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ABSTRACT 

Cystic fibrosis (CF) is a common, fatal, genetic disease caused by mutations in the cystic 

fibrosis transmembrane conductance regulator (CFTR) gene. CF has many clinical manifestations. 

The most important site of disease is the lung, where often colonized or infected in infancy or early 

childhood with microorganisms. The chronic bacterial infections, often with Pseudomonas 

aeruginosa, and concomitant airway inflammation damage the lung and lead to respiratory failure. 

The chronic use of multiple antibiotics increases the possibility of multidrug resistant (MDR) 

bacteria, and limits the treatment options. Therefore, there is a need to identify alternative 

antimicrobial strategies to optimize treatment of infections. Studies have demonstrated that 

synergy results in superior antimicrobial activity, while avoiding potential side-effects of both 

therapeutics. Hence, we hypothesize that by using drug combinations with an efficient delivery 

system, we could achieve improved antimicrobial efficacy against MDR bacteria.  

Studies have demonstrated that high-dose ibuprofen (peak serum concentrations of 50-100 

μg/mL) can improve the outcomes in CF patients. This beneficial effect has been attributed to the 

anti-inflammatory properties of ibuprofen. Our group demonstrated that high-dose ibuprofen has 

antimicrobial activity both in vitro and in vivo. Despite silver has been used as a antimicrobial 

agent with a low incidence of resistance, poor availability mandates a high dosage to effectively 

eradicate infections.  

A silver carbene complex, SCC1, was conjugated with ibuprofen, SCC1-IBU. Compared 

with SCC1, SCC1-IBU demonstrated improved antimicrobial activity against CF pathogens while 

preserving the anti-inflammatory activity of ibuprofen. Then, checkerboard assays and end-point 



 

 

 

 

iii 

colony forming unit (CFU) assays demonstrated synergistic combination of silver/minocycline 

against P. aeruginosa isolates. Furthermore, the synergistic combination can be co-loaded into 

nanoparticles as a next-generation antibiotic to combat MDR bacteria.  

Lastly, disc diffusion assay demonstrated that FDA approved antibiotics have a significant 

increased zone of inhibition in the presence of ibuprofen. In a 24-hour endpoint CFU assay, 

amikacin, aztreonam and ceftazidime demonstrated synergy in combination with either ibuprofen 

or naproxen. Finally, mice treated with ceftazidime/ibuprofen demonstrated a significant survival 

advantage compared to the individually treated groups. Thus, therapy with high-dose ibuprofen in 

combination with antibiotics may improve outcomes in patients infected with MDR bacteria.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

Cystic Fibrosis Is Genetic Disease 

Cystic fibrosis is a common fatal genetic disease, predominantly occuring in Caucasians. 

An autosomal recessive disease, it is caused by mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR) gene. More than 2,000 mutations in the CFTR gene have been 

identified, with an incidence of clinical disease of 1 in 2,500 live births in the Caucasian population 

(1). The wild type CFTR gene encodes a cyclic AMP-regulated chloride ion transporter CFTR 

channel (2) that usually resides at the apical surface of many epithelial cell types. The CFTR 

protein is a member of ATP binding cassette (ABC) family of transporters. The CFTR contains 

highly conserved motifs in the ABC family, including two membrane-spanning domains that have 

six membrane-spanning peptides, and two nucleotide binding domains (NBDs) responsible for 

ATP binding and hydrolysis to supply energy for opening and closing the ion channel. The function 

of the CFTR channel is to export chloride ions, followed by Na+ and water, from inside of 

epithelial cells to the outside of the cell. The ability of epithelial cells to release fluid relies on the 

energy provided by the ubiquitous, basolaterally located Na+/K+-ATPase. The Na+/K+-ATPase 

maintains a low intracellular concentration of Na+. This low Na+ concentration, coupled with 

negative transmembrane potential, drives the passive diffusion of Na+ into the cell, as well as the 

energetically unfavorable intracellular accumulation of Cl-, through a basolaterally located 

Na+/K+/2Cl- cotransporter. When the CFTR opens, Cl- exits down its electrochemical gradient. 

Na+ ions follow through a paracellular pathway, and water follows the salt due to the resulting 

osmotic gradient (3). CFTR mutations can be classified into six different categories: 1. no CFTR 

protein production; 2. CFTR protein fails to reach the apical membrane due to defective 
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processing; 3. CFTR channel fails to open in response to cyclic adenosine monophosphate; 4. 

CFTR channel has a reduced conductance; 5. splicing inefficiency reduces CFTR protein 

synthesis; and 6. CFTR protein has less stability at the apical membrane (4; 5).   

The defective epithelial transport of Na+, Cl- and fluid secretion results in the many clinical 

manifestations of CF (6; 7). The decreased fluid flow from the pancreatic acinar cells results in 

plugging of the pancreatic ducts that further leads to destruction of the exocrine pancreas. In older 

patients, the destruction of the pancrease leads to an increasing incidence of diabetes mellitus. 

About 5-10% of patients with CF present as neonates with a gastrointestinal blockage known as 

meconium ileus caused by accumulation of fecal material. In infants and children, the decrease in 

pancreatic enzyme production results in malabsorption, especially of fats and proteins. Abnormal 

fluid secretion that reduces the airway surface fluid and impairs the activity of the mucociliary 

escalator, contributes to the cardinal respiratory features of CF, such as pansinusitis. Dehydration, 

particularly during the summer months, caused by loss of sodium may result in hyponatremic 

dehydration and metabolic alkalosis due to electrolyte losses in sweat.  

However, the most important site of disease is the lung. The normal lung airway surface 

has a thin layer of fluid to maintain mucociliary movement. With poorly functional mutated CFTR, 

the impaired secretion of fluid to the lung epithelial surface results in dehydration of lung airway 

surface. The decreased volume of periciliary fluid in the lower respiratory tract interferes with 

mucociliary clearance of inhaled microorganisms (2). The impaired periciliary movement results 

in mucus accumulation, leading to chronic lung infections. About 80-95% of patients with CF 

succumb to respiratory failure caused by chronic bacterial infection and concomitant airway 

inflammation (8). The infections in the respiratory tract incite secrection of pro-inflammatory 

cytokines, early recruitment of inflammatory cells, including polymorphonuclear leukocytes 
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(PMNs), and eventual production of antibodies (9-11). If not treated, most CF patients die at a 

young age due to airway infections. In 1974, the international median age at death for CF was 8 

years old (12). Intensive treatment with antibiotics has extended the median expected lifetime 

dramatically. In 2017, the predicted median survival age has increased to 43.6 years old compared 

to the median survival age of 32.7 years old in 2002 (12).  

Common Microorganisms Result in Infections in CF Patients 

The respiratory tract in CF patients is a complex and diverse ecosystem where multispecies 

communities coexist (13). The majority of studies of CF-associated lung infections have focused 

on Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, and on the 

Burkholderia cepacia complex species group (14). Lungs of CF patients are often colonized or 

infected in infancy or early childhood with microorganisms, such as Staphylococcus aureus and 

Haemophilus influenzae. The early bacterial infections damage the lung epithelial surfaces, leading 

to increasing attachment of, and eventual replacement by Pseudomonas aeruginosa (15) (Figure 

1).  

Staphylococcus aureus   

Staphylococcus aureus are Gram-positive bacteria that are commonly found on the skin, 

hair, as well as in the nose and throat of healthy people. S. aureus is a member of the 

Micrococcaceae family with an appearance of gold pigmentation of colonies and positive 

coagulase, mannitol-fermentation, and deoxyribonuclease tests (16). S. aureus appear in coccoid 

clusters upon microscopic examination. Thirty to fifty percent of healthy adults are colonized with 

S. aureus, and ten to twenty percent of individuals are persistently colonized (17; 18). S. aureus is 

a facultative anaerobes. S. aureus is a notorious and opportunistic pathogen causing a wide range 
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of diseases, including bacteremia, pneumonia, cellulitis, osteomyelitis and skin/soft tissue 

infections (16). 

 

Figure 1. Prevalence of respiratory microogranisms isolated from cystic fibrosis patients by 

age cohort.  

(MDR-PA: multi-drug resistant Pseudomonas aeruginosa; MRSA: methecillin resistant 

staphylococcus aureus; Data modified from Cystic Fibrosis Patient Registry, 2017) 

 

  

In addition, S. aureus is well known for its ability to acquire antibiotic resistance. Since 

1960, about eighty percent of all S. aureus isolates have been resistant to penicillin (19). Shortly 

after introduction of methicillin, the first case of S. aureus resistant to methicillin was reported in 

1961 (20). Although the first reported case of  methicillin-resistant S. aureus (MRSA) was in 1961, 
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studies have suggested that S. aureus harbored mecA, a gene that encodes an alternative penicillian-

binding protein resulting in drug resistance, prior to the introduction of methicillin (21). MRSA is 

one of the most serious threat-level pathogens that has developed multi-drug resistance (22). 

Early MRSA isolates were only associated with hospital acquisition (HA); however, after 

the 1990s, community associated (CA) MRSA emerged (23). CA-MRSA is resistance to fewer 

classes of antibiotics. However, as CA-MRSA has caused outbreaks in hospitals and HA-MRSA 

can spread into the community, the distinction between CA-MRSA and HA-MRSA has blurred 

(24). Although the genetic interchange between CA-MRSA and HA-MRSA makes molecular 

classification difficult, HA-MRSA does carry a larger staphylococcal chromosomal cassette mec 

(SCCmec) compared to the size of SCCmec in CA-MRSA (24).  

In the U.S., the most prevalent strain is the CA-MRSA strain, USA300 (25). MRSA can 

be spread by person to person or person to object contact, tiny drops of liquid caused by coughs, 

sneezes or laughs, and skin-to-skin contact. Penicillin is the drug of choice if the isolate is sensitive 

to it (25). However, for MRSA, vancomycin is the drug of choice. Sulfamethoxazole-trimethoprim 

(TMP-SMZ), minocycline, ciprofloxacin, levofloxacin, and carbapenem are alternative choices 

for treatment of patients who are infected with MRSA (16). 

S. aureus is generally cultured only from the nose of healthy individuals, not the throat or 

respiratory secretions. However, it is often considered to be among the first pathogenic organisms 

in a throat culture when isolated from the CF respiratory tract (26). In the 1940s and 1950s, S. 

aureus was the most prevalent bacteria cultured from the respiratory tracts of CF patients (27; 28), 

and is still the most common microorganism reported among individuals with CF, particularly 

younger patients (29). An estimated 71 percent of CF patients are colonized with Staphylococcus 

aureus including sixty to seventy percent of CF patients up to the age of 18 (12). After patients 
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reach ages between 25-34 years, P. aeruginosa surpasses S. aureus as the most prevalent bacteria 

in CF patients (12).  

S. aureus colonizes and infects CF patients at an early age. Abman and colleagues 

conducted a neonatal screening with a cohort of 42 CF children. The mean age of CF patient with 

an oropharyngeal swab culture positive for S. aureus is 12.4 months (30). In another study, 

Rosenfeld et al. found that fifty percent of 141 infants with CF cultured positive with S. aureus 

from brnonchalveolar (BAL) fluid during their first 6 months of life (31). Despite the apparent 

increase in prevalence of S. aureus in CF patients over the past decade (32-34), this increase could 

just reflect more sensitive culturing protocols (35; 36).  

S. aureus may result in chronic infection and contribute to chronic P. aeruginosa 

infections. A study using pulsed-field gel electrophoresis showed that S. aureus persisted for an 

average of 37 months (37) indicating that infections in CF patients maybe intermittent or chronic 

(38; 39).  Burns et al. studied 40 CF children and found a ninty-seven percent S. aureus infection 

rate in the first 3 years of life suggesting that there might be a progression from S. aureus to P. 

aeruginosa infection (40). Abman et al. examined 42 CF infants between 0-48 months; 18 infants 

were cultured positive with S. aureus, and 11 infants cultured positive with P. aeruginosa. Eighty 

percent of CF infants infected with S. aureus were between 0-24 months, and eighty percent of CF 

infants infected with P. aeruginosa were between 13-48 months. Nine of 11 P. aeruginosa infected 

CF infants were previously infected with S. aureus and had received treatment with antibiotics 

(30). A proposed mechanism suggested that early S. aureus infections may trigger or amplify an 

inflammatory cascade and lead to subsequent tissue damage. Damaged tissue may increase 

attachment of other bacterial pathogens, such as P. aeruginosa, hence, contribute to worse 

outcomes (41).  
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Although MRSA emerged in CF patients in the 1980s (42), MRSA has only recerntly been 

designated as a “serious” threat (22), and is another cause of deterioration of the CF lung. Twenty-

six percent of CF patients with S. aureus infections are colonized with MRSA. Several studies 

have demonstrated that MRSA is associated with poor outcomes in CF patients. A small study 

conducted between 1992 and 1998 showed that 10 CF patients with MRSA in their respiratory 

tract showed a worsening in chest X-ray scores, as well as an increasing number of courses of 

intravenous (i.v.) antibiotics compared to non-infected CF patients (29). Furthermore, in a large 

North American observational study, a cohort of 1,834 patients was examined with respiratory 

cultures positive for MRSA only versus MSSA only (43). In comparison with MSSA, CF patients 

with MRSA had decreased lung function both in children less than 18 years of age (80.7 versus 

89.4% predicted; P < 0.001) and in adults (60.9 versus 70.4% predicted; P < 0.001). Similarly, 

patients infected with MRSA had an increased frequency of hospitalizations and administration of 

i.v. antibiotics (29). Later, in a cohort study from 1996 to 2005, 17,357 individuals from the CFF 

Patient Registry were studied. In patients Aged 8 to 21 years, new onset of persistent MRSA 

infection, defined as ≥3 MRSA positive cultures in a year, was associated with a difference in the 

average FEV1 decline of -0.62 percent (P < 0.001), compared to those without MRSA (39). MRSA 

infection was also associated with a higher risk of death in a follow-up study (44). Thus, studies 

indicate that chronic infection with MRSA worsens the clinical outcomes of CF patients. 

Haemophilus influenzae 

Haemophilus influenzae is the third most common microorganism cultured from the 

respiratory tracts of individuals with CF with a prevalence about fifteen percent in the United 

States (12). H. influenzae most frequently infects CF patients early in childhood. Because H. 

influenzae identified from respiratory cultures of CF patients are usually unencapsulated 
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(nontypeable), CF patients are not protectecd by the Haemophilus influenzae type b (Hib) vaccine 

(45-47). A study from Spain examined the H. influenzae colonization in a cohort of 30 patients 

from three different hospitals. They noted that H. influenzae could generally persist for an average 

of 2 1/2 months; but in some cases, H. influenzae can persist as long as 6 1/2 years (46). Ninety 

percent of CF patients were infected with two or more distinct clones over a 7-year period (46). In 

BAL fluid from 75 CF infants in Australia with an average age of 17 months, and eight percent of 

infants cultured positive for H. influenzae (48). Sampling the lungs of 40 CF infants, thirty-eight 

percent of infants cultured positive for H. influenzae, which was the most commonly isolated 

pathogen at 1 year of age in that study (49). In 2017, 20 percent of CF infants and toddlers were 

colonized with H. influenzae (12). As their age increased to 5 years old, the colonization rate 

increased ~30 percent, making H. influenzae the second most prevalent microorganism in CF 

patients after S. aureus (12). Thus, H. influenzae is one of the first organisms to infect the airways 

of individuals with CF. 

Whether H. influenzae is pathogenic in CF remains controversial (3) and complicated by 

the fact that H. influenzae commonly colonizes the respiratory tracts of healthy children (50). 

Although a study of 7,010 patients from the European Epidemiologic Registry of Cystic Fibrosis 

(EERCF) found that isolation of H. influenzae from the respiratory tract was not associated with 

decreased lung function (51), this cross-sectional analysis only examined CF children over 6 years 

old, the age period that other traditional CF pathogens, such as MRSA, and P. aeruginosa increase 

in prevalence.  

Several other studies, suggest that H. influenzae plays a role in CF disease progression. H. 

influenzae can be isolated from 30 percent of sputa samples collected from clinically stable CF 

patients. 27 percent of those sputa samples also demonstrated additional CF pathogens, such as S. 
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aureus or P. aeruginosa (52). H. influenzae is capable of inducing inflammation that may 

contribute to tissue injury. For example, when >105 CFU/mL of H. influenzae were present in BAL 

fluid from CF infants, the total leukocyte and neutrophil counts were higher than when there were 

no identifiable pathogens (49). A more recent study examined 56 CF children; 12 percent of them 

cultured positive for H. influenzae and demonstarted a >15% reduction in lung function compared 

to the children who were culture negative (53). Rayner et al. observed an increased rate of isolation 

of H. influenzae prior to and during acute exacerbations in CF patients, indicating that H. 

influenzae also plays a role during acute pulmonary exacerbations (54). After antibiotic therapy, a 

reduced rate of isolation of H. influenzae was observed, as well as clinical improvement, which 

concurs with the conclusions of other studies that H. influenzae is capable of causing exacerbations 

and should be treated with appropriate antibiotics (55; 56). 

Burkholderia subspecies 

Members of the Burkholderia cepacia complex (BCC) were first recognized as 

opportunistic pathogens of cystic fibrosis patients in the 1980s (57). Pulmonary infection caused 

by B. cepacia was associated with increased rates of morbidity and mortality. The infection could 

lead to cepacia syndrome, characterized by fulminating pneumonia, high temperatures, respiratory 

failure and may progress to septicemia (57). Certain species within the BCC, such as Burkholderia 

cenocepacia and Burkholderia dolosa, are capable of patient-to-patient transmission causing 

epidemics in CF patients (58). B. cenocepacia is the most prevalent of the Burkholderia subspecies 

in CF patients in the USA and Canada, as well as Europe, such as France, the Czech Republic, 

Italy, and Portugal (59). B. cenocepacia is considered one of the most serious pathogens; not only 

is it frequently associated with low survival and a high risk of causing cepacia syndrome, but it 

also encompasses the majority of epidemic strains (60). 
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Virulence factors are important to BCC pathogenesis in CF patients. The BCC members 

have intrinsic antimicrobial resistance (61-63), the ability to form biofilms (64; 65), catalase and 

superoxide dismutase (66), the ability to invade and intracellularly survive within host cells (67; 

68), siderophores for nutrient scavenging (69-72), and type III secretion systems (73-75).  

A cohort of CF patients from the Manchester adult CF center were retrospectively reviewed 

and the survival of patients with BCC infection were compared with matched controls with P. 

aeruginosa infection. Since the referral to the adult CF center, 49 CF patients had become infected 

with B. multivorans (n=16) or B. cenocepacia (n=33). Another six patients had developed infection 

with B. gladioli. Ten patients had transient infection: 8/16 and 2/33 with B. multivorans and B. 

cenocepacia, respectively. Patients infected with B. cenocepacia and B. multivorans experienced 

a decline in pulmonary function. Nineteen out of 31 patients with B. cenocepacia were dead with 

1-year survival rate of 80.2% and 5-year survival rate of 66.6%. Five of 8 patients infected with 

B. multivorans were dead with 1-year survival rate of 100% and 5-year survival rate of 75%. B. 

cenocepacia demonstrated worse survival rate compared to the controls with P. aeruginosa 

infections (76). Further, B. dolosa caused an outbreak at the Boston Children’s Hospital from 1998 

to 2005. Over 40 patients were infected with B. dolosa through patient-to-patient spread via the 

first patient who came from Salt Lake City, UT. The chronic infection with B. dolosa was 

associated with five deaths and an accelerated decline in pulmonary function in the other patients 

(77).  

Stenotrophomonas maltophilia 

S. maltophilia was first isolated in 1943, classified as a member of the genus Pseudomonas 

in 1961, then reclassified as Xanthomonas in 1983, and finally classified as Stenotrophomonas in 

1993 (78). The genus Stenotrophomonas consists of 4 subspecies, and only S. maltophilia is known 
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as a human pathogen. S. maltophilia can cause various diseases, such as respiratory tract infections, 

acute exacerbations of chronic obstructive pulmonary disease, and bacteremia (79), complicated 

by the pathogen’s accompanying resistance to commonly used antibiotics, such as carbapenems 

(80), co-trimoxazole and ciprofloxacin (81). Risk factors for S. maltophilia colonization and 

infection are attributed to mechanical ventilation, previous exposure to antibiotics, prolonged 

hospitalization, and use of medical equipment in contact with the respiratory tract, such as 

nebulizers (82).  

S. maltophilia has been recognized as an emerging nosocomial pathogen, especially in 

immunocompromised patients (83). 56-69 percent of S. maltophilia clinical isolates originated 

from the respiratory tract of hospitalized patients (84-87). S. maltophilia can occur in any aquatic 

or humid environment, including the drinking water supply (80), and nebulizers (88). Frederiksen 

et al. reported the first isolated S. maltophilia in a cystic fibrosis patient in 1975 in Denmark (80), 

and the first to cause infection in a CF patient reported in 1979 (89). The prevalence of colonization 

of the respiratory tract of CF patients by S. maltophilia has increased (12), with some CF clinics 

reporting colonization rates over 30 percent (90). By 2017, the overall prevalence of S. maltophilia 

is about 13% in CF patients in the United States (12). Studies have associated this increase with 

extensive use of anti-pseudomonal antibiotics for early treatment of P. aeruginosa colonization 

and control of chronic P. aeruginosa repiratory tract infections (91). S. maltophilia infections 

occur in CF patients of all ages (12), and infections are frequently chronic (92; 93). In particular, 

Goss et al. observed that older CF patients have a higher rate of S. maltophilia infection, and a 

high rate of prior co-infection with P. aeruginosa and B. cepacia (94). A single cohort analysis 

observed that CF patient with S. maltophilia have increased lung function decline, as well as 

increased rates of hospitalization (95). In a 12-year study, a total 687 CF patients infected 



 

 12 

chronically with S. maltophilia were followed for their progression. Ninety-five patients 

underwent a lung transplantation. Twenty-six of transplanted patients, along with an additional 49 

patients, died. The study suggested that chronic S. maltophilia infection is associated with three-

fold higher risk of death or lung transplant in CF patients (96).  

Achromobacter xylosoxidans 

Achromobacter spp. are Gram-negative bacilli, aerobic, and nonfermenters of glucose. 

Achromobacter xylosoxidans are the most common bacillus and is recognized as an emerging 

multi-drug resistant microorganism. A. xylosoxidans is increasingly cultured from CF sputum. The 

infection or colonization rate of A. xylosoxidans in CF patients varies between 2 percent and 17.9 

percent (97; 98). A. xylosoxidans colonized patients are mostly older with lower lung function with 

greater need for intravenous antibiotic treatments (97). In 2016, a retrospective study evaluated the 

clinical impact of A. xylosoxidans colonization/infection in CF patients. There was an increase in 

infection or colonization in children, and lung function was worse in chronically colonized patients 

compared to other A. xylosoxidans infected CF patients (99).  Hansen et al. noted that A. 

xylosoxidans infected CF patients have lower lung function and similar inflammation levels 

compared with  P. aeruginosa chronically infected patients (100). 

Elizabethkingia meningoseptica 

Elizabethkingia meningoseptica are Gram-negative bacillus, non-motile, non-fastidious, 

and catalase and oxidase positive (101; 102). E. meningoseptica was firstly identified by King in 

1959 (102). E. meningoseptica is frequently isolated from soil, saltwater, freshwater, dry and moist 

clinical environmental and equipment surfaces, intravenous lipid solutions, and municipal water 

even if adequately chlorinated (103). E. meningoseptica infections have high mortality rates, 

between 23-52 percent, partly due to multi-drug resistance (104-106).  Until 2018, the Clinical and 
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Laboratory Standards Institute had not established interpretive breakpoints for minimum inhibitory 

concentrations (MICs) for E. meningoseptica. Most reports used MIC breakpoints for P. 

aeruginosa or non-Enterobacteriaceae spp. Interestingly, E. meningoseptica exhibits susceptibility 

to many antibiotocs used to treat Gram-positive cocci (105; 107; 108). However, SENTRY and 

other surveys suggest that vancomycin and other anti-Gram-positive antibiotics, including 

teicoplanin, linezolid and quinupristin-dalfopristin cannot be considered as optimal treatment 

options for E. meningoseptica infection (109-111). Studies show that E. meningoseptica are 

susceptible to minocycline; however, bacteria could quickly develop resistance to minocycline, a 

bacteriostatic agent  (104; 109; 112). Despite studies demonstrating that levofloxacin and newer 

quinolones could be promising therapeutics against E. meningoseptica, anecdotal studies 

suggested that E. meningoseptica infections only respond when combination therapies are used, 

such as vancomycin combined with rifampicin (108; 113-115). Preterm neonates, 

immunocompromised patients, patients with multiple or prolonged hospital admissions, or patients 

heavily exposed to broad-spectrum antibiotics are at high risk of acquiring E. meningoseptica 

infections (103). The intrinsic drug resistance complicates the management of invasive infections 

caused by E. meningoseptica, that may result in serious consequences.  

Pseudomonas aeruginosa 

Pseudomonas aeruginosa is an opportunistic pathogen that causes complicated disease 

states such as bacteremia, otitis, and soft tissue, urinary tract, and respiratory infections. The over-

use of antimicrobials and the lack of effective antibiotic stewardship programs has led to 

development of resistance against several FDA-approved standard-of-care (SoC) therapeutics, 

including ciprofloxacin, levofloxacin, cefepime, and gentamicin (116). Multi-drug resistant 

(MDR) P. aeruginosa has been designated as a “serious” threat by the Centers for Disease Control 
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and Prevention (CDC) (22). With over 51,000 health-care associated infections including 6,700 

MDR P. aeruginosa infections annually in the United States, P. aeruginosa is the leading cause 

of nosocomial infections and the second most common pathogen associated with ventilator-

associated pneumonia (VAP) (117). P. aeruginosa infections are particularly challenging to 

manage and often result in poor prognosis for immunocompromised patients and CF patients. An 

estimated 47.5% of CF patients harbor P. aeruginosa in their lungs, including 9.2% of them with 

MDR P. aeruginosa (12). In CF patients, the presence of sticky dehydrated mucus in the airways 

provides ideal conditions for the colonization of such opportunistic pathogens (3; 12).  These 

pathogens in the accumulated mucus also form biofilms (3), creating unique conditions resulting 

in poor drug penetration, ultimately leading to treatment failure despite the use of aggressive 

antibiotics (118; 119). Consequently, these chronic pulmonary infections result in declining lung 

function, the leading cause of mortality in CF patients (6). Moreover, repeated intravenous (i.v.) 

administration of high-dose antibiotics may result in severe side effects and increased propensity 

of resistance acquisition (120; 121).  
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Multi-drug Resistant Bacterial Infection 

There is a continuous arms race between the antimicrobial treatments devised by humans 

and the microorganisms that cause infection and disease. Around the middle of the 20th century, 

with the discovery of penicillin and subsequently other antibiotics, humans turned the tide in their 

favor. However, soon after antibiotics were marketed, microorganisms responded with various 

mechanisms of resistance. Today, antibiotic resistance is a worldwide problem. In 2013, at least 2 

million people in the United States acquired serious infections with bacteria that are resistant to 

one or more antibiotics, and 23,000 individuals die each year due to drug resistant infections (22).  

Antibiotic resistance adds a great burden to U.S. healthcare system. Drug resistant bacterial 

infections require prolonged hospitalization, extensive treatments, additional doctor visits, and 

cause treatment failures, and increased mortality. In addition, it has been estimated that drug 

resistant infections result in as high as 20 billion additional U.S. dollars in  healthcare costs, with 

estimated extra costs to society as much as 35 billion U.S. dollars a year (22; 122). Drug resistant 

bacteria have become a particular concern for hospitalists and intensivists, due to identification of 

various resistant bacteria in healthcare institutions. Some of the bacteria, however, such as MRSA 

and extended-spectrum beta-lactamase (ESBL)-producing E. coli, are present in the community. 

The spread of resistant bacteria in the community could pose serious problems for infection control 

in long-term care facilities, sport teams, military recruits, as well as children attending day care 

centers. Epidemiological studies have demonstrated a direct relationship between the emergence 

and dissemination of drug resistance bacteria and consumption of antibiotics (123). The overuses 

of antibiotics clearly drives the evoluction of resistance. 

Most antimicrobials can be categorized based on their mechanisms of action. There are 

five major mode of actions: 1. Interference with cell wall synthesis, including beta-lactams and 
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glycopeptides; 2. Inhibition of protein synthesis, including inhibition of 50s or 30s ribosomal 

subunits, and bacterial isoleucyl-tRNA synthetase; 3. Interference with DNA or RNA synthesis; 

4. Inhibition of a metabolic pathway; and 5. Disruption of bacterial membrane structure. Bacteria 

may develop resistance to antimicrobials through different mechanisms, including 1. The 

organisms may acquire genes encoding enzymes, such as beta-lactamases; 2. Bacteria may acquire 

efflux pumps that extrude the antimicrobials before they reach target sites; 3. Bacteria may alter 

metabolic pathways or target sites (124). Hence, bacteria can become resistant to antimicrobial 

agents through mutation, selection, and acquiring genes that encode resistance. Microorganisms 

that have acquired non-susceptibility to at least one agent in three or more antimicrobial categories 

are defined as multi-drug resistant (MDR) (125). 

Silver as an Antimicrobial Agent 

Silver has a long history of medicinal use in humans. The human body contains less than 

2.3 µg/L of silver (126; 127). The use of silver can be traced to ancient times, as a disinfectant to 

store and purify water. For example, Alexander the Great (335 BC) drank water stored in silver 

vessels (128). Silver has also been used for storing and purifying water in Apollo spacecraft (129), 

and the MIR space station (130). Silver has been used as an antiseptic in wound care before the 

1800s. Silver nitrate was used for various medical treatment and infectious diseases (131). For 

example, 2 percent silver nitrate solution was used by Crede in 1881 to prevent ophthalmia 

neonatorum in newborn children (132). Due to the side effects of silver nitrate, including irritation, 

blackening of skin, and electrolyte imbalance, colloidal silver was introduced for medical use in 

late 19th century (131). Colloidal silver contains silver particles in suspension with less than 10 

percent ionized silver. Currently in Mexico, colloidal silver is marketed as any fluid containing 

silver used to disinfect vegetables and drinking water (131). Colloidal silver remained popular 
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until the 1940s, when the discovery and use of penicillin, sulfonamide and mafenide antibiotics 

displaced it as an antimicrobial (131-133). However, the emergence of bacteria, such as MDR P. 

aeruginosa and MRSA, resistant to commonly used antibiotics, including penicillin and 

sulfonamide, led to the need for new antibiotics. In the 1960s, Moyer et al. proposed the use of 0.5 

percent silver nitrate solution for the treatment of burn wounds (134). Moyer rekindled interest in 

silver as an antimicrobial. Following Moyer, Fox et al. discovered silver sulfadiazine, which is 

still used for the treatment of burn wounds (135). Silver sulfadiazine has broad-spectrum 

antimicrobial effects by combining the broad-spectrum activity of silver with a sulfonamide, 

sulfadiazine. Silver sulfadiazine is marketed as a water-soluble cream, Silvadene Cream 1%, and 

demonstrates potent antimicrobial effects against a number of Gram-positive and Gram-negative 

bacteria. Silver has also been introduced into wound dressings in the nanocrystalline form. The 

nanocrystalline silver formulation not only gives a slow release of silver to create a barrier for 

infection at the wound site, but also helps manage the wound site healing. In addition to the 

nanocrystalline formulation, silver has been impregnated into different dressing materials, such as 

nylon fabrics, meshes, biodegradable collagens, carbon fibers, and hydrofiber alginates (131; 136).  

 Silver (Ag+) is a broad-spectrum antimicrobial. The silver metal (Ag0) is inactive; 

however, in the presence of moisture, it readily ionizes to become silver cations that have 

antimicrobial activity (133). Nageli reported that only 10-5 to 10-8 M of silver cations derived from 

silver metal are required to inhibit the growth of fungal spores (131). Silver cations exhibt multiple 

mechanisms of action, including an ability to condense bacterial DNA and disrupt bacterial cell 

membranes by interacting with enzymes and proteins important to cell wall synthesis (137). Silver 

can also affect cell respiration, transport and metabolism, and subcellular organelle structure (131). 

Studies of the mechanism of action of silver on the yeast C. albicans showed that silver cations 
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bind to the cysteine residues of phosphomannose isomerase, an essential cell wall synthesis 

enzyme, and result in loss of cell wall integrity (131). Silver cations can also block matrix 

metalloproteinases, enzymes that delay chronic wound healing, and thus, speed the healing process 

(138). These diverse mechanisms provide potent antimicrobial activity (139) and may explain the 

paucity of reported cases of resistance (140-143) despite its widespread use to treat burn and 

wound infections (134; 136; 144-146). Although silver sulfadiazine resistant strains of P. 

aeruginosa have been isolated in burn units, the mechanism of resistance is unknown (147-149). 

In contrast, the mechanism of resistance of a Salmonella strain that resulted in patient deaths and 

the temporary closing of a burn unit has been well characterized (150). This particular Salmonella 

strain carries a plasmid, pMG 101 that encodes a peri-plasmic silver binding protein (SilE) and 

two parallel efflux pumps (SilCBA and SilP) (143; 151).  

Silver antimicrobials have been known to cause a rarely seen cosmetic side effect, argyria. 

Argyria is a gray to blue discoloration of the skin due to deposition of silver sulfide in the dermis 

or eyes after  long term silver exposure (131). Systemic silver is excreted in the urine, and burn 

patients treated with silver have shown elevated levels of urinary silver (152; 153). Some studies 

showed that, by inhibiting cellular respiration (154), silver salts affect the growth of keratin 

producing epidermal cells (155), bone marrow (156), connective tissue cells (154), hepatocytes 

(131) and lymphocytes (157). However, other studies have reported no observed cytotoxicity of 

silver. Potent antimicrobial activity coupled with low toxicity to human tissues (158) has led to 

several FDA approved antimicrobial dressings such as, Acticoat absorbent, Actisorb Silver 220, 

and Aquacel AG with ionic silver as the active antimicrobial agent (159). Recent studies have 

suggested that in the presence of high concentrations of chloride anions, silver forms soluble 

anionic AgCl2- compounds rather than precipitating as AgCl (160). Both sensitive and resistant 
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bacteria have increased susceptibility to silver in the presence of high concentrations of chloride 

anions, perhaps due to increased access of silver cations to the cell membranes (160). The activity 

of silver cations depend on their bioavailability, which can be affected by delivery methods, 

solubility and ionization of the silver source, and the presence of biological ligands, such as 

proteins, chloride, and sulfides. Although AgCl2- improves the bioavailability of silver, due to the 

affinity of silver cations for thiolated proteins and the relatively low physiological concentration 

of chloride ions (161; 162), the bioavailability of silver is poor, which suppresses the antimicrobial 

activity of silver ions (161), necessitating an increased dosage to effectively eradicate infections.  

The Use of Ibuprofen for CF Lung Disease.  

Ibuprofen is a commonly used nonsteroidal anti-inflammatory drug (NSAID) for pain, 

fever, and inflammation. The lungs of CF patients are characterized by persistent neutrophilic 

inflammation partly due to chronic bacterial infections. The exuberant inflammation contributes 

to lung destruction prompting the need for anti-inflammatory therapeutics. However, adverse 

effects, such as growth retardation and cataracts, limits the ability to use systemic corticosteroids 

for prolonged periods (163). Several NSAIDs including aspirin, ibuprofen, naproxen, and 

diclofenac are routinely used for the treatment of acute or chronic conditions involving pain and 

inflammation (164-171). High-dose ibuprofen (peak serum concentration > 50 µg/mL) inhibits the 

migration, adherence, swelling, and aggregation of neutrophils, as well as the release of lysosomal 

enzymes. Several animal models of pulmonary infection and inflammation have shown that high-

dose ibuprofen reduces neutrophil influx (172). For instance, the use of ibuprofen for the treatment 

of inflammation associated with chronic pulmonary infection in CF has been shown to 

significantly decrease the rate of lung function decline, a benefit that has been attributed to the 

anti-inflammatory effects of the drug (171). The evaluation of high-dose ibuprofen to alleviate 



 

 20 

inflammation associated with CF lung disease has been ongoing for more than two decades (96; 

163; 167; 168; 173). In the early 1990’s a 4-year, randomized, double blind, placebo-controlled 

trial demonstrated that CF patients treated with high-dose ibuprofen had a 40 percent slower rate 

of lung function decline compared with CF patients treated with placebo (167; 168). These 

significant improvements were recently affirmed following the completion of a two-year, multiple 

CF center, randomized, placebo-controlled trial conducted in Canada (163). Both trials were able 

to demonstrate the benefits and relative safety of long-term use of high-dose ibuprofen for treating 

CF lung disease. Despite its proven efficacy and relative safety, high-dose ibuprofen is used by 

only a minority of CF patients in the United States, primarily due to the inconvenience of required 

pharmacokinetic studies and the concern regarding the risk of gastrointestinal bleeding.  

Combinational Therapy as an Alternative Antimicrobial Strategy  

In addition to P. aeruginosa, several other pathogens reside in the CF lung including S. 

aureus, S. maltophilia, and B. cepacia complex species. Thus, to address the polymicrobial 

infection affecting this disease state, it is imperative to develop broad-spectrum therapeutics with 

potent antimicrobial activity against both Gram-positive and Gram-negative pathogens. Thus, a 

combinatorial antimicrobial approach is particularly attractive to address polymicrobial infections. 

Many studies have demonstrated the effectiveness of combinational therapy. Synergy between 

antimicrobials in vitro is defined as antimicrobial effects of a combinational therapy greater than 

the sum of the independent activities when measured separately (174). Certain beta-lactams and 

aminoglycosides demonstrated synergistic activity against various Gram-positive and Gram-

negative bacteria (175). In addition, combination therapy can also extend the antimicrobial 

spectrum beyond the spectrum of single antimicrobials, which is especially useful for patients with 

polymicrobial infections. Finally, the emergence of antimicrobial resistance is generally generated 
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by selective pressure from antimicrobial therapy. The chance that a bacteria can generate mutations 

to resist antimicrobials with different mechanisms of action is much lower than the chance of 

generating resistance to either one (176). Hence, combination therapy could prevent the emergence 

of resistant bacteria that  cause therapeutic failures. This rationale underpins the wide use of 

combination therapy for treatment of tuberculosis and AIDS (177). 

Lung Physiology and the Fate of Particles  

The main function of the lungs is to facilitate gas exchange between the blood and the 

gaseous external environment and in the process, maintain homeostatic systemic pH (178).  The 

thoracic cavity houses the majority of the respiratory system, the principal anatomical features of 

which include airways, lungs, and the respiratory muscles. The upper conducting airways are 

comprised of the nasopharynx, oropharynx, and the trachea, which bifurcates into the bronchi and 

subsequently branches into smaller bronchioles. These bronchioles ultimately divide into terminal 

bronchioles that end with the alveolar sacs (lower airways). The upper conducting airways are 

lined with ciliated columnar epithelium (50-60 μm thick) that gradually transitions to a cuboidal 

shape towards the distal end of the airways with a subsequent reduction in thickness to 0.1 – 0.2 

μm at the alveoli (178; 179). The thickness of the epithelium in the upper airway poses as a barrier 

to absorption (178); however, in the distal airways within the lungs, the extremely thin barrier 

between the pulmonary lumen and the underlying capillaries, combined with the large surface area 

of over 100 m2 (presented by the existence of approximately 300 million alveoli), create excellent 

conditions for efficient mass transfer (180; 181). The alveolar surface is comprised of three main 

types of cells, of which, type I pneumocytes are the most abundant (178). These cells share a 

basement membrane with the pulmonary capillaries (178). The other two cell types include the 

type II pneumocytes that are responsible for secretion of lung surfactants to prevent alveolar 
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collapse (178), and alveolar macrophages belonging to the immune system that scavenge foreign 

material from the lung surface (178; 182). Apart from these cell types, the distal airway also hosts 

other cells such as progenitor cells for the type I pneumocytes (181) and cells of the immune 

system, such as dendritic cells that sample for foreign substances and pathogens (183). 

Particles entering the lung are deposited by inertial impaction, sedimentation, and diffusion 

(180). The fate of these particles is primarily determined by their diameter. Large particles (d > 5 

μm) deposit by inertial impaction in the oropharyngeal region or sedimentation in the bronchial 

region. In the oropharyngeal region, these particles get entrapped in the mucous layer and are 

subsequently moved to the proximal airway by the rhythmic, coordinated beating of the cilia, 

where they are expectorated or swallowed and metabolized (mucociliary clearance) (178; 179). 

On the other hand, small particles (d < 1 μm) are driven by diffusion and more likely to reach the 

alveolar region (184).  

Once deposited inside the lung, the particles and the encapsulated drug are subjected to a 

variety of barriers. As previously described, inhaled particles deposited in the upper airway get 

rapidly cleared by the mucociliary escalator (181; 185). Furthermore, the presence of catabolic 

enzymes in the tracheobronchial region also poses as a deterrent to efficient drug delivery. 

However, the particles deposited in the peripheral lung are reported to have an approximate 

residence time of 24 hours (181; 185). These particles must then release the therapeutic agent via 

dissolution, degradation, diffusion or a combination of these mechanisms. Following deposition 

in the peripheral lung, the larger particles are subject to phagocytosis by the alveolar macrophages. 

Particles that are either too large or too small may be able to escape phagocytosis by the alveolar 

macrophages (186; 187). Released drug must subsequently diffuse through the lung epithelium 

and into the bloodstream, whereupon it encounters majority of the resistance in the form of plasma 
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membrane of the lung epithelium (188; 189). Usually, small molecule drugs rapidly permeate 

through the lungs and are absorbed systemically. For instance, small hydrophobic molecules are 

thought to pass through the epithelial barrier by passive diffusion; whereas, small hydrophilic 

molecules can be absorbed via the tight junctions or through specific transporters (190). Therefore, 

it is important to determine the site of delivery within the lung depending on the type of therapeutic 

molecule administered. 

Drug Delivery Approaches 

The three main types of technologies to deliver therapeutic agents to the lungs are 

nebulizers, dry powder inhalers (DPIs), and metered dose inhalers (MDIs). All three types of 

devices use different delivery mechanisms and require different types of drug formulations (178). 

Nebulizers have been in use the longest, with the first documented use dating back to the mid-

1800s (179). Devices in this class belong either to the air-jet-type or ultrasonic-type nebulizers. 

Using high velocity air, a liquid or a bulk suspension is sheared into a liquid film at the spray 

nozzle that subsequently collapses under surface tension into aerosol droplets in an air-jet nebulizer 

(191). Ultrasonic nebulizers utilize a vibrating piezoelectric crystal, which causes bubble 

formation at the liquid surface via cavitation (191). Droplets effervescing from the turbulent 

medium create a dense mist that is inhaled by the patient (191). While nebulizers produce ultra-

fine droplets (~ 1 μm), the degree of polydispersity of the aerosolized droplets is high, and particles 

larger than the aerosol droplet cannot be nebulized (191). Furthermore, many of these devices tend 

to be limited to home or hospital use due to their bulk and therefore lack of portability (179). 

Advances in medical aerosol development in the 1950s focused on delivering asthma drugs 

directly to the lung to significantly reduce the amount of systemic drug and, thereby, adverse 

reactions led to the development of metered dose inhalers (MDIs). MDIs are hand-held, portable 
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systems that contain drug that is either dissolved or suspended in a compressed liquid propellant 

(initially chlorofluorocarbons (CFCs) later replaced by hydrofluoroalkanes (HFAs)) (179; 192). 

Upon actuation, the device releases a metered volume of drug and propellant through a valve 

system (193). The resulting aerosol droplets are in the correct size range for deposition in the lung 

(179). However, the performance and efficiency of MDIs is largely patient-dependent, since it 

requires coordination between actuation and inhalation to achieve optimal deposition of the drug 

in the lungs (192; 194). A further disadvantage of these types of devices is the presence of 

surfactants within the formulation that may impact lung performance (192). 

Dry powder inhalers (DPIs) were developed as an alternative to MDIs because of the 

disadvantages of MDIs. DPIs are breath-actuated devices that utilize shear-induced aerosolization 

of a dry powder drug to deliver the therapeutic agent to a patient’s lung (193). Potential advantages 

associated with DPIs include their ease of use compared with other types of inhalers since they do 

not require coordination of actuation and inhalation and the lack of liquid propellant in the drug 

formulation (192; 195). Furthermore, DPIs store drug in a dry state, which could confer long-term 

stability and sterility (179). However, the particles within a DPI tend to aggregate due to 

electrostatic interactions and/or hygroscopic phenomena that can interfere with their aerosolization 

(178). Additionally, the actual dose delivered from a DPI is a function of the inspiratory flow rate, 

and therefore can be difficult to replicate (192; 196; 197). Numerous advances have been made in 

the field of DPIs to improve performance, primarily in the engineering of particles that are easily 

respirable and have improved aerodynamic properties as well as in the methods used to disperse 

the particles such as compressed air or electric motors (196). For instance, an advance in particle 

engineering is represented by formulations comprising of “porous particles” that are ideally suited 

for delivery to the peripheral lung. These particles possess a low mass density, thus resulting in a 
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low aerodynamic diameter (1 to 5 μm) even though the geometrical diameters are larger (5 to 30 

μm) (189). The small aerodynamic diameter of the particles enables their deposition in the alveolar 

region; however, the large geometric diameter prevents phagocytosis by alveolar macrophages 

(198)  and improves dispersion properties of the particles (188).   

Nanotechnology in Medicine 

Nanotechnology encompasses the understanding and control of matter, generally in the 1-

100 nm dimension range (199). Manipulation of materials at the nano-scale provides access to 

unique physico-chemical properties such as ultra small size, large surface area to mass ratio, high 

reactivity, and unique interactions with biological systems (199; 200). Furthermore, the use of 

materials at this scale provides unparalleled freedom to modify fundamental material properties 

including solubility, diffusivity, drug release characteristics, blood-circulation half-life, and 

immunogenicity (199).  The application of nanotechnology to medicine, known as nanomedicine, 

relates to the use of nanostructured materials for the development of novel therapeutic and 

diagnostic modalities (201; 202). However, these unique medical effects are not strictly restricted 

to objects with dimensions below a 100 nm, and therefore, structures and objects with dimensions 

up to 1000 nm in size are included (179; 203). Over the last two decades, nanomedicine has seen 

a huge surge with research activities occurring in the fields of drug delivery, in vitro and in vivo 

diagnostics, in vivo imaging, biomaterials, and active implants (203). Of these, the application of 

nanomedicine to drug delivery is the dominating field based on parameters such as publications, 

patent filings, number of companies, clinically approved products, as well as and sales and revenue 

(203). Even within the realm of drug delivery, applications of nanomedicine include treatment of 

cancer, infections, diabetes, immune diseases, and so on (203-205).  
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Nanoparticle Formulations for Pulmonary Drug Delivery: Advantages 

Numerous advantages of nanoparticle drug delivery have been recognized (206; 207). In a 

general sense, incorporation of a drug within nanoparticles through physical encapsulation, 

chemical conjugation or adsorption improves the pharmacokinetics and therapeutic index of the 

drug compared with its free drug counterpart (200). Such drug delivery systems improve the serum 

solubility of poorly water-soluble therapeutic agents, prolong their systemic circulation half-life, 

reduce immunogenicity, and offer the possibility of concurrently delivering multiple therapeutic 

agents at a sustained or controlled rate to target organs and/or tissues of interest (208-210). 

Furthermore, the controlled release aspect of nanoparticulate drug delivery formulations lower the 

frequency of drug administration thus affording improved patient adherence (199). 

Specifically, in case of pulmonary formulations, a fast release of the drug from the particle 

following deposition in peripheral airways is desired due to the short residence time of the 

particles. Nanoparticles possess a larger surface area to volume ratio compared with larger 

particles (179). Therefore, a greater number of its molecules will be present at the surface rather 

than within the core of the particle (211), thus leading to an increase in the dissolution velocity 

(212). Additionally, the saturation solubility of a particle increases with a decrease in the particle 

size (212). The dependence of these properties on particle size is unique to particles with 

dimensions approximately under 1 μm (212). Consequently, nanoparticulate formulations provide 

a highly effective means to improve mass transfer from the particle into the surrounding medium 

(212), and thus improve the bioavailability of insoluble or poorly soluble hydrophobic drugs (211). 

Furthermore, with solution-based formulations, the dose of the drug is thermodynamically limited 

by the aqueous solubility of the drug, which can be enhanced by the use of nanoparticle-based 

drug formulations (179). For instance, prodrugs with increased hydrophobicity have been 



 

 27 

formulated to enhance their permeability through biological barriers (213-217). Nanoparticle 

formulations can be developed in these instances to mitigate the decreased solubility of such 

compounds and increase their local bioavailability (178).  

Additionally, current therapeutic regimens for the treatment of pulmonary infections utilize 

frequent dosing of intravenous antibiotics at high doses to achieve significant serum concentration 

of the drug to eradicate disease-causing pathogens. Although this strategy is the current gold 

standard for the treatment of pulmonary infections, it can result in serious side effects due to the 

high dose of antimicrobials administered. For example, in the case of aminoglycosides, high dose 

administration can result in nephrotoxicity and ototoxicity (200; 218). Along with the potential of 

reducing toxicity, direct administration of antimicrobials to the lungs as nanoparticle formulations 

can aid in reducing the problem of antimicrobial resistance, since a high localized concentration 

of the drug can be maintained while overcoming the rapid clearance of the drug from the lungs 

(219; 220). Finally, numerous intracellular infections remain difficult to treat due to the poor 

ability of many antimicrobials to traverse cell membranes and their subsequent low intracellular 

activity (200).  In such instances, nanoparticle formulations can be used to improve the 

performance of the antimicrobial agent, since several studies have demonstrated the ability of 

nanoparticles to be internalized by a variety of cell types (221-225). As an example, pulmonary 

epithelial cells internalize particles in a size-dependent fashion with particles 0.5 μm or smaller 

being internalized 10 times more than 1 μm particles and 100 times more than 2 to 3 μm particles 

(178). Such a strategy can also be used to passively target cells of the respiratory tract along with 

other strategies to actively target cells and pathogens of interest within the respiratory system.  

Nanoparticles for inhalation have been studied by various research groups. Suk et al 

demonstrated that the average mesh spacing in CF sputum was 140 ± 50 nm (226), which was 
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supported by a later study that showed that polystyrene particles less than 200 nm in diameter have 

faster transport through CF sputum (227). Hence, particles sizes less than 200 nm have a higher 

chance of reaching deeper into the thick mucus and the site of infections. Biodegradable polymers 

are preferred over non-degradable polymers for fabrication of drug delivery systems, because, by 

definition, these materials can be degraded and metabolized by the body.  

 In the studies presented here, a mixture of two biodegradable polymer systems: poly 

(lactide-co-glycolide) (PLGA) and a copolymer of PLGA and poly (ethylene glycol) (PEG) 

(PLGA-PEG) will be used for nanoparticle formulation. PLGA will be used to formulate the core 

of the nanoparticles. PLGA is biodegradable, and FDA-approved for human therapy. It has 

extended release rates from days to months, mechanical properties that are amenable to forming 

nanoparticles, and been extensively used for intravenous administration of therapeutic agents (228; 

229). However, nanoparticles comprised of only PLGA have a tendency to be rapidly shuttled to 

the liver and spleen by macrophages in the mononuclear phagocyte system (230), limiting their 

circulation time and thus, the effectiveness of the encapsulated drug. This effect can be reduced 

by incorporation of PEG on the nanoparticle surface. PEG is an FDA-approved polymer that has 

no known debilitating effects, and is widely known as a biological ‘stealth’ agent that protects a 

particle’s surface from non-specific opsonization by certain plasma components, inhibiting 

recognition by phagocytes of the reticuloendothelial system (RES) (231). PEG is extensively used 

in the formulation of drug delivery devices, especially for the purpose of surface modification 

(232; 233). The reduction in immune recognition by PEGylation leads to longer circulation times, 

thus increasing drug effectiveness. Furthermore, PEG has been shown to increase nanoparticle 

diffusion through human mucoid surfaces (234), increasing their ability to penetrate into the deep 

mucus layers, and thus bypassing one of the protective barriers bacteria utilize against 
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antimicrobials in the CF lung. I hypothesize that encapsulating antimicrobials into PLGA/PLGA-

PEG nano-delivery systems will result in enhanced antimicrobial efficacy through both controlled 

and sustained delivery of drugs, and penetration into the thick mucus and MDR P. aeruginosa 

biofilms found in CF lungs. 
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CHAPTER II 

DEVELOPMENT OF A MULTIFUNCTIONAL SILVER CARBENE THERAPEUTIC 

BEARING IBUPROFEN FUNCTIONALITY AS A  

TREATMENT FOR CYSTIC FIBROSIS LUNG DISEASE 

Introduction 

Silver (Ag) has gained great interest as an antimicrobial candidate because of its excellent 

potency, broad spectrum activity, and low toxicity towards eukaryotic cells (156; 235; 236). 

Despite the widespread and continuous use of silver, few cases of silver resistance have been 

reported and, in most cases, including P. aeruginosa, resistance is transient and unstable (237-

239). Although stable silver resistance by acquisition of plasmids or transposons has been 

documented in Salmonella Typhimurium and Escherichia coli (150; 240; 241), there are no reports 

of transfer of these components to P. aeruginosa (242). However, the poor bioavailability of silver 

cations, poses a challenge, because silver cations, the bioactive state of silver, react with 

physiological substrates and become inactive (237).  

Youngs et al. have synthesized N-heterocyclic silver carbene complexes (SCCs) to 

overcome this challenge (131; 243-245). The use of N-heterocyclic carbenes (NHCs) as an 

innovative class of metal chelates for metallopharmaceutical synthesis has garnered interest in 

recent years (246-249), due in part to the excellent stability of NHC metal complexes and their 

vast potential for chemical modification. These chemical alterations can serve to tailor the 

solubility, toxicity, and electronic properties of the resulting complexes for medicinal applications 

(250-253). These SCCs provide gradual release of bioactive silver cations from a stable silver 

complex, sustaining silver cation bioavailability, as well as providing prolonged antimicrobial 

activity (131; 250). At the forefront of medicinal NHC research are studies involving the use of 
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silver carbene complexes (SCCs) as a new class of broad-spectrum antimicrobials. Within the past 

several years, significant strides have been made in the design of stable SCCs for the nebulized 

treatment of virulent and multi-drug resistant pathogens causing cystic fibrosis lung (CF) 

infections (254-256). For example, the methylated caffeine-based SCC1 has served as one of the 

best candidates of interest because of its moderate aqueous solubility and low toxicity.  

The clinical implementation of NSAIDs, such as ibuprofen, for the treatment of CF 

associated pulmonary inflammation has remained sporadic despite several large multi-year studies 

demonstrating the positive impact such regimens have on reducing lung function decline (163; 

257). Studies have shown that, in addition to their anti-inflammatory effects, NSAIDs may 

increase mucociliary clearance through combating the capacity of quorum sensing molecules 

produced by bacteria to down regulate P2Y2 receptors on airway epithelia, as well as through 

direct enhancement of the activity of the protein that malfunctions in CF, namely CFTR (163; 

257).  

We previously demonstrated a dose-dependent reduction in bacterial colony forming units 

(CFU) of P. aeruginosa, both in vitro and during infection, after ibuprofen treatment (258). Next, 

we evaluated the survival advantage of IBU treatment in an acute P. aeruginosa pneumonia model. 

Mice treated with high-dose ibuprofen had a survival advantage compared to sham treated mice. 

Thus, the combination of anti-inflammatory and antimicrobial properties of IBU results in a lower 

bacterial burden and a significant survival advantage over the sham-treatment group (258). Apart 

from CF, ibuprofen has also been shown to improve outcomes in pneumococcal infection models 

when combined with antibiotics suggesting synergistic antimicrobial effects (259). We have 

synthesized and characterized new multifunctional silver NHCs through direct chemical 

modification with nonsteroidal anti-inflammatory drugs (NSAIDs). Here, we report in vitro testing 
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of a silver carbene therapeutic bearing an ibuprofen substituent as a first approach towards a 

multifunctional treatment for CF lung disease.  

Materials and Methods 

Bacteria 

         The laboratory strain PAO1-V was provided by Dr. Maynard Olson (University of 

Washington, Seattle). The mucoid clinical isolate of P. aeruginosa PA M57-15 was provided by 

Dr. Thomas Ferkol (Washington University, St. Louis, MO). The P. aeruginosa PA HP3, PA 

RR05, PA LF05, A. xylosoxidans AX RE05, AX22, S. maltophilia SM AH06, and S. aureus SA 

EH05, and SA LL06 strains were cultured from the sputum of cystic fibrosis patients at St. Louis 

Children’s Hospital. The silver sensitive and silver resistant E. coli strains J53 and J53+pMG101, 

were provided by Dr. Simon Silver (University of Chicago, Chicago, IL). The J53 strain is known 

to be sensitive to killing by silver cations and serves as a positive control. In contrast, the 

J53+pMG101 is a J53 derivative that harbors the pMG101 plasmid originally conferring silver 

resistance to a burn ward isolate of Salmonella and serves as a negative control. All bacterial strains 

were maintained as glycerol stocks at -80 °C. 

In vitro antimicrobial activity 

         Minimal inhibitory concentrations (MICs) were determined by broth microdilution method 

as previously described by a standard Clinical and Laboratory Standards Institute (CLSI) protocol. 

Briefly, bacteria were streaked from frozen glycerol stocks onto TSA or blood agar plates and 

incubated overnight at 37 °C. Colonies from the fresh plates were suspended in the Miller Hinton 

(MH) broth and grown at 37 °C in a shaking incubator at 200 rpm to an OD650 of 0.4, which 

corresponds to ~5 x 108 colony forming units (CFU)/mL. The bacteria were diluted in the broth to 

a concentration of 105 in 100 µL, added to triplicate wells of a 96-well plate, containing 100 µL of 
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SCC1, SCC1-IBU, ibuprofen or tobramycin diluted in sterile water to various concentrations from 

a 10 mg/mL stock. The final concentrations of SCC1, SCC1-IBU, or tobramycin tested were 0.125, 

0.25, 0.5, 1, 2, 4, 6, 8, 10, 15, and 20 µg/mL. The final concentrations of ibuprofen tested were 1, 

2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 µg/mL. The plates were incubated overnight at 37 °C. 

The MIC was the lowest of these concentrations, at which each of the triplicate wells in each 96-

well plate was clear after 18-24 h incubation. Each triplicate measurement was performed at least 

in duplicate for a minimum of 6 separate measurements. The MBC of SCC1, SCC1-IBU, ibuprofen 

and tobramycin was determined by plating the wells with growth inhibition (clear) on TSA plates 

and noting the lowest concentration that resulted in no growth after an overnight incubation at 37 

°C. 

Determination of synergistic drug combinations 

All the strains except E. coli J53 and J53+pMG 101 were used to determine potential 

synergistic drug combinations between SCC1 and ibuprofen by checkerboard assay. The final drug 

concentrations of ibuprofen were 0, 50, 75, and 100 μg/mL. Based on the MIC values of SCC1 

and SCC1-IBU, the final drug concentrations of SCC1 for checkerboard assay were 0.0625, 0.125, 

0.25, 0.5, 1, and 2 μg/mL. The final solutions were comprised of 95% MH broth and 5% DMSO. 

A 100 μL working stock of bacterial suspension was incubated with a 100 μL solution of 

therapeutic agents (n = 3) for 18 hours at 37 °C. Wells demonstrating bacterial growth inhibition 

were identified visually to determine a synergistic MIC. All experiments were performed in 

duplicate. To evaluate for potential synergy, the fractional inhibitory concentration (FIC) was 

calculated as shown in Equation 1 and defined in Table 1. 
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Equation 1. The fractional inhibitory concentration (FIC) was calculated by comparing the 

MIC of each agent to the MIC of that agent in combination. 

 

Table 1. Interpretation of FIC values to define synergy based on the checkerboard assay. 

Definition FIC 

Synergistic FIC ≤ 0.5 

Additive 0.5< FIC ≤1 

Indifferent 1< FIC ≤4 

Antagonistic 4<FIC 

Determination of bacterial burden for synergistic drug combinations 

Potential synergy between combinations of SCC1 and ibuprofen against P. aeruginosa 

isolate PAHP3 at a final concentration of 106 CFU/mL were determined using a 24-hour end point 

CFU study performed in triplicate. The concentrations of ibuprofen tested against PAHP3 were 0, 

50, 75, 100 μg/mL. The concentrations of SCC1 in combination with ibuprofen against PAHP3 

were 0.0625, 0.125, 0.25, and 0.5 μg/mL. A 100 μL working stock of bacterial suspension was 

incubated with 100 μL drug solution (n = 3) in each well of a 96 well plate at 37 °C for 24 hours 

with constant shaking at 100 RPM. The final solutions were comprised of 97.5% MH broth and 

2.5% (v/v) DMSO. Finally, a 10-fold serial dilution was performed in MH broth with the bacterial 

suspension from each well and 50 μL of each dilution was plated onto a blood agar plate. Plates 

were incubated for 18-24 hours and colonies counted to determine the CFU for each condition. 
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Synergy was defined as ≥2 log10 CFU/mL reduction between combined agents and the most 

effective individual agent at 24 hours. All experiments were performed in duplicate. 

Cell culture 

Human bronchial epithelial cell line (16HBE14o-) obtained by transformation of normal 

bronchial epithelial cells with SV40 large T antigen using the replication defective pSVori-plasmid 

were used between passages of 20 and 40 for all experiments.  16HBE cells were cultured in 

Minimum Essential Medium (MEM) with Earle’s Balanced Salts and non-essential amino acids 

supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine, and 1% penicillin-

streptomycin (P/S) solution at 37°C in an incubator (5% CO2, 100% RH). When the cells reached 

90-95% confluency, they were harvested by trypsinizing and sub-cultured. 

In vitro anti-inflammatory properties 

The ability of SCC1-IBU to act as an anti-inflammatory agent was also evaluated using 

16HBE cells. Cells were seeded at a density of 100,000 cells/well in 24 well plates, the total 

volume adjusted to 1 mL per well, and the plates were incubated at 37 °C (5% CO2, 100% RH). 

The cells were monitored daily for confluency and the feeding media was exchanged on alternate 

days. When the cells were found to be approximately 90% confluent, the feeding media was 

aspirated and the cells were washed twice with 1 mL phosphate buffered saline (PBS, 1X). The 

cells were stimulated by addition of 500μl of a lipopolysaccharide (LPS) solution (20 μg/mL) in 

16HBE feeding media, and the plates were re-incubated at 37 °C for 2 hours. Subsequently, 500 

μL of a 120 μM solution of SCC1-IBU was added to the wells of the plate. 120μM solutions of 

Ibuprofen as well as untreated cells were used as the corresponding controls. The final 

concentration of each compound was 60 μM and the final DMSO concentration in each well was 

5% (v/v). The plates were re-incubated at 37 °C for 6 hours, following which; the supernatant from 
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each well was collected, aliquoted into micro-centrifuge tubes, and frozen at -20 °C till analysis. 

At the time of analysis, the supernatant was thawed and the IL-8 concentration in each sample was 

probed using IL-8 Human ELISA kit (Life Technologies) according to the manufacturer’s 

instructions. A total of 7 replicates were analyzed for each treatment and the data has been 

presented as the mean ± standard error of the mean. 

Toxicity comparison of SCC1 and SCC1-IBU 

In vitro cytotoxicity of SCC1 and SCC1-IBU was determined using an alamarBlue® cell 

viability assay (Life Technologies) on 16HBE cells. Cells were seeded at a density of 25,000 

cells/well in clear 96-well plates, the volume adjusted to 100 µL per well using feeding media, and 

the plates incubated overnight at 37 °C (5% CO2, 100% RH). The following day, the media from 

each well was aspirated and the cells were washed with 1X PBS. Subsequently, 100 µL of drug 

solution (SCC1 or SCC1-IBU) in Opti-MEM® was added to the designated wells. The 

concentrations of the drug used were 20, 30, 50, 75, 100, 125, and 150 µg/mL. Each well, including 

the no-drug control wells, contained 3.3% (v/v) DMSO, which was used to solubilize SCC1-IBU. 

At this time, 10 µL of alamarBlue® solution was added to each well, and the plates were re-

incubated at 37 °C (5% CO2, 100% RH) for 24 hours. At the end of 24 hours, the plates were read 

for absorbance at 570 and 600 nm using a spectrophotometer. Cell viability was calculated based 

on the optical density data according to the manufacturer’s instructions. A total of 8 replicates were 

analyzed for each treatment and the IC50 data for each compound was determined using GraphPad 

Prism by plotting the cell viability versus the log of the molar concentration of the drug and 

applying a non-linear curve fit.  
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Acute Murine-P. aeruginosa lung infection model 

Male C57BL/6J mice (The Jackson Laboratory, Bar Harbor, ME) aged 5 weeks were used 

for all acute lung infection studies [34, 35], approved by the Texas A&M University Institutional 

Animal Care and Use Committee (IACUC). Mice were weighed and randomly assigned into four 

groups and were housed in a barrier facility under pathogen-free conditions until bacterial 

inoculation. When necessary, animals were euthanized with an overdose of ketamine:xylazine 

followed by cardiac puncture for exsanguination, a method approved by our IACUC (TAMU) and 

are consistent with the recommendations of the Panel on Euthanasia of the American Veterinary 

Medical Association. 

P. aeruginosa PA HP3 was grown in LB (LB), pelleted, washed with phosphate buffered 

saline (PBS), and resuspended to an OD650 of 2.4 in LB (corresponding ~1.3 x 1010 CFU/mL, as 

determined by serial dilution and plating). Following anesthesia via intraperitoneal injection of 

ketamine (60 mg/kg) and xylazine (8 mg/kg) cocktail, mice were intranasally inoculated with 75 

µL of bacteria inoculum in LB broth at an LD100 of ~7.5 x 108 CFU per mouse. To test the efficacy 

of combinational therapy against PA HP3, at 2 h post infection, treatment was administrated every 

12 hours subsequently for a maximum of 5 doses via nebulization of 5 mL of control, ibuprofen, 

SCC1, SCC1-IBU solutions with 5% DMSO (containing 25 µmol total Ag+ cation per dose for 

each SCC). Mice survival were monitored up to 48 hours.  

Statistical analysis  

All statistics were calculated using JMP pro 13 for Macintosh (SAS Institute, Cary, North Carolina, 

USA, www.jmp.com) and GraphPad Prism 7.0 (GraphPad Software, San Diego, CA). Differences 

between the treatments were investigated by one-way ANOVA followed by Tukey’s multiple 

comparison test (95% confidence intervals). For the analysis of IL-8 release data, a one-way 

about:blank
http://www.jmp.com/
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ANOVA was performed followed by Tukey’s multiple comparison post-hoc test. The in vivo 

survival curves in the infection model were compared using a Log-rank Mantel-Cox test. * 

indicates p≤0.05, ** indicates p≤0.01, *** indicates p≤0.001, and **** indicates p≤0.0001. Data 

were deemed to be significantly different for p ≤ 0.05. 

Results and Discussion 

In vitro MIC and MBC determinations for SCC1, SCC1-IBU, ibuprofen, and tobramycin 

The minimum inhibitory concentration (MIC) of SCC1, SCC1-IBU, and tobramycin 

against strains of Pseudomonas aeruginosa, Achromobacter xylosoxidans, Stenotrophomonas 

maltophilia, Staphylococcus aureus, and Escherichia coli species was determined by broth 

microdilution (Table 2). The MICs of ibuprofen suggested that it is a mild antimicrobial agent that 

has MIC 512 µg/mL against PAHP3 and >1024 µg/mL against other strains we tested. The MBCs 

of ibuprofen against all the strains were above our detection limit. The MICs of SCC1 and SCC1-

IBU against PA O1-V, PA M57-15, PA RR05, PA LF05 were not significantly different from the 

MICs of tobramycin. Interestingly, the MICs of SCC1 and SCC1-IBU against PA HP3 were 4 and 

8 µg/mL, respectively, significantly lower than the MIC of tobramycin against PA HP3, 15 µg/mL. 

The MIC for J53 lacking the silver-resistant plasmid was 0.5 µg/mL for both SCC1 and SCC1-

IBU and 1 µg/mL for tobramycin. In contrast, the MIC of SCC1 and SCC1-IBU for J53 containing 

pMG101 was greater than 20 µg/mL while the MIC of tobramycin remained unchanged, 

demonstrating that the antimicrobial activity of both SCC’s is primarily due to the silver 

functionality. In 7 out of 10 isolates we tested, the MICs of SCC1-IBU were lower compared to 

the parent compound SCC1, suggesting that the incorporation of IBU moiety confers additional 

antimicrobial activity to the SCC1-IBU compound. Furthermore, in several instances, particularly 

against Achromobacter xylosoxidans, Stenotrophomonas maltophilia, and Staphylococcus aureus 
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bacterial strains, the MICs of both SCC1 and SCC1-IBU were improved compared with the MICs 

of tobramycin, a commonly used antibiotic for the treatment of cystic fibrosis patients. 

Additionally, determination of the minimum bactericidal concentration (MBC) of SCC1, SCC1-

IBU, and Tobramycin against the tested strains was performed. With the exception of the silver 

resistant E. coli strain, SCC1 and SCC1-IBU appeared to be bactericidal for all of the strains tested, 

which indicate that both SCCs are capable of killing numerous bacterial strains at clinically 

achievable concentrations.  

Synergistic effect of ibuprofen and SCC1 against CF pathogens demonstrated by 

checkerboard assay. 

To explore the potential synergistic antimicrobial effects between SCC1 and ibuprofen, we 

tested SCC1 in combination with high-dose ibuprofen (50-100 µg/mL) against all the tested strains 

except E. coli J53 and J53+pMG 101 using a checkerboard assay. The MICs of SCC1 were reduced 

with the presence of 100 µg/mL ibuprofen (Table 3). Then, we used the fractional inhibitory 

concentration to interpret potential drug combination effects. Based on the FIC calculation 

performed using Equation 1 and FIC interpretation in Table 1, we determined that SCC1 is 

synergistic with ibuprofen against all the test strains except PA RR05 and AX 22.  

Synergistic effects of ibuprofen and SCC1 demonstrated by endpoint CFU studies.  

Even though we observe a synergistic effect between SCC1 and ibuprofen against 9 out of 

11 tested strains using a checkerboard assay, we further performed an end-point CFU study to 

investigate the effect of the combination therapeutic on CFU. The concentrations used in 24-hour 

end point CFU study were selected based on the checkerboard assay result. For the 24-hour end 

point CFU study, we selected SCC1 and ibuprofen concentrations at sub- or at individual MIC 

concentrations, but included the combinational MIC within the testing range. When we 
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supplemented with 50, 75 or 100 μg/mL ibuprofen to various concentrations of SCC1, the 

combination treatment achieved significant reduction in bacterial burden (Figure 2A, B, and C). 

The bacterial concentration of PA HP3 is ~2.2×109 CFU/mL when treated with 0.5 μg/mL SCC1 

alone. However, following supplementation with100 μg/mL naproxen, the bacterial numbers of 

PA HP3 were reduced to 1.9×107 CFU/mL (Figure 2D). Since a synergistic effect in an endpoint 

CFU study is defined as a ≥ 2-log10 reduction in bacterial burden compared with the most 

efficacious individual treatment, the aforementioned combination of aztreonam and naproxen 

demonstrated synergy in our endpoint CFU study. 

In vitro anti-inflammatory properties of SCC1-IBU 

The goal of this work was to synthesize a nebulizable therapeutic capable of combining the 

potent antimicrobial properties of the silver carbene complex with the anti-inflammatory properties 

of ibuprofen. The MIC and MBC studies unequivocally demonstrate that the antimicrobial 

properties of the SCCs are retained, and in certain instances, enhanced by the conjugation of an 

ibuprofen moiety to SCC1. To demonstrate that the anti-inflammatory properties of ibuprofen are 

conserved following conjugation with SCC1, the release of IL-8 from a human bronchial epithelial 

cell line 16HBE was investigated (Figure 3).  Following stimulation by 10 μg/mL LPS, an increase 

in IL-8 release was observed in the case of control (untreated) cells. However, upon treatment with 

60 μM ibuprofen or SCC1-IBU, these effects were mitigated and a decline in IL-8 concentration 

in the supernatant was observed (p≤0.0001 for comparison between control and ibuprofen or 

control and SCC1-IBU). Treatment with 60 μM SCC1 also led to a reduction in the release of the 

pro-inflammatory cytokine IL-8 from 16 HBE cells (p≤0.0001 for comparison with control). While 

both SCC1 and ibuprofen appeared to be equally effective in attenuating the release of IL-8 

following LPS stimulation (p = 0.9513 for comparison between SCC1 and ibuprofen), SCC1-IBU 
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further reduced the quantity of IL-8 released from 16 HBE cells following LPS stimulation (p = 

0.0213 for comparison between ibuprofen and SCC1-IBU and p = 0.0061 for comparison between 

SCC1 and SCC1-IBU). The inflammation in CF airways is dominated by neutrophils, and IL-8 is 

a potent neutrophil chemoattractant that drives this inflammatory response inside lung (260). 

Stimulation of IL-8 secretion can occur through multiple pathways including NF-kB dependent 

and NF-kB independent prostaglandin E2 (PEG-2) receptor pathway (261). Down-regulation of 

IL-8 production in the CF respiratory epithelium may be beneficial, because it would attenuate 

neutrophil-dominated inflammation and its negative consequence in the CF lung (262). 

Mechanistically, ibuprofen is conventionally known to act on cyclooxygenase (COX) resulting in 

suppression of prostaglandin synthesis and more recently, it has been demonstrated to down-

regulate leukotriene 4 (unknown mechanism) (263), and suppress activity of NF-kB (264). By 

demonstrating that SCC1-IBU has further reduced levels of IL-8 secretion compared with either 

SCC1 or IBU, we have shown that SCC1-IBU has superior anti-inflammatory activity, in addition 

to its superior antimicrobial against CF pathogens.  

In vitro toxicity of SCC1-IBU 

As a final measure, preliminary in vitro cytotoxicity of SCC1 and SCC1-IBU was 

evaluated in order to establish the safety profile for both drug candidates (Figure 4). Studies 

performed with 16HBE cells demonstrate an IC50 of 170.3 μM (63.9 μg/mL) for SCC1 and 170.7 

μM (88.9 μg/mL) for SCC1-IBU, respectively. Therefore, the incorporation of an ibuprofen moiety 

on the SCC1 molecule does not appreciably change the IC50 compared with the parent molecule 

(SCC1). The MIC90 of SCC1, SCC1-IBU, and tobramycin were 6 μg/mL, 2 μg/mL, and >20 

μg/mL, respectively for non-silver resistant organisms tested. Furthermore, there exists at least an 

order of magnitude difference between the MIC90 and IC50 of SCC1-IBU, suggesting the 
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availability of a broad window over which the therapeutic agent may be employed. Previous 

studies performed with murine tracheal epithelial cells (MTEC) exposed to SCC1 demonstrated 

no significant consistent transcriptional change at any concentration tested (255). Furthermore, no 

dose responsive genes among the small, likely insignificant, number that did appear to be > 2-fold 

altered were found (255). Additional studies performed with MTECs using SCC1 demonstrated 

toxicity to ciliated epithelial cells at concentrations exceeding 50 μg/mL and to all epithelial cell 

types at concentrations of 500 μg/mL (265). While such detailed studies with SCC1-IBU are 

currently underway, preliminary results similar to SCC1 are suggestive of a favourable safety 

profile.  

One possible explanation for these enhanced anti-inflammatory effects may stem from the 

caffeine base. Xanthines other than caffeine has been used medicinally as central nervous 

stimulants, diuretics, and as inhibitors of cyclic adenosine monophosphate (cAMP) 

phosphodiesterase resulting in smooth muscle relaxation of the airway (266). Several xanthine 

derivatives have been shown to have anti-inflammatory effects in the airways including 

aminophylline, theophylline, and pentoxifylline (267-269). Use of caffeine as a central nervous 

stimulant to treat apnea of prematurity is associated with a decreased risk of bronchopulmonary 

dysplasia (BPD) (270). A very recent publication by Weichelt et al. has shown that caffeine 

prevents hyperoxia-mediated pulmonary inflammation in neonatal rats suggesting that the caffeine 

related reduction in BPD may be due, in part, to anti-inflammatory effects (271). However, other 

reported inflammation models have demonstrated a lack of inflammation attenuation by caffeine 

at physiologically relevant doses (272). To date, no studies have linked the anti-inflammatory 

properties of SCC1 to the xanthine portion of the molecule. However, from these data it is clear 
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that further studies are needed to fully investigate the role that NSAIDs can serve in enhancing the 

anti-inflammatory and antimicrobial properties of this new class of metallopharmaceuticals. 

SCC1-IBU extended mice survival length significantly in an acute pneumonia infection.  

We have demonstrated that SCC1-IBU has both anti-inflammatory and antimicrobial 

properties. Hence, we decided to test the efficacy of SCC1-IBU in a murine pneumonia model. 

Mice were intranasally infected with PAHP3 and treated with either 1) sham, 2) ibuprofen, 3) 

SCC1, or 4) SCC1-IBU via nebulization and monitored for survival. Infected mice were treated 

every 12 hours for up to 5 doses. The experiment lasted 48 hours. At 48 hours, infected mice 

treated with SCC1-IBU demonstrated a significantly longer survival time over the groups of mice 

treated with individual drugs or sham (Figure 5).   

Conclusions 

In conclusion, the antimicrobial, anti-inflammatory, and cytotoxicity properties of SCC1-

IBU were tested and compared to the well-studied caffeine derived silver carbene complex SCC1. 

It was demonstrated that SCC1-IBU exhibits enhanced antimicrobial and anti-inflammatory 

activity compared to SCC1 while demonstrating slightly lower toxicity against human bronchial 

epithelial cells. In addition, these studies also revealed the unexpected anti-inflammatory 

properties of SCC1. 
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Table 2. MICs and MBCs of selected CF strains with treatment of SCC1, SCC1-IBU, 

ibuprofen, and tobramycin (Unit: μg/mL).  

Strains 

SCC1 SCC1-IBU Tobramycin Ibuprofen 

MIC MBC MIC MBC MIC MBC MIC MBC 

PA O1-V 1 2 2 6 4 8 >1024 >1024 

PA M57-15 2 4 1 2 0.5 1 >1024 >1024 

PA RR05 0.5 1 0.25 2 0.5 1 >1024 >1024 

PA HP3 4 8 0.25 2 15 >20 512 >1024 

AX 22 0.5 2 0.5 2 20 >20 >1024 >1024 

AX RE05 4 8 1 2 >20 >20 >1024 >1024 

SM AH06 4 8 1 2 8 20 >1024 >1024 

SA LL06 8 10 2 6 >20 >20 >1024 >1024 

SA EH05 6 20 2 4 >20 >20 >1024 >1024 

J53 0.5 1 0.5 0.5 1 1 >1024 >1024 

J53+pMG101 >20 >20 >20 >20 1 1 >1024 >1024 
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Table 3.  The MICs of combining SCC1 and ibuprofen against selected CF strains.  

Strain SCC1+IBU FIC FIC interpretation 

PA O1-V 0.25/100 0.35 Synergy 

PA M57-15 0.25/100 0.22 Synergy 

PA RR05 0.25/100 0.59 Additive 

PA HP3 0.25/100 0.26 Synergy 

AX 22 0.25/100 0.59 Additive 

AX RE05 0.25/100 0.16 Synergy 

SM AH06 0.25/100 0.16 Synergy 

SA LL06 1/100 0.22 Synergy 

SA EH05 1/100 0.36 Synergy 
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Figure 2. Synergy demonstrated between SCC1 and ibuprofen against P. aeruginosa isolate 

PAHP3.  

Synergy demonstrated between SCC1 at A) 0.0625 μg/mL, B) 0.125 μg/mL, C) 0.25 μg/mL, and 

D) 0.5 μg/mL and ibuprofen against Pseudomonsa aeruginosa (PA) HP3 by endpoint colony 

forming unit (CFU) study after 24-hour incubation with the drug concentration ratios (in μg/mL) 

indicated under each panel. 0: bacterial CFU without drug treatment; S: bacterial CFU treated with 

SCC1; I: bacterial CFU treated with ibuprofen (IBU); C: bacterial CFU treated with SCC1 in 

combination with ibuprofen at the ratio indicated. Data are shown as mean and standard deviation 

(n = 6). Statistical significance determined by one-way ANOVA followed by Tukey’s multiple 

comparison test (**** p ≤ 0.0001). 
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Figure 3. IL-8 levels in supernatants following stimulation of human bronchial epithelial 

cells, 16HBE. 

 IL-8 levels in supernatants following stimulation of human bronchial epithelial cells (16HBE) 

with LPS (10 μg/mL) and subsequent treatment with 60 μM ibuprofen or SCC1-IBU. (* p≤0.05). 

(Experiment was performed by Parth Shah and Justin Smolen.) 
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Figure 4. Cytotoxicity of SCC1-IBU compared with SCC1. IC50 determination of SCC1 and 

SCC1-IBU on 16HEB cells using alamarBlue®. (Experiment was performed by Parth Shah and 

Justin Smolen.) 

 

Figure 5. The survival curve of mice treated SCC1-IBU. SCC1-IBU demonstrated a significant 

survival advantage in a murine pneumonia model (n=6). Statistical significance determined by 

Mantel-Cox test (** indicates p≤0.01). 
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CHAPTER III1 

MINOCYCLINE AND SILVER DUAL-LOADED POLYPHOSPHOESTER-BASED 

NANOPARTICLES FOR TREATMENT OF RESISTANT Pseudomonas aeruginosa 

Introduction 

Several reports, including those by our research group, have demonstrated improved 

clinical outcomes when infections are treated with nanoparticle devices (273). These 

improvements in treatment outcomes are often achieved with reduced drug dosages and fewer side 

effects compared with unencapsulated drug treatments. The high localized therapeutic 

concentrations achieved by nanoparticles often overwhelm drug resistance mechanisms in 

pathogens, thereby improving the antimicrobial efficacy against drug resistant pathogens (274). 

Through the use of engineered nanoparticles, many antimicrobial agents with poor solubility, 

unfavorable pharmacokinetics, or poor penetration into diseased tissues can be successfully 

delivered at optimal therapeutic concentrations to eradicate MDR pathogens (275; 276). 

We have previously demonstrated the ability of non-degradable and degradable 

nanoparticle formulations to shield silver from biological inactivation (276; 277). For example, 

shell crosslinked knedel-like (SCK) nanoparticles exhibit comparable antimicrobial efficacy to 

silver-based small molecules in vitro and superior in vivo efficacy in a murine P. aeruginosa acute 

lung infection model (276; 278). We first introduced SCKs in the 1990s to overcome the micellar 

dissociation and enhance structural stability (279). The crosslinking provides structural stability to 

polymeric micelles, maintains its size and shape, and improves the ability for chemical 

                                                 
1 Reprinted with permission from “Minocycline and Silver Dual-loaded Polyphosphoester-Based 

Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. Shah, Fuwu 

Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. Wooley, and Carolyn 

L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 2019 American Chemical 

Society. 
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modification. The SCK nanoparticles offer a versatile platform for efficient delivery of 

antimicrobials. The unique micellar structure comprising of a hydrophobic core and hydrophilic 

shell allows for co-delivery of two unique therapeutics (280) . Further, the physico-chemical 

properties and surface characteristics of SCK nanoparticles, including hydrophilicity, density and 

porosity of the core and shell, can also be easily customized. For instance, the molecular weight 

and length of the amphiphilic polymeric chain is directly linked to the nanoparticle size and can 

be utilized to precisely tune the nanoparticle size (281). The amphiphilic block terpolymer 

comprising the SCKs was designed and synthesized to provide unique characteristics, such as 

efficient loading of silver ions by reversible interactions to alkyne side chain moieties, as well as 

ability to penetrate the thick mucus encountered in the lungs of CF patients (277). These 

nanoparticles provide sustained release, shield the therapeutic from biological interactions, and 

can be localized at the infection site (282) resulting in a reduction in number of doses, as well as 

propensity of resistance acquisition. 

Several groups have reported synergy with antimicrobials when used in combination with 

silver (283). A tobramycin/silver combination at specific concentrations exerts synergistic 

antimicrobial activity against P. aeruginosa biofilms (284). Thus, combination therapeutic 

strategies demonstrate tremendous potential and have been employed with FDA approved SoC 

antibiotics. However, such combinations need careful dose calibrations, as well as efficient 

delivery systems to eliminate potential pitfalls of both therapeutics. To enhance the efficacy of 

silver, we performed a high-throughput screen to identify potential antimicrobials with activity 

against P. aeruginosa that may synergize with silver. We identified 4-epi-minocycline, previously 

considered an inactive metabolite of minocycline (285; 286), as a molecule with antimicrobial 

activity against P. aeruginosa. Minocycline is a broad-spectrum bacteriostatic agent that inhibits 
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protein synthesis and demonstrates potent antimicrobial activity (287; 288). In addition, 

minocycline also exhibits favorable absorption and pharmacokinetic properties upon oral or 

intravenous administration (289). Because of these favorable characteristics and potent 

antimicrobial activity against Gram-positive and Gram-negative bacteria, i.v. minocycline was 

reintroduced in 2009 as an alternative therapy to treat MDR bacterial infections (290). 

Minocycline, including its i.v. formulation, has also been used as an alternative therapeutic against 

Staphylococcus aureus and methicillin resistant Staphylococcus aureus (MRSA) (290) that are 

commonly found bacteria in CF lungs. We have evaluated the antimicrobial activity of 4-epi-

minocycline against clinical isolates of P. aeruginosa and MRSA obtained from CF patients. 

Further, we evaluated the efficacy of the parent drug, minocycline, and have demonstrated 

comparable antimicrobial activity to 4-epi-minocycline. Next, we investigated the potential 

synergistic activity of the silver/minocycline combination against P. aeruginosa and MRSA using 

checkerboard and end-point colony forming unit (CFU) determination assays. Finally, we expand 

upon previously reported nanoparticle formulations loaded with silver cations29. We have taken 

advantage of the unique design of these nanoparticles and leveraged our expertise to incorporate 

both minocycline (core) and silver (shell) with the goal of developing novel formulations that 

provide sustained release of two therapeutics and shield them from biological interactions. Thus, 

we have investigated the potential of a silver/minocycline combination as a next-generation 

antibiotic to combat the threats presented by MDR pathogens. 

Materials and Methods 

Materials 

4-epi-minocycline (Chemos GMBH, Germany), minocycline hydrochloride (Sigma-

Aldrich), silver acetate (Sigma-Aldrich), dimethyl sulfoxide (DMSO) (Sigma-Aldrich), Mueller 
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Hinton (MH) broth (BD Difco), tryptic soy agar plates (BD BBL), sheep blood agar plates (BD), 

2,2’-(ethylenedioxy)bis(ethylamine) (Sigma-Aldrich), 1-[3’-(dimethylamino)propyl]-3-

ethylcarbodiimide methiodide (Sigma-Aldrich). The Spectra/Por dialysis membranes (MWCO 6-

8 kDa) were purchased from Spectrum Laboratories, Inc (Rancho Dominguez, CA).  Nanopure 

water (18 MΩ•cm) was acquired by means of a Milli-Q water filtration system, Millipore Corp. 

(Bedford, MA). 

Preparation of drug solutions 

4-epi-minocycline was dissolved in DMSO and minocycline hydrochloride was dissolved 

in autoclaved water (Milli-Q synthesis system; Millipore Corp., Billerica, MA) to prepare stock 

solutions at a final concentration of 1.0 mg/mL and stored at -80 °C until use. A fresh stock solution 

of 1.0 mg/mL silver acetate was reconstituted in autoclaved water before each experiment. 

Preparation and characterization of aSCKs 

Briefly, a polyphosphoester-based anionic amphiphilic diblock copolymer was synthesized 

from poly(2-ethylbutyl phospholane)-block-poly(butynyl phospholane) by a “click” type thiol-yne 

reaction with 3-mercaptopropanoic acid (291; 292). Then, the anionic diblock copolymers (623 

mg, 2.08 mmol of acrylic acid) were suspended into nanopure water (60.0 mL) and sonicated for 

10 min. The clear solution was stirred for another 1 h to obtain well dispersed micelles, followed 

by the addition of a solution of 2,2’-(ethylenedioxy)bis(ethylamine) (EDDA, 46.1 mg, 0.311 

mmol) dropwise in nanopure water (10.0 mL). The solution was allowed to stir for 1 h at room 

temperature. To this reaction mixture was added dropwise a solution of 1-[3’-

(Dimethylamino)propyl]-3-ethylcarbodiimide methiodide (EDCI, 204 mg, 0.687 mmol) in 

nanopure water (10.0 mL) via a syringe pump over 1 h.  The reaction mixture was allowed to stir 

overnight at room temperature and was then transferred to presoaked dialysis membrane tubes 
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(MWCO ca. 12–14 kDa), and dialyzed against nanopure water for 36 h in the cold room (4–8 ºC) 

to remove small molecules. The purified anionic SCK (aSCK) solution was lyophilized into 

powder and kept in the freezer at -20 ºC. 

Silver loading into aSCKs 

In a typical experiment, aSCKs (250 mg) were dissolved in 25.0 mL of nanopure water and 

sonicated for 5 min. Silver acetate (100 mg) in 20.0 mL of nanopure water was added, and the 

mixture solution was shaded with aluminum foil and stirred overnight. The solution was 

transferred to a centrifugal filter device (100 kDa MWCO), and washed extensively for several 

cycles (n>3) with nanopure water to remove free small molecules. The purified samples were 

lyophilized and stored at -20 ºC. The amount of silver loaded into the micelles was quantified by 

ICP-MS using rhodium as an internal standard. The drug loading efficiency was determined to be 

28%, with a 10.1% silver loading (mass of silver / total mass of drug-loaded aSCKs). 

Minocycline loading into aSCKs 

In a typical experiment, aSCKs (5.0 mg) were dissolved in 3.0 mL of nanopure water and 

sonicated for 5 min. Minocycline hydrochloride (1.5 mg) in 1.0 mL of nanopure water was added, 

and the mixture solution was shaded with aluminum foil and stirred overnight. The solution was 

transferred to a centrifugal filter device (100 kDa MWCO), and washed extensively for several 

cycles (n>3) with nanopure water to remove free small molecules. The purified samples were 

lyophilized and stored at -20 ºC. The amount of minocycline hydrochloride loaded into the 

micelles was quantified by UV-Vis using absorbance at 345 nm. The drug loading efficiency was 

determined to be 40%, with a 10.8% minocycline hydrochloride loading (mass of minocycline 

hydrochloride / total mass of drug-loaded aSCKs).  
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Dual loading into aSCKs 

In a typical experiment, Ag-loaded aSCKs (9.2 mg, containing 0.92 mg silver) were 

dissolved in 5.0 mL of nanopure water and sonicated for 5 min. Minocycline hydrochloride (2.8 

mg) in 1.8 mL of nanopure water was added, and the mixture solution was shaded with aluminum 

foil and stirred overnight. The solution was transferred to a centrifugal filter device (100 kDa 

MWCO), and washed extensively for several cycles (n>3) with nanopure water to remove free 

small molecules. The purified samples were lyophilized and stored at -20 ºC. The amount of 

minocycline hydrochloride loaded into the micelles was quantified by UV-Vis using absorbance 

at 345 nm, while the amount of silver loaded into the micelles was quantified by ICP-MS using 

rhodium as an internal standard. The drug loading efficiency for minocycline hydrochloride was 

determined to be 51%, with a 13.4% minocycline hydrochloride loading (mass of minocycline 

hydrochloride / total mass of drug-loaded aSCKs). 

Release of drugs from nanoparticles  

The release profiles of the drug-loaded aSCKs were studied by monitoring the decrease of 

drug concentration over time in dialysis cassettes by ICP-MS or UV-Vis. In a typical procedure, 

drug-loaded aSCKs (3.0 mL) were transferred into a presoaked dialysis cassette. The cassette was 

allowed to stir in a beaker containing 3000 mL nanopure water at 37 °C. Aliquots (ca. 0.05 mL) 

were taken at pre-determined timepoints up to 50 hours. Silver and minocycline hydrochloride 

concentrations were determined by ICP-MS and UV-Vis, respectively. The release experiments 

were conducted in triplicate. 

Bacterial culture 

Clinical isolates of P. aeruginosa (PA 0531, PA 0540, PA 0545, PA 0551, PA 0552, PA 

0554, PA 0557, PA 0561, PA HP3, PA M57-15, and PA O1) were streaked from frozen stocks 
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onto tryptic soy agar (TSA) plates and incubated overnight at 37 °C. A single bacterial colony was 

then suspended in MH broth and allowed to grow at 37 °C in a shaking incubator at 200 rpm to an 

OD650 of 0.4, which corresponds to ~5 ×108 CFU/mL. Bacterial cultures were adjusted to 5 × 108 

CFU/mL to prepare a working stock for all experiments. 

High-throughput screen 

P. aeruginosa strain PA O1 was streaked onto LB agar plates and incubated overnight at 

37 °C. A single bacterial colony was re-suspended in LB broth and grown overnight at 37 oC in a 

shaking incubator at 200 rpm. Compounds from the “SAC1” Sacchettini lab diversity library 

(~50,000 unique compounds assembled in house; 1mM in 100% DMSO) were transferred to clear 

384-well assay plates (1.5 μL). The overnight culture was then diluted to an OD600 of 0.005 in 

fresh LB and aliquoted to assay plates (60 μL). Following a 2-hour incubation at 37 °C, 0.2 mM 

filtered resazurin dye (0.05% w/v) was added (3 μL). After an additional hour of incubation, the 

absorbance at 573 nm and 605 nm was measured on a POLARstar Omega plate reader. Percent 

inhibition of each compound was calculated according to the following equation: % Growth = (ω 

- x̄p)/(x̄n - x̄p) x 100%, where values of ω (sample), p (positive control), and n (negative control) 

were determined by the difference between sample absorbance values (OD573-OD605). 

Trimethoprim (100 μM) and DMSO were used as positive and negative controls, respectively. 

In vitro antimicrobial activity 

Minimum inhibitory and bactericidal concentrations (MIC and MBC) were determined 

according to the standard Clinical and Laboratory Standards Institute (CLSI) broth-microdilution 

method. Briefly, 100 μL working stock of bacterial suspension was added to each well (n=3) 

containing 100 μL silver acetate, 4-epi-minocycline, or minocycline solution in a 96 well plate. 

All solutions were comprised of 95% MH broth and 5% (v/v) DMSO. Bacteria were incubated 
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with 0.06, 0.13, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128 μg/mL minocycline or 4-epi minocycline, or 

0.13, 0.25, 0.5, 1, 2, 4, 8, 16, 32 μg/ml silver acetate at 37 °C for 18 - 24 hours under static 

conditions. The final concentration of DMSO in the assay was 2.5% (v/v). The MIC was 

determined as the lowest concentration that did not show any signs of bacterial growth upon visual 

inspection. Finally, the MBC was determined by plating the bacterial solutions demonstrating 

growth inhibition on blood agar plates and recording the lowest concentration that resulted in no 

growth after an 18 – 24 hour incubation at 37 °C. All experiments were performed in triplicate. 

The color codes indicate the drug resistance cutoffs for minocycline against S. aureus as published 

by CLSI. Green, yellow, and red indicate if a particular S. aureus isolate is susceptible, 

intermediate susceptible, or resistant to minocycline, respectively. A similar scale was adopted for 

P. aeruginosa. 

Determination of synergistic drug combinations 

Four P. aeruginosa isolates (PA 0540, PA 0557, PA HP3, and PA O1) were selected based 

on their sensitivity to silver acetate and minocycline. The selection criteria included one strain 

from each of the following categories; sensitive to both drugs, resistant to both drugs, or sensitive 

to one drug and resistant to the other drug. Hence, we selected PA O1, which is sensitive to both 

drugs; PA 0540, which is sensitive to silver acetate and resistant to minocycline; PA HP3, which 

is sensitive to minocycline and resistant to silver acetate; and, PA 0557, which is resistant to both 

drugs. A dynamic concentration scale based on the MIC and MBC values was used to determine 

the optimal ratio of synergistic concentrations between the two therapeutic agents. The final 

solutions were comprised of 95% MH broth and 5% DMSO. A 100 μL working stock of bacterial 

suspension was incubated with a 100 μL solution of therapeutic agents (n = 3) for 18 hours at 37 

°C. Final drug concentrations incubated with each bacterial isolate is mentioned in Table 4. Wells 
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demonstrating bacterial growth inhibition were identified visually to determine a synergistic MIC. 

All experiments were performed in duplicate. To evaluate for potential synergy, the fractional 

inhibitory concentration (FIC) was calculated as shown in Equation 1 and defined in Table 1. 

Four MRSA bacterial strains (SA LL06, SA EH05, MRSA 0608, and MRSA 0631) were 

selected based on their sensitivity to silver acetate and minocycline. The criterion for selection 

included one strain from each of the following categories; sensitive to both drugs, resistant to both 

drugs, or sensitive to one drug and resistant to the other drug. SA LL06 is sensitive to both drugs. 

SA EH05 is sensitive to silver and resistant to minocycline. MRSA 0631 is resistant to silver and 

sensitive to minocycline. MRSA 0608 is resistant to both drugs. A dynamic concentration scale 

based on the MIC and MBC values was used to determine the optimal ratio of synergistic 

concentrations between the two therapeutic agents. The final solutions were comprised of 95% 

MH broth and 5% DMSO. A 100 μL working stock of bacterial suspension was incubated statically 

with a 100 μL solution of therapeutic agents (n = 3) for 18 hours at 37 °C. Final drug concentrations 

for each bacterial strain are mentioned in Table 5. Wells demonstrating bacterial growth inhibition 

were identified visually to determine a synergistic MIC. All experiments were performed in 

duplicate. 
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Table 4. Concentrations of silver acetate and minocycline hydrochloride incubated with 

select P. aeruginosa isolates to determine synergistic activity.  

Bacteria were incubated with a combination of each of the drugs at the following concentrations.  

(Reprinted with permission from “Minocycline and Silver Dual-loaded Polyphosphoester-Based 

Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. 

Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. 

Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 

2019 American Chemical Society.) 

Strain 
Silver Acetate Concentration 

(μg/mL) 

Minocycline.HCl Concentration 

(μg/mL) 

PA O1 1, 2, 3, 4, and 6 1, 2, 4, 8, 16, and 32 

PA HP3 2, 4, 6, 8, and 16 1, 2, 4, 8, 16, and 32 

PA 

0540 
1, 2, 3, 4, and 6 4, 8, 16, 32, 64, and 128 

PA 

0557 
2, 4, 6, 8, and 16 2, 4, 8, 16, 32, and 64 
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Table 5. Concentrations of silver acetate and minocycline hydrochloride incubated with 

select MRSA strains to determine synergistic activity.  

Bacteria were incubated with a combination of each of the following concentrations. (Reprinted 

with permission from “Minocycline and Silver Dual-loaded Polyphosphoester-Based 

Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. 

Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. 

Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 

2019 American Chemical Society.) 

Strain 
Silver Acetate Concentration 

(μg/mL) 

Minocycline.HCl Concentration 

(μg/mL) 

SA LL06 4, 8, 16, 32, and 64 0.06, 0.13, 0.5, 1, 2, and 4 

SA EH05 2, 4, 8, 16, and 32 0.13, 0.5, 1, 4, 32, and 128 

MRSA 

0608 
4, 8, 16, 32, and 64 1, 2, 8, 32, 64, and 128 

MRSA 

0631 
4, 8, 16, 32, and 64 0.06, 0.13, 0.5, 1, 2, and 4 
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Determination of bacterial burden for synergistic drug combinations 

Potential synergy between combinations of silver acetate and minocycline against P. 

aeruginosa isolates PA 0557 and PA 0540 at a final concentration of 106 CFU/mL were determined 

using a 24-hour end point CFU study performed in triplicate. The concentrations of silver acetate 

tested against PA 0557 were 1, 2, and 4 μg/mL and the concentrations of minocycline tested were 

2, 4, 8, and 16 μg/mL. Individual drugs served as controls. The concentrations of silver acetate 

tested individually against PA 0557 were 1, 2, 4, 6, and 8 μg/mL and the tested concentrations of 

minocycline alone were 4, 8, 16, 32, and 64 μg/mL. The concentrations of silver acetate tested 

against PA 0540 were 0.13, 0.25, 0.5 and 1 μg/mL and the concentrations of minocycline tested 

were 16, 32, and 64 μg/mL. Individual drugs served as controls. The concentrations of silver 

acetate tested individually against PA 0540 were 0.13, 0.25, 0.5, and 1 μg/mL and the tested 

concentrations of minocycline alone were 16, 32, and 64 μg/mL. Synergy was defined as ≥2 log10 

CFU/mL reduction between combined agents and the most effective individual agent at 24 hours 

(293). 

The bacterial concentrations (CFU) of PA 0557 were also determined after incubation with 

combinations of free drugs, as well as dual-loaded nanoparticles. Individual drugs at 

concentrations corresponding to those tested in combination, as well as blank nanoparticles, served 

as controls. The ratio of silver acetate to minocycline was maintained at 1:0.87 (w/w) for all 

combinations to mirror the drug loading in the dual-loaded nanoparticles. The tested 

concentrations of silver acetate and minocycline were 1, 2, 4, 6, and 8 μg/mL and 0.87, 1.74, 3.48, 

5.22, 6.96 μg/mL, respectively. A 100 μL working stock of bacterial suspension was incubated 

with 100 μL drug solution (n = 4) in each well of a 96 well plate at 37 °C for 24 hours with constant 

shaking at 100 RPM. The final solutions were comprised of 97.5% MH broth and 2.5% (v/v) 
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DMSO. Finally, a 10-fold serial dilution was performed in MH broth with the bacterial suspension 

from each well and 50 μL of each dilution was plated onto a blood agar plate. Plates were incubated 

for 18 hours and colonies counted to determine the CFU for each condition. The potential 

synergistic effects between silver acetate and minocycline were determined as described above. 

All experiments were performed in duplicate. 

Potential synergy between combinations of silver acetate and minocycline against MRSA 

strains SA EH05 and MRSA 0608 at a final concentration of 106 CFU/mL were determined 

through a 24-hour end point CFU study performed in triplicate. The concentrations of silver acetate 

tested against SA EH05 were 1, 2, and 4 μg/mL and the concentrations of minocycline tested were 

0.06, 0.13, 0.5 and 1 μg/mL. The concentrations of silver acetate tested individually against SA 

EH05 were 2, 4, 8, 12, and 16 μg/mL and minocycline alone were 0.13, 0.25, 0.5, 1 and 2 

μg/mL.  The concentrations of silver acetate tested against MRSA 0608 were 0, 1, and 2 μg/mL. 

The concentrations of minocycline tested against MRSA 0608 were 0, 0.25, 0.5, and 1 μg/mL. 

Individual drugs served as controls. 

         The bacterial concentrations (CFU) of SA EH05 were determined after incubation with 

combinations of free drugs, as well as dual-loaded nanoparticles. Individual drugs at 

concentrations corresponding to those tested in combination, as well as blank nanoparticles, served 

as controls. The ratio of silver acetate to minocycline was maintained at 1:0.87 (w/w) for all 

combinations to mirror the drug loading in the dual-loaded nanoparticles. The tested 

concentrations of silver acetate and minocycline were 0.5, 1, 2, 8, and 12 μg/mL and 0.44, 0.87, 

1.74, 6.96, 10.43 μg/mL, respectively. A 100 μL working stock of bacterial suspension was 

incubated with 100 μL drug solution (n = 3) in each well of a 96 well plate at 37 °C for 24 hours 

with constant shaking at 100 RPM. The final solutions were comprised of 97.5% MH broth and 
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2.5% (v/v) DMSO. Finally, a 10-fold serial dilution was performed in MH broth with the bacterial 

suspension from each well and 50 μL of each dilution was plated onto a blood agar plate. Plates 

were incubated for 18 hours and colonies enumerated to determine the CFU for each condition. 

The potential synergistic effects between silver acetate and minocycline were determined as 

described above. 

Transmission electron microscopy (TEM) 

The drug loaded nanoparticles suspended in aqueous solutions (4 μL) were deposited onto 

carbon-coated copper grids for 1 min and excess solution was wicked away with a piece of filter 

paper. For minocycline-loaded SCKs, a drop of 1 wt% uranyl acetate was then added and allowed 

to stand for 30 seconds before the excess stain was wicked away. No stain was used for silver-

loaded SCKs and dual loaded SCKs. The grids were allowed to dry in air overnight. TEM images 

were collected using a JEOL 1200EX operating at 100 kV and micrographs were recorded at 

calibrated magnifications using a SIA-15C CCD camera. 

Untreated bacteria, and bacteria treated with silver acetate, minocycline or both drugs, to 

be examined by transmission electron microscopy were pelleted and fixed in 2.5% glutaraldehyde 

and 1% acrolein in 0.2 M Sorensons Phosphate Buffer for 1 hour at room temperature. The fixed 

samples were stained with 1% aqueous osmium tetroxide overnight at 4 °C. Samples were 

dehydrated with acetone and then infiltrated with resin. Subsequently, the samples were thin-

sectioned in a microtome (Boeckeler MTX), post-stained in uranyl acetate and lead citrate, and 

then visualized on a JEOL 1200 EX electron microscope. 

Statistical analysis 

All statistics were calculated using JMP pro 13 for Macintosh (SAS Institute, Cary, North 

Carolina, USA, www.jmp.com). Differences between the treatments were investigated by one-

about:blank
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way ANOVA followed by Tukey’s multiple comparison test (95% confidence intervals). * 

indicates p≤0.05, ** indicates p≤0.01, *** indicates p≤0.001, and **** indicates p≤0.0001. 

Results and Discussion 

         The high rates of morbidity and mortality associated with MDR pathogens, particularly, 

MDR P. aeruginosa, pose a serious threat to the public health and call for accelerated development 

of novel treatment strategies. Several new antimicrobial strategies are being evaluated by research 

laboratories across the world. However, to expedite the regulatory approval processes, we have 

focused on the development of combination therapies that utilize existing SoC antimicrobials. We 

have established antimicrobial efficacy of several silver based small molecules (131; 243; 250; 

276; 294). Moreover, silver, incorporated into bandages or creams, has been widely used for 

treatment of bacterial infections in burn and wound patients. However, the poor stability of these 

silver cations has limited its use to these topical applications. We have previously demonstrated 

the ability of nanoparticles to shield silver cations from such external factors and improve their 

bioavailability to address this limitation (276). To further enhance the antimicrobial efficacy of 

silver against MDR pathogens, as well as realize the full potential of SCK nanoparticles, we 

selected 4-epi-minocycline as the candidate for combination therapy identified from high 

throughput screening of a diverse compound library. The hydrophobic nature of 4-epi-minocycline 

allows us to incorporate it in the core-shell interfaces of the SCK nanoparticles via hydrophobic 

interaction & electrostatic interaction between amino groups of the drug and carboxylate groups 

in the hydrophilic shells, in conjunction with the silver cations loaded into the shell via electrostatic 

interaction with carboxylate groups & coordination with two sulfur atoms (28; 295-297). In 

addition, minocycline, an isomer of 4-epi-minocycline is an SoC antimicrobial with potent 
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antimicrobial activity against Gram-positive pathogens including MRSA. Thus, minocycline and 

its isomers, including 4-epi-minocycline, are ideal candidates for use as combination therapeutics.  

High throughput screening identified 4-epi-minocycline as a potent inhibitor of 

Pseudomonas aeruginosa. In order to identify novel compounds with anti-pseudomonal activity 

for loading into aSCK nanoparticles, we screened a high diversity library of small molecules 

(SAC1) for inhibition of the clinical P. aeruginosa isolate, PA O1. Plates with high control 

variability, as indicated by control z’ scores > 0.4, were removed from the resulting dataset. Of the 

remaining 39,340 compounds, nine hits were identified with > 90% growth inhibition (Figure 6). 

The properties of 4-epi-minocycline, including its high antimicrobial activity against PA O1 (98% 

inhibition) and hydrophobicity known to enhance loading into the core-shell interface of the aSCK 

nanoparticles (28; 295; 296), prompted the use of this inhibitor for further efficacy studies. 

In vitro antimicrobial activity of silver acetate, 4-epi-minocycline, and minocycline against 

Pseudomonas aeruginosa 

Minor structural differences between the parent compound, minocycline, and its isomer, 4-

epi-minocycline, prompted further investigation into the activity of minocycline against these P. 

aeruginosa and MRSA isolates. We characterized the minimum inhibitory and bactericidal 

concentrations (MICs and MBCs) of 4-epi-minocycline, minocycline and silver acetate against 11 

P. aeruginosa clinical isolates (Table 3). Silver acetate has consistent antimicrobial activity 

against P. aeruginosa with MICs between 4-6 μg/mL and MBCs between 4-8 μg/mL (Table 3). 

4-epi-minocycline exhibits MICs similar to those of minocycline against eight of the eleven tested 

strains; whereas, it shows slightly lower MICs than minocycline against the remaining three strains 

(Table 3). With regards to MBCs, 4-epi-minocycline exhibits MBCs against PA 0554, PA 0557, 

and PA M57-15 that are lower than those of minocycline; whereas, the MBCs for 4-epi-
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minocycline and minocycline are comparable for PA 0545 and PA 0551. In contrast, minocycline 

has lower MBCs against PA 0552, PA HP3, and PA O1 compared with 4-epi-minocycline. Finally, 

the MBCs of 4-epi-minocycline and minocycline are out of our detection range against PA 0531 

and PA 0540 (Table 3). Minocycline and 4-epi-minocycline demonstrate comparable 

antimicrobial activity against the 11 P. aeruginosa strains tested (Table 3). In addition, 

minocycline demonstrates comparable or superior antimicrobial activity to 4-epi-minocycline 

against 11 MRSA strains tested (Table 7). This observed activity of minocycline is comparable to 

previously reported results (298), however, this is the first report of antimicrobial activity of 4-epi-

minocycline, which is generally thought to be a pharmacologically inactive molecule (299-301). 

The tetracycline family, including minocycline, inhibits protein synthesis through binding via its 

hydrophilic surface to the 16S rRNA component of the 30S ribosomal subunit (302)s. A 

competition study has demonstrated that minocycline binds to the ribosomes in a fashion similar 

to tetracycline (303). Hence, owing to the structural similarities between minocycline and 4-epi-

minocycline exerts, we believe that 4-epi-minocycline exerts antimicrobial activity via a 

mechanism similar to tetracycline and minocycline.  

Silver, on the other hand, demonstrated lower MIC values, namely, 4 μg/mL for 7 of 8 

strains and 6 μg/mL for another, compared with the MICs of both 4-epi-minocycline and 

minocycline, which were 4 μg/mL for only 3 of 8 strains, and ranged from 8 to 32 μg/mL for the 

remaining 5 P. aeruginosa strains (Table 6). Further, silver demonstrated relatively higher MIC 

values; MIC of 8 μg/mL against SAEH 05, MIC of 16 μg/mL against 4 of 11 tested MRSA strains 

and 24 μg/mL against 6 of 11 tested MRSA strains (Table 7). This antimicrobial activity of silver 

is in agreement with previous results (277; 304). These compounds have been evaluated 

individually as antimicrobial agents, however, their combinations with other antimicrobials have 
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yet to be explored as next-generation antimicrobials. Minocycline has been used by clinicians as a 

broad-spectrum antibiotic with well-established pharmacokinetics, pharmacodynamics, efficacy 

and safety profiles (305; 306). In addition, minocycline is known to epimerize into 4-epi-

minocycline under mildly acidic conditions in the body and excreted as a metabolite (285; 286). 

Moreover, minocycline demonstrated similar or superior antimicrobial efficacy to 4-epi-

minocycline against tested P. aeruginosa and MRSA isolates in vitro. Finally, 4-epi-minocycline 

is an impurity isolated during the synthesis of minocycline. Thus, the costs associated with 

synthesis, isolation, and purification of this epimer are significantly higher compared with 

minocycline. These parameters favored the use of minocycline over 4-epi-minocycline as the 

choice of drug for investigation in combination with silver.  

Additive effects of silver cations and minocycline demonstrated by checkerboard assay  

To explore the potential synergistic antimicrobial effects between silver cations and 

minocycline, we tested combined drugs against 4 P. aeruginosa and 4 MRSA isolates, selected 

based on the MICs of silver and minocycline, to identify the optimal ratio of the two drugs that 

delivers maximum therapeutic efficacy. The MICs of combined drugs summarized in Table 8 are 

reduced compared with the MICs of silver cations or minocycline alone against PA 0540, PA 0557 

and PA O1. FIC values were calculated46 to identify synergistic and/or additive concentrations. 

However, based on the FIC calculations performed using Equation 1, we observe an additive 

effect for the combination of silver cations and minocycline, rather than a synergistic effect against 

PA 0540, PA 0557, PA O1, and all four tested MRSA isolates (Table 8 and Table 9). Combining 

silver cations and minocycline did not change the MIC of either drug tested alone against PA HP3 

(Table 8). However, the poor sensitivity of the checkerboard assay, which relies on evaluating 

turbidity in each microdilution to detect bacteriostatic effects, is a major limitation of the assay. 
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Synergistic effects of silver cations and minocycline demonstrated by endpoint CFU studies 

Even though we did not observe a synergistic effect between silver cations and minocycline 

against P. aeruginosa using a checkerboard assay, we performed an end-point CFU study to 

investigate the effect of the combination therapeutic on CFU. The concentrations used in 24-hour 

end point CFU study were selected based on the checkerboard assay result. For PA 0557, the 

combinational MIC of silver acetate and minocycline is 2 and 4 μg/mL. For PA 0540, the 

combinational MIC of silver acetate and minocycline is 1 and 32 μg/mL. Therefore, for 24-hour 

end point CFU study, we selected silver acetate and minocycline concentrations at sub or at 

individual MIC concentrations but including the combinational MIC within the testing range. The 

bacterial concentration of PA 0557 is ~109 CFU/mL when treated with 4 μg/mL silver acetate or 

minocycline alone. However, following exposure to a combination of 4 μg/mL silver acetate and 

2 μg/mL minocycline, the bacterial burden of PA 0557 is reduced to less than 104 CFU/mL (Figure 

7 A and B). Since the synergistic effect in endpoint CFU study is defined as a ≥ 2-log10 reduction 

in bacterial burden compared with the most efficacious individual treatment, the aforementioned 

combination of silver cations and minocycline demonstrated synergy in our endpoint CFU study. 

We verified the synergy of this combination against an additional P. aeruginosa isolate, PA 0540. 

Upon treatment with a combination of 0.5 μg/mL silver acetate and 32 μg/mL minocycline, PA 

0540 demonstrates a > 2-log10 reduction of bacterial burden, indicating synergy (Figure 7C). We 

have confirmed similar results with MRSA isolates SA EH05 and MRSA 0608 (Figure 8). SAEH 

05 upon treated with a combination of 4 μg/mL silver acetate and 0.13 μg/mL minocycline, 

demonstrates a >2-log10 reduction compared with individual drug treatments, indicating synergy 

(Figure 8A). Despite the significant reduction in the bacterial burden of MRSA 0608 treated with 

a combination of 2 μg/mL silver acetate and 0.5 μg/mL minocycline compared with individual 
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drug treatments, the reduction is less than 2-log10, which does not meet the synergy criterion 

established by CLSI (Figure 8B). Thus, although we observed a significant difference in the 

bacterial burden between the combination treated group and the individual drug treated groups, we 

did not identify synergistic effects between silver acetate in combination with minocycline against 

MRSA 0608 (Figure 8B). We speculate that, given the relatively higher MICs of silver acetate 

against MRSA, the potent activity of minocycline as an anti-staphylococcal drug eclipses the effect 

of the combination therapy. 

Transmission electron microscopy demonstrated the antimicrobial activity of silver cations 

and minocycline 

         Transmission electron microscopy (TEM) was further used to confirm the morphological 

changes in P. aeruginosa after exposure to the silver/minocycline combination. In the absence of 

any treatment, P. aeruignosa showed typical cellular morphology with no damage to cellular 

components or membranes. When bacteria were exposed to silver cations at 4 μg/mL, electron-

dense granules are observed along the bacterial membrane throughout the cross section of the 

samples at low and high magnifications. An irregular morphology and disintegration of the cellular 

components is also seen. DNA condensation is also observed in the center of bacteria. Gaps are 

observed between the cytoplasm membrane and the cell wall. In the presence of 2 μg/mL 

minocycline, membrane segmentation is observed in P. aeruginosa along with condensed and 

disintegrated cellular components. Leakage of the cellular components from the bacterial cells is 

also observed. The electron dense granule clusters likely represent deposition of silver at the outer 

bacterial membrane, as demonstrated by Sondi and Salopek-Sondi65 and supported by Feng et al. 

(304). Similar to data reported by our group and others, silver-treated bacteria exhibit irregular 

cellular shape and ruptured membranes leading to leakage and efflux of cytoplasmic contents 
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(307). Gaps between the cytoplasm membrane and the cell wall is observed when bacteria are 

treated with minocycline. In addition to membrane rupture, minocycline-treated bacteria cells 

uniquely show spheroplasts in the lower magnification images, membrane segmentation, as well 

as condensation of the inner membrane and detachment from the outer membrane. Regardless of 

their targets, antibiotics that disrupt protein synthesis display unique cellular disruptions, which 

result in similar effects (308-310). Finally, following treatment of bacteria with both silver cations 

and minocycline, a combination of the previous observations, with silver deposition outside 

bacteria and segmentation of the bacterial membrane resulting in leakage of bacterial components 

is observed. In addition, electron-dense granules are seen in combination treated bacteria, but not 

with minocycline treated bacteria (Figure 9). As far as we are aware, we are the first group to 

document the effect of minocycline against P. aeruginosa through TEM images. The absence of 

such TEM images in the literature may be due to minocycline’s common use as an anti-

staphylococcal, but not as an anti-pseudomonal therapeutic. 

The combination of silver and minocycline demonstrates tremendous potential as a 

combination therapy, however, low bioavailability of silver cations and the potential side effects 

of long-term minocycline dosing remain a concern (311). These pitfalls can be addressed by use 

of drug delivery devices such as nanoparticles. For instance, nanoparticles can be delivered directly 

to the lung, the site for P. aeruginosa infections in CF patients, minimizing interactions between 

the therapeutic and other organs (181). Previously, Shah et al. have demonstrated that silver loaded 

SCK nanoparticles achieve a 16-fold reduction in the amount of silver compared with free drug to 

attain a 60% survival advantage in an acute P. aeruginosa pneumonia model (276). Moreover, the 

silver loaded SCK nanoparticles were delivered in two doses compared with five doses required 

for free drug over a period of 72h. Thus, such localized drug administration into lung results in 
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lower systemic toxicity and adverse effects, reduction in the number of drug doses (276), as well 

as improved patient adherence (181). Nanoparticles with diameter less than 1 µm penetrate deeper 

into the alveolar region (178), while smaller particles with diameter less than 5 nm are typically 

cleared at a rapid pace from the lung by exhalation, as well as extravasation into the blood stream 

(312). Currently, the common nanoparticle drug formulations for lung therapeutics have diameters 

less than 500 nm to avoid alveolar macrophage uptake (312). We have engineered particles with 

diameters ranging between 12 and 22 nm. The average 3D mesh spacing in CF lung mucus is 230 

± 50 nm (313), while the pore size of P. aeruginosa biofilms has been found to be between 100 

and 500 nm (314). The smaller NPs engineered here have the potential to overcome the mucus- 

and biofilm-associated obstruction in CF patients, as well as avoid opsonization by alveolar 

macrophages. Thus, by optimizing the nanoparticle size, we can achieve enhanced penetration into 

otherwise difficult to penetrate mucus and biofilm layers to achieve sustained release in close 

proximity to the bacteria hiding in these complex matrices.  
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Table 6. MICs and MBCs of Pseudomonas aeruginosa strains with treatment of silver acetate, 

4-epi- minocycline, and minocycline (Unit: μg/mL).  

(Reprinted with permission from “Minocycline and Silver Dual-loaded Polyphosphoester-Based 

Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. 

Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. 

Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 

2019 American Chemical Society.) 

         Drugs Names 

 

P.a. Strains 

Silver acetate 4-epi-minocycline Minocycline 

MIC MBC MIC MBC MIC MBC 

PA O1 4 4 4 64 4 64 

PA 0531 4 6 32 >128 32 >128 

PA 0540 4 6 32 >128 64 >128 

PA 0545 4 6 4 64 4 64 

PA 0551 4 6 8 64 8 64 

PA 0552 4 4 8 128 16 64 

PA 0554 4 6 8 64 8 128 

PA 0557 6 6 8 32 8 64 

PA 0561 4 6 16 >128 32 >128 

PA HP3 4 8 8 32 8 32 

PA M57-15 4 6 4 32 4 32 

  

Drug Concentration [drug]4 4[drug]<16 [drug]16 
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Table 7. MIC and MBC of MRSA strains with treatment of 4-epi-minocycline, minocycline, 

and silver acetate (Unit: μg/mL).  

(Reprinted with permission from “Minocycline and Silver Dual-loaded Polyphosphoester-Based 

Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. 

Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. 

Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 

2019 American Chemical Society.) 

         Drug Name 

 

SA Strain 

Silver Acetate 4-epi-minocycline Minocycline 

MIC MBC MIC MBC MIC MBC 

MRSA 0606 24 >32 0.13 128 0.13 128 

MRSA 0608 24 >32 2 128 2 128 

MRSA 0611 24 >32 2 >128 2 >128 

MRSA 0631 24 >32 0.25 64 0.13 64 

MRSA 0633 24 >32 0.13 128 0.13 64 

MRSA 0638 24 >32 0.13 128 0.13 64 

MRSA 0641 16 >32 4 64 4 64 

MRSA 0646 16 >32 0.25 64 0.13 64 

SA EH05 8 12 1 64 1 128 

SA LL06 16 >32 0.13 64 0.13 2 

USA 300-TCH1516 16 >32 0.13 64 0.13 64 
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Table 8. The MIC of combining silver acetate and minocycline against four selected strains 

of P. aeruginosa.  

(Reprinted with permission from “Minocycline and Silver Dual-loaded Polyphosphoester-Based 

Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. 

Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. 

Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 

2019 American Chemical Society.) 

Drug 

Strains 

MIC (μg/mL) 

Silver acetate/minocycline 

FIC FIC Interpretation 

PA O1 1/2 0.75 Additive 

PA HP3 4/8 2 Indifference 

PA 0540 1/32 0.75 Additive 

PA 0557 2/4 0.58 Additive 
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Table 9. The MIC of combining silver acetate and minocycline against four selected strains 

of MRSA.  

(Reprinted with permission from “Minocycline and Silver Dual-loaded Polyphosphoester-Based 

Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. 

Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. 

Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 

2019 American Chemical Society.) 

Drug 

Strains 

MIC (μg/mL) 

Silver acetate/minocycline 
FIC FIC Interpretation 

SA LL06 4/0.06 0.75 Additive 

SA EH05 2/0.5 0.75 Additive 

MRSA 0608 4/1 0.67 Additive 

MRSA 0631 8/0.06 0.83 Additive 
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Figure 6. High throughput bacterial inhibition screen. A small molecule diversity library 

(SAC1) was screened for inhibition of P. aeruginosa strain, PA O1. Nine compounds with > 90% 

inhibition were identified. Of these potent inhibitors, 4-epi-minocycline was selected for 

characterization and downstream loading applications. 4-epi minocycline is highlighted in red. 

10% growth (90% inhibition) cut off is indicated by dashed green line. (Experiment was performed 

by Adam Salazar.) (Reprinted with permission from “Minocycline and Silver Dual-loaded 

Polyphosphoester-Based Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” 

Qingquan Chen, Kush N. Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James 

C. Sacchettini, Karen L. Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 2019 16 (4), 

1606-1619, Copyright 2019 American Chemical Society.) 

 

  

-40

-20

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000 30000 35000 40000

%
 G

R
O

W
T

H

COMPOUND ID

% Growth (data) >90% Inhibition



 

 76 

Figure 7. Synergy demonstrated between silver and minocycline against P. aeruginosa 

isolates PA0557 and PA0540 by endpoint CFU study.  

Synergy demonstrated between silver and minocycline against A) and B) P. aeruginosa (PA) 0557 

and C) PA 0540 by endpoint CFU study after 24-hour incubation with the drug concentration ratios 

(in mg/mL) indicated under each panel. 0: bacterial CFU without drug treatment; S: bacterial CFU 

treated with silver acetate; M: bacterial CFU treated with minocycline; C: bacterial CFU treated 

with silver acetate in combination with minocycline at the ratio indicated. Data are shown as mean 

and standard deviation (n = 6). Statistical significance determined by one-way ANOVA followed 

by Tukey’s multiple comparison test (**** p≤0.0001).  (Reprinted with permission from 

“Minocycline and Silver Dual-loaded Polyphosphoester-Based Nanoparticles for Treatment of 

Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. Shah, Fuwu Zhang, Adam J. 

Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. Wooley, and Carolyn L. Cannon. 

Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 2019 American Chemical Society.)  
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Figure 8. Synergy demonstrated between different ratios of silver and minocycline against 

methicillin resistant Staphylococcus aureus (MRSA) isolates SAEH05 and MRSA0608 by 

endpoint CFU study.  

Synergy demonstrated between different ratios of silver and minocycline against A) S. aureus (SA) 

EH05 and B) methicillin resistant S. aureus (MRSA) 0608 by endpoint CFU study after 24-hour 

incubation with the drug concentration ratios (in g/mL) indicated under each panel. 0: bacterial 

CFU without drug treatment; S: bacterial CFU treated with silver acetate; M: bacterial CFU treated 

with minocycline; C: bacterial CFU treated with silver acetate in combination with minocycline at 

the ratio indicated. Data are shown as mean and standard deviation (n = 6). Statistical significance 

determined by one-way ANOVA followed by Tukey’s multiple comparison test (**** p0.0001). 

(Reprinted with permission from “Minocycline and Silver Dual-loaded Polyphosphoester-Based 

Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. 

Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. 

Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 

2019 American Chemical Society.) 
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Figure 9. TEM images of P. aeruginosa treated with silver acetate, minocycline or both. TEM 

images of P. aeruginosa (PA) treated with silver acetate, minocycline or both. Top: PA 0557 at 

7.5k magnification (scale bar: 1 μm); Bottom: PA 0557 at 20k magnification (scale bar: 0.5 μm). 

From left to right: without treatment; 4 μg/mL of silver acetate alone; 2 μg/mL of minocycline 

alone; 4 μg/mL of silver acetate combined with 2 μg/mL of minocycline. Arrows indicate electron-

dense granules outside bacteria and segmentation of the bacterial membrane. (Reprinted with 

permission from “Minocycline and Silver Dual-loaded Polyphosphoester-Based Nanoparticles for 

Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. Shah, Fuwu Zhang, 

Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. Wooley, and Carolyn 

L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 2019 American 

Chemical Society.) 
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Characterization of the Nanoparticles 

The anionic polymer was synthesized via thiol-yne reaction between 3-mercaptopropionic 

acid and diblock copolymer poly(2-ethylbutoxy phospholane)-block-poly(2-butynyl phospholane) 

(PEBP-b-PBYP). Then, aSCKs were prepared by self-assembly of the anionic polymer, followed 

by crosslinking using a diamine as a crosslinker. Silver cations and minocycline were loaded into 

the aSCKs by mixing for 3 h, and purified by centrifugal filter devices.  The dual loaded aSCKs 

were obtained by stirring silver-loaded aSCKs with minocycline for 3 h, followed by purification. 

Both silver cations and minocycline could be loaded into the same aSCKs with ca. 10% loading 

(Table 10). Dual loaded aSCKs had a slightly higher minocycline loading, which might be due to 

potential interactions between the two drugs. The sizes and size distributions of these silver- and 

minocycline-loaded nanoparticles were characterized by DLS and TEM (Figure 10). These data 

suggest that minocycline loading had little effect on the number-averaged hydrodynamic diameter 

of the nanoparticles. Previous studies have shown that the average diameter of the anionic micelles 

prior to cross-linking was 15 nm (277)and after crosslinking, 16 nm (Dav (TEM) = 16 ± 3 nm, Dh 

(DLS, number) = 16 ± 4 nm; Dh (DLS, volume) = 22 ± 14 nm; Dh (DLS, intensity) = 25 ± 8 nm) 

(282). The diameter of the silver-loaded nanoparticles was similar to empty nanoparticles, namely, 

15 nm (Figure 10A; Dh (DLS, number) = 15 ± 4 nm; Dh (DLS, volume) = 19 ± 6 nm; Dh (DLS, 

intensity) = 175 ± 19 nm). The diameter of the minocycline-loaded nanoparticles was also similar 

to empty nanoparticles, namely, 12 nm (Figure 10B; Dh (DLS, number) = 12 ± 3 nm; Dh (DLS, 

volume) = 17 ± 9 nm; Dh (DLS, intensity) = 42 ± 27 nm). In contrast, the dual-loaded nanoparticles 

were slightly larger than either of the single-loaded SCK nanoparticles at 22 nm (Figure 10C; Dh 

(DLS, number) = 22 ± 6 nm; Dh (DLS, volume) = 33 ± 21 nm; Dh (DLS, intensity) = 131 ± 103 

nm). 
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Figure 10. Characterization of nanoparticles. DLS histograms of intensity-averaged 

(Dh(intensity)), volume-averaged (Dh(volume)), number-averaged (Dh(number)) hydrodynamic 

diameters of A) dual-loaded, B) Ag-loaded, and C). minocycline-loaded SCK nanoparticles. 

Bright-field, TEM images of D) dual-loaded, E) Ag-loaded, and F) minocycline-loaded SCK 

nanoparticles. Minocycline-loaded SCKs were stained by uranyl acetate. Scale bar is 100 nm. 

(Experiments were performed by Fuwu Zhang.) (Reprinted with permission from “Minocycline 

and Silver Dual-loaded Polyphosphoester-Based Nanoparticles for Treatment of Resistant 

Pseudomonas aeruginosa” Qingquan Chen, Kush N. Shah, Fuwu Zhang, Adam J. Salazar, Parth 

N. Shah, Richen Li, James C. Sacchettini, Karen L. Wooley, and Carolyn L. Cannon. Molecular 

Pharmaceutics 2019 16 (4), 1606-1619, Copyright 2019 American Chemical Society.) 
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Table 10.  Silver and minocycline hydrochloride loading into aSCKs. (Experiments were 

performed by Fuwu Zhang.) (Reprinted with permission from “Minocycline and Silver Dual-

loaded Polyphosphoester-Based Nanoparticles for Treatment of Resistant Pseudomonas 

aeruginosa” Qingquan Chen, Kush N. Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen 

Li, James C. Sacchettini, Karen L. Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 

2019 16 (4), 1606-1619, Copyright 2019 American Chemical Society.) 

Compound/ 

loading 

Drug- 

loaded SCKs 

Silver 

(mg) 

Minocycline 

hydrochloride 

(mg) 

SCKs  

(mg) 

Drug loading 

(w/w%) 

Silver-loaded 0.464 0 4.6 10.1 

Minocycline-loaded 0 0.175 1.63 10.8 

Dual-loaded 0.161 0.217 1.62 
Ag: 9.9; 

Mino:13.4 

  

To investigate the release of minocycline from loaded aSCKs, drug-loaded aSCKs were 

placed into dialysis tubing containing nanopure water (Figure 11). In the absence of SCKs, most 

(> 99.9%) of the free minocycline hydrochloride was removed after 3 washes. Rapid drug releases 

were observed for all drug-loaded aSCKs. Minocycline was released from the single-loaded SCK 

nanoparticles into nanopure water with a release half-life (t1/2) of 1.1 hours. The release t1/2 of 

silver from the single-loaded nanoparticles was slightly longer at 1.8 hours. Interestingly, the t1/2 

of minocycline release from the single-loaded nanoparticles was the same as that from the dual-

loaded nanoparticles, but t1/2 of silver release increased from 1.8 hours for single loaded 

nanoparticles to 3.4 hours dual-loaded nanoparticles, respectively (Figure 11, Table 11). In the 

absence of SCKs, ca. 90% of the free drug is released from the dialysis tubing within one hour.  
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Figure 11. Release profiles of silver-loaded, minocycline-loaded or dual-loaded SCK 

nanoparticles.  

Release profiles of silver and minocycline from dialysis cassettes containing suspensions of silver-

loaded, minocycline-loaded or dual-loaded SCK nanoparticles at 37 °C in nanopure water 

(averages were calculated from triplicate experiments). (Experiments were performed by Fuwu 

Zhang.) (Reprinted with permission from “Minocycline and Silver Dual-loaded Polyphosphoester-

Based Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush 

N. Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. 

Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 

2019 American Chemical Society.) 
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Table 11. Release kinetics. Release of minocycline and silver that was single- or dual-loaded into 

SCK nanoparticles at 37 °C in nanopure water, as measured by either ICP-MS (silver) or UV-Vis 

(minocycline) in aliquots collected from the cassettes over 2 days. (Reprinted with permission 

from “Minocycline and Silver Dual-loaded Polyphosphoester-Based Nanoparticles for Treatment 

of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. Shah, Fuwu Zhang, Adam J. 

Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. Wooley, and Carolyn L. Cannon. 

Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 2019 American Chemical Society.)  

Drug  

release 

t1/2 

Drug- 

loaded SCKs 

Silver 

(h) 

Minocycline 

(h) 

Silver-loaded 1.8 NA 

Minocycline-loaded NA 1.1 

Dual-loaded 3.4 1.1 

Silver and minocycline, dual-loaded nanoparticles demonstrated efficacy against PA 0557, 

and the silver: minocycline ratio demonstrated synergy as free drugs in endpoint CFU 

studies 

In the previous experiments, silver acetate and minocycline were found to be synergistic 

as free drugs when the ratio between silver and minocycline was 2:1. However, this first iteration 

nanoparticle formulation is loaded with a silver:minocycline ratio of 1.15:1, which provides a 

minocycline concentration of 3.48  µg/mL when the silver cation concentration is 4 μg/mL. The 

nanoparticles loaded with silver acetate alone or dual-loaded with silver acetate and minocycline 

demonstrated a 2-log10 or greater reduction in P. aeruginosa CFU compared with no treatment or 

empty nanoparticles, when the silver acetate concentration was 4 μg/mL or higher (Figure 12A). 

Nanoparticles loaded with minocycline alone showed a 2-log10 or greater reduction in CFU 

compared with no treatment or empty nanoparticles, when the minocycline concentration was 5.22 
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μg/mL or higher (Figure 12A). Both silver and minocycline single-loaded nanoparticles 

demonstrate antimicrobial activity somewhat comparable to that of the corresponding free drug 

(Figure 12 and 13). In particular, the activity of minocycline-loaded nanoparticles mirrors that of 

free minocycline against P. aeruginosa, but they are less active than free minocycline at the C2 

concentration against MRSA.  Silver-loaded nanoparticles, however, demonstrate a 5-log10 greater 

reduction in P. aeruginosa CFU compared to free drug at the C3 concentration, which can be 

attributed to the sustained release and protection of Ag+ cations from chloride ions afforded by the 

nanoparticles. A similar, but slightly attenuated effect is also observed with MRSA (Figure 13). 

The more potent response of the silver single-loaded nanoparticles against P. aeruginosa, 

compared with MRSA, is likely due to the lower antimicrobial efficacy of silver cations against 

MRSA. At the C3 concentration, treatment with dual-loaded nanoparticles resulted in a 5-log10 

and a half-log reduction in bacterial burden compared to minocycline-loaded and silver-loaded 

nanoparticles, respectively. In contrast, when P. aeruginosa was treated with silver acetate and 

minocycline as free drugs at the same ratio found in the nanoparticles, the combination of 4 μg/mL 

silver acetate and 3.48 µg/mL minocycline was found to produce a >2-log10 reduction in CFU 

compared with either drug added alone and hence, was synergistic (Figure 12B).  The dual-loaded 

nanoparticles did not meet the definition of synergy at the C3 concentration because the 

antimicrobial effects of silver-loaded nanoparticles were significantly enhanced likely due to 

sustained release of silver. Nevertheless, the dual-loaded nanoparticles demonstrated a 1/3-log10 

further bacterial reduction compared to the same C3 concentrations of combined free drugs. For 

MRSA, dual-loaded nanoparticles at the C2 concentration demonstrate a 2-log10 reduction in the 

bacterial burden compared with individual drug-loaded nanoparticles meeting the definition for 

synergy (Figure 13A). This activity of the dual-loaded nanoparticles is similar to that of the 
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combination of free drugs against MRSA, although at the C2 concentration, the antimicrobial 

activity of free minocycline, the more potent anti-staphylococcal antimicrobial, is greater than that 

of the nanoparticle formulation (Figure 13B).  

Taken together, these results suggest that in vitro studies of free drugs, either individually 

or in combination, may not predict the in vitro activity of dual-loaded nanoparticles given the 

complexities of individual drug release from a dual-loaded nanoparticle formulation. Moreover, 

the advantages of sustained release in an in vivo setting cannot be readily replicated in a static, in 

vitro experiment. The in vitro advantages of nanoparticles are limited, because the delayed release 

of encapsulated drugs lead to lower concentrations of free drug available for antimicrobial activity. 

Additionally, these tests only measure activity against planktonic bacteria. Nevertheless, these 

results may also suggest that identification of a loading ratio of silver and minocycline that might 

prove to be synergistic against P. aeruginosa in dual-loaded nanoparticles may be achieved by 

combining silver-loaded nanoparticles with free minocycline, given that the activity of the 

minocycline in the dual-loaded system mirrored that of the free drug, while the activity of the 

encapsulated silver was significantly enhanced compared to that of free silver.  Ultimately, the 

ability of these nanoparticles to provide sustained release of two distinct therapeutics, one 

amphiphilic and one hydrophilic, imparts tremendous potential as delivery devices. The unique 

design and chemistry of these SCK nanoparticles allow tailoring of the surface characteristics, as 

well as the relative sizes of the hydrophobic core and hydrophilic shell, which allows tuning of the 

loading and release rates of both therapeutics. These optimizations to achieve release rates of the 

two antimicrobials that match synergistic ratios will provide a strong foundation for the next set 

of experiments, and may realize the full potential of these drug delivery devices as next-generation 

antimicrobials. 
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Conclusions 

In summary, we have demonstrated the ability of two known SoC antimicrobials to 

synergistically eradicate MDR P. aeruginosa and S. aureus. We have also demonstrated by TEM 

the ability of both drugs to act in conjunction. Further, we successfully synthesized silver and 

minocycline dual-loaded nanoparticles and demonstrated improved antibacterial activity 

compared to the combination of silver and minocycline as free drugs at the same concentrations. 

The lower concentrations of therapeutics, site-specific delivery, and sustained release achieved 

with nanoparticle formulations also reduces the possibility of generating drug-resistant mutants 

and systemic toxicity, and may improve patients’ adherence. 
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Figure 12. End-point CFU counts for PA0557. Silver and minocycline, dual-loaded 

nanoparticles demonstrated efficacy against P. aeruginosa (PA) 0557 and the combination of free 

silver and minocycline demonstrated synergy in endpoint CFU studies. Colony counts of PA 0557 

after treating with A) silver nanoparticles, minocycline nanoparticles, and dual-loaded 

nanoparticles. B) free drug of silver and minocycline or silver combined with minocycline 

corresponding to the ratio of drugs found in the nanoparticles; The silver: minocycline 

concentrations tested were C1 1:0.87, C2 2:1.74, C3 4:3.48, C4 6:5.22 and C5 8:6.96 μg/mL. 

Statistical significance determined by one-way ANOVA followed by Tukey’s multiple 

comparison test (*** p0.001, **** p0.0001). (Reprinted with permission from “Minocycline 

and Silver Dual-loaded Polyphosphoester-Based Nanoparticles for Treatment of Resistant 

Pseudomonas aeruginosa” Qingquan Chen, Kush N. Shah, Fuwu Zhang, Adam J. Salazar, Parth 

N. Shah, Richen Li, James C. Sacchettini, Karen L. Wooley, and Carolyn L. Cannon. Molecular 

Pharmaceutics 2019 16 (4), 1606-1619, Copyright 2019 American Chemical Society.) 
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Figure 13. End-point CFU counts for SAEH05. End-point CFU counts of S. aureus (SA) EH05. 

A) CFU counts of SAEH 05 treated with drug-loaded nanoparticles. B) CFU counts of SA EH05 

treated with free drug; Statistical significance determined by one-way ANOVA followed by 

Tukey’s multiple comparison test (* p0.05, ** p0.01, **** p0.0001) (Reprinted with 

permission from “Minocycline and Silver Dual-loaded Polyphosphoester-Based Nanoparticles for 

Treatment of Resistant Pseudomonas aeruginosa” Qingquan Chen, Kush N. Shah, Fuwu Zhang, 

Adam J. Salazar, Parth N. Shah, Richen Li, James C. Sacchettini, Karen L. Wooley, and Carolyn 

L. Cannon. Molecular Pharmaceutics 2019 16 (4), 1606-1619, Copyright 2019 American 

Chemical Society.) (Reprinted with permission from “Minocycline and Silver Dual-loaded 

Polyphosphoester-Based Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa” 

Qingquan Chen, Kush N. Shah, Fuwu Zhang, Adam J. Salazar, Parth N. Shah, Richen Li, James 

C. Sacchettini, Karen L. Wooley, and Carolyn L. Cannon. Molecular Pharmaceutics 2019 16 (4), 

1606-1619, Copyright 2019 American Chemical Society.) 
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CHAPTER IV 

ANTIMICROBIAL EFFECTS OF IBUPROFEN (IBU) COMBINED WITH 

STANDARD OF CARE ANTIMICROBIALS (SOCS) AGAINST CF PATHOGENS 

Introduction 

Chronic infection and inflammation are the hallmarks of cystic fibrosis (CF) lung disease, 

and are responsible for the majority of the morbidity and mortality seen in CF patients (7; 315; 

316). Initial airway infection elicits an acute inflammatory response, which is characterized by an 

excessive neutrophil influx (317). However, due to the distinctly altered lung environment in CF 

patients, the inflammation fails to clear the infection. The consequent chronic endobronchial 

infection results in persistently excessive inflammation and mucus secretion with worsening 

airway obstruction (317; 318). Although clearance of the airway obstruction and underlying 

endobronchial infection remain the primary foci of CF pulmonary therapies, links between the 

excessive inflammation and lung destruction have prompted more and more studies investigating 

therapies aimed at dampening the exuberant inflammatory response (167; 173; 317). Several in 

vivo models and clinical trials have demonstrated appreciable clinical benefit of oral and inhaled 

corticosteroids, macrolides, and nonsteroidal anti-inflammatory drugs (NSAIDs), such as 

ibuprofen (163; 168; 319-322). 

Due to its effectiveness and safety profile, ibuprofen is advantageous as an anti-

inflammatory drug. Compared to corticosteroids that cause growth retardation and cataracts, 

ibuprofen has fewer safety concerns, mainly GI bleeding and renal toxicity seen with high doses. 

High-dose ibuprofen reduces the recruitment of neutrophils into the airway in both a mouse model 

of acute Pseudomonas pulmonary infection and a rat model of endotoxin-induced alveolitis (323; 

324). In a chronic Pseudomonas endobronchial infection study, the agarose bead model, rats 
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treated orally with high doses of ibuprofen (35 mg/kg twice daily) showed a significant reduction 

in pulmonary inflammation and improved weight gain compared to rats receiving a control 

treatment (263). At that concentration, ibuprofen reduced the level of leukotriene B4 production 

without reducing pulmonary bacterial burden (263). Further, Konstan et al. conducted a 

randomized, double-blind, placebo-controlled clinical trial to evaluate the safety and efficacy of 

high-dose ibuprofen (50 to 100 µg/mL peak serum concentrations) in CF patients. High-dose 

ibuprofen reduced the rate of decline of pulmonary function in CF patients (168), particularly those 

patients from 6 through 17 years old with a baseline forced expiratory volume in 1 second (FEV1) 

of  >60%, compared with patients who received placebo (325). Lands et al. also investigated the 

safety and efficacy of high-dose ibuprofen in CF children between 6 to 18 years old. This 

randomized, multicenter, double-blinded, placebo-controlled trial did not show a statistically 

significant difference in the mean annual rate of decline in FEV1. However, the annual rate of 

decline of the forced vital capacity (FVC) percentage predicted significantly decreased in patients 

treated with high-dose ibuprofen (163). Recently, Konstan et al. assessed the effects of high-dose 

ibuprofen in CF children. The lung function and survival data of a cohort of 775 high-dose 

ibuprofen using children and 3665 non-using children were analyzed. Children were treated with 

high-dose ibuprofen for 2 years and then followed up for 16 years. The study results suggested 

that high-dose ibuprofen could slow lung function decline as well as increase long-term survival 

(326). To summarize, these clinical trials suggested the benefits and relative safety of long-term 

use of high-dose ibuprofen in CF patients, and attributed these benefits to the anti-inflammatory 

properties of ibuprofen.  

Studies have documented the antimicrobial and antifungal activity of ibuprofen. Shah et 

al. demonstrated the direct, dose-dependent antimicrobial effect of high-dose ibuprofen on 
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bacterial pathogens prevalent in the CF lung including P. aeruginosa and Burkholderia spp. in 

both in vitro and in vivo studies (258). In an acute murine pneumonia model, mice orally 

administrated high-dose ibuprofen showed a reduced bacterial burden in the lung, and superior 

survival compared to mice with sham treatment (258).  Studies have demonstrated that several 

NSAIDs, including ibuprofen, and aspirin, are synergistic with cefuroxime and chloramphenicol 

against MRSA (327). We hypothesized that the remarkable results of the ibuprofen trials in CF 

patients illustrate that, in addition to its anti-inflammatory properties, ibuprofen prevents lung 

function decline through inhibition of bacterial growth. Hence, we propose that ibuprofen and 

other NSAIDs, such as naproxen and aspirin, sensitize drug-resistant bacteria to established 

antimicrobials, thus exerting a synergistic bactericidal effect. Ibuprofen, and possibly other 

NSAIDs with dual anti-inflammatory and antimicrobial activity, may prove to be ideal adjunct 

agents for standard-of-care antibiotics that may be of great treatment benefit to the CF patient. 

Developing effective combinations comprised of therapeutics already approved for human use will 

also allow us to rapidly devise novel intervention strategies for the treatment of chronic lung 

infections with multi-drug resistant pathogens found in the lungs of CF patients. 

Materials and Methods 

Bacterial strains 

Both laboratory strains and clinical isolates were studied. Pseudomonas aeruginosa 

laboratory strain PA O1 was generously donated by Gerald Pier (Harvard University, Boston, 

MA). The CF mucoid P. aeruginosa clinical isolate PA M57-15 was graciously donated by 

Thomas Ferkol (Washington University, St. Louis, MO) (328). The remaining P. aeruginosa CF 

clinical isolates (PA LF05, PA HP3, PA 2-9, PA 2-15, PA 2-22, PA 2-23, PA 2-26, PA 2-45, PA 

2-51, and PA 3-39) were isolated from the sputa of cystic fibrosis patients at St. Louis Children’s 
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Hospital. Achromobacter xylosoxidans CF clinical isolates (AX 2-79 and AX 3-26), 

Elizabethkingia meningoseptica CF clinical isolates (EM 2-14 and EM 2-18), MRSA (SA EH05 

and SA LL06), and Stenotrophomonas maltophilia (SM AH06 and SM AH08) were also isolated 

from the sputa of CF patients at St. Louis Children’s Hospital. Similarly, the Burkholderia spp., 

including Burkholderia dolosa (CF clinical isolates BD-F, and BD-G), Burkholderia gladioli (CF 

clinical isolate BG5291), and Burkholderia multivorans (CF clinical isolate BM 2-6) were isolated 

from the sputa of CF patients at St. Louis Children’s Hospital, while Burkholderia cenocepacia 

J2315 was generously provided by John Lipuma (University of Michigan, Ann Arbor, MI). 

Haemophilus influenzae isolates (HI 4315, HI 2501, and HI 3864) were obtained from CF patients 

at St. Louis Children’s Hopsital and were kindly provided by Joseph St. Geme (University of 

Pennsylvania, Philadelphia, PA). 

Bacterial culture 

Bacteria were streaked from frozen glycerol stocks onto tryptic soy agar (TSA, BD BBL) 

or chocolate agar (Hardy Diagnostics) plates and incubated overnight at 37 °C with 5% carbon 

dioxide (CO2) until individual colonies formed. A single colony was inoculated into 5 mL Miller 

Hinton (MH, BD Difco) or Brain Heart Infusion (BHI, BD Difco) media and grown at 37 °C in a 

shaking incubator at 200 rpm to an OD650 of 0.4, which corresponds to ~5 ✕108 CFU/mL. Bacterial 

cultures were adjusted to 5 ✕108  CFU/mL to prepare a working stock for all experiments.  

Disc diffusion assay 

MH agar plates were prepared by autoclaving MH with 17g agar per liter of media. After 

autoclaving, the agar was cooled to 70 °C and 100 μg/mL solution of ibuprofen dissolved in DMSO 

was added to a final concentration of 100 μg/mL. An equivalent amount of DMSO was added to 

another batch of MH agar to serve as control. Plates were cast from the ibuprofen+DMSO 
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supplemented MH agar and DMSO supplemented MH agar. 100 μL of bacterial culture was 

dispensed onto an agar plate and spread evenly, after which antibiotic (amikacin, aztreonam, 

ceftazidime, colistin, and tobramycin)-infused discs were placed on top of the agar. Plates were 

incubated between 18-24 hours. Susceptibility was determined by measuring the diameter of the 

zone of growth inhibition. 

In vitro antimicrobial activity 

Minimum inhibitory concentrations (MIC) were determined according to the standard 

Clinical and Laboratory Standards Institute (CLSI) broth-microdilution method and adapted from 

previous studies (minocycline paper). Briefly, 100 μL working stock of bacterial suspension was 

added to each well (n=3) containing 100 μL ibuprofen, naproxen, aspirin, ceftazidime, amikacin, 

or aztreonam solution in a 96 well plate. All solutions were comprised of 95% MH broth and 5% 

(v/v) DMSO. Bacteria were incubated with 0.06, 0.13, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128 μg/mL 

amikacin, aztreonam, or ceftazidime, or 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 μg/mL 

ibuprofen, naproxen, or aspirin at 37 ℃ for 18 - 24 hours under static conditions. The final 

concentration of DMSO in the assay was 2.5% (v/v). The MIC was determined as the lowest 

concentration that did not show any signs of bacterial growth upon visual inspection. All 

experiments were performed in triplicate. 

Determination of synergistic drug combinations 

A P. aeruginosa (PA HP3) isolate and E. meningoseptica (EM 2-18) isolate were selected 

for synergy studies based on their susceptibilities in the disc diffusion assay. The final drug 

concentrations of ibuprofen, naproxen, and aspirin were 0, 50, 75, and 100 μg/mL. Based on the 

MIC values, a dynamic concentration scale for amikacin, aztreonam, and ceftazidime was used to 

determine the optimal ratio of synergistic concentrations between the two therapeutic agents. The 
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final drug concentrations of amikacin against EM 2-18 were 1, 2, 4, 8, 12, and 16 μg/mL. The final 

drug concentrations of aztreonam against PA HP3 were 0.25, 0.5, 1, 2, and 4 μg/mL. The final 

drug concentration of ceftazidime against PA HP3 were 1, 2, 4, 8, 12, and 16 μg/mL. The final 

solutions were comprised of 95% MH broth and 5% DMSO. A 100 μL working stock of bacterial 

suspension was incubated with a 100 μL solution of therapeutic agents (n = 3) for 18 hours at 37 

°C. Wells demonstrating bacterial growth inhibition were identified visually to determine a 

synergistic MIC. All experiments were performed in duplicate. To evaluate for potential synergy, 

the fractional inhibitory concentration (FIC) was calculated as shown in Equation 1 and defined 

in Table 1. 

Determination of bacterial burden for synergistic drug combinations 

Potential synergy between combinations of amikacin, aztreonam, or ceftazidime and 

ibuprofen, or naproxen against P. aeruginosa and E. meningoseptica isolates PA HP3 and EM 2-

18 at a final concentration of 106 CFU/mL were determined using a 24-hour end point CFU study 

performed in triplicate. The concentrations of ibuprofen and naproxen tested against PA HP3 and 

EM 2-18 were 0, 50, 100 μg/mL. The concentrations of aztreonam and ceftazidime in combination 

with ibuprofen against PA HP3 were 0, 1, 2, 4, and 8 or 0, 2, 4, 8, and 16 μg/mL, respectively. The 

concentrations of amikacin in combination with ibuprofen tested against EM 2-18 were 2, 4, 8, 12, 

16 , and 20 μg/mL. The concentrations of aztreonam and ceftazidime in combination with 

naproxen against PA HP3 were 0, 1, 2, 4, 8, and 12 or 2, 4, 8, 12, 16, and 20 μg/mL, respectively. 

The tested concentrations of amikacin in combined naproxen against EM 2-18 were 2, 4, 8, 12, 16, 

and 20 μg/mL. Synergy was defined as ≥2-log10 CFU/mL reduction between combined agents and 

the most effective individual agent at 24 hours (293). A 100 μL working stock of bacterial 

suspension was incubated with 100 μL drug solution (n = 3) in each well of a 96 well plate at 37 
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°C for 24 hours with constant shaking at 100 RPM. The final solutions were comprised of 97.5% 

MH broth and 2.5% (v/v) DMSO. Finally, a 10-fold serial dilution was performed in MH broth 

with the bacterial suspension from each well and 50 μL of each dilution was plated onto a blood 

agar plate. Plates were incubated for 18 hours and colonies counted to determine the CFU for each 

condition. The potential synergistic effects were determined as described above. All experiments 

were performed in duplicate. 

Acute murine P. aeruginosa lung infection model 

Male C57BL/6J mice (The Jackson Laboratory, Bar Harbor, ME) aged 5 weeks were used 

for all acute lung infection studies, which were approved by the Texas A&M University 

Institutional Animal Care and Use Committee (IACUC). Mice were weighed and randomly 

assigned into four groups and were housed in a barrier facility under pathogen-free conditions until 

bacterial inoculation. When necessary, animals were euthanized with an overdose of 

ketamine:xylazine followed by cardiac puncture for exsanguination, a method approved by our 

IACUC (TAMU) and consistent with the recommendations of the Panel on Euthanasia of the 

American Veterinary Medical Association. 

P. aeruginosa PA HP3 was grown in LB (LB), pelleted, washed with phosphate buffered 

saline (PBS), and resuspended to an OD650 of 2.4 in LB (corresponding ~1.3 x 1010 CFU/mL, as 

determined by serial dilution and plating). Following anesthesia via intraperitoneal injection of 

ketamine (60 mg/kg) and xylazine (8 mg/kg) cocktail, mice were intranasally inoculated with 75 

μL of bacteria inoculum in LB broth at an LD100 of ~1 x 109 CFU per mouse. To test the efficacy 

of combinational therapy against PA HP3, mice were treated at 2 h post infection, and every 8 

hours subsequently for a maximum of 7 doses. Control mice were intraperitoneally injected with 

50 µL saline in water and orally administered with 50 µL of 50:50 strawberry syrup : water mix. 
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Ibuprofen treated mice were intraperitoneally injected with 50 µL saline in water and orally 

administrated with 50 µL of 50:50 strawberry syrup : water ibuprofen suspension mix (1.5 mg 

ibuprofen). Ceftazidime treated mice were intraperitoneally injected with 50 µL of 10 mg/mL 

ceftazidime and orally administered with 50 µL of 50:50 strawberry syrup : water mix. 

Combination treated mice were intraperitoneally injected with 50 µL 10 mg/mL ceftazidime and 

orally administered with 50 µL of 50:50 strawberry syrup : water ibuprofen suspension mix (1.5 

mg ibuprofen). Survival of the mice survival was monitored for up to 72 hours.  

Statistical analysis  

All statistics were calculated using JMP pro 13 for Macintosh (SAS Institute, Cary, North 

Carolina, USA, www.jmp.com). Differences between the treatments were investigated by one-

way ANOVA followed by Tukey’s multiple comparison test (95% confidence intervals). * 

indicates p≤0.05, ** indicates p≤0.01, *** indicates p≤0.001, and **** indicates p≤0.0001. The 

in vivo survival curves in the infection model were compared using a Log-rank Mantel-Cox test. 

Data were deemed to be significantly different for p ≤ 0.05. 

 

Results and Discussion 

The zone of inhibition of antibiotic-infused disc was determined against CF clinical isolates  

We characterized the zone of inhibition of antibiotic-infused disc against 1 P. aeruginosa 

laboratory strain, 10 P. aeruginosa CF clinical isolates and 2 E. meningoseptica CF isolates (Table 

12), 1 MRSA laboratory strain and 2 MRSA CF clinical isolates (Table 13), and 2 A. xylosoxidans 

CF isolates, 2 Stenotrophomonas maltophilia CF isolates, 1 Burkholderia cenocepacia laboratory 

strain and 5 Burkholderia spp. CF isolates, and 3 H. influenzae CF isolates (Table 14). The 

antimicrobial susceptibility of each drug against the bacterial isolates was determined according 

to the clinical laboratory standard breakpoints. Green indicates that the bacteria is susceptible; 

about:blank
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yellow indicates that the bacteria is intermediate in response; and red indicates that the bacteria is 

resistant to the tested antimicrobials. Out of 29 isolates tested, 8 of them were multi-drug resistant 

isolates, as highlighted in orange. After supplementation with high-dose ibuprofen, aztreonam and 

ceftazidime showed significant zones of inhibition against PA HP3, and amikacin showed a 

significant increase in the zone of inhibition against EA 2-18 (Figure 14). Gentamicin, 

levofloxacin, and vancomycin demonstrated significant increases in the zones of inhibition against 

USA300 after adding high-dose ibuprofen. Similarly, gentamicin and vancomycin, with addition 

of high-dose ibuprofen, showed significant increases in the zones of inhibition against SA LL06 

(Figure 15B). Amikacin demonstrated a significant zone of inhibition against AX 2-79 with the 

addition of high-dose ibuprofen (Figure 15D). The disc diffusion assay was implemented as a 

rapid screen with convenient, commercially available drug containing discs. Studies have 

suggested that the disc diffusion assay might be insensitive, as well inaccurate. However, although 

the assay may not have identified all synergistic combinations of the tested antibiotics with 

ibuprofen, this assay provided a rapid means to identify antibiotics with activity that was enhanced 

in combination with ibuprofen.  
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Table 12. The zone of inhibition of antibiotic-infused disc against P. aeruginosa and E. 

meningoseptica.  

 

Table 13. The zone of inhibition of antibiotic-infused disc against MRSA. 
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Table 14. The zone of inhibition of antibiotic-infused disc against A. xylosoxidans, S. 

maltophilia, Burkholderia spp., and H. influenzae.  
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Figure 14. The zone of inhibition for antibiotic infused discs against P. aeruginosa and 

Elizabethkingia meningoseptica.  

Supplementing ibuprofen improved the zone of inhibition of antibiotics-infused disc against P. 

aeruginosa (PA) and E. meningoseptica (EM). Statistical significance determined by two-way 

ANOVA followed by Tukey’s multiple comparison test (* indicates p≤0.05, ** indicates p≤0.01, 

and **** indicates p≤0.0001). 
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Figure 15. The zone of inhibition for antibiotic infused discs against other CF pathogens. The 

zone of inhibition of antibiotics-infused disc with addition of ibuprofen or equivalent amount 

DMSO against (A) P. aeruginosa (PA), (B) MRSA, (C) E. meningoseptica (EM), (D) A. 

xylosoxidans (AX), (E) S. maltophilia (SM), (F) Burkholderia spp., (G) H. influenzae (HI). (* 

indicates p≤0.05, ** indicates p≤0.01, and *** indicates p≤0.001. 
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In vitro antimicrobial activity of ibuprofen, naproxen, aspirin, amikacin, aztreonam, and 

ceftazidime against P. aeruginosa and E. meningoseptica 

We characterized the minimum inhibitory concentrations (MICs) of ibuprofen, naproxen, 

and aspirin against PA HP3 and EM 2-18 (Table 15), amikacin against EM 2-18, and aztreonam 

and ceftazidime against PA HP3 (Table 16). Ibuprofen demonstrated mild antimicrobial activity 

against PA HP3 and EM 2-18 with MICs of 512 µg/mL and 256 µg/mL, respectively, which are 

consistent with our previous observations that ibuprofen has mild antimicrobial activity against a 

P. aeruginosa laboratory strain and clinical isolates. The MIC of naproxen is 2048 µg/mL against 

EM 2-18. However, we were not able to detect an MIC of naproxen against PA HP3, or an MIC 

of aspirin against PA HP3 or EM 2-18 within our concentration limit, which was 2048 µg/mL. 

Other studies have observed that the MIC of naproxen and aspirin are above 3 mg/mL against 

Gram-negative bacteria, which is above our assay detection limit. The MICs of aztreonam and 

ceftazidime against PA HP3 are 4 and 16 µg/mL, respectively. The MIC of amikacin against EM 

2-18 is 16 µg/mL.  
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Table 15. The minimum inhibitory concentration of ibuprofen, naproxen, and aspirin 

against PA HP3 and E. meningoseptica isolate EM 2-18 

 PA HP3 EM 2-18 

Ibuprofen 512 256 

Naproxen >1024 2048 

Aspirin >1024 >1024 

 

 

 

 

 

Table 16. The MIC of aztreonam and ceftazidime against PA HP3, and amikacin against EM 

2-18 as well as combining antibiotics with NSAIDs against selected isolates of Pseudomonas 

aeruginosa and Elizabethkingia meningoseptica.  
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Synergistic effect of ibuprofen and ceftazidime against PAHP3 demonstrated by 

checkerboard assay 

To explore the potential synergistic antimicrobial effects between antibiotics and NSAIDs, 

we tested combinations of drugs against PA HP3 and EM 2-18 using a checkerboard assay. The 

MICs of antibiotics were reduced as shown in Table 16 with the presence of 50 µg/mL ibuprofen 

and various concentrations of naproxen. However, the MICs of antibiotics did not change with the 

presence of even the highest concentration of aspirin. Next, we calculated the fractional inhibitory 

concentration (FIC) to interpret potential drug combination effects. Based on the FIC calculation 

performed using Equation 1 and FIC interpretation in Table 1, we determined that ceftazidime is 

synergistic with ibuprofen against PA HP3. Ibuprofen is additive with aztreonam against PA HP3, 

and with amikacin against EM2-18. Naproxen is additive with all three antibiotics (Table 

16).  Other studies, including our own observations, have demonstrated that NSAIDs are 

synergistic with antibiotics against Gram-negative and Gram-positive pathogens (327).  

Synergistic effects of NSAIDs and antibiotics demonstrated by endpoint CFU studies.  

Because the combinational MICs in the checkboard assay are determined solely based on 

turbidity of the liquid in the 96-well plates limiting the sensitivity of the assay, we decided to use 

the 24-hour endpoint CFU study to further examine potential synergistic drug combinations. For 

example, even though we observed a synergistic effect between ceftazidime and ibuprofen against 

PA HP3 using a checkerboard assay, we further performed an end-point CFU study to investigate 

the effect of the combination of therapeutics on CFU. The concentrations used in the 24-hour end-

point CFU study were selected based on the checkerboard assay results. For each 24-hour end-

point CFU study, we selected NSAID and antibiotic concentrations at sub-MIC or at individual 

MIC concentrations, but including the combinational MIC within the testing range.  
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When treated with 2 μg/mL aztreonam alone, the concentration of PA HP3 is ~109 

CFU/mL. However, following supplementation with 100 μg/mL naproxen, the bacterial burden of 

PAHP3 is reduced to ~106 CFU/mL (Figure 16 A). Because a synergistic effect in an endpoint 

CFU study is defined as a ≥ 2-log10 reduction in bacterial burden compared with the most 

efficacious individual treatment, the aforementioned combination of aztreonam and naproxen 

demonstrated synergy in our endpoint CFU study. When we treated PAHP3 with 8 μg/mL 

ceftazidime alone, the bacterial concentration of PA HP3 is ~107 CFU/mL. When we added 100 

μg/mL naproxen, the bacterial burden was reduced to ~104 CFU/mL, which indicated synergy 

(Figure 16B). Furthermore, we verified that ibuprofen was synergistic with all three antibiotics. 

With the addition of 100 μg/mL ibuprofen, 1 μg/mL aztreonam achieved ~ 6-log10 CFU/mL 

reduction compared to the individual treatments (Figure 17A); 2 μg/mL ceftazidime achieved ~4-

log10 bacterial burden reduction compared to individual treatments (Figure 17B); and 4 μg/mL 

amikacin achieved ~3-log10 reduction compared to individual treatments (Figure 16C). Thus, both 

naproxen and ibuprofen demonstrated synergy in combination with aztreonam, ceftazidime, and 

amikacin. Furthermore, ibuprofen demonstrated a greater reduction of bacterial burden when 

combined with all three antibiotics compared with the addition of naproxen. 

Ibuprofen in combination with ceftazidime improved mice survival significantly an acute 

pneumonia infection. 

The high-dose ibuprofen has been used in CF patients as anti-inflammatory drug. Hence, 

we decided to test the efficacy of antibiotics combined with ibuprofen in a murine pneumonia 

model. Mice were intranasally infected with PA HP3 and treated with either 1) sham, 2) 

ceftazidime via intraperitoneal injection only, 3) ibuprofen via oral feeding only, or 4) ceftazidime 

via intraperitoneal injection combined with ibuprofen via oral feeding, and monitored for the 
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clinical score described previously and survival. Infected mice were treated every 8 hours for up 

to 7 doses. The experiment lasted 72 hours. At 72 hours, infected mice treated with combination 

therapy demonstrated a significant survival advantage over the groups of mice treated with 

individual drugs or sham (Figure 18).   

 

 

Figure 16. End-point CFU of naproxen and aztreonam, ceftazidime or amikacin. Synergy 

demonstrated between naproxen and (A) aztreonam, (B) ceftazidime, and (C) amikacin against P. 

aeruginosa (PA) HP3 and E. meningioseptica (EM) 2-18 by endpoint CFU study after 24-hour 

incubation with the drug concentration ratios (in μg/mL) indicated under each panel. Data are 

shown as mean and standard deviation (n = 6). Statistical significance determined by one-way 

ANOVA followed by Tukey’s multiple comparison test (** indicates p≤0.01, *** indicates 

p≤0.001, and **** indicates p≤0.0001). 

(A)     (B)    (C) 
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Figure 17. End-point CFU for ibuprofen and aztreonam, ceftazidime or amikacin. Synergy 

demonstrated between ibuprofen and (A) aztreonam, (B) ceftazidime, and (C) amikacin against P. 

aeruginosa (PA) HP3 and E. meningioseptica (EM) 2-18 by endpoint CFU study after 24-hour 

incubation with the drug concentration ratios (in μg/mL) indicated under each panel. Data are 

shown as mean and standard deviation (n = 6). Statistical significance determined by one-way 

ANOVA followed by Tukey’s multiple comparison test (** indicates p≤0.01, *** indicates 

p≤0.001, and **** indicates p≤0.0001). 

(A)     (B)    (C) 
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Figure 18. The survival curve for mice treated with combinational therapy of ibuprofen and 

ceftazidime.  

The combination therapy of ibuprofen plus ceftazidime demonstrated a significant survival 

advantage in a murine pneumonia model (n=6). Statistical significance determined by Mantel-Cox 

test (** indicates p≤0.01). 
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Conclusions 

To summarize, in combination with several standard of care antimicrobials, ibuprofen 

significantly increases the zone of inhibition against CF clinical isolates. The drug combinations 

suggestive of synergistic interactions found in the disc diffusion assay provided us candidates to 

proceed with for detailed microbiological characterization. In vitro studies suggested that 

ibuprofen has antimicrobial activity against CF clinical isolates, which confirmed our previous 

observation. Although aspirin did not demonstrate either synergy or additive effects, naproxen and 

ibuprofen showed additive and synergistic effects with selected antibiotics. Further, the 24 hour 

endpoint CFU study confirmed that naproxen and ibuprofen are synergistic with each of three 

antibiotics, aztreonam, ceftazidime, and amikacin. Ibuprofen in combination with each of the three 

antibiotics exerted greater reduction of bacterial burden compared with naproxen combinations. 

Finally, when intranasally inoculated mice were treated with sub-MIC concentrations of 

ceftazidime intraperitoneally and ibuprofen orally, they demonstrated improved survival rates 

compared to mice treated with either drug alone. Our in vitro and in vivo experiments suggest that 

ibuprofen has mild antimicrobial activity in addition to it anti-inflammatory properties, particularly 

after combining with standard of care antibiotics. Currently, high-does ibuprofen treatment is not 

widely available in CF centers. It would be worth revisiting ibuprofen to further explore its clinical 

benefits in CF patients.  
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CHAPTER V 

CONCLUSIONS 

 

The chronic bacterial lung infections in cystic fibrosis patients have been problematic to 

treat. The chronic use of multiple antibiotics increases the possibility of multidrug resistance and 

limits the treatment options in patients with advanced disease. The exaggerated immune response 

against the bacterial infection compounds the damage to the lung caused by the bacterial infections. 

Silver has long been used as a broad-spectrum antimicrobial agent with a low incidence of 

resistance. Despite low toxicity, poor availability of silver cations mandates a high dosage to 

effectively eradicate infections. Previously, our group has demonstrated that silver carbene 

complexes (SCCs) could provide gradual release of bioactive silver cation from a stable silver 

complex, which sustains silver cation bioavailability, and provides prolonged antimicrobial 

activity. Meanwhile, several clinical trials have demonstrated that high-dose ibuprofen (peak 

serum concentrations of 50-100 μg/mL) can reduce the rate of pulmonary function decline in CF 

patients. This beneficial effect has been attributed to the anti-inflammatory properties of ibuprofen. 

Our group has confirmed that high-dose ibuprofen reduces the growth rate and bacterial burden of 

P. aeruginosa in a dose-dependent manner, especially at the concentrations studied in the clinical 

trials. Additionally, our group has demonstrated a significant survival advantage upon treatment 

with ibuprofen in an acute P. aeruginosa murine infection model. Ibuprofen-treated mice also have 

lower lung and spleen bacterial burdens. Furthermore, studies have demonstrated that synergistic 

combinations with careful dose calibrations and efficient delivery systems result in superior 

antimicrobial activity, while avoiding potential side-effects of both therapeutics. 

In the current study, we have successfully synthesized silver carbene complex SCC1 

conjugated with ibuprofen, SCC1-IBU, or methylated caffeine silver ibuprofen. SCC1-IBU 
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demonstrated improved in vitro antimicrobial activity against CF pathogens compared with SCC1, 

while preserving the anti-inflammatory activity of ibuprofen as demonstrated through the 

reduction of IL-8 production after stimulating with LPS. Further, a 24-hour endpoint CFU study 

suggested that SCC1 has synergistic antimicrobial activity with high-dose ibuprofen.  

Meanwhile, 4-epi-minocycline, a metabolite of minocycline, was identified as an active 

antimicrobial against P. aeruginosa using a high-throughput screen. The antimicrobial activities 

of 4-epi-minocycline, minocycline and silver acetate against clinical isolates of P. aeruginosa and 

MRSA obtained from CF patients were evaluated in vitro. Next, the synergistic activity of the 

silver/minocycline combination against P. aeruginosa and MRSA isolates was investigated using 

checkerboard assays and identified with end-point colony forming unit (CFU) determination 

assays. Finally, nanoparticles co-loaded with minocycline and silver were evaluated in vitro for 

antimicrobial activity. The results demonstrated that both silver and minocycline are potent antimicrobials 

alone, and that the combination allows reduced dosage of both therapeutics to achieve the same antimicrobial 

effect. Furthermore, the proposed synergistic silver/minocycline combination can be co-loaded into 

nanoparticles as a next-generation antibiotic to combat the threats presented by MDR pathogens.  

Lastly, we evaluated possible synergistic activity of combinations of common nonsteroidal 

anti-inflammatory drugs (NSAIDs), namely, aspirin, naproxen, and ibuprofen, with FDA approved 

antibiotics. In the presence of 100 μg/mL ibuprofen, antibiotics demonstrated significant increases 

in the zones of inhibition against the CF pathogens. Fractional Inhibitory Concentrations (FIC) 

determined using a checkerboard assay demonstrated no synergy with aspirin, additive effects with 

naproxen, and synergistic effects with ibuprofen. Additionally, in a 24-hour endpoint CFU assay, 

we verified that in presence of 100 μg/mL ibuprofen or naproxen, PA HP3 and EM 2-18 treated 

with aztreonam or ceftazidime, and amikacin, respectively, demonstrate a greater than 2-log10 

reduction compared with the antibiotic alone, indicating synergy. In particular, combinations of 
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ibuprofen with amikacin, aztreonam or ceftazidime demonstrate synergistic antimicrobial activity 

against drug resistant CF isolates in vitro. Finally, mice treated with both ceftazidime and 

ibuprofen demonstrated a significant survival advantage compared to the groups treated with either 

ceftazidime or ibuprofen alone. Thus, therapy with high-dose ibuprofen in combination with a 

standard-of-care antibiotic including amikacin, aztreonam or ceftazidime may improve outcomes 

in CF patients infected with multidrug resistant bacteria. 
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