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 ABSTRACT 

The sustainable development of the entire world is confronting considerable 

challenges due to the tremendous expansion in energy demand that synchronizes with 

fresh water scarcity, vast depletion of conventional energy sources and climate change. 

Consequently, the necessity has emerged for creating suitable management strategies for 

existing water resources (e.g., wastewater treatment) and for integrating traditional energy 

sources with renewables (e.g., solar energy, wind energy, biofuels, etc.). The objective of 

this study is to develop a novel design framework of the water-energy nexus system, which 

optimized according to economic and environmental metrics using certain parameters 

(leading to deterministic optimization) and uncertain parameters (leading to stochastic 

optimization). The system comprises multiple energy sources, cogeneration process, and 

desalination technologies.  

Solar energy is incorporated to provide thermal power directly to a multi-effect 

distillation plant (MED) exclusively (to be more feasible economically), or to the entire 

system through a steam generator. Thus, MED is driven by direct solar energy, indirect 

solar energy (thermal energy storage), and surplus heat from the cogeneration process. 

Additionally, electric power production is intended to meet a reverse osmosis plant (RO) 

demand and the local electric grid (if it is connected to the system). The deterministic 

optimization problem is formulated as a multi-period Mixed Integer Non-Linear 

Programming (MINLP) to discretize operation period to track the diurnal fluctuations of 

solar energy. However, the stochastic optimization problem is formulated as a multi-

scenario MINLP problem that is a deterministic equivalent of a two-stage stochastic 
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programming model for handling uncertainty in operational parameters (normal direct 

irradiance, fossil fuel price) through a finite set of scenarios. A case study is solved for 

water treatment and energy management for Eagle Ford Basin in Texas to obtain the 

maximum annual profit of the entire system. 

The long-term evaluation for the techno-economic performance of solar energy 

conversion systems is highly dependent on the availability of solar radiation data and their 

accuracy. This study offers hierarchical calculation methodologies to estimate solar 

irradiance values for a specific location under different sky conditions. A case study is 

solved to predict hourly direct normal irradiance for San Antonio city in Texas. 
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NOMENCLATURE 

a, b, c, d, e, f                    Empirical coefficients 

ao, a1, a2, a3                   Correlation constants 

a1, a2, a3, a4, a5              Transmission functions 

aaa, baa, caa                    Constants 

aw                                    Water vapor absorptance 

a, b, and c                        Coefficients for the LS-3 collector 

A                                      Permeability  

AS,m                                          Membrane area per module  

A,B,C,D                         Empirical coefficients 

AFCMED                           Annualized fixed capital cost of the multi-effect 

desalination  

AFCRO                             Annualized fixed capital cost of the reverse osmosis  

AFCSC                              Annualized fixed capital cost of the solar collector  

AFCcogen                         Annualized fixed capital cost of the cogeneration system  

ASC                                   Effective surface area of the solar collector  

ASF                                   Solar field aperture area 

AFCPR                                      Annualized fixed capital cost of an industrial process 

AFCEQ                                     Annualized fixed capital cost of equipment 

AFCS                                        Annualized fixed capital cost of supplements 

AOCPR                                     Annualized operating cost of an industrial process 
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ANICogen                                 Annualized income of the cogeneration process 

ANITW                                     Annualized income of the treated water   

ANIWW                                    Annualized value of avoided cost of discharging 

wastewater 

ANIPR                                     Annualized income of processing facilities (midstream) 

production 

Ahttfe                                       Heat transfer area for  tubes of HTFFE for nth effect  

A, B Site climate-related constants 

AFC                                 Total annual fixed cost 

AOC                                 Total annual operating cost 

A and B                            Parameters that depend on the type of the turbine 

bbl                                    Barrel 

cWaste                              Value of avoided cost of discharging wastewater 

ct,m
Fossil                               Value of fossil fuel 

CDS                                    Disposal cost per volume unit 

CF                                      Fuel cost per thermal power unit 

CFW                                   Fresh water cost per volume unit 

COM                                   Operation and maintenance cost per thermal power unit 

CPST                                  Primary and secondary treatment cost per volume unit 

CSF                                    Solar field cost per area unit 

CSG                                 Steam generator system cost per thermal power unit 
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CTES                              Thermal storage system cost per thermal power unit 

CTR                                Transportation cost per volume unit 

Cpms                             Specific heat of the molten salt 

Cpoil                                                                   Specific heat of oil 

CF                                          Salt fraction in feed flowrate 

CD                                          Salt fraction in distillate flowrate 

CFB                                  Salt fraction in brine flowrate 

CF                                          Solute concentration 

CS                                           Average solute concentration in shell side 

CCO                                        Cost of a column 

CTR                                        Cost of a tray 

CHE                                        Cost of a heat exchanger 

do                                  Outer diameter of the receiver pipe 

Dt,m
Tutbine                         Design variable of the turbine 

DNI                                Direct normal irradiance 

D2M

Kδ
                                         Salt flux constant 

eMED                               Electric energy requirements of MED 

eRO                                 Electric energy requirements of RO 

E Time equation 

ET                                    Turbine shaft power output 
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Et,m
Total                              Electric energy provided by the cogeneration turbine 

ft3                                  Cubic feet 

f                                        Focal length of the collectors 

FCIB                                  Fixed capital cost of a boiler 

FCIPST                              Fixed capital cost of the primary and secondary treatment 

FCISF                                Total fixed capital cost of the solar field 

FCISG                                Fixed capital cost estimation of the steam generator system 

FCIT                                  Fixed capital cost of the turbine 

FCITES                              Fixed capital cost of the thermal storage system 

FCITotal                           Total fixed capital cost 

Ff                                     Soiling factor (mirror cleanliness) 

FPW                                Flowback and produced water 

Ft,m
Fossil                            Volumetric flow rate of fossil fuel 

Ft,m
MED                               Volumetric flow rate of desalinated water from MED 

Ft,m
RO                                 Volumetric flow rate of desalinated water from RO 

FF                                     Volumetric flow rate of feed 

FD                                      Volumetric flow rate of permeate 

FB                                      Volumetric flow rate of reject 

GOR                             Gained output ratio 

hact
out                                Actual outlet enthalpy of the turbine 

hin                                  Inlet enthalpy of the steam 
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his
out Outlet isentropic enthalpy 

HSC Solar constant 

HCE      Sum of heat collection element 

Hd
̅̅̅̅ Monthly average daily diffuse irradiance 

H̅ Monthly average daily global radiation on a horizontal 

surface   

Ho
̅̅̅̅ Monthly average daily extraterrestrial solar irradiance on a 

horizontal surface 

HG
̅̅ ̅̅ Monthly average daily global irradiance on a horizontal 

surface 

H Site elevation 

h  Differential head

HTFFE  horizontal-tube falling film evaporator 

IDNI Direct normal irradiance 

IG̅ Monthly average hourly global irradiance on a horizontal 

surface 

Id̅ Monthly average hourly diffuse irradiance 

ID̅NI,H Monthly average hourly direct solar irradiance on a 

horizontal surface 

ID̅NI Monthly average hourly direct solar irradiance 
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IGcs
                                     Hourly global solar radiation on a horizontal surface under 

cloudless sky  

IGcc
                                     Hourly global solar radiation on a horizontal surface under 

cloud cover condition 

Id                                     Hourly diffuse radiation on a horizontal surface  

IDNI,KC                             Direct normal irradiance (DNI) under different sky 

conditions 

IoN Extraterrestrial radiation measured on the plane normal to 

the radiation  

Ical                                    Calculated value 

Imeas                               Measured value 

Imeas,avg                         Average of measured data 

Io  Solar constant  

Jwater                                    Water flux 

Jsolute                                    Solute (salt) flux 

𝐾(Ɵ)                                 Incidence angle modifier 

KT
̅̅̅̅                                          Monthly mean clearness index 

kf                                              Annualized factor for investment 

kγ                                             Annual operation time  

LSCA                                   Length of a single collector assembly 

L Latitude 
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Lao Aerosol optical depth  

Lst , Lloc Standard meridian for local time zone and longitude 

Lspacing                             Length of spacing between troughs 

 Lf                                              Fiber length  

 LS                                             Seal length  

ṁ                                       Inlet turbine steam flowrate 

mr Air mass at standard pressure  

mr,ABW                             A specific air mass 

mair  Air mass at actual pressure 

mmax                                Maximum mass flowrate of the turbine 

mms                                  Mass flow rate of molten salt 

moil                                                  Mass flowrate of oil 

me Air mass corrected for elevation 

mair,KUM  A specific air mass 

mF                                           Total mass flowrate 

mD                                          Mass flowrate of distillate  

mB                                          Mass flowrate of brine  

MED                                 Multi-effect distillation plant 

MINLP                             Mixed integer nonlinear program 

MM                                  Million 

n                                           Number of observations 
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NP                                    Factor to account for the operation pressure of the boiler 

Nj Number of the day  

NT                                    Factor accounting for the superheat temperature of the 

boiler 

N Cloud cover number 

N                                     Service life of the property in years 

N                                     Number of MED effects 

NPS                                  Number of processing steps 

NEQ                                  Number of major equipment 

NSRDB                           National Solar Radiation Data Base 

OCOM                              Operation and maintenance cost 

OEL                                  Optical end loss 

OCF                                 Cost of fuel 

Ot,m
Turbine                          Operation variable of the turbine 

OPEXt,m
MED                        Annualized operational expenditure of MED 

OPEXt,m
RO                           Annualized operational expenditure of RO 

OPEXt,m
SC                           Annualized operational expenditure of the solar collector 

OPEXt,m
SC−storage

              Annualized operational expenditure of the thermal storage                  

system 

OPEXt,m
cogen

                      Annualized operational expenditure of the cogeneration 

system 
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Pg                                     Gauge pressure of the boiler 

PTC                                 Parabolic trough collector 

P  Actual pressure  

po Standard pressure  

Popof                                         Osmotic pressure of feed 

PF                                            Pressure of feed 

PD                                            Pressure of permeate 

PB                                            Pressure of reject 

qMED                               Thermal energy requirements of MED 

QBoiler                            Thermal power output of the boiler rate 

QLFP                             Thermal power that loss from the headers (pipes) 

QLFV                                Thermal power that loss from the expansion tank (vessel) 

QTES                                Net thermal power inside the tank 

Qin                                   Inlet thermal power 

QB                                    Amount of thermal power that produced by the boiler 

Qacc                                 Accumulated thermal power in the tank from preceding               

iterations   

Qcollector→ambient               Total thermal power that loss from a collector to ambient 

Qcollector→fluid                      Thermal power that transferred from a collector to a fluid 

Qcollector→reciever                Thermal power that absorbed by the receiver tube of a 

collector Loop   
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Qhtffe                               Thermal power emitted by condensing distilled water into  

the tubes of the horizontal-tube falling film evaporator 

q                                       Flow capacity  

Qout                                               Outlet thermal power 

Qsolar field→final demand  Useful thermal power that produced by the solar field 

Qsun→collector                      Solar thermal power that produced by the solar field 

Qloss                                   Thermal power loss 

Qt,m
Direct,SC                          Direct thermal power from the solar thermal collector 

Qt,m
Fossil                                Direct thermal power from the combustion of fossil fuels 

Qt,m
In _ Stored −SC                   Inlet thermal power of the thermal storage system 

Qt,m
Out_Stored_SC                    Indirect thermal from solar energy through the thermal 

storage system 

Qt,m
SC                                     Thermal power captured by the solar collector 

Qt,m
Stored−Loss                      Loss thermal power of the thermal storage system 

Qt,m
Stored−SC                        Thermal power stored in the thermal storage system 

Qt,m
Total                                Total thermal power needs for water treatment 

Qt,m
Turbine                            Thermal power from steam leaving the cogeneration 

turbine 

Qt−1,m
Stored−SC                        Thermal power stored from previous iterations 

rt Ratio of monthly average hourly global irradiance to 

monthly average daily global irradiance      
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rd                                          Ratio of monthly average hourly diffuse irradiance to 

monthly average daily diffuse irradiance 

ri                                               Inside radius of fibers  

 ro                                             Outside radius of fibers  

R Relative humidity (%) 

RSL                                     Row shadow loss 

RO                                     Reverse osmosis plant 

ROI                                   Return on investment 

S̅                                            Monthly average daily sunshine hours  

 So
̅̅ ̅̅                                          Maximum possible monthly average daily length  

SC                                      Number of storage capacity hours 

ST Solar time  

SDT Standard time  

TCT                                     Cold tank temperature 

Tdew                                   Dew point temperature  

T                                             Average maximum temperature  

To                                       Temperature at zero altitude 

Tamb                                     Ambient temperature  

TLTF Linke turbidity factor 

THT                                     Hot tank temperature  

TSH                                     Superheat temperature 
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Tamb                                   Ambient air temperature 

Tin                                      Temperature at the inlet of the turbine 

Tms                                     Temperature of the molten salt 

Trec                                     Mean receiver pipe temperature 

Tsat
in                                      Saturation temperature at the inlet of a turbine 

Tvapor,avg                                     Average temperature of the vapor  

Urec                                    Overall heat transfer coefficient of the receiver pipe 

U1 Pressure-corrected relative optical-path length of 

precipitable water  

U3 Ozone’s relative optical-path length  

Uhtffe                                         Overall heat transfer coefficient 

Wc                                     Width of the collector aperture 

Ww                                     Volumetric flow rate of discharging wastewater 

W                                      Watt 

W`                                      Precipitable water-vapor thickness under the actual 

condition 

Xo Total amount of ozone in a slanted path 

Xw Total amount of precipitable water in a slanted path 

xF                                                Salt fraction in total flow rate 

xD                                               Salt fraction in distillate flow rate 

xB                                               Salt fraction in bine flow rate 
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Subscript and superscript symbols 

ac                                        Actual 

acc                                      Accumulated 

amb                                    Ambient 

B                                        Boiler 

c                                         Collector aperture 

Cogen                                Cogeneration process 

CT                                      Cold tank 

DS                                      Disposal 

EL                                      End loss 

f                                          Factor 

F                                         Fuel 

FW                                     Freshwater 

g                                         Gauge 

HT                                     Hot tank 

is                                         Isentropic 

LFP                                    Loss from pipes 

LFV                                   Loss from vessel 

m                                         Time period 

MED                                  Multi-effect distillation plant 

ms                                     Molten salt 

mD                                Total distillate water collected from  MED effects  



 

xx 

 

OM                                    Operation and maintenance 

P                                     Pressure 

PST                                   Primary and secondary treatment 

rec                                      Receiver 

RO                                   Reverse Osmosis plant 

sat                                    Saturation 

SC                                   Solar collector 

SCA                              Single collector assembly 

SF                                   Solar field 

SG                                  Steam generator 

SH                                Superheat 

SL                                  Shadow loss 

t                                      Time period  

T                           Turbine 

TES                       Thermal energy storage 

TR                            Transportation 

w     Wastewater     

 

Greek symbols 

ƞboiler                              Efficiency of the boiler 

ƞis                                   Isentropic efficiency of the steam turbine 

aY                                   Annual operation time 
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Ωt,m
Turbine                           Vector set of the turbine 

νt,m
MED                              Value of produced water from MED 

νt,m
RO                                 Value of produced water from RO 

∀m                                  For every month (operational period) 

∀t                                    For every hour (sub- period) 

∀s                                    For every scenario 

∆his                                 Isentropic enthalpy change 

ɳ opt                                  Peak optical efficiency of a collector 

Ɵ                                     Solar incidence angle 

Ɵz                                   Solar zenith angle 

γ                                      Intercept factor 

δ                                      Declination 

ΔT                                  Difference between inlet and outlet of the oil 

ρ                                     Reflectivity 

τ                                     Glass transmissivity 

ω                                    Hour angle 

α                                    Absorptivity of the receiver pipe 

θz                                   Zenith angle 

τaa                                  Atmospheric attenuation 

θδ                                   Declination angle 

θh                                   Solar hour angle 
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τbulk                                Bulk atmospheric transmittance 

τrt                                   Air transmittance 

τot                                   Ozone transmittance 

τgt                                   Gas transmittance 

τwt                                  Water transmittance 

τat                                   Aerosol transmittance 

β1, β2                                    Angstrom exponent and Angstrom turbidity coefficient 

respectively 

τas                                        Aerosol scattering transmittance 

τw                                        Precipitable water transmittance 

τmd                                    Direct transmittance of all molecular effects except water 

vapor for Atwater 

τo                                         Ozone transmittance 

αw                                        Water vapor absorption 

θhs                                    Sunset hour angle 

∆Hc,avg                             Latent heat of condensation  

βMED ,  βRO                         Recovery fraction 

 μ                                         Viscosity                            

vRNG                                    Cost of raw natural gas 

vL                                        Cost of labor 

vRO                                      Value of produced water from RO 
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vMED                                   Value of produced water from MED 

vFuel                                    Value of produced Fuel 

vChemicals                             Value of produced Chemicals 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

The globally vast demand for energy and water is one of the most significant 

challenges for sustainable development in different regions of the world that synchronizes 

with the considerable scarcity of fresh water, fast depletion of conventional energy sources 

and climate change. Accordingly, renewables, which are still lack for more subsidies and 

carbon tax credit activation, have emerged as a promising replacement for fossil fuels in 

the long-term. In addition, the proper management strategies for water resources like 

recycling/ reusing wastewater by utilizing desalination technologies are other tactics to 

diminish a deficiency in fresh water and energy supply. The growing demand for water 

and energy cannot be treated separately according to the reciprocal connection between 

water and energy, which is called the water-energy nexus. 

The water-energy nexus term bolsters the concept of maintaining regional and 

global sustainability through optimal exploiting of natural resources and considering 

attractive industrial processes design that requires less capital investment and minimal 

water and energy usage during the operational period. The early design stages and 

operational pattern for a water-energy nexus system, which includes different industrial 

processes, can be optimized by using economic, environmental and safety metrics. In the 

same context, the sustainable performance of existing systems (e.g., power plants, 

refineries, chemical, pulp and paper, etc.), either they are utilized to produce various 

energy forms by consumption a significant amount of water, or they are used for treating 
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saline water and wastewater by consuming a massive amount of energy, can be advanced 

by retrofitting an existing system, system expansion, and grassroots design [1]. 

 Process integration provides a unique framework accompanying with efficient 

techniques set and empowering tools for sustainable design. These techniques and tools 

are described by [2, 3]. Furthermore, these techniques have been improved to integrate 

units, streams, resources, and objectives for optimizing a whole process because if units 

of a process are optimized individually, an entire process is not optimized. Consequently, 

the optimal systematic design and optimal mix of energy for an industrial process and 

among various industrial processes can be achieved through process integration. Finally, 

process integration is a holistic approach to process operation, design, and retrofitting that 

affirms on the process unity [2]. 

The optimal sustainable design of industrial processes, which is considered among 

the largest water and energy consumption sectors, is a challenging task to sustain natural 

resources by recycling and reusing, mitigate pollution as well as enhance quality and yield 

of production to increase profitability. The rapid depletion of fossil fuels (81.6%, nearly 

of the global total energy supply) and the modest growing of renewable energy sources 

(13.3%, nearly of the global total energy supply) have contributed to introduce the 

unconventional energy sources as a competitive replacement to the traditional energy 

resources. Shale gas has emerged one of the significant the unconventional energy 

resources and can meet an important portion of the global demand of energy [4]. 

According to the Energy Information Administration (EIA), the advancement in shale gas 
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production will be from 23% of total U.S gas production in 2010 to 49% in 2035 [5]. 

Texas is considered at the top of shale gas producers in the U.S. 

Hydraulic fracturing and horizontal drilling are the essential technologies to extract 

natural gas from shale rock. Water plays a significant role in shale gas production through 

mixing millions of gallons of water with sand, chemicals, corrosion inhibitors, surfactants, 

flow improvers, friction reducers, etc. to produce fracturing fluid. Under the high pressure, 

the fracturing fluid is injected into the wellbore to make cracks within the rock layers to 

increase the production [6, 7]. 

Because of the high-water consumption that used for the fracturing process (e.g., 

in the eagle ford, annual water use was 18 MMm3 for 1040 wells) [8]. Life cycle water 

management of a shale well is complicated and costly, the major challenges for life cycle 

water for a shale gas well are high cost of acquisition for fresh water, transportation of the 

fresh and waste water over long distances, treatment, and disposal. Recycling and reuse 

processes are successfully alternative strategies for management of flow-back and 

produced water of a shale gas well because they can alleviate pressure on fresh water 

resources that utilized in fracturing process, and to lessen the amount of flow-back and 

produced water that must be transported, treated, and disposed [9]. 

In addition to the obvious influence of the oil and gas industry (which involves 

upstream, midstream and downstream industries) on the water-energy balance, other 

factors including populated explosion, urbanized growth, and industrialized expansion, 

climate change and governmental regulations are still affecting the global economic 

sustainability by threatening the water and energy resources, specifically, in the regions 
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that are suffering from water-energy stress. Therefore, there is a necessity to develop 

systematic approaches for identifying and optimizing the water-energy nexus systems for 

producing fresh water and electric power.  

1.2 Objectives 

This work presented within the scope for developing a novel systematic approach 

to design, operation, integration, and optimization of the water-energy nexus system which 

integrates solar energy and fossil fuels for producing electricity and desalinated water. The 

proposed system consists of a concentrated solar power field, a thermal storage unit and 

cogeneration process that are coupled with a reverse osmosis plant (RO) and a multiple-

effect distillation (MED). For adjusting dynamic fluctuations of solar energy, a fossil fuel 

boiler and thermal energy storage are utilized to maintain the system operates at steady-

state. The system is analyzed and optimized according to technical, economic, and 

environmental metrics to minimize the annual profit of the entire system. The optimization 

problem of a first systematic approach will be formulated under certain parameters as a 

deterministic optimization. The multi-period approach can be applied to discretize 

operation period to track the diurnal fluctuations of solar energy. while,  in a second 

systematic approach, an industrial process (midstream industry) is incorporated in the 

system and solar energy can be added as a thermal power source to the system in a various 

scenario from that will be presented in the first approach. The optimization problem of a 

second approach will be formulated under uncertainty as a stochastic optimization. 

According to the difficulty of obtaining high-quality solar irradiance data and the high cost 

of measuring instruments and their calibration, this study will offer hierarchical 
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calculation methodologies to estimate solar irradiance values under different sky 

conditions that can be utilized to assess the techno-economic performance for solar energy 

conversion system, which is used in the system. 

 

1.3 Structure of the Dissertation 

This work is organized into six chapters. Chapter I presents a simple introduction 

including the background and objective of this research. Chapter II introduces a broad 

literature review to properly cover the topics related to this work. Chapter III presents an 

integrated approach to water-energy nexus in shale gas production through covering a 

problem statement, a proposed approach for solution strategies that based on a 

deterministic optimization, a theoretical description of modelling and optimization 

formulations and results obtained from solving a case study. Chapter IV presents an 

integrated approach is developed under uncertainty based on a stochastic optimization 

perspective for the water-energy system that contributes to treating wastewater in shale 

gas site. It includes a problem statement, a proposed approach, a detailed description for 

modelling and optimization equations and obtained results from solving a case study 

which is selected to demonstrate the ability of a solution approach. Chapter V  offers 

hierarchical calculation methodologies to estimate solar irradiance values under different 

sky conditions that strengthen the capability of integrated approaches of a solution by 

evaluating the techno-economic performance for concentrated solar power plant. Chapter 

VI summaries the most significant concepts that are addressed in this work. 
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CHAPTER II                                                                                                         

LITERATURE REVIEW 

The main purpose of this chapter is to introduce a general overview for several 

topics that included in this work. To properly cover a broad area of the  proposed system 

components of this research, the literature review is divided into five major sections and 

several subsections: concentrated solar power field, thermal energy storage, desalination 

plants and cogeneration process comprises (desalination plants, cogeneration process, 

conventional desalination, solar desalination), water management of shale gas and oil 

industry includes (water consumption for hydraulic fracturing in the U.S., water 

consumption for hydraulic fracturing in Texas, water treatment), and finally, process 

integration and optimization.  

 

2.1 Concentrated Solar Power (CSP) 

Solar energy is the most abundant energy resource on earth. The amount of solar 

energy falling on the earth’s surface at one hour equals to the consumed energy from the 

entire human activities during one year [10]. Concentrated solar power systems are 

designed to harness solar radiation to generate thermal power that is utilized for electricity 

production and as a thermal source for various industrial applications.  

CSP systems can be utilized to concentrate a direct solar radiation, while the non-

directional radiation types (diffuse and reflected radiation) cannot be used in these 

systems. The enhancement of the solar collector performance for CSP systems is based on 

the solar tracking methods that used to focus a direct solar radiation on the focal target as 

well as to minimize a value of an incident angle [11, 12]. 
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Concentrated solar thermal plants are among the most spreadable renewable 

energy systems in the world that can supersede traditional fossil-fueled power plants. 

However, these power plants are still not competitive economically unless subsidized [13]. 

Parabolic trough plants have become the most advanced technology in the industrial 

market [14]. 

A detail performance model for parabolic trough plant (PTC) with and without 

thermal energy storage (TES) has been developed in the following literature: [4, 15-27].  

Some researchers have extended their work to include a performance model and an 

economic model together for PTC plant [13, 28-33]. Other researchers evaluate the 

thermal-economic performance of concentrated solar systems under various conditions, 

especially, in arid areas [34-39]. 

 National Renewable Energy Laboratory researchers [40] have presented the 

current and future assessment of the cost and performance basis extensively for PTC plants 

based on SunLab and S&L experience. Price [41] studied the trade-off between 

performance, economic, and cost parameters for PTC power plant through a computer 

model. Kalogirou [42] introduced a historical survey for several different types of solar 

thermal collectors that are in common use such as  flat-plate, evacuated tube, compound 

parabolic, Fresnel lens, parabolic trough, etc. On the other hand, the optical 

thermodynamic, and thermal analysis is provided for collectors and their applications that 

showed significant benefits.  
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2.2 Thermal Energy Storage (TES)  

In order to provide a steady thermal power on demand from solar thermal power 

plants, a thermal energy storage system can be integrated to these power plants. Therefore, 

the security of thermal power supply is increased with the support of a storage system due 

to the unpredictability and intermittency of solar energy. The benefits of thermal energy 

storage in CSP plants are the capacity to keep providing thermal power after the sunset or 

in cloudy weather and to provide dispatchable thermal power [43].The existence of a 

storage system can be useful to store a surplus thermal energy in different types of TES 

systems that allow utilizing this thermal energy later when there is a deficit in thermal 

power [44]. Thermal energy storage systems play the essential role to improve CSP plants 

dispatchability. A review of different thermal energy storage design concepts (e.g., size, 

efficiency, and cost) that are used or may be used for CSP plants as well as the selection 

of storage materials has been presented by [43, 45-47]. The properties of various materials 

that utilized in thermal energy storage systems and the dynamic performance of these 

systems were discussed in [48]. 

A two-tank storage system is the most developed among thermal energy storage 

systems, but it is still comparatively expensive comparing with a single tank. Also, there 

is a problem with nitrate salts (molten salts), which is used as storage medium in this 

system, due to high freezing point and fluctuated price [43]. A performance and economic 

analysis of a two-tank molten salt storage based on the operation experience for the SEGS 

plants were evaluated by [49]. García-Barberena et al. [50] developed and simulated a 

fully transient storage tank model. 
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A thermocline thermal energy storage is a modified concept for a two-tank storage 

system to save cost. This a modified concept is based on fluid bouncy forces to separate 

the hot and cold fluid into two isothermal regions inside a single tank along the vertical 

axis. A new model was developed by [51] to offer a simulation of molten salt thermocline 

tank operation at low cost for CSP plants, Vilella and Yesilyurt [52] evaluated the techno-

economic performance of a thermocline tank for solar tower power plant. An assessment 

of operation approaches for CSP plants with a thermocline tank has been achieved by 

developing a simulation model using the TRNSYS [53].Vilella and Yesilyurt [52] 

demonstrated that the thermocline storage system can replace the two-tanks storage 

system efficiently in Andosol solar plant-Spain because of its low cost. The performance 

comparison of CSP plants with two types of thermal storage systems (Two-tank, 

thermocline) was carried out by simulation models for various values of energy storage 

capacity. This study showed that a two-tank storage system has higher performance and 

higher cost than a thermocline energy storage [54]. 

 

2.3 Desalination Plants and Cogeneration Process 

2.3.1 Desalination Plants 

Desalination technologies have been developed to improve the quality of water 

and to provide fresh water for different life requirements. Seawater represents about 97.5% 

of the total water abundance on earth. The remaining percentage (2.5%) is distributed 

between surface water and underground, 80% of this water is glaciers. Consequently, the 

amount of water in rivers, lakes, and aquifers is 0.5% of the total amount of water on earth 

[55]. 
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Desalination water technologies are categorized into commercial plants on a large-

scale and the empirical plant under research and development. The process of separating 

the salts from the water in desalination plants requires consuming considerable amount of 

energy, which can be electrical power as in RO or thermal power as in MED. The amount 

of energy consumption in thermal desalination plants (e.g., Multi-Effect Desalination 

(MED) and Multi-Stage Flash (MSF)) is greater than the energy consumption in 

desalination technologies (e.g., Reverse Osmosis) that are driven by electric power.    

The water production cost of desalination technologies is a combination of energy 

cost, capital investment, and operation and maintenance cost. Since the energy cost 

represents 50% of the desalinated water cost, renewable energy sources can utilize to 

satisfy energy (thermal, electric) requirement for desalination plants to diminish fossil 

fuels consumption [56]. The using pretreatment systems are significant to protect 

desalination plants (e.g., MED, RO) from fouling, a comprehensive review was presented 

for two types of pretreatment systems by [57]. 

 

2.3.2 Cogeneration Process  

The advantages of a cogeneration process arise from improving energy efficiency 

of the whole plant, reducing the amount of fuel consumption, and mitigation of 

environmental impact. In addition to electrical power production, the surplus thermal 

power of the cogeneration process can be used to provide an enough heat to various 

industrial sectors (e.g., chemical, refineries, desalination, pulp and paper, etc.). A various 

types of fossil fuel (e.g., natural gas, petroleum, shale gas) are used (along with renewable 

energy sources) for cogeneration purposes. The flared gas (a byproduct) can be exploited 
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in cogeneration process to sustain fossil fuel resources by reducing their consumption, 

Eljack et al. [58] developed an optimization approach for the design of cogeneration 

systems using flared gases are collected from various industrial plants to provide power, 

heat, and reduce environmental impact. 

2.3.3 Conventional Desalination (Fossil Fuel) 

Sanchez et al. [59] presented a feasibility analysis for a modified plant that uses 

the waste heat for a stack gas and the steam turbine condensate (combined cycle) as a heat 

source for MED process. Nápoles-Rivera et al. [60] offered  an optimization formulation 

for a macroscopic water network that incorporates desalination plants into power plants. 

The surplus heat of power plants can be provided to desalination plants and an electric 

power production is sold to minimize the cost of treated water production. The thermal 

performance of a new system that consists of an organic Rankine cycle, an ejector, and 

MED plant was analyzed using the model and sensitivity analysis. This proposed system 

may be utilized to treat seawater or flowback water produced during the hydraulic 

fracturing process [61].  

The technical characteristics, amount of consumed energy, capability of renewable 

energy to operate the desalination plants, environmental impacts have been reviewed and 

analyzed. Additionally, the current and future costs of treated water that produced from 

traditional and alternative energy desalination plants have been discussed [56]. Ghobeity 

et al. [62] carried out a review of thermal desalination and cogeneration plants as well as 

reverse osmosis. In this review, the design and economic performance have been 

considered for hybrid desalination plants for existing systems. Finally, various studies of 
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the optimization of hybrid desalination plants have been reviewed including objective 

functions, optimal hardware configurations, and optimization methods. An overall survey 

and assessment of different desalination technologies (MED, MSF, RO) have been 

presented, it included producing water cost, energy consumption, and technology 

improvements. Also, an additional analysis has been given for cogeneration, desalination, 

future water situation and its policy [63]. 

 

2.3.4 Solar Desalination (Solar Energy) 

The integration of renewable energy sources with desalination technologies is a 

significant concept toward enhancing sustainability of desalination technologies [55, 64]. 

Desalination technologies can be sustained by integrating them with renewable energy 

sources. In this context, a review of various desalination technologies that integrated with 

solar energy was carried out, including several novel methods of desalination (e.g., 

freezing and adsorption desalination), furthermore, a simple description of using solar 

energy to provide a direct thermal power to MED plant was given [65]. 

  A thermo-economic analysis of the coupled production of water and electricity for 

solar thermal plant that is integrated with MED and RO plants has been investigated. 

Regeneration and reheating were used to enhance the thermal efficiency of the power 

block. The combined system shows low levelized water cost [66]. A technical- economic 

performance of desalination plants integrating with renewable energy sources has been 

discussed. Consumed power and distilled water cost of each plant were compared [67]. 

The different configurations for the combination of parabolic trough collector plant with 
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MED and RO technologies have been simulated to evaluate a thermodynamic and 

economic performance [68-79].  

The following works used the concept of a mixed integer nonlinear programming 

(MINLP) and optimization, In [80],  a mathematical model of cogeneration system that 

includes a power plant, multistage flash (MSF), and reverse osmosis has been proposed to 

minimize total annual cost and the genetic algorithm was used to solve the model. The 

multi-objective model of optimal design and operation for a system that consists of 

parabolic trough solar collectors, a Rankine cycle, thermal energy storage, and reverse 

osmosis was developed. The minimization of cost and environmental impact for the 

system were evaluated while considering a certain water demand [81]. 

 

2.4 Water Management of Shale Gas and Oil Industry  

The massive amount of water consumption during hydraulic fracturing of shale 

gas production is the most challenging problems. This problem may cause constraining 

shale gas production, especially in semiarid areas that suffer from the scarcity of water. 

The annual average water consumption per well for hydraulic fracturing in different 

regions of the U.S. is between 1000 m3 and 30,000 m3. During the past decades, Texas has 

been precedence on shale gas production in the  entire U.S., therefore, Texas has ranked 

one of the highest consumers of water utilized in the fracturing process with 457.42 

MMm3 for 40,521 wells [82].  
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2.4.1 Water Consumption for Hydraulic Fracturing in the U.S. 

Chen and Carter [82] presented an overall review of water usage for the hydraulic 

fracturing processes in 14 states across the U.S. between 2008 to 2014. This study reported 

that recycled wastewater to prepare hydraulic fracturing fluids were utilized in 6221 wells 

of 80,047 wells (represent 10% of the whole wells that were working at the time of 

preparing this literature). Additionally, some states were reported that the recycling 

process of wastewater could not be implemented due to the low flow rate of flowback and 

produced water (FPW) and the high cost of the water treatment processes. From evaluating 

data between 2012 to 2014, the annual volumetric flow of water used in shale gas was 116 

billion liters per year and 66 billion liters per year of unconventional oil. The integration 

of operational data from 6 to 10 years shows that the total amount of flowback and 

produced water gathering from shale gas/oil wells was 803 billion liters [83]. Warner et 

al. [84] and Albright et al. [85] discussed the effects of preparing, exploration, and 

hydraulic fracturing process of shale gas wells on the water availability (quantity and 

quality) in the U.S.  

 

2.4.2 Water Consumption for Hydraulic Fracturing in Texas 

The net amount of water used in shale gas production was quantified by collecting 

data from three major shale gas plays (Eagle Ford, Haynesville, and Barnett) in Texas. In 

addition to study the capability of replacing fresh water with brackish water, the total 

accumulative amount of water use in shale gas production during the next 50 years [8]. 

Rahm [86] demonstrated the regulations that organize the work in hydraulic fracturing of 

shale gas sites focusing on Texas. Clark et al. [87] studied the life cycle of production for  
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shale gas and conventional natural gas emphasizing on the water consumption. This study 

estimated the amount of water consumption for shale gas and conventional natural gas in 

the various steps of production, the amount of flowback and produced water and the 

amount of shale gas production using as fuel in electricity and transportation. Thus, shale 

gas industry consumes water more than conventional natural gas during the life cycle. 

Reedy et al.[88] performed a comparison for the amount of water that consumed in the 

fracturing process of conventional oil and shale gas/oil production. This study found out 

that the U.S. has utilized a massive amount of water in hydraulic fracturing due to 

expanding in the shale gas production through using fracturing process.  

2.4.3 Water Treatment  

To enhance the efficiency and sustainability of shale gas process, the pretreatment 

processes are important to remove an assortment of pollutants that accompanied flowback 

and produced water (FPW) of hydraulic fracturing before conveyance to the desalination 

plants. The global optimization of the MINLP-based model was applied to many 

feedwater configurations and certain composition constraints to minimize the cost [89].  

 Bruning et al. [90] used a risk quotient approach to recognize organic pollutants in 

flowback and produced water of hydraulic fracturing and their impacts on the ecosystems 

of water resources. Furthermore, the flowback and produced water treatment technologies 

were proposed to remove contaminated compounds. Estrada and Bhamidimarri [91] 

offered a review of features, and environmental impacts of flowback and produced water 

of hydraulic fracturing. This literature found that reuse and deep injection well are 
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widespread techniques in the U.S., additional treatments (e.g., MED, RO) are required to 

achieve the discharge requirements. 

Arias Chavez et al. emphasize on the economic feasibility of using desalination 

technologies (MED, MVC, RO) for reusing produced water (high salinity) of shale gas 

site [92]. This work found that these technologies are feasible technically and 

economically. The expanding in using these technologies is based on reducing capital and 

operating costs.  

Ponce-Ortega et al. [93] developed a mathematical programming model for the 

combination of water networks in the shale gas site considering the quality and quantity 

of water, the uncertainty of used and flowback water, the optimal size of treatment units, 

thermal storage system, and disposals, the objective function of water networks has been 

solved to minimize the total annual cost. Gao and You [6] formulated the problem of water 

networks in the shale gas site as a mixed integer linear fractional programming (MILFP) 

problem to maximize the profit per unit of freshwater consumption. Grossmann et al. [94]  

developed the two-stage mixed integer linear programming (MINLP) model under 

uncertainty to address the problem of water availability for shale gas formations. The 

optimization of water usage life cycle of well-pads is to minimize the cost of treatment, 

storage, transportation, and disposal for the profit of gas production, as well as to 

determine the optimal hydraulic fracturing schedule commensurate with transportation of 

water and its reuse and treatment. 

The techno-economic analysis of Integrated Precipitative Supercritical (IPSC) 

process, which was developed at Ohio University, was carried out by using Aspen process 
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software and Microsoft Excel. From this analysis, the average cost of flowback and 

produced water was $6.33 per barrel, while from sensitivity analysis, a cost range was 

$2.93-$16.03 per barrel [95]. 

 

3.5 Process Integration and Optimization 

There is a robust linkage between process integration and optimization as El-

Halwagi states “Optimization is a very effective and powerful tool that aids in the 

systematic solution of process integration problems” [96] . El-Halwagi [97] discussed the 

development of algorithmic methods that used to formulate the synthesis of chemical 

processes as an optimization problem, and he pointed out that the mixed-integer 

programming is the suitable tool for these methods. The essential steps to formulate an 

optimization model were given in [3].  

The key idea for efficiency enhancement along with cost reduction of an industrial 

process is to develop energy integration techniques. The prime opportunity to achieve the 

typical integration of energy within a specific industrial process lies in integrating 

cogeneration process with thermal and electrical power requirements of an industrial 

process as well as multiple energy sources. 

Many researchers have developed the techno-economic analysis for the dual-

purpose system (cogeneration process and desalination technologies), which is used to 

supply fresh water and electricity. In these articles [80, 98-107] a mathematical model of 

the dual- system was described as a MINLP problem, as multi-objective genetic algorithm 

problem, or other proposed problem, and an optimization problem was performed to 

minimize the total annual cost for the entire system. El-Nashar [108] presented the optimal 
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design of a system including cogeneration process and desalination technologies for 

producing treated water and electric power along with considering the reliability of 

equipment. Al-Thubaiti et al. [109] developed an algorithmic approach to determine the 

optimal design and operating parameters for the cogeneration process.   

The recent works in the field of the typical management (integration, optimization) 

of energy can be reviewed through the following publications, particularly, energy 

integration techniques that have been developed to meet the requirements of the 

methodical design and optimization of cogeneration process [110-112], trigeneration 

process (power, heating, cooling) [113], heat exchange networks [114]. In this context, 

the aforementioned topics are covered by the following recommended books [96, 115-

117]. 

This work is aimed to develop a novel systematic approach to design, operation, 

integration, and optimization of a water-energy system for producing electricity and 

desalinated water (by treating shale-gas wastewater) through integrating renewables (solar 

energy) and fossil fuels (natural gas). The system is analyzed and subsequently optimized, 

(either by using deterministic optimization or by using stochastic optimization), by using 

economic and environmental metrics. To evaluate concentrated solar collectors’ 

performance which is included in the system, two hierarchical calculation methodologies 

are proposed to obtain solar irradiance data.   
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CHAPTER III  

AN INTEGRATED APPROACH TO WATER-ENERGY NEXUS IN SHALE-GAS 

PRODUCTION* 

3.1 Introduction 

Recently, major discoveries of shale gas reserves have led to substantial growth in 

production. For instance, the US production of shale gas has increased from 2 trillion ft3 

in 2007 to 17 trillion ft3 in 2016 with estimated cumulative production of more than 400 

trillion ft3 over the next two decades [118]. Consequently, there are tremendous 

monetization opportunities to convert shale gas into value-added chemicals and fuels such 

as methanol, olefins, aromatics, and liquid transportation fuels [119-125]. A major 

challenge to a more sustainable growth of shale gas production is the need to address 

natural resource, environmental, and safety issues [126, 127].  Specifically, the excessive 

usage of fresh water and discharge of wastewater constitute major problems. Hydraulic 

fracturing and horizontal drilling are the essential technologies to extract natural gas from 

shale rock. Water plays a significant role in shale gas production through mixing millions 

of gallons of water with sand, chemicals, corrosion inhibitors, surfactants, flow improvers, 

friction reducers, and other constituents to produce fracturing fluid. Under the high 

pressure, the fracturing fluid is injected into the wellbore to make cracks within the rock 

layers to increase the production [6, 7]. Large quantities of water are used in the fracturing 

and related process [94]. The typical annual water consumption per well for hydraulic 

                                                 

* Reprinted with Permission from Processes journal, Al-Aboosi, Fadhil, and El-Halwagi, Mahmoud. “An 

integrated approach to water-energy nexus in shale-gas production.” Processes 6.5 (2018): 52. 
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fracturing ranges between 1,000 and 30,000 m3 leading to substantial amounts of water 

usage. For instance, the annual water usage in shale gas production is estimated to be about 

120 MM m3. In the Eagle Ford Shale Play, the annual water use is 18 MM m3 for 1040 

wells [8]. Wastewater associated with shale gas production is discharged in two forms: 

flowback water (which is released over several weeks following production) and produced 

water (which is the long-term wastewater) [94, 128]. Treatment of shale gas wastewater 

followed by recycle and reuse can provide major economic and environmental benefits 

[6-9, 94, 128]. Regrettably, a small fraction of the shale-gas wastewater is recycled. A 

recent study [93] reported that in 2014, less than 10% of the roughly 80,000 wells in the 

US used recycled water after proper treatment. Lira-Barragán et al. [93] developed a 

mathematical programming model for the combination of water networks in the shale gas 

site by taking into consideration the requirement of water, the uncertainty of used and 

flowback water, and the optimal size of treatment units, storage systems, and disposals. 

Gao and You [6] addressed the shale-gas water problem as a mixed integer linear 

fractional programming (MILFP) problem to maximize the profit per unit of freshwater 

consumption. Yang et al. [94] developed a two-stage mixed integer linear programming 

(MINLP) model has been proposed for shale gas formations with the uncertainty of water 

availability. Several approaches may be used for treatment and management of shale gas 

wastewater [7-9, 82, 92-94, 128]. These approaches include conventional technologies 

such as multi-effect distillation and reverse osmosis. Additionally, emerging technologies 

such as membrane distillation may be used to exploit excess heat from flared gases, 

compression stations, and other on-site sources and to provide a modular system with high 
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levels of salt rejection [58, 60, 107, 128-132]. Additionally, renewable energy (such as 

solar) may be utilized to enhance the sustainability of the system. Therefore, it is important 

to consider the water management problem for shale gas production via a water-energy 

nexus framework.  

This work is aimed at developing a new systematic approach to design, operation, 

integration, and optimization of a dual-purpose system which integrates solar energy and 

fossil fuels for producing electricity and desalinated water while treating shale-gas 

wastewater. In addition to fossil fuels, a concentrated solar power field, a thermal storage 

system, conventional steam generators, and cogeneration process are coupled with two 

water treatment plants:  reverse osmosis (RO) and multiple-effect distillation (MED). A 

multi-period mixed integer nonlinear program (MINLP) formulation is developed to 

account for the diurnal fluctuations of solar energy. The solution of the mixed integer 

nonlinear program (MINLP) determines the optimal mix of solar energy, thermal storage, 

and fossil fuel and the details of wastewater treatment and water recycle.  

 

3.2 Problem Statement 

Consider a shale-gas production site with the following known information: 

• Flowrate and characteristics of produced and flared shale gas. 

• Demand for fresh water (flowrate and quality). 

• Flowrate and characteristics of flowback and produced wastewater. 

The site is not connected to an external power grid. 

It is desired to systematically design an integrated system which: 
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• Treats the wastewater for on-site recycle/reuse. 

• Uses solar energy and fossil fuels to provide the needed electric and thermal 

power needs. 

• Satisfies technical, economic, and environmental requirements. 

Given are: 

• Flowrate and composition of shale gas (sold and flared). 

• Flowrate and purity need for fresh water. 

• Total volumetric flow of wastewater (flow-back and produced water) of shale gas 

play. 

• Flowrate of flared gases that may be used in the cogeneration process. 

• Electric energy requirement for RO and MED, (kWhe/m
3). 

• Thermal energy requirement for MED, (kWht/m
3). 

To solve the problem, the following questions should be addressed: 

• What the maximum annual profit of the whole system for producing desalinated 

water, electricity for the various percentage contribution of RO and MED in the 

total desalinated water production? 

• What the minimum total annual cost of the entire system? 

• What is the economic feasibility of the system?  

• What is the optimal mix of solar energy, thermal storage, and fossil fuel for MED 

plant and the entire system? 

• What is the optimal design and integration of the system? 
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• What are the optimal values of the design and operating variables of the system 

(e.g., minimum area of a solar collector, maximum capacity of a thermal storage 

system, etc.)? 

• What is the feasible range of the percentage contribution of RO and MED in the 

total desalinated water production? 

The Superstructure integrates primary components of solar energy and fossil fuels for 

producing electricity and desalinated water, as shown in Figure 1:  

• To achieve a steady supply of thermal power to the whole system, solar energy (as 

direct solar thermal power), fossil fuel (shale gas, flared gas), and a thermal energy 

storage (as indirect solar thermal power) are used.  

• Solar energy is used as a source of heat to provide thermal power directly to MED 

plant exclusively (to be more economically feasible), while the surplus thermal 

power is stored. 

• A two-stage turbine is used to enhance the cogeneration process efficiency. 
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Figure 1: Proposed Superstructure Representation.  Reprinted with 
permission from [156] 

3.3 Approach 

A hierarchical design is proposed to efficiently address the water-energy nexus 

problem. Figure 2 demonstrates the main steps of the approach. The first step is to gather 

the required data for the system then to select and formulate the appropriate models that 

describe the major system components. Once the preceding steps are achieved, the 

computational optimization is applied to the integrated system to maximize annual profit 

of the system that produces a specific level of desalinated water and electricity. In treating 

wastewater, focus is given to the management of flowback and produced shale gas 

wastewater. To decompose the optimization problem, the percentage contribution of RO 

and MED to treating wastewater is iteratively discretized. It is worth noting that the 

proposed discretization approach offers significant reduction in the complexity of solving 
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the optimization problem. For each discretization, the thermal and electric loads are 

calculated. Therefore, the two energy systems can be designed separately then integrated 

and optimization. Such decomposition leads to computational efficiency. Similar 

approaches have been proposed earlier in literature for other applications [131, 133, 134]. 

The total annualized cost for each discretized iteration is calculated and finally the 

minimum-cost solution is selected. 

Figure 2: Proposed Approach.  Reprinted with permission from [156] 

3.4 Modeling the Building Blocks 

The performance models for MED and RO have been taken from literature [96, 

135-138]. For the solar system, a parabolic trough collector was selected. The modeling 

of the solar system was based on literature models and data [13, 25, 27, 33] as described 
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in this section. The solar thermal power (per unit length of a collector) that produced by 

the solar field when the direct normal irradiance (DNI) strikes collector aperture plane is 

given by the following expression: 

 Qsun→collector(W m)⁄  = DNI. cos Ɵ . Wc                                                                                   (1)

where DNI (W/m2) is the direct normal irradiance, Ɵ is the solar incidence angle, WC (m)

is the width of the collector aperture. 

For North-South orientation, the incidence angle is calculated as follows: 

 cos Ɵ = √cos2Ɵz + cos2δ. sin2 ω  (2)  

where θz is the solar zenith angle, δ is the declination, ω is the hour angle.  

To calculate the thermal power (per unit length of a collector) that absorbed by the 

receiver tube of a collector loop, the influences of the optical losses can be taken into 

consideration by inserting four parameters to Eq. is given by the following expression: 

Qcollector→reciever(W m⁄ ) = DNI. cos Ɵ. Wc. ƞopt. K(Ɵ). Ff. RSL. OEL  (3)   

Where ƞ optis the peak optical efficiency of a collector, K(Ɵ) is the incidence angle 

modifier, Ff is the soiling factor (mirror cleanliness), RSL is the row shadow loss, OEL is 

the optical end loss. 

The peak optical efficiency of a collector when the incidence angle on the aperture 

plane is 0o is: 

ƞ𝑜𝑝𝑡 =  𝜌. 𝛾. 𝜏 . 𝛼│Ɵ=0𝑜   (4) 
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where 𝜌 is the reflectivity, 𝛾 is the intercept factor, 𝜏 is the glass transmissivity, 𝛼 is the 

absorptivity of the receiver pipe. 

The incidence angle modifier for a LS-3 collector is given by: 

K(Ɵ) = 1 − 2.23073 × 10−4. Ɵ − 1.1 × 10−4.Ɵ2 + 3.18596 × 10−6. Ɵ3

        −4.85509 × 10−8. Ɵ4              00 ≤ Ɵ ≤ 800

K(Ɵ) = 0                                                          Ɵ > 80o  (5) 

The row shadow factor is: 

RSL = min [max (0.0,
Lspacing

Wc
 . 

cos Ɵz

cos Ɵ
) ; 1.0]  (6) 

where Lspacing (m) is length of spacing between troughs. 

The optical end loss is: 

OEL = 1 −
f. tan Ɵ

LSCA
 (7) 

where f is focal length of the collectors (m), LSCA is length of a single collector assembly 

(m). 

The total thermal power (per unit length of a collector) that loss from a collector 

represents the combination of the radiative heat loss from the receiver pipe to ambient 

(Q  reciever→ambient) and convective and conductive heat losses from the receiver pipe to 

its outer glass pipe (Qreceiver→glass), and is calculated by the following expression:  

Qcollector→ambient (W m)⁄ =  Urec . π . do . (Trec −  Tamb)  (8) 
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where Urec (W mrec
2⁄ . K) is the overall heat transfer coefficient of a receiver pipe, d0 

(m) is the outer diameter of a receiver pipe, Trec (K) is the mean receiver pipe 

temperature, Tamb(K) is the ambient air temperature. 

The overall heat transfer coefficient of a collector is found experimentally 

depending on the receiver pipe temperature, and it can be given in the second-order 

polynomial equation: 

Urec = a + b (Trec − Tamb) + c (Trec − Tamb)2                                                                   (9) 

where a, b, and c coefficients have been calculated experimentally for the LS-3 collector 

have been reported in literature [27]. 

The thermal power (per unit length of a collector) that transferred from a collector 

to a fluid is given in the following expression [26]: 

Q collector→fluid(W m)⁄ =  Q,collector→receiver − Q,collector→ambient                             (10) 

The thermal power (per unit length of a collector) that loss from the headers (pipes) 

is given in the following expression [24]: 

QLFP(W m)⁄ = 0.0583 . W. (Trec −  Tamb)                                                                          (11)  

The thermal power (per unit length of a collector) that loss from the expansion tank 

(vessel) is given in the following expression [24]: 

QLFV(W m)⁄ = 0.0497 . W. (Trec − Tamb)                                                                           (12) 

The useful thermal power (per unit length of a collector) that produced by the solar 

field is given by the following expression, which represents the sum of Equations 10-12:   
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Qsolar field→final demand(W m)⁄

=  Qcollector→receiver − Qcollector→ambient − Q,LFP

− QLFV  (13) 

The inlet thermal power of the thermal storage is given in the following 

expression: 

Qin = mms . CP,ms . (THT − TCT) =  ɳEX . moil . CP,oil . (ΔT)  (14) 

The expression of the discharge process (outlet thermal power) is given by: 

Qout = moil . CP,oil . (ΔT) = ɳEX .  mms . CP,ms . (THT − TCT)  (15) 

where  mms is the molten salt flow rate (Kg s⁄ ), (CP,ms = 1443 + 0.172 Tms) is the

specific heat of the molten salt (J/kg. ̊C), Tms is the temperature ( ̊ C) of the molten salt, 

THT is the hot tank temperature ( ̊C), TCT is the cold tank temperature ( ̊C), ɳEX is the 

efficiency of the heat exchanger, moil is the oil mass flowrate (Kg s⁄ ), ΔT is the difference

between inlet and outlet of the oil. 

The net thermal power inside the tank (w) can be calculated by the following expression: 

QTES =  Qacc + Qin − Qout − Qloss  (16) 

where Qacc is the accumulated thermal power in the tank from preceding iterations,  Qloss 

is the thermal power loss (kW m2⁄ ) of the cold and heat tanks and it is given in the

following empirical equation [46]: 

Qloss  =  0.00017. Tms  + 0.012  (17) 

where 𝑇𝑚𝑠 is the temperature ( ̊ 𝐶) of the molten salt in the hot and in the cold tanks. 
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The optimal values of the Rankine cycle parameters of cogeneration process can 

be satisfied by formulated the entire cycle as an optimization problem. Thus, there is a 

necessity to obtain suitable correlations of thermodynamic properties that can be used in 

optimization formulations. In thermodynamic calculations of the Rankine cycle, 

mathematical equations are used to replace the steam tables because they could 

incorporate easily into optimization formulations. However, available correlations for 

steam tables are complicated (e.g., nonlinear, nonconvex function), and it is hard to insert 

them in optimization task. Consequently, a new set of thermodynamic correlations have 

been developed in literature [109] to estimate properties of steam and they can be 

incorporated easily into optimization formulation and cogeneration design. The isentropic 

efficiency of the steam turbine can be obtained from the turbine hardware model, which 

developed by Mavromatis and Kokossis [139], to show the efficiency variation with the 

load, the turbine size, and operating conditions, as in the following correlation: 

ƞis =
6

5 . B
(1 −

3.41443 . 106 . A

∆his . mmax 
) (1 −

mmax

6 .  ṁ
)                                                                (18) 

where ṁ is the inlet turbine steam flowrate (Ib hr)⁄ , and mmax is the maximum mass 

flowrate of a turbine(Ib hr)⁄  , A and B are parameters that depend on the inlet saturation 

temperature (°F) and the type of turbine as in the following correlations: 

A = ao + a1 . Tsat                                                                                                                       (19) 

B = a2 + a3 . Tsat                                                                                                                       (20) 

where ao, a1, a2, a3 the correlation constants and can be found in literature [112].  
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3.5 Optimization Formulation 

              Because of the diurnal nature of solar energy, a multi-period approach is adopted. 

The annual operation is discretized in a number of operational periods (e.g., monthly). The 

index m refers to the operational period. For each operational period, an average 

meteorological day is used to represent the solar intensity data. In turn, the meteorological 

day is discretized into a number of sub-periods (e.g., 24 hours) where the index t is used 

to designate a sub-period.  Two water-treatment technologies are used: multi-effect 

distillation (MED) and reverse osmosis (RO). MED consumes mostly thermal energy and 

some electric energy which are respectively given by the specific requirements: qMED 

(kWht/m
3) and eMED (kWhe/m

3). RO requires electric energy which is represented by the 

following specific energy consumption term: eRO(kWhe/m
3). 

For each sub-period t, the thermal power needs for water treatment is obtained 

directly from the combustion of fossil fuels (Qt,m
Fossil  ), directly from a solar thermal 

collector (Qt,m
Direct,SC

), indirectly from solar energy through thermal storage 

(Qt,m
Out_Stored_SC), and from steam leaving the cogeneration turbine (Qt,m

Turbine).  Hence,  

Qt,m
Total = Qt,m

Fossil   + Qt,m
Direct,SC

 + Qt,m
Out_Stored_SC + Qt,m

Turbine               ∀t,  ∀m                   (21)   

where    

Qt,m
Total  =  Ft,m

MEDqMED      ∀t,  ∀m                                                                                              (22)         

The electric power provided by the cogeneration turbine is given by: 
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Et,m
Total = Ft,m

RO eRO + Ft,m
MED eMED    ∀t,  ∀m     (23) 

The thermal power captured by the solar collector (Qt,m
SC ) is directly used

(Qt,m
Direct, SC

) or is stored (Qt,m
In_Stored−SC) for subsequent usage, i.e. 

Qt,m
SC  = Qt,m

Direct, SC
+ Qt,m

In_Stored−SC   ∀t,  ∀m  (24) 

Over a sub-period, t, the thermal power balance for the thermal storage unit is 

given by: 

Qt,m
Stored−SC = Qt−1,m

Stored−SC + Qt,m
In _ Stored −SC - Qt,m

Out _ Stored−SC - Qt,m
Stored−Loss    ∀t, ∀m  (25)

Such collected energy is a function of the solar-radiation intensity (Solar_Radiationt,m) 

and the effective surface area of the solar collector (𝐴𝑆𝐶).

Although each period requires a certain area of the solar collector, the design value 

(which is also used for capital cost estimation) is the largest of all needed areas, i.e.: 

At,m
SC  ≤ ADesign

SC     ∀t, ∀m  (26)  

The cogeneration turbine is modelled through a performance function (e.g., isentropic 

expansion with an efficiency) that combines inlet and outlet steam conditions and relates 

the produced power to heat. 

 Ωt,m
Turbine (Dt,m

Tutbine, Ot,m
Turbine, Steamt,m

In , Steamt,m
Out, Powert,m

Out) = 0      ∀t,  ∀m  (27) 

The objective function seeks to maximize the profit for the water-energy nexus system: 
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Maximize Annual Profit = Annual value of treated water + Annual value of avoided cost 

of discharging wastewater – Cost of fossil fuels - Total annualized cost of solar collection 

system – Total annualized cost of solar storage system – Total annualized cost of 

cogeneration system - Total annualized cost of MED system – Total annualized cost of 

RO system 

Maximum Annual profit =    

∑ ∑ (νt,m
RO

tm  Ft,m
RO +  νt,m

MED Ft,m
MED) +  cWaste Ww −  ∑ ∑ (ct,m

Fossil
tm  Ft,m

Fossil) −   AFCSC −

 ∑ ∑ OPEXt,m
SC

tm −  AFCSC _ Storage −  ∑ ∑ OPEXt,m
SC _ Storage

tm −  AFCCogen −

 ∑ ∑ OPEXt,m
Cogen

tm  − AFCMED −  ∑ ∑ OPEXt,m
MED

tm −  AFCRO −  ∑ ∑ OPEXt,m
RO

tm                                                                                                                                                                                                         

                                                                                                                                        (28) 

It is worth noting that the economic objective function can be altered to include 

sustainability and safety metrics by using the sustainability and safety weighted return on 

investment metrics [140, 141].  

 

3.6 Case Study  

To demonstrate the viability of the proposed approach for solution strategies, a 

case study will be solved that based on the Eagle Ford shale play, which is located south 

Texas. A dual-purpose system which integrates solar energy and fossil fuels for producing 

electricity and fresh water has been considered. The optimal design, operation, and 

integration of the system will be found through this case study that requires particular 

input data for each unit of the entire system. As mentioned earlier, this system includes 

concentrated solar power field, a thermal storage system, conventional steam generators, 
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and a cogeneration process into two water treatment plants, a reverse osmosis plant (RO) 

and a multiple-effect distillation plant (MED). 

 

3.7 Flowback/Produced Water of Shale Gas Play  

In order to supply a specific amount of flow-back and produced water (FPW) from 

a shale play to a desalination plant, the calculation of an FPW flow average for many years 

is an appropriate option to avoid the uncertainty in the amount of FPW. Specifically, if we 

know that wastewater of shale play is typically subjected to heavily regulated and should 

store in containers so that these containers can be utilized to get a constant flow 

approximately. Additionally, a large number of wells in a shale play can contribute to 

making the flow rate of FPW approximately constant because when the FPW production 

of one well starts declining, another well will start its production and compensate a drop 

of production in other wells. 

The value of flowback and produced water returned from shale gas formations to 

the surface   in the Eagle Ford Basin is estimated to be 151.22 × 106 m3 [49] for 10 

plays since the early 2000s until 2015. Table 2 summarizes the costs of RO and MED. 

Additional data can be obtained from the literature [142-144]. The techno-economic 

data for RO and MED are reported in Table1. 
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Table 1: Techno-economic data for RO and MED [96, 145]  

 

Technology 

Thermal 

energy 

consumptio

n 

(kWht m3⁄  

Desalinated 

water) 

Electric 

energy 

consumptio

n 

(kWhe m3⁄  

Desalinated 

water) 

Annualized 

fixed cost 

(AFC) 

($ year⁄ ) 

Operatin

g cost 

($ m3⁄  

seawater) 

Water 

recovery 

(m3 

desalinated 

water/m3 

feed 

seawater) 

Value 

of 

desalin

ated 

water 

($ m3⁄  

desalin

ated 

water) 

Outlet 

Salt 

Conte

nt 

(ppm) 

RO - 4 2.0 . 106

+ 1,166 . 
(flowrate of 
seawater, m3

/day)0.8 

0.18 0.55 0.88 200 

MED 65 2 13.0 . 106

+ 2,227 . 
(flowrate of 
seawater, m3

/day)0.7 

0.24 0.65 0.82 80 

 

3.8 Solar Energy  

The solar data are summarized in Appendix A. Table 2 summarizes the main cost 

data for the solar collectors. 

Table 2: The direct capital cost of parabolic trough collector items [40, 41] 

Item Receivers mirrors Concentrator 

Structure 

Concentrator 

Erection 

Drive Piping 

Cost 

$/𝑚2 

43 40 47 14 13 10 

Item 

 

Electronic 

&control 

 

Header 

piping 

Civil works Spares, HTF, 

Freight 

Contingency Structures 

&Improvement 

Cost 

$/𝑚2 

14 7 18 17 11 7 
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The total fixed capital cost of the solar field ($) is the sum of heat collection 

element (HCE), mirror, support structure, drive, piping, civil work, structures, and 

improvements, as follows: 

FCISF = CSF . ASF  (29) 

where CSF is the solar field cost per area unit ($ 241 m2⁄ ),  ASF is the solar field aperture

area (m2).

The thermal storage system is assumed an indirect two-tank type which is used the 

binary solar salt (sodium and potassium nitrate) as a storage material with the following 

fixed capital cost estimation ($): 

FCITES = CTES . SC . Qsolar field→final demand  (30) 

where  CTES is the thermal storage system cost per thermal energy unit ($27.18 kWh⁄ ), SC

is the number of storage capacity hours (hr), Qsolar field→final demand is the useful thermal 

power that produced by solar field (kW). 

The fixed capital cost estimation of a steam generator system ($) is calculated as: 

FCISG =  CSG . Qsolar field→final demand         (31) 

where CSG is the steam generator system cost per thermal power unit ( $ kWt⁄ ).

The fixed capital cost of a boiler ($), which is assumed a water-tube boiler fueled 

with gas or oil, is estimated as follows [109]: 

𝐹𝐶𝐼𝐵 = 3 . 𝑁𝑝 . 𝑁𝑇  . 𝑄𝐵𝑜𝑖𝑙𝑒𝑟
0.77  (32) 
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where QBoiler is the amount of thermal power (BTU hr⁄ ) transferred to the steam and equal 

to (QBoiler/ƞboiler), ƞboiler is the efficiency of a boiler,  NP is a factor to account for the 

operation pressure and it is given by: NP = 7 . 10−4. Pg + 0.6; Pg is the gauge pressure 

(pisg) of  a boiler, NT is a factor accounting for the superheat temperature and is given by: 

NT = 1.5 . 10−6 . TSH
2 + 1.13 . 10−3 . TSH + 1; TSH is the superheat temperature (°F), 

TSH =  Tin −  Tsat
in ; Tin is the temperature at the inlet of a turbine, Tsat

in  is the saturation 

temperature at the inlet of a turbine. 

The fixed capital cost of a turbine ($), which is assumed a non-condensing turbine, 

is estimated as follows [109]:  

FCIT = 475 . ET                                                                                                                          (33) 

where ET is the turbine shaft power output (BTU hr⁄ ); E,T = m . (hin − hact
out). 

3.9 Flared Gas  

The shale gas production from Eagle Ford wells can be used as a fuel for 

cogeneration process. Furthermore, the flared gas can be used also as a fuel source for 

cogeneration process that it will contribute to saving a considerable amount of shale gas 

along with diminishing CO2 emissions accompanying to the flared gas. In Eagle Ford 

fields, 4.4 billion cubic feet of gas was flared in 2013 that represented around 13% of the 

gas in the formation [146]. 

3.10 Total Cost  

The annual fixed cost (AFC) ($ year⁄ ) of the system is determined as follows:  
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AFC=[(FCISF + FCITES +  FCISG + FCIB + FCIT + FCIPST)/N] + AFCRO +  AFCMED (34) 

The operation and maintenance cost ($ hr⁄ ) of solar field, cogeneration process, 

thermal storage system, administration, and operations is estimated as follows, based on 

data are given by [40, 41]: 

OCOM = COM . (Qsolar field→final demand + QBoiler)                                                             (35) 

where  COM is the operation and maintenance cost per thermal power unit 

($0.0203 kWh⁄ ). 

The type and amount of the selected fuel are necessary to estimate the cost of fuel 

($ hr)⁄  and it is formulated as follows: 

OCF =  CF . QB . 3413 . 10−6                                                                                                    (36) 

where CF is the fuel cost ($ MMBTU⁄  ),  QB is the amount of thermal power (BTU hr⁄ ) that 

equals to (QBoiler/ƞboiler), ƞboiler is the efficiency of a boiler. 

The annual operating cost (AOC) ($ year⁄ ) is determined as follows: 

AOC = aY . (OCOM +  OCF)                                                                                                       (37) 

where aY is the annual operation time (hr/year). 

The annual income ($/year) is the sum of the total desalinated water production 

value and the saving value of a reduction in the cost of transportation, fresh water 

acquisition, and disposal: 

Annual income = aY . {(0.88 . flowrate of desalinted water from RO, m3 hr⁄ +

0.82 . flowrate of desalinted water from MED, m3 hr⁄ ) + [(CFW + CDS +

CTR) . total flowrate of disalinated water from (RO, MED)]/0.11924 }                     (38)      



39 

where CFW is the fresh water cost per volume unit(0.24$ bbl⁄ ), CDS is the disposal cost

per volume unit(0.05$ bbl⁄ ), CTR is the transportation cost per volume unit(0.89$ bbl⁄ ).

The net profit represents the sum of the total desalinated water production value 

and the saving value of a reduction in the cost of transportation, fresh water acquisition, 

and disposal. The treatment process of flowback and produced water in a shale gas site 

that can be contributed effectively to save a money for each barrel of flowback and 

produced water which should be trucked and disposed. Table 3 shows the cost of 

transportation, fresh water acquisition, primary /secondary treatment, and disposal 

depending on the characteristics of a water treatment plant with capacity an 

2,380 barrel/day in Eagle Ford basin [147]. 

Table 3: Cost of transportation, fresh water, treatment, and disposal of FPW [147] 

Fresh water ($ barrel⁄ )       0.24 

Disposal (Deep well + Landfill) ($ barrel⁄ )  0.05 

Primary & secondary treatment ($ barrel⁄ )   0.34 

Transportation ($ barrel⁄ )       0.8 

3.11 Results and Discussion 

A detailed performance model of the parabolic trough was applied to the case study 

to determine the useful thermal power (per unit length of a collector) that produced by the 

solar field. The calculations of the solar field have been carried out depending on the 

monthly average of hourly direct solar irradiance, hourly ambient temperature, and hourly 

incidence angle. Moreover, the characteristics of the LS-3 collector were adopted and all 

types of thermal losses (convection, conduction, radiation) are considered for the entire 
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the solar field. The hourly variations in the useful thermal power for 12 months were 

obtained, as shown in Figure 3. 

Figure 3: Monthly average of hourly DNI and useful thermal power.  Reprinted with 
permission from [156] 
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Figure 3: Continued.  Reprinted with permission from [156] 

The obtained results showed that the gained thermal power in the month January, 

February, November, and December is less than the rest eight months of the year due to 

low DNI and the high cosine effect. However, the four months, which have the lowest 
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value of useful thermal power still has the significant potential to provide a thermal power 

to the system. The selecting solar irradiance around (500 W m2⁄ ) at design point to

calculate the total area of collectors can give a great chance for these four months to 

contribute efficiently to supply a sufficient thermal power, despite a low value of average 

direct normal irradiance in the region that selected as a case study. In the same direction, 

the eight months, which have a higher DNI can be exploited to provide direct thermal 

power to MED and a surplus thermal power to a thermal storage system. Indeed, the 

optimal area of collectors and storage system capacity are based on the minimum total 

annual cost of the entire system that can be obtained through an optimization solution. 

The monthly distribution of the optimal thermal power mix for MED plant and the 

entire system has been determined for the different percentage contribution of RO and 

MED in the total desalinated water production. The optimal thermal power mix for MED 

plant includes the direct thermal power of solar field, the indirect thermal power of thermal 

storage system, the surplus thermal power of cogeneration system, and the direct thermal 

from the combustion of fossil fuels. The monthly distribution varies over the year due to 

the availability of DNI and the variability of an incident angle, as shown in Figures 4-6. 
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Figure 4: Optimal thermal power mix for MED plant and the entire system with 

(30% RO  70% MED).  Reprinted with permission from [156] 

Figure 5: Optimal thermal power mix for MED plant and the entire system with (60% 
𝑅𝑂  40% 𝑀𝐸𝐷).  Reprinted with permission from [156] 

Figure 6: Optimal thermal power mix for MED plant and the entire system with 

(80% 𝑅𝑂  20% 𝑀𝐸𝐷).  Reprinted with permission from [156] 
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The solution of the case study introduces two scenarios to the optimal operation 

for MED in accordance with the availability of solar energy regardless of the percentage 

contribution of MED, the first scenario is for the months of January, February, November, 

and December and shows that it favors the harness of direct solar thermal power during 

the hours of the diurnal and utilize fossil fuel in the early hours of the day and in the 

evening. However, stored solar thermal power can be contributed from 1 to 2 hours only 

because of lacking solar energy in these months, as illustrated in Figure 7, adapted from 

[148]. 

The second scenario is for the months of April, March, May, June, July, August, 

September and October and shows sharply diminishing fossil fuel use up to 2 h only. 

Typically, direct solar thermal power is exploited in the middle of the day, while stored 

solar thermal power is dispatched in the early hours and in the evening, as shown in Figure 

8, adapted from [148]. In future work, the previous two scenarios can be applied to the 

entire system in the case of integrating solar energy into cogeneration process. 
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Figure 7: Optimal operation for MED during January, February, November, 

and December.  Reprinted with permission from [156] 

Figure 8: Optimal operation for MED during April, March, May, June, July, August, 

September, and October.  Reprinted with permission from [156] 

It is observed that the total annual cost of the system as mentioned in the previous 

section can be reduced by increasing the percentage contribution of RO over MED, but it 

requires consuming much amount of fossil fuel. More consumption of fossil fuel causes 

serious environmental impacts due to emitting a massive amount of 𝐶𝑂2. From the case 

study, the sustaining of fossil fuel resources and diminishing the emissions of greenhouse 
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gas requires enhancing the percentage contribution of MED in the system that based on 

solar energy as a provider for a high percentage of thermal power. Figure 9 offers an 

obvious comparison between the economic and environmental aspects of the system 

through the different percentage contribution of RO and MED in the total desalinated 

water production. Reconciliation of economic and environmental objective can be 

achieved using a sustainability weighted return on investment calculation [96, 141]. 

Figure 9: Comparison between the economic and environmental aspects.  Reprinted 
with permission from [156] 

The case study shows that in Eagle Ford fields, 4.4 billion cubic feet of gas was 

flared in 2013 that represented around 13% of the gas in the formation [146]. Therefore, 

this significant amount of flared gas can be exploited as a major source of energy for the 

system or sharing shale gas in a specific percentage as a minor source of energy, the results 

of the different percentage contribution of flared gas are shown in Table 4. 
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Table 4: Technical and economic results for the system.  Reprinted with 
permission from [156] 

Percentage of 

Contribution 

*(%) 

Percentage of 

Contribution 

**(%) 

Total annual 

cost 

(MM $ year)⁄  

Annual Net (After
− Tax)profit  

(MM$ year)⁄  

ROI (%) Payback 

period 

(year) 

30 RO  

70 MED 

0.0 35.3 50.4 14.9 5.9 

30 RO  

70 MED 

50 35.1 50.6 14.96 5.6 

30 RO  

70 MED 

100 34.8 50.8 15 5.5 

60 RO  

40 MED 

0.0 28.1 48.8 17.2 4.9 

60 RO  

40 MED 

50 27.8 49 17 4.8 

60 RO  

40 MED 

100 27.5 49.2 17.3 4.8 

80 RO  

20 MED 

0.0 23.5 47.7 19.1 4.4 

80 RO  

20 MED 

50 23.2 47.9 19.2 4.3 

80 RO  

20 MED 

100 22.8 48.1 19.3 4.3 

*The percentage contribution of RO and MED plants in the total desalinated water production; ** The

percentage contribution of flared gas as source of energy. 

3.12 Summary 

A water-energy nexus framework has been used to address water management in 

shale gas production. The following key elements have been integrated: solar energy, 

fossil fuel, cogeneration process, MED and RO. A hierarchical approach and a multi-

period MINLP have been developed and solved to find the optimal mix of solar energy, 

thermal storage and fossil fuel and the optimal usage of water treatment technologies. A 

case study for Eagle Ford Basin in Texas has been solved to show the applicability of the 

proposed approach. The system has been analyzed according to the technical, economic 

and environmental aspects. The multi-period method has been applied to discretize the 
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operational period to track the diurnal fluctuations of solar energy. The percentage 

utilization of water treatment technologies has been iteratively discretized. Once the 

solution of the mixed integer nonlinear program (MINLP) was applied to each 

discretization, the optimal mix of solar energy, thermal storage and fossil fuel, the optimal 

values of the design and operating variables of the system (e.g., minimum area of a solar 

collector, maximum capacity of the thermal storage system, etc.) have been determined. 

The results show the system’s economic and environmental merits using a water-energy 

nexus framework and enabling effective water management strategies while incorporating 

renewable energy. 
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CHAPTER IV  

AN INTEGRATED APPROACH BASED ON STOCHASTIC OPTIMIZATION FOR 

WATER-ENERGY NEXUS WITH MULTIPLE ENERGY SOURCES UNDER 

UNCERTAINTY 

4.1 Introduction 

The rapid expansion in energy and water consumption, particularly in oil and gas 

industries, has emerged as a substantial problem due to economic and environmental 

considerations. These industries can be classified into the upstream, midstream, and 

downstream sectors and each sector has various requirements of energy and water based 

on its physical site and certain functionality. The recent advancement in hydraulic 

fracturing technology and horizontal drilling has contributed to considerable growth in 

shale gas production. For instance, the US production of shale gas has increased from 2 

trillion ft3 in 2007 to 17 trillion ft3 in 2016, and the recent estimation shows that the 

cumulative production would be more than 400 trillion ft3 over the next two decades [118]. 

The importance of shale gas comes from being as one of the most essential  resources for 

electric power generation [149], and other industrial applications by converting shale gas 

raw into value-added chemicals and fuels such as methanol, olefins, aromatics, and liquid 

transportation fuels [119-125]. The upstream sector of shale sites which includes 

preparation for construction, drilling and fracturing wells to bring shale oil and gas to the 

surface. The shale gas and oil production are associated with utilizing millions of gallons 

of freshwater for construction, drilling, hydraulic fracturing, and well closure operations. 

Indeed, most of the injected water remains underground except 10% to 40% of the used 
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water may return to the surface as flowback and produced water (FPW), which contains a 

high concentration of dissolved solids and contaminated materials [150]. The direct 

injection of FPW into underground disposal wells was the most common option for 

wastewater management during the past decades. However, the disposal option is not 

extremely recommended due to a high transportation cost and environmental risks that 

motivate most researchers to evaluate the potential of recycling/reusing for FPW [85, 151]. 

The midstream sector of shale sites is managed by processing plants (which provides 

processing service to the upstream producers) after gathering of raw shale oil and gas from 

various shale sites. Additionally, it plays significant role to connect the upstream 

production with the downstream markets over distribution networks, as shown in Figure 

10. The produced gas is transported by pipelines from shale sites to processing plants. The 

raw shale gas is divided into wet gas and dry gas based on the amount of natural gas liquids 

(NGLs), which are produced as byproduct and they can be sold at a high price for the 

downstream sector. All activities for the above-mentioned sectors are significantly 

featured to energy consumption, freshwater acquisition, as well as wastewater production, 

as shown in Figure 11. 
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Figure 10: General flowsheet of shale gas processing 

Approximately, 90% of water consumed in shale gas production is used in 

producing a fracturing fluid that is injected under high pressure to create cracks into the 

rock layers to enhance the production, while the remaining water percentage is consumed 

in the drilling process. The common water sources which is used in hydraulic fracturing 

may be surface water (rivers and lakes), groundwater, reused/recycled water. The most 

common freshwater sources throughout the year are: an interruptible water source (which 

is an uncertain water supply) and an uninterruptible water source (which is a guaranteed 

water supply). The interruptible water is pumped throughout a pipeline from a nearby 

water source (a small water body) to a shale site, while the uninterruptible water requires 

trucking transportation from a remote water source to a shale site. In some cases, these 

sources may be stored in a fresh water impoundment prior to its usage. Consequently, the 
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trade-off between the two freshwater sources is developed based on the availability and 

transportation cost of fresh water [94]. The operators in shale sites prefer transporting 

freshwater by pipelines from the nearest water source due to the high cost of trucking and 

its environmental impacts. In this context, the stimulation of a typical well requires about 

4000–6500 one-way convoys of trucks [94]. Wastewater is discharged in two forms: 

flowback water, which is the short-term wastewater, and produced water, which is the 

long-term wastewater [94, 128, 152]. Additionally, the wastewater is typically subjected 

to rigorous regulation due to its content of contaminants materials, therefore it should be 

stored in containers to protect the surrounding environment prior to recycle/reuse it. Most 

current efforts are focusing on the potential of recycling/reusing flowback and produced 

water to avoid the crisis of fresh water scarcity. There are three competitive options to 

handle the wastewater problem accompanying shale sites production: mobile treatment 

unit (e.g., mobile desalination truck), centralized treatment plant (e.g., RO, MED, MSF), 

and underground injection in disposal wells [153]. Accordingly, there is a necessity to 

design a superstructure framework for managing the problem of water and energy for shale 

oil and gas industries via water-energy nexus framework. 
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Figure 11: Water-energy nexus framework in shale gas and oil production 

A superstructure refers to a system diagram that consists of all subsystem units and 

all relevant links for more sustainable designs. All system alternatives can be evaluated to 

select the optimal operation conditions for each subsystem unit by solving the 

superstructure optimization model [154]. Process integration techniques can be coupled 

with an optimization formulation to define the optimum configuration of the 

superstructure for the system. Integration of system units, streams, resources, and 

objectives is a critical design element in operating cost-effective and sustainable 

processes. Generally, process integration includes two significant integration concepts are 

heat integration and mass integration. Heat integration represents the effective exploiting 

of heat resources within the process (e.g., hot streams, cold streams) to reduce fossil fuels 

utilizing and greenhouse gas emissions, while mass integration is the effective utilization 
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of mass resources within the process (e.g., recycling and reusing of wastewater, reduction 

in fresh water usage) [3, 96, 155]. Many approaches used for treatment and management 

of shale sites wastewater rely on deterministic optimization models that neglect the 

different stochastic parameters.  Alternatively, they use input parameters, which are 

known in advance by using the average values of uncertainty parameters [6, 7, 92, 94, 152, 

156, 157]. Some of these approaches consider traditional technologies of desalination 

processes such as the reverse osmosis (RO) and the multi-effect distillation (MED). The 

deterministic approach of optimization has been used as a special case of the stochastic 

approach to solve a proposed model depending on one scenario for a specific forecast 

point [158]. Therefore, the optimal solution for each scenario is completely different from 

solutions of other scenarios.  

Indeed, the design and operation of various industrial processes may be subjected 

to a number of uncertain parameters such as feedstock input, fuel price, production 

demand [159]. In order to get more realistic solutions to overcome the limitations of 

deterministic methods and to improve the system performance, uncertainty can be 

considered through the stochastic approach in the design of utility systems (e.g., heat and 

power demand, fuel price), water management networks (e.g., water source availability, 

water demand, flowback water), and shale sites production (e.g., flow rate, composition). 

To find the optimal and feasible solution for synthesizing a network operating over a range 

of uncertain parameter values, two major approaches can be used for achieving this 

objective. The first approach is based on flexibility by adjusting the control variables in 

the system when the uncertain parameters change, while the second approach is based on 
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stochastic programming by adjusting the recourse variables for each parameter realization 

to achieve optimality [160].  

In stochastic optimization, a stochastic approach under uncertainty seeks to 

optimize the expected value of the objective function including the considered scenarios, 

instead of optimizing this function for a single scenario as in the deterministic approach. 

Scenarios are a set of all possible future alternatives with their probabilities of occurrence 

to sense the variation in the entire system. The probability distribution for random 

parameters of possible scenarios can be developed by reliable historical data [161, 162]. 

The stochastic programming techniques can be used to accommodate the uncertainty by 

considering multiple scenarios with their probabilities of occurrence to optimize the 

expected value of an objective function. According to the decision-making steps, the 

number of stages of the stochastic programming model is specified. A two-stage stochastic 

programming model is the most commonly used technique to associate uncertainty in the 

decision-making. The first stage or (here and now) decisions, which are made prior to the 

realization of uncertainty because they are related to the design aspects, also have control 

or (here and now) decision variables. Unlike, the second stage or (wait and see) decisions, 

which refers to the operating patterns, are made after the revealing of uncertainty, and 

have state or (wait and see) decision variables [163]. The two-stage stochastic 

programming model has been applied to various applications such as an industrial process 

design and operation, supply chain planning and distributed energy systems [160, 163-

168]. In order to address the problems of process synthesis under uncertainty, the problem 

has been formulated as a two-stage stochastic model and continuous probability 
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distribution functions have been used to describe uncertain parameters to maximize the 

expected profit through a decomposition-based algorithm [169, 170]. Other investigators 

have proposed generalized benders decomposition and the outer approximation/equality 

relaxation algorithms to solve the process synthesis problems with partitioning the design 

variables into two types: structural and periodic [171], while A combined multiperiod 

stochastic optimization formulation has been proposed along with a decomposition-based 

algorithmic procedure for solving a process synthesis/planning problems [172].   

 Many strategies have been developed to satisfy thermal and electric power 

demands, which provided by utility systems, under fluctuated conditions. For example, 

the operation of a power plant is exposed to uncertainties, one reason is the high 

fluctuation of fuel prices, which have significant impact on the electricity prices. In this 

context, Chebeir et al. [165] developed a model to describe and optimize the shale gas 

supply chain network by using a two-stage stochastic programming model. The 

uncertainty in prices of natural gas and natural gas liquids (NGL) products is handled 

through using a scenario-based method. Steimel and Engell [173] dealt with the uncertainty 

in the operational parameters of chemical processes as a set of discrete scenarios. A two-

stage formulation is used with considering the design parameters as the first-stage 

decisions to solve the optimization problem through stage decomposition. Shafiee and 

Topal [174] presented the evaluated study for the available fossil fuel prices models by 

comparing among them to select the most effective model for the long-term trend.  

Mirkhani and Saboohi [175] enhanced the limited capability of a deterministic energy 

supply model to handle with the uncertainty in the price of natural gas and to incorporate 
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renewable energy technologies in effective method. A binomial lattice is created based on 

the stochastic nature of the energy source and the energy system model is reformulated as 

a multi-stage stochastic problem. An overview how the uncertainty in fuel price over time 

can be modelled as a mathematical expression via a stochastic process is provided in these 

sources [176-178]. Iyer and Grossmann [179] suggested that uncertainties can be 

converted into multi-period deterministic values. Carpaneto et al. [180, 181] formulated 

uncertainties as multiple time frame approach for cogeneration planning. However, sun et 

al. [182] reported that using a certain period for random varying of the uncertainties might 

cause violation of some optimization constraints. Thus, they classified uncertain factors 

into two categories: time-based uncertain factors (which can be formulated as a multi-

period model) and probability-based uncertain factors (which can use stochastic 

programming with recourse to formulate the model) to evaluate the effect of the 

uncertainties on the optimization objective.  There are some of works have concerned in 

the water network synthesis under uncertainty and they have dealt with the optimal water 

reuse strategies in shale sites production. Some emerging technologies such as membrane 

distillation may be utilized to exploit surplus heat from cogeneration plant, flared gases, 

compression stations, and other on-site sources to provide a modular system which has 

high capability to reject salt [58, 107, 129].  

The U.S. shale sites resources have boomed over recent few decades. Therefore, 

there is a necessity to additional facilities (e.g., transmission pipeline, storage fields, 

midstream processing facilities) to absorb the growing supplies of shale sites production 

[183]. The design of shale gas processing systems is a tremendous issue to handle 
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uncertainties in flow rate and compositions of received feedstock. Furthermore, the 

product specifications of shale gas processing systems might be violated without 

considering uncertainty in raw shale gas compositions. The shale gas production from 

various shale plays, or even from multiple shale wells of a given shale play [184], requires 

different processing necessities due to fluctuated production rate and compositions 

through the lifetime of a shale play or a shale well. In this context, Gong et al. [185] 

developed intensified process designs of shale gas processing systems by comparing 

among them to handle fluctuated flow rates and uncertain compositions of raw shale gas. 

An equipment capacity and process operating conditions of an intensified process design 

are determined based on the deterministic designs. However, the deterministic designs 

might generate off-specifications products, despite they could offer excellent integration 

strategies of a process superstructure [186].  

Renewable energy resources (such as solar) could be utilized to improve the 

sustainability of the system. The solar energy may be used as a direct source of heat to 

industrial plants (e.g., desalination process) or as indirect heat source to the utility facilities 

(e.g., steam generator of steam Rankine cycle). To increase the reliability of incorporating 

solar energy into existing or proposed large-scale projects, the ahead prediction of solar 

radiation (per minute, hour, day, month, season, year) depending on the availability of 

solar radiation data and their accuracy is substantial for a long-term evaluation of the 

technical and economic performance of these projects. However, the intermittent nature 

of solar irradiance, which driven by the meteorological and geographic parameters such 

as maximum and minimum temperature, relative humidity, sunshine duration, cleanness 
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index, cloud cover, geographical site, etc., causes in high uncertainty in the final amount 

of energy production [187]. Moreover, to handle with the uncertainty in solar energy 

availability, a multi-period approach is adopted to discretize the operation time into a 

number of operational periods and operational sub-periods [21, 55, 61, 64-70, 73-75, 77-

79, 81, 110, 112-114, 188]. 

This work presents a superstructure framework of a multi-purpose system to 

address the water-energy nexus problem of shale oil and gas industries. The system utilizes 

a hybrid of conventional energy (fossil fuels) and renewable energy (solar energy) as the 

external sources of thermal energy, which is supported by the thermal storage system to 

manipulate the diurnal fluctuation of solar energy, to produce electrical power, fresh 

water, fuels, and value-added chemicals while treating shale-gas wastewater. A new 

systematic approach is developed to the design, operation, integration and optimization of 

the system, which operates under uncertain operational conditions. The system consists of 

several subsystems are: cogeneration process (including non-condensing (back-pressure) 

steam turbine and water-tube boiler fueled with gas or oil), steam generator, solar 

collection process (parabolic trough collectors), thermal energy storage, multi-effects 

distillation plant, reverse osmosis plant, primary and secondary water treatment processes, 

and an industrial process. The optimization problem is formulated as a two stage 

multiperiod stochastic programming problem.  Two uncertain operational parameters 

(normal direct irradiance, fossil fuel price) are considered in the model through a scenario-

based approach, which represents a finite set of scenarios (or realizations) to describe the 

uncertain parameters and future outcomes with a certain probability for each of them. 
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Therefore, the problem is reformulated as a multi-scenario Mixed Integer Non-Linear 

Programming (MINLP) problem that is a deterministic equivalent of a two-stage 

stochastic programming model with recourse to account for the fluctuations of solar 

energy and fossil fuels price. The modelling equations of subsystems are included two sets 

of variables distributing on the first and second stages of optimization based on their 

performing before and after the realization of uncertain parameters. Heat integration is 

carried out among the hot and cold streams of an industrial process and subsystems of the 

entire system. The developed approach is aimed to address the following points: 

• The optimal mix of solar energy, thermal storage energy, and fossil fuel for the 

entire system That meets the system requirements of electric and thermal power 

• The minimum total annual cost of the entire system 

• The maximum annual profit of the entire system 

• The economic feasibility of the system 

• The optimal design and operation of the system 

• The impact of the system on environmental aspects 

To address the abovementioned tasks, the incorporation of process integration 

technique, an optimization formulation which is based on the modelling equations, and 

randomness is the effective method to obtain a systematic approach for an optimal 

solution. 
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4.2 Problem Statement  

Consider a typical multi-purpose system such as the schematic representation shown 

in Figure 12, which shows the key subsystems and streams involved in the system to 

systematically design an integrated system. The system may be installed at a shale-gas 

production site. The site connected to an external power grid. The system is considering 

the following options to satisfy technical, economic and environmental requirements.: 

• An industrial process with several process hot and cold streams, these streams may 

exchange heat energy among them and with external heating and cooling utilities. 

• An industrial process is considered to usage as a gas processing plant 

(fractionation) at the midstream sector which converts shale gas production of the 

upstream sector to fuels (to be used in a boiler) and chemicals (to be sent to the 

downstream sector).   

• A parabolic trough collector is selected for the solar collection process. 

• A two-tank storage system, which is used molten salts as a storage medium in this 

system, is selected. 

• Steam which is produced in a steam generator may be provided directly to an 

industrial process or to a multi-effect distillation plant. 

• Surplus steam (low-grade steam) from cogeneration process may be provided to a 

multi-effect distillation plant. 

• An excess industrial process heat may be used to supply a cogeneration process or 

a multi-effect distillation through a steam generator. Also, a required heat of an 

industrial process may be supplied by a steam generator. 
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• Fossil fuel (shale gas, flared gas) and solar energy (as direct solar thermal power 

and as indirect solar thermal power from thermal energy storage) are used as 

external sources of heat (to be used in a boiler and a steam generator). 

• The differences in shale gas flow rate and composition from different sources can 

be considered. 

• Water is classified according to it’s the Total Dissolved Content (TDS) 

concentration. 

• Wastewater is typically subjected to rigorous regulations and should be stored on-

site in tanks for future treatment or disposal, while fresh water is stored in 

impoundments. 

• Treating the wastewater (flowback and produced water) for on-site recycling/reuse 

through three levels of treatments (primary, secondary, and tertiary). The tertiary 

level includes two water treatment plants: Reverse Osmosis (RO) and Multiple-

Effect Distillation (MED). 

• Brine stream from the tertiary level units is transported to inject into disposal wells. 

• The uncertain parameters (i.e., Direct Normal Irradiance (DNI) and fossil fuels 

price) are considered and described through discrete approximation of probability 

distribution. 

. The problem, which is addressed in this article, can be stated as follows: 

Given are the following: 
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• The flowrate and characteristics of produced shale gas, flared shale gas, flowback 

and produced wastewater, and fresh water demand during stimulating a few shale-

gas wells by hydraulic fracturing operations 

• A set NC of an industrial process cold streams (to be heated) and a set NH of an 

industrial process hot streams (to be cooled). Given also are the heat capacity 

(flowrate × specific heat) of each process cold stream, fcp,v, and of each process 

hot stream, FCp,u; the inlet (supply) temperature of a cold stream, tv
s ; the inlet 

(supply) temperature of a hot stream, Tu
s; the outlet (target) temperature of a cold 

stream, tv
t ; the outlet (target) temperature of a hot stream, Tu

t, where v = 1, 2, . . ., 

NC, and u = 1, 2, . . . , NH. 

• A selected temperature and pressure for inlet steam into a turbine. 

• An external power grid demand. 

• The solar data for a system site such as hourly dry bulb temperature, hourly wet 

bulb temperature, hourly direct normal solar irradiance, and hourly solar incidence 

angle. 

• The forecast price of natural gas during a year 
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Figure 12: Proposed superstructure representation 

• The direct capital cost of parabolic trough collector items (based on LS-3 collector 

type). 

• The characteristics of a thermal storage system media. 

• The techno-economic data for RO and MED 

• The unit costs of fresh water acquisition, primary and secondary treatments of 

wastewater, disposal of wastewater, and transportation of wastewater.  

• A percentage contribution of each water treatment plants in the total desalinated 

water production. 

Available for service are the following: 

• Solar energy is utilized as a source of heat. The useful thermal power of solar 

collectors fluctuates dynamically during the year. The size (design area) and 
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cost of the concentrated solar energy system are unknown and are to be 

specified through optimization formulation. 

• A set NHU of heating utilities ; HUTILITY = {h|h = 1,2, … , NHU}; the 

temperature Th
H and the cost Ch

H are known for each heating utility, and a set 

NCU of cooling utilities; CUTILITY = {c|c = 1,2, … , NCU}; the target temperature 

tc
t  and the supply temperature tc

s  are known for each cooling utility, while 

heating and cooling utilities flowrates are unknown. 

• The cogeneration process exploits a steam turbine to generate power and the 

surplus steam that leaves the turbine as a heat source for several heating 

purposes. The optimal values of generated power and produced steam are to 

be determined. 

4.3 Approach 

The proposed approach is designed to identify the optimal configuration, design, and 

operation of the integrated system while trying to maximize the annual profit under 

uncertainty. The computational difficulties of optimization problem under uncertainty is 

a very challenging task. Thus, it requires finding proper techniques and alternative 

approaches that contribute significantly to reduce the complexity of a solution. Figure 13 

demonstrates the structure of the hierarchical approach which is used in this study to find 

the optimal solution. Prior to formulating the stochastic optimization problem of the 

integrated system that produces a certain level of electricity, desalinated water, fuels, and 

value-added chemicals, there are several steps are necessary to be done. The starting step 

in the proposed approach is to obtain deterministic and uncertain data. The scenario-based 



 

66 

 

method is adopted to describe the uncertain parameters during all the time periods with an 

identified probability of occurrence based on a discrete approximation of continuous 

distributions, which allows reformulating a stochastic programming problem as a 

deterministic equivalent of a stochastic programming model with a finite number of 

scenarios to describe the uncertainty, for more detailed information is given in section 

4.3.1. Next, the percentage contribution of RO and MED in treating wastewater is 

iteratively discretized, which leads to simplifying the solving of the optimization problem 

and raising computational efficiency. The RO and MED plants can be designed separately 

based on their known treatment tasks for each discretization step. Hence, thermal and 

power loads for plants are calculated. Similar approaches have been proposed earlier in 

the literature for other applications [131, 133, 134, 156]. Furthermore, various percentage 

of solar energy contribution in the total mix of thermal power that supplied to the system 

is chosen to add further simplifying to a computational approach and to assess the 

economic feasibility of incorporating solar energy to the system. Computer-aided 

simulation is used to estimate the heat duties of major equipment and streams temperature 

for an industrial process. Heat integration approach can be used to determine the deficit 

and surplus heat of an industrial process that can be coupled with the heat recovery unit 

(steam generator) of the system. Therefore, thermal pinch analysis technique [96] is used 

to integrate the hot and cold streams of an industrial process to calculate deficit and excess 

heat and the temperature at which it is available. Another important step is to select and 

formulate a set of models and constraints that characterize the subsystems involved in the 

entire system as in section 4.4. Once the foregoing steps are achieved and the total thermal 
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and electric loads are determined of the integrated system, the optimization problem is 

formulated as a multi-scenario Mixed Integer Non-Linear Programming (MINLP) 

problem that is a deterministic equivalent of a two-stage stochastic programming model 

with recourse to dealing with an uncertainty of solar energy and fossil fuels price for each 

period, more detailed information in section 4.3.2 and 4.5. The objective function is solved 

to minimize the sum of the capital costs (First stage) which are expended only once at the 

time of building the system and the operating costs (Second stage) which are expended 

during each scenario along with maximizing the system revenue. Upon identification the 

total annual profit and the thermal power mix of the system, the procedure is repeated for 

the various percentage contribution of RO and MED in treating wastewater. The obtained 

results are compared to select the maximum-profit solution and the optimal design and 

operation of the entire system.  
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Figure 13: Proposed Approach 
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4.3.1 Generating Scenario Tree for Uncertain Parameters 

The precise dealing with the required input data is very significant in enhancing 

computational efficiency of solving optimization problems. The input data are classified 

into deterministic and uncertain parameters. Deterministic input parameters are utilized in 

the model, specifically, the decision of selecting and designing the system units before the 

realization of uncertain parameters such as capital cost investment, fixed operation and 

maintenance cost, techno-economic characteristics, etc. Otherwise, it is generally 

intractable to optimize a stochastic problem by incorporating uncertain parameters as 

continuous random variables. Thus, these parameters can be represented  as a multi-period 

scenario tree which grows with scenario tree nodes based on approximating continuous 

distributions into discrete distributions or Monte Carlo simulation random generated 

nodes (a random generation of information) from the common continuous distributions 

[189]. A scenario tree is represented by a set of nodes, kϵK, and branches. Each scenario 

s is a path of flowing all possible information and realizing uncertain parameters. This 

path starts from the initial situation (which is called the root node) to a leaf node through 

the time horizon of a stochastic problem and it has a certain probability, ps = ПkϵK pk
s , 

which is the product of the occurrence probability (joint probability) of all nodes 

pertaining to the path. It is necessary to mention that the sum of the probability of all 

scenarios within a certain period in the time horizon is to be equal to one Σs Pt
s = 1. The 

main goal of scenario generation in the stochastic problem is to create a set of probabilistic 

scenarios, which describe precisely uncertain parameters space to make the best decisions 

for the first and second stages of a two-stage stochastic model.  
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In this work, the integrated system is subjected to significant uncertainties in solar-

irradiation intensity (Direct normal irradiance) and fossil fuels (Natural gas) price, which 

take on finite values at different points of time, Particularly, from season to another season 

of a year, during system operation. Note that the natural gas demand peaks in the winter 

is higher than demand peaks in the summer due to the higher gas consumption in heating 

and power generation. The seasonal fluctuation of demand leads to significant price 

change. For illustrate, the U.S. gas market has two seasons: the surplus gas is stored by 

injecting into the ground in summer (April-October), while it is withdrawn in winter 

(November-March) to meet the increased demand [190]. Consequently, the exploiting of 

solar energy as energy source could contribute in increasing gas amount stored in summer 

due to the high intensity of solar irradiation, but this contribution is less important in winter 

because fluctuations in hourly direct normal irradiance are weak in summer but strong in 

winter. Accordingly, the uncertainty of solar energy and fossil fuels price can be 

represented by three scenario tree nodes (high, medium, low) with their appointed 

probabilities based on discrete approximations of continuous distributions to generate a 

finite number of Ns probabilistic scenarios included in a set S = {s|s = 1, … , Ns}. The use 

a finite number of scenarios for uncertain parameters can lead to reduce complexity of a 

stochastic problem and computational costs by reformulating the two-stochastic stage 

model as a deterministic-equivalent model.  In this work, the three-point Pearson-Tukey 

approximation technique for continuous probability distributions (e.g., normal, uniform, 

exponential) is used to substitute the entire continuous probability distribution by a few 

representative values (N discrete points) and their identified probabilities, which weights 
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the 0.05, 0.50, and 0.95 percentiles by 0.185,0.630, and 0.185 respectively, as shown in 

Figure 14. The three-point Pearson-Tukey (3-PT) approximation shows a great accuracy 

comparing with Monte Carlo simulation, comparisons have been made for the mean of a 

random variable and for conventional functions of one and two variables using a assort of 

known distributions, The using 3-PT would facilitate a problem solution because it 

requires the evaluation of only 3n scenarios, where n is the number of random variables in 

the model. This technique that can match the first (2N-1) statistical moments statistical 

features (mean, variance, max, kurtosis and skewness) of the continuous distribution, 

where N is the number of discrete points [191-196]. The first task for modelling the 

operating system mathematically under uncertainty is to represent uncertain parameters 

using probabilistic scenarios, which is defined as scenario generation. 

 

 

Figure 14:  Three-Point Approximation Technique 
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In addition to use the number of uncertain parameters, as abovementioned, in 

estimating the number of scenarios, the number of stages or time periods proposed in the 

optimization problem are also used for the same purpose. Consequently, the number of 

scenarios can be calculated by the relationship 3n.t  or 3n.(T−1) , where n is the number of 

uncertain parameters in the model, t is the number of a specific period time, and T is the 

number of stages. It is worth noting that the length of each time stage can be planned 

according to modelling requirements (can be a period or multiple period time). In this 

work, a time horizon of the system operating represents one year, which can be divided 

into two or four time periods depending on the geographical site that determines a season 

length and the number of months associated with each season. To illustrate, if two 

uncertain parameters described by three nodes (high, medium, low) and four multiple 

periods represented by four seasons (e.g., spring, summer, fall, and winter) are considered, 

Hence, at the end of fourth period, 38 scenarios are generated. Similar approaches have 

been adopted in the literature of other applications [165, 167, 189]. The next step is to 

keep fewer scenarios possible to ensure that the problem of stochastic optimization can be 

solved with a reasonable computational effort. Scenario tree may grow exponentially with 

a significant increase in the number of time periods or stages. In such cases, several 

scenario reduction techniques such as forward selection, backward reduction, and K-

means clustering algorithm can be adopted to decrease the scenario numbers that leads to 

minimize the computational time and cost of the optimization problems to be 

computationally tractable, these techniques used in various applications can be found in 

the literature [167, 197-201]. In the same context, some researchers observed that the 
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results with suitable accuracy can be obtained, when the number of scenarios is reduced 

to one quarter and the computational time is lowered four times [197]. Other investigators 

have the opposite opinion regarding the scenario reduction and it may cause a high error 

rate of an objective function value and jeopardize the accuracy of the modelling [202]. To 

reduce the number of scenarios, the model size, and computational requirements of this 

work, the three-point approximation technique is used to represent the uncertain 

parameters by a finite set of known values, in addition, to select typical seasons (time 

periods) that represent the full yearly horizon. 

4.3.2 Two-Stage Stochastic Optimization Model 

The optimal configuration of an integrated system requires considering all the 

design alternatives through the interconnection between system units operating under 

uncertain operating conditions. These uncertainties subject to several technical and 

commercial parameters, which may not be fully revealed at the early stages of the system 

design. It is obvious that the incorporation of uncertain aspects in the optimization 

problems causes the transformation of a deterministic problem (which can be solved by 

using standard methods of mathematical programming) to a stochastic problem (which 

requires special techniques and approaches to be solved). The incorporation of uncertain 

parameters makes the deterministic model is unsuitable to optimize the expected value of 

net profit in this work. A generally mathematical representation of the final structure and 

design under uncertainty can be presented as in the following form [170]: 
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P =  max
y,d,z

f(y, d, z, x, θ)                                                                                                              (39)  

s. t.  
h(y, d, z, x. θ) = 0 

g(y, d, z, x. θ) ≤ 0 

dϵD, zϵZ, xϵX, yϵ {0, 1}m 

θϵℛn 

 

where P is the profit, f is a scalar objective function (an economic performance index) 

which must be optimized to find the maximum or minimum value, y is the vector of binary 

0-1 variables for existing units, d is the vector of design variables (e.g. physical size of 

installed units), z and x represent the vectors of control and state variables (operating 

conditions) and θ is the vector of uncertain parameters. The set of equality constraints (h) 

are process equations (energy and mass balances), while the set of inequalities (g) be 

compatible with the design specifications and logical constraints, which also represents 

the linking constraints (hard constraints) that use to unify the choices of design decisions 

of the first- stage across all operational periods of the second- stage scenarios, otherwise, 

these constraints link the design variables with the variables of each scenario [160, 171]. 

A two-stochastic programming model with recourse is the most commonly used 

technique to deal with decision making under uncertainty in mathematical programming. 

Particularly, when this technique is used for solving problems of a large superstructure of 

an integrated system or extensive portion of a process plant by breaking these problems 

down into smaller independent components because each operational scenario may 

represent a large-scale optimization problem. In the same context, the mathematical 

programming problem accommodates very large decisions in the first stage and any 

number of subproblems in the second stage [171]. A general formulation of this model 
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can be found in [203], which can be used to maximize or minimize the expected value of 

an objective function for all scenarios considered under an uncertain future. The general 

formula of Equation 39 can be formulated in the two-stage stochastic programming 

framework.  Consequently, the two-stage stochastic programming model is adopted to 

formulate the superstructure of the system. Hence, the superstructure variables can be 

classified as either design or operational variables. In the first stage, the essential units of 

the system with the design variables of each unit (e.g., solar collection area, thermal 

storage volume, evaporator area of MED, membrane area of RO, etc.) should be chosen, 

but the selected units may not be necessarily compatible with operational conditions of all 

possible time periods or scenarios. Once the design variables are decided, the operational 

aspects can be optimized over the time horizon for all scenarios according to the decisions 

made in the first stage. Therefore, a duplicate method is substantial to discretize the 

horizon time period iteratively in which the design variables are replaced along with 

adjusting the operating conditions until obtaining an optimal design, which is feasible over 

a certain range of operating conditions, by minimizing expected (investment and 

operating) costs and maximizing expected (profit) through the two stages. 

The general formula of Equation 39 can be formulated in the two-stage stochastic 

programming framework.  It is worth noting that it is not necessary to be the consistent 

relationship between stages and time periods. Therefore, in specific cases, all time periods 

can be lumped into the second stage of a stochastic programming model [204]. Therefore, 

it can be assumed that all time periods are accommodated in the second stage for the 

problem of this work, as shown in Figure 15. To avoid the challenges and complexity in 
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modelling and find the optimal solution for the system, a finite number of scenarios can 

be postulated to describe the randomness by representing finite values of the uncertain 

parameters in multiple scenarios. Hence, the operational pattern of the system can be 

adjusted for each scenario over all periods in the time horizon with maintaining the same 

system configuration and fixed capacity of the subsystems that determined in the first 

stage. Based on that, the objective function of the total expected profit, which 

accommodates the cost of the selected design and the expected optimal profit (revenue of 

sales and operating costs), can be optimized by allowing the transformation of the two-

stage stochastic programming model into a multi-scenario mixed integer non-linear 

programming (MINLP) model that is a deterministic equivalent model as follows [170]: 

P =  max
y,d

 { Eθ{fs(y, d, θs)} −   f 0 (d) − cy                                                                           (40)  

where 

fs(y, d, θs) = max
zs

∑ ps

Ns

s=1

fs(y, d, zs, xs, θs) 

s. t.  
hs(y, d, zs, xs, θs) = 0 

gs(y, d, zs, xs, θs) ≤ 0 

dϵD, zsϵZ, xsϵX, y ϵ {0, 1}m 

θs ϵ J(θs) 

θ ϵ ℛ(d) 

 

where P is the total expected profit of the system, fs is a profit function, which represents 

the total expected revenue and operating cost of the system over all the scenarios,  f 0 (d) 

is the capital cost function of the design, cy represents a fixed charge cost, Eθ is the 

expectancy operator, ps represents the probability assigned to the occurrence of the Ns 

scenarios, and J(θs) is a probabilistic density function. 

𝑠 𝜖 𝑁𝑠 
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Prior to uncertainty realization, the first stage decisions (here and now) could be 

implemented immediately on the design aspects (i.e. selection and capacity of the 

subsystems) of the integrated system to specify an optimal vector of the design variables 

d while seeking for determining an optimal vector of control variables z (operational 

flexibility and feasibility) in the second stage (wait and see) for every uncertain realization 

θ, which are lying with the associated feasible region ℛ. Note that ℛ represents the feasible 

region of the design d, θ ϵ ℛ(θ), and R(d) = {θ|∀θϵR Ǝz: f(d, z, θ) ≤ 0} [169]. The 

problem of feasibility can be addressed by considering further penalty functions or through 

transforming to the deterministic equivalent multiperiod problem by postulating a finite 

number of discrete points of uncertain parameters θ [172], as mentioned in section 4.3.1. 

Once the first decisions are made to estimate the capital cost of the design, the design 

variables cannot be changed over the time horizon of the second stage when the system is 

being operated. While the second stage decisions could be delayed until the appearance of 

uncertainty to carry out it on the operating pattern to evaluate the operating cost 

expenditure, which is highly dependent on the selecting of design variables of the first 

stage. It should be noted that the operational variables are scenario dependent to consider 

uncertain parameters which are significant in taking recourse action in the second stage. 
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Figure 15: Schematic of scenario tree for uncertain events 

 

4.4 Modeling Formulation 

The formulation and selecting of suitable models are considered the significant 

steps to properly describe the main building blocks of the system, which was presented in 

Figure 12. The detailed equations are used for the models as follows: 

4.4.1 Solar Collection Process 

A parabolic trough collector was selected to represent the solar collection process 

which is incorporated in the system as the direct or indirect source of thermal power for 

the entire system. The modeling of the solar collection process was developed basing on 

literature models and data [13, 25, 27, 33, 156], as described in the following table: 
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Table 5: General modeling equations for solar collection process 

Equation                                                                  Description                    

 
Qsun→collector= DNI. cosθ. Wc (41) Thermal power (W/m) which can be 

produced by the solar collection 

process when the direct normal 

irradiance (DNI) hits the collector 

aperture 

[13] 

cosθ = √cos2θz + cos2δ. sin2 ω                    (42) Incidence angle for the north-south 

orientation 

 

[13] 

Q collector→reciever

= DNI. cos θ. Wc . ηopt. K(θ). Ff. RSL. OEL 

(43) Thermal power (W/m) which can be 

absorbed by a receiver tube of a 

collection system loop 

 

[156] 

ηopt =  ρ. γ. τ . α                                                  (44) Peak optical efficiency of a 

collector when the incidence angle 

on the aperture plane is 0o 

[27] 

K(θ) = 1 − 2.23073 × 10−4. θ − 1.1 ×
10−4.θ2 + 3.18596 × 10−6. θ3  − 4.85509 ×
10−8. θ4 ,        
                                                               00 ≤  θ ≤ 800   

K(θ)  = 0                                                  θ > 80o 

 

(45) Incidence angle modifier for a LS-3 

collector 

 

[27] 

RSL

= min [max (0.0,
Lspacing

Wc

 .  
cos θz

cos θ
) ; 1.0]        

  

(46) Row shadow factor 

 

[33] 

OEL = 1 −
f. tanθ

LSCA

                                       
(47) Optical end loss [33] 

Qcollector→ambient =  Urec . π . do . (Trec −
 Tamb) 

(48) Total thermal power (W/m) 
which may be lost from a 
collector represents the 
combination of the radiative heat 
loss from the receiver pipe to the 
ambient environment 
 Qreciever→ambient           and 
convective and conductive heat 
losses from the receiver pipe to 
its outer glass 
pipe Qreceiver→glass. 

[27] 

Urec = a + b (Trec − Tamb) + c (Trec − Tamb)2 (49) Overall heat transfer coefficient of a 

collector is found experimentally 

depending on a receiver pipe 

temperature 

 

[27] 

Qcollector→fluid  =  Q collector→receiver

− Qcollector→ambient  
(50) Thermal power (W/m) which can be 

transferred from a collector to a 

fluid 

[156] 
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Table 5: Continued 

Equation  Description  

QLFP = 0.0583 . Wc . (Trec −  Tamb) (51) Thermal power (W/m) 

which may be lost from the 

headers (pipes) 

 

[13] 

QLFV = 0.0497 . Wc. (Trec − Tamb) (52) Thermal power (W/m) 

which may be lost from the 

expansion tank (vessel) 

 

[13] 

QPTC→final demand =  Qcollector→receiver −
                                         Qcollector→ambient  −
                                         QLFP −  QLFV                

 

(53) Net useful thermal power 

(W/m) which can be 

produced by the solar 

collection process 

[156] 

 

 

4.4.2 Thermal Energy Storage 

Thermal storage is utilized to assist in supplying a steady thermal power to the 

system by manipulating the dynamic variability of solar energy. An indirect thermal 

storage system is selected that consists of two separated tanks. A binary molten salt 

(sodium and potassium nitrate) is used as the storage media. To describe the performance 

of the thermal storage system, the following equations can be used as in Table 6: 

 

Table 6: General modeling equations for thermal energy storage 

Equation                                                                Description 

 
Qin = mms . CPms . (THT − TCT)

=  ηEX . moil . CP,oil . (ΔT) 

(54) Inlet thermal power (W) of the 

thermal storage (charge 

process) 

[156] 

Qout = moil . CPoil . (ΔT)
= ηEX .  mms . CPms . (THT − TCT) 

(55) Outlet thermal power (W) of 

the thermal storage (discharge 

process) 

[156] 

CPms = 1443 + 0.172 Tms (56) Specific heat of the molten salt  [49] 

QTES =  Qacc + Qin − Qout − Qloss (57) Net thermal power (W) inside 

the tank 

[156] 

Qloss  =  0.00017. Tms  + 0.012 (60) thermal power loss (kW/m2) of 

the cold and heat tanks  

[49] 
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4.4.3 Cogeneration Process 

The co-production of power and low-grade steam for the entire system can be 

achieved by cogeneration process, which is based on a Rankine cycle. This process 

consists of a boiler (or a steam generator that used in this work to utilize various energy 

sources), a steam turbine, and a condenser which is replaced with a multiple-effect 

distillation plant to exploit the surplus heat production. The modeling of the Rankine cycle 

requires appropriate correlations for the thermodynamic properties to use in the 

optimization formulations. The complicated nature of available correlations of steam 

tables (e.g., nonlinear, nonconvex function) and the complexity of incorporating these 

correlations into an optimization task to find the optimal values of a Rankine cycle were 

significant motivation to develop a new set of thermodynamic correlations that could be 

inserted easily into the optimization formulation for a cogeneration design. In this study, 

a set of correlations, which has been developed in the literature [109], was adopted to 

estimate the properties of steam. These correlations and fundamental equations are shown 

in Table 7. 

 

Table 7: General modeling correlations and equations of steam Rankine Cycle (SRC) 

Equation                                                                   Description 

 
Tsat = 112.72 . Psat

0.2289 (61) Saturated temperature as a 

function of pressure (can be 

used at the outlet of a 

condenser or at the inlet of a 

boiler) 

Error = ±0.64% 

[109] 
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Table 7: Continued 

Equation  Description  

hsat
f = 0.2674 . Tsat

1.2127  (62) Saturated liquid enthalpy 

(can be used at the outlet of 

a condenser or at the inlet of 

a boiler) 

P ≤ 2500 psi 
Error = ±3% 

[109] 

sv = (−0.5549 . ln(Tsat)  +

          3.7876) . T0.1001 .exp(0.0017 .  Tsat)                                        

(63) Entropy of steam (can be 

used at the inlet of a turbine) 

P ≤  2,500 psi 
T ≤  1,500 °F 

Error = ±3.5% 

[109] 

hv = 0.2029 . Tsat . ( sv)3.647 + 817.35  (64) Enthalpy of steam (can be 

used at the inlet of a turbine 

or at the outlet of a turbine) 

14.7 ≤  P ≤  2,000 psi 
Error = ±0.6% 

[109] 

∆his =  hv − his
v  (65) Isentropic enthalpy 

difference 

[109] 

hact
v =  hv −  ηis . ∆his (66) Actual enthalpy at the outlet 

of a turbine 

[109] 

m =
Qprocess

hact
v − hsat

f
 

(67) Mass flow rate in term of the 

required heat of the process 

(condenser) 

[109] 

T =  
hact

v  − B(s)

A(s)
     

A(s) =  −0.7918 . (sv)3 + 3.4575 . (sv)2 + 4.5513 . sv

+ 2.1267  
B(s) = 710.22 . (sv)3 + 3910.6 . (sv)2 + 7117.3 . sv

− 3253.5 

(68) Outlet temperature of a 

turbine 

[109] 

QBoiler = m (hv − hsat
f ) 

QBoiler =  QFuel . ηFuel 

(69) Thermal power output of a 

boiler 

[109] 

mF =
QBoiler

Hv,F . ηboiler

  
(70) Mass flow rate of fuel is 

provided to a boiler 

[109] 

ETurbine = m (hv − hact
v ) (71) Turbine shaft power output [109] 

 

 

 

While the turbine hardware model, which was developed in the literature [139], 

can be used to obtain the isentropic efficiency for the steam turbine. The hardware model 

shows the variation of efficiency with operating conditions, a load, and a turbine size, as 

in the following correlations in Table 8: 
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Table 8: Turbine hardware model 

Equation                                                 Description 

 

ηis =
6

5 B
(1 −

3.41443 ×  106 ×  A

∆his  × mmax 
) (1

−
mmax

6 ×  m
) 

A = ao + a1 . Tsat   
B = a2 + a3 . Tsat 

(72) Isentropic efficiency for a turbine 

ao, a1, a2, a3 are turbine regression 

coefficient [112] 

[139] 

ηis =
1

B
(1 −

3.41443 × 106 ×  A

∆his  × mmax 
) 

 

(73) Isentropic efficiency for a turbine when m 

= mmax at design condition 

 

[139] 

 

 

 

4.4.4 Desalination Process 

 

To make the proposed system contributes effectively in managing water resources 

on-site, the hybrid combination of two desalination plants (included MED and RO) has 

been considered to supply the fresh water to the entire system by recycling/ reusing the 

wastewater. Indeed, the multiple-effect distillation (MED) plant is used to improve the 

efficiency of the system by exploiting the surplus low-grade heat of the cogeneration 

process and an industrial process, while the reverse osmosis (RO) plant is used to add a 

significant feature to the system (to be more flexibility) by covering the largest area of 

treated water demand due to the ability of installing the RO plant in another geographical 

location.  The performance modeling of desalination plants has been described through 

detailed equations of energy and mass balance. The average condition (AC) model, which 

is the simplified version of the shortcut method for the modeling MED plant ( based on 

Forward-Feed MED Systems without Flashing Effects), has been taken from [96].  The 

main equations of the AC model are given in Table 9. 
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Table 9: General modeling equations and correlations of MED plant 

Equation                                                     Description 

 
QTotal =  Qhtffe . N 

QTotal =  ∆Hc,avg . mD 

(74) Total thermal power loads (W) of all 

evaporators (assumed an equal thermal 

load of all evaporators)  

 

[96] 

∆Hc,avg = 2.7532 . Tvapor,avg + 3278.8 (75) Latent heat of condensation 

 

[96] 

Tvapor,avg =  
Tvapor,0 + Tvapor,N

2
   

(76) Average temperature of the vapor [96] 

Qhtffe =  Uhttfe . Ahttfe . ∆Tvapor (77) Thermal power (W) emitted by 

condensing distilled water into the tubes 

of the horizontal-tube falling film 

evaporator (htffe) 

[96] 

Uhtffe = 0.8552 + 4.7 × 10−3 × Tvapor,avg (78) Overall heat transfer coefficient 

 

[96] 

∆Tvapor,avg =  
Tvapor,0− Tvapor,N

N
   (79) An average temperature driving force of 

evaporators by assuming an equal vapor 

temperature drop for each MED 

evaporator 

[96] 

mF =  mD +  mB 

 

(80) Overall balance for MED plant [96] 

mF . xF =  mD . xD +  mB . xB  

 

(81) Overall salt balance for MED plant [96] 

mD

mF

= 1 − 
xF

xB

 

 

(82) Recovery ratio at xD = 0 

 

[96] 

mD =  βMED . mF (83) Flow rate of distillate in term of recovery 

fraction 

[96] 

mB = (1 − βMED). mF (84) Flow rate of brine in term of recovery 

fraction 

[96] 

GOR = N ×  9.8N =  
mD

ms
  (85) Gained output ratio (Performance metric 

of MED) 

[96] 

 

 

The complete equations of the performance model for a hollow-fiber reverse 

osmosis module have been taken from the literature [96], in the same context, more 

detailed information can be found in the literature [135-138], as in the following table. 
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Table 10: General modeling equations and correlations for RO Plant 

Equation                                                                 Description 

 
FF =  FD +  FB 

 

(86) Overall balance of the module [96] 

FF . CF =  FD . CD + FB . CB (87) Overall solute (salt) balance of 

the module 

[96] 

mD =  βRO . mF (88) Flow rate of distillate in term 

of recovery fraction 

[96] 

mB  = (1 − βRO) . mF (89) Flow rate of brine in term of 

recovery fraction 

[96] 

FF,Total =  FF . n (90) Total flow rate when (n) 

modules are in parallel 

[96] 

Jwater = A (∆P −  
Popof

CF
 CS) ΥRO  (91) Water flux 

 

[96] 

ΥRO =  
η

1+ 
16 .A .μ .Lf . LS .ηRO 

1.0133 × 105 .  ri
4

   

ηRO =  
tan θRO

θRO
   

θRO = (
16 .A .  μ .  ro

1.0133 × 105 .  ri
2)

1

2 .
Lf

ri
  

 

(92) Module properties [96] 

∆P ≈  
PF + PB

2
−  PD =  PF − 

(
shell side pressure drop per module

2
+  PD) 

 

(93) Pressure drop across the 

membrane  

[96] 

CS ≈  
CF +  CB

2
 

 

(94) Average solute (salt) 

concentration 

[96] 

Jsolute = (
D2M

Kδ
) . CS 

 

(95) Solute (salt) flux [96] 

FD =  AS,m . Jsolute (96) Volumetric flow rate of the 

distillate per module 

[96] 

CD ≈  
Jsolute

Jwater

 

 

(97) Solute (salt) concentration in 

the distillate 

[96] 

AS,m. A.
Popof

2 CF
 . ΥRO. CB

2 + [FF − AS,m . A (∆P −

 
Popof

2 
 )  . ΥRO] CB −  FF . CF = 0   

(98) To determine the value of brine 

(rejection) concentration 

[96] 
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Additionally, the balance equations for the hybrid combination of two desalination 

plants are given as follows: 

 

Table 11: Overall balance equations for the desalination process 

Equation                                                              Description 

 

FF,Total.  CF,Total =  FF,MED .  CF,MED +  FF,RO . CF,RO 

 

(99) Overall salt balance on feed streams 

FD,Total . CD,Total =  FD,MED . CD,MED  +  FD,RO . CD,RO 

 

(100) Overall salt balance on distillate streams 

FB,Total . CB,Total =  FB,MED . CB,MED +  FB,RO . CB,RO 

 

(101) Overall salt balance on brine streams 

 

 

4.4.5 Economical Assessment 

The selection of optimal design and operational patterns for the system and its 

subsystems is based on economic, environmental, and safety metrics. The economic 

optimality can be achieved by maximizing the profit of the system through minimizing 

the total annualized cost (TAC), which is calculated by annualizing the capital expenditure 

(CAPEX) and operating expenditure (OPEX), as in the following relationship [96]: 

Annual net (after-tax) profit = (Annual income – Total annualized cost) ⨯ (1-Tax rate) + 

Depreciation 

The evaluation of the economic feasibility for the system in this study requires 

considering the cost of equipment and fuel that contribute in the production of desired 

commodities (water and energy).  However, the mutual water-energy nexus would not 

allow to minimize the cost of water and power together. Thus, a reduction in the 
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production cost for one commodity (as the cost of water production) would cause 

increasing in the cost of the other (as the cost of power production) due to the availability 

of resources. Accordingly, this work endeavors to balance between water and power 

production via maximizing the overall system profit.  

The total cost estimation of the system depends on determining the main 

components cost as shown in Table 12. In the cogeneration process, the cost of the boiler 

and the turbine are the most significant capital cost of the process and it is determined as 

in Equation 102, whereas the pump cost is insignificant for the different operation 

conditions. The cost of the boiler, which is assumed to be a water-tube boiler worked by 

gas and oil, is based on the amount of thermal power transferred to the steam, superheated 

temperature, and operational pressure [109], as given in Equation 103. The cost of the 

turbine, which is considered as a non-condensing turbine, is related to the shaft power 

output of the turbine [109], as given in Equation 104. The fuel cost is the most substantial 

factor in estimating the operation cost during power production from the cogeneration 

process by contributing over 90% of the total power generation cost [109, 112] and it is 

modeled as in Equations 105 and 106. Additionally, the maintenance cost of the 

cogeneration process (particularly the boiler) represents about 30% of the fuel cost [205, 

206].  

The cost of concentrated solar power plants can be classified into three featured 

categories: capital cost (investment cost), operation and maintenance cost, and financing 

cost (mostly incorporated in capital cost) [40, 207]. The most cost of a concentrated solar 

power plant goes to the capital cost due to using parabolic trough power plant that does 
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not require fuel consumption to maintain high operating temperature as in solar tower 

power plant [208]. The capital cost as well as the operation and maintenance cost for 

parabolic trough collectors have been taken from the literature [156], as in Equations 107 

and 108. The estimation of the thermal energy storage cost can be described as in 

Equations 109 and 110 [156]. The economic analysis for the two desalination plants which 

are adopted in this work is a crucial to determine the total annual cost (TAC) for the 

system.  

It is noteworthy that the comprehensive economic model of RO plant has been 

introduced through detailed equations as described in [209], while the inclusive economic 

model for MED plant has been developed and described amply in [210]. Alternatively, the 

annualized fixed cost and operating cost for MED and RO plants can be calculated by the 

equations 111-114, which have been developed for a specific outlet salt content [142]. In 

order to estimate the fixed capital cost of an incorporated industrial process in the system, 

all expenses of major equipment costs, equipment purchased delivered, installation of 

equipment, pipes installations, building and its services, construction expenses, etc. are 

considered. Whereas the operating cost is calculated by encompassing all expenditure of 

direct cost of raw materials, utility cost, and operators cost [211].  

To demonstrate the economic feasibility of the system, the net annualized profit 

needs to be increased by maximizing the annualized income. The annual income can be 

obtained from annual values of produced electricity, treated water, avoided cost of 

discharging wastewater (fresh water acquisition, transportation, and disposal), and 
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chemicals and fuels from processing facilities (midstream productions), as shown 

relationships (117-20).  

 

Table 12: Summary of equations and correlations for economic evaluation 

Equation                                                      Description 

 
AFCCogen = (AFCBoiler + AFCTurbine) . kf 

 

(102) Annualized fixed capital cost of the 

cogeneration process 

 

 

AFCBoiler = 3 . kf . NP . NT . QBoiler
0.77  (103) Annualized fixed capital cost of the 

boiler 

 

[109] 

AFCTurbine = 475 . kf . ETurbine
0.45  (104) Annualized fixed capital cost of the 

turbine 

 

[109] 

AOCCogen = 1.3 . FP . CFuel . kγ (105) Annualized operating cost of the 

cogeneration process 

 

[109] 

CFuel =  aFuel . Qf . 10−6. kγ=kf . (QBoiler/

ηf) . 10−6. kγ 

(106) Fuel cost based on the selected type 

and amount of fuel  

 

[112] 

AFCPTC =  CPTC . APTC . kf (107) Annualized fixed capital cost of the 

parabolic trough collectors 

 

[156] 

AOCPTC =  OCPTC . QPTC→final demand . kγ  (108) Annualized operating cost of the 

parabolic trough collectors 

 

[156] 

AFCTES =  CTES . SCH . QTES . kf (109) Annualized fixed cost of the thermal 

energy storage 

 

[156] 

AOCTES =  OCTES . QTES .  kγ  (110) Annualized operating cost of the 

thermal energy storage 

 

[156] 

AFCMED = 13.0 × 106

+ 2227 . (FF,MED,
m3

day
)

0.7

 

(111) Annualized fixed capital cost of MED 

plant 

 

[142] 

AFCRO = 2.0 × 106

+ 1166 . (FF,RO,
m3

day
)

0.8

 

(112) Annualized fixed capital cost of RO 

plant 

 

[142] 

AOCMED =  0.24 . ( FF,MED,
m3

hr
) . kγ  (113) Annualized operating cost of MED 

plant 

 

[142] 

AOCRO =  0.18 . (FF,RO,
m3

hr
) . kγ 

(114) Annualized operating cost of RO plant 

 

 

[142] 
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Table 12: Continued 

Equation  Description  
AFCPR = (AFCEQ + AFCS) . kf 

AFCEQ = CCO. NCO+CTR. NTR+CHE. NHE 

(115) Annualized fixed capital cost of an 

industrial process 

 

 

 

AOCPR = (vRNG. FRNG + NP . ηP . ES

+ vL . NL). kγ 

ES =
E𝑇

ηP

=
q.  ρ . g . h

3.6 ⨯ 106
 

NL = (6.29 + 31.7 . NPS
2 + 0.23 . NEQ)0.5 

 

(116) Annualized operating cost of an 

industrial process  

 

 

[211] 

[211] 

ANICogen =
 ae . ETurbine . ηg

3.413
 . kγ 

(117) Annualized income of the cogeneration 

process (electric power generation) 

 

[109] 

ANITW = (νRO .  FD,RO

+  νMED . FD,MED). kγ 

(118) Annualized income of the treated water   

 

[156] 

ANIWW =  CWW . FB,Total . kγ=(CFW +

 CTR +  CDS) . FB,Total . kγ 

(119) annualized value of avoided cost of 

discharging wastewater 

 

[156] 

ANIPR = (νFuel .  FFP

+  νChemicals . FCP ). kγ 

(120) Annualized income of processing 

facilities (midstream) productions 

 

 

 

 

4.5 Optimization Formulation 

The selection of a various collection of technologies that constitute the 

superstructure representation of the multi-purpose system may be required significant 

numbers of model and a hardly challenging for solution. To handle this challenging, the 

sets of the mathematical modeling can be defined as the generic optimization 

formulations. These generic formulations which include modeling equations and 

constraints of each subsystem can be presented generally as function of inlet and outlet 

stream, design, operation, and state variables. To handle the fluctuations (uncertainties) in 

solar energy availability and fuel price, a scenario-based approach for uncertain 
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parameters with their probabilities of occurrence is used to consider the effect of uncertain 

parameters on the system design and operation. A two-stage stochastic programming 

model is adopted as the operation scheduling in the economic objective function, which 

presented later in the formulation, to compensate uncertainties.  

4.5.1 Solar Collection Process 

The useful thermal power captured by solar collectors is a function of the solar-

irradiation intensity (Solar_Radiationt) and the effective surface area of the solar collector 

(ASC). The existence of the solar collector system is determined through a binary variable 

ySC (which is 1 if the collector system exists, and 0 if the collector system does not exist). 

Multi-period operation is adopted to deal with the diurnal changes of solar energy. The 

probability-based uncertain factors (e.g., solar energy data) might follow a certain 

probability distribution, which can be discrete or continuous. These probability-based 

uncertain parameters can be formulated as described in the section 4.3.1 to use in the 

second (operation) stage of the two-stage stochastic programming with recourse. The 

optimal effective area of the solar collectors, which represents one of the design variables 

in the first stage, is sized according to the maximum requirements of any period through 

the linking constraints to obtain the optimal solution. Therefore, the largest area (which is 

used for capital cost estimation one-time at the time of constructing the system) is selected 

from various solar collector areas because there is a certain area of the solar collector for 

each operational period t and scenario s, which is given as: 

At,s
SC  ≤  ADesign_max

SC  ySC   ∀t , ∀s                                                                                            (121) 
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The total thermal power provided by the solar collectors (Qt,s
SC) is directly fed to the steam 

generator (Qt,s
Direct_SC) and to the thermal energy storage (Qt,s

In_TES) for subsequent usage as 

follows: 

Qt,s
SC =  Qt,s

Direct_SC +  Qt,s
In_TES    ∀t , ∀s                                                                                  (121)  

Qt,s
SC  ≤  Qt,s

Useful_SC   ∀t, ∀s                                                                                                        (122)  

where  Qt,s
Useful_SC  is the useful thermal power per the optimal effective area of the solar 

collectors. 

 

The performance and limitations of the solar collectors are described by the vector 

set of modeling equations and constraints, which is given as: 

Ωt,s
SC (CSt,s

In_SC, HSt,s
Out_SC, Qt,s

Useful_SC, DSC, Ot,s
SC, St,s

SC) = 0   ∀t, ∀s                                       (123) 

Ωt,s
SC (CSt,s

In_SC, HSt,s
Out_SC, Qt,s

Useful_SC, DSC, Ot,s
SC, St,s

SC) ≤ 0   ∀t, ∀s                                       (124) 

where CSt,s
In , HSt,s

Outare the inlet (cold) and outlet (hot) streams, Qt,s
Useful_SC, DSC, Ot,s

SC, St,s
SC are 

variables of the total thermal power, design, operation, and state of the solar collection 

process respectively.  

 

4.5.2 Thermal Energy Storage 

The thermal power balance equation for the thermal energy storage during each period t 

and scenario s is equal to the thermal power stored at the end of previous period ( Qt,s
acc_TES) 

plus the stored thermal power obtained from the solar collectors (Qt,s
In_TES) minus the outlet 

thermal power sent to the steam generator (Qt,s
Out_TES) and the thermal power losses from 

the thermal energy storage  (Qt,s
Loss_TES), which is given by:  
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Qt,s
TES =  Qt,s

acc_TES + Qt,s
In_TES −  Qt,s

Out_TES −  Qt,s
Loss_TES   ∀t, ∀s                                       (125) 

The storage unit must have enough capacity to accommodate the surplus thermal 

power obtained from the solar collectors. Physically, this constraint represents the design 

variable VDesign_max
Cap_TES

 that is the maximum capacity allowable in the thermal storage system 

and must be greater than the storage capacity in each period t and scenario s, which is 

given by:  

Vt,s
TES ≤ VDesign_max

Cap_TES
     ∀t, ∀s                                                                                                (126) 

A specific volume of thermal energy storage (e.g., 6 hours of thermal storage) must 

be appointed to estimate the capital cost, which incurred one-time at the time of 

constructing the system, of the storage unit. The existence of the storage system is 

determined through a binary variable  (which is 1 if the storage system exists, and 0 if the 

storage system does not exist). Consequently, the volume of thermal storage for each 

operational period t and scenario s would be subjected to a capacity constraint of selected 

storage volume and it can meet or exceed the stored thermal power as follows: 

Qt,s
TES  ≤  QDesignmax

CapTES   yTES   ∀t, ∀s                                                                                         (127) 

The performance and limitations of the storage tanks are described by the vector 

set of modeling equations and constraints, which is given as: 

Ωt,s
TES (HSt,s

In_TES, CSt,s
Out_TES, Qt,s

Out_TES, DTES, Ot,s
TES, St,s

TES) = 0   ∀t, ∀s                             (128) 

Ωt,s
TES (HSt,s

In_TES, CSt,s
Out_TES, Qt,s

Out_TES, DTES, Ot,s
TES, St,s

TES) ≤ 0   ∀t, ∀s                             (129) 
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where HSt,s
In_TES, CSt,s

Out_TES are the inlet (hot) and outlet (cold) streams, 

Qt,s
Out_TES, DTES, Ot,s

TES, St,s
TES are variables of the thermal power supplied by the thermal 

energy storage, design, operation, and state of the thermal energy storage respectively. 

4.5.3 Cogeneration Process 

To satisfy the optimal values of the steam Rankine cycle (SRC) parameters, the 

thermodynamic cycle is formulated as an optimization problem. The thermal power 

balance for the energy sources that supplied to the steam generator in the SRC for each 

operational period t and scenario s is described as follows: 

Qt,s
In_SG =  Qt,s

Fossil +  Qt,s
Direct_SC +  Qt,s

Out_TES + Qt,s
Out,PR   ∀t, ∀s                                      (130) 

Whereas the total thermal power provided to the entire system from the steam 

generator for each operational period t and scenario s is described as follows: 

 Qt,s
Out_SG =  Qt,s

SG−Turbine +  Qt,s
SG−MED + Qt,s

SG−PR   ∀t, ∀s                                                (131) 

where Qt,s
In_SG is the total thermal power provided to the steam generator, Qt,s

Fossil is the 

thermal power is obtained directly from the combustion of fossil fuels in the boiler, 

Qt,s
Direct_SC is the direct thermal power supplied by the solar collectors,  Qt,s

Out_TES is the 

thermal power supplied by the thermal energy storage, Qt,s
Out_PR is the thermal power 

supplied by an industrial process, and Qt,s
SG−Turbine, Qt,s

SG−MED, Qt,s
SG−PR are the thermal 

power supplied by the steam generator to the turbine, multiple-effect distillation, and 

industrial process. 

The performance and limitations of the cogeneration turbine unit are described by 

the vector set of modeling equations and constraints, which is given as: 
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Ωt,s
Turbine (Steamt,s

In , Steamt,s
Out, Et,s

Turbine, DTurbine, Ot,s
Turbine, St,s

Turbine) = 0   ∀t, ∀s    (132) 

Ωt,s
Turbine (Steamt,s

In , Steamt,s
Out, Et,s

Turbine, DTurbine, Ot,s
Turbine, St,s

Turbine) ≤ 0   ∀t, ∀s    (133) 

where Steamt,s
In , Steamt,s

Out are the inlet and outlet steam conditions, 

Et,s
Turbine, DTurbine, Ot,s

Turbine, St,s
Turbine are variables of the produced electric power, design, 

operation, and state of the turbine respectively.  

For each operational period t and scenario s, the electric power produced by the 

cogeneration turbine is equal to the total energy fed to the SRC from the steam generation 

multiplied by an efficiency factor. Thus, the surplus thermal power (the thermal power 

that cannot be converted into electric power) is sent to MED to produce desalinated water 

and enhance the system efficiency as follows: 

Et,s
Turbine =  Qt,s

SG−Turbine . ηSRC   ∀t, ∀s                                                                                 (134)   

Qt,s
Turbine−MED =   Qt,s

SG−Turbine − Et,s
Turbine   ∀t, ∀s                                                            (135) 

Where Qt,s
SG−Turbine is the thermal power supplied to the cogeneration turbine from the 

steam generation,  ηSRC is the thermal efficiency of converting the total energy fed to the 

SRC into electricity, and  Qt,s
Turbine−MED represents the surplus thermal power of the 

cogeneration turbine. 

Furthermore, the thermal power needs for water treatment in MED is obtained 

directly from various sources of thermal power for each operational period t and scenario 

s, as follows: 

Qt,s
MED =  Qt,s

Turbine−MED +  Qt,s
SG−MED   ∀t, ∀s                                                                  (136) 
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where Qt,s
SG−MED is the thermal power supplied directly to MED from the steam 

generator. 

The maximum electric power that produced by the cogeneration process is 

restricted to the amount of electricity met the system requirements and the amount of 

electricity sold to a local power grid as follows: 

Et,s
Turbine  ≤  EDesign

Max_Turbine  ∀t, ∀s                                                                                           (137) 

The electric power produced can be utilized to supply the power demand of MED, 

RO, and an external power grid, which is given as: 

Et,s
Turbine =  Et,s

MED +  Et,s
RO +  Et,s

Grid + Et,s
PR  ∀t, ∀s                                                              (138) 

Et,s
MED =  Ft,s

MED . eMED  ∀t, ∀s                                                                                                  (139) 

Et,s
RO =  Ft,s

RO . eRO  ∀t, ∀s                                                                                                         (140) 

where Ft,s
MED, Ft,s

RO are the volumetric flowrate of the treated water, eMED, eRO are the 

electric energy requirement per the volumetric flowrate of the treated water. 

4.5.4 Desalination Process 

The treatment process of wastewater, which embedded in the system, is the hybrid 

of MED and RO plants. In addition to the reasons mentioned in section 4.4.4 that were 

used to select these two desalination plants, the quality of feed-water (e.g., total dissolved 

solid content, TDS) is also significantly crucial factor in selecting a proper desalination 

technology. Therefore, to enhance the performance and reliability for the treatment 

process against the variability in salinity concentration of feed-water, RO can be utilized 

effectively in desalinating low and medium salinity water (i.e., 55,000 to 70,000 ppm of 

TDS) compared to MED that recommended for high-salinity water (i.e., TDS > 70.000 
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ppm) [212]. Other factors for the determining the percentage contribution of RO and MED 

in the total desalinated water are their ability to realize intended product quality (e.g., TDS 

separation), and meet system restrictions (e.g., brine concentration).  

The performance and limitations of the MED and RO are described by the vector 

set of modeling equations and constraints, which is given as: 

Ωt,s
MED (Ft,s

D_MED, Xt,s
D_MED, Xt,s

B_MED, DMED, Ot,s
MED, St,s

MED) = 0   ∀t, ∀s                              (141) 

Ωt,s
MED (Ft,s

D_MED, Xt,s
D_MED, Xt,s

B_MED, DMED, Ot,s
MED, St,s

MED) ≤ 0   ∀t, ∀s                              (142) 

Ωt,s
RO (Ft,s

D_RO, Xt,s
D_RO, Xs,t

B_RO, DRO, Ot,s
RO, St,s

RO) = 0   ∀t, ∀s                                                  (143) 

Ωt,s
RO (Ft,s

D_RO, Xt,s
D_RO, Xt,s

B_RO, DRO, Ot,s
RO, St,s

RO) ≤ 0   ∀t, ∀s                                                 (144) 

where Ft,s
D_MED, Ft,s

D_RO are the desalinated flow rate (distillate capacity) of MED and RO, 

Xt,s
D_MED, Xt,s

B_MED,  Xt,s
D_RO, Xt,s

B_RO are the salinity content in desalinated and brine streams  

, Dt,s
MED, Ot,s

MED, St,s
MED, Dt,s

RO, Ot,s
RO, St,s

ROare variables of the design, operation, and state of 

MED and RO respectively.  

Ft,s
F_Total.  Xt,s

F_Total =  Ft,s
F_MED .  Xt,s

F_MED +  Ft,s
F_RO . Xt,s

F_RO    ∀t, ∀s                                     (145) 

Ft,s
D_Total.  Xt,s

D_Total = Ft,s
D_MED .  Xt,s

D_MED + Ft,s
D_RO . Xt,s

D_RO    ∀t, ∀s                                    (146) 

Ft,s
B_Total.  Xt,s

B_Total = Ft,s
B_MED .  Xt,s

B_MED +  Ft,s
B_RO . Xt,s

B_RO    ∀t, ∀s                                   (147) 

The respective constraints (which relate the state variables) of the salinity content 

in the total flow rate of desalinated water stream and brine water stream, which represent 

a maximum allowable salinity in these streams, are given by: 

Xt,s
D_Total  ≤  XMax

D_Total   ∀t, ∀s                                                                                                  (148) 

Xt,s
B_Total  ≤  XMax

B_Total   ∀t, ∀s                                                                                                  (149) 



 

98 

 

Other constraints for the desalination process include the design capacity (which 

relate the design variables) of the desalinated water production for MED and RO as 

follows: 

 Ft,s
D_MED ≤  FMax

D_MED   ∀t, ∀s                                                                                                     (150) 

Ft,s
D_RO ≤  FMax

D_RO   ∀t, ∀s                                                                                                            (151) 

Furthermore, the limitation on some design variables for specific portion in MED 

and RO (e.g., evaporator area, membrane area) can be represented by Equations 152 and 

153 respectively, or the constraint may be extended over the entire RO and MED to 

include the maximum number of MED effects (i.e., evaporators) and the maximum 

number of RO modules, which is used for capital cost estimation incurring one-time at the 

time of constructing the system, as in Equations 154 and 155 respectively. 

  DMin
MED  ≤  Dt,s

MED  ≤  DMax
MED     ∀t, ∀s                                                                               (152)  

DMin
RO  ≤  Dt,s

RO ≤  DMax
RO     ∀t, ∀s                                                                                       (153)      

Dt,s
MED  ≤  DMax

MED   ∀t, ∀s                                                                                                     (154)       

Dt,s
RO  ≤  DMax

RO     ∀t, ∀s                                                                                                      (155)     

 

4.5.6 Industrial Process 

To satisfy the requirements for heating and cooling, heat integration is carried out 

for an industrial process between its streams and units that need to be heated and its 

streams and units that need to be cooled. Thus, the heat is transferred from the heat from 

the process hot streams to the process cold streams through heat integration before 

utilizing external heating and cooling utilities [96].  Consequently, heat integration can be 
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fulfilled with NH process hot streams, NC process cold streams, NHU heating utilities, and 

NCU cooling utilities.  

The formulation of the heat balances is developed over the temperature intervals. 

The heat load of the uth process hot stream, which losses sensible heat, can be removed 

through the zth interval as in Equation 156, while the heat can be added through the zth 

interval to the vth process cold stream, which gains sensible heat, as in Equation 157: 

      HHu,z,t,s =  Fu,t,s . Cp,u,t,s . (Tz−1,t,z −  Tz,t,s)    ∀u, z, t, s                                        (156)  

HCv,z,t,s =  Fv,t,s . cp,v,t,s . (tz−1,t,s −  tz,t,s)      ∀v, z, t, s                                           (157) 

where  Tz,t,s ,  Tz−1,t,s ,  tz−1,t,s , and  tz,t,s are the hot-scale and cold-scale temperatures 

at the top and the bottom lines defining the zth interval for each period t and scenario s.  

The sum of the heating loads and cooling utilities can be represented as follow: 

HHz,t,s
Total =  ∑ HHu,z,t,s

u

  ∀z, t, s                                                                                     (158) 

HCz,t,s
Total =  ∑ HCu,z,t,s

v

  ∀z, t, s                                                                                        (159) 

The incorporating heating and cooling utilities into heat integration of an industrial 

process i necessary to satisfy the heating and cooling requirements. The heat load of the 

uth heating utility and the cooling capacities of the vth cooling utility for temperature 

interval z is given by: 

HHUu,z,t,s =  FUu,t,s . Cp,u,t,s . (Tz−1,t,s −  Tz,t,s)   

where u =  NH + 1, NH + 2, . , NH + NHU                                                                          (160) 

HCUv,z,t,s =  fUv,t,s . Cp,v,t,s . (tz−1,t,s −  tz,t,s)     
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where v =  NC + 1, NC + 2, … , NC + NCU                                                                          (161) 

where FUs,t,u is the flowrate of the uth heating utility and fUs,t,v is the flowrate of the vth 

cooling utility during each period t and scenario s. 

The total of all the heating loads for the uth heating utilities and all cooling 

capacities for the vth cooling utilities are given by: 

HHUs,t,z
Total =  ∑ HHUs,t,u,z

u

                                                                                                (162) 

HCUs,t,z
Total =  ∑ HCUs,t,v,z

v

                                                                                                  (163) 

During each operational period t and scenario s, the total heating loads of the uth 

heating utilities and the cooling capacities of the vth cooling utilities may be evaluated by 

summing up the individual heat loads and the individual cooling loads over intervals: 

QHu,t,s =  ∑ HHUu,z,t,s

z

                                                                                                       (164) 

QCv,t,s =  ∑ HCUv,z,t,s

z

                                                                                                         (165) 

 

4.5.7 Objective Function 

The main purpose of the optimization problem is to maximize the annual expected 

profit as an economic metric of the integrated system for each period t and scenario s, 

which is expressed as follows: 
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The maximum annual expected (after-tax) profit = { ∑ 𝑝𝑠𝑁𝑠
𝑠=1  (Annual Incomes – Total 

Annualized Operating Costs) – Total Annualized Investment Cost} ⨯ (1-Tax rate) + 

Depreciation                                                                                              (166)                                                    

where,                                                                                                                                                         

Annual Incomes = Annual value of treated water + Annual value of avoided cost of 

discharging wastewater + Annual value of electricity supplied for an external grid + 

Annual value of an industrial process (midstream) productions 

Total Annualized Operating Costs = Annualized operating cost of the cogeneration process 

+  Annualized operating cost of the parabolic trough collectors +  Annualized operating 

cost of the thermal energy storage +  Annualized operating cost of MED plant + 

Annualized operating cost of RO plant + Annualized operating cost of an industrial 

process 

Total Annualized Investment Cost =  Annualized fixed capital cost of the cogeneration 

process + Annualized fixed capital cost of the parabolic trough collectors + Annualized 

fixed cost of the thermal energy storage + Annualized fixed capital cost of MED plant + 

Annualized fixed capital cost of RO plant + Annualized fixed capital cost of an industrial 

process  

Consequently, the objective function of a multi-scenario mixed integer non-linear 

programming (MINLP) model, which is a deterministic equivalent model of a two-stage 

stochastic programming model with recourse, can be given as follows: 
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max TAP = {kγ ∑ 𝑝𝑠
𝑠  ∑ (νRO .  Ft,s

D_RO + νMED . Ft,s
D_MED )𝑡  + (CWW .  Ft,s

B_Total) +

(
1

3.413
 . ae . Et,s

Turbine . ηg) + (νFuel .  Ft,s
FP +  νChemicals . Ft,s

CP ) - ( OPEXt,s
Cogen

 + OPEXt,s
SC + 

OPEXt,s
TES + OPEXt,s

MED + OPEXt,s
RO + OPEXt,s

PR ) -  kf (CAPEXCogen + CAPEXSC + 

CAPEXTES – CAPEXMED + CAPEXRO + CAPEXPR)} ⨯ (1-Tax rate) + Depreciation    

                                                                                                                                     (167)  

The proposed model of this work, which is a multi-scenario mixed integer 

nonlinear programming (MINLP) model, comprises nonlinear, non-convex equations and 

mixed integer variables. Therefore, advanced approaches and techniques may be required 

to globally optimize the integrated system to obtain  the optimal system configuration. The 

objective function of the stochastic programming model is solved using the stochastic 

programming solver for  two-stochastic programs with recourse of the software LINGO® 

[213].  

 

4.6 Case Study  

In order to demonstrate the applicability of the proposed approach and a 

formulated optimization model, an illustrative case study is solved by considering a multi-

purpose system that addresses the water-energy nexus problem of shale oil and gas 

industries for Eagle Ford Basin in Texas, which extends over 23 counties and becomes 

one of the significant producers of shale oil and gas in addition to the large aquifer 

(Carrizo-Wilcox) of brackish water source, as shown in Figure 16 that is adapted from 

[214].  
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Figure 16: Eagle Ford Basin [214] 

Based on data from 2012 and 2013, the water consumption of a typical well with 

a 5000 ft lateral length in the Eagle Ford is about 4.2 million gallons during hydraulic 

fracturing technology. A major company (Halliburton), which works in hydraulic 

fracturing, records that less than 14% of the water used in this process returns as flowback 

water [215] with the total dissolved solid content (TDS) of 15,000 – 55,000 mg salt / Lwater 

[76]. A large number of wells in a shale play and the heavy regulations of storing 

wastewater in containers can contribute to obtaining approximately a constant flow of 

flow-back and produced water (FPW) because there is always a compensation for 

declination in the amount production  of FPW in a well from other wells and the capability 

of providing constant flow of wastewater to desalination plants from containers directly. 

Thus, to estimate the amount of FPW returned from a shale play to the surface that can be 
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considered as an input to desalination plants calculations in addition to avoid the 

uncertainty, the average of an FPW flow for 10 plays in the Eagle Ford Basin between the 

early 2000s to 2015 is estimated from the total FPW quantity (151.22 ⨯106 m3) during 

this period [85]. The following table provides techno-economic data for two desalination 

technologies [63, 143, 145] including RO and MED plants which are utilized to ensure 

removal salt and non-salt impurities and typical exploitation for energy sources. 

 

Table 13: Summary of techno-economic data for RO and MED 

Characteristics                                           RO                                         MED 

 
Outlet Salt Content (ppm) 

 

200 80 

Water Recovery (m3 

Desalinated Water/m3 Feed 

Seawater) 

 

0.55 0.65 

Value of Desalinated Water 

($/m3 Desalinated Water) 

 

0.88 0.82 

Thermal Energy Consumption 

(kWht/m3 Desalinated Water) 

 

- 65 

Electric Energy Consumption 

(kWhe/m3 Desalinated Water) 

 

4 2 

 

 

In addition, the treatment process (desalination plants) of flow-back and produced 

water in a shale gas site can participate in saving money effectively by reducing the cost 

of transportation, fresh water acquisition and disposal for each barrel of FPW. 

Accordingly, the characteristics of a water treatment plant with a capacity of 2380 

barrels/day in Eagle Ford Basin [147], as shown in Table 14, are used to obtain the cost 
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data of primary/secondary treatment (PST), fresh water acquisition, transportation,  and 

disposal. 

Table 14: Cost of treatment, fresh water, transportation and disposal of FPW 

    Type                          PST                  Fresh Water         Transportation        Disposal 

 
Cost ($/barrel)  0.34        0.24                 0.89                      0.05 

 

 

The incorporation of solar energy in the system as an energy source represents a 

substantial challenge due to the availability of fossil fuels, especially, in the case of low 

prices in the world market. Site selection is the first step for constructing the system, 

hence, the estimation of solar intensity is necessary to demonstrate the ability to use solar 

energy in a selected site based on the available data of global solar irradiance, while the 

calculation of the useful thermal power which produced from concentrated solar plant 

(PTC) according to the direct solar irradiance data.   The solar data for Eagle Ford Shale 

Play is extracted from the National Solar Radiation Data Base (NSRDB) are: hourly global 

solar irradiance, hourly direct solar irradiance, hourly solar incidence angle, hourly dry 

bulk temperature, hourly wet bulk temperature. The essential cost data of solar collectors 

(parabolic trough collectors) is summarized in Table 15 that can be used to calculate the 

fixed capital cost [40, 41].  
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Table 15: Capital cost of parabolic trough collector components 

Component                          Capital Cost                Component                   Capital Cost   

                                                 ($/m2)                                                                 ($/m2) 

 
Receivers 43 Electronic and Control                                     14 

Mirrors 40 Header Piping 7 

Concentrator Structure 47 Civil Works 18 

Concentrator Erection 14 Spares, HTF, , Freight 17 

Drive 13 Contingency 11 

Piping 10 Structure and Improvement 7 

 

 

The shale gas production from the Eagle Ford plays can be utilized as fuel for the 

cogeneration process of the system or converted to valuable and expensive products in the 

world market through several processes of separation and fractionation which represent 

essential stages in natural gas processing plants. In this study, Conventional fractionation 

process is chosen as a key intermediate process to segregate the natural gas feed into a gas 

product (methane and ethane), liquefied petroleum gas (propane and butane) and stabilized 

natural gas liquid (pentane+), which can feed many industries such as cogeneration 

process, plastics, textiles, metal industry, motor fuel, etc. The proposed process consists 

of four columns are: De-ethanizer (methane and ethane are separated from the top of the 

column as vapor phase), De-butanizer (propane and butane are separated from the top of 

the column and the stabilized natural gas liquid goes to the bottom of the column, De-

propanizer (propane and butane are separated to obtain pure propane product from the top 

of the column), Butane splitter (n-butane and iso-butene are segregated as specified 

products of the column). To determine the thermal power requirements (deficit and 

surplus) of the fractionation process through heat integration approach that they can be 
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coupled with the heat recovery unit (steam generator) of the system, the heat duties of 

reboilers and condensers for columns in addition to their streams temperature must be 

estimated based on feed stream condition and compositions, as shown in Table 16. 

 

Table 16: Feed condition and composition of fractionation process [216] 

Stream Name                                          First Feed                             Second Feed 

                                                               (from well)                  (from dehydration unit) 

 
Pressure (bar) 30 30 

Temperature (oC) 25 25 

Mass Flow Rate (kg/hr) 25000 8000 

Mole Fraction (Methane) 0.097 0.13 

Mole Fraction (Ethane) 0.029 0.08 

Mole Fraction (Propane) 0.035 0.1 

Mole Fraction (i-Butane) 0.018 0.055 

Mole Fraction (n-Butane) 0.028 0.113 

Mole Fraction (i-Pentane) 0.026 0.104 

Mole Fraction (n-Pentane) 0.025 0.091 

Mole Fraction (n-Hexane) 0.064 0.122 

Mole Fraction (n-Heptane) 0.09 0.11 

Mole Fraction (n-Octane) 0.15 0.072 

Mole Fraction (n-Nonane) 0.11 0.02 

Mole Fraction (n-Decane) 0.09 0.003 

Mole Fraction (n-C11) 0.079 0 

Mole Fraction (n-C12) 0.071 0 

Mole Fraction (n-C13) 0.031 0 

Mole Fraction (n-C14) 0.023 0 

Mole Fraction (n-C15) 0.018 0 

Mole Fraction (n-C16) 0.014 0 

H2O 0.002 0 
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Furthermore, flared gas represents a significant source of CO2 emissions that can 

be reduced by exploiting flared gas as a fuel for the cogeneration process. Particularly, in 

Eagle Ford basin, around 13% of the gas in the formation was flared which equivalents to 

4.4 billion cubic feet of natural gas [146].   

4.7 Results and Discussion 

The first step of solar energy calculations has been carried to study the capability 

of incorporating solar energy as a source of thermal power in the system by estimating the 

potential of this type of energy in the selected site of a case study. The hourly global solar 

irradiance data measured in Eagle Ford area between 1991-2010 was used to calculate the 

monthly average hourly clearness index (kt) values. The index is the ratio of the global 

solar irradiance on a horizontal surface (I) to the hourly extraterrestrial solar irradiance on 

a horizontal surface (Io), as shown in equation 168, which is considered as a stochastic 

parameter because it is a function of a period of year, seasons, climatic conditions and 

geographic site [217].  

kt =  
I

Io
                                                                                                                                  (168) 

Furthermore, the level of sky clearness can be classified according to the value of  kt as 

in Table 17 [218]: 

 

Table 17: Classification of clearness index level 

Sky Condition                      kt 

Cloudy                                < 0.3 

Partly cloudy                  0.3 ≤ kt ≤ 0.5 

Sunny                                   > 0.5 
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The results of calculating kt between 1991-2010 have shown an acceptable 

coincide comparing to kt values which were determined between 1952-1975 by  Solar 

Energy Information Data Bank (SEIDB) [219], as shown in Figure 17. 

 

 

Figure 17: Monthly-average hourly clearness index 

The analysis of the monthly-average hourly clearness index through the 

classification of the clearness index level shows that more than 80% of the days can be 

defined as either sunny or partly cloudy and less than 20% of the days are classified as 

cloudy. It has been also noted that the individual monthly sky conditions percentage of 

sunny daytime hours exceed 40% from April through September, while the percentage of 

cloudy daytime hours do not exceed about 20%.  Consequently, the most significant 

component of solar radiation for concentrated solar collectors’ performance is the direct 

normal irradiance (DNI), which is reduced dramatically with growing cloud cover. 

Concentrating solar collectors can operate efficiently under clear sky conditions of months 
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between June-October that have more than 50% of the sunny daytime hours with hourly 

kt values exceed 0.5 and these collectors are less efficient for the rest months of the year 

with increasing the percentage of partially or completely cloudy daytime hours as in the 

following figure.  

 

 

Figure 18: Monthly sky conditions during daytime hours 

According to the comprehensive analyses of sections 4.3.1 and 4.7, the operational 

period of the system can be partitioned into two periods based upon solar radiation 

intensity: a relatively high-intensity between May-October and a low-intensity from 

November through April. Thus, the implementation of calculating the useful (net) solar 

thermal power that produced by the solar field requires using statistical analysis to find 

the probability distribution density (PDF) and the cumulative probability distribution 

(CDF) for obtained data of direct normal irradiance, solar incidence angle and dry bulb 

temperature, which represent uncertain parameters as in Figure 19.  
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These analyses can be used in the three-point approximation technique to generate 

a few representative values (discrete points) and their identified probabilities, which are 

given in Table 18. The discrete points have been introduced into a detailed performance 

model of the parabolic trough to provide the useful thermal power values of solar energy 

to the objective function of the stochastic model along with considering the characteristics 

of the LS-3 collector chosen and all types of thermal losses (convection, conduction, 

radiation) in the solar collection system. similar methodology in which has been used to 

generate representative points for solar energy. The data of natural gas price ($/MMBTU) 

was obtained from the Energy Information Administration (EIA) [132] for the period 

between 1997-2018. The data has been analyzed based on the time of year as shown in 

Figure 20. 
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Figure 19: Cumulative distribution function of DNI (W/m2), solar incidence angle (o), 

and dry bulb temperature (o C) 
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Figure 20: Cumulative distribution function of Natural gas price ($/MMBTU) 

 

Table 18: Continuous distributions and discrete approximations of uncertain parameters 

  Parameter                               Continuous Distribution            Discrete Approximation 

 
Direct normal irradiance (W/m2) 

(Months: November-April) 

 

θ~N(μ, σ)~N(321.1, 159.3) Points: (59.3, 323.7, 555.2) 

Probabilities: (0.185, 0.630, 0.185) 

Direct normal irradiance (W/m2) 

(Months: May-October) 

 

θ~N(μ, 𝜎)~N(356.0, 196.4) Points: (109.8, 356., 605.1) 

Probabilities: (0.185, 0.630, 0.185) 

Solar incidence angle 

(Months: November-April) 

θ~N(μ, 𝜎)~𝑁(29.4, 15.1) Points: (4.4, 29.5, 53.1) 

Probabilities: (0.185, 0.630, 0.185) 

 

Solar incidence angle 

(Months: May-October) 

 

θ~N(μ, 𝜎)~𝑁(12.6, 9.8) Points: (-2.2, 12.7, 29.7) 

Probabilities: (0.185, 0.630, 0.185) 

 

Dry bulb temperature 

(Months: November-April) 

 

θ~N(μ, 𝜎)~𝑁(14.1, 5.0) Points: (5.7, 14, 22.4) 

Probabilities: (0.185, 0.630, 0.185) 

Dry bulb temperature 

(Months: May-October) 

 

 θ~N(μ, 𝜎)~𝑁(23.8, 5.1) Points: (15.4, 23.9, 32.3) 

Probabilities: (0.185, 0.630, 0.185) 

Natural gas price 

(Months: November-April) 

 

 θ~N(μ, 𝜎)~𝑁(4.3, 2.2) Points: (0.91, 4.3, 8.0) 

Probabilities: (0.185, 0.630, 0.185) 

Natural gas price 

(Months: May-October) 

 

 θ~N(μ, 𝜎)~𝑁(4.2, 2.1) Points: (0.5, 4.2, 7.7) 

Probabilities: (0.185, 0.630, 0.185) 

 

 



 

114 

 

The determination of minimum utility targets of the conventional fractionation 

process, which is shown in Figure 21, requires estimating heat duties for reboilers and 

condensers, in addition, to their stream’s temperature.  

 

 

Figure 21: Conventional fractionation process 

Therefore, the process was simulated using ASPEN Plus® for the feed stream 

condition and compositions, which is given in Table 16. The key results of the simulation 

such as the stream data, heat duty, stream temperature was summarized in Appendix B 

and Tables 19. 
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Table 19: Number of stages and heat exchangers data in each column 
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Deethanizer 19 5587.1 189.7 246.6 
   

Debutanizer 19 735.5 228.2 244.3 -861.55 72.5 61.4 

Depropanizer 19 247.99 75.3 77.6 -255.13 23.2 22.7 

Butane 

Splitter 

30 185.92 63.2 65.2 -190.74 30.5 29.1 

 

Heat integration is carried out to identify the minimum utility targets through the 

thermal pinch analysis. The supply temperature, target temperature, and utility for each 

hot and cold stream of the process are provided in Table 20. The temperature interval 

diagram is set up, which is the first step in the pinch analysis, considering a minimum 

approach temperature is 5oK, as shown in Table 21 . Next, the cascade diagram 

calculations are carried out, as shown in Figure 22, to determine the minimum heating 

utility (QHeating
min ) is 6570.07 kW and the minimum cooling utility (Qcooling

min  ) is 1121.47 

kW. Now, the grand composite curve (GCC) was developed for screening utilities to 

reduce the operating cost as shown in Figure 23. The minimum heating utility will be 

supplied by the steam exiting the steam generator. 
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Table 20: Stream data for the fractalization process 

Stream                  Flowrate X Specific Heat   Supply Temperature   Target Temperature       Enthalpy Change                        

(kW/oK)                                (oK)                               (oK)                            (oK)                              (kW) 

 

 

H1 78.32 346 335 -861.55 

H2 255.13 297 296 -255.13 

H3 95.37 304 302 -190.74 

HU ? 525 522 ? 

C1 98.01 463 520 5587.1 

C2 45.97 501 517 735.5 

C3 82.66 348 351 247.99 

C4 92.96 336 338 185.92 

CU ? 291 292 ? 

 

 

 

Table 21: Temperature interval diagram for the fractionation process   
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Figure 22: Cascade diagram for the fractionation process 

 

𝑄𝐻𝑒𝑎𝑡𝑖𝑛𝑔
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Figure 23: Grand composite curve for the fractionation process 

 

The optimization formulations of the integrated system are solved for a case study 

by using the proposed approach, which is described in section 4.3, to obtain the optimal 

design and operation under uncertainty. The stochastic optimization problem is formulated 

as  a multi-scenario Mixed Integer Non-Linear Programming (MINLP) problem that is a 

deterministic equivalent of a two-stage stochastic programming model with recourse and 

solved using the software LINGO® [213] and MS-Excel 2016 on Intel Core i7-6700 CPU 

with 16 GB RAM. The iterative discretization method has been presented to realize a 

significant reduction in the complexity solving of the optimization problem. Thus, in 

addition to discretize the percentage contribution of RO and MED in the total desalinated 

water production iteratively, the percentage contribution of solar energy in the total 
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thermal power mix of the system is also iteratively discretized that allows designing the 

RO and MED separately and to estimate the economic feasibility of integrating solar 

energy in the system. The objective function has been solved to obtain the expected value 

of the maximum annual net (after-tax) profit by postulating a finite number of scenarios 

to characterize the uncertain parameters of direct solar irradiance and natural gas price 

which take a finite set of known values with their assigned probabilities, as given in Table 

18. The probability of each scenario in the final scenario tree equals the product of 

probabilities of all points that compose it. Consequently, 81 uncertain scenarios are 

generated by considering the available data of uncertain parameters during the seasonal 

periods of the year to find a solution for each case individually. A comprehensive study 

has been performed based on economic and sustainability metrics to demonstrate the 

potential of the proposed system in attaining the profitability and sustainability in the 

framework of water-energy nexus. responsible consumption for water and energy. The 

optimization results for all cases are summarized in Table 22 . 
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Table 22: Economic and sustainability metrics of the system 

(%RO,%MED)* (% 25 Solar Energy, %75 Fossil Fuel)** 

       TAC                             TAP                       ROI                    PBP 

   (MMUSD)                 (MMUSD)                    %                     (year) 

30 RO, 70 MED 76.4 100 18.6 5.1 

50 RO, 50 MED 73.6 99 18.4 4.4 

70 RO, 30 MED 70.9 97.6 18.3 4.5 

(%RO,%MED)* (% 50 Solar Energy, %50 Fossil Fuel)** 

       TAC                          TAP                         ROI                      PBP 

   (MMUSD)                 (MMUSD)                   %                       (year) 

30 RO, 70 MED 86.6 97.5 17 4.9 

50 RO, 50 MED 75.2 97.9 17.1 4.8 

70 RO, 30 MED 71.1 95.2 17.3 4.8 

(%RO,%MED)* (% 75 Solar Energy, %25 Fossil Fuel)** 

       TAC                          TAP                       ROI                       PBP 

   (MMUSD)               (MMUSD)                 %                        (year) 

30 RO, 70 MED 89.2 101 15.5 5.3 

50 RO, 50 MED 84 100 16.1 4.9 

70 RO, 30 MED 78.8 98.4 16.3 5.1 

 
*The percentage contribution of RO and MED in the total desalinated water production 

**The percentage contribution of solar energy and fossil fuel in the total thermal power mix of the system 

 

Based on the above-mentioned results, it can be observed that the system has been 

offered a significant performance through using sustainability weighted return on 

investment (ROI) and payback period (PBP) calculations for the different percentage 

contributions of RO, MED, solar energy and fossil fuel.  Additionally, the total annual 

cost (TAC) of the system can be reduced by increasing the percentage contribution of RO 

over MED and decreasing the percentage contribution of solar energy. This reduction in 

the total annual cost is based on two reasons: the high capital investment and operating 
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cost of MED, the competitive price of fossil fuels comparing to the relatively high cost of 

concentrated solar technologies, especially, in the short term. However, the incorporation 

of solar energy in the system is feasible economically and it will be more feasible in the 

long-term because of the exhaustion of fossil fuels resources and the diminishing in solar 

technologies cost. 

A comparative study has been carried out between the obtained solutions of the 

stochastic model and those are obtained from the deterministic model with considering the 

specific percentage contribution of solar energy and fossil fuels (50% solar energy, 50% 

fossil fuels) and the various percentage of RO and MED contributions, as shown in Figure 

24. This study indicates that the solving of the stochastic model offers a significant 

improvement on values of ROI and PBP comparing with the obtained values of the 

deterministic model, whereas the total annual costs of the system that obtained from 

solving the stochastic model are notably less than they obtained from the deterministic 

model. 
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Figure 24: A comparative study between stochastic and deterministic models 

It is worth noting that the optimal solution of the system under uncertainty 

comparatively deviated from the deterministic solution due to considering the uncertain 

parameters. The relative differences between the stochastic and deterministic cases stem 

from the capability of the system to meet its demand from thermal power during the 

operational period by adjustment the diurnal fluctuations of solar energy through utilizing 

fossil fuels and thermal energy storage system that make the system works in a nearly 

steady mode and inherits robustness against the uncertainty. However, there is still a 

necessity to handle the uncertain nature of the actual hourly, daily and seasonally data by 

developing the system design and operation under uncertainty that can address operational 

issues and provide the detailed design. These concepts are consistent with the objective of 

this work to start preliminary screening and then determine main targets that can be as a 

guide to the proper design and operation for the system. 
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In order to evaluate the impact of the system performance on the environmental 

aspects, a comprehensive comparison has been achieved for the amount CO2 which can 

be reduced during the operational mode for the system, as described in Figure 25. 

The comparison indicates obviously that the enhancement in the environmental 

performance of the system requires increasing the percentage of solar energy contribution 

and RO contribution because RO plant consumes less thermal power than MED plant and 

solar energy can be contributed to meet a demand of MED plant from the thermal power 

and lessen fossil fuel consumption, which causes sustaining fossil fuels resources and 

significantly diminishing in the emissions of greenhouse gases. 

 

 

Figure 25: The estimation of reduction in an amount of CO2 emission from the system 

 

In the same context, flared gas can be converted from the source of greenhouse gas 

emissions in a shale site to one of the energy sources that may be contributing effectively 
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to improve the economic and environmental performance of the system. Consequently, 

reconciliation of economic and environmental objectives is crucial to attaining the optimal 

configuration of the system which operates under uncertainty conditions. 

4.8 Summary 

A new hierarchical procedure has been developed for formulating and optimizing 

an integrated system operating under uncertainty to address the problem of water-energy 

nexus in a shale oil and gas industry. The system utilizes a hybrid of fossil fuel and solar 

energy to enhance the sustainable design of the system that consists of the following key 

elements: concentrated solar collectors, thermal energy storage, cogeneration process, 

MED and RO. An industrial process (fractionation process) has been incorporated into the 

system to satisfy heating and cooling demands of the process. The optimization problem 

is formulated as a multi-scenario Mixed Integer Non-Linear Programming (MINLP) 

problem that is a deterministic equivalent of a two-stage stochastic programming model 

to characterize the uncertainty in the system by considering two uncertain operational 

parameters (normal direct irradiance, fossil fuel price). Solar energy is included as a source 

of thermal [power for the entire system through heat recovery system (steam generator). 

The heat integration technique has been carried out for hot and cold streams of the 

fractionation process to determine the surplus and deficit energy content in addition to the 

quality of hot and cold streams temperature. The operational period has been discretized 

based on two seasons of the year to create a finite number of scenarios for uncertain 

parameters.  The percentage of incorporating water treatment technologies and solar 

energy into the system has been iteratively discretized. The results from solving a case 
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study for Eagle Ford Basin in Texas indicated the applicability of the integrated approach 

based on stochastic optimization to show the system's economic and environmental merits 

in solving the problem of water management in shale gas production using a water-energy 

nexus framework and incorporating renewables. 
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CHAPTER V                                                                                                                       

ESTIMATION OF SOLAR IRRADIANCE DATA FOR CONCENTRATING SOLAR 

COLLECTORS USING HIERARCHICAL CALCULATION METHODOLOGIES 

FOR DIFFERENT SKY CONDITIONS 

5.1 Introduction 

 Renewable energy sources have taken increasingly significant attention these 

days. Particularly, solar energy that could contribute efficiently to attain the proper 

solution for the rapid growth problem in energy demand.  The short-term solution can be 

through offering the sustainable system design via hybridizing solar energy with fossil 

fuel to sustain the existing energy resources, while the long-term solution can be the 

entirely replacing for the conventional energy sources to compensate the shortage in these 

resources. The depletion of fossil fuel resources (oil, natural gas, coal) approximately 

would be up to 2042, except coal which will be lasting after 2042 [220].  

The primary assessment of the potential of solar energy at a specific site is essential 

for selecting and designing solar energy systems (e.g., photovoltaic systems and 

concentrating solar thermal power). However, the substantial impact of uncertainty of the 

solar irradiance forecast (especially, direct normal irradiance) on the solar power plants 

output and their profitability over time should be addressed. Moreover, much attention 

should been paid to the significance of  acquiring hour-ahead or day-ahead forecasts of 

solar irradiance [221]. Accordingly, most recent studies have emphasized on attaining the 

best forecast accuracy based on high-quality solar irradiance data to reduce the effect of 
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the intermittency nature of solar energy on the uncertainty in the optimal design 

parameters and the errors in all modelling and measurements [222-224].  

The solar radiation that travels through the sky until reaching the earth's surface 

can obtain various forms: direct (beam), diffuse, and reflected (scattered) radiation based 

on the distance traveled through the atmosphere, the cloudiness amount,  the ozone layer 

intensity, the concentration of haze in the air (water vapor, dust particles, pollutants, etc.), 

and types of ground surface [225]. Indeed, the most relevant component of solar radiation 

for concentrated solar power technologies (including parabolic trough, central receiver, 

linear Fresnel reflector, and parabolic dish) is the direct normal irradiance (DNI). Thus, 

the performance of the previous technologies reduces dramatically with growing cloud 

cover. Whereas, photovoltaics can generate electric power from diffuse irradiation. 

Therefore, the long-term evaluation for the technical and economic performance of solar 

energy systems based on the availability of solar radiation data and their accuracy. To 

move successfully from the investment in small to large scale solar projects, accurate solar 

radiation data are essential because small uncertainty in the measured and estimated 

quantity of solar radiation may jeopardize the economic feasibility of proposed solar 

projects [187]. Solar radiation measuring instruments (e.g., pyranometer and 

pyrheliometer) are utilized to obtain reliable solar radiation data over various periods of 

time [225]. However, the measured data may not available or easily accessible due to the 

high cost of instruments which used in measuring stations and the technical difficulties to 

calibrate these instruments, especially in developing countries.  
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The lack of measured DNI data at the most solar project’s sites is a challenging 

task for researchers and workers in the field of solar energy applications. Despite the 

availability of global horizontal irradiance (GHI) and diffuse (DHI) horizontal irradiance 

data that can be used to obtain DNI values, there is still a need to model the solar resource 

in most cases. Consequently, most researchers in this field have formulated various 

models, regression equations, and empirical correlations to predict solar radiation based 

on the division basis of the time period (e.g., hourly, daily, monthly) and on the 

meteorological and geographic parameters. These parameters are maximum and minimum 

temperature, relative humidity, sunshine duration, cleanness index, cloud cover, 

geographical site, etc. [187]. The estimated datasets from various models, regression 

equations, and empirical correlations require precise validation via comparing with high-

quality measured datasets. For large-scale solar projects, the importance of the mutual 

relationship between a lower uncertainty in solar radiation data, minimal financial risks, 

and profitability has been discussed in [224].  

The two categories of solar radiation models: parametric and decomposition are 

used to predict beam (direct), diffuse, and global components of irradiance based on the 

availability of other measured or calculated quantities. The Parametric (broadband) 

models have been formulated based on astronomical, atmospheric and geographic 

parameters to predict the solar irradiance precisely. Additionally, these models are the 

better choice than decomposition models when meteorological data are not obtainable 

[225-228]. First models have been formulated and tested to estimate the amount of clear-

sky direct and diffuse solar radiation on horizontal surfaces under various climate 
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conditions [229-231]. The attenuation influence of a large range of atmospheric 

constituents on the DNI has been studied. This study demonstrated that the major 

attenuation was occurred by effecting of constituents, molecular scattering, and water 

vapor absorption respectively, while the ozone layer and CO2 have a minor effect. The 

tested models have shown a reasonable agreement with small values of the zenith angle 

[232, 233]. The availability of the input parameters (aerosol optical depth or Link 

turbidity) and implementation simplicity were used as the selection criteria for a number 

of clear sky solar irradiance models and to evaluate their accuracy. The parameters, which 

are measured locally, were more recommended than climatic data sets to avoid 

underestimated values of the direct and global irradiance [234]. Several simple clear and 

cloudy sky models of solar global irradiance that do not need meteorological data as inputs 

have been evaluated. The models can be used to predict the global irradiance for the next 

few hours or might be for the next day. In addition, the clear sky model can be used for 

partially cloudy days and the estimated total cloud amount is crucial for the cloudy sky 

model [235]. Three types of analyses have been used to assess the validity, limitations, 

and performance of many clear sky solar irradiance models. These analyses were carried 

out based on studying the effect of atmospheric effects (e.g., water vapor absorption, 

aerosol extinction), statistical evaluation, and comparison with a large number of 

calculated and measured data [236]. The performance of broadband models has been 

evaluated to identify their accuracy to predict clear-sky direct normal irradiance (DNI) by 

comparing with high-quality measurements along with a large range of conditions that 

were selected carefully. Furthermore, the uncertainty in the predicted values of DNI 
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increase pointedly with air mass and they were more sensitive to errors in values of 

turbidity and precipitable water, which are the two substantial inputs of the parametric 

models [227, 237]. The evaluation procedure, which consists of forty-two stages, has been 

created to test fifty-four parametric models through the sensitivity analysis. These models 

can be used to compute global and diffuse irradiance on a horizontal surface. The input 

data for the models have been adopted from satellite measurements including ground 

meteorological data and atmospheric column integrated data [238]. The significant review 

for eighteen clear-sky models has been carried out to assess their performance by 

comparison between predicted values and measured values under various climate 

conditions. The high-quality input data were collected from five locations. The selected 

models can be applied to set up solar datasets, solar resource maps, and large-scale 

applications. All models were ranked based on their accuracy that determined by four 

statistical indicators. It has also been found that there is complexity in the prediction of 

DNI, the prediction of DHI is less accurate, and the number of the model input may not 

have that obvious influence on its performance and precise [239]. To select a suitable site 

to install the concentrating solar power plant, seventeen clear-sky models have been 

studied to verify which model can be used for predicting the more precise values of direct 

normal irradiance. The performance and accuracy of the models have been tested by 

comparing their predictions with measured irradiance of a specific site along with using 

the statistical accuracy indicators. In this study, the parametric models have been classified 

into two groups: simple models that are included less than three inputs (astronomical and 

geographical parameters) such as ASHRAE, Meinel, HLJ, etc., and complex models that 



 

131 

 

are based on various parameters (the air mass, the ozone layer, aerosols, precipitable water 

and Linke turbidity factor) such as Bird family models. It is worth noting that simpler 

models can offer more accurate DNI data than complex models, in other words, an 

increase in the number of model inputs (e.g., atmospheric parameters) may not necessarily 

enhance the accuracy and performance of a model [240].  

Based on the above-mentioned, the clear-sky models (Parametric models) have 

been developed to estimate the clear sky irradiation (in the absence of clouds). Hence, they 

cannot be used to predicate direct normal irradiance (DNI) under cloudy conditions. 

Consequently, decomposition models are based on the phenomenon of fitting the historical 

experimental data through empirical correlations, which are typically utilized to calculate 

direct normal radiation and diffuse radiation on a horizontal surface from global solar 

radiation data [241]. It is axiomatic that the availability of solar radiation at the earth's 

surface is considerably influenced by cloudy sky condition. The direct normal irradiance 

is attenuated significantly with increasing cloud cover and its value may be reached to 

zero. In contrast, once the value of cloud cover attains intermediate range values, the 

diffuse solar irradiance (sky radiation) starts growing in the sky until mounting to a 

maximum value at high range values of cloud cover, or fading to zero at the overcast sky 

condition [242].  Because of that, the sky state study, based on the temporal and spatial 

distribution modelling of clouds, is crucial to estimate the availability of all radiation types 

at a specific site [243]. The various concepts of cloud detection and classification have 

been discussed, various techniques were developed for cloud classification based on 
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instruments (ground-based, satellite integrated) that used to determine the state of the sky 

[244-246].  

Numerous types of cloud cover-based models have developed to estimate hourly 

and daily solar radiation using cloud cover data [221, 247-249]. The cloud-cover radiation 

model (CRM) is widely used to obtain hourly global solar irradiance forecast based on the 

cloud cover, which is measured in Oktas and ranging from zero Oktas (an entirely clear 

sky) through eight Oktas (an entirely overcast sky). The CRM was developed by Kasten 

and Czeplak using ten years of hourly cloud amount data [250]. Many researchers have 

tested the Kasten–Czeplak model (CRM) using the dataset of various sites around the 

world, and to improve the model's accuracy, the locally fitted coefficients for each of the 

selected locations were determined by regression analysis [243, 245, 247, 248, 251-254]. 

In order to obtain average hourly solar radiation values from long-term daily 

values, global solar radiation decomposition models can be used to transform daily solar 

radiation values into hourly solar radiation values [255]. The existing models can be 

divided into three categories based on parameters, physical significance, and constructing 

methods: the first group of models entails the time factor like solar time, day length, solar 

hour angle, etc. The most widely used models are the Whillier model [256], Liu & Jordan 

model [257], and Collares-Pereira & Rabl model [258, 259], the second group of models 

is developed in the Gaussian function form such as Jain model 1 [260], Jain model 2 [261], 

Shazly model [262], and Baig et al. model [263], Newell model [264] is the most known 

model of the third group of models, which is modified from the Collares-Pereira & Rabl 

model [226, 255, 265].  
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Other empirical models have been developed by correlating the clearness index, 

diffuse fraction, and meteorological parameters based on using the measured data of 

selected sites to estimate the global and diffuse solar irradiation. The meteorological 

parameters consist of sunshine period, cloud cover, minimum and maximum temperature, 

relative humidity, and geographical location.  

The clearness index is a random parameter which can sense the meteorological 

stochastic effects (e.g. atmospheric aerosols, cloudiness, temperature, etc.) on the solar 

radiation for a time of the day, a season of the year, and a geographical site [266]. It should 

be noted that the clearness index is sensitive to the short-term effects (atmospheric 

influences which are described by statistics and the long-term effects (Earth’s movement 

which is described by astronomy) [218]. In general, it represents the ratio of the global 

solar irradiance on a terrestrial horizontal surface (which is a stochastic quantity) to the 

global solar irradiance on an extraterrestrial horizontal surface (which is a deterministic 

quantity) for the same time and site [217, 225]. In this context, the concepts of long-term 

of solar radiation data (either daily or monthly average daily) and short-term of solar 

radiation data (either hourly or monthly average hourly) can be utilized to estimate the 

cleanness index [225]. As already stated, the clearness index and diffuse fraction are 

essential factors for evaluating the impacts of cloud on extraterrestrial radiation. 

Therefore, they both should be considered as random variables to construct probability 

functions (PDF and CDF) through studying the statistical distribution of their past 

occurrence to predict their future values within a precise range. Based on that, several 

investigators have used probability function, which depends on local conditions, in 
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modelling clearness index to predict terrestrial solar radiation and to classify the level of 

the sky clearness  [218, 228, 257, 267-271]. 

The sunshine duration is another key indicator for specifying the different sky 

conditions along with the clearness index and cloud cover. It is the ratio of the actual 

(bright) hours of sunshine (which is a stochastic value) to the average daylight hours 

(which is a deterministic value). When the sky is completely cloudless, the bright sunshine 

hours will be equal to the average daylight hours and the ratio will be 1 and the majority 

of radiations that gained by the solar energy systems are direct normal irradiance (DNI). 

In contrast, on a completely or partially cloudy day, the bright sunshine hours may reach 

zero, thus diffuse radiation will dominate the working of solar energy systems during the 

time of spreading scattered thin clouds in the sky [254]. When the sunshine duration 

fraction is approximately 0.3 to 0.5, the highest diffuse radiation values typically is 

obtained [241]. However, the uncertainty influence of scattered clouds and their 

movement in the sky is still representing a great obstacle in estimating a nature and 

quantity of received radiations on the earth surface [272]. The estimation of sunshine 

duration data from cloud cover by developing an empirical correlation is quite useful to 

calculate global solar radiation on the horizontal surface [273]. In the same context, a 

simple theoretical model has been presented that represents the interrelation of sunshine 

duration and cloud cover fraction to predict cloud cover fraction that can be further used 

to calculate global solar radiation on the horizontal surface (GHI) under different sky 

conditions [272]. 
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Thus, the Angstrom-Prescott correlation, which represents the simple, linear, and 

pioneering relationship between clearness index and relative sunshine, was established by 

Angstrom and then was modified by Prescott [274, 275]. Over the last decades, there were 

considerable endeavors for evaluating and interpreting the Angstrom-Prescott equation 

[276]. New formulations (either linear or non-linear) of the Angstrom-Prescott equation 

were proposed by many researchers using clearness index against sunshine fraction [226, 

254, 265, 273, 277-285], ambient temperature [226, 265, 278, 283, 285, 286], relative 

humidity[226, 265, 285], precipitation [265, 278, 287, 288], cloud cover [265, 273, 277, 

289], and multi-parameters [265, 276, 283, 285, 290]. 

It is obvious that the performance evaluation of solar energy systems (solar 

photovoltaics and solar thermal applications) and selecting their optimized design depends 

on the availability of solar radiation data and its components. The diffuse radiation is 

undoubtedly a significant component besides direct normal irradiance for assessing the 

solar radiation quality. Hence, numerous empirical correlations have been developed to 

predict diffuse radiation or monthly average daily diffuse solar radiation using clearness 

index, relative sunshine duration, and cloud cover data [228]. The first correlation 

developed by Liu and Jordan [257] to estimate hourly diffuse radiation on a horizontal 

surface from global solar radiation, and based on the same concept, many correlations 

have been modified by researchers using a large amount of data from different locations 

over a period of years [291-295]. Other models have been developed for calculating 

monthly average diffuse solar radiation by employing regression analysis to correlate 

diffuse fraction with clearness index and relative sunshine duration [257, 296-298]. To 
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enhance the accuracy of models for estimating diffuse solar radiation or monthly average 

daily diffuse solar radiation, several researchers have demonstrated the importance of 

adding more variables such as ambient temperature, relative humidity, cloud cover, etc. 

[299]. The prediction of hourly, daily, and monthly global solar radiation and its 

components on inclined surfaces were discussed in [266, 300, 301] because the maximum 

amount of incident solar radiation is received on inclined surfaces. 

The aim of this study is to develop two hierarchical calculation methodologies for 

estimating hourly solar irradiance using various models, empirical correlations and 

regression equations. Specifically, hourly direct normal irradiance data which is utilized 

for designing solar concentrated collectors. The accuracy of the proposed approaches for 

estimating solar data is demonstrated by using various statistical indicators while 

comparing with measured solar data.     

5.2 Theoretical Analysis  

The design and operation of various solar energy technologies and their 

applications such as photovoltaic systems and concentrated solar thermal energy systems 

require obtaining high-quality solar irradiance data for a specific site at any time of a day 

and a year to make the long-term evaluation for the techno-economic performance for 

these technologies. Thus, various existing models, empirical correlations and regression 

equations, which have been discussed in detail in section 5.1, will be investigated along 

with developing some regression equations in this work to predict different solar radiation 

types based on the time period and the meteorological and geographic parameters. 
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5.2.1 Estimation of Hourly Direct Normal Irradiance 

5.2.1.1 Parametric (Broadband) Models  

A large number of parametric models have selected and then tested for accuracy 

fit by using statistical indicators. The existing models, which have been formulated based 

on astronomical, atmospheric and geographic parameters, are used to predict direct normal 

irradiance (DNI) under clear sky condition.  The performance of 22 models have been 

assessed by comparing their results with the measured high-quality datasets through 

statistical indictors. These models are summarized in Table 23. 

Table 23: Summary of selected parametric models 

Equation                                                                                        Description 

IDNI,FR = IoN τbulk
me  

 

 

(169) Fu and Rich 

model 

[302] 

IDNI,ASH = A exp [
−B

cos θz

] 

A, B from table [226, 266] 

 

(170) ASHRAE model [226, 

302] 

IDNI,HLJ = IoN τaa 

τaa = aaa + baa exp [−
caa

cos θz

] 

aaa, baa, caa are constants [231, 240] 

 

(171) HLJ model [240] 

IDNI,KUM = 0.56 IoN[exp(−0.65 mair) +

exp (−0.095 mair,KUM)] 

mair = mrp/po 

m𝑟 = {[1229 + (614 cos θz)2]0.5 − 614 cos θz} 

 

(172) Kumer model [302] 

IDNI,HS1 = IoN exp(−mair  σ TLTF) 

σ = 1/(6.62960 + 1.7513mair − 0.1202mair
2 + 0.0065mair

3

− 0.00013mair
4) 

mair = mrp/po 

mr = 1/ cos θz 

TLTF: Linke turbidity factor [240] 

 

(173) Heliosat-1 model [302] 
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Table 23: Continued 

Equation  Description  

IDNI,ESRA = IoN exp(−mair  σ TLTF) 

mair = mrp/po 

mr = 35/[(1224 cos2θz) + 1]0.5 

  

(174) ESRA model [302] 

IDNI,Bird = 0.9662 IoN τtotal 

τtotal = τrt τot τgt τwt τat 

τrt = exp [−0.0903 mair
0.84(1 + mair − mair

1.01)] 
τot = 1 − [0.1611U3(1 + 139.48U3)−0.3035 − 0.002715U3(1

+ 0.044U3 + 0.0003U3
2)−1] 

τgt = exp (−0.0127mair
0.26)  

τwt = 1 − 2.4959U1[1 + 79.034U1)0.6828 + 6.385U1]−1 

τat = exp [−Lao
0.873(1 + Lao − Lao

0.7808)mair
0.9108] 

mair = mrp/po 

mr = 35/[(1224 cos2θz) + 1]0.5 

Lao = f(β1, β2) 

 

(175) Bird model [230, 

240] 

IDNI,Hoyt = Io  (1 − ∑ ai

5

i=1

) τas τr 

mair = mrp/po 

mr = 35/[(1224 cos2θz) + 1]0.5 

𝑚𝑟 = [cos 𝜃𝑧 + 0.15 (93.885 − 𝜃𝑧)−1.253]−1 

a1, a2, a3, a4, a5 = f(U1, U3, mr, ma, τot, τas) 

 

(176) Hoyt (Iqbal B) 

model 

[228, 

230] 

IDNI,MET = 0.9751 IoN τtotal 

All transmittances (τtotal) are similar to Bird model except 

aerosol transmittance, τat = exp (−mair Lao) 

mair = mrp/po 

mr = 35/[(1224 cos2θz) + 1]0.5 

 

(177) METSTAT 

model 

[302] 

IDNI,CSR = CCSR IoN τtotal 

CCSR = [50 + |cos (
Nj

325
)|]/49.25 

All transmittances (τtotal) are similar to Bird model except 

aerosol transmittance, τat = exp (−mair Lao) 

mair = mrp/po 

mr = 35/[(1224 cos2θz) + 1]0.5 

 

(178) CSR model [240] 

IDNI,IqbalC = 0.9751 IoN τtotal 

All transmittances (τtotal) are similar to Bird model 

(179) Iqbal model C [228] 
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Table 23: Continued 

Equation  Description  

IDNI,MIqbalC = 0.9751 IoN τtotal 

τat = (0.12445β1 − 0.0162)
+ (1.003 − 0.125β2)exp [−mair β1(1.089 β2

+ 0.5123)] 
τw = 1 − 2.4959U1[1 + 79.034U1)0.6828 + 6.385U1]−1 

U1 = W`mr 

W` = 0.1 exp(2.2572 + 0.05454 Tdew) = Won′sequation 

mair = mrp/po 

mr = 35/[(1224 cos2θz) + 1]0.5 

 

(180) Modified Iqbal 

model C 

[240] 

IDNI,AWB = Io (τmd − aw) τat 

τmd = 1.041 − 0.16 [mr (949 ⨯ 10−6p + 0.051)]0.5 

aw = 0.077(U1mair)0.3 

U1 = W mr 

W = W` (
p

po

)0.75 (To/Tamb)0.5 

W` = 0.1 exp(2.2572 + 0.05454 Tdew) = Won′sequation 

mair = mrp/po 

mr = 35/[(1224 cos2θz) + 1]0.5 

 

(181) Atwater and Ball 

model 

(The model can 

be used for clear 

and cloudy sky) 

[230, 

302] 

IDNI,DH = Io (τo τrt − αw) τA 

τo = {[
(1 − 0.02118Xo)

(1 + 0.042Xo + 0.000323Xo
2)

 ] − [(1.082Xo)/(1

+ 138.6Xo)0.805] − [(0.0658Xo)/(1
+ (103.6Xo)3] 

αw = 2.9Xw/[(1 + 141.5Xw)0.635 + 5.925 Xw] 
τA = (0.12445α − 0.0162)

+ (1.003 − 0.125α) exp [−β mair(1.089α
+ 0.5123)] 

Xo = U3 mr 

Xw = U1 mr 

mair = mrp/po 

mr = 35/[(1224 cos2θz) + 1]0.5 

 

(182) Davis and Hay 

model 

[230] 

IDNI,DPP = 950.2 {1 − exp[−0.075 (90𝑜 − 𝜃𝑧)]} (183) Daneshyar-

Paltridge-Proctor 

(DPP) model 

[226] 

IDNI,Meinel = IoN 0.7mair
0.678

 

mair = mrp/po 

mr = 1/ cos θz 

 

(184) Meinel model [226] 

IDNI,Laue = IoN [(1 − 0.14 L) 0.7mair
0.678

+ 0.14 L] 
mair = mrp/po 

mr = 1/ cos θz 

 

(185) Laue model [226] 

IDNI,Haw = 1098 cos θz exp[−0.057/ cos θz]  (186) Haurwitz model [303] 
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Table 23: Continued 

Equation  Description  

IDNI,BD = 0.70 IoN cos θz  (187) Berger and 

Duffie model 

[303] 

IDNI,ABCG = 951.39 (cosθz)1.15 (188) Adnot, Bourges, 

Campana and 

Gicquel model 

[303] 

IDNI,KC = 910 cosθz − 30 (189) Kasten and 

Czeplak model 

[303] 

IDNI,RS = 1159.24 {(cosθz)1.179 exp[−0.0019 (90 − θz)]} (190) Robledo and 

Soler model 

[303] 

 

 

Based on the above-mentioned description of parametric models, they can be 

classified: a simple group, and complex group. The simple models are developed by using 

the zenith angle in addition to a few atmospheric parameters such as temperature, pressure 

and relative humidity. Whereas, various input atmospheric parameters such as aerosols, 

ozone layer and perceptible water are included in models that account as a complex group. 

Table 24 is the summary of various astronomical and atmospheric parameters which were 

used to develop the models 

 

Table 24: Summary of astronomical and atmospheric parameters 

Equations                                                                 Parameters name      Parameters type  

cos θz = sinL sinθδ + cosL cosθδ cosθh  (191) Solar 

zenith angle 

Astronomical [225] 

θδ = 23.45 sin[
360

365
(284 + Nj)] 

 

(192) Declination 

angle 

Astronomical [225] 

θh = 15o(ST − 12)  (193) Solar angle Astronomical [225] 

 

 



 

141 

 

Table 24: Continued 

Equations  Parameters 

name  

Parameters 

type 

 

ST = SDT + 4(Lst − Lloc) + E 

E=229.2(75⨯10−6 + 186 ⨯ 10−6  sin B −
0.032207 sin B − 0.014615 sin 2B −
0.04089 sin 2B) 

B = (Nj − 1)
360

365
 

 

(194) Solar time 

Time equation 

Astronomical [240] 

IoN = Io [1 + 0.033 cos(
360Nj

365
)]  (195) Extraterrestrial 

radiation 

measured on the 

plane normal to 

the radiation 

Astronomical [225] 

me = exp(−0.000118h − 1,638 ⨯ 10−9h2)
/ cos θz 

(196) Air mass 

corrected for 

elevation 

Atmospheric [240] 

mr = {[1229 + (614 cos θz)2]0.5 − 614 cos θz}  (197) A specific air 

mass 

Atmospheric [240] 

mair = mrp/po (198) Air mass at 

actual pressure 

Atmospheric [302] 

mr = 1/ cos θz (199) Air mass at 

standard 

pressure 

Atmospheric [302] 

mair,MIqbalC =  mr exp(−0.001184 h) (200) Actual air mass 

value depends 

on altitude and 

relative air mass 

at standard 

pressure 

Atmospheric [240] 

mr = 35/[(1224 cos2θz) + 1]0.5 (201) Air mass at 

standard 

pressure 

Atmospheric [230] 

mr = [cos θz + 0.15 (93.885 − θz)−1.253]−1 (202) Air mass at 

standard 

pressure 

Atmospheric [240] 

 

 

5.2.1.2 Cloud Cover Model (CRM) 

In order to predict direct normal irradiance (DNI) under different sky conditions, 

the cloud-cover radiation model (CRM), which represents a regression-type model and 

described detailly in section 5.1, can be used. The performance of this model is evaluated 
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against the dataset extracted from a selected site. The first step toward determining DNI 

from the Kasten–Czeplak model (CRM) is to estimate the hourly global solar radiation on  

a horizontal surface under a cloudless sky. The obtained value is used along with cloud 

cover range (measured in Okats) to find the hourly global radiation on a horizontal surface 

under cloud cover condition. Several instruments (ground-based, satellite integrated) are 

utilized to determine the sky conditions Next, the hourly diffuse radiation is determined 

to obtain the value of hourly DNI, as described in the following formulas that are 

summarized in Table 25.  

 

Table 25: Cloud-cover radiation model (CRM) 

Equation                                                                          Description 

IGcs
= A sin θα − B 

sin θα = cos θz = sinL sinθδ + cosL cosθδ cosθh 

θδ = 23.45 sin[
360

365
(284 + Nj)] 

sinθh =
sin θα − sin θδ  sin L

cos θδ  cos L
  

A, B: Empirical coefficients  

 

(203) Hourly global solar 

radiation on  a horizontal 

surface under cloudless sky 

[248] 

IGcc
= IGcs

 [1 − C(
N

8
)D] 

N = cloud cover (Oktas);  [0(clear sky)

− 8 (completely overcast sky)] 

C, D: Empirical coefficients   

 

(204) Hourly global solar 

radiation on a horizontal 

surface under cloud cover 

condition 

[247, 

250] 

Id = IGcc
 [0.3 − 0.7 (

N

8
)2] 

 

(205) Hourly diffuse radiation on  

a horizontal surface 

[248] 

IDNI,KC = (IGcc
− Id)/ cos θz (206) Direct normal irradiance 

(DNI) under different sky 

conditions 
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5.2.1.3 A Hierarchical Calculation Methodology 

Accordingly, the hourly direct normal irradiance under various sky conditions for 

different geographical locations can be estimated based on the previous equations, which 

may contribute to compensate for lack of the solar dataset for a certain site. It should be 

noted that the availability of DNI dataset is essential to the design and operation of 

concentrated solar power technologies including central receiver, linear Fresnel, dish 

sterling and parabolic trough collector. Particularly, if the expected contribution of these 

technologies in the total renewable energy production would be about 50.34% by 2030 

[240]. The hierarchical methodology is summarized in Figure 26, which can be used to 

predict DNI values in this work through testing fit accuracy of the selected models using 

statistical indicators and high-quality measured datasets. 

 

 

Figure 26: A hierarchical methodology of predicting DNI 
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5.2.2 Estimation of Monthly Average Hourly Direct Solar Irradiance from Daily 

Data 

5.2.2.1 Daily Global Solar Radiation (Decomposition Models) 

The decomposition models can be utilized to transform daily values (long-term 

data) of solar radiation into hourly values (short-term data). The two frequently used 

correlations for this purpose have been chosen. The Collares-Pereira and Rabl correlation 

represents the ratio of monthly average hourly global irradiance to monthly average daily 

global irradiance, whereas, the Liu and Jordan correlation represents the ratio of monthly 

average hourly diffuse irradiance to monthly average daily diffuse irradiance [225], as 

illustrated in Table 26. 

 

Table 26: Two decomposition models 

 Equation                                                                           Description 

rt =
𝐼�̅�

𝐻𝐺
̅̅ ̅̅

  

=
π

24
 (a + b cos θh) [

cos θh − cos θhs

sin θhs − (
π θhs

180
) cos θhs

] 

θhs = cos−1[− tan L . tan θδ] 
θh

= ±0.25 (number of minutes from local solar noon) 

a = 0.4090 + 0.5016 sin(θhs − 60) 

b = 0.6609 − 0.4767 sin(θhs − 60) 

 

(207) Collares-Pereira and Rabl 

correlation 

(Ratio of monthly average 

hourly global irradiance to 

monthly average daily global 

irradiance) 

[225] 

rd =
Id̅

Hd
̅̅̅̅

=
π

24
 [

cos θh − cos θhs

sin θhs − (
π θhs

180
) cos θhs

] 
(208) Liu and Jordan correlation 

(Ratio of monthly average 

hourly diffuse irradiance to 

monthly average daily 

diffuse irradiance) 

 

[225] 

ID̅NI,H = IG̅ − Id̅ (209) Monthly average hourly 

direct solar irradiance on a 

horizontal surface 

 

ID̅NI = ID̅NI,H/ cos θz (210) Monthly average hourly 

direct solar irradiance  
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5.2.2.2 Angstrom-Prescott Correlation 

A number of formulations (linear and non-linear) of the Angstrom-Prescott 

correlation were selected for the estimation of the monthly average daily global solar 

radiation on a horizontal surface using clearness index against sunshine fraction, ambient 

temperature, relative humidity, precipitation, cloud cover, and multi-parameters. Four of 

regression equations have been utilized that developed by modifying the Angstrom--

Prescott correlation as given in Table 27. 

Table 27: Regression equations of Angstrom-Prescott model 

 Equation                                                                             Description 

HG
̅̅ ̅̅

Ho
̅̅̅̅

= a + b 
S̅

So
̅̅ ̅

 
(211) Linear model [276] 

HG
̅̅ ̅̅

Ho
̅̅̅̅

= a + b 
S̅

So
̅̅ ̅

+ c (
S̅

So
̅̅ ̅

)2 

 

(212) Quadratic model [265] 

HG
̅̅ ̅̅

Ho
̅̅̅̅

= a + b 
S̅

So
̅̅ ̅

+ c T + d R 

 

(213) Multi-parameters model [265] 

HG
̅̅ ̅̅

Ho
̅̅̅̅

= a + b cos L + c H + d 
S̅

So
̅̅ ̅

+ e T + f R 
(214) Gopinathan’s model [290] 

KT
̅̅̅̅  =

H̅

Ho̅̅ ̅̅
 

 

(215) Monthly mean clearness 

index 

[225] 

Ho

=
24

π
 Hsc [1 + 0.033 cos(

360Nj

365
)] [cos L  cos θδ sinθhs

+
π

180
  θhs sin L  sin θδ 

 

(216) Monthly average daily 

extraterrestrial solar 

irradiance on a horizontal 

surface  

[225] 

So = 2 θhs/15 (217) Maximum possible 

monthly average daily 

length (hr) 

[225] 
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5.2.2.3 Empirical Models 

Decomposition models have been developed to estimate hourly global and diffuse 

irradiance that have an essential role in solar energy engineering applications. Such 

models are formulated based on the correlations between the diffuse fraction, cleanness 

index, and sunshine fraction. Four representative  models have been selected which are 

expressed as the ratio of diffuse to global irradiance on a horizontal surface. These are 

described as in Table 28. 

Table 28: Summary of empirical models 

Equation                                                                               Description 

Hd
̅̅̅̅

HG
̅̅ ̅̅

= 1.39 − 4.027 (
HG
̅̅ ̅̅

Ho
̅̅̅̅

) + 5.5310 (
HG
̅̅ ̅̅

Ho
̅̅̅̅

)2

− 3.108 (
HG
̅̅ ̅̅

Ho
̅̅̅̅

)3 

(218) Liu and Jordan model [298] 

Hd
̅̅̅̅

HG
̅̅ ̅̅

= 1.2547 − 1.2547 (
S̅

So
̅̅ ̅

) 
(219) Iqbal model [298] 

Hd
̅̅̅̅

HG
̅̅ ̅̅

= 1.194 − 0.838 (
HG
̅̅ ̅̅

Ho
̅̅̅̅

) − 0.0446 (
S̅

So
̅̅ ̅

) 
(220)  Gopinathan model [298] 

Hd
̅̅̅̅

HG
̅̅ ̅̅

= 0.775 + 0.00606 (θhs − 90)

− [0.505
+ 0.00455 (θhs

− 90)]cos (115 (
HG
̅̅ ̅̅

Ho
̅̅̅̅

) − 103) 

(221) Collares-Pereira and Rabl [225] 

 

 

5.2.2.3 A Hierarchical Calculation Methodology 

The implementation of calculating monthly average hourly direct solar irradiance 

from daily data requires using a hierarchical calculation methodology that consists of 

multiple sequences steps as described in Figure 27. The first step in a proposed approach 
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is to estimate geographical and astronomical parameters (L, θδ, θhs, T, R, H) based on a 

selected site and period of time through using equations 203,207. In order to estimate 

monthly average daily global irradiance on  a horizontal surface ( HG
̅̅ ̅̅  ) from equations of 

Table 27 and monthly average daily diffuse ( Hd
̅̅̅̅  ) on a horizontal surface from equations 

of Table 28, the estimated values of monthly average daily extraterrestrial irradiance Ho 

(from Equation 216) and maximum possible monthly average daily length So (from 

Equation 217) should be determined. Next, the obtained daily irradiance data can be 

transformed to the  hourly irradiance data by utilizing Equation 207 to estimate the value 

of monthly average hourly global irradiance on a horizontal surface (IG̅), and Equation 

208 to estimate monthly average hourly diffuse irradiance on a horizontal surface (Id̅). 

Once, the values of (IG̅) and (Id̅) are obtained, monthly average hourly direct solar 

irradiance (ID̅NI) can be estimated from Equations 209 and 210. Eventually, to demonstrate 

the capability of the proposed methodology and used equations, the statistical indicators 

can be utilized for comparing estimated irradiance values with measured irradiance 

datasets. 
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Figure 27: A hierarchical methodology of predicting monthly average hourly direct 

solar irradiance 

 

5.3 Site Description and Data Collection  

In order to demonstrate validation of proposed methodologies and selected models 

to estimate reliable and high-quality solar radiation data for different sites in Texas or 

other locations around the world, San Antonio city (29.42° N, 98.49° W) has been chosen 

as a case study as depicted in Figure 28. The solar data for San Antonio is obtained from 

the National Solar Radiation Data Base (NSRDB) between 1991-2010 are: hourly global 

solar irradiance, hourly direct solar irradiance, hourly diffuse solar irradiance, hourly solar 

incidence angle, hourly dry bulk temperature, hourly wet bulk temperature, and relative 

humidity.  
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Figure 28: The location map of a case study in Texas  

 

5.4 Statistical Methods of Model Evaluation   

The performance of proposed methodologies and selected models have been tested 

through comparison between their estimated data and measured data by using various 

statistical indicators. For this purpose, five statistical indicators have been applied 

including Mean Bias Error (MBE), Root Mean Square Error (RMSE), Absolute Percent 

Error (MAPE), Coefficient of Determination (R2), t statistic method (tstat), and the 

percentage error (e %), as given in Table 29. 
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Table 29: Statistical indicators 

Equation                                                                                Description 

MBE =
∑ (Ical − Imeas)n

i=1

n
 

 

(222) Mean Bias Error 

RMSE = √
∑ (Ical − Imeas)2n

i=1

n
 

 

(223) Root Mean Square Error 

MPAPE =
100

n
 ∑

(Ical − Imeas)

Imeas

n

i=1

 

 

(224) Absolute Percent Error 

R2 = 1 −
∑ (Ical − Imeas)2n

i=1

∑ (Imeas − Imeas,avg)2n
i=1

 

 

(225) Coefficient of Determination 

tstat = [
(n − 1)MBE2

RMSE2 − MBE2
]1/2 

 

(226) t statistic method 

e% =
Ical − Imeas

Imeas

 

 

(227) percentage error 

 

 

 

5.5 Results and Discussion  

In this study, the monthly average daily global irradiance data on a horizontal 

surface, which were measured in San Antonio, Texas during the time period 1991-2010,  

has been analyzed to calculate the monthly average clearness index (KT
̅̅̅̅ ). This index is the 

ratio between monthly average daily total radiation on a terrestrial horizontal surface (H̅) 

and monthly average daily total radiation on an extraterrestrial horizontal surface (Ho
̅̅̅̅ ), as 

defined in Equation 215 . The comparison between the obtained values from calculating 

(KT
̅̅̅̅ ) in the time interval 1991-2010 and the values of (KT

̅̅̅̅ ) that provided by Solar Energy 

Information Data Bank (SEIDB) [219] in the time interval 1952-1975 has been carried out 

and its result has shown a responsible agreement, as shown in Figure 29. Similarly, the 
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monthly average hourly clearness index (kt) values have been calculated and reported in 

Table 30, which is the ratio of the global solar irradiance on a horizontal surface (I) to the 

hourly extraterrestrial solar irradiance on a horizontal surface (Io), as given in Equation 

228. 

𝑘𝑡 =
𝐼

𝐼𝑜
                                                                                                                                        (228) 

 

 

Figure 29:Monthly average clearness index 

The daily clearness index can be utilized to partition days throughout the year 

according to the sky condition (Sunny, partly cloudy and cloudy) that dominates 

transmission of the extraterrestrial irradiance to the earth surface in the chosen site, as 

shown in Figure 30.  
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Figure 30 : Monthly average daily global radiation according to the sky condition 

In addition, the solar irradiance may be subjected to the atmospheric attenuation 

(absorption, diffusion) during passing through the earth atmosphere due to air pollution, 

cloudy conditions, and other influencing parameters. Therefore, the hourly clearness index 

(kt), which is considered as a stochastic parameter because it is a function of a period of 

year, seasons, climatic conditions and geographic site, can be used to predict the influence 

of these parameters by calculating the average daily sunshine (bright) hours based on the 

classification of clearness index level, as follows, 

Cloudy              :                       kt< 0.3 

Partly cloudy    :               0.3 ≤ kt ≤ 0.5 

Sunny               :                        kt  > 0.5 
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Table 30: Monthly average hourly and daily values for the clearness index       
 

M
o

n
th

 Hour 

7 8 9 10 11 12 13 14 15 16 17 18 19 20 

D
ai

ly
 

January     0.23 0.34 0.40 0.45 0.48 0.50 0.50 0.49 0.47 0.42 0.32   0.462 

February     0.24 0.34 0.41 0.45 0.48 0.51 0.52 0.52 0.50 0.46 0.37   0.476 

March     0.03 0.23 0.34 0.40 0.46 0.50 0.52 0.54 0.55 0.55 0.50 0.42 0.478 

April   0.16 0.29 0.37 0.44 0.49 0.53 0.55 0.58 0.58 0.57 0.54 0.46 0.33 0.502 

May   0.02 0.21 0.31 0.40 0.46 0.50 0.54 0.57 0.59 0.60 0.60 0.58 0.51 0.517 

June 0.05 0.24 0.33 0.45 0.51 0.57 0.61 0.65 0.65 0.65 0.64 0.62 0.56 0.44 0.568 

July 0.01 0.23 0.34 0.46 0.54 0.59 0.61 0.65 0.65 0.65 0.65 0.61 0.56 0.44 0.582 

August   0.20 0.36 0.49 0.57 0.61 0.63 0.64 0.66 0.64 0.64 0.61 0.53 0.39 0.590 

September   0.14 0.33 0.45 0.51 0.57 0.59 0.62 0.62 0.62 0.61 0.56 0.46   0.558 

October     0.27 0.39 0.47 0.52 0.56 0.58 0.59 0.60 0.57 0.50 0.37   0.522 

November     0.21 0.34 0.42 0.48 0.51 0.54 0.54 0.54 0.50 0.43 0.30   0.479 

December      0.13 0.31 0.40 0.45 0.49 0.51 0.52 0.51 0.49 0.42 0.29   0.462 

 

 

The analysis of the monthly-average hourly clearness index through the 

classification of the clearness index level shows that more than 80% of the days can be 

defined as either sunny or partly cloudy and less than 20% of the days are classified as 

cloudy. It has been also noted that the individual monthly sky conditions percentage of 

sunny daytime hours exceed 40% from April through September, while the percentage of 

cloudy daytime hours do not exceed about 20%, as shown in Figure 31. 
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Figure 31: Monthly sky conditions of San Antione, Texas during daytime hours 

It is apparent from the above-mentioned comprehensive analysis of the irradiance 

data and the clearness index, the selected region is characterized by a relatively high value 

of the monthly average percentage for sunny and partly cloudy days, which can be more 

than 80% throughout the year. Furthermore, the monthly average percentage of sunny 

daytime hours exceeds more than 50% in the interval time June-October along with a 

relatively high (kt  > 0.5). Consequently, the San Antonio region in Texas is unequivocally 

amenable to harnessing solar energy as the prime source of energy by utilizing 

concentrating and non-concentrating solar energy systems.  

In addition to collecting the measured solar irradiance data for the implementation 

of the proposed methodologies and models, the average daily sunshine hour, average daily 

length of sunshine hours, ambient temperature and relative humidity are also essential for 

this purpose, as given in Table 31. 
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Table 31: Ambient temperature, relative humidity and daily sunshine ratio for San 

Antonio region 

Month                                       T(oK)                          RH%                             
S̅

So̅̅̅̅
 

 
January 16 62 0.194 

February 18.7 60 0.283 

March 23.1 54 0.349 

April 26.8 54 0.451 

May 29.6 57 0.476 

June 33.2 54 0.573 

July 35 50 0.603 

August 35.2 49 0.676 

September 31.8 53 0.605 

October 27.6 53 0.528 

November 22.2 54 0.351 

December 17.5 59 0.278 

 

 

The performance of the selected parametric models (22 models) has been tested 

by comparing its estimations with measured data. The obtained results from implementing 

the clear-sky models on specific days for 12 months are visualized in Figures 32-43. it can 

be seen that the estimated values of hourly direct normal irradiance for most models are 

in favorable agreement with the measured values for all the months of the year. However,  

the accuracy and quality evaluation of models’ performance require statistical tests for 

selecting the most precise models under the San Antonio climate conditions. 
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Figure 32: Measured and estimated DNI by 22 models for January 
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Figure 33: Measured and estimated DNI by 22 models for February 
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Figure 34: Measured and estimated DNI by 22 models for March 
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Figure 35: Measured and estimated DNI by 22 models for April 
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Figure 36: Measured and estimated DNI by 22 models for May 
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Figure 37: Measured and estimated DNI by 22 models for June 
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Figure 38: Measured and estimated DNI by 22 models for July 
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Figure 39: Measured and estimated DNI by 22 models for August 
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Figure 40: Measured and estimated DNI by 22 models for September 
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Figure 41: Measured and estimated DNI by 22 models for October 
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Figure 42: Measured and estimated DNI by 22 models for November 
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Figure 43: Measured and estimated DNI by 22 models for December 
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The results of testing the performance of 22 parametric models through using 

statistical indicators have been tabulated in Appendix C. In addition to more complicated 

models that consist of a large number of atmospheric parameters such as Davies-Hay, 

Hoyt (Iqbal B) models, some simpler models like Meinel and Laue have shown a good fit 

accuracy for all months during the year. Also, the models can be classified into two groups 

based on their performance during the months of summer and winter seasons. The first 

group, which includes simple models with a few parameters (less than three geographic 

and astronomical parameters) such as Meinel, Laue, Haurwitz,  Berger-Duffie, ABCG, 

Kasten-Czeplak, Robledo- Sole, ASHRAE, Kumer and HLJ, can provide relatively 

accurate DNI values. While the second group, which comprises more sophisticated 

(complex) models such as Bird, Iqbal C, METSTAT, Modified Iqbal C, CSR, Atwater- 

Ball, ESRA, Hoyt (Iqbal B), Heliosat-1, Davies-Hay and Iqbal A models, have shown 

more accuracy in estimating DNI values during winter months (October-March) than 

summer months (April-September). Thus, precise values of DNI that are essential for 

selecting a proper location to install solar energy conversion systems and calculating the 

harvested amount of solar irradiance on the earth surface may be estimated using simpler 

parametric models. 

The impact of cloud amount on the estimation of solar irradiance on a specific 

month (November is chosen as a study paradigm) under the climate conditions of San 

Antonio, Texas has been studied by using the cloud-cover radiation model (CRM).  The 

cloud amount utilized in this model is evaluated in oktas, ranging from 0 to 8, and the 

regression coefficients of the model have been obtained from [252]. It can be observed the 
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significant influence of cloud amount on reducing the intensity of global solar irradiation 

as shown in Figure 44, specifically DNI, whereas the amount of diffuse irradiance 

increases in the atmosphere until reaching zero under an overcast sky. 

 

 

Figure 44: The impact of cloud cover on solar irradiance 

 

 

To elucidate the capability of the hierarchical calculation methodology proposed 

in section 5.2.2.3 for estimating DNI precisely, four formulations  of the Angstrom-

Prescott correlation were developed through regression analysis to determine their 

coefficients as shown in Table 32. The correlations accuracy has been tested by comparing 

the estimated values of the monthly average daily global solar radiation on a horizontal 

surface with measured data (which represents monthly average daily solar radiation for 

thirty-year  in San Antonio, Texas offering by [304], [305], the National Solar Radiation 

Data Base (NSRDB), and Solar Energy Information Data Bank (SEIDB) [219] using 
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statistical indicators, as given in Table 32. It is obvious from Figures 45-49 that the 

estimated values obtaining from correlations show a good agreement with measured data 

form different sources. 

 

Table 32: Regression coefficients and statistical indictors of correlations 

Equation                                                       Description                         MBE      RMSE  MAPE   e %    R2 

 

HG
̅̅ ̅̅

Ho
̅̅̅̅

= 0.3841 + 0.2946 
S̅

So
̅̅ ̅

 
Linear model -0.11 0.17 -3.4 3.7 0.98 

HG
̅̅ ̅̅

Ho
̅̅̅̅

= 0.4656 − 0.1235 
S̅

So
̅̅ ̅

+ 0.4767 (
S̅

So
̅̅ ̅

)2 

Quadratic model -0.11 0.18 -3.3 4.2 0.98 

HG
̅̅ ̅̅

Ho
̅̅̅̅

= 0.235 + 0.179 
S̅

So
̅̅ ̅

+ 0.0036 T

+ 0.0019 R 

Multi-parameters model -0.10 0.17 -3.4 3.8 0.98 

HG
̅̅ ̅̅

Ho
̅̅̅̅

= 0.801 − 0.378 cos L + 0.0128 H

+ 0.316 
S̅

So
̅̅ ̅

− 1.214

⨯ 10−3 T −  1.049
⨯ 10−3R 

Gopinathan's model -0.02 0.14 -1.4 2.8 0.99 

 

 



 

171 

 

 

Figure 45: Comparison between estimated (by four models) and measured (from 

different sources) values of monthly average daily global solar irradiance for San 

Antonio, Texas 

 

 

 
 

Figure 46: Estimated (by Linear model) and measured values of monthly average daily 

global solar irradiance for San Antonio, Texas 
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Figure 47: Estimated (by Quadratic model) and measured values of monthly average 

daily global solar irradiance for San Antonio, Texas 

 

 

 
 

Figure 48: Estimated (by Multi-Parameters model) and measured values of monthly 

average daily global solar irradiance for San Antonio, Texas 
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Figure 49: Estimated (by Gopinathan’s model) and measured values of monthly average 

daily global solar irradiance for San Antonio, Texas 

 

 

In addition to the significance of monthly average daily global solar irradiance in 

calculating monthly average hourly direct solar irradiance on a horizontal surface by using 

two decompositions models that transform daily solar irradiance data to hourly solar 

irradiance,  monthly average daily diffuse solar irradiance values are essential for the same 

purpose. Therefore,  the validation of four selected empirical models has been performed 

by comparing their estimated values of monthly average daily diffuse solar irradiance 

against the measured data. Clearly, the estimated values, which are obtained from three 

models including Collares-Pereira and Rabl, Liu and Jordan, Gopinathan models, are in 

good agreement with the measured data [304] except for Iqbal model that shows less 

consent with measured data, as shown in Figures 50-53.  

 



 

174 

 

 
 

Figure 50: Estimated (by Collares-Pereira and Rabl model) and measured values of 

monthly average daily diffuse solar irradiance for San Antonio, Texas 

 

 

 

 

 
 

Figure 51: Estimated (by Liu and Jordan model) and measured values of monthly 

average daily diffuse solar irradiance for San Antonio, Texas 
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Figure 52: Estimated (by Gopinathan model) and measured values of monthly average 

daily diffuse solar irradiance for San Antonio, Texas 

 

 

 

 

 
 

Figure 53: Estimated (by Iqbal model) and measured values of monthly average daily 

diffuse solar irradiance for San Antonio, Texas 
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Based on the previously estimated values of monthly average daily global (by 

linear model) and diffuse (Liu and Jordan model) solar irradiance and two decomposition 

models. the estimated values of monthly average hourly direct solar irradiance on a 

horizontal surface have been calculated to attain monthly average DNI values through 

utilizing zenith angle for this purpose. Scatter plot of the estimated values and measured 

data (is extracted from the National Solar Radiation Database (NSRDB) and [304] ) is 

demonstrated in Figure 54, which exhibits a good agreement between these values. 

   

 

Figure 54: Estimated and measured values of monthly average hourly direct normal  

solar irradiance for San Antonio, Texas 

 

5.6 Summary 

In this study,  two hierarchical calculation approaches have been developed by 

using various models, empirical correlations and regression equations to estimate hourly 

solar irradiance under different sky conditions. A case study for the San Antonio region 
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in Texas has been solved to demonstrate the accuracy of the proposed approaches for 

estimating hourly DNI and monthly average hourly DNI data, which is utilized for 

designing solar concentrated collectors. The estimated data has been shown a good 

accuracy comparing with measured solar data by using various statistical indicators. 

Additionally, the proposed approaches can be implemented for other worldwide locations 

around the world by creating new coefficients for empirical and regression correlations.   
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CHAPTER VI  

CONCLUSIONS 

The inextricable link between water and energy in various sectors of life, 

particularly, in the oil and gas industry, requires the proper management strategies to 

sustain their resources. Consequently, in this study, a water-energy nexus framework has 

been used to develop new hierarchical approaches to address water management in shale 

gas production while incorporating renewable energy to enhance sustainability.  

In chapter III, a hierarchical approach has been applied for the integrated system, 

which has the following key elements: solar system collectors, thermal energy storage, 

cogeneration process, MED and RO. The optimization problem has been developed as a 

multi-period MINLP and solved deterministically according to economic and 

environmental metrics. The integrated system has been shown enabling in creating 

effective water and energy management strategies.    

 In chapter IV, another hierarchical approach has been applied for the previous 

integrated system with integrating the fractionation process. The optimization problem has 

been developed and solved as a two-stage stochastic programming model for handling 

uncertainty in operational parameters. The results show the capability of the system in 

addressing water-energy nexus problems based on the system’s economic and 

environmental merits. 

Additionally, in chapter V, hierarchical calculation methodologies have been 

proposed to obtain high-quality solar data that can be used to evaluate the long-term 

techno-economic performance for concentrated solar collectors. 
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APPENDIX A 

Solar data for case study:  

The solar data for Eagle Ford Shale Play as extracted from National Solar Radiation 

Data Base (NSRDB) are shown in Tables A1–A4 to represent: 

• Average hourly dry bulb temperature (oC) 

• Average hourly wet bulb temperature (oC) 

• Average hourly direct solar irradiance (W/m2) 

• Average hourly solar incidence angle (degree). 

The solar beam radiation is 500 (W/m2) at the design point. 
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Table A1:  Average hourly dry bulb temperature (°𝐶) 
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0.5 7.1 8.1 13.4 17.3 20.9 23.6 13.4 25.1 24.1 18.9 13.1 8.2 

1.5 6.6 7.71 13.0 16.9 20.4 23.3 13.0 24.5 23.6 18.2 12.6 7.7 

2.5 6.1 7.24 12.6 16.4 19.9 23.1 12.6 24.0 23.2 17.4 12.3 7.36 

3.5 6.0 6.98 12.3 16.2 19.6 23.0 12.3 23.6 22.9 17.1 11.6 7.11 

4.5 5.9 6.74 12.0 16.0 19.3 22.8 12.0 23.2 22.6 16.8 11.4 7.13 

5.5 5.9 6.49 11.7 15.8 19.0 22.8 11.7 22.8 22.4 16.5 11.3 6.96 

6.5 5.5 7.37 12.6 16.8 20.1 23.3 12.6 24.2 22.4 17.9 10.9 7.03 

7.5 5.4 8.28 13.5 17.8 21.2 24.6 13.5 25.6 23.7 19.3 11.8 7.21 

8.5 7.7 9.20 14.5 18.8 22.3 26.0 14.5 27.0 25.6 20.6 14.0 9.10 

9.5 10 11.1 16.2 20.1 23.4 27.3 16.2 28.5 27.0 22.1 16.3 11.0 

10.5 12 13.0 17.9 21.4 24.5 28.4 17.9 30.1 28.2 23.6 18.0 12.8 

11.5 13 14.9 19.6 22.7 25.6 29.4 19.6 31.6 29.4 25.2 19.3 14.1 

12.5 14 15.7 20.5 23.5 26.2 30.4 20.5 32.4 30.3 25.8 20.3 15.1 

13.5 15 16.6 21.4 24.4 26.8 31.3 21.4 33.3 30.7 26.5 21.1 16.0 

14.5 15 17.5 22.3 25.2 27.5 31.4 22.3 34.1 31.0 27.2 21.3 16.4 

15.5 16 17.0 21.7 24.8 27.4 31.7 21.7 33.5 31.2 26.5 21.2 16.5 

16.5 15 16.5 21.2 24.4 27.4 31.2 21.2 32.9 31.0 25.8 20.5 16.0 

17.5 13 16.1 20.7 23.9 27.3 30.4 20.7 32.3 30.2 25.1 19.0 14.4 

18.5 12 14.6 19.1 22.5 26.1 29.0 19.1 30.9 28.8 24.0 17.3 12.7 

19.5 10.9 13.21 17.5 21.2 24.95 27.64 17.5 29.53 27.76 22.88 15.84 11.2 

20.5 9.73 11.77 16.0 19.8 23.7 26.47 16.0 28.10 26.68 21.75 14.63 10.3 

21.5 8.63 10.79 15.3 19.2 23.0 25.44 15.3 27.30 25.93 21.00 13.95 9.77 

22.5 7.91 9.825 14.5 18.5 22.3 24.75 14.5 26.46 25.36 20.25 13.45 9.55 
 

7.56 8.846 13.8 17.7 21.5 24.0 13.8 25.6 24.7 19.6 13.30 9.31 
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Table A2: Average hourly wet bulb temperature (°C) 
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0.5 5.7 6.3 9.85 15.3 18.5 21.6 22.9 22.0 21.5 16.3 11.4 6.41 

1.5 5.4 6.0 9.69 15.1 18.3 21.5 22.8 22.0 21.3 15.9 11.1 6.03 

2.5 4.9 5.7 9.52 14.9 18.0 21.4 22.7 21.9 21.2 15.4 10.8 5.75 

3.5 4.9 5.5 9.43 14.7 17.8 21.4 22.7 21.8 21.0 15.1 10.2 5.55 

4.5 4.8 5.3 9.35 14.6 17.6 21.4 22.6 21.6 20.9 14.9 10.1 5.56 

5.5 4.8 5.0 9.21 14.5 17.4 21.4 22.6 21.4 20.8 14.6 10.0 5.40 

6.5 4.5 5.7 9.64 15.1 18.1 21.7 22.9 22.0 20.8 15.6 9.78 5.44 

7.5 4.3 6.3 10.0 15.7 18.8 22.2 23.3 22.6 21.4 16.4 10.3 5.60 

8.5 6.1 7.0 10.4 16.3 19.4 22.6 23.4 23.1 22.0 17.2 11.6 6.99 

9.5 7.5 8.0 11.3 17.0 19.8 22.7 23.6 23.4 22.2 17.8 12.7 8.08 

10.5 8.4 8.9 12.0 17.6 20.1 22.8 23.6 23.4 22.2 18.3 13.3 8.90 

11.5 9.1 9.6 12.5 18.1 20.4 23.0 23.5 23.3 22.1 18.7 13.8 9.42 

12.5 9.5 10 12.7 18.4 20.7 23.0 23.5 23.3 22.3 18.8 14.0 9.82 

13.5 10 10 12.9 18.6 21.0 23.2 23.5 23.2 22.2 18.9 14.2 10.1 

14.5 10 10 13.0 18.8 21.2 22.9 23.5 23.0 22.1 19.0 14.1 10.3 

15.5 10 10 12.8 18.5 21.1 22.9 23.4 22.8 22.0 18.7 14.1 10.2 

16.5 9.8 10 12.5 18.3 20.9 22.8 23.3 22.6 22.0 18.5 13.8 10.0 

17.5 9.2 9.8 12.2 18.1 20.7 22.7 23.3 22.3 22.0 18.2 13.3 9.39 

18.5 8.6 9.4 11.9 17.6 20.5 22.4 23.4 22.4 21.8 18.0 12.7 8.72 

19.5 8.0 8.9 11.4 17.1 20.2 22.3 23.4 22.4 21.8 17.7 12.2 8.13 

20.5 7.4 8.3 10.8 16.5 19.8 22.1 23.2 22.1 21.6 17.3 11.7 7.78 

21.5 6.9 7.9 10.6 16.3 19.5 22.0 23.2 22.2 21.6 17.1 11.4 7.50 

22.5 6.4 7.4 10.3 16.0 19.2 21.9 23.1 22.1 21.6 16.9 11.3 7.37 

23.5 6.1 6.8 9.91 15.5 18.7 21.7 22.9 21.9 21.6 16.7 11.4 7.30 
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Table A3: Average hourly direct solar irradiance (𝑤 𝑚2⁄ ) 

 
 

Ja
n

u
ar

y 

Fe
b

ru
ar

y 

M
ar

ch
 

A
p

ri
l 

M
ay

 

Ju
n

e
 

Ju
ly

 

A
u

gu
st

 

Se
p

te
m

b
er

 

O
ct

o
b

er
 

N
o

ve
m

b
er

 

D
ec

e
m

b
er

 

0.5 0 0 0 0 0 0 0 0 0 0 0 0 

1.5 0 0 0 0 0 0 0 0 0 0 0 0 

2.5 0 0 0 0 0 0 0 0 0 0 0 0 

3.5 0 0 0 0 0 0 0 0 0 0 0 0 

4.5 0 0 0 0 0 0 0 0 0 0 0 0 

5.5 0 0 0 0 5.1 3.8 1 0.0 0 0 0 0 

6.5 0 0 9.6 26 109 86 65 57 34 26 1.8 0 

7.5 48 95 140 145 216 164 236 229 184 221 171 49 

8.5 240 244 287 228 258 319 350 347 315 337 328 199 

9.5 339 346 365 281 318 377 467 463 450 460 388 272 

10.5 396 413 413 352 362 470 550 524 516 497 462 359 

11.5 415 487 478 394 383 496 630 573 557 553 545 389 

12.5 473 468 498 439 462 526 621 599 569 566 544 459 

13.5 457 474 481 461 460 545 603 600 521 542 504 489 

14.5 415 440 417 467 445 520 576 540 540 544 481 499 

15.5 397 433 380 473 503 489 529 539 493 498 437 440 

16.5 283 365 323 414 434 475 536 417 422 401 361 323 

17.5 128 246 234 338 356 389 427 323 311 181 93 80 

18.5 0.4 32 54 119 166 217 234 140 53 3.6 0 0 

19.5 0 0 0 0.1 7.2 21 24 4.3 0 0 0 0 

20.5 0 0 0 0 0 0 0 0 0 0 0 0 

21.5 0 0 0 0 0 0 0 0 0 0 0 0 

22.5 0 0 0 0 0 0 0 0 0 0 0 0 

23.5 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A4: Average hourly solar incidence angle (degree) 
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0.5 0 0 0 0 0 0 0 0 0 0 0 0 

1.5 0 0 0 0 0 0 0 0 0 0 0 0 

2.5 0 0 0 0 0 0 0 0 0 0 0 0 

3.5 0 0 0 0 0 0 0 0 0 0 0 0 

4.5 0 0 0 0 0 0 0 0 0 0 0 0 

5.5 0 0 0 0 0 0 0 0 0 0 0 0 

6.5 0 0 0 6.04 16.1 20.2 19.2 11.1 0 0 0 0 

7.5 0 4.33 7.10 2.51 9.26 13.4 12.3 5.49 4.95 16.1 23.4 0 

8.5 30.6 23.6 14.3 4.99 2.85 6.99 5.77 2.49 11.8 23.4 31.8 34.4 

9.5 37.8 30.5 20.7 10.9 2.76 1.52 1.14 7.13 18.0 29.8 38.5 41.4 

10.5 43.8 36.3 26.1 15.6 7.01 2.69 4.28 11.8 22.9 35.0 44.0 47.1 

11.5 48.2 40.6 30.0 18.7 9.73 5.40 7.20 14.9 26.3 38.4 47.6 51.1 

12.5 50.2 42.7 31.8 20.0 10.7 6.44 8.40 16.2 27.5 39.3 48.5 52.6 

13.5 49.5 42.1 31.0 19.0 9.79 5.70 7.78 15.3 26.2 37.5 46.5 51.1 

14.5 46.1 39.0 27.8 16.0 7.06 3.20 5.40 12.7 22.8 33.4 42.2 47.2 

15.5 40.7 34.0 22.9 11.5 2.79 0.83 1.58 8.49 17.8 27.8 36.2 41.4 

16.5 34.0 27.7 16.9 5.74 2.83 6.15 3.82 3.07 11.7 21.1 29.2 34.4 

17.5 21.1 20.4 9.96 2.65 9.23 12.4 10.1 3.61 4.78 11.5 0 0 

18.5 0 0 0.17 8.06 16.1 19.2 16.9 10.5 0.99 0 0 0 

19.5 0 0 0 0 0 0 0 0 0 0 0 0 

20.5 0 0 0 0 0 0 0 0 0 0 0 0 

21.5 0 0 0 0 0 0 0 0 0 0 0 0 

22.5 0 0 0 0 0 0 0 0 0 0 0 0 

23.5 0 0 0 0 0 0 0 0 0 0 0 0 
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APPENDIX B                                                               

Table B:  Extracted stream data for the fractionation process from simulated flowsheet                                                                    

 

Stream Name         First Feed    Second Stream   3            4                  5                    6                 7              8              9              10           11          12            13           14            15  

                            (from well)  (from dehydration  

                                                          unit) 

  

 

Pressure (bar) 30 30 30 26 18 19.8 17 16 17.8 10 9 10.8 5 4 6.9 

Temperature 

(oC) 

25 25 24.8 25.0 41.8 246.6 241.0 61.4 244.2 56.4 27.7 77.6 46.1 29.1 62.2 

Mass Flow 

Rate (kg/hr) 

25000 8000 33000 33000 1490 31510 31510 519. 30990 519 299 220 220 100 120 

Mole Fraction 

(Methane) 

0.097 0.13 0.108 0.108 0.609 0 0 0 0 0 0 0 0 0 0 

Mole Fraction 

(Ethane) 

0.029 0.08 0.046 0.046 0.263 0 0 0.00 0 0.00 0.00 0 0 0 0 

Mole Fraction 

(Propane) 

0.035 0.1 0.057 0.057 0.091 0.050 0.050 0.64 0.027 0.64 0.99 0.00 0.00 0.01 0 

Mole Fraction 

(i-Butane) 

0.018 0.055 0.030 0.030 0.009 0.035 0.035 0.16 0.030 0.16 0.00 0.46 0.46 0.96 0.04 

Mole Fraction 

(n-Butane) 

0.028 0.113 0.057 0.058 0.013 0.067 0.067 0.16 0.063 0.16 0 0.47 0.47 0.02 0.86 

Mole Fraction 

(i-Pentane) 

0.026 0.104 0.053 0.053 0.005 0.063 0.063 0.01 0.065 0.01 0 0.03 0.03 0 0.07 

Mole Fraction 

(n-Pentane) 

0.025 0.091 0.048 0.048 0.003 0.057 0.057 0.00 0.059 0.00 0 0.01 0.01 0 0.02 

Mole Fraction 

(n-Hexane) 

0.064 0.122 0.084 0.084 0.002 0.102 0.102 0 0.106 0 0 0.00 0.00 0 0.00 

Mole Fraction 

(n-Heptane) 

0.09 0.11 0.097 0.097 0.000 0.117 0.117 0 0.122 0 0 0 0 0 0 

Mole Fraction 

(n-Octane) 

0.15 0.072 0.122 0.122 0.000 0.149 0.149 0 0.154 0 0 0 0 0 0 

Mole Fraction 

(n-Nonane) 

0.11 0.02 0.078 0.078 0.000 0.095 0.095 0 0.099 0 0 0 0 0 0 

Mole Fraction 

(n-Decane) 

0.09 0.003 0.059 0.059 0 0.072 0.072 0 0.075 0 0 0 0 0 0 

Mole Fraction 

(n-C11) 

0.079 0 0.051 0.051 0 0.062 0.062 0 0.064 0 0 0 0 0 0 

Mole Fraction 

(n-C12) 

0.071 0 0.046 0.046 0 0.056 0.056 0 0.058 0 0 0 0 0 0 

Mole Fraction 

(n-C13) 

0.031 0 0.020 0.020 0 0.024 0.024 0 0.025 0 0 0 0 0 0 
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Table B: Continued 

Stream Name         First Feed    Second Stream   3            4                  5                    6                 7              8              9              10           11          12            13           14            15  

                            (from well)  (from dehydration  

                                                          unit) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mole Fraction 

(n-C14) 

0.023 0 0.014 0.014 0 0.018 0.018 0 0.018 0 0 0 0 0 0 

Mole Fraction 

(n-C15) 

0.018 0 0.011 0.011 0 0.014 0.014 0 0.014 0 0 0 0 0 0 

Mole Fraction 

(n-C16) 

0.014 0 0.009 0.009 0 0.011 0.011 0 0.011 0 0 0 0 0 0 

H2O 0.002 0 0.001 0.001 0 0.001 0.001 0 0.001 0 0 0 0 0 0 
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APPENDIX C 

Table C1:January  

Model                                    MBE             RMSE                MAPE                  R2                     t-statistics 

 
Fu & Rich -223.1 344.7 -29.5 0.61 4.0 

DPP -13.7 44.3 -2.2 0.99 1.5 

Meinel -57.1 93.2 -7.8 0.97 3.7 

Laue -47.4 80.7 -6.5 0.97 3.4 

Haurwitz -162.1 252.2 -21.8 0.79 4.0 

Berger &Duffie -166.2 258.6 -22.1 0.78 4.0 

ABCG -180.8 280.6 -24.0 0.74 4.0 

Kasten & Czeplak -183.4 283.1 -24.3 0.73 4.1 

Robledo & Sole -162.3 253.2 -21.8 0.79 4.0 

ASHRAE 8.8 53.1 0.56 0.99 0.8 

Kumer -23.9 59.0 -3.6 0.98 2.12 

HLJ 23.8 73.2 2.4 0.98 1.65 

Bird -13.9 55.0 -2.2 0.99 1.2 

Iqbal Model C -11.0 52.9 -1.8 0.99 1.0 

METSTAT 0.98 49.5 -0.26 0.99 0.09 

Modified Iqbal Model C 15.6 57.0 1.7 0.98 1.3 

CSR 21.3 55.0 2.3 0.99 2.0 

Atwater and Ball -104.0 192.6 -15.6 0.87 3.07 

ESRA -13.8 49.6 -2.2 0.90 1.3 

Hoyt (Iqbal model B) -52.0 89.1 -7.4 0.97 3.4 

Heliosat-1 -14.7 50.0 -2.3 0.99 1.4 

Davies and Hay (Iqbal 

model A) 

-71.9 137.9 -11.3 0.93 2.9 
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Table C2: February 

Model                                      MBE             RMSE                 MAPE                 R2                     t-statistics 

 
Fu & Rich -176.4 267.2 -24.2 0.51 4.2 

DPP 39.5 69.5 4.9 0.96 3.3 

Meinel -2.6 35.6 -0.14 0.99 0.36 

Laue 7.34 40.4 0.95 0.98 0.88 

Haurwitz -101.3 157.5 -14.2 0.83 4.0 

Berger &Duffie -110.2 172.1 -15.4 0.79 3.9 

ABCG -124.8 192.9 -17.3 0.74 4.0 

Kasten & Czeplak -130.6 199.5 -17.8 0.72 4.15 

Robledo & Sole -102.2 160.2 -14.5 0.82 3.9 

ASHRAE 59.1 93.1 8.6 0.94 3.9 

Kumer 36.4 59.2 4.1 0.97 3.7 

HLJ 83.7 138.3 8.8 0.86 3.6 

Bird 44.2 87.3 4.7 0.94 2.8 

Iqbal Model C 47.5 89.9 5.2 0.94 2.9 

METSTAT 60.5 140.7 6.8 0.92 3.3 

Modified Iqbal Model C 74.7 126.0 8.5 0.89 3.5 

CSR 83.9 129.5 9.8 0.88 4.0 

Atwater and Ball -35.5 99.2 -6.4 0.93 1.8 

ESRA 50.8 86.2 5.8 0.94 3.5 

Hoyt (Iqbal model B) 11.5 30.2 1.7 0.99 1.9 

Heliosat-1 45.2 79.4 5.1 0.95 3.3 

Davies and Hay (Iqbal 

model A) 

-4.8 57.3 -0.9 0.97 0.4 
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Table C3: March 

Model                                       MBE             RMSE                MAPE                 R2                    t-statistics 

 
Fu & Rich 193.2 281.5 -21.6 0.53 4.5 

DPP 18.2 41.6 1.3 0.98 2.3 

Meinel -8.6 22.8 -0.9 0.99 0.9 

Laue 2.5 24.0 -0.1 0.99 0.5 

Haurwitz -111.7 172.0 -12.5 0.82 4.0 

Berger &Duffie -115.3 175.0 -13.2 0.81 4.2 

ABCG -138.6 207.7 -15.7 0.74 4.2 

Kasten & Czeplak -147.2 216.9 -16.5 0.72 4.4 

Robledo & Sole -113.5 174.6 -12.9 0.82 4.1 

ASHRAE 21.2 36.8 2.7 0.99 3.3 

Kumer 37.4 55.9 3.4 0.89 4.3 

HLJ 9.3 141.7 6.6 0.88 3.9 

Bird 41.8 83.0 2.3 0.95 2.8 

Iqbal Model C 45.6 85.5 2.8 0.95 3.0 

METSTAT 59.9 101.2 4.1 0.93 3.5 

Modified Iqbal Model C 75.8 123.5 5.4 0.91 3.7 

CSR 86.4 127.6 6.9 0.90 4.4 

Atwater and Ball -37.3 107.0 -3.1 0.93 1.7 

ESRA 93.2 61.4 3.2 0.97 3.9 

Hoyt (Iqbal model B) -13.4 21.9 -1.2 0.99 3.7 

Heliosat-1 37.0 58.9 3.1 0.97 3.8 

Davies and Hay (Iqbal 

model A) 

-28.3 81.6 -1.5 0.96 1.7 
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Table C4:April 

Model                                    MBE            RMSE                   MAPE                     R2                   t-statistics 

 
Fu & Rich -91.8 155.5 -13.4 0.82 3.5 

Meinel 95.8 172.0 9.0 0.78 3.2 

Laue 108.3 183.8 9.9 0.75 3.4 

Haurwitz 20.3 81.9 0.3 0.95 1.2 

Berger &Duffie 1.7 81.6 -2.4 0.95 0.1 

ABCG -12.0 83.5 -4.0 0.95 0.6 

Kasten & Czeplak -28.3 91.9 -5.6 0.93 1.5 

Robledo & Sole 15.2 79.6 -0.4 0.95 0.9 

ASHRAE 103.8 181.1 10.6 0.76 3.3 

Kumer 154.5 226.5 15.5 0.63 4.4 

HLJ 178.5 270.5 15.0 0.47 4.6 

Bird 143.1 227.0 10.4 0.63 3.8 

Iqbal Model C 147.3 230.6 10.9 0.62 3.9 

METSTAT 126.9 248.3 12.3 0.56 4.1 

Modified Iqbal Model C 181.1 271.5 13.9 0.47 4.2 

CSR 188.5 272.8 15.2 0.47 4.5 

Atwater and Ball 60.5 114.5 7.0 0.90 2.9 

ESRA -46.8 155.6 -9.8 0.82 1.5 

Hoyt (Iqbal model B) 65.9 135.0 6.1 0.87 2.6 

Heliosat-1 123.4 202.9 11.7 0.70 3.6 

Davies and Hay (Iqbal 

model A) 

62.8 128.3 7.5 0.88 2.6 

DDP 128.7 215.6 12.5 0.66 3.5 
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Table C5: May 

Model                                     MBE               RMSE                 MAPE                 R2                    t-statistics 

 
Fu & Rich -76.1 137.2 -7.1 0.82 3.1 

DPP 158.7 233.3 22.1 0.49 4.4 

Meinel 113.9 182.2 17.2 0.96 3.8 

Laue 125.6 193.0 18.2 0.65 4.1 

Haurwitz 48.9 135.5 10.1 0.82 1.8 

Berger &Duffie 22.5 103.3 5.5 0.9 1.1 

ABCG 15.4 108.9 4.8 0.88 0.6 

Kasten & Czeplak -1.5 97.9 2.6 0.91 0.1 

Robledo & Sole 43.1 125.5 9.0 0.85 1.7 

ASHRAE 106.1 177.2 17.1 0.70 3.5 

Kumer 174.1 246.5 24.9 0.43 4.7 

HLJ 198.0 271.6 23.8 0.31 5.1 

Bird 145.6 212.7 18.3 0.57 4.5 

Iqbal Model C 149.7 217.1 18.8 0.56 4.5 

METSTAT 163.9 133.5 20.4 0.49 4.7 

Modified Iqbal Model C 182.8 256.7 22.1 0.38 4.8 

CSR 192.1 256.1 24.2 0.34 5.0 

Atwater and Ball 72.3 171.9 16.4 0.72 2.2 

ESRA -69.1 143.7 -6.8 0.80 2.6 

Hoyt (Iqbal model B) 87.2 156.1 15.2 0.77 3.2 

Heliosat-1 144.4 210.5 20.0 0.58 4.5 

Davies and Hay (Iqbal 

model A) 

83.6 174.2 17.4 0.71 2.6 

 

 

 

 

 

 

 

 

 

 



 

228 

 

Table C6: June 

Model                                       MBE            RMSE                    MAPE                  R2                t-statistics 

 
Fu & Rich -116.1 170.8 -11.7 0.77 4.4 

DPP 115.9 162.6 9.3 0.79 4.8 

Meinel 85.0 126.5 7.4 0.87 4.3 

Laue 96.7 138.8 8.2 0.84 4.6 

Haurwitz 5.8 115.6 2.0 0.89 0.2 

Berger &Duffie -10.7 96.9 -0.6 0.92 0.5 

ABCG -28.6 111.4 -2.2 0.90 1.2 

Kasten & Czeplak -46.0 108.4 -4.3 0.90 2.2 

Robledo & Sole -0.79 107.4 1.0 0.90 0.1 

ASHRAE 48.8 89.6 4.3 0.93 3.1 

Kumer 147.7 199.1 13.9 0.69 5.3 

HLJ 166.9 223.3 12.6 0.61 5.3 

Bird 110.6 157.5 7.7 0.80 4.7 

Iqbal Model C 114.9 162.0 8.1 0.79 4.8 

METSTAT 129.4 179.1 9.3 0.74 5.1 

Modified Iqbal Model C 149.8 205.4 10.8 0.67 5.1 

CSR 158.5 212.8 12.4 0.64 5.4 

Atwater and Ball 33.7 131.8 7.1 0.86 1.2 

ESRA -182.9 225.9 20.3 0.48 4.9 

Hoyt (Iqbal model B) 35.1 75.6 3.7 0.95 2.5 

Heliosat-1 112.2 154.3 9.3 0.81 5.1 

Davies and Hay (Iqbal 

model A) 

38.2 92.4 5.7 0.93 2.1 
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Table C7: July 

Model                                      MBE             RMSE                    MAPE               R2                  t-statistics 

 
Fu & Rich -91.5 146.1 0 0.81 3.8 

DPP 136.7 184.4 13.0 0.70 5.2 

Meinel 108.3 151.2 11.2 0.80 4.9 

Laue 120.2 164.2 12.0 0.76 5.1 

Haurwitz 27.4 125.7 4.9 0.86 1.1 

Berger &Duffie 12.7 102.2 2.2 0.90 0.6 

ABCG 6.6 111.0 0.3 0.98 0.2 

Kasten & Czeplak -23.9 100.0 -1.8 0.91 1.2 

Robledo & Sole 21.1 115.5 3.8 0.88 0.8 

ASHRAE 86.3 102.9 7.4 0.90 4.2 

Kumer 170.4 227.5 18.1 0.55 5.4 

HLJ 192.6 251.9 16.8 0.45 5.6 

Bird 136.9 184.4 11.6 0.70 5.3 

Iqbal Model C 141.2 189.3 12.1 0.69 5.3 

METSTAT 155.9 207.2 13.4 0.62 5.4 

Modified Iqbal Model C 176.2 233.7 15.0 0.52 5.5 

CSR 184.6 240.8 16.7 0.49 5.7 

Atwater and Ball 59.8 141.9 -1.4 0.82 2.2 

ESRA -137 201.3 -16.1 0.64 4.4 

Hoyt (Iqbal model B) 85.6 93.7 7.1 0.92 3.8 

Heliosat-1 143.7 181.1 13.4 0.71 5.3 

Davies and Hay (Iqbal 

model A) 

59.6 111.3 9.3 0.89 3.1 
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Table C8: August 

Model                                      MBE                RMSE               MAPE                 R2                     t-statistics 

 
Fu & Rich -70.6 173.1 16.1 0.74 2.1 

DPP 156.4 264.4 93.0 0.41 3.5 

Meinel 114.6 219.4 78.9 0.59 2.9 

Laue 125.1 228.6 81.4 0.56 3.1 

Haurwitz 47.6 169.7 46.5 0.75 1.4 

Berger &Duffie 22.5 149.6 40.6 0.81 0.7 

ABCG 15.0 151.3 36.6 0.80 0.4 

Kasten & Czeplak 0.3 146.0 34.5 0.82 0 

Robledo & Sole 42.4 163.3 45.1 0.77 1.3 

ASHRAE 104.0 212.6 87.0 0.62 2.6 

Kumer 170.4 273.3 92.3 0.37 3.8 

HLJ 187.5 291.3 95.2 0.28 4.0 

Bird 139.1 242.5 83.1 0.50 3.3 

Iqbal Model C 143.0 246.2 84.3 0.49 3.4 

METSTAT 156.4 260.3 88.1 0.43 3.6 

Modified Iqbal Model C 174.5 281.0 93.1 0.33 3.8 

CSR 182.1 286.1 95.7 0.30 3.9 

Atwater and Ball 73.9 198.0 66.6 0.67 1.9 

ESRA -106.7 216.2 8.8 0.60 2.7 

Hoyt (Iqbal model B) 82.6 194.0 70.4 0.68 2.2 

Heliosat-1 137.6 239.8 84.0 0.51 3.3 

Davies and Hay (Iqbal 

model A) 

82.6 202.8 72.9 0.65 2.1 
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Table C9: September 

Model                                       MBE             RMSE                  MAPE                  R2             t-statistics 

 
Fu & Rich -130.9 191.6 -16.4 0.71 4.5 

DPP 81.4 114.6 9.2 0.89 4.8 

Meinel 58.6 82.9 7.1 0.94 4.8 

Laue 69.3 96.4 8.1 0.92 4.9 

Haurwitz -42.3 96.6 -5.3 0.92 2.3 

Berger &Duffie -45.8 90.3 -6.1 0.93 2.8 

ABCG -71.1 120.4 -9.2 0.88 3.5 

Kasten & Czeplak -81.8 127.2 -10.4 0.87 4.3 

Robledo & Sole -44.9 96.6 -5.8 0.92 2.5 

ASHRAE 59.1 89.4 7.8 0.93 4.2 

Kumer 111.9 155.7 13.0 0.81 4.9 

HLJ 130.7 182.5 13.4 0.73 4.9 

Bird 86.7 123.1 8.9 0.88 4.7 

Iqbal Model C 90.5 127.7 9.4 0.87 4.8 

METSTAT 103.8 145.6 10.9 0.83 4.8 

Modified Iqbal Model C 181.8 171.1 12.7 0.77 4.8 

CSR 128.3 176.7 13.9 0.75 5.0 

Atwater and Ball 12.5 112.2 2.3 0.90 0.5 

ESRA -89.3 143.4 -11.6 0.85 4.2 

Hoyt (Iqbal model B) 10.8 38.6 2.1 0.98 1.4 

Heliosat-1 88.4 121.7 9.8 0.88 5.0 

Davies and Hay (Iqbal 

model A) 

12.8 66.8 2.5 0.96 0.94 
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Table C10: October 

Model                                      MBE                RMSE                 MAPE                  R2              t-statistics 

 
Fu & Rich -207.1 301.3 -22.9 0.45 4.5 

DPP 13.7 26.8 0.8 0.99 2.8 

Meinel -31.4 46.1 -3.5 0.98 4.4 

Laue -20.7 35.3 -2.6 0.99 3.4 

Haurwitz -117.5 184.1 -13.0 0.79 3.9 

Berger &Duffie -132.9 200.3 14.9 0.76 4.2 

ABCG -144.1 217.4 -16.1 0.71 4.2 

Kasten & Czeplak -152.9 225.6 -16.9 0.69 4.4 

Robledo & Sole -119.1 186.2 -13.3 0.79 3.9 

ASHRAE 17.7 35.0 2.2 0.99 2.8 

Kumer 17.3 38.0 1.2 0.99 2.4 

HLJ 63.4 112.5 3.9 0.92 3.2 

Bird 4.7 58.4 -1.2 0.97 0.4 

Iqbal Model C 8.2 57.7 -0.8 0.98 0.7 

METSTAT 121.1 36.5 0.4 0.97 1.6 

Modified Iqbal Model C 37.5 80.0 1.9 0.69 2.5 

CSR 43.4 75.9 2.7 0.96 3.3 

Atwater and Ball -74.8 153.5 -7.8 0.85 2.6 

ESRA -95.1 144.4 -11.0 0.87 0.1 

Hoyt (Iqbal model B) -47.4 71.0 -4.9 0.96 4.3 

Heliosat-1 2.8 31.4 -0.6 0.99 0.4 

Davies and Hay (Iqbal 

model A) 

-54.6 112.9 -6.0 0.92 2.6 
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Table C11: November 

Model                                       MBE              RMSE                  MAPE                   R2             t-statistics 

 

Fu & Rich 179.1 286.9 -27.2 0.43 3.8 

DPP 24.4 66.7 4.0 0.96 1.8 

Meinel -1.7 50.7 -1.5 0.98 0.1 

Laue 9.2 55.1 0.6 0.97 0.8 

Haurwitz -122.2 201.4 -19.4 0.72 3.6 

Berger &Duffie -116.9 196.2 -17.8 0.73 3.5 

ABCG -142.1 233.1 -21.6 0.62 3.6 

Kasten & Czeplak -145.1 236.1 -22.3 0.61 3.7 

Robledo & Sole -122.7 203.7 -19.1 0.71 3.6 

ASHRAE 39.4 71.2 2.8 0.96 3.1 

Kumer 43.9 75.2 5.0 0.96 2.5 

HLJ 82.2 142.7 17.8 0.86 3.3 

Bird 39.2 91.2 8.5 0.94 2.2 

Iqbal Model C 42.3 93.4 8.9 0.94 2.4 

METSTAT 55.0 106.8 11.2 0.92 2.8 

Modified Iqbal Model C 71.0 129.1 14.5 0.88 3.1 

CSR 94.2 126.6 14.1 0.89 3.4 

Atwater and Ball -50.3 122.2 -11.3 0.89 2.1 

ESRA 28.0 80.4 5.4 0.95 1.7 

Hoyt (Iqbal model B) -20.1 57.4 -5.7 0.97 1.8 

Heliosat-1 39.1 48.5 7.2 0.95 2.5 

Davies and Hay (Iqbal 

model A) 

-37.3 87.5 -9.0 0.95 2.5 
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Table C12: December 

Model                                       MBE              RMSE                   MAPE                 R2              t-statistics 

 

Fu & Rich -167.9 277.9 -27.6 0.34 3.9 

DPP 26.6 59.1 3.5 0.97 2.4 

Meinel -0.7 49.1 -1.2 0.97 0.1 

Laue 9.6 48.6 0.6 0.98 0.9 

Haurwitz -123.5 198.3 -19.8 0.66 3.8 

Berger &Duffie -116.9 188.6 -18.4 0.70 3.7 

ABCG -141.4 224.1 -22.1 0.57 3.8 

Kasten & Czeplak -134.7 225.8 -22.5 0.57 3.9 

Robledo & Sole -123.5 198.8 -19.6 0.67 3.8 

ASHRAE 48.4 98.8 5.6 0.91 2.7 

Kumer 32.8 57.7 4.2 0.95 2.3 

HLJ 86.3 138.6 14.0 0.83 3.8 

Bird 43.3 76.9 6.8 0.95 3.2 

Iqbal Model C 46.3 80.6 7.3 0.94 3.4 

METSTAT 59.1 96.6 9.3 0.92 3.7 

Modified Iqbal Model C 75.7 118.8 12.2 0.88 3.9 

CSR 77.1 121.3 12.0 0.87 3.9 

Atwater and Ball -58.0 165.3 -11.7 0.77 1.8 

ESRA 36.4 69.7 5.6 0.95 2.9 

Hoyt (Iqbal model B) -17.8 61.4 -4.1 0.96 1.4 

Heliosat-1 41.6 76.0 6.2 0.95 3.1 

Davies and Hay (Iqbal 

model A) 

-37.6 112.7 -8.3 0.89 1.7 
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APPENDIX D 

VITA 

Fadhil Al-Aboosi holds a bachelor's degree and master's degree in Nuclear Engineering 

from Baghdad University. His undergraduate studies involved three years of Chemical 

Engineering which gave him a great deal of appreciation for this exciting engineering 

discipline and how it relates to other engineering fields. Later, he majored in Nuclear 

Engineering because the College of Engineering invited the top ten students in Chemical, 

Electrical, and Mechanical Engineering to spend more two more years of studies and earn 

a B.S. in Nuclear Engineering. Upon graduation, he was outstanding for the College of 

Engineering. 

 

His undergraduate studies involved various aspects of engineering with numerous courses, 

lectures from Chemical, Electrical, Mechanical, as well as Nuclear engineering. He has 

received a scholarship to obtain a master’s degree and the thesis was under 

“Hydrodynamic and Heat Transfer Over Two Spheres.” The research of the thesis 

involved several engineering concepts and areas including fluid mechanic, heat transfer, 

and thermodynamics. 

 

After he got his master's degree he worked at the Department of Nuclear Engineering as a 

lecturer for three years. Then, he started a new position in the same department as a faculty 

member. In addition, he was fortunate to receive a scholarship from Baghdad University 

to get his Ph.D. in Process System Engineering (focusing on Renewable Energy System).  

 

He has joined the Process Integration and Systems Optimization Group in the Artie 

McFerrin Chemical Engineering Department at Texas A & M University to work under 

the supervision of Prof. Mahmoud El-Halwagi who is an expert in the field of process 

design, integration, and optimization.  

 

Al-Aboosi may be reached by his email:alaboosi@tamu.edu 




