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ABSTRACT

Information extraction (IE) extracts meaningful knowledge from data. Two important tasks in

IE are named entity recognition and relation extraction. Existing approaches in relation extraction

treat entity and relation extraction as two separate tasks. They model them in a pipeline approach

and rely on external linguistic resources to improve the performance. On contrary, we design a

generalized system for end-to-end relation extraction without utilizing any external resources. Our

approach identifies entities and relations jointly using a single model, and concurrently identifying

all relations between all predicted entities. Through this work, we introduce multi-task fine-tuning

on pre-trained models as an approach for related tasks and show that it gives significant perfor-

mance improvements for each of the individual tasks. Our model performs comparably to the

state of the art on Biocreative V Chemical Disease Relation corpus in detecting chemical and dis-

eases and chemically induced disease relation F1-score. We outperform the existing state of the

art results on nominal relation classification for SemEval-2010 Task 8 by Test F1 86.9 (2.2 point

absolute improvement), without incorporating any external resources or tools.

Better information extraction techniques can help identify patient risks more efficiently and

thus will be helpful in patient care. Clinical notes are crucial for predicting events during a patient

stay in hospital since they contain valuable information which correlates with the event occur-

rence. Hence, we study identifying Intensive care unit (ICU) readmission risks using clinical notes

for heart disease patients, considering different subsets of these notes but focusing on Echocardio-

graphy notes. This work builds a representation of the clinical notes and accounts for additional

modality including time series based vital data and different patient descriptors. We outperform

previous work on predicting ICU readmission clinical event measured by AUROC (0.634) and

F1-score (0.73) without textual modality (Baseline - 0.62 AUROC and 0.72 F1). Additionally, we

give the clinician a way of visual interpretation of the important text for the model prediction using

attention scores.
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1. INTRODUCTION

Information extraction is the task of extracting meaningful information or knowledge in

machine-readable form [1]. The sources of extraction can vary from text in news to medical

notes. The type of text can be unstructured (e.g. news journal), semi-structured (e.g. medical

notes) or semi-structured machine-readable documents (e.g. Electronic Health Record). Infor-

mation extraction plays a crucial role in language understanding [2]. The structured information

could consist of Entities, relationships between them and the events they are involved in. For

instance “Golden Gate Bridge is located in San Francisco” can be represented using the tuple

Located_In(GoldenGateBridge, SanFrancisco). Here the Located_In is a relation which re-

lates the Entities GoldenGateBridge and SanFrancisco. Tuples of length greater than two can

also be used to represent a relation present between multiple entities. The data extracted from

the text is then stored in a knowledge base. This knowledge base can be further processed for

understanding and gaining insights and making challenging decisions.

There are many applications of Information Extraction (IE) in Natural Language Processing

(NLP) like question answering, event extraction, etc. This is especially needed in the Medical

field since we can identify potential causes of various diseases. For example, IE on MRI reports

can reveal various insights to the doctors about prevalence of diseases in body anatomy locations,

which otherwise would have been hard to discover [3].

Named entity recognition (NER) and relation extraction (RE) are used ubiquitously. Some

well-known applications of NER and RE are Ontology creation [4], document summarization [5],

biological or biomedical information extraction [6], question answering [7], and knowledge base

population [8].

In this work, we focus on the task of end-to-end relation extraction (EERE). Rephrasing Pawar

et al. [9], end-to-end relation extraction means identifying boundaries of entities, identifying their

types and appropriate semantic relation for each pair of these identified entities. This task has been

extensively studied in the past. Early works divided this task as a pipeline of two tasks, entity
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recognition and identifying relations among them separately using pipelined models [10,11]. Both

of these tasks are complementary to each other. Entities help decide which relations are important

and vice versa. One example can be seen in Figure 1.1, if IBM and New York are given as entities

being related, their information constrains the problem for the relations being classified. In this

regard, recent works have explored end-to-end joint modeling [9, 12]. This was shown to be vital

for better performance - F1 scores of both NER and RE [13, 14]. One common way of joint

modeling is by parameter sharing. Hence we use a single model for extracting both named entities

and relations training in an end-to-end manner. We perform extensive ablation studies for this

multi-task training and summarize our observations.

Figure 1.1: Three entities IBM, New York and June 16, 1911 are related by two relations Founding-
loc and Founding-year respectively

Early feature based works and recent works using end-to-end neural models use external lin-

guistic resources to obtain better performance. State of the art works in relation extraction also use

linguistic structure-based features [15, 16] and external knowledge based information [17]. These

external linguistic resources are costly to achieve in low resource domains like biomedical and

less studied languages like Hindi. Furthermore obtaining these features at the document level for

relation classification needs manual crafting of effective features [17], often requiring additional

tools. Obtaining these features can be costly while decoding and would add as a preprocessing

step every time we want to extract relation triples. This preprocessing acts as a barrier entailing

more computational costs than systems that process the text directly. Hence we use raw sentences

as inputs to our model without using any external resources.

Better feature extraction techniques help good classification of relations, and as stated above it

might be difficult to use external linguistic resources for feature extraction. Hence we use archi-
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tectures pre-trained on language modeling objective. This is a comparatively simpler technique to

obtain in low resource domains since free text is a ubiquitous resource. These pre-trained architec-

tures help learn low-level features efficiently and help in training target tasks by providing better

initialization points. Accordingly, this circumvents linguistic resources usage. In this work, we use

only raw words as inputs for a single joint model that modifies a pre-trained architecture. More

specifically, we amend Generative Pre-trained Transformer (GPT) [18] and Bidirectional Encoder

Representations from Transformers (BERT) [19] architectures in two different ways for relation

extraction. Section 3 gives the essentials of the design.

Figure 1.2: Example abstract from the CDR dataset. The green font is chemicals and the orange
font is diseases. Each entity mention is highlighted in the same color. The entities being related
can be in different sentences and can have multiple mentions with different mention form. Here
the entity Manic is of type disease which is induced from chemical entity Triazolam.

In this work, we primarily address chemical-induced disease (CID) relation extraction. Figure

1.2 shows a typical example of a PubMed abstract annotated with entity mentions of chemicals

and diseases in the Biocreative V CDR (CDR) dataset, here entity Manic is positively related to

the entity Triazolam [20, 21]. These relations are important in drug discovery, biocuration, drug

safety etc [21]. Manual annotating these abstracts is limited by human capabilities and hence au-

tomated extraction techniques are needed. CDR PubMed abstracts are annotated at the document

level and the relations are expressed across entities in different sentences. The entities can have

multiple mentions and this requires global information and understanding across the whole docu-
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ment. However, since all the mentions are given as inputs, entity linking is not necessary in this

case. With few exceptions most existing research in relation extraction addresses entity pair with

a single mention and focus on intrasentence relation extraction, relying on local surface features

of entity mentions. Hence, we address these shortcomings in our approach using self-attention

for relating long distant entities with mentions across multiple sentences. We use max pooling to

aggregate information from all entity mentions in the document. Moreover, we extract all relations

in a document concurrently between any pair of extracted entities, unlike any existing work. Fur-

thermore, we work on nominal relation classification for SemEval-2010 Task 8 (SemEval) [22],

we somewhat alter our methodology to account for given entity information, we elaborate the

subtleties in Section 3.4.2.

This work addresses all the aforementioned difficulties of earlier techniques for the task of

end-to-end relation extraction. We model entities and relations using a joint model. We augment

pre-trained architectures based on self-attention with a relation extraction head without using any

external resources and only relying on the raw sentences as inputs. For RE head, we modify the

pre-trained architecture using a biaffine function to model the interactions between head and tail

representations. We use max pooling over masked tokens with entities participating in the relation

triple being extracted for each relation candidate, this is based on a linguistic observation to pick the

most dominant interaction. We experiment model pre-training based on GPT and BERT [18, 19]

and select the empirically best-performing architecture. We justify the better performance of GPT

in Section 4. In this work, we follow encode once extract multiple strategy, thus extracting all

relations in a document at the same time, we train and decode our model in the same way. We

select self-attention based pre-trained architectures for their better empirical performance in other

tasks [18, 19] and also for learning long distant relations.

We show that our approach performs comparative to the baseline on CDR for chemically in-

duced diseases task using a much simpler model. We outperform state of the art on nominal relation

classification task on SemEval. We note that we do not use any ensemble models, any external re-

sources, or additional weakly labeled data for training, unlike existing works. Additionally, we
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give an elaborative ablation summary with observations for fine-tuning pre-trained architectures

over cross domains tasks and will open source the codebase. Through this work, we introduce

multi-task fine-tuning as an effective approach.

As previously mentioned, large scale labeled datasets are difficult to obtain in many domains

like biomedical, clinical, health care, etc. The two most obvious reasons are the cost of experts

advice needed for labeling and lack of resources for a language. For example, in medicine, it is

hard to label a large set of radiology reports with the diagnosis of the disease since it is hard to find

expert radiologists [23]. To demonstrate the effectiveness of our work, we apply our technique in

a realistic scenario of prediction of a clinical event based on information from Electronic Health

Records (EHR). Because of the lack of labeled data, typical models with huge number of param-

eters cannot be trained. Hence, this work primarily investigates model pre-training based on the

language model objective. For this task, we focus on heart patients with an echocardiogram (Echo)

or ultra-sound. We represent an Echo note associated with a patient using the above architectures

and predict the probability of a patient being readmitted to the Intensive care unit (ICU). This

research is performed upon the publicly available Medical Information Mart for Intensive Care

(MIMIC-III) database [24]. We use CNN [25] and LSTM [26] based models as baselines for our

model’s performance.

The article is structured as follows. Chapter 2 reviews related work about relation extraction,

document level relation extraction, pre-trained architectures and attention in relation extraction.

Chapter 3 first briefly explains joint model and then discusses our approach for all three tasks. In

Chapter 4 we discuss about the data and results of our approach on all three tasks. This article then

summarizes and concludes. Future research direction is mentioned at the end.
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2. LITERATURE SURVEY

There is a great deal of work in the existing literature in relation extraction, and in this chapter

we briefly go over the broadly used strategies.

2.1 End-to-end relation extraction works

Early works in EERE focused on feature extraction techniques and treated EERE as two

pipelined tasks. Recent works have explored neural methods [12, 27, 28], nevertheless do not

forgo feature extraction based methods. A lot of works have explored neural methods for features

extraction from dependency parse trees and use these features to classify relations. For this Xu et

al. [27] first used shortest paths between two entities head words in the dependency parse tree as a

sequence. They modelled this sequence using a LSTM [26] to classify relations. On similar lines

Santos et al. use CNN based approach [29]. The tree-based information has been encoded in a

number of different ways. Miwa and Bansal [12] had success modelling the dependency tree using

a bi-directional Tree LSTM. They also explored other possible information including subtree of

the lowest common ancestor.

State of the art works have explored graph based approaches on dependency parse trees. Zhang

et al. propose an extension of graph convolution networks for relation extraction [16]. They use

a strategy based on shortest paths, in dependency parse trees, for pruning. Christopoulou et al.

employ a walk-based approach for simultaneously treating multiple pairs in a sentence, modelling

interactions among the pairs [15]. Most of these works use external linguistic resources by means

of feature extraction tools, linguistic knowledge or additional weakly labelled data. As this leads

to additional overhead, we only use document abstract for CDR and sentence for SemEval. Li et

al. use self-attention architecture for relation extraction [30], we differ from them in subsequent

ways. The authors model named entities and relations among them using different models, i.e.

they use a cascaded LSTM and attention-based model. Our model is a joint architecture in which

we use hard parameter sharing based on a pre-trained model.
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2.2 Document Level works and Bio works

Most works in current literature are focused on short sentences relation extraction, only few

works are about extracting relations from entities for their mentions across sentences or in an

abstract [17, 31, 32]. These works are based on syntactic parse features classifiers and Peng et

al. [32] use a graph LSTM over dependency tree. This work uses a simple model without using

any LSTM, CNN and any features based on syntactic information to extract CID from a medical

abstract. Peng et al. [17] use rich features based on linguistic and domain knowledge for designing

a support vector machine based classifier for CID. Our work motivates from the work of [33],

which uses a self-attention and convolution based model to encode a biological abstract. We adopt

their model of jointly predicting named entities and relations between them, but our work differs in

the following key ways. Firstly, we use architectures solely based on self-attention architecture and

also model pre-training schemes on language model objective. Additionally, our model is simple

by using max-pool for all mentions and predicts all relations in the document concurrently.

2.3 Model Pre-training

There are many works in existing literature about unsupervised and semi-supervised learning

and it has been a long-studied topic in NLP. The famous methods are the word embedding mod-

els including Glove [34] and Word2Vec [35]. The most recent methods are based on language

models [18, 19, 36] and learning contextual embeddings of words [37]. The state of the art meth-

ods learn a surrogate objective function based on language modelling and use transfer learning

schemes to fine tune the model for predicting the specific task. Dai and Le first introduced a lan-

guage modelling objective as a semi-supervised approach for model fine-tuning [38]. The authors

design a model based on sequential learning using recurrent neural networks. Only their model

requires millions of documents for fine-tuning. Howard and Ruder develop universal language

model fine-tuning for text classification in which they use various implementation tricks for proper

fine tuning [36]. They design pre-training techniques for neural networks using a language mod-

elling objective and then fine tuning to a classification task with supervision. The authors show
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that their model can achieve considerable accuracies from very few examples. Their main contri-

bution comes from the training and optimization techniques including discriminative fine tuning,

slanted triangular learning rate schemas and gradual unfreezing of layers. Radford et al. [18] im-

plement a language model based on the transformer architecture by Vaswani et al. [39] and design

task specific input transformations for fine-tuning to various tasks. The authors discuss the various

latest advances in the language modelling research and how they can be used to improve spe-

cific tasks such as Question-Answering or sentiment classification. The self-attention model roots

from the transformer architecture [39], a sequence transduction architecture originally designed in

the context of language translation tasks. State of the art work from Devlin et al. [19] redefines

the bidirectional masked language model objective in a Cloze task scenario. Their model is also

grounded on transformer architecture from Vaswani et al. [39], but is a larger model and is trained

on very large corpora. We use the weights of pre-trained model by Radford et al. [18] and Devlin

et al. [19] to initialize our architecture, and select the best performing.

2.4 Attention in Relation Extraction

Only few existing works use attention mechanism for extracting relationships [8, 40]. Zhang

et al. add position data for the subject and object through attention mechanism for the task of

relation extraction, more specifically slot filling [8]. Motivated from their work, we adopt masking

over entity mentions in our model which give the position information. Nguyen et al. apply

deep biaffine attention over LSTM [40], we modify our encoder and decoder in a similar fashion,

but greatly simplify their model (the details are explained in Section 3). Alt et al. apply self-

attention based pre-trained architecture to relation extraction [41]. In contrast to our work, their

work addresses relation classification for a given pair of named entities in a single sentence and do

not train their model based on multi-task objective.

2.5 Applying NLP to EHR

Prior work has applied NLP to EHR but in limited ways. Tran et al. [42] extract unigrams and

model them using logistic regression for preterm birth prediction. Wagholikar et al. [43] used reg-
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ular expressions to extract ejection fraction from Echo notes. However these works are rule-based

and thus limited in recall. Regular expressions only capture limited patterns and hard to generalize.

Marafino et al. [44] explored text modelling using logistic regression and augment these features

to clinical trajectory based features for predicting mortality. This work explores regular expres-

sions and Lucene based Apache Solr [45] for constructing feature based representation of the Echo

note. We explored this avenue to compare our deep learning based representations. Hassanpour

et al. [46] developed a corpus for Named Entity Extraction and modelled the data using Condi-

tional Markov Model and Conditional Random Field. Cornegruta et al. [23] used Deep Learning

based Bi-LSTM technique to model the 4 entities which the authors annotate for a list of 2000

documents. Unlike their work, we adopt an abstractive representation instead of extractive. Ra-

jkomar et al. [47] worked on predicting various clinical outcomes including In-hospital mortality,

unplanned readmission, prolonged LOS, final discharge diagnosis using deep learning. But the

authors did not include free text in their model. On similar lines, Pabkin et al. [48] work on pre-

dicting ICU readmission based on data apart from free text. Our work is most similar to the work

of Liu et al. [49], which uses CNN and LSTM based architectures to model text in the EHR. Our

work differs from them in the following ways. Firstly, we modify pre-trained models to account

for label in-provision. Secondly, we work on attention based models which inherently account for

interpretability to predict ICU readmission.
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3. PROPOSED APPROACH

3.1 Summary

We introduce an approach for EERE and relation classification modifying pre-trained archi-

tectures trained on language modeling objective. The goal is to build a generic framework for

relation extraction at the sentence level, and across a document, but also to apply our model in a

realistic setting. Henceforth, we study EERE on CDR dataset and relation classification on Se-

mEval dataset. Finally, we use these architectures for extracting features from a medical note for

predicting a clinical event, more specifically predict ICU readmission using Echo notes. For these

tasks, we modify transformer [39] encoder pre-trained on variants of language model objective.

For EERE on CDR corpus and encoding clinical note, we use GPT [18] and for SemEval we use

BERT [19]. In this work, we use the terminology introduced by Devlin et al. [19], calling GPT as

decoder and BERT as encoder. We use these architectures to modify the tokenized sub-word repre-

sentations. These contextual representations are then used to predict entities and classify relations.

We illustrate two variants of our approach for CDR (EERE) and SemEval (relation classification)

respectively. For CDR variant we first predict entities and then relations. For each of the entity

pair, we use max pooling over all its mention pairs for both entities to design a relation candidate.

For SemEval variant we experiment with multiple variants of encoding a given sentence and at the

end layer, we apply a linear layer over the classification token representation. We follow a similar

approach to encode the clinical note. We call the prior approach CDR variant and later SemEval

variant.

3.2 Input

Let S be the input to our model. S for CDR represents a PubMed abstract, for SemEval a

sentence and medical note for Echo reports. Here we describe the transformation to the input text

before giving the text to the Language representation model. First, the text is tokenized to sub-

word representations and then followed by the embedding layer. After embedding the tokenized
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entities, input transformation is applied for aiding in classification. Then, position information is

added and the representations are sent to the Language representation model.

3.2.1 Tokenization and Embedding

The model tokenizes the input to N tokens and embeds each word to d dimensions i.e. embed-

dings in Rd, where N is 512 and d is 768. We choose these parameter values to be consistent with

the pre-trained architectures. For tokenization, we use the byte pair encoding (BPE) algorithm fol-

lowing standard implementation with 40000 merges [50]. The embedding layer takes in byte pair

encoded sub-word representations and gives out d dimensional vectors as outputs, this embedding

layer is accompanied by the pre-trained architecture. After tokenization of the input sentence S we

obtain the tokenized version of the input represented as U = {u1, ..., un}.

Figure 3.1: Input Transformations for fine-tuning. A describes the transformation for the short-
est dependency path sequence. B is a transformation for the surface sequence where the entity
information is presented at the end, C illustrates a more natural transformation for surface form se-
quence, here mod modification symbolizes that each entity is prepended and appended with special
delimiters. D describes the transformation for BERT

3.2.2 Input Transformation

For each task, we transform the embedded input U for fine-tuning. Due to the training of the

pre-trained model on plain text, input transformations are needed to apply it to our tasks. These

transformations help the model discriminate the input and also act as sentence representation cor-

responding to the classification token [18, 19]. Figure 3.1 summarizes the input transformations

11



we adopted and we further elaborate the implementation details below. We denote X to the trans-

formed version of U .

3.2.2.1 CDR

We do not transform CDR dataset since we needed no sentence embedding and we needed

a consistent representation for entity recognition. This strategy was empirically chosen. While

classifying relationships, we attempted to give sentence-based representation but found that of

little help.

Figure 3.2: Dependency Parse with labelled edges. For entities IBM and NewY ork the shortest
path consists of path through the Lowest Common Ancestor i.e. incorporated state

3.2.2.2 SemEval

For SemEval dataset we experimented multiple input transformations. Following Miwa and

Bansal [12], we model the shortest path in the dependency path tree as a sequence, since this was

shown to be highly correlative of the relation being extracted. Figure 3.2 illustrates an example

of shortest path between the two entities. We use Figure 3.1a transformation for the shortest path,
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treating it as a sequence. Model pre-training for BERT and GPT [18, 19] was done on the surface

form, hence this variant did not perform well. We then experimented two variants of the surface

form as shown in Figure 3.1b and 3.1c. We augmented entity location information using delimiters.

In first variant we append the sentence with two entities separated by delimiters, here the entities

repeat at the end of the input. And in the second variant, we give the model a more natural variant

of the surface form. Here we highlighted the entities with delimiters. Since this is a more natural

way to provide information to the model, we see that that the performance is improved. We then

experiment SemEval with Bert for which we only use SegmentA embeddings, since there is only

one sentence. The transformation is simple and can be seen in Figure 3.1 D

3.2.2.3 Echo notes

For Echo notes, we followed a strategy similar to Figure 3.1a, but shortest path replaced with

Echo note. As noted earlier we observed that GPT based decoder worked best with predicting ICU

readmission and hence we report the same in Section 4.

3.2.3 Position based information

We use the learned position embedding and hence we limit the test sentence length to N , i.e.

512. The dimension of position embedding is consistent with the token dimension d, i.e 768.

Consistency is maintained since this information is added to the token representation following

the Equation 3.1. This position related information is important for the model to understand the

sequential nature of the input.

xi = ei + pi (3.1)

Here ei corresponds to the ith token embedding representation of the ui token obtained by

selecting ith row from We. Similarly, pi corresponds to the ith position embedding representation

obtained by selecting ith row from Wp

s(0) = XWe +Wp (3.2)
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Equation 3.2 summarizes the input layer operations including embedding and adding position

information. Here X is the sequence of the tokens X = (x1, .xn) is the output from Input trans-

formation block, We is the learned embedding weight matrix and Wp is the position encoding. X

is then projected into the embedding space and added with a learned position embedding with the

same dimension. The embedding matrices We and Wp are part of the pre-trained architecture. s(0)

is the representation of the 1st layer input.

3.3 Language representation model

We first encode all tokens through sequential encoder i.e. pre-trained self-attention based trans-

former. Transformer model by Vaswani et al. [39] is an architecture dispensing recurrence entirely.

The authors tackle the machine translation problem using a sequence transduction model. The en-

coder and the decoder are made of attention only and position wise feedforward neural networks

without any convolution or recurrent elements. The rationale behind the model is supported by

two main reasons. Firstly, the model supported better utilization of computation since it could

be paralyzed over the sequence length. Secondly, the model could directly attend from any posi-

tion to any other position, making the number of computations to learn dependencies between any

two positions in constant time. This architecture helps the model tackle the problem of vanishing

gradient for long inputs explicitly. Noting the potential and empirical efficiency of self-attention

architecture towards language tasks, we inculcate the same in our model.

Semi-supervised pre-training helps in better initialization of the model by pre-training on lan-

guage model objective on large corpora. Hence, we modify GPT and BERT architectures for our

approach. Models for CDR and Echo note datasets are based on GPT architecture, they were

pre-trained on BooksCorpus dataset (800M words) [51]. The SemEval variant based on BERT

is additionally trained on English Wikipedia (2,500M words). Since the use of Transformers is

prevalent, and our implementation of Language representation model strictly follows standard ar-

chitecture, we omit a comprehensive background of this part of the model. We recommend readers

to Vaswani et al. [39].

The attention consists of h heads. The model is a L = 12 layer transformer. GPT decoder uses

14



masking and the BERT encoder doesn’t. We refer the reader more comprehensive information

from Radford et al. [18] and Devlin et al. [19] work. The following equations summarize the

language representation model, which could be encoder or decoder.

s(g) = TransformerBlock(g)(s(g−1))∀g ∈ [1, L] (3.3)

The model consists of L residual multi-head self-attention layers with self-attention and

position-wise feed forward neural networks as sublayers. Denoting the gth self-attention block

as TransformerBlock(g)(.), the output of layer s(g), and LayerNorm(.) layer normalization,

the above recurrence in 3.3 is applied to the input and it gives the final representation s(p). Each

TransformerBlock(g)(.), consists of Multi-head self-attention and feed forward neural network.

3.4 Model Variants

3.4.1 CDR

For EERE, we design an approach to jointly model named entities and relations between those

predicted entities. The language representation model parameters act as shared parameters between

these two tasks. In some architectures, no shared parameters are used for detecting entities and

relations. Previous research [12] has shown that having shared parameters in a single model helps

model the interactions needed for both tasks and thus improves performance. Training entities

and relations separately in a pipeline fashion can cascade errors, also entity prediction cannot be

benefited from relation classification and vice versa. Hence, we train both tasks jointly.

Figure 3.3 gives an overview of the model architecture for CDR variant, here we intentionally

hide some details for clarity.

Figure provides an overview of the model architecture for CDR variant, here we deliberately

conceal some details for visual clarity. Internal working of the self-attention architecture is ab-

stracted and the entity prediction is not shown. We extract p entities {e1, e2, ...ep} having q rela-

tions {r1, r2, r3..rq}. Each relation is a triple of {ei, ej, rk}, here ei and ej are the entities in the

relation rk.
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Figure 3.3: End-to-end Relation Extraction Architecture. Inputs are sub word byte pair embed-
dings. Inputs are then passed through the self-attention encoder and entity prediction layer. Re-
lation extraction is made possible from a Biaffine head with masked max-pooling based on entity
information
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3.4.1.1 Named Entity Recognition

Rephrasing Pawar et al. [9], given a sentence as our input, our goal is to assign words with

Begin Inside Out (BIO) tags and its entity type. Since we operate at sub-word level, we treat each

sub-word as I tag to denote the entity span. Entity predictions are done using the output of the final

layer which is then passed through a linear layer and then softmax layer. Equation 3.4 summarizes

the NER operation for classifying entities. We note the loss associated with NER as Lner. Equation

3.4 gives the loss for NER for a single abstract.

C = W entitys(g) (3.4)

Lner = 1/N
N∑
t=1

logP (yt|s(g)) (3.5)

3.4.1.2 Relation Extraction

For classifying relations between each of those identified entities, we define a relation extrac-

tion head on top of self-attention architecture. The representations s(L) are sent to two represen-

tational spaces to representing head and tail in relation candidate. Equation 3.6 summarizes the

linear layers for head and tail representations

ehead = W
(1)
head(ReLU(W

(0)
heads

(L)))

etail = W
(1)
tail(ReLU(W

(0)
tails

(L)))

(3.6)

scores(head, tail) = masked(max(Aij)) (3.7)

For calculating relation candidates, we pass the above head and tail representations through

a biaffine layer to capture the dependencies between the words in two spaces. We calculate the

following tensor based on the biaffine weight matrix Wrelations, whose dimensions are dX We then

mask the biaffine output with dimensions (N,N,R), where R is the number of classes in relations.
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The outputs are then max-pooled for obtaining relation candidates and trained using Logistic loss.

We note the loss associated with Relation Extraction for Q relation as Lrel.

3.4.1.3 Training

The multi-task loss consists of the NER, Rel Ex loss and Language modeling loss. During

ablation studies we noted that this is necessary for training both the relation extraction and NER

task. The loss equation for training objective is summarized as follows in the Equation 3.8

Ltotal = Lrel + ner_coef ∗ Lner + lm_coef ∗ Llm (3.8)

In Equation 3.8, Llm refers to the language model loss. Here ner_coef refers to the coefficient

corresponding to the NER loss and lm_coef corresponds to the Language model loss

3.4.2 SemEval and Echo Note dataset

For fine tuning on SemEval dataset, we pass <clf> token representation through a lin-

ear+softmax layer acting as the final layer of our model. For the best performance we use BERT for

fine-tuning on SemEval dataset and follow the input transformations mentioned in Section 3.2.2.

Analogously, for Echo notes we use a similar model but fine-tune using GPT. The below figure

summarizes the model we used for these tasks.
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Figure 3.4: Transformer architecture used in representing the SemEval relation candidate and Echo
Note.

19



4. DATA AND EXPERIMENTS

We evaluate our approach on three datasets. First, on Biocreative V Chemical Disease Relation

corpus for the task of end-to-end relation extraction [20, 21]. Second, on SemEval-2010 Task 8

dataset on nominal relation classification [22]. Finally, on predicting ICU readmission on MIMIC-

III cohort of patients with Echo notes [24]. We use the first two datasets to showcase the prowess

of our approach to relation extraction and the last dataset to understand the approach in a medical

setting.

4.1 End-to-end Relation Extraction Results

Figure 4.1: Example abstract from the CDR corpus

A unique gold standard dataset was created in BioCreative V challenge, including manual

annotations of chemicals, diseases entities and their Chemically induced disease (CID) relation-

ships for 1500 PubMed papers. The dataset was derived from the Comparative Toxicogenomics

Database (CTD), which curates interactions between genes, chemicals, and disease. The dataset

statistics are presented in Table 4.1, the dataset is equally split into training, validation, and test.

An example abstract is shown in Figure 4.1.
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Table 4.1: Data statistics of CDR chemical and disease entities and CID relations

Data split Docs Chemical mention Disease Mention Pos relations Neg relations
Train 500 5203 4182 1038 4280
Development 500 5347 4244 1012 4136
Test 500 5385 4424 1066 4270

Table 4.2: Summary of entity recognition for chemical and diseases entities, different averages are
measured for clarity

Average Metric P R F1
micro avg 0.93 0.93 0.93
macro avg 0.82 0.79 0.81
weighted avg 0.93 0.93 0.93

Table 4.3 compares our results of relation extraction with other state of the art works. We

note that the model apart from Verga et al. [33] use external linguistic resources and are based

on ensemble models. Hence our model performs equivalently with no ensembles and no external

resources. Table 4.2 summarizes the entity extraction results performance.

As noted earlier, we use GPT for CDR modified with relation extraction head. We saw that

this configuration empirically performed best since the model has regularization loss from the

language model. BERT did not perform relatively well and hence we did not note its performance

in the ablation study in Table 4.4. The best performance for both entity recognition and relation

extraction was recorded only in the multi-task scenario, i.e. both tasks help each other. We choose

to pick the most dominant interaction i.e. Max-Pool among interactions, this further increased

performance.

4.2 Nominal Relation Classification Results

We work on a dataset on nominal relation classification (SemEval-2010 Task 8). SemEval-

2010 Task 8 has 9 relation types between entities and a tenth type Other when the entities are

not related. It is a Multi-Way Classification of Semantic Relations between pairs of Nominals
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Table 4.3: Comparison of performance for various SOTA model on CID relation extraction

Models and Settings P R F1
MaxEnt (Gu et al., 2016) 62 55.1 58.3
Pattern rule-based (Lowe et al., 2016) 59.3 62.3 60.8
LSTM-based (Zhou et al., 2016) 64.9 49.3 56
LSTM-based & PP (Zhou et al., 2016) 55.6 68.4 61.3
CNN-based (Gu et al., 2017) 60.9 59.5 60.2
CNN-based & PP (Gu et al., 2017) 55.7 68.1 61.3
BRAN (Verga et al., 2017) 55.6 70.8 62.1
SVM+APG (Panyam et al., 2018) 53.2 69.7 60.3
Our Model (Predict all relations at Once with Entities Prediction) 51.4 70.35 59.95

Table 4.4: Ablation study for CDR dataset for model based on GPT

Model Ablations F1
Train only Head, Batch size 8 48.90
Train Entire Model, Batch size 8 54.00
Include part of validation data for training, Batch size 8 55.11
Decrease batch size 4 57.21
Change Optimizer to Adam lr=1e-4, betas=[0.9, 0.999], eps=1e-8 59.4
Change Optimizer and introduce Max-Pool 59.95

and relations are asymmetric. We neglect this other relation type and consider it a 10th type.

The dataset consists of 8,000 training and 2,717 test sentences, and each sentence is annotated

with a relation between two given entities. One example of the relation candidate is “People in

Hawaii might be feeling <e1>aftershocks</e1> from that <e2>powerful earthquake</e2> for

weeks.” Here Cause-Effect(e1, e2) does not hold, but Cause-Effect(e2, e1) does. Most of the input

candidates are short sentences similar to this sentence, thus the relationships are between entities

having single mention and are present in the same sentence. We use this setting since we wanted

to completely analyze our model on a different setting contrasting to CDR before. The dataset

types are summarized in Table 4.5 below. Official score is macro-averaged F1-score (9+1)-way

classification, with directionality.
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Table 4.5: Data statistics of SemEval relation types including an example of each class

Relation Type Example Freq
Cause-Effect Smoking causes cancer. 1331 (12.4%)
Instrument-Agency The murderer used an axe. 660 (6.2%)
Product-Producer Bees make honey. 948 (8.8%)
Content-Container The cat is in the hat. 732 (6.8%)
Entity-Origin Vinegar is made from wine. 974 (9.1%)
Entity-Destination The car arrived at the station. 1137 (10.6%)
Component-Whole The laptop has a fast processor. 1253 (11.7%)
Member-Collection There are ten cows in the herd. 923 (8.6%)
Message-Topic You interrupted a lecture on maths. 895 (8.4%)
Other N/A 1864 (17.4%)
Total 10717(100%)

We describe the results in Table 4.6. For baselines, we use all the previous works mentioned in

the table. SemEval is an intensively studied dataset, this gives our model a fair comparison. The

results in this table correspond to our best performing model with BERT and maximum epochs

of 10. Hence, we do a thorough ablation study with various input transformations, different self-

attention encoder based on GPT and BERT and various hyper-parameters involved. The summary

is presented in Table 4.7

4.3 ICU readmission results

4.3.1 Cohort

We select Echo notes from Echocardiography reports from Medical Information Mart for In-

tensive Care (MIMIC-III) database [24]. The MIMIC-III dataset is comprised of deidentified infor-

mation detailing over 60, 000 ICU stays from the Beth Israel Deaconess Medical Center in Boston,

Massachusetts. This information was collected as part of routine clinical care and, as such, is

representative of the information that would be available to clinicians in real-time. The database

contains a wide range of numerical data such as lab results and patients’ vitals which has been

extracted to predict readmission in previous work. MIMIC-III also contains a large amount of

unstructured information in the form of free text notes. These notes are taken down by medical
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Table 4.6: Relation Classification Results on SemEval data and comparison with state of the art
works

MODELS AND SETTINGS Macro-F1
Feature Based
Jin et al. (2019) SVM-RBF 0.781
Zeng et al. (CNN and feature based) 0.827
Settings - No External Knowledge Resources
dos Santos et al. (2015)(CNN based) 0.841
Xu et al. (2015) (lstm-crf) 0.84
Miwa and Bansal et al. (2017) (Tree LSTM based) 0.844
Cai et al. 2017 (RCNN) **no direction prediction 0.854
Lee et al. (2019) (bilstm-attention) 0.847
OurModel(Attention− only) 0.869

Table 4.7: Model Ablations for Nominal Relation Classification on SemEval dataset

Model Ablations and Experiments F1
RelShortestPath (<start >+ <shortest_path >+ <clf_token >) 0.772
Bilinear Fashion 0.8
RelSeq - <start>+ <sentence>+ <delim>+ <e1>+ <delim>+ <e2>+ <clf_token> 0.839
RelSeq - <start>+ <text1><e1>+ <text2>+ <e2>+ <text3>+ <clf_token> 0.859
Change Model Initialization masked LM(Devlin et al.) 0.841
Add additional Output Layer 0.842
Predict Dependencies 0.85
Predict Dependencies and Increase Epochs to 10 0.869

professionals during patients’ stays and contain a large amount of both qualitative and quantitative

information regarding the patients’ hospital stay. The total number of Echo Notes is 45794 and

the number of unique patients with Echo notes is 29173, hence we use these patients as the cohort

for predicting ICU readmission. Patients are dropped from this cohort if they are missing either

time for ICU admission or discharge as this makes it impossible to calculate readmission times,

resulting the cohort size to 25, 320. This cohort is split into training, validation, and testing groups

using an 80/5/15 split for our work.
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Figure 4.2: Patient flow in an ICU admission, the red color implies the patient gets readmitted to
the hospital, here we categorize the patient as positive sample if he gets readmitted within 72 hours
of ICU discharge

4.3.2 Task

The task can be better understood by Figure 4.2. The patient passes through various stages in

a typical hospital stay. The patient’s stay in the hospital starts with hospital admission followed by

ICU admission. It is important to note that our patient cohort only consists of patients who have

been to the ICU at least once. The patient flow after the ICU can vary and marks the event we aim

to predict in this work. We also visualize the words which the <clf> token attends to since this

is used for classification. This provides partial interpretability to understand the model’s focus for

prediction. Figure 4.3 showcases a typical example of this visualization. We note that since the

model is a multi-headed model to learn different features. This visualization is for only a single

head, which learns some features. Other heads learn other features. This example is cherry picked

for better understanding. For this note, the model actually picks on important words for predicting

readmission for patient who was actually readmitted.

4.3.3 Results

We summarize our results on ICU readmission in Table 4.8. In the cohort ICU patients being

readmitted are 1327 (positive class) and patients with readmission are 27941 (negative class). Since
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Table 4.8: Results on ICU readmission task

Experiment Description F1 AUC
Full Data - complete zero prediction 0 0.5
Train Language Model first and then classification Experiment 0 0.49
Language Model Loss + Classification Loss 0.73 0.565
Model with subsampled data -sigmoid - n iterations = 3 0.72 0.599
Baseline without Text data 0.72 0.62
Model with subsampled data -sigmoid - Weighted Loss Function 0.73 0.634

the dataset is unbalanced, models with a large number of parameters tend to overfit. Hence we

use subsampling for training and use GPT instead of BERT since while fine-tuning GPT we can

regularize the main loss with language model loss. We treat Pabkin et al. [48] model as our

baseline, we train their model on Echo cohort to obtain the metrics noted in row 5 of Table 4.8.

Figure 4.3: Attention scores visualized on a example Echo note. Here we can see that the patient
has severe health conditions, Intrinsic function is more depressed, Trace Aortic regurgitation, Our
model picks up on these terms and gives the correct prediction for the patient who is readmitted in
the future
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

We designed a novel framework for end-to-end relation extraction using multi-task training on

self-attention based pre-trained architectures. Our model performed comparative to the baseline on

CDR (CID relations F1-score), and outperforms previous state of the art on SemEval relation clas-

sification dataset by 2.2 absolute F1 score for relations. We demonstrated an approach to extract

relations at sentence and document level without using any external linguistic resource. We show

that multi-task fine-tuning is helpful for related tasks. This approach is generic and can be applied

across tasks such as syntactic parsing, semantic parsing and Semantic role labelling. We further

extract features from medical notes for heart patient to predict ICU readmission, we outperform the

baseline by 14% absolute AUROC. Through this we showcase an example of applying pre-trained

models on clinical notes and predicting important events.

5.2 Future Work

We have observed in practice that this approach is more efficient than alternatives for practical

tasks and part of future work will be measuring this much more precisely and conclude empirically.

Naturally, this work applies to model semantic parsing and we would, therefore, like to apply

this model to this task. One key avenue is to explore the different ways of inculcating structural

information into the model. In this work, we have observed multiple cases of overfitting because

of the large number of parameters for massive models, hence we encourage research to understand

techniques to evade this.
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