theory 

Nachtmann, c. (1968a) 

in de-Sitter Space, Commun • Math, Phys. 

Continuous Creation in a Closed World Model, z. Physik 
l.Q~, 113. 

Nachtmann, c. (1968b) 
Dynamische Stabilitttt im de-Sitter-Baum, Sitzber. ijsterr. 
Akad. Wiss., Math.-na turw. Klasse, 1&1, 363. 

Na rozhn y1 [ Narozhny ], N. B .. , and Nikishov, A. I. ( 1970) 
The Simplest Processes in a Pair-Producing Electric Field, 
Sov. J. Nucl. Phys. 11, 596 [tr. of Yad. Fiz. 11, 1072 J. 

Nelson, E. (1959) 
Analytic Vectors, Ann. Math. 70, 572. 

Newton, T. D. (1949) 
localized States for Elementary 
Princetcn University. 

Ne wt on , T. D • ( 1 9 5 C) 

Systems, dissertation, 

A Note on the Representations of the ae Sitter Group, Ann. 
Math. ~1, 730. 

Ne wt on , T. D • , and wig n er , E. P. ( 19 4 9) 
localized States for Elementary Systems, Rev. Mod. Phys. 
£1, 400. 

Ottoson, u. (1968} 
A Classification of the Unitary 
of so (N,1), Commun. Math. Phys. 

0 

Irreducible Representations 
.§, 228. 



516 

Parker, L. E. (1966) 
The Creation of Particles in an Expanding Universe, thesis, 
Harvard University. 

Packer, L. (1968) 
Particle Creation in Expanding Universes, Phys. Rev. Letters 
l1, 562. 

Parker, L. (1969) 
Quantized Fields and 
Universes. I, Phys. Rev. 

Parker, L. (1971) 
Quantized Fields and 
Universes. II, Phys. Rev. 

Parker, L. (1972) 

Particle Creation 
1fll, 1 o s 7. 

Particle Creation 
Ql, 346. 

in Expanding 

in Expanding 

Particle Creation in Isotropic Cosmologies, Phys. Rev. 
L € tt er s ].§ , 7 0 5 • 

Penrose, R. (1963) 
Conformal Treatment of Infinity, nelativity, GrOU£S and 
!2E212£Y (Summer School of Theoretical Physics, Les Houches, 
1963), ed. by c. CeWitt and B .. DeWitt (New York, Gordon and 
Breach, 1964), pp. 563-584. 

Penrose, R. ( 1965) 
zero Rest-Mass Fields Including Gravitation: Asymptotic 
Behavior, Proc. Roy. Soc. ( London} .£l84, 159. 

Penrose, R. (1967) 
Structure of Space-Time, J2at!f1lg Rencontres: 1967 Lectures 
in Mathematics and Ph1sics, ed. by c. M. De Witt and J. A. 
Wh€eler (New York, w. A. Benjamin, Inc., 1968), pp. 121-235. 

Philips, T. O. (1963) 
Localized States in de Sitter Space, dissertation, Princeton 
University. 

Philips, T. C. (1964) 
Lorentz Invariant Localized States, Phys. Rev. 136~, 893. 

Philips, T. c., and Wigner, E. P. (1968) 
De Sitter Space and Positive Energy, Gr.Ql!.2 1'..heory ggg_ 1!§ 
JE]lications, ed. by E. M. Loebl (New York, Academic Press, 
1968), PP• 631-676. 



517 

Powers, R, T, (1967) 
Absence of Interaction as a Consequence of Good Ultraviolet 
Behavior in the Case of a Local Fermi Field, Commun. Math. 
Phys. ~, 145. 

Powers, R. T. (1971) 
Self-Adjoint Algebras of Unbounded Operators, Commun. Math. 
Phys. l1, 85. 

Pukanszky / L. ( 1961) 
On the Kronecker Products of Irreducible Representations of 
the 2 X 2 Real Unimodular Group. I, Transac, Am. Math. Soc. 
1QQ, 116 .• 

Reed, M, C, {1968) 
On the Self-Adjointness of Quantum Fields and Hamiltonians, 
dissertation, Stanford University. 

Reed, M, C. (1969) 
A G;rding Domain for Quantum Fields, Commun. Math, Phys. 
JE, 336. 

Reed, M. C. (1970) 
On Self-Adjcintness in Infinite Tensor Product Spaces, J. 
Fune. Anal. ,2, 94. 

Rindler, w. (1960) 
Remarks on Schr6dinger's Model of de Sitter Space, Phys. 
Re V • j1Q , 10 4 1 • 

Rindler, w. (1%6) 
Kruskal Space and the Uniformly Accelerated Frame, Am. J. 
Phys. ]!, 1174. 

Ro ma n , P. , a n d Ag has s i , J. J. ( 1 96 6) 
On the Energy Spectrum of de Sitter World Theories, Nuovo 
Cirnento ~1!, 193. 

R o se n , J. ( 1 96 5) 
The Inhomogeneous Pseudo-Rotation Group as a Limiting Case 
of a {Homogeneous) Pseudo-Rotation Group of One More 
Dimension, Nuovo Cimento 12, 1214. 

Ruffini, R., and Bonazzola, s. (1969) 
systems of Self-Gravitating Particles in General Relativity 
and the Concept of an Equation of State, Phys. Rev. 1~1, 
1767. 

Saletan, E. J. {1961) 
Contraction of Lie Groups, J, Math, Phys. l, 1. 



518 

Scarf, F. L. (1959) 
A Soluble Quantum Field Theory in curved Space, Les theories 
relativistes de la gravitation (conference, Royaumont, 1959) 
(Paris, Centre National de la Recherche Scientifique, 1962), 
pp. 421-428. 

Schiff, L. I., Snyder, H., and Weinberg, ~J. (1940) 
On the Existence of Stationary States of the Mesotron Field, 
P h y s • Re v. 21, 3 1 5 • 

Schild, A. (1965) 
Lectures on General Relativity Theory, Lectures in A££lied 
~athematics, vol. 8, Belativity Theor1 !Il~ Astrophysi£§ j: 
Relativity and Cos_molo~1 (Fourth Summer Seminar on Applied 
t,a thematics, Cornell Univ., 1965), ed. by J. Ehlers 
(Providence, R. I., American Mathematical Society, 1967), 
PF• 1-104. 

Schr~dinger, E. 
The Proper 
.§, 899. 

(1939) 
Vibrations of the Expanding Universe, Physica 

Schroer, B. (1g71) 
Quantization of m~ < 0 Field Equations, Phys. Rev. Q1, 
1764. 

Schroer, B., Seiler, H., and Swieca, J. A. 
Problems of Stability for Quantum 
Time-Dependent Potentials, Phys. Rev. 

s c hr o er , B • , a .n d s w i e ca , J • A • ( 1 9 7 0) 

( 1 9 70) 
Fields in 
Q~, 2927. 

External 

IndefinitE Metric and Stationary External Interactions of 
Quantized Fields, Phys. Rev. ~1, 2938. 

Schwarz, F. {1971) 
Unitary Irreducible Representations of the Groups S0

0
(n,1), 

J. Math. Fhys. 1l, 131. 

Se ga 1, I. E. ( 19 4 7) 
Postulates for General Quantum Mechanics, 
!!.§, 9 30. 

Segal, I. E. (1951) 

Ann. Math. 

A Class of Operator Algebras which Are Determined by Groups, 
Duke Math. J. j§, 221. 



Se ga 1 , I. E. ( 1 96 8) 
The Mathematical Theory of Quantum 
Modern Analysis and A££lications l! 
Mathematics, vol. 140), ed. by c. 
Springer-Verlag, 1970), pp. 30-57. 

Segal, I. E., and Goodman, R. w. (1965) 

519 

Fields, Le£tU£!i§ !ll 
(Lecture Notes in 
T. Taam (Berlin, 

Anti-Locality of Certain Lorentz-Invariant Operators, J. 
Math. 6 Mech. 1!, 629. 

Seiler, R. (1972) 
Quantum Theory of Particles with Spin Zero and One Half in 
External Fields, Commun. Math. Phys. l~, 127. 

Sexl, R. U., and Urbantke, H. K. (1967) 
Cosmic Particle Creation Processes, Acta Phys. Austriaca 1~, 
339. 

Sexl, R. U., and Urbantke, H. K. (1969) 
Production of Particles by Gravitational Fields, Phys. Rev. 
112, 124 7. 

Shale, D. ( 196 2) 
Linear Symmetries of Free Boson Fields, Transac. Arn. Math. 
soc. 1.QJ, 14 9. 

Slawny, J. ( 1972) 
On Factor Representations and the C*-Algebra of canonical 
Commutation Relations, Commun. Math. Phys. l~, 151. 

Snyder, H., and Weinberg, J. (1940) 
Stationary States of Scalar and Vector Fields, Phys. Rev. 
11, 3G7. 

Stein, E. M. (1965) 
A Survey of Representations of Non-Compact Groups, 
Hi.9:h-Energ1 PhJ§icS and Elementar_y Particles (Seminar, 
International Center for Theoretical Physics, Trieste, 1965) 
(Vienna, International Atomic Energy Agency, 1Q65), pp. 
563-584. 

Steinmann, O,. 
Particle 
1, 112. 

( 1968) 
Localization 

Streater, H. F. (1971} 

in Field Theory, Commun. Math. Phys. 

On the Lorentz Invariance of P(¢)
1

, preprint, Bedford 
College., London. 



520 

s t re it , L. ( 1 9 6 7 ) 
Test Function Spaces for Direct Product Representations of 
the Canonical Commutation Relations, Commun. Math. Phys. 
!!, 22. 

Str6m, s. (1965) 
Construction of Representations of the Inhomogeneous Lorentz 
Group by Means of Contraction of Representations of the 
(1 + 4) De Sitter Group, Arkiv Fysik ]Q, 455. 

Stram, s. {1971) 
Introduction to the Theory of 
Representations, preprint CPT-120, 
Theory, University of !exas at Austin. 

Groups 
Center 

and Group 
for Particle 

Tag i r O V , E. A • , Fed y u n ' kin, E. D. , an a Ch er n i k O V, N. A • ( 1 96 7) 
Quantum Theory cf a Scalar Field in Two-Dimensional De 
Sitter Space, preprint P2-3392, Laboratory of Theoretical 
Physics, Joint Institute for Nuclear Research, Dubna (in 
Russian]. 

Tait, w., and Cornwell, J. F. (1971) 
Ccufling cf de Sitter Space-time and Internal Symmetry, J. 
Math. Phys. 11, 1651. 

Ta ka hash i, R • ( 1 96 3) 
Sur les repr~sentations unitaires des groupes de Lorentz 
generalises, Bull. Soc • .Math. France 21, 289. 

Thirring, w. (1967) 
Quantum Field Theory in De Sitter Space, ~EJEfial Problems!!! 
Hi~h Energ1 Physics (6th Internationale Universittttswochen 
fHr Kernphysik, Schladming, Austria, 1967), ed. by P. Urban 
(Vienna, Springer-Verlag, 1967), pp. 269-287. 

Thomas, L. s. (1941} 
On Unitary Representations of the Group of De Sitter Space, 
Ann. Math • El, 113. 

Tugov, I. I. (1969) 
Conformal Covariance and Invariant Formulation of Scalar 
wave Equations, Ann. Inst. Henri Poincare 11, 207. 

Unruh, liJ. G. (1971) 
Dirac Particles and Geometrodynamical Charge in Curved 
Geometries, dissertation, Princeton University. 

Urban t k e, H. K. ( 19 6 9) 
Remark on Noninvariance Groups and Field Quantization in 
Curved Space, Nuovo Cimento 63~, 2C3. 



521 

Ve se lit , K. ( 1 9 7 0) 
A Spectral Theory for the Klein-Gordon Equation with an 
External Electrostatic Potential, Nucl. Phys. !147, 215. 

Vigier, J.-P. (1969) 
Unification of External and Internal Motions within SO~ 1 and 
Possible Mass Splitting of su 3 Baryon Multiplets without 
Symmetry Breaking, Lett. Nuovo Cimento 1, 445. 

Von Neumann, J. (1938) 
On Infinite Direct Products, Compos. Math.§, 1. 

Whee 1 er , J • A • ( 196 3) 
Geometrodynarnics and the Issue of 
BelativitI, Grouis and TOEolog1 
Theoretical Physics, Les Houches, 1963}, 
and B. DeWitt (New York, Gordon and 
315-520. 

Wightman, A. s. (1959) 

the Final State, 
(Summer School of 
ed. by C. DeWitt 
Breach, 1964), PP• 

Relativistic Invariance and Quantum Mechanics, Nuovo Cimento 
Su pp 1. 1!! , 81 • 

Wightman, A. s. (1960) 
,I • 

t•invariance dans la mecan1que guantigue relativiste, 
Relations de disEersion et £articules ~l~mentaires 
(Universit~ de Grenoble, Ecole a•~t~ de physique th~origue, 
Les Hauches, 1960), ed. by c. DeWitt and R. Omnes (Paris, 
Bermann, 1960), pp. 159-226. 

wight ma n , A • s • ( 1 96 2) 
On the Localizability of Quantum Mechanical Systems, Rev. 
Med. Fhys. ]E, 845. 

Wightman, A. s. (1964) 
Introduction to Some Aspects of Relativistic Dynamics of 
Quantum Fields, Carg~s€ Lectures in Theoretical fh.Y§i£§! 
High Energy Electromagnetic Interactions and Field Theory, 
ed. by M. Levy (New York, Gordon and Breach, 1967), pp. 
171-291. 

Wightman, A. s. {1968) 
The Stability of Representations of the Poincare Group, 
21~IDg!fY gfinciples ~! lligh ]Q~££11 (5th Coral Gables 
Conference, 1968), ed. by A. Perlmutter, c. A. Hurst, and B. 
Kursunoglu (New York, w. A. Benjamin, Inc., 1968), pp. 
291-314. 



522 

Wiqhtrnan, A. s. (1971) 
Relativistic Wave Equations as Singular Hyperbolic Systems, 
lectures at the Summer Symposium on Partial Differential 
Equations, Berkeley, Calif., 1971, to be published by 
American Mathematical Society. 

Wightman, .A. s., and G&rding, L. (1965) 
Fields as Operator-Valued Distributions in Relativistic 
Quantum Field Theory, Arkiv Fysik 1~, 129. 

hgh tman, A. s., and Sch weber, s. s. (1955) 
Configuration Space Methods in Relativistic Quantum Field 
Theory. I, Phys. Rev. 2..§, 812. 

Wigner, E. P. (1939) 
On Unitary Representations of the Inhomogeneous Lorentz 
G r o up , Ann. Math. ~.Q, 1 4 9 • 

Wigner, E. P. (1948) 
Relativistische Wellengleichungen, z. Physik 11~, 665. 

wigner, E. P. (1950) 
Some Remarks on the Infinite De Sitter Space, Proc. Natl. 
Acad. ScL U.S. ]_§, 184. 

Wigner, E. F. (1956) 
Relativistic Invariance in Quantum Mechanics, Nuovo Cimento 
J, 517. 

Wigner, E. P. (1961) 
Geometry of Light Paths between Two Material Bodies, J. 
Math. fhys. l., 207. 

Wilde, I. F. { 1971) 
Algebraic Quantum Field Theory, thesis, University of 
London. 

Zel 1 dovich, Ya. B. (1970) 
Particle Production in Cosmology, J~TP Lett. J.l, 307 [tr. of 
ZhETF Pis. Red. 1i, 443]. 

Zeldovie [Zel'dovich], Ya. B., and Pitaevskit [Pitaevsky], L. P. 
(1971) 

On the Possibility of the Creation of Particles by a 
Classical Gravitational Field, Commun. Math. Phys. ll, 185. 



523 

Zel'dovich, Ya. B., and Starobinsky, A. A. (1971) 
Particle Creation and Vacuum Folarization in the Anisotropic 
Gravitational Field, Zh. Eksp. Teor. Fiz. &1, 2161 [in 
Bussian; preliminary English tr., preprint, u.s.s.R. Academy 
of Sciences, Institute of Applied Mathematics]. 



524 

ABSTRACT 

Quantization of a massive neutral scalar field without 

self-interaction defined on a space-time manifold with qiven 

metric is studied, with emphasis on the two-dimensional de Sitter 

spaceo Applications in both qeneral relativity and constructive 

quantum field theory are envisaged. 

The canonical formalism is developed for an arbitrary 

metric, and for special classes of metrics a Fack space can be 

constructed in analoqy to the case of flat spaceo However, in 

this way one is led to different theories for the sarre manifold, 

with different definitions of particle observables and energy 

density. In particular, two nonstandard quantizations of the 

free field in flat space are exhibited, and three approaches to 

the two-dimensional de Sitter space are compared: a covariant 

theory in which the states of a particle transform according to a 

representation of the symmetry group cf the space, a quantization 

exploitinq the static nature of a portion of the universe bound~d 

by horizons, and an "expanding universe" theory in ~hich the 

particle observables diagonalize the field Hamiltonian at each 

time and the particle number is not constant. The 

representations of the canonical commutation relations in the 

first and third cases are unitarily equivalent. 

It is concluded that in this context choice of a unique 

physical represe~ation of the fields is impossible. tne must 
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deal with an abstract alqebra of otservables associated with the 

field. Nevertheless, some representations are more likely to be 

useful than others, In this spirit a proposal is made for a 

definition of particle otservables tased on diaqonalization of 

the Hamiltonian on geodesic hypersurfaces, !n Minkowski space 

this condition distinguishes the standard theory from the others. 

In two-dimensional de Sitter space such a theory predicts finite 

and reasonably srrall creation of particleso 

The relation of ncont.raction 11 between the irreducible 

unitary representations of the de Sitter qroup and those cf the 

Poincart group of the same dimension is discussed in some detail. 

It is indicated that some arbitrariness can be removed from the 

treatment hy considering concrete realizations of the 

re pre sen ta tions by functions on the respective torrogeneous 

spacese The analogous case of the three-dimensional rotation 

qroup and the Euclidean group of the plane is treated in an 

appendix. 
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