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ABSTRACT 

 

Source rocks, such as organic-rich shale, consist of multi-scale pore structures 

which include pores with sizes down to nano-scale contributing to the storage of 

hydrocarbons. During my Ph.D. studies, using molecular simulations, I showed the 

applications of the concept of composition redistribution of the produced fluids in source 

rocks. The hydrocarbons in the source rock partition into nano-confined fluids with 

significantly varying physical properties across the nanopore size distribution of the 

organic matter. This partitioning is a consequence of multi-component hydrocarbon 

mixtures stored in nanopores showing a significant compositional variation with the 

changing pore size and pressure.  It is firstly observed that this variance leads to capillary-

condensation of fluids in nanopores at the lower end of the organic pore size distribution. 

Condensation impairs the transport ability of the fluids left behind in nanopores and 

consequently, their recoveries are reduced significantly.  

In the light of these microscopic scale observations, I developed a new volumetric 

method for predicting hydrocarbons in-place honoring the compositional variability across 

the measured pore size distribution in the presence of nano-confinement effects. My 

approach allows the reservoir engineer to differentiate mobile bulk hydrocarbon fluids 

from the fluids under confinement and from the capillary-condensed trapped fluids.  

The low recoveries from the organic nanopores makes the source rocks potential 

resources for enhanced oil recovery. In addition, as part of my thesis work, I considered 

lean gases (such as CO2 and N2) injection for enhanced nano-confined oil recovery. The 
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concept of gas injection is firstly developed in equilibrium molecular simulation research. 

I showed that lean gas injection could influence the vaporization pressure of the confined 

hydrocarbon fluid mixture and strip additional hydrocarbon molecules from the organic 

pores. This mechanism is known as the vaporizing gas drive in the literature. 

On the other hand, the several limitations of CO2 injection are found during my 

study, and ethane injection is alternatively considered for enhanced nano-confined oil 

recovery. I studied the ethane injection extensively and compared with CO2 injection. 

Ethane has a better stripping ability against heavy hydrocarbons, and also enhances the 

mobility.  

At reservoir scale, I propose a new robust method of simulation-based history-

matching and optimization for future reserve prediction. This approach considers the total 

fracture surface area for the drainage of hydrocarbons as a key quantity in production from 

horizontal shale gas wells with multiple-hydraulic fractures. The effective fracture surface 

area is estimated by incorporating an analytical solution of production rate transient data 

associated with the formation linear flow and introduced as an additional constraint to the 

optimization. Stress-dependent models are employed for the fracture width and the matrix 

permeability change during the production. The new approach not only predicts the 

reserve but also the time for the fractures to close significantly when the fractures no 

longer produces economically. This time indicates the life of the well. 
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NOMENCLATURE 

NA  Avogadro’s number, 6.023x1023 molecule number/mol 

b  Bulk mass density of the rock 

bulk,mix  Bulk mass density of the fluid 

bulk,mol  Bulk molar density of the fluid 

bulk,mol,CH4  Bulk molar density of CH4 

KB  Boltzmann constant 

α  Biot coefficient 

COM  Center-of-Mass 

cEDFM  Compartmental Embedded Discrete Fracture model 

pc  Confining stress 

Cr  Crossover probability rate 

dp,L  Cut-off pore size for nanopore effects 

dp,T  Cut-off pore size for trapped hydrocarbons 

zsc  Compressibility at standard conditions 

ρadsorbed  Density of adsorbed phase 

ρfree  Density of free phase 

DE  Differential Evolution 

EOR  Enhanced Oil Recovery 

EnKF  Ensemble Kalman filter 

EOS  Equation of State 
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peff  Effective stress 

AFRAC,RTA  Effective fracture surface area based on RTA 

AFrac,OPT  Effective fracture surface area based on optimization 

σ’xx  Effective compressive stress 

ϕHC  Effective porosity having mobile hydrocarbons 

ρtotal  Fluid density in the pore 

pwf  Flowing bottomhole pressure 

Bg  Formation volume factor 

wf  Fracture width 

kf  Fracture permeability 

ϕf  Fracture porosity 

μVT  Grand Canonical ensemble 

GCMC  Grand Canonical Monte Carlo 

qg  Gas flow rate 

GCMC  Grand Canonical Monte Carlo  

G(p)  Gas in place without nanopore confinement effects 

G*(p)  Gas in place with nanopore confinement effects 

µVT  Grand canonical 

R  Gas constant 

IHF  Hydraulic fracturing quality index 

xf  Half fracture length 

w0  Initial matrix permeability 
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pi  Initial reservoir pressure 

NPT  Isothermal-isobaric ensemble 

zi  Initial mole fraction 

NPT  Isothermal-isobaric 

δαβ  Kronecker delta function 

eps  Large pore cut-off 

NG  Maximum number of generation 

MD  Molecular Dynamics 

MC  Monte Carlo 

dp,mix  Mass density of the fluid in nanopore 

dp,CH4  Mass density of CH4 in nanopore 

dp,mol  Molar density of the fluid in nanopore 

dp,mol,CH4  Molar density of CH4 in nanopore 

Bg
*  Modified formation volume factor 

C  Molar density 

k0  Matrix permeability 

pmax  Matrix closure stress 

n   Number density of hydrocarbons in large pores 

nfrac  Number of the fractures 

OGIP  Original Gas in-Place 

ϕFW  Porosity of the free water 
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ϕCBW  Porosity of the clay bound water 

ϕLarge  Porosity of organic pores larger than dp,L 

ϕNano  Porosity of organic pores smaller than dp,L 

ϕtrappedHC  Porosity of organic pores smaller than dp,T 

dp  Pore size 

ri(t)  Position of Center-of-Mass in Molecular Dynamics simulation 

v  Poisson’s ratio 

NP  Population size 

tap  Pseudo time 

η  Recovery enhancement 

Psc  Pressure at standard conditions 

RTA  Rate Transient Analysis 

h  Reservoir thickness 

F  Scaling factor 

Pαβ  Symmetrized traceless portion of the stress tensor, σαβ 

τ  Tortuosity 

Lh  Total lateral length of a well 

T  Temperature 

AFRAC  Total fracture surface area 

TraPPE  Transferable Potentials for Phase Equilibria Force Field 

Vp  Total pore volume in one ton of rock 

ϕ  Total porosity 
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Tsc  Temperature at standard conditions 

StrappedHC  Trapped hydrocarbons saturation 

ε  Volume fraction of large pores 

Vp,Nano  Volume of hydrocarbons in nanopores with size smaller than dp,L 

VT  Volume fraction of trapped hydrocarbons 

η  Viscoelastic shear coefficient 

Sw  Water saturation 

rw  Well radius 

Ef  Young’s modulus 
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1. INTRODUCTION 

 

1.1. Statement of the Problem 

Resource shale and other source rock formations with significant amount of 

organic matter, such as mudstone, silt-stone and carbonate, have multi-scale pore structure 

including fractures, micro-cracks and pores down to a few nanometers (Loucks et al. 2012; 

Ambrose et al. 2012). The total amount of hydrocarbons stored are directly proportional 

to the amount of organic matter, and thus extensive studies on hydrocarbon storage in the 

organics in source rock have been conducted to investigate the effects of the amount, type 

and thermal maturity of the organic matter, moisture content and swelling strain (Weniger 

et al. 2010; Modica and Lapierre 2012; Gasparik et al. 2012; Zhang et al. 2012; Chen and 

Jiang 2016).  

In order to estimate initial hydrocarbon in-place of the organic-rich resources, 

laboratory measurements have been widely adopted. However, the intrinsic ultralow 

permeability of the unconventional resource and the extreme subsurface conditions make 

this task challenging. Alternatively, molecular simulations can be used, in particular to 

answer some of the questions at the nanoscale. Many works have been conducted using 

molecular simulations up to date, and they further help us to understand behavior of 

hydrocarbon fluids confined in nanopores such as kerogen on microscopic level (Jiang et 

al. 2005; Ambrose et al. 2012; Liu and Wilcox 2012; Falk et al. 2015; Pitakbunkate et al. 

2016; Bousige et al. 2016, Greathouse et al. 2016).  
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Figure 1.1 Nano-confinement effects on single component fluids. 

 

The fluid in nanoscale pore structures is subjected to amplified molecular 

interactions with the walls. Thus, the fluid develops anisotropic forces near the walls and 

holds a non-uniform density (Bui and Akkutlu 2015). Figure 1.1 shows the density of 

confined pure component fluid (methane) in a nano-channel under the reservoir conditions 

(Ambrose at el. 2011). A graded change is observed in density in the direction  
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Figure 1.2 Compositional variation in a nanopore. 

 

perpendicular to the channel surface. Consequently, a staircase-like density structure 

prevails near the channel walls (Ambrose et al. 2012). The high-density by the wall 

belongs to adsorbed fluid molecules while the low density at the central portion of the 

channel belongs to free fluid molecules. The free molecules are far enough from the walls 

so that their interactions with the wall atoms are negligible. As the channel size is reduced, 

the density structure near the wall does not change, but the channel volume taken up by 

the free fluid molecules decreases. The reduction in nano-channel size can cause a 

significant increase in the average density of the fluid inside the channel. Similarly, the 

average compressional stress applied on the fluid molecules considerably increases. We 

call the amplified fluid-wall molecular interactions due to increase in confinement, which 

leads to changes in the fluid properties, the nano-confinement effects. 

 

a) 

b) 

c) 
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Figure 1.3 Nano-confinement effects on multi-component fluids. 

 

Multi-component gases in nano-channels have added complexity mainly due to the 

presence of varying levels of fluid-wall interactions with each chemical species that make  

up the fluid mixture. The gas molecules experience selective adsorption and this also 

depends on the chemistry of the channel wall surfaces. Nano-channels have large wall 

surface area to volume ratio, which, in turn, could make the volume-averaged composition 

heavier in a nano-channel as dictated by the walls (Bui and Akkutlu 2017). Figure 1.2 

shows a mixture of hydrocarbon gas in a nano-channel under equilibrium; yellow: 

Methane, blue: n-butane, red: n-pentane. Note that the adsorption layer composition by 

the wall is rich in the largest molecule of the mixture, Figure 1.2b; whereas the free fluid 

composition is rich in the lighter components, Figure 1.2c. Now, a graded change is 

observed in composition in the direction perpendicular to the channel walls due to the 
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amplified molecular interactions with the wall atoms. Figure 1.3 shows the effect of fluid 

composition on the fluid storage under confinement. Again, a staircase-like structure is 

expected by channel walls but now the density by the walls is larger than the pure methane 

density because the fluid is a hydrocarbon mixture. Similarly, the reduction in the channel 

size will increase the average density further because of the diminishing volume with the 

free molecules including the light components in the mixture. Clearly, the in-situ fluid 

composition is likely to further escalate the confinement effects and, therefore, it should 

be taken into account during the investigation of fluid transport under the influence of 

nano-confinement. Storage of multi-component hydrocarbon fluids under nanoscale 

confinement is analyzed in this work highlighting the differences between single-

component (pure methane) and multi-component fluid systems.  

In summary, nanopore confinement has two effects on fluid density. The first 

effect is due to physical adsorption. It is difficult to differentiate the adsorption effect and 

the pore size effect in the laboratory and using simulations therefore we will refer to them 

here briefly as the nano-confinement effects. Consequently, the nano-confinement effects 

make it difficult to predict fluid behavior.  

 Simpler analytical models have been developed to predict the fluid behavior  

(Schoen and Diestler 1998; Zarragoicoechea and Kuz 2004). Travalloni et al. (2010) 

developed a new equation of state (EOS) on the basis of Peng-Robinson EOS with the 

generalized van der Waals theory. A square-well model was adopted to take into account 

the wall interaction, and the related parameters need to be fitted with experimental data. 

Their model provides good correlations of experimental data for pure fluid with the simple 
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formulation. Also, it was expanded to multi-component fluids. The model, however, 

basically adopts monoatomic spherical molecules, and constant effective diameter of the 

molecule. In addition, interference by different components was not considered in 

molecular distribution in nanopores for multi-component system. Under typical reservoir 

conditions, those limitations would be pronounced especially for asymmetric mixtures. 

Especially, molecular geometry is a very critical entropic factor in confined fluids, then 

the simple molecular structures would cause large uncertainties. So far, most of 

investigations have limited their scope to simple fluids, and sometimes they have been 

performed under non-representative reservoir conditions.  

Petroleum in reservoir includes various components. Modeling the fluids with a 

single component may lead to inaccurate reserve and fluid property estimation. Several 

experiments have reported that multi-component fluids on solid surfaces have variation in 

composition (Myers et al. 1968; Stevenson et al. 1991; Arri et al. 1992; Clarkson et al. 

2000).  Lately, thermodynamic computations of multi-component hydrocarbon fluids have 

confirmed that the composition in organic nanoporous materials is entirely different from 

the bulk fluid composition due to the nanoscale confinement effects (Bui and Akkutlu 

2017). Specifically, the adsorbed fluid by the pore walls consists of heavy fraction of the 

hydrocarbon mixture; whereas the free phase is rich in lighter components. This is 

attributed to the relative affinity of individual component to pore surface, and not observed 

with a pure component system. This creates large compositional variation near the walls, 

in particular for the heaviest and lightest components. With decreasing pore dimension, 

the adsorbed heavy components influence progressively further on the fluid composition 
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in the pore. Thus, the average composition in the smaller pores becomes heavier. Figure 

1.2 shows the adsorption and pore size effects on the overall composition of the fluid 

inside the pore. As a consequence of the nano-confinement effects, at initial reservoir 

conditions, the hydrocarbon mixture is expected to be heavier and more viscous in the 

smaller pores. During production and pressure depletion, due to selective release 

(desorption) of the lighter hydrocarbons, the composition left inside the nanopores 

becomes even heavier (Bui and Akkutlu 2017). Hence, the nano-confinement could have 

added complexities during the production and depletion. At the fundamental level, these 

are significant observations with a potential impact on hydrocarbon in-place and reserve 

calculations in the source rocks rich in organic matter. 

 Recently, technical advances in horizontal drilling and hydraulic-fracturing have 

been the major factors in achieving economical production from unconventional 

resources. At reservoir scale, we can use the existing optimization technologies that have 

already been developed for the conventional wells during the last decades. These methods 

overwhelmingly use a reservoir flow simulation model to history-match the production of 

a well or a group of wells in the field and to forecast the reserve. However, history-

matching and production forecasting of the unconventional wells, such as the horizontal 

shale gas wells with multiple fractures, has fundamentally different focus in comparison 

to classical problems of interest. Primary optimization parameters that show significant 

sensitivities are, in this case, the fracture geometry (i.e., its length, width, and height), the 

fracture conductivity, the fracture spacing (or number of fractures) and the fracture 

complexity. Although a horizontal well’s lateral length and the number of hydraulic 
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fracturing stages are known accurately, the nature of fractures contributing to the 

production is poorly understood. This lack of knowledge brings in added complexity and 

uncertainties to the optimization process when the reservoir engineer is not only required 

to consider the key matrix parameters (such as porosity and permeability) and the 

geological impact on these parameters, but also the completion qualities such as the 

hydraulic fracturing design. This is a challenging task because various aspects related to 

the reservoir and the completion should be considered simultaneously.  

During the formation linear flow, the area of the fractures contributing to the 

production becomes the key quantity. The fracture surface area can be estimated if the 

number and geometry of the fractures are known. However, uncertainties exist on these 

completion-related quantities. The industry uses micro-seismic data, production logs, 

wellbore image logs and tracer test to characterize the fractures (Hetz et al. 2017). These 

methods have limited application, however, because the data is costly, or the formation 

holds a relatively complex network of fractures where identifying individual wing-like 

planar fractures could be difficult.  

A common approach is to measure the fracture surface area directly using the well 

production data along with an RTA method. The most widely used approach is the method 

also known as 𝐴√𝑘  method, originally proposed by Wattenbarger et al. (1998). The 

method is used to estimate the fracture surface area from the production decline on the 

basis of the several strict conditions such as constant permeability or fracture width. These 

often limits the accuracy of the reservoir characterization and reserve prediction for 

unconventional gas reservoirs. 
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1.2. Research Objectives 

The overall objectives of my research are as follows: 

1. To propose a new volumetric method to estimate hydrocarbon in-place for multi-

component fluids in organic-rich source rocks. 

2. To analyze the behavior of the nano-confined hydrocarbons in the pores of organic 

materials such as kerogen and solid bitumen. 

3. To measure primary recovery in organic-rich source rocks at the microscopic scale and 

analyze the effects of fluid composition on the primary recovery due to pressure 

depletion. 

4. To study the impact of CO2 injection on the recovery, in particular recovery of nano-

confined oil in the organic material. 

5. To investigate the impact of ethane injection the nano-confined oil recovery and 

compare to that due to CO2 injection. 

6. To propose a new simulation-based reservoir optimization strategy for horizontal shale 

gas production wells with multiple hydraulic fractures.
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2. COMPUTATIONAL METHODOLOGY 

 

2.1. Kerogen Pore Model 

Depending on its geographic origin, sediment burial and maturation history, 

kerogen exhibits strong heterogeneity in its physical and chemical properties such as bulk 

density, chemical composition and pore structure. In particular, maturity indicators such 

as vitrinite reflectance, aromatic/aliphatic ratio, and atomic ratios (H/C and O/C) are used 

to categorize kerogen types. See the original work by van Krevelen (1961) for details. As 

the maturation develops over geologic time, relative carbon content increases, hence H/C 

and O/C atomic ratios decrease. To date the effects of the amount, type and thermal 

maturity of the organic matter on the hydrocarbons storage in source rocks have been 

extensively investigated (Weniger et al. 2010; Modica and Lapierre 2012; Gasparik et al. 

2012; Zhang et al. 2012; Bui et al., 2018).  

Throughout molecular simulation study, the porous structure of kerogen is 

simplified and modeled as a membrane made of carbons consisting of slit-shape pores as 

shown in Figure 2.1. Chemically, the graphite includes carbon atoms only and represents 

the extreme case of thermal maturity (H/C and O/C atomic ~ 0) for the kerogen. Other 

types of nanopores in source rocks such as clay and calcite are not considered here. Our 

focus is on the complexity of the fluids, and the solid surface heterogeneities are not 

considered in this study. The level of confinement is controlled in the z-direction, and the 

sizes of the pores in x- and y-dimensions are fixed. Similar approach is adopted to study 
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pure CH4 or CO2 in nanopores in literature (Liu and Wilcox 2012; Rahmani and Akkutlu 

2015). 

2.2. Composition Re-Distribution 

Based on the typical subsurface conditions and the produced fluid composition, 

the in-situ hydrocarbon configuration in model kerogen nanopores can be estimated based 

on the composition re-distribution computations (Figure 2.2) using the molecular Monte 

Carlo (MC) simulation (Bui and Akkutlu 2017). The confined fluids in nanopores are 

assumed to be thermodynamically in equilibrium with the bulk fluid outside in the 

fracture. This requires the chemical potential of individual components is the same in both 

places. Throughout the study, the term bulk indicates the space outside the nanopores in 

places such as natural fracture or micro-crack, and the bulk fluid refers to the fluid residing 

therein. Also, fluid pressure refers to pressure of the bulk phase fluid in the fracture, and 

only the bulk phase fluid pressure is controlled in this study because the compressional 

stresses in confined fluids are strongly anisotropic (Bui and Akkutlu 2015). 
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Figure 2.1 Pore consideration in molecular simulation (Baek and Akkutlu 2019c). 

 

 

 

Figure 2.2 Conceptual model of  composition re-distribution of the produced fluids 

for organic-rich source rock formations (Baek and Akkutlu 2019a). 
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2.3. Monte Carlo Molecular Simulation 

 The composition redistribution calculations are based on the Grand Canonical Monte 

Carlo (GCMC) molecular simulations and use open-source, TOWHEE (Martin 2013). 

During the GCMC simulation, the following five types of moves are used: volume 

exchanges with the external bath based on the pressure, center-of-mass translation and 

rotation, configurational-bias partial molecule re-growth and configurational-bias single 

box molecule re-insertion move. Firstly, using isothermal-isobaric (NPT) ensemble – 

inputs with the constant number of molecules, pressure and temperature, chemical 

potential of the individual component in the bulk fluid mixture is computed. Fifty thousand 

cycles are run for both the equilibrium and the production data, respectively. Then, using 

the chemical potential values of the components predicted, the GCMC or µVT ensemble 

- inputs with the constant chemical potential of individual component, volume of the 

system, and temperature, is run, and the number of each component in the nanopore is 

predicted. GCMC simulation maintains the same chemical potential of the individual 

component in the nanopore and in the bulk fluid residing in the micro-crack, which are in 

accordance with those from NPT simulation. 40 million cycles of computation are 

performed for the membrane-crack system to reach equilibrium state and for data 

production. The equilibrium state is confirmed with small difference in the chemical 

potential between bulk phase and nanopores for NPT simulation as seen in literature (Bui 

and Akkutlu 2017). For GCMC (or µVT) simulation, the mole fraction of the individual 

component in the nanopore has less than 0.005 of standard deviation over production run. 



 

14 

 

The numbers of cycles for NPT and µVT simulations were enough to make the system 

reach equilibrium (Pitakbunkate et al. 2016). 

Molecular interactions of hydrocarbons are described with the TraPPE force field 

cost (Martin and Siepmann 1998 and 1999), and all hydrocarbons are modeled as united-

atoms. In the united-atom force field, the single interaction sites, so called pseudo-atoms 

are used to represent a carbon atom together with all of its bonded hydrogen atoms to save 

the computational. Lennard-Jones 12-6 potential is adopted to model the non-bonded 

interaction and van der Waals intermolecular interactions (Eq. 2.1). Lorentz-Berthelot 

mixing rule is employed for interactions between unlike particles (Eq. 2.2). All pseudo-

atoms are connected by a fixed bond length (1.54 Å), bond bending is governed by a 

harmonic potential (Eq. 2.3) and the motion of the dihedral angles ∅ is controlled by OPLS 

united-atom torsional potential (Eq. 2.4).  

𝑈𝑖𝑗(𝑟𝑖𝑗) = 4𝜀𝑖𝑗 ((
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

) , 𝑟𝑖𝑗 < 𝑟𝑡 (2.1) 

𝜎𝑖𝑗 =
1

2
(𝜎𝑖𝑖 + 𝜎𝑗𝑗) 

(2.2) 

𝜖𝑖𝑗 = √𝜖𝑖𝑖𝜖𝑗𝑗 

𝑢𝑏𝑒𝑛𝑑(𝜃) =
𝑘𝜃

2
(𝜃 − 𝜃𝑒𝑞) (2.3) 

𝑢𝑡𝑜𝑟𝑠𝑖𝑜𝑛(∅) = 𝑐1[1 + 𝑐𝑜𝑠(∅)] +𝑐2[1 − 𝑐𝑜𝑠(2∅)] + 𝑐3[1 + 𝑐𝑜𝑠(3∅)] 
(2.4) 
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Table 2.1 Bonded and non-bonded interaction parameters. 

Pseudo-atom 𝝐/𝒌𝑩 [K] 𝝈 [Å] q [e] 

CH4 148 3.73 - 

CH3- 98 3.75 - 

-CH2- 46 3.95 - 

C in CO2 27 2.8 0.70 

O in CO2 79 3.05 -0.35 

Stretch Length [Å] 

CHx- CHy or CHy- CHx 1.54 

O=(C=O) or O=(C=O) 1.16 

Bend 𝜽𝒆𝒒 [°] 𝒌𝜽/𝒌𝑩 [𝐊/𝐫𝐚𝐝𝟐] 

CHx-CH2-CHy 114 62,500 

O=(C)=O 180 - 

Torsion 𝑪𝒐/𝒌𝑩 [K] 𝑪𝟏/𝒌𝑩 [K] 𝑪𝟐/𝒌𝑩 [K] 𝑪𝟑/𝒌𝑩 [K] 

CHx-CH2-CH2-CHy 0.00 355.03 -68.19 791.32 

 

CO2 is simulated with three-site rigid model (θ = 180°) having point charge on the 

carbon atom (qc = +0.7e) and on each of the oxygen atoms (qo = -0.35e) in order to take 

into account its intrinsic quadrupole moment. Lennard-Jones 12-6 potential is adopted to 

model the non-bonded interaction and van der Waals intermolecular interactions, and the 

permanent electrostatic interactions are computed with Ewald summation of the point 

partial charges for CO2-CO2 interactions. The Ewald convergence parameter, α is set to 

5.6 divided by the shortest simulation box length, and the maximum number of inverse 

space vectors (kmax) is 5. The detailed parameter values are given in Table 2.1. 
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A cut-off distance of 13.8 Å is used, and analytical tail correction is applied to 

estimate the effects of long-range molecular interactions. The solid-fluid interaction 

potential ϕsf for hydrocarbons interacting with the organic nanopore wall is well described 

by the Steele 10-4-3 potential (Steele 1973). 

𝜙𝑠𝑓(z) = 2π𝜖𝑠𝑓𝜌𝑠𝜎𝑠𝑓
2 ∆ [

2

5
(

𝜎𝑠𝑓

z
)

10

− (
𝜎𝑠𝑓

z
)

4

−
𝜎𝑠𝑓

4

3∆(z + 0.61∆)3
] (2.5) 

where z is the distance from the pore wall, ρs is the solid density, Δ is the spacing between 

carbon layers, and ɛsf and σsf are the well depth and effective diameter for the hydrocarbons 

and carbon wall, which are determined by Lorentz-Berthelot mixing rule. We fix ρs =  

0.114 atoms/Å3 and Δ = 3.35 Å. For the model slit pore, the fluid molecule will interact 

with both carbon slabs and hence, the full external potential Vext is written as 

𝑉𝑒𝑥𝑡(z) = 𝜙𝑠𝑓(z) + 𝜙𝑠𝑓(H − z) (2.6) 

 

2.3.1. Simulation Validation 

For validation of the molecular simulation-based approach, firstly, one 

hydrocarbon mixture (methane: ethane: propane: n-butane: n-pentane = 0.54: 0.16: 0.13: 

0.11: 0.06) and pure CO2 fluid are compared over typical reservoir pressure in Figure 2.3a. 

Both fluids are simulated in the bulk phase using NPT ensemble at 176 °F. Peng-Robinson 

equation of state and NIST database are used for the comparisons. Figure 2.3a shows that 

the fluid models are in agreement for the entire range of pressure investigated. Next, the  
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Figure 2.3 Computational methodology validation (Baek and Akkutlu 2019b). 

 

comparison is made for pure methane and pure CO2 in model kerogen pore. In both cases, 

the average density over the entire nanopore volume is counted. In Figure 4.4b, Wu et al. 

(2017) computed the number density (the number of molecules per pore volume multiplied 

by the pore size) of pure CH4 using molecular dynamics simulation at 176 °F. The unit of 

y-axis in Figure 2.3b is displayed as given in their work. Their simulation had a large bath 

of the bulk phase connected to the nanopore, and they adopted the mixed wall model, 

which includes the one explicit carbon layer and implicit wall potential for consecutive 

layers. Their simulation result is matched using the simulation approach of this study with 

the implicit Steele’s wall potential. Likewise, in Figure 2.3c, the 2 nm pore generated a 

consistent molar density (the number of molecules per pore volume) for pure CO2 at 104 

°F when compared to the results previously published by Liu and Wilcox (2012). These 

results gave confidence on the developed computational methodology for the fluids and 

the model pores and encouraged us to look into the behavior of the multi-component fluids 
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in organic nanopores under the effects of competitive adsorption and nanopore 

confinement effects. 

2.3.2. Recovery Calculation 

In order to assess the performance of the injected gases, hydrocarbons recovery 

from the nanopores is calculated using the composition re-distribution data from Monte 

Carlo molecular simulations and Eq. 2.7: 

Recovery, % =  
𝐶(𝑃𝑖,  𝑑𝑝) −  𝐶(𝑃,  𝑑𝑝)

𝐶(𝑃𝑖,  𝑑𝑝)
× 100, (2.7) 

in which C(P, dp) is molar density of the fluid in the nanopore with the size dp at pressure 

P. This value points out hydrocarbon in-place in the nanopore at a particular pressure. Pi 

is the initial pressure and equal to 4,000 psi in this study. 

2.4. Molecular Dynamics Simulation 

Molecular Dynamics (MD) simulation is performed separately for the redistributed 

hydrocarbons in each pore to compute the transport properties such as viscosity, the mean 

free path length, and diffusivity of the hydrocarbon molecules using the computed 

trajectories of the molecules. Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) is adopted for the MD simulations (Plimpton 1995). The same molecular 

interaction parameters are used (Table 2.1). In-house MATLAB codes are used to build 

input files and analyze results and trajectories.  
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2.4.1. Viscosity Calculation 

The viscosity of the confined mixtures is measured using Green-Kubo relation as 

(Chen et al. 2009):  

𝜂 =  
𝑉

𝐾𝐵𝑇
∫ 〈∑ 𝑃𝛼𝛽(0)𝑃𝛼𝛽(𝑡)

𝛼𝛽
〉 𝑑𝑡

∞

0

 (2.8) 

𝑃𝛼𝛽 =  
1

2
(𝜎𝛼𝛽 + 𝜎𝛽𝛼) −

1

3
𝛿𝛼𝛽 (∑ 𝜎𝑦𝑦

𝛼𝛽
) 

 

where KB, Boltzmann constant, Pαβ, symmetrized traceless portion of the stress tensor, σαβ, 

δαβ is the Kronecker delta and δαβ = 0 when α ≠ β. Viscosity calculation with MD 

equilibrium simulation reasonably predicts the viscosity of multi-component hydrocarbon 

fluids in bulk phase (Bui and Akkutlu 2017).  

2.4.2. Fluid Average Diffusivity Calculation 

The average diffusivity of the fluids in nanopores of the membrane are estimated 

based on the mean free path and the mean collision time of the molecules measured using 

MD simulation (Gottlieb et al. 2013). By definition, the mean free path is the average 

distance the fluid molecules take between successive collisions, and the mean free 

collision time is the average time between the collisions. The mean free path length of 

multi-component hydrocarbons in confined space can be calculated using the generated 

trajectories from the molecular simulation as follows: 



 

20 

 

𝜆𝑖 =
∑𝑟𝑖

𝑡 −  ∑𝑟𝑖,𝑐 

𝑚𝑖
 (2.9) 

𝜆𝑎𝑣𝑒 =
∑ 𝜆𝑖

𝑁
 (2.10) 

Non-collisional traveling distance λi of a particle i can be measured by subtracting the 

distance, ∑𝑟𝑖,𝑐  the particle move during the collisions from the total distance ∑𝑟𝑖
𝑡  the 

molecule travels during the entire simulation time. mi and N indicate the number of free 

flight of the particle i and the total number of the molecules in the system, respectively. 

The average diffusivity of the redistributed hydrocarbon mixture inside the nanopore is 

computed using: 

𝐷 =
1

3
𝜆𝑎𝑣𝑒𝑣𝑎𝑣𝑒 =

1

3

𝜆𝑎𝑣𝑒
2

∆𝜏
, (2.11) 

in which λ, vave, and Δτ are the mean free path, average molecule velocity and the mean 

free collision time, respectively. The ratio of the mean free path length to the collision 

time is the average molecule velocity, namely, vave= λave/Δτ. 

2.4.3. Self-Diffusivity Calculation 

Self-diffusivity (Ds) of injectant in the mixture is estimated from the mean-square 

displacement (Einstein equation, Eq. 2.12). For the hydrocarbons in nanopores, interlayer 

diffusion parallel to the basal surface (xy- plane) is considered (Greathouse et al. 2016). 
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𝐷𝑠 =  
1

4
lim
𝑡→∞

〈[𝑟𝑖(𝑡) −  𝑟𝑖(0)]2〉

𝑡
 (2.12) 

where ri(t) is the position of Center-of-Mass (COM) of the injectant molecule i at time t, 

and the angle brackets indicate an ensemble average over all injectant molecules and all 

time origins. The displacement between 0.1 – 4.5 ns was chosen for linear fitting, and 70 

different simulations were used to reduce uncertainties.  

2.5. Reservoir Flow Simulation 

In chapter 6, an in-house flow simulator, NaSh, is used for forward simulation and 

history-matching. NaSh is a robust compositional reservoir flow simulator. The main 

features of the simulator are as follows: 

 Multi-scale pore structure is considered including pores, micro-cracks, discrete 

natural fractures and hydraulic fractures. 

 Pore-size distribution is accounted for: 

o Pore volume partitioned into nanopores with confined fluids, large pores 

with bulk fluid, and discrete fractures with bulk fluid, 

o Multi-scale coupling among nanopores, large pores and fractures, 

o Confinement effect in nanopores considered using molecular simulation; 

no EOS needed, 

o Phase change, capillarity, and stress-dependent flow in large pores. 

 Geomechanics is accounted for 

o Viscoelastic deformation of the hydraulic fractures (proppant embedment), 
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Figure 2.4 NaSh couples molecular simulation. 

 

o Fracture conductivity change due to closure stress and plastic deformation, 

o Embedded Discrete Fracture Model (EDFM) used for the discrete 

fractures.  

o Dynamic (stress-sensitive) matrix permeability. 

Gangi’s micro-fracture dominated permeability model (1978) is considered to 

capture the dynamic permeability of the matrix. Wasaki and Akkutlu (2015) previously 

showed the application of this method to the shale gas reservoirs. In this model, the 

permeability of the matrix (k) is stress dependent as follows: 

𝑘 = 𝑘0 [1 − (
𝑝𝑐 − 𝛼𝑝

𝑝𝑚𝑎𝑥
)

𝑚

]
3

 (2.13) 
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where k0 is the permeability of the matrix in the absence of stress, (pc―αp) is the stress 

on the matrix, pmax is the maximum stress when the micro-fractures in the matrix entirely 

close. Exponent m represents the resistance of the micro-fractures to close under stress 

and is also related to the roughness of the micro-crack surfaces. During the optimization 

the Gangi’s permeability model parameters k0, m, and pmax will be treated as the calibration 

parameters, whose average values and their range can be determined based on the 

laboratory measurements of the formation sample core plugs maintained under controlled 

stress conditions as well (Kim, Olorode and Akkutlu 2019). The simulation model is fully-

coupled geo-mechanically, hence not only the fluid pressure and saturations are computed 

dynamically, but also the changing stresses and the displacement are predicted (Olorode, 

Akkutlu, and Efendiev 2017a and 2017b). Figure 2.4 shows the computed pore pressure 

and stress during the gas production from a well. 

The simulation model also considers the proppant embedment problem of the 

hydraulic fractures as a plastic deformation using a viscoelastic model originally proposed 

by Guo and Liu (2012):  

∆𝑤𝑓 = 𝑤0 [
(1 − 𝑣2)

𝐸𝑓
𝜎′

𝑥𝑥(𝑡) +
1

4𝜂
(1 +

(1 − 2𝑣)2

3
) ∫ 𝜎′

𝑥𝑥(𝑡)
𝑡

0

𝑑𝑡] (2.14) 

where Δwf is the change in fracture width due to proppant embedment, w0 is the initial 

fracture width, v is Poisson’s ratio of the shale, Ef is the Young’s modulus, η is the 

viscoelastic shear coefficient and σ’xx(t) is the time-dependent effective compressive stress 

acting on the surface of the hydraulic fractures.  
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2.6. Differential Evolution Algorithm 

A gradient-free optimization algorithm, Differential Evolution (DE) is adopted in 

this work. DE basically consists of four steps of initialization, mutation, crossover, and 

selection. In the first stage, a population is randomly generated as many as population size 

(NP) within the variable range we initially set. In the second mutation step, new population 

is generated with the randomly chosen three (x1, x2 and x3) vectors of initial population. 

They are created as u1 = x1 + F(x2 ― x3). F is a scaling factor, and used to perturb the 

selected solution and facilitate a population evolution. The crossover step varies the 

generated new candidate solutions (trial or offspring vector) on the basis of the 

corresponding parent vector and the crossover probability rate (Cr). Finally, the solutions 

with lower values of the cost function survive and become the parents for the next 

generation (selection). This process is repeated until the termination criteria (pre-specified 

tolerance level or maximum number of generation) is met (Goldberg 1989). 

 

Table 2.2 Parameters of Differential Evolution Algorithm. 

Parameters Symbol Value 

Number of population NP Number of variables + 3 

Scaling factor F 0.618 

Crossover probability rate Cr 0.9 

Max. Number of generation NG 100 
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3. PRODUCED-FLUID COMPOSITION REDISTRIBUTION IN SOURCE ROCKS1 

 

 Source rocks, such as organic-rich shale, consist of multi-scale pore structure, which 

includes pores with sizes down to nano-scale contributing to the storage of hydrocarbons. 

In this study, we show that the hydrocarbons in the source rock partition into fluids with 

significantly varying physical properties across the nanopore size distribution of the 

organic matter. This partitioning is a consequence of multi-component hydrocarbon 

mixture stored in nanopores showing a significant compositional variation with the pore 

size. The smaller the pore is, the heavier and the more viscous the hydrocarbon mixture 

becomes. The concept of composition redistribution of the produced fluids is introduced 

using equilibrium molecular simulation that considers organic matter as a graphite 

membrane in contact with a micro-crack holding the bulk phase produced fluid.  

 A new equation of state is proposed to predict density of the recombined fluid 

mixtures in nanopores under the initial reservoir conditions. A new volumetric method is 

presented honoring the density variability across the measured pore size distribution for 

an improved accuracy in predicting hydrocarbons in-place. The approach allows us to 

account for the bulk hydrocarbon fluids and the fluids under confinement.  

 Multi-component fluids with the redistributed compositions are capillary-condensed 

in nanopores at the lower end of the pore size distribution of the matrix (< 10 nm). The 

                                                 
1This chapter is from SPE-195578-PA “Produced-Fluid Composition Redistribution in Source Rocks for 

Hydrocarbon-In-Place and Thermodynamic Recovery Calculations” written by Seunghwan Baek and I. 

Yucel Akkutlu. It is reprinted here with permission of SPE J., whose permission is required for further use. 
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nano-confinement effects are responsible for the condensation. During production and 

pressure depletion, the remaining hydrocarbons become progressively heavier. Hence, 

vaporization of the hydrocarbons and desorption develop at extremely low pressure. 

Consequently, hydrocarbon recovery from these small pores is characteristically low. 

3.1. Preliminaries 

 Adsorptive properties of hydrocarbon fluids in the nanoporous organic materials, 

such as kerogen and bituminous coal, have been investigated using molecular simulations. 

Simple pore models with organic walls such as slit-pores with graphite walls have widely 

been used in these studies, and the focus was on providing new insights into fluid storage 

at the microscopic scale (Ottiger et al. 2008; Adesida et al. 2011; Ambrose et al. 2012; 

Mosher et al. 2013; Li et al. 2014). Cristancho-Albarracin et al. (2017) showed that a 4 

nm pore contains roughly 50 % adsorbed hydrocarbons depending on the reservoir 

pressure and temperature. Also, they studied methane-nanopore wall interaction energy 

using quantum mechanical calculations to take into account the wall surface 

heterogeneities on the amount of methane adsorption. They compared the energy 

difference among the walls made of pure graphene, nitrogen-doped graphene, di-vacancy 

graphene and Stone-Wales effects and concluded that the impact of surface 

heterogeneities is significant on the adsorbed gas amount. Aljamaan et al. (2017) studied 

adsorption of pure gases using a molecular simulation and compared the results with 

experimental data using intact cores obtained from Haynesville and Barnett shale 

formations. All of these studies adopted a slit-shape carbon model in their analysis. 

However, these investigations have limited their scope to simple fluids, and they have 
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been mostly performed under non-representative reservoir conditions. This work focuses 

on multi-component fluid systems and shows the importance of the in-situ composition 

on the fluids storage in source rocks. 

 Recent advances in the area of resource assessment, such as the shale gas in-place 

calculations proposed by Ambrose et al. (2012), considers a priori knowledge on the 

apparent molecular weight/density ratio of the adsorbed phase. Finding this ratio could be 

a difficult task, however, if the fluid is multi-component, and the composition is pore-size 

dependent (Hartman et al. 2011). Further, due to nano-scale confinement, the adsorption 

of the reservoir fluid may not follow the mono-layer Langmuir theory (Myers et al. 1968; 

Ruthven et al. 1984; Clarkson et al. 2000) but instead is characterized by a high-density 

excess fluid, which appears as semi-liquid on the density profile across the diameter of the 

pore (Dubinin 1960; Tsai et al. 1985; Ambrose et al. 2012; Heller and Zoback 2014; 

Aljamann et al. 2017). In addition, the formation volume factor becomes a vague quantity 

when dealing with the hydrocarbon mixtures in small pores in the presence of nano-

confinement effects. It is often not possible to differentiate the fluid phases and their 

compositions in small pores by simply tracking the density variations. 

 In order to resolve these technical issues, in this study we revisit the multi-component 

hydrocarbon fluids occurrences in organic-rich source rocks. We present equilibrium 

thermo-dynamic computations based on molecular simulation of fluids under nano-scale 

confinement, to investigate the compositional variations of the hydrocarbons across the 

pore size distribution of the formation using the produced fluid composition. This method, 

called composition re-distribution of the produced fluids, is essential for resource 
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assessment of the organic-rich source rocks. The redistribution is crucial for the initial 

hydrocarbon in-place considerations, for the reserve calculations including effective 

porosity associated with the mobile fluids, and, finally, for the prediction of the in-situ 

fluid transport properties. Although multi-component hydrocarbon fluids in nanopores 

have previously been studied (Stevenson et al. 1991; Arri et al. 1992; Clarkson et al. 2000; 

Jiang et al. 2005; Hartman et al. 2011; Collell et al. 2015; Rahmani and Akkutlu 2015; 

Bui and Akkutlu 2017; Obliger et al. 2016; Pitakbunkate et al. 2017), the concept of fluid 

composition redistribution and its application in resource assessment of the source rocks 

is new.  

3.1.1. Nano-Confinement Effects 

 Figure 2.2 shows the concept of the composition redistribution of the produced 

fluids. Traditionally, the reservoir engineering studies require that the fluids collected 

from the separator be recombined for the subsequent analyses. The recombination 

calculations are well established (McCain 1990). Composition redistribution of the 

recombined fluid is important because the hydrocarbon fluids in the organic pores can 

have significantly varying composition (Stevenson et al. 1991; Arri et al. 1992; Clarkson 

et al. 2000; Hartman et al. 2011). This variation is different from the vertical compositional 

variation in thick conventional reservoirs (Mullins et al. 2004) but it is the consequence of 

the generated hydrocarbons expulsion and migration in the source rock. In organic-rich 

source rocks, the composition redistribution is necessary in the organic nanopores because 

their surfaces are in general hydrocarbon (oil) wet. Recent thermodynamic computations 

of multi-component hydrocarbon fluids proved that the composition in organic 
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nanoporous materials is different from that of the bulk fluids due to the nanoscale 

confinement effects (Bui and Akkutlu, 2017).  

3.1.2. New Conceptual Porosity Model for Source Rocks 

The concept of composition redistribution is further illustrated in Figure 3.1 using a 

new conceptual porosity model for the organic-rich source rocks. Note that the 

composition redistribution is necessary only for the hydrocarbons stored in the organic 

nanopores. The inorganic porosity, where the hydrocarbon redistribution considerations 

may have existed, consists of the clay nanopores, which largely have already been taken 

by the formation water. The composition redistribution is needed for (i) partitioning the 

hydrocarbon porosity into large pore volume, which may include both organic and 

inorganic pores holding bulk hydrocarbon fluid, and the organic nanopore volume holding 

hydrocarbon molecules under the nano-confinement effects; (ii) separating the trapped 

hydrocarbons in the organic nanopores due to significant confinement. The trapped 

hydrocarbons are the molecules dissolved (absorbed) in those nanopores at the lower end 

of the pore size distribution. For multi-component systems the hydrocarbon dissolution 

and trapping in the organic nanopores, as we will see in the following pages, are also 

closely associated with the phenomenon of capillary condensation. Much like the clay-

bound water, the trapped hydrocarbons in organic nanopores are under the strongest 

influence of the pore walls such that the hydrocarbon molecules have lost their ability to 

be transported under the influence of pressure and concentration gradients. 

 Separation of trapped and mobile hydrocarbons can be achieved after the 

redistribution computations by means of identifying two pore size cut-off values: (i) dp,L 
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below which hydrocarbon fluids behave different from the bulk phase fluid due to nano- 

confinement effects; (ii) dp,T below which release of the hydrocarbon molecules is found 

negligible due to amplified attractive forces exerted by the pore walls, and the associated 

dramatic increases in the apparent molecular weight and viscosity of the fluid. These cut-

offs may vary based on the produced fluid composition, surface chemistry of the pore wall 

and reservoir conditions. Similarly, a cut-off can be described to separate the immobile 

water from free water. Because mature source rocks are in general desiccated due to 

vaporization and removal of the formation water during hydrocarbon generation and 

migration, and hold water at sub-irreducible water saturation, a reasonable simplification 

for the inorganic porosity cut-off is to assume that, although it may take up a portion of 

 

 

Figure 3.1 Conceptual porosity model for organic-rich source rock formations. 
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the total porosity of the formation, the free water is not mobile. The free and clay-bound 

water saturations can be measured in the laboratory using retort method. Heating of the 

sample is performed at different target temperatures suitable for vaporization of the free 

water and clay-bound water separately. Then the combined porosity of the free (ϕFW) and 

clay-bound water (ϕCBW) must be subtracted from the total porosity (ϕ). An effective 

porosity for mobile hydrocarbons (ϕHC) can then be used for the hydrocarbon in place and 

reserve calculations as follows: 

ϕHC = ϕ – ϕtrappedHC – ϕFW – ϕCBW (3.1) 

ϕHC = ϕLarge + ϕNano – ϕtrappedHC (3.2) 

where ϕLarge represents the fraction of the hydrocarbon-filled organic and inorganic pores 

with the cut-off size larger than dp,L and ϕNano is the fraction of hydrocarbon-filled organic 

pores with the size less than dp,L.. ϕtrappedHC stands for the fraction of the organic pores 

smaller than the cut-off nanopore size dp,T. In the following section, a numerical approach 

is presented discussing in depth the new concepts introduced above. 

3.2. Fluid Model 

 For the composition redistribution calculations, we consider three mixtures of 

hydrocarbon fluids produced from shale/tight formations. The compositions of the 

mixtures are shown in Table 3.1. Mixture 1 is a methane-rich natural gas; Mixtures 2 and 

3 are the hydrocarbon mixtures with larger molecules from Zhang et al. (2013).  They 

consist of five hydrocarbon components: methane (CH4), ethane (C2H6), propane (C3H8), 
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n-butane (n-C4H10), and n-pentane (n-C5H12). Figure 3.2 shows the pressure-temperature 

phase diagrams of the mixtures. The predicted two-phase envelops of Mixture 1 and 

Mixture 2 are located far below the reservoir temperature of 176 °F, which indicates that 

the fluids belong to a dry shale gas reservoir. Mixture 3 is somewhat different as a bulk 

fluid; the pressure path of isothermal expansion reaches tangent to its dew point at 1,250 

psi and 176 °F. However, the liquid saturation is expected to be negligible in the reservoir; 

hence, Mixture 3 is wet-gas in the conventional sense. In this study we will show that 

Mixture 3, when redistributed in the organic nanopores, capillary-condenses in nanopores 

and stays condensed during pressure depletion. 

The bulk fluid pressure conditions considered in the micro-crack are normally 

between 500-4,000 psi, and all the cases were assumed to be isothermal systems 

maintained at 176 °F (Gray dash line in Figure 3.2). The applied temperature and pressure 

conditions cover typical subsurface conditions corresponding to depths of several 

thousand meters (Ambrose et al. 2012).   

 

Table 3.1 Molar composition (%) of bulk fluids used in the study. 

Model Fluid CH4 C2H6 C3H8 C4H10 C5H12 N2 CO2 

Mixture 1 98.2 0.66 0.01 - - 0.91 0.22 

Mixture 2 74.9 9.7 8.6 4.8 2.0 - - 

Mixture 3 53.8 16.4 12.7 10.5 6.6 - - 
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Figure 3.2 Pressure-temperature phase diagram of the produced fluid mixtures used 

in this study. 

 

3.3. Results and Discussion 

3.3.1. Composition Redistribution of the Produced Fluids in Nanopores 

In general, the composition of the hydrocarbon mixture inside the nanopores varies 

due to the size of the pore, pressure and temperature (Stevenson et al. 1991; Jiang et al. 

2005; Rahmani and Akkutlu 2015; Bui and Akkutlu 2017; Pitakbunkate et al. 2017). 

Figure 3.3 shows the compositional variations in nanopores for Mixture 3. In Figure 3.3 

(Bottom) in comparison to the bulk fluid composition, the mole fractions of heavy 

components such as butane and pentane, increase in the hydrocarbon mixture inside the 

pore, while those of light components, such as methane and ethane, decrease. This is due 
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to nano-confinement effects, as previously explained in Figure 3.1. Similarly, Figure 3.3 

(Top) shows that the hydrocarbon mixture inside the 4.4 nm pores becomes progressively 

heavier and more viscous, when the pressure of the bulk fluid in the micro-crack is 

reduced. Since light components have relatively weaker affinity to the nanopore walls and 

have higher mobility (Falk et al. 2015), these molecules desorb from the model membrane 

easier during the depletion. We believe that the same arguments in Figure 3.3 can be 

extrapolated to mature organic materials in source rocks, such as kerogen and solid 

bitumen, with similar sizes of pores and capillaries but we should consider that the 

structural chemistry of the organic walls is more complex compared to graphite. Further 

investigation is needed to understand the compositional changes in confined fluids with 

controlled surface chemistry. 

 Note that the pore-size dependent compositional variation observed inside the 

organic nanopores is not considered during the conventional PVT calculations and the 

sorption isotherm tests. We are able to quantify this variability using equilibrium 

molecular simulations of hydrocarbons in graphite membrane in contact with a micro-

crack. Below we present an approach that utilizes the redistributed compositions of the 

dense hydrocarbon mixtures in organic nanopores for the resource assessment of source 

rocks in the presence of nano-confinement effects. 

3.3.2. Partitioning of Organic Nanopore Volume 

Firstly, the redistributed hydrocarbon molecules inside the pores are quantitatively 

analyzed for the partitioning of the total hydrocarbon pore volume. Figure 3.4 shows the  
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Figure 3.3 Compositional variation of Mixture 3 in nanopores. 

 

 

Figure 3.4 Normalized mass density of the hydrocarbon mixtures in nanopore with 

the bulk fluid density at 4,000 psi and 176 °F. 
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normalized mass density of the hydrocarbon molecules in nanopores with the 

corresponding bulk fluid density at the initial reservoir conditions of 4,000 psi and 176 °F.  

Compared to the composition of the bulk hydrocarbon mixture outside in the 

micro-crack (shown as the dotted line), the predicted density varies due to the nano-

confinement effects. The deviation from the bulk fluid behavior is larger in smaller pores. 

The crossing-point between the curve that belongs to the amount of molecules inside the 

pore, and the dash line of the bulk density indicates the cut-off pore size dp,L beyond which 

the nanopore effects disappear completely. In essence, this critical nanopore size splits the 

cumulative pore size distribution and partitions the total hydrocarbon pore volume into  

fraction of the large-pores (including both organic and inorganic pores) with bulk 

hydrocarbons, and (1-) fraction of the organic nanopores with the confined fluids, see 

Figure 3.5. Estimated dp,L value is 40 nm for all the mixtures. Several other hydrocarbon 

mixtures including volatile oils are tested, and they all have the same cut-off at given 

pressure and temperature conditions. This indicates an insensitivity to the redistributed 

fluid composition at high reservoir pressure. Note that, although 40 nm is the theoretical 

cut-off, practically the nano-confinement effects are major only in small nanopores with 

sizes less than 10 nm. 

Constant value of dp,L and the similarities in normalized fluid mass density and 

pore size relationship for the three mixtures raise questions. If the trends have similarities 

regardless of the mixture composition, is it possible to predict the mass density of a 

redistributed fluid mixture in nanopore using its equilibrium bulk mass density measured 
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Figure 3.5 Diagram showing the treatment of organic nanopores with confined 

hydrocarbons using the cumulative pore volume distribution of an organic rich shale 

sample. 

 

at the same pressure and temperature? Further, considering methane as the major 

constituent of the produced hydrocarbon fluids, is it possible to predict the mixture density 

for dry gas, wet gas and condensates as a function of the pure methane density? Being able 

to predict the mixture behavior with respect to methane has the added benefit because 

equation of state models for simple fluids such as methane including the nano-confinement 

effects exists in the literature (Vishnyakov 2001; Travalloni et al. 2010; Singh et al. 2011). 

In this study we show that the mass density of a redistributed hydrocarbon fluid mixture 

confined in nanopore with size dp can be approximated with respect to methane using the 

following empirical relationship: 
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𝜌𝑑𝑝,𝑚𝑖𝑥/𝜌𝑏𝑢𝑙𝑘,𝑚𝑖𝑥 

𝜌𝑑𝑝,𝐶𝐻4/𝜌𝑏𝑢𝑙𝑘,𝐶𝐻4
 = 𝑎 ∙ ln(𝑑𝑝) + 𝑏 (3.3a) 

𝑎(𝜌𝑏𝑢𝑙𝑘,𝑚𝑖𝑥) = −2.0072𝜌𝑏𝑢𝑙𝑘,𝑚𝑖𝑥
2 + 2.0930𝜌𝑏𝑢𝑙𝑘,𝑚𝑖𝑥 − 0.4565 (3.3b) 

𝑏(𝜌𝑏𝑢𝑙𝑘,𝑚𝑖𝑥) =   6.1421𝜌𝑏𝑢𝑙𝑘,𝑚𝑖𝑥
2 − 6.6553𝜌𝑏𝑢𝑙𝑘,𝑚𝑖𝑥 + 2.4843 (3.3c) 

In Eq. 3.3 dp is the pore size in nanometers, and ρdp,CH4/ρbulk,CH4 is the normalized mass 

density of pure methane in the nanopore with respect to the bulk density. This ratio for 

methane is shown in Figure 3.4 and tabulated in Table 3.2 for 4,000 psi and 176 °F. It can 

be also predicted using currently existing equations of state for methane such as Travalloni 

et al (2010). ρbulk,mix is the bulk fluid density of the mixture in micro-crack in g/cm3. Here, 

ρbulk,mix is obtained from GCMC. Alternatively, it can be calculated using the 

compressibility equation of state or Peng-Robinson. 

 Eq. 3.3 are derived based on 22 different fluid compositions, including Mixtures 2 

and 3. It gives the mass density values of the redistributed hydrocarbon mixtures in 

nanopores with less than 5 % error (with respect to GCMC simulation) for dry gas, wet 

gas, and condensate consisting of light hydrocarbon mixtures rich in methane through 

pentane and having molar density of 0.18 – 0.5 g/cm3. Note that the above discussion on 

the density predictions using Eq. 3.3 are strictly at the initial reservoir pressure and 

temperature conditions. It is anticipated that the equations will hold at higher pressures 

but one should be careful in their application at lower pressure due to depletion of the 

reservoir. 
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Table 3.2 Normalized density of pure methane in nanopores and ρdp,CH4 /ρbulk, CH4 ratio 

at 4,000 psi and 176 °.  

 
Pore size, 

dp, nm 
Normalized mass density 

ρdp,CH4/ρbulk,CH4 
Normalized molar density 

ρdp,mol,CH4/ρbulk,mol,CH4 

1 3.65548 3.64087 

2 1.94324 1.93546 

3 1.57235 1.56606 

4 1.40869 1.40306 

5 1.31717 1.31191 

6 1.25958 1.25455 

7 1.21883 1.21395 

8 1.19046 1.18570 

9 1.16814 1.16347 

10 1.15051 1.14591 

15 1.09921 1.09482 

20 1.07433 1.07003 

30 1.04978 1.04558 

40 1.03837 1.03422 

50 1.03045 1.02632 

  

 

3.3.3. Capillary Condensation in Organic Nanopores and Trapped Hydrocarbons 

 Next, we focus on the hydrocarbon filled organic nanopore volume. Our target is 

to use the in-situ composition in nanopores to identify a cut-off size dp,T for the separation 

of trapped hydrocarbons shown in the porosity model given in Figure 3.1.  Note that dp,T  

has a value in between zero and dp,L. For this purpose, the molar density isotherms of the 

in-situ fluids in nanopores are shown in Figure 3.6. The figure shows thermodynamically 

the density of the hydrocarbons that are left in the nanopore during the pressure depletion. 

For Mixture 1, shown top left, the amount inside the nanopore proportionally decreases 
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when the pressure is reduced. This indicates that these mixtures are proportionally 

producible as pressure is reduced. Behavior of Mixture 2 on the right is somewhat similar 

but the latter shows less sensitivity to nanopore size above 1,000 psi, and the pressure 

dependence is somewhat nonlinear. Note that Mixture 2 is much denser in nanopores. On 

the other hand, Mixture 3 at the bottom left has significantly different behavior. Firstly, 

its density in nanopores is large. Furthermore, the density is insensitive to pressure 

reduction, thus, the fluid has less compressibility. This indicates that Mixture 3 in 

nanopores is capillary-condensed. During depletion, its density shows a rapid change 

around 850 psi, which is within the phase transition region of the bulk fluid, indicating 

vaporization of the capillary condensed fluids. Phase diagram of Mixture 3 in bulk phase 

(shown in Figure 3.2) indicates that the fluid goes through the two-phase region at between 

835 psi through 1,216 psi although the liquid saturation is anticipated to be negligible. In 

nanopores, however, nano-confinement effects have changed the composition of the fluids 

and, in turn, allowed phase transition at much lower pressures. In 6 nm pore the 

vaporization pressure of the capillary-condensed Mixture 3 is as low as 500 psi.  

 Pore size-dependent phase transitions cannot be captured correctly without 

redistribution calculations. This emphasizes the impact of composition, as controlled by 

the confinement effects, on the phase change. In Figure 3.6, molar density isotherm of  

pure ethane is also presented for comparison. Molecular weight of ethane (30.1 g/mol) is 

close to that of Mixture 3 (30.5 g/mol), but its bulk density (yellow line) is slightly higher 

than that of Mixture 3. Clearly, even though the density of ethane is higher, no phase 

change is observed for ethane in nanopores. The difference in behavior between pure 
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ethane and Mixture 3 indicates that estimation of hydrocarbon in-place includes large 

uncertainties in the case of source rocks.  

 

 

Figure 3.6 Adsorption isotherm curves at 176 °F. 

 

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000

M
o

la
r 

d
e

n
s

it
y
, 

m
m

o
l/

c
m

3

Pressure, psi

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000

M
o

la
r 

d
e

n
s

it
y
, 

m
m

o
l/

c
m

3

Pressure, psi

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000

M
o

la
r 

d
e

n
s

it
y
, 

m
m

o
l/

c
m

3

Pressure, psi

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000

M
o

la
r 

d
e

n
s

it
y
/ 

m
m

o
l/

c
m

3

Pressure, psi

Mixture 1 Mixture 2 

Mixture 3 Ethane 

6nm Bulk 20nm 10nm 



 

42 

 

  

Figure 3.7 Liquid bridge formation of the redistributed hydrocarbon mixture in 4.4 

nm pores. 

 

 Capillary-condensation is strongly dependent on the redistributed fluid composition 

in nanopore. Heavier mixtures can condense in larger nanopores. The condensed phase 

maintains much higher density in nanopore. In Figure 3.7, the density contrast in between 

the capillary condensed fluid and vaporized fluid is shown in 4.4 nm pore. The molecules 

of the condensed phase maintain a 2-3 times higher density compared to the gas phase. 

The distance among the condensed ― liquid ― molecules are much lower. Consequently, 

the attractive forces exerted by the pore walls penetrate deep into the center of the pore 

and influence a larger number of fluid molecules. Capillary condensed fluids have, 

therefore, significantly reduced mobility. The vaporized molecules, on the other hand, are 

not influenced by the walls as much as the liquid molecules due to larger distances they  
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Figure 3.8 Viscosity of the redistributed hydrocarbon Mixture 3 in nanopores. 

 

maintain among each other. So, the vaporized molecules can be released easier from the 

pore. This discussion is further supported by the estimated average viscosity of the 

hydrocarbon mixtures inside the nanopores. Figure 3.8 shows the predicted viscosity of 

the hydrocarbon mixtures in small pores varies several times higher than the viscosity of 

the bulk phase of Mixture 3. This is a dramatic increase in resistance to flow. Hence, in a 

practical sense, we conclude that the condensed hydrocarbon mixtures in nanopores can 

be deemed as trapped or non-producible hydrocarbons.  

The discussion raises the need to identify a particular cut-off size for the trapped 

hydrocarbons in nanopores. This cut-off is shown in Figure 3.5 as dp,T, which help us 

identify T fraction of the total pore volume as the trapped hydrocarbon pore volume. In 
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the following section we conduct the hydrocarbon in-place and reserve calculation with 

the identified cut-off sizes and their partitioned pore volumes. We will have further 

discussions on the trapped hydrocarbons when recovery from nanopores is discussed 

below. 

3.3.4. Initial Hydrocarbon In-place Calculations in Presence of Nano-Confinement 

Effects 

 In order to show the impact of nanopores on the hydrocarbon in-place and recovery 

calculations, two organic rich shale samples with known pore-size distributions are used, 

Figure 3.9. Both samples have nanopores although Sample 1 is relatively richer in pores 

with sizes less than 10 nm (Shultz 2015). During the calculation, we use the reservoir 

parameters shown in Table 3.3. Combining with the cut-off sizes determined above, the 

predicted volume fraction ɛ of the large pores are summarized in Table 3.4. Here, the 

partitioning of the effective (non-trapped) hydrocarbon pore volume Vp into large pores 

and nanopores is considered. The hydrocarbon in place for the mixtures based on the 

conventional approach (Eq. 3.4a), and based on the composition redistribution approach 

including the nano-confinement effects (Eq. 3.4b) are as follows, respectively: 

𝐺(𝑝)   = 32.0368
∅(1 − 𝑆𝑤)

𝜌𝑏𝐵𝑔
= 1.2603 × 106 × 𝑉𝑝 × 𝑛 (scf/ton) (3.4a) 

𝐺∗(𝑝) = 1.2603 × 106 × 𝑉𝑝 

× (𝜀 × 𝑛 + ∑
𝑉%,𝑑𝑝

100
× 𝑛𝑑𝑝 

𝑑𝑝,𝐿

𝑑𝑝1

) 
(scf/ton) (3.4b) 
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Figure 3.9 Pore size distribution of two organic-rich shale samples. 

 

Table 3.3 Reservoir properties used in the calculations 

Properties Values Unit 

Bulk density, ρb 2.5 g/cm3 

Total porosity, ϕ 5 % 

Immobile water saturation, Sw 35 % 

 

In Eq. 3.4, G(p) and G*(p) are the hydrocarbon in-place at pressure p. Note that we prefer 

using “hydrocarbon” in-place rather than gas in-place in our discussion even though the 

produced fluids are gas. This is because for fluids such as Mixture 3, a portion of the fluid 

in the organic nanopores is condensed. Vp is the effective hydrocarbon pore volume 

(cm3/g) given as (1-Sw)/ρb, where ρb, Sw, ϕ, and Bg are the bulk density of the rock in 

g/cm3, water saturation, porosity and volume formation factor in ft3/scf, respectively. n is 
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the number of bulk hydrocarbon molecules stored in unit large pore volume under the 

reservoir pressure and temperature conditions (number/Å3), and ɛ is the fraction of large 

pores which have the size larger than dp,L. In addition, V%,dp and ndp are the pore volume 

percent contribution of the nanopore with size dp in the source rock, as obtained from the 

measured incremental pore volume distribution vs. pore size data (Figure 3.5), and the 

number of hydrocarbon molecules in the nanopore per unit nanopore volume (number/Å3), 

respectively. In Eq. 3.4b, the values for ndp are computed using GCMC simulation. We 

use 40 nm as dp,L. For the conventional approach, the number of molecules n is always the 

same regardless of the pore size. Appendix A gives the further details on Eq 3.4. Appendix 

B includes the predicted ndp values for Mixtures 1, 2, and 3 using molecular simulation. 

 Table 3.4 shows the initial hydrocarbon in-place calculation results for the 

redistributed hydrocarbon mixtures. The change in hydrocarbon in-place amount in the 

absence of nano-confinement effects obtained using the conventional method is given as 

an error in the table: (G-G*)/G×100.  The estimated values due to neglecting the nano-

confinement effects show the error -14 % in Sample 2 and up to -37 % in Sample 1. The 

negative error indicates that the conventional approach leads to underestimation of the 

hydrocarbon in-place. Due to its larger pores, the nano-confinement effects are less 

pronounced in Sample 2. The nano-confinement effects vary with the pore size 

distribution and the fluid composition. 
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Table 3.4 Initial hydrocarbon in-place estimated at 4,000 psi 176 °F using in-situ 

hydrocarbon composition. 

  Sample 1 Sample 2 

Model 

Fluid 

 

G ɛ 

 

G* 

 

Error ɛ 

 

G* 

 

Error 

scf/ton scf/ton % scf/ton % 

Mixture 1 110.7 0.078 151.1 -36.5 0.545 119.2 -7.7 

Mixture 2 107.9 0.078 128.7 -19.3 0.545 122.6 -13.7 

Mixture 3 114.0 0.078 127.7 -12.1 0.545 117.6 -3.1 

 
 

 

 

 

 

 

 

Figure 3.10 Cumulative initial hydrocarbon in place estimates for Sample 1 at 4,000 

psi.  
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 The result of the cumulative initial hydrocarbon in-place calculation is shown for 

Sample 1 in Figure 3.10. The filled data points include nano-confinement effects. In Eq. 

3.4b, the incremental hydrocarbon in place at a particular pore can be calculated by 

discretizing the second term in parenthesis for the pore. Note that the most influential 

nanopores on the storage of hydrocarbons are those with sizes less than 10 nm. 

 In terms of the quantities used in the conventional reservoir engineering, the 

hydrocarbons in-place can be predicted per ton of source rock using the following 

equations (Ambrose et al. 2012): 

Gas in place: 𝐺∗(𝑝) = 32.0368
∅(1 − 𝑆𝑤)

𝜌𝑏𝐵𝑔
∗

 (scf/ton) (3.8) 

where, Bg
* is the modified formation volume factor of the fluid in the presence of nanopore 

confinement effects. Since Eq. 3.4b should be equal to Eq. 3.8, Bg
* is as follows:  

𝐵𝑔
∗ =

4.22092 × 10−5

𝜀 × 𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙 + ∑
𝑉%,𝑑𝑝

100 × 𝜌𝑑𝑝,𝑚𝑜𝑙
𝑑𝑝,𝐿
𝑑𝑝1

 
(ft3/scf) (3.9) 

In the denominator in Eq. 3.9, the first term is the contribution of the large pores with the 

volume fraction ɛ, and the second term is the contribution of the nanopores with the 

volume fraction, 1- ɛ = ∑ 𝑽%,𝒅𝒑
/𝟏𝟎𝟎

𝒅𝒑,𝑳

𝒅𝒑
. Note that we have used the molar density, rather 

than the number of molecules, in Eq 3.10. ρdp,mol  is the molar density of the fluid in 

nanopore dp in units of mol/cm3
. It can be calculated using the equation of state (Eq. 3.4a) 

but the latter needs to be written in terms of moles, instead of mass: 
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𝜌𝑑𝑝,𝑚𝑜𝑙 = [𝑐 ∙ ln(𝑑𝑝) + 𝑑] ∙ (
𝜌𝑑𝑝,𝑚𝑜𝑙,𝐶𝐻4

𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙,𝐶𝐻4
) ∙ 𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙 (mol/cm3) (3.10a) 

where c and d are the new coefficients that are dependent on the molar density of the 

produced bulk fluid, 

𝑐 = −26159.41𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙
2 + 599.0111𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙 − 3.3265 (3.10b) 

𝑑 = 92405.03𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙
2 − 2121.03𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙 + 12.8323 (3.10c) 

An example calculation using Eqs. 3.8-10 is included in Appendix C. The example shows 

how to avoid molecular simulations and, instead, use the empirical correlation given by 

Eq. 3.10 during the calculations. 

3.3.5. Thermodynamic Recovery from Organic Nanopores 

 The rest of the discussion is on the molecular simulation results on the recovery. 

The approach involves the composition redistribution computations performed at various 

fluid pressure in micro-crack. Hydrocarbon recovery is estimated as per cent by comparing 

the hydrocarbon in-place at varying pressure, p to that at initial pressure pi using the 

following equation:  

Recovery(𝑝) =
𝐺∗ (𝑝𝑖) – 𝐺∗ (𝑝)

𝐺∗ (𝑝𝑖)
×  100 (3.11) 

Here, pi =4,000 psi and p takes the values of 1,000 psi, 2,000 psi and 3,000 psi. G*(p) is 

the hydrocarbon in-place including the nano-confinement effects, as given by Eq. 3.4b. 

This calculation points to a thermodynamic recovery of the redistributed hydrocarbon 
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fluids due to pressure depletion. Note that we avoid using the equation of state (Eq. 3.10), 

because molecular simulation is more accurate in predicting the G* values during the 

depletion. Figure 3.11 shows the hydrocarbons recovered from the individual pores for 

Mixture 1 (Left) and Mixture 3 (Right). The recovery curves of Mixture 1 show constant 

recovery for pores larger than 40 nm. In this region, the recovery of the bulk fluid is due 

to gas expansion. When the fluid pressure in the micro-crack is reduced to 3,000 psi, 30 

% of the bulk fluid molecules in the large pores are recovered. Voidage created in the large 

pores due to the recovery of the hydrocarbon molecules is immediately filled up by the 

expansion of the 70 % fluid molecules left behind in the large pores. Fluid expansion is 

an effective recovery mechanism and yields to up to 75 % recovery in the large pores 

when the pressure is reduced to 1,000 psi. However, the recovery curve for Mixture 1 

shows relatively less recovery from the smaller pores. The decrease in recovery with the 

pore size is a monotonous decline, which indicates that the fluid expansion becomes less 

effective as a recovery mechanism, as the pore size is reduced. The release of molecules 

from the small pores to the micro-crack is increasingly controlled by the molecular forces 

imposed by the pore walls. Hence, in these pores the dominant recovery mechanism is 

desorption. 32-71 % recovery is observed, mainly due to desorption, from the pores with 

sizes less than 10 nm, when pressure is reduced to 1,000 psi. 

The recovery behavior of Mixture 3 in Figure 3.11 is significantly different, 

however. Firstly, two separate regions are observed in the pore size distribution: a high 

recovery region which is associated with the pores that have size 40 nm or higher; and a 

distinctly low recovery region with pores that have sizes equal to 10 nm or less. (A  
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Figure 3.11 Hydrocarbons recovery from individual pores at various pressure and 

176 °F. 

 

transition region of rapid change in recovery exists in between the two regions, which will 

be ignored) In the high recovery region, the hydrocarbons recovery is independent of the 

pore size, indicating that the recovery of bulk fluids is experienced in these large pores. 

Compared to Mixture 1, in this region the recovery is much less for Mixture 3 and this is 

due to the composition effect on the bulk fluid expansion. 

The behavior of the fluid in the low recovery region requires a careful discussion.  

The fluid molecules under confinement cannot expand effectively because the fluids are 

capillary-condensed. The liquid is not a compressible fluid such as gas; the liquid in 

nanopores is expected to be even less compressible under the influence of the nanopore 

walls. In this region the recovery mechanism is desorption of the fluid molecules. 

Desorption is not an effective recovery mechanism for the capillary-condensed fluids 

since only a small fraction of the fluid consisting of the lighter components can be 

released. Consequently, the recovery values observed are low and typically less than 20 
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% in this region. In Figure 3.11b, clearly all the pores with sizes 10 nm and less have 80 

% trapped hydrocarbons when the pressure is reduced to 1,000 psi. Note that in these pores 

the trapped hydrocarbon amount is not 100 %. This is due to desorption. Although 

hydrocarbon molecules may not be transported as a bulk fluid, the lighter molecules could 

be released from the pores. 

According to Figure 3.11 the trapped hydrocarbon cut-off is identified as 10 nm. 

It is worth mentioning that the observed trapping of the hydrocarbons in the low recovery 

region is different than the physical isolation of the hydrocarbons due to lack of pathways. 

During the generation of hydrocarbons in the source rock, the fluid in kerogen may not 

find a crack or channel or some interconnected pore network and, hence, it is physically 

trapped. Here, in our case the fluid residing in kerogen is in hydraulic communication with 

the outside through the micro-crack. Hence, it is important to differentiate that the trapping 

we observe is not due to physical isolation but due to amplified fluid-wall interactions 

when the multi-component fluid becomes heavier and capillary-condensed. 

In summary, depending on the type of the produced fluid mixture and the pore size 

distribution, significant differences may exist in thermodynamic recovery. For Mixture 1, 

the cumulative recovery values from Sample 1 including the contribution of all the pores 

are 24 %, 41 % and 62 %, when the pressure is depleted to 3,000 psi, 2,000 psi and 1,000 

psi, respectively. In the case of Mixture 3, the cumulative recovery is much lower due to 

the nanopore effects. Only 23 % of hydrocarbons can be produced from Sample 1 as the 

pressure is reduced to 1,000 psi. In order to see the impact of nano-confinement effects on 

the recovery clearly, the recoveries with and without the nanopore effects are compared  
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Figure 3.12 Nanopore confinement effects on hydrocarbon mixture recovery from 

Sample 1. 

 

Table 3.5 Initial hydrocarbon in-place estimated at 4,000 psi 176 °F considering 

trapped hydrocarbons in nanopores for Mixture 3.  

Sample 

dp,T ɛT G* Error 

nm % scf/ton % 

1 10 80.6 22.5 80.3 

2 10 24.4 86.4 24.2 

 

 

in Figure 3.12. Firstly, regardless of nanopore effects, Mixture 3 (wet gas) shows less 

recovery than Mixture 1 (dry gas), which are shown in red and green lines, respectively. 
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The difference in recovery of the two mixtures becomes more pronounced as pressure 

drops further. When the nanopore effects are considered, the recovery is reduced for both 

mixtures (shown in yellow and navy). The nanopore effects become more pronounced at 

lower pressure. 

The volumetric calculations for hydrocarbon in-place shown in Table 3.4 do not 

include the trapped hydrocarbons so that the confinement effects can be identified on the 

producible fluids. In Table 3.5 the impact of trapped hydrocarbons on the hydrocarbon in-

place estimation is shown. Clearly, more than 80 % of the Sample 1 effective pore volume 

are filled with capillary-condensed trapped hydrocarbons that belong to Mixture 3. Note 

that the presented hydrocarbon in-place and recovery calculations are based on 

thermodynamic equilibrium molecular simulations which includes isothermal expansion 

and desorption of the hydrocarbon molecules. The recovery of the fluids at the reservoir 

scale will be further influenced by the resistances of the geological flow paths, including 

pore geometry, pore network connectivity and tortuosity (Akkutlu and Fathi 2012; Feng 

and Akkutlu 2015). Depending on the recombined produced fluid composition, trapped 

and mobile hydrocarbon volumes in the formation could vary significantly. 

3.4. Conclusions 

 Any production consideration from source rocks should include a discussion on 

the compositional nature of in-situ hydrocarbon fluids and its connection to the rock 

matrix. This connection becomes crucial in the presence of organic nanopores in high 

organic content rocks. Using model organic nanopores in equilibrium with a micro-crack 

holding bulk hydrocarbon fluid under typical reservoir conditions as the system under 
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investigation, this article demonstrates that the fluid composition varies in organic 

nanopores as a function of the pore size, when the produced fluid composition is re-

distributed into the nanopores. We proposed a new compositional equation of state for the 

in-situ fluids including the nanopore confinement effects and showed that the hydrocarbon 

mixture density can be predicted in terms of the density of methane, the main constituent 

of the reservoir fluids such as dry gas, wet gas, and condensate. The composition effect of 

hydrocarbon mixtures then appears as a non-linear (logarithmic) deviation from the pure 

methane behavior under confinement. The error in using the proposed compositional 

equation of state is less than 5 % at high initial reservoir pressure but grows significantly 

during the pressure depletion and production. The latter indicates that the pore size 

dependence of composition and the impact of the nano-confinement change during 

production. We studied the nature of the fluid and its distribution in the matrix under the 

initial reservoir conditions but the evolution of the nano-confinement during production is 

not understood. Further research is needed to develop correlations to predict the effect of 

nano-confinement on the fluid composition during the depletion. Forecasting of 

production including the nano-confinement effects can be done computationally only by 

measuring the produced fluid composition periodically and repeating the re-distribution 

calculations using the methodology presented in this work. The production related field 

studies can also shed light into this fundamental issue. 

 Fluid mixtures in nanopores are heavier, i.e., they maintain larger apparent molecular 

weight. This is a consequence of the confinement effects occurring in small nanopores 

with sizes less than 10 nm. (The effects persist up to 40 nm but they are not significant.) 
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The most significant impact of this observation is that the fluid under confinement 

experiences modified physical properties. The fluid density and viscosity increase, the 

estimated mean free path length and transport coefficient decrease. The fluid sustains high 

density during pressure depletion indicating that vaporization of the capillary condensed 

fluids is not likely to occur in nanopores, when we consider typical pressure profile 

observed in the reservoir near the hydraulic fractures. 

 The recovery of fluids in large pores are due to fluid expansion. But the 

thermodynamic recovery calculations in this article show that nano-confinement does not 

allow efficient expansion of the fluids and recovery becomes a slave of the hydrocarbon 

molecules desorption, i.e., the release of the lighter portion of the mixture from the walls 

during pressure depletion. Unfortunately, fluid desorption in nanopores is not as efficient 

a mechanism as expansion in large pores. Consequently, the fluids under significant nano-

confinement effects can be practically considered trapped. Furthermore, because 

desorption is controlled by the molecular interaction forces between the wall and fluid, the 

chemistry of the wall surfaces as well as the fluid composition are the primary controls on 

the recovery, not the mobility of fluid. Dilution of the mixture in the pores using a solvent 

such as ethane, liquefied petroleum gas, or CO2 could potentially improve the recovery 

from these pores.  
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4. CO2-STRIPPING OF KEROGEN CONDENSATES IN SOURCE ROCKS2 

 

Much work has been done targeting hydrocarbon fluids in organic materials of 

source rocks such as kerogen and bitumen. These studies were, however, limited in scope 

to simple fluids confined in nanopores and ignored multi-component effects. Recent 

studies using hydrocarbon mixtures revealed that compositional variation caused by 

selective adsorption and nano-confinement significantly alters phase equilibrium 

properties of the fluids. One important consequence of this behavior is capillary 

condensation and trapping of hydrocarbons in organic nanopores. Pressure depletion 

produces lighter components, which make up a small fraction of the in-situ fluid. An 

equilibrium molecular simulation of hydrocarbon mixtures is carried out to show the 

impact of CO2 injection on the hydrocarbon recovery from organic nanopores. CO2 

molecules introduced into the nanopore lead to exchange of molecules and a shift in the 

phase equilibrium properties of the confined fluid. This exchange has a stripping effect 

and in turn enhances the hydrocarbon recovery. The CO2 injection, however, is not 

effective for heavy hydrocarbons as much as for light components in the mixture. Those 

large molecules left behind after CO2 injection mainly make up the residual (trapped) 

hydrocarbon amount. High injection pressure leads to significant increase in recovery 

from the organic nanopores but not critical for the recovery of the bulk fluid in large pores. 

                                                 
2This chapter is from SPE-190821-PA “CO2-Stripping of Kerogen Condensates in Source Rocks” written 

by Seunghwan Baek and I. Yucel Akkutlu. It is reprinted here with permission of SPE J., whose permission 

is required for further use. 



 

58 

 

Diffusion of CO2 into nanopores and the exchange of the molecules are the primary drives 

that promote the recovery, whereas pressure depletion is not effective on the recovery. 

The results for N2 are also presented for comparison. 

4.1. Preliminaries 

Resource shale and other source rock formations such as mudstone, siltstone and 

carbonates have significant amounts of organic material which makes up a complex multi-

scale pore structure that not only consists of fractures and micro-cracks but also 

nanometer-size organic pores (Loucks et al. 2012). In particular, as a solid insoluble 

organic material, kerogen has received much interest in the literature due to its 

contribution to the storage of hydrocarbons (Javadpour et al. 2007; Kang et al. 2011; 

Ambrose et al. 2012; Bousige et al. 2016). The amount of organic matter is directly 

correlated to the amount of hydrocarbons stored in-place. However, large uncertainties 

exist during the assessment of resource shales due to added complexities associated with 

chemical and physical properties of the organic matter such as solid chemistry, maturity, 

pore size distribution, porosity, tortuousity, and moisture content (Weniger et al. 2010; 

Loucks et al. 2012; Gasparik et al. 2012; Zhang et al. 2012).  

One important feature of kerogen in source rocks is that the pore scale within 

kerogen spans from a few angstroms to hundreds of nanometer range (Ambrose et al. 

2012; Clarkson et al. 2013). The low end of the pore size distribution is regarded as 

responsible for the ultra-low permeability of source rocks. At this scale, conventional 

Darcy’s law breaks down and molecular diffusion plays a critical role in mass transfer, 

which is influenced by the adsorption of the fluid hydrocarbons (Javadpour et al. 2007; 
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Bousige et al. 2016; Olorode et al. 2017a). Strong fluid-solid interactions inside the 

kerogen pore network makes the understanding of the fluid storage and transport quite 

challenging. This is especially the case when multi-component fluids are involved.  

The hydrocarbon fluids in organic nanopores can have significantly varying 

composition. (Stevenson et al. 1991; Arri et al. 1992; Clarkson and Bustin 2000; Hartman 

et al. 2011). Recently, Bui and Akkutlu (2017) used thermodynamic equilibrium 

computations and predicted in-situ fluid composition and properties in kerogen nanopores 

using the composition of the produced fluids. Their composition re-distribution approach 

showed that nano-scale pore confinement effects lead to significant variations in the 

composition of the fluid inside the nanopores compared to that of the produced bulk fluid.  

Baek and Akkutlu (2019a) recently expanded the re-distribution computations to 

different produced fluids, and their observation was in agreement with literature (Jiang et 

al. 2005; Pitakbunkate et al. 2017; Wu et al. 2017). They argued that the composition 

effect becomes more pronounced during the production and pressure depletion. Baek and 

Akkutlu (2019a) showed the impacts of the compositional variation in kerogen on initial 

gas in-place estimation and pressure depletion production in shale gas reservoirs. Clearly, 

the nanopore does not hold the initial composition during depletion. Note significant 

increase observed in relative concentration of n-butane and n-pentane during the depletion. 

There is an increase in the absolute number of the heavy components under the influence 

of pressure drop while the light components are released from the pore. This release is 

mainly controlled by the molecular forces acting on the fluid in nanopore, and by the  
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Figure 4.1 Hydrocarbon recovery from model kerogen nanopores during pressure 

depletion from 4,000 psi at 176 °F. 

 

energy difference between the nanopore and the nearby micro-crack holding the bulk 

phase fluid. 

Figure 4.1 shows the computed percent recovery from the individual nanopores 

during the depletion. The recovery experiences a 40 nm cut-off pore size above which the 

release of hydrocarbons is mainly due to gas expansion. For those pores above 40 nm, the 

expansion of the gas leads to recovery up to 50 % during the depletion. This is similar 

behavior in recovery of the natural gases from conventional resources. Below 40 nm, 

however, the recovery is controlled by desorption of the fluid molecules from the 

nanopores. In these pores, fluid desorption is not as effective a recovery mechanism as the  
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Figure 4.2 Molar density isotherm of the hydrocarbon fluid mixture in nanopores at 

176 °F. 

 

fluid expansion, however. Consequently, with the decrease in pore size from 40 nm to 20 

nm, a sharp drop is observed in recovery. The recovery further decreases as the pore size  

is reduced below 10 nm. For this hydrocarbon mixture and several other produced fluid 

compositions, the recovery of the redistributed hydrocarbons from kerogen nanopores is 

typically below 20 %. 

In order to gain physical insight into this peculiar behavior in recovery from 

kerogen nanopores, Figure 4.2 shows the density-pressure diagram of the in-situ 

hydrocarbon mixture in nanopores at a constant temperature. Each isotherm shows the 

average (molar) density change of a confined fluid in a particular nanopore. The results 
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are compared to the bulk fluid behavior in the micro-crack, which was predicted using 

Peng-Robinson equation of state (Peng and Robinson 1976). In the isotherm, we look for 

pressure regions where a sharp change in density is recorded, indicating a phase change 

such as capillary condensation or vaporization of the hydrocarbon mixture (Gelb et al. 

1999). Clearly, the bulk fluid does not go through any phase change over the pressure 

domain investigated, and shows the expansion behavior of the conventional dry gas 

reservoirs. The nano-confined fluids, on the other hand, show vaporization of the 

capillary-condensed fluid at 100 psi, 350 psi and 525 psi in 2 nm, 4 nm and 6 nm pore, 

respectively, during the pressure depletion. In essence, the isotherms show that the low 

recoveries estimated in Figure 4.1 were low because the fluid mixture was capillary-

condensed in the pore, and that the pressure reduction needed to vaporize the in-situ 

hydrocarbons was much less than the applied pressure. This indicates a limited ability of 

pressure depletion to recover the confined fluids from organic nanopores. 

The computational results on the occurrences of hydrocarbon fluids in kerogen 

under typical reservoir conditions and during the depletion raise serious questions on the 

ultimate recoveries from organic-rich source rocks. How can one improve desorption of 

hydrocarbons from kerogen? The reduction of flowing bottomhole pressure to values less 

than 500 psi could be impractical in some of the highly over-pressured source rocks. 

Besides, the depletion of the source rock reservoirs to such low pressure values could take 

long production times. One approach to the problem could be to inject inexpensive lean 

gases such as carbon dioxide (CO2), nitrogen (N2) or their mixtures (flue gas) into the 

formation once sufficient depletion near the hydraulic fractures is achieved for injection. 
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The injected gas molecules will penetrate into the formation and reach into the natural 

fractures and micro-cracks, where molecular-level interactions with the residual 

hydrocarbons will take place. If the injected fluid is not miscible with the residual 

hydrocarbons, then the injected fluid only plays the role of a displacing fluid under the 

influence of local capillarity. If, however, the injected fluid is miscible, then it dissolves 

and diffuses into the residual oil phase.  

A large body of literature exists on the impact of miscible gas injection operations 

on the enhanced oil recovery. It is widely accepted that microscopic displacement 

efficiency of lean gases is high. Super-critical CO2, in particular, shows gas-like mass 

transfer and liquid-like solvating characteristics (Hawthorne 1990) and maintains a 

dynamic miscibility with the residual oil (Monin et al. 1987; Jarrell et al. 2002). When 

miscible, CO2 molecules dissolve and diffuse into the residual hydrocarbon mixture 

relatively easily. The latter experiences a drastic change in its density (i.e., swelling), and 

its viscosity decreases when it is diluted with the injected fluid molecules (Monin et al. 

1987; Monger et al. 1991). Changes in the thermos-physical properties of the residual 

hydrocarbon mixture and swelling cause mobilization of the residual oil. So, injection of 

CO2 molecules is expected to increase the recovery from these relatively easily accessible 

fractures and micro-cracks in the source rock. However, the effectiveness of the injected 

gas molecules is still questionable when they target the confined hydrocarbons within 

strongly hydrophobic nanoporous organic matter such as kerogen and bitumen. 

Based on recent work by Baek and Akkutlu et al. (2019a), using Figures 4.1 and 

4.2, so far we have found out that the recovery from kerogen nanopores is mainly due to 



 

64 

 

desorption of the hydrocarbon molecules. Hence, the mobilization of the diluted 

hydrocarbon-CO2 mixture in these small pores should be considered in the presence of 

strong fluid-wall interactions. This is, however, a complex question that has not been 

addressed yet. At best, one would anticipate that the CO2 molecules could act as the light 

components in the mixture. This could help dilute and vaporize the hydrocarbon mixtures 

in nanopores at an injection pressure much higher than the pressure of vaporization. Let 

us remind ourselves that CO2 has unique properties resulting from its intra-molecular 

quadruple charges, which are not only effective in replacing the hydrocarbon molecules 

but also impose enhanced storability in nanopores (Nuttall et al. 2005; Kang et al. 2011; 

Heller and Zoback 2014; Olorode et al. 2017b). Selective adsorption of CO2 in kerogen 

pores is weaker than some of those of heavy molecules in the mixture such as butane and 

pentane while stronger than those of light components. So, understanding the relation 

between competitive adsorption of hydrocarbons and CO2 in the organic nanopores could 

be critical to recovery. To date, the confined multi-component fluids have rarely been 

explored at the microscopic scale, especially for the application of CO2 injection into 

source rocks.  

In this work, the stripping effects of CO2 gas are quantified under typical source 

rock conditions, and remaining hydrocarbons in the nanostructure are measured. Further, 

the hydrocarbon fluids produced from the nanoporous kerogen in the presence of injected 

gas molecules are analyzed and compared with the fluids recovered by the pressure 

depletion only. This investigation provides a fundamental understanding of the 

microscopic behavior of the multi-component fluids confined in nano-structures and gives  
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Table 4.1 Mole fraction and molecular weight of the components used in the bulk 

phase hydrocarbon fluid. 

Mixture 
Mole fraction in bulk phase, % MW, 

g/mol CO2 CH4 C2H6 C3H8 n-C4H10 n-C5H12 

1 0.0 53.8 16.4 12.7 10.5 6.6 30.0 

2 10.0 48.4 14.8 11.4 9.4 5.9 31.4 

3 30.0 37.6 11.4 8.9 7.4 4.7 34.3 

4 50.0 26.9 8.1 6.3 5.3 3.4 37.1 

5 70.0 16.1 4.9 3.8 3.2 2.0 39.8 

6 90.0 5.3 1.6 1.3 1.0 0.7 42.6 

 

 

new insights into lean gas-assisted recovery of subsurface condensates and oil in source 

rocks. 

4.2. Fluid Model 

The initial fluid mixture has the produced fluid composition from the Middle 

Bakken formation in Williston basin, USA (Mixture 1 in Table 4.1) (Zhang et al. 2013). 

It has a specific gravity, 1.28. The fluid mixture consists of five hydrocarbon components: 

methane (CH4), ethane (C2H6), propane (C3H8), n-butane (n-C4H10), and n-pentane (n- 

C5H12). The liquid saturation at given temperature is negligible and, hence, this fluid 

represents a wet gas. Injected CO2 molecules are added into the bulk phase while the total 

number of molecules of hydrocarbons in the bulk phase is kept constant. Thus, the mole 

fraction of each component changes as the injected gas takes up 10 %, 30 %, 50 %, 70 % 

and 90 % of the total number of molecules in the bulk phase. This study simulates a 

particular situation when the injected gas molecules diffuse into the bulk phase outside of 

the nanopores in places such as fractures and micro-cracks. Hence, we consider that the  
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Figure 4.3 Phase diagram of hydrocarbon-CO2 mixtures. 

 

injected molecules are first-contact miscible with the bulk hydrocarbons for all the 

conditions considered. For hydrocarbons in nanopores, measurement of minimum 

miscibility pressure is a challenging task, and the current fluid models cannot capture it 

accurately because of the compositional variations inside the pores. We, therefore, give a 

variety of simulation data at a wide range of pressure conditions. The detailed 

compositions of the fluid mixtures are given in Table 4.1, and their pressure-temperature 

phase diagrams are shown in Figure 4.3. The specific mole fraction of the injected 

molecules would be used during the discussion. Note that in the absence of the injection 

fluid, with pressure depletion, these hydrocarbon mixtures are produced from the 

nanopores only in limited amounts due to nanopore confinement effects (Baek and 

Akkutlu 2019a).  
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4.3. Results and Discussion 

Recovery of hydrocarbons from the model kerogen nanopores is measured as a 

function of the injected CO2 concentration in the bulk phase in Figure 4.4. The x-axis in 

Figure 4.4 indicates the mole fraction x of injected CO2 in the bulk fluid phase. The y-

intercept at x =0 % represents the recovery in the absence of CO2 with pressure depletion 

only, i.e., the primary recovery factor. The other data points on the plots with CO2 

concentration greater than 0 % indicate the recovery factor predicted in the presence of 

both the pressure depletion and the injected fluid concentration effects. For example, at 

2,500 psi, firstly the pressure is depleted from 4,000 psi to 2,500 psi as an indication of 

the primary recovery, and then CO2 at various concentration values is introduced into the 

bulk phase in the micro-crack at 2,500 psi. Interpolation could be used for a pressure 

different than the values shown. Figure 4.4 includes extrapolated values to predict the 

ultimate recovery and measure the non-recoverable hydrocarbon amount when the bulk 

fluid is fully filled up with the injection gas (i.e., x =100 %), which is the case 

corresponding to an infinite number of pore volumes of the injected fluid. The increment 

beyond 90 % of CO2 mole fraction increases the molecular simulation cost significantly. 

We use both linear and a quadratic extrapolation. Both types of fitting give fairly 

reasonable accuracy. For clarity, only the fitting lines of a quadratic equation are included 

in Figure 4.4. Note that the model kerogen nanopores still hold hydrocarbon molecules 

when the injected CO2 concentration in the bulk phase is extrapolated to 100 %. In this 

study, the residual hydrocarbon (RHC) is defined as the ratio of the amount of hydrocarbons  
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Figure 4.4 Enhanced recovery with CO2 injection. 

 

remained in the nanopore following the enhanced recovery using 100 % CO2 to the amount 

of hydrocarbons stored in the pore at the initial reservoir conditions. 

The primary recovery in the absence of injection gas, i.e., the data points on the y-

axis, is less than 20 % for a reservoir pressure value as low as 1,500 psi for all the pores 

analyzed. It indicates an optimistic thermodynamic recovery value, because infinite time 

is considered to reach equilibrium state, hence the resistances associated with the fluid 

transport do not influence the recovery. When the pressure drops to 500 psi, a jump to 50 

% recovery is observed in 6 nm pore due to the vaporization of the hydrocarbons in the 

pore. Indeed, the impact of vaporization on the recovery is large because desorption of gas 

molecules are easier than the liquid molecules. In 2 nm and 4 nm pores, however, the 

recovery does not exceed 25 % at the same pressure because the depletion is not large 

enough to vaporize the fluids in these smaller pores. This indicates that the primary 

production stage is not effective in recovering hydrocarbons from pores with sizes less 
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than 4 nm where fluids are capillary condensed and fluid molecules release are controlled 

by the nanopore walls. 

The injection of CO2 into the system improves the recovery from all the pores 

investigated. The improvement in recovery is closely correlated to the amount of CO2 

molecules. As more CO2 is introduced into the bulk fluid, it is more likely for the CO2 

molecules to diffuse into the nanopores and extract more of the hydrocarbon molecules in 

nanopores. This indicates the importance of molecular diffusion as the mechanism that 

allows penetration of the injected gases from the fractures and micro-cracks into the small 

kerogen pores. In the case of CO2 at 500 psi, the changes in pore size result in significant 

differences in recovery. In particular, for 6 nm pore, the low recovery efficiency indicated 

by a smaller slope is caused by the high primary recovery with pressure depletion (large 

value on the y-intercept). The fluid in 6 nm pore goes through vaporization at 525 psi 

(Figure 4.3), and the phase change leads to a sudden increase in recovery. Consequently, 

this high primary recovery leaves only a small margin for further enhancement by CO2 

injection. 

Furthermore, lower injection pressure (or larger pressure depletion) normally 

brings out higher recovery in 4 nm and 6 nm, and the difference in recovery becomes 

smaller as the mole fraction of CO2 in the bulk phase is increased. Finally, the different 

injection pressure values reach almost the same recovery at 100 % CO2. Thus, in the case 

when there is no phase change due to pressure depletion, the impact of injection pressure 

on the hydrocarbon recovery becomes negligible for 4 nm and 6 nm pores, as the bulk 

phase is filled up with the injection fluid. The average recovery (standard deviation) at  
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Table 4.2 Recovery enhancement comparison for CO2 injection.  

Pressure 

psi 

2 nm pore 4 nm pore 6 nm pore 

RF1, % RF 2, % η RF1, % RF2, % η RF1, % RF2, % η 

500 22.5 63.3 2.8 26.0 95.3 3.7 48.9 90.1 1.8 

1,500 14.0 79.3 5.7 16.0 92.4 5.8 17.5 95.9 5.5 

2,500 6.2 88.6 14.3 8.7 94.6 10.9 11.1 95.3 8.6 

3,500 1.0 91.8 91.8 2.7 94.2 34.9 2.9 95.5 32.9 

 

 

100 % is 94.1 % (1.24) for 4 nm and 94.3 % (2.52) for 6 nm, respectively. (The details are 

included in Table 4.2) This observation, however, is not valid when the pore size is 

reduced to 2 nm. For 2 nm pore, significantly different recovery is observed when the 

pressure is varied. When the mole fraction of CO2 in the bulk phase fluid is low, the 

pressure depletion gives relatively high recovery. However, as the CO2 occupies more 

than half of the bulk phase (x > 50 %), the higher injection pressure produces more 

hydrocarbons from the 2 nm pore. This indicates that the CO2 injection at high pressure 

(small pressure depletion) can retrieve more hydrocarbons from 2 nm pore than that 

produced with large pressure depletion. The reason for this unique trend to those of the 

mesopores at 4 nm and 6 nm comes from both the compositional variance in nanopores 

and varying stripping ability of CO2 over individual components. Previous studies 

revealed that as the pressure is reduced, 2 nm pore is preferentially filled up with more of 

heavy components such as n-butane and n-pentane, which are relatively more difficult to 

be extracted by CO2. The recovery is limited even when large pressure drop is applied. At 
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higher pressure, mostly light components such as methane and ethane reside in 2 nm pore 

of the organic matter due to size entropic effect (Lu et al. 2003; Jiang et al. 2005; Bui and 

Akkutlu 2017; Wu et al. 2017), and they are producible by the introduced CO2. That leads 

to higher recovery than that with the pressure depletion. Therefore, CO2 injection can 

achieve higher recovery at high pressure (with small pressure depletion) when there are 

relatively more of the light components. Note that the enhanced recovery at high pressure 

is not caused by the solvating characteristics of supercritical CO2 but by difference in a 

level of adsorption/desorption among components originating from the results of the 

energy balance in nanopores.  

The predicted enhanced recovery of the condensate resulting purely from the gas 

injection process is given in Table 3.3. Here, RF1 corresponds to the recovery factor driven 

by pressure depletion only at x = 0 % in Figure 4.4. RF2 includes the recovery from both 

pressure depletion and gas injection at x = 100 % in Figure 4.4 and is obtained from 

extrapolation to 100 % injected gas using the quadratic line. The recovery enhancement 

(η) is calculated as RF2/RF1 ratio and indicates the improvement in recovery purely due to 

gas injection. The table shows that high-pressure injection significantly enhances 

recovery, and this observation is regardless of the pore size.  

RHC indicates remaining (or trapped) hydrocarbons at x =100 %, when the injection 

gas entirely fills up the bulk phase fluid as mentioned above. This case is difficult to 

replicate in the field because of the ultra-low permeability of the source rocks. Molar  

density in a particular pore at 4,000 psi is used as the reference to calculate RHC. The value 

is calculated from the ultimate recovery in Figure 4.4 using the following expression: 
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𝑅𝐻𝐶 = 1 −  
Ultimate Recovery(𝑃,𝐷𝑝)

100
. (4.2) 

The ultimate recovery using 100 % gas injection is estimated using the 

extrapolated value of the quadratic equation in Figure 4.4. The calculated RHC values are 

shown in Figure 4.5. Firstly, distinct difference exists on the estimated residual amounts. 

RHC in 2 nm pore is strongly pressure-dependent, and higher CO2 injecting pressure leaves 

less hydrocarbon molecules behind. According to the results, injecting supercritical CO2 

at high pressure can be preferred in order to maximize the ultimate recovery from the 2 

nm pore. For 4 nm and 6 nm pores, CO2 injection is somewhat insensitive to the injecting 

pressure and RHC remains below 10 % over the range of pressure. Especially, when CO2 

is injected at 3,500 psi, similar RHC is obtained from all investigated pores. 

The stripping effect of the injected CO2 molecules is studied using the molar 

density profile inside the nanopores. The density distribution at 1,500 psi is plotted for 4 

nm pore at various bulk mole fractions of CO2 (0, 10, 50 and 90 %) in Figure 4.6. The 

pore size is defined by taking the center of mass (COM) of the carbon atoms on the pore 

walls as reference. Also, the density profile calculation counts the location of COM of 

hydrocarbon molecules. Hydrocarbon molecules cannot access right next to COM of the 

carbon wall due to repulsive forces. Then, the effective pore size can be smaller than the 

defined pore size. We used 0.1 Å wide bins to construct the continuous density profiles 

across the half-length of the pore. The density at the center of the pores is omitted. The 

results for hydrocarbons are provided only for methane and n-pentane. Ethane and propane 

show similar behavior to that of CH4 while n-butane shows behavior similar to n-pentane. 
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Figure 4.5 Residual hydrocarbon (RHC) in nanopores. 

 

Firstly, 10 % CO2 is not sufficient to strip off the hydrocarbon molecules from nanopore, 

but once the concentration of the introduced CO2 has reached 50 %, CO2 molecules form 

the adsorption layer and replace the hydrocarbons in the pores. Although methane has 

relatively weaker affinity to the wall compared to CO2, as part of their effort to reach 

equilibrium, they fill in small gaps among large hydrocarbons and CO2 molecules. Since 

the COM is used for molar density profile calculation, the molar density profile of the n-

pentane starts further away from the wall compared to that of methane. This also leads to 

a formation of the wide adsorption layer compared to those of the pure component system. 

An investigation on angular orientation in the adsorption layer (not shown) shows that 

molecules are oriented having angles between 25°- 40° against the pore surface (x-y plane) 

irrespective of the species. This supports the existence of a wider adsorption layer. At 90  
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Figure 4.6 Molar density profiles in 4 nm pore at 1,500 psi with various bulk phase 

mole fraction of CO2.  

 

% CO2, when many of the hydrocarbons are exchanged with CO2 molecules, CO2 fills up 

the space right next to the wall where the hydrocarbons used to occupy. The remaining 

heavy hydrocarbon molecules, however, prevent the smooth first adsorption layer of CO2  

from being formed. This leads to the formation of an unusual tip-splitting in the first 

adsorption layer for CO2. This tip-splitting is not observed in the system having light 

hydrocarbons only. This will be discussed further below. In Figures 4.6b and 8c, 

hydrocarbon molecules are exchanged by the CO2 molecules over the entire pore space. 

When 90 % of the bulk phase is filled with CO2, only a miniscule amount of methane is 

left while many n-C5H12 molecules still remain in the pore, especially in the adsorption 

layer. The stronger affinity of the heavy component to the pore surface does not enable 

CO2 to strip these molecules. These trapped hydrocarbon molecules in the adsorption layer 

are responsible for the aforementioned residual hydrocarbons (RHC).  

Next, the pressure effects on RHC are analyzed in Figure 4.7. The figure contains 

the molar density profile of each component in 2 nm and 6 nm pores when the bulk mole  
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Figure 4.7 Molar density profile in nanopores with 90 % bulk mole fraction of CO2 

at 1,500 psi and 3,500 psi. 
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fraction of CO2 is 90 % at 1,500 and 3,500 psi. In Figure 4.7a, we note that as the pressure 

is increased, CO2 fills up the entire pore space and displaces more of hydrocarbons, 

especially the region right next to the wall. Clearly, the tip-splitting in the density stems 

from the presence of the large hydrocarbon components in the mixture considering the 

density change of methane is negligible with the pressure change. For methane, the pore 

size and pressure have no significant impact on RHC because recoverable methane is 

already displaced with the injected CO2. For n-pentane, in contrast, RHC is reduced as the 

pore size or pressure increases. In general, the molar density in the adsorption layer 

increases with decreasing pore size due to nano-confinement. This was observed 

previously by Liu and Wilcox (2012). However, in Figures 4.7a and 9b, the CO2 density 

at 6 nm is higher than that at 2 nm. This is attributed to the remaining n-pentane. Due to 

the steric effect of the heavy and large components, relatively small change in the density 

of pentane causes a large increase in the density of CO2.  

In this study, CO2 injection is introduced because hydrocarbon fluids go through 

condensation within the nanopores of interest, and the nanopore allows only a small 

recovery of the condensed fluid. Now, we investigate how the injected CO2 affects the 

density-pressure phase diagrams. Molar density isotherms with different levels of CO2 

injection at 176 °F are provided for 4 nm pore in Figure 4.8. These isotherms are often 

used to determine the stored gas capacity and the phase change. Figure 4.8a indicates the 

total molar density isotherm taking into account all the molecules in nanopores, including 

the in-situ hydrocarbons and the penetrating CO2 molecules. Figure 4.8b considers only 

the hydrocarbon molecules.  
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Figure 4.8 Molar density isotherm in 4 nm pore at 176 °F. 

 

In Figure 4.8a, the pressure where the slope of the isotherms drastically changes 

as an indication of vaporization is shifted to a higher pressure with increasing CO2 fraction. 

Specifically, the drastic slope change is observed at 400 psi and 800 psi at 10 % and 50 % 

CO2, respectively. And finally, the discontinuity in slope disappears when the bulk mole 

fraction of CO2 reaches 90%, and the total molar density isotherms become smoother for 

all the pore sizes. These trends indicate shifts in vaporization pressure due to the presence 

of CO2 molecules in the pore. The smooth isotherms indicate the exchange of molecules 

between the bulk phase and the nanopore more sensitive to pressure changes. In addition, 

as 90% CO2 is introduced, the nanopore holds more of molecules inside the pore at higher 

pressure. For instance, at 3,500 psi and 90 % CO2, 4 nm pore shows 38.1 % increase in 

total molar density with respect to that of no CO2 case. This is because the relatively 

middle size CO2 displaces larger molecules such as n-butane and n-pentane and thus, 
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denser packing of molecules is possible. The quadruple charges of CO2 also contribute to 

this, and 15 % less molar density is observed without considering the intra-molecular 

electrostatic forces. 

Next, the molar density of hydrocarbons in Figure 4.8b is obtained by subtracting 

the CO2 portion from the total molar density. This isotherm shows the sensitivity of the 

hydrocarbon release on the pressure change. Injected CO2 leads to development of a broad 

range of pressure for the stabilized density after the shifted pressure conditions where the 

sharp changes in slope occur. This stabilized value in the isotherms indicates that the 

pressure depletion has no thermodynamic impact on the hydrocarbon recovery during 

CO2 injection at normal reservoir pressure above 1,000 psi. For instance, as CO2 is 

introduced at 3,500 psi, the molar density of hydrocarbons in Figure 4.8b decreases, and 

the difference in density between Figure 4.8a and 4.8b increases indicating that injected 

CO2 displaces hydrocarbons in the nanopore. Then, as pressure is decreased at 90 % CO2 

(Figure 4.8b), the consistent molar density is observed and continues until it meets the 

drastic change at low pressure. Note that during cyclic CO2 injection, pressure depletion 

and production are processed after CO2 injection. The results imply that CO2 molecules 

introduced into the nanopores during soaking periods significantly increase the 

hydrocarbon production from the nanopore. Also, it can be inferred that only the injected 

CO2 molecules, not the hydrocarbons, are released from the pore during the pressure 

depletion process following the soaking. This is observed in other sizes of pores as well.  

The specific gravity of the fluids produced from the 4 nm pore is analyzed in Figure 

4.9. The producible hydrocarbon amounts in the source rocks were quantified using the  
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Figure 4.9 Specific gravity of the produced fluids from 4 nm pore. 

 

specific shale sample data in our previous work (Akkutlu et al. 2017).  Here, we only 

concentrate on the qualitative aspect of the produced fluids. Figure 4.9a shows the specific 

gravity of the fluids produced by pressure depletion only. X-axis indicates the pressure 

depletion from 4,000 psi. The dash guideline indicates the specific gravity (1.27) of the 

mixture with no CO2. The result shows that the pressure depletion produces the lighter 

fluids from the nanopore. Once the pressure is reduced by 1,500 psi, the specific gravity 

of the produced fluid does not show any significant changes, and on average the specific 

gravity of 0.82 is observed for 4 nm pore. The kerogen nanopores obviously contribute to 

the lighter gas production as the primary recovery process proceeds. This simply cannot 

be attributed to relatively higher diffusivity of light hydrocarbons but to the energy balance 

among the molecules within nanopores. 
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Next, the impact of CO2 injection on the produced fluid specific gravity is 

investigated under constant pressure drop. The results are shown in Figure 4.9b. X-axis of 

the plot is the mole fraction of the injected CO2 in the bulk phase, and each data line is at 

fixed pressure conditions varying from 1,500 psi to 3,500 psi. Interestingly, in contrary to 

the case of the pressure depletion, CO2 injection recovers relatively heavier fluids than 

that of the bulk fluid. The specific gravity of the produced fluid increases with the amount 

of CO2 injected. Especially, at 1,500 psi, a sharp increase is observed over all pore sizes 

when the composition reaches 70 %. As discussed earlier, low amounts of CO2 are not 

sufficient to strip off the heavy components in nanopores. When the injected CO2 amount 

is sufficient to fill up more than a half of the bulk phase (> 50 %), the recovery of heavy 

components takes place, and this leads to increase in the specific gravity.  

4.4. Conclusions 

In this work, we addressed the stripping effects of CO2 to the capillary-condensed 

hydrocarbons in kerogen. The results show that CO2 injection clearly extracts more 

hydrocarbons than that produced due to pressure depletion only. Also, higher injection 

pressure leads to higher recovery. This suggests that high-pressure CO2 injection could be 

effective in the field for recovering fluids from the organic material. The high pressure 

injection could be also preferable, because depletion increases the effective stress, which 

leads to significant change in fluid pathway and decrease in the permeability the source 

rocks. Then, one critical decision in optimization of enhanced production is how early the 

injection process should start in order for the wells to maintain a significant injectivity. In 

addition, supercritical CO2 as a fracturing fluid has been highlighted (Middleton et al. 
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2015). However, it is possible that CO2-induced swelling of rocks reduces the permeability 

(de Jong et al. 2014; Espinoza et al. 2014).  

CO2 injection can shift the vaporization pressure of the capillary condensed fluids 

and increase the hydrocarbon production from the nanopores significantly. For the 

condensed fluids, however, increasing the pressure drawdown has no impact on the 

thermodynamic recovery. In addition, CO2 injection recovers heavier fluids from 

nanopores compared to the pressure depletion production.  

In this study, we focused on understanding the statistical behavior of complex 

hydrocarbon fluid mixtures stored in the organic nanopores rather than the time-

dependence of the system. The latter task is challenging and important for multi-

component fluids. Nonetheless, the present work provides new insights and a fruitful 

discussion into the lean gas injection and recovery of the capillary-condensed 

hydrocarbons based on extensive molecular simulation data. It is hoped that the work 

provides an impetus for further experimentation in the laboratory or in the field. 
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5. MOLECULAR SIMULATION INVESTIGATION OF KEROGEN OIL 

RECOVERY USING ETHANE INJECTION3 

 

Organic matter in source rocks stores oil in significantly larger volume than that 

based on its pore volume due to so-called nanopore confinement effects. However, during 

production and depletion, recovery of that oil is low. In our previous studies, we 

introduced the nano-confinement effects and explain their impact on the release of heavy 

hydrocarbon molecules. Here, we propose to control these effects and increase the oil 

recovery using lean gas injection, such as ethane. Molecular Monte Carlo simulation 

method is used for the investigation. The lean gas molecules are introduced to the 

nanopores by adjusting the bulk fluid composition and pressure to the desired values. 

Simulations are used to predict fate of in-situ and the injected molecules when the system 

is reached to equilibrium. Results show that oil in smaller nanopores is richer in heavy 

components compared to the bulk oil outside in the micro-crack. Compared to gas 

reservoirs, the impacts of the nano-confinement on in-place fluid volume is not significant. 

Recovery of the confined oil is typically below 15 % indicating that pressure depletion 

and fluid expansion is no longer an effective recovery mechanism. Ethane injection shows 

higher recovery performance than CO2 injection; it improves recovery up to 90 %, 

depending on its composition in the fracture. Ethane recovers 5-20 % higher than carbon 

dioxide in both large pores and nanopores, because ethane molecules are more effective 

                                                 
3This chapter is from SPE-195272-MS “Recovery Mechanisms for Nano-confined Oil in Source Rocks 

using Lean Gas Injection” written by Seunghwan Baek and I. Yucel Akkutlu. It is reprinted here with 

permission of SPE J., whose permission is required for further use. 
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in vaporizing the heavier molecules in the pore. In addition, ethane reduces viscosity of 

the confined oil, and its diffusion is faster than CO2. In summary, lean gas injection is 

effective in recovering the oil but its delivery to the matrix using fractures and micro-

cracks under closure stress makes injection operations challenging in the field. 

5.1. Preliminaries 

One important reservoir engineering aspect of oil and gas production from source 

rocks (such as mudstones, siltstones and carbonates) is that the formation may contain 

significant volume of organic materials. The organic materials found in source rock 

reservoirs are metamorphosed solid or semi-solid form of what originally used to be 

biomass deposited in marine environment. Biomass has gone through a series of physical 

and chemical processes of thermal maturation and petroleum fluids generation. These 

processes create a complex multi-scale pore structure contributing to the storage of 

hydrocarbons, including fractures, micro-fractures and cracks, and organic pores down to 

a few nanometers (Loucks et al. 2012). Organic pores form when fluids are generated, 

whereas the cracks and fractures form when the generated fluids could not migrate in the 

primary pore network fast enough and built up sufficient local pressure (in times 

significant over-pressure) for rock failure. 

Literature exists on the storage and transport of fluids in naturally occurring 

fractures. The challenge here is the characterization of the source rock reservoir in terms 

of its fracture frequency of occurrence, fractures’ geometry, orientation and azimuth, and 

finally the fractures’ stress-dependence under the influence of production and injection. 

New monitoring and flow simulation technologies are developed considering these 
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fractures as discrete reservoir features embedded into the matrix. The matrix, on the other 

hand, as commonly known, is too tight with low porosity and ultra-low permeability 

(Javadpour 2009; Kang et al. 2011). Laboratory measurements of source rock samples 

have stress-sensitive matrix permeability (Akkutlu and Fathi 2012; Kim et al. 2018). X-

ray CT images show the presence of fine-scale micro-fractures as the evidence of this 

sensitivity, although it is argued that some of these small-scale features are artificial, and 

they are a product of coring, cutting and desiccation (Ambrose et al. 2012). 

Beyond the complexity of the multi-scale fractures, another challenge facing the 

unconventional reservoir engineer is the presence of the organic pore volume. Ambrose et 

al. (2012) discussed pore-scale considerations on the volumetric gas in-place calculation 

for highly-mature source rocks with significant kerogen pore volume, e.g., Barnett, 

Fayettville, Marcellus. They argued that kerogen pore network has a large specific surface 

area associated with the organic nanopores, and this creates not only an additional gas 

storage in the form of sorption but, if the total pore volume of the matrix is too low, also 

creates a sorbed phase, which reduces the total pore volume available for the free gas 

phase. They argued it is especially the case for high TOC source rocks. In other words, 

although the operators may not target the sorbed (adsorbed and absorbed) gas in the 

formation for economical production rates, the sorption of methane-rich natural gas 

molecules in high TOC source rock reservoir systems needs to be carefully evaluated for 

the estimation of the free gas amount that will be produced. 

The technical challenges associated with the liquid-rich (condensate, light oil) 

source rocks appeared in the literature later due to the history of development of these 
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unconventional resources in North America. The source rock could be a massive 

formation not only with gas but also with condensate and liquid windows that change with 

depth and location, such as Eagle Ford. Or it could be a liquid-rich source rock interspersed 

with non-source rock reservoirs, as in the case of the resources in the Permian Basin. The 

presence of organics brings added complexity for these liquid-rich reservoir systems. 

Firstly, the organic material is exposed to lower temperature maturation and, hence, the 

organic pore network is not as highly-developed as the network of the mature and over-

mature natural gas window. Hence, the production of liquids from kerogen will be 

impacted by an under-developed network of organic pores.  

Both migration and production processes require transport in the organic porous 

medium, but transport for production is significantly accelerated. Secondly, the organic 

nano-pores hold diverse multi-component hydrocarbon mixtures consisting of not only the 

natural gas components such as methane and ethane but also the heavier ones. In some of 

the source rocks bitumen appears as the “transitional” organic material, which could be 

part of the solid or part of the fluid, depending on its composition, reservoir temperature 

and pressure. In the former case, bitumen adds to the organic porosity of the formation, 

whereas in the second case it takes up the organic pore space. We will first consider the 

complexities of oil storage in the organic pores under nano-confinement effects, and we 

delve into the characteristic behavior of oil during primary production and pressure 

depletion. Following the depletion, we will discuss the nature of the residual oil in the  
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Figure 5.1 Hydrocrabon recovery from model kerogen nanopores and fluid density 

isotherm.  

 

organic material and discuss how to enhance the recovery using ethane (C2H6) and 

comparing that recovery to using CO2. 

The pressure depletion effect on the recovery of hydrocarbon mixtures stored in 

model organic pores is shown in Figure 5.1a. These results have previously been obtained 

and validated using Monte Carlo molecular simulations by Baek and Akkutlu (2019a and 

2019b).  Further details of the simulation method will be given in the next page, since we 

use a similar method of computation in the presence of injected gas molecules. This is 

when we will compare the changes in results as enhancement in recovery due to the 

presence of the injectant. 

Based on the previous works by Baek and Akkutlu (2019a), during production and 

pressure depletion, the lighter end of the fluid is produced and, hence, the composition of 

the residual hydrocarbons left inside the nanopores becomes even heavier. The primary 
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recovery is due to two separate mechanisms. One of the mechanisms is heavily discussed 

in the conventional reservoir engineering as the fluid expansion mechanism (Craft and 

Hawkins 2015). The hydrocarbon molecules are removed from the pores, and the voidage 

created by the removal of the molecules is immediately filled up by the expansion of the 

fluid molecules left behind. This is a highly effective recovery mechanism for the 

conventional natural gas reservoirs and, in the case of source rocks, it is the dominant 

recovery mechanism in the large organic pores with sizes 40 nm or greater. With the gas 

expansion, Baek and Akkutlu (2019a) showed that 53 % of the hydrocarbons in-place can 

be produced for this multi-component fluid system in the large pores. In the smaller pores, 

however, the fluid expansion becomes less efficient with the decrease in the pore size. 

When the pore size is reduced below 10 nm, the recovery is controlled by the walls and, 

hence, the fluid cannot easily expand. At this scale the recovery is dominated by 

desorption of the fluid molecules from the pore. Desorption mechanism, however, is not 

as effective as the fluid expansion, and therefore the recovery drops significantly. The 

recovery from pores less than 10 nm does not exceed 20 % with 3,000 psi of pressure drop 

(Figure 5.1a). 

Baek and Akkutlu (2019a) also discussed the compositional variability due to 

nano-confinement effects leading to phase change in an unpredictable way. Their 

discussion is summarized in Figure 5.1b, which shows the molar density of the fluid as a 

function of pressure. The figure clearly shows that the fluid in nanopores experience 

capillary condensation, although its bulk fluid composition does not show any phase 

change. It is difficult for the residual hydrocarbons to leave the pores, because it is the 
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lighter hydrocarbons that have been produced. So, the residual hydrocarbon in nanopores 

becomes progressively more difficult to recover during the depletion, because desorption 

of heavier hydrocarbons is less effective than the light hydrocarbons. Note that the phase 

transition is driven by the compositional variation of the fluid inside pores, and it is very 

unusual because the reservoir conditions are extreme enough to have fluids in a 

supercritical state (Gelb et al. 1999). This shows well that nano-confinment effects 

substantially influence the fluid behavior in nanopores (Li et al. 2014; Rahmani and 

Akkutlu 2015; Pitakbunkate et al. 2017).  

The nano-confined fluids in Figure 5.1b show vaporization of the capillary-

condensed fluid at 100 psi, and 525 psi in 2 nm and 6 nm pore, respectively, during the 

pressure depletion. In essence, the isotherms show that the estimated recoveries were low 

because the fluid mixture was capillary-condensed in the pore, and that the pressure 

reduction needed to vaporize the in-situ hydrocarbons was much less than the applied 

pressure. This indicates a limited ability of pressure depletion to recover the confined 

fluids from organic nanopores. These computational results raise serious questions on the 

ultimate recoveries from organic-rich source rocks. Reducing the flowing bottomhole 

pressure to values less than 500 psi could be impractical in some of the highly over-

pressured source rocks. 

One approach to the problem could be to inject relatively inexpensive lean gases 

such as ethane (C2H6) and carbon dioxide (CO2), into the formation once sufficient 

depletion near the hydraulic fractures is achieved for injection (McGuire et al. 2016). Baek 

and Akkutlu (2019b) recently extended the molecular simulation of hydrocarbon mixtures 
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and showed the impact of CO2 injection on the hydrocarbon recovery from kerogen 

organic nanopores. CO2 molescules introduced into the nanopore lead to exchange of 

molecules and a shift in the phase equilibrium properties of the confined fluid. This 

exchange has a stripping effect and in turn enhances the hydrocarbon recovery. The CO2 

injection, however, is not effective for the recovery of heavy hydrocarbons as much as for 

the light components in the mixture. Those large molecules left behind in nanopores 

mainly make up the residual (or trapped) hydrocarbon amount. They argued that high 

injection pressure leads to significant increase in recovery from the organic nanopores but 

not too critical for the recovery of the bulk fluid in large pores. Large pressure drop and 

the associated fluid expansion leads to recovery from the large pores. Diffusion of CO2 

into nanopores and the exchange of the molecules are the primary drives that promote the 

recovery from organic pores, whereas pressure depletion is not effective on the recovery.  

The discussion indicates that the compositional variability due to pore size and 

pressure change does not help recovery of oil from the organic nanopores. In this paper, 

we discuss if we can improve the recovery using ethane to a level beyond that experience 

with CO2.  

5.2. Fluid and Reservoir Models 

The model oil that will be used in our computations has the following composition: 

33 % CH4, 33 % C3H8 and 34 % n-C5H12. The average molecular weight of the oil is 44.1 

g/mol. When we add ethane or CO2 into the bulk phase, the in-situ fluids composition 

becomes quaternary. The injectant is introduced to the bulk phase such that we maintain 

10 %, 50 % and 90 % composition of the bulk mole fraction, and the molecular simulation 
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predicts the fluid composition inside nanopore based on energy minimization. Figure 5.2 

shows the pressure-temperature phase diagram of the ternary model oil. We shall perform 

the computations under fixed reservoir temperature of 176 °F.  

In order to show the impact of nanopores on the hydrocarbon in-place, one organic 

rich shale sample with known pore-size distribution is considered as in Figure 5.3 (Shultz 

2015). During the calculations, we assume 5 % total porosity (ϕ), 2.5 g/cm3 bulk density 

(ρb) and 35 % immobile water saturation (SW). 

 

 

 

 

Figure 5.2 Pressure-temperature phase diagram of the shale oil considered. 
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Figure 5.3 Pore size distribution of the organic-rich shale sample used. 

 

5.3. Results and Discussion 

Figure 5.4 includes molecular simulation results showing the initial distribution of 

the oil in a model reservoir. On the left, we clearly observe the impact of nanopores to the 

storage. The cumulative hydrocarbon in-place curve has an increase in the volume of 

stored fluids in pores with sizes less than 10 nm. Figure 5.4a shows that nano-confinement 

effects contribute to the storage an additional 10 %. This is significantly less than that 

observed for natural gases. In a recent study, a gas reservoir showed 50 % of the increase 

in estimated original gas in place (Baek and Akkutlu 2019a). Although the difference 

depends on the fluid composition and pore size distribution, our comparison indicates that 

nanopore consideration does not have significant impact on the initial hydrocarbon 

volume in the oil reservoirs. In Figure 5.4b, we observe that the nanopores store pentane  
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Figure 5.4 Initial oil distribution at a model reservoir at 4,000 psi. 

 

more than the others. The pores are richer in the amount of pentane as the pore sizes 

become smaller, which is in agreement with our previous discussion on the nano-confined 

fluid behavior: the smaller the pore is, the heavier its hydrocarbon mixture becomes. The 

estimated in-situ fluid composition under nano-confiment is 30 % CH4, 33 % C3H8 and 37 

% n-C5H12. However, without nano-confinement, the mole fraction of each component 

was set equal. This compositional variation is difficult to be captured with a conventional 

approach, and the qualitative deviation will have huge impacts on PVT analysis, 

eventually reserve evaluation and production forecasting. 

Now let us discuss what happens to these nano-confined fluids, if the model 

organic pores are exposed to pressure depletion. Figure 5.5a shows the pressure depletion 

effect on the oil recovery from nanopores. We considered depletion from 4,000 psi down 
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to 3,500 psi, 2,500 psi, and 1,500 psi. The confined fluids and the bulk fluid in large pores 

maintain liquid state during the pressure drop. Because the volume expansion of liquid 

hydrocarbons is limited, we expect low recovery from these pores. As pressure drops the 

nano-confinement becomes more pronounced and, consequently, less hydrocarbons are 

released from the pores. The computed maximum recovery at Δp = 2,500 psi is less than 

15 % of the original oil in place for the large pores whereas it is less than 10 % for the 

nanopores with sizes less than 10 nm. In a gas reservoir, the recovery was less than 20 % 

in nanopores (Baek and Akkutlu 2019a). Clearly, in nanopores the liquid (or condensed) 

phase molecules experience amplified attractive forces from the pore surface. However, 

the recovery from nanopores and large pores is consistent until Δp = 1,500 psi. This 

implies that nano-confined fluids and bulk fluids can share the same recovery mechanism 

above 2,500 psi reservoir pressure. Our results show that, even in the presence of strong 

nano-confinement, oil recovery from organic nanopore is possible, and it is just as difficult 

as that from the large pores. 

Our previous study (Baek and Akkutlu 2019b) discussed that the organic matter 

near the fractures should yield more gases because near the fracture the fluids in the matrix 

are exposed to higher concentrations of the injectant. Away from the fractures, on the other 

hand, the recovery becomes slave of the network quality of the multi-scale fractures, and 

molecular diffusion of the injected fluid into the matrix. Here, in the same manner, the 

enhanced oil recovery with ethane injection is demonstrated and compared with CO2 

injection in Figure 5.5b. The production is simulated first due to pressure depletion from  
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Figure 5.5 Recovery of oil from individual organic pores. 

 

an initial pressure of 4,000 psi down to 1,500 psi and, next the injectant is introduced at 

1,500 psi. The primary recovery is also shown for comparison using mark x. The y-axis 

indicates the enhanced recovery considering both the pressure depletion and the gas 

injection. As expected, more injection leads to more production from organic pores. 

Further, oil recovery performance due to ethane injection outweighs that with CO2 

injection. This is the case for all the pores. Especially, at the level of 90 % injection shown 

in red, the ethane injection recovers significantly more nano-confined hydrocarbons. Note 

that up to 50 %, ethane injection produces more hydrocarbons than CO2 injection from 

large pores. For large pores, since the adsorption effect is negligible, the chemistry of the 

pore surface is not important, this result can be extended to inorganic large pores.  
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Figure 5.6 shows the compositional changes in the produced oil due to ethane and 

CO2 injection. Here, our attention is on the recovery of the heaviest component, i.e., 

pentane, because it indicates the effectiveness of the injected fluid in stripping the 

adsorbed heavy components by the walls. Clearly, the portion of pentane in the produced 

fluid is sensitive to the injected fluid type. Regardless of the pore size, introduced ethane 

yields higher portion of pentane from the organic nanopore than CO2, and this is probably 

the reason for the higher recovery in Figure 5.5b. The composition of pentane in the fluid 

produced from 2 nm pore is always higher than that from 20 nm (not shown). This is 

because the in-place fluid composition varies over different pore size due to nano-

confinement, and more heavy components exist in smaller pores as discussed above. 

Ethane injection leads to the recovery of hydrocarbons with higher specific gravity than 

the fluids from either CO2 injection or pressure depletion production. 

The viscosity is measured for the confined oil and the injectant-included mixtures 

using Green-Kubo relations and molecular dynamics simulation. The results are shown in 

Figure 5.7a. As expected, as the injectant is introduced into the fluid mixtures in 

nanopores, the viscosity of the mixture is reduced. Overall, while ethane injection causes 

higher enhancement in mobility, the difference is negligible in 2 nm pores. At CO2 = 10 

% in 20 nm, a peculiar increase in viscosity is observed. This is because there are many of 

methane molecules over the entire pore space (especially in the center of the pore) and 

CO2 molecules displace them from the pores. CO2 has higher viscosity than methane, thus, 

adding CO2 increases the viscosity of the confined fluid. On the other hand, in a small 

pore such as the 2 nm pore, due to nano-confinement effects, a large number of propane 
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Figure 5.6 The composition of the fluids produced from 2 nm at 2,500 psi. 

 

 

Figure 5.7 Transport properties of nano-confined fluids in 2 nm and 20 nm pores at 

2,500 psi.  
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molecules exist in the mixture compared to methane, and more of propane is stripped off 

by CO2. Since pure CO2 has less viscosity than pure propane, the viscosity of the diluted 

mixture is decreased. Also, shown in Figure 5.7b, ethane diffuses into hydrocarbon 

mixtures faster than CO2 in most cases. In general, however, the type of the injectant is 

not critical in fluid transport properties in small nanopores. 

5.4. Conclusions 

In this paper we consider lean gas injection to enhance confined oil recovery from 

source rocks. Using molecular simulations we show that low-cost injection gases such as 

ethane and carbon dioxide is effective in confined oil recovery. Near the fractures, where 

high concentrations of lean gases are delivered, the recovery is highly effective. Ethane, 

in particular, has clear advantages over carbon dioxide because ethane controls desorption 

of heavier hydrocarbons from the pores more effectively and, hence, can improve the 

recovery efficiency. 
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6. SHALE GAS WELL PRODUCTION OPTIMIZATION USING MODIFIED RTA 

METHOD – PREDICTION OF THE LIFE OF A WELL4 

 

Routine history-matching and reservoir calibration methods for horizontal wells 

with multiple hydraulic fractures are complex. Calibration of important fracture and 

matrix quantities is, however, essential to understand the reservoir and estimate the future 

recoveries. In this paper, we propose a robust method of simulation-based history-

matching and reserve prediction by incorporating an analytical solution of production Rate 

Transient Analysis (RTA) as an added constraint. The analytical solution gives the fracture 

surface area contributing to the drainage of the fluids from the matrix into the fractures. 

The surface area obtained from the RTA is the effective area associated with the 

production—not total area. It is the most fundamental and the most significant quantity in 

the optimization problem. Differential evolution (DE) algorithm and a multi-scale shale 

gas reservoir flow simulator are used during the optimization. We show that the RTA-

based optimization predicts the quantities related to completion design significantly better. 

Further, we show how the estimated total fracture surface area can be used to measure the 

hydraulic fracturing quality index, as an indication of the quality of the well completion 

operation. The most importantly, we predict that the fractures under closure stress begin 

to close much sooner (100 days) than the prediction without the RTA-based fracture 

                                                 
4This chapter is from URTeC-185 “Shale Gas Well Production Optimization using Modified RTA Method 

– Prediction of the Life of a Well” written by Seunghwan Baek, I. Yucel Akkutlu, Baoping Lu, Shidong 

Ding, and Wenwu Xia. It is reprinted here with permission of SPE J., whose permission is required for 

further use. 
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surface area constraint. The deformation continues under constant closure stress for about 

20 years, when the fractures are closed nearly completely. This work attempts to use the 

traditional reservoir optimization technologies to predict not only the reserve but also the 

life of the unconventional well. 

6.1. Preliminaries 

Resource shale and other source-rock formations are important oil and gas 

resources. Technical advances in horizontal drilling and hydraulic-fracturing have been 

the major factors in achieving economical production from these unconventional 

resources. However, the economics can be further improved by increasing the productivity 

of the existing wells. Well completion design and production optimization play an 

important role in increasing the productivity of the unconventional wells. 

 In order to improve the productivity of the existing wells using production 

optimization, we can use the existing optimization technologies that have already been 

developed for the conventional wells during the last decades. The classical problem of 

interest to the reservoir engineers is the estimation of the formation properties (such as the 

porosity and permeability fields) by history-matching the production data (Oliver, 

Reynolds, and Liu 2008). Currently we have various methods available in both 

deterministic and probabilistic frameworks. These methods overwhelmingly use a 

reservoir flow simulation model to history-match the production of a well or a group of 

wells in the field and to forecast the reserve. However, history-matching and production 

forecasting of the unconventional wells, such as the horizontal shale gas wells with 

multiple fractures, has fundamentally different focus. Primary optimization parameters 
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that show significant sensitivities are, in this case, the fracture geometry (i.e., its length, 

width, and height), the fracture conductivity, the fracture spacing (or number of fractures) 

and the fracture complexity. Although a horizontal well’s lateral length and the number of 

hydraulic fracturing stages are known accurately, the nature of fractures contributing to 

the production is poorly understood. This lack of knowledge brings in added complexity 

and uncertainties to the optimization process when the reservoir engineer is not only 

required to consider the key matrix parameters (such as porosity and permeability) and the 

geological impact on these parameters, but also the completion qualities such as the 

hydraulic fracturing design. This is a challenging task because various aspects related to 

the reservoir and the completion should be considered simultaneously. Several attempts 

have previously been made to optimize the transverse fractures for unconventional gas 

wells (Britt and Smith 2009; Marongiu-Porcu, Wang, and Economides 2009; Zhang et al. 

2009; Bagherian et al. 2010; Gorucu and Ertekin 2010; Sarmadivaleh et al. 2010; 

Bhattacharya and Nicolaou 2011; Wilson and Durlofsky 2012; Bazan et al. 2013; Kim, 

Olalotiti-Lawal, and Gupta 2019). Plaksina and Gildin (2015) recently applied the multi-

objective optimization algorithm for the hydraulic fracture placement. The objective 

function included economic constraints and production-related factors, which can be 

differently weighted depending on the users’ target. The suggested framework does not 

require weighting assignment to individual objective and provides an optimal set of the 

solutions for fracture placement balancing between profit and cost. 

 The production history-matching and optimization methods allow us to 

characterize the reservoir and forecast the reserve. However, substantial computational 
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cost occurs as a trade-off against better characterization and forecasting, and consequently, 

various strategies were suggested to reduce the cost. Yang et al. (2017) investigated the 

optimal multi-stage hydraulic fracture configurations for heterogeneous reservoir models. 

Fracture geometry and fracture placement were coupled and optimized simultaneously 

using a genetic algorithm. The use of a fast-marching method allowed them to conduct the 

optimization efficiently. Rahmanifard and Plaksina (2018) integrated an analytical 

solution representing flow to the fracture into stochastic gradient-free optimization 

algorithm to design transverse fractures of horizontal wells. The incorporation of the 

solution enabled the framework to be efficient compared to the simulation-based 

optimization. The fracture attributes, such as the number of stages, the fractures length, 

distance between the wells, were calibrated for the optimal design. Chai et al. (2018) 

recently developed a probabilistic approach, the so-called improved compartmental 

embedded discrete fracture model (cEDFM), combining the level-set approach and the 

ensemble Kalman filter (EnKF) for the production history matching. The proposed 

approach allowed the discrete fractures characterized explicitly for multiphase-flow 

problems and low-permeability flow barriers. 

 The existing methods use the well’s production rate-transient as the observation 

data that must be honored during the optimization. However, the rate transient has 

additional information that could be used for improved accuracy: the fracture surface area. 

The production begins with the linear and bilinear flow of fluids in the fracture when the 

fracture volume and conductivity are the key quantities. But this time period is ephemeral, 

and it is followed by long-term formation linear flow, when most of the produced fluids 
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are those flowed from the matrix to the fracture. During the formation linear flow the area 

of the fractures contributing to the production becomes the key quantity. The fracture 

surface area can be estimated if the number and geometry of the fractures are known. 

However, uncertainties exist on these completion-related quantities. The industry uses 

micro-seismic data, production logs, wellbore image logs and tracer test to characterize 

the fractures (Hetz et al. 2017). These methods have limited application, however, because 

the data is costly, or the formation holds a relatively complex network of fractures where 

identifying individual wing-like planar fractures could be difficult. A common approach 

is to measure the fracture surface area directly using the well production data along with 

an RTA method. The most widely used approach is the method also known as 𝐴√𝑘 

method, originally proposed by Wattenbarger et al. (1998). The method is used to estimate 

the fracture surface area from the production decline as a straight line. Pelaez-Soni, 

Akkutlu and Maggard (2017) recently suggested a modified version of the 𝐴√𝑘 method 

considering stress-dependent matrix permeability during the straight line analysis. 

Permeability of the shale gas formation could vary for several reasons (Wasaki and 

Akkutlu 2015) but it is mainly the stress-dependence of the permeability that leads to 

dramatic changes in its value. They showed elimination of the dynamic permeability due 

to stress change could give 80% error in the estimated fracture surface area. 

 In this study, a new simulation-based optimization approach is presented for the 

shale gas production wells. The method is based on a robust shale gas flow simulator and 

uses DE algorithm for optimization. It considers the field transient data (pressure and 

production rate) and the RTA-based fracture surface area as the basis during the calibration  
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Figure 6.1 Schematic of hydraulically fractured formation model. 

 

of the matrix and fracture properties. The modified version of the RTA method is adopted 

during the optimization, which considers dynamic matrix permeability. The paper is 

developed as follows. First we will discuss the features of the reservoir flow simulation 

and the reservoir model we have developed for this work. Briefly, we shall describe DE 

algorithm. Next we will delve into the details of the workflow for the optimization, in 

particular, emphasizing how the modified RTA method is introduced to the optimization 

process as a new mathematical constraint. Finally we will show the optimization results 

for a shale gas well and discuss the results. One important aspect of this optimization 

process is that the simulation model considers the production geo-mechanically fully 

coupled. Hence, not only the changes in fluid pressure but also stress and displacement 

are computed during the history matching and optimization. Consequently, the results can 
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also shed light onto the long-term geo-mechanical behavior near the hydraulic fractures. 

We will discuss that closure stress effects are in long-term related to the life of the well. 

6.2. Fluid and Reservoir Models 

The model fluid is a mixture of methane, ethane and propane but the fluid is nearly 

pure methane. For gas properties, Peng-Robinson EOS and Lee’s viscosity correlation are 

used (Lee, Gonzalez, and Eakin 1966; Peng and Robinson 1976). Fixed parameters are 

displayed in Tables 6.1 and 6.2, respectively.  

The stencil fracture model will be used as shown in Figure 6.1. The fracture length 

and fracture spacing define the boundary of the computational domain. The fracture 

spacing is determined with total lateral length of the well (Lh) and the number of fractures 

(nfrac). 

The modified RTA method coupling this dynamic permeability model is adopted 

for the total fracture surface area estimation of the well (Pelaez-Soni et al. 2017). The 

modified model is compared to the Wattenbarger’s RTA Method (1998) in Appendix E. 

The flow chart of the approach is also described. 
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Table 6.1 Fixed parameters for reservoir simulation. 

Parameters Symbol Value Field Unit 

Reservoir thickness h 115 ft 

Fracture permeability kf 50 Darcy 

Fracture porosity ϕf 0.33  

Temperature T 181.13 °F 

Well radius rw 0.054 in 

Total horizontal well length Lh 4,495 ft 

Initial reservoir pressure pi 5,466 psi 

Large pore cut-off eps 0.9  

Tortuosity τ 3  

Young’s Modulus Ef 5,801,510 psi 

Poisson ratio v 0.25  

Biot Coefficient α 0.2  

Confining pressure pc 10,000 psi 

Initial mole fractions zi 99.1:0.88:0.02 % 

 

 

Table 6.2 Variables calibrated during for history-matching and optimization. 

 Parameters Symbol Range Unit 

Fractures 

Fracture half length xf 98 ― 984 ft 

Initial fracture width w0 0.039 ― 0.197 in 

Viscoelastic coefficient η 7.3E10 ― 7.3E12 psi-sec 

Matrix 

Porosity ϕ 0.03 ― 0.09  

Initial matrix permeability k0 0.001 ― 0.050 mD 

Exponent in Gangi’s model m 0.10 ― 0.99  

Max confining pressure Pmax 9,100 ― 16,000 psi 
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Figure 6.2 Work flow for the optimization. 

 

6.3. Work Flow for the Optimization 

The purpose of this study is to show the benefit of using the effective fracture 

surface area estimated using the modified RTA method during the history-matching and 

optimization. The detail of the workflow is shown in Figure 6.2. Initial optimization is 

conducted to approximate the fracture-associated parameters such as fracture half-length 

(xf), the number of fractures (nfrac), the initial fracture width (w0), and viscoelastic 



 

107 

 

coefficient (η), and matrix-associated parameters such as matrix porosity (ϕ), Gangi’s 

permeability model parameters (k0, m and pmax). 

DE algorithm generates various combinations of parameters within their ranges, 

and additional constraints are helpful to save the computational time and predict physically 

meaningful solutions. Three conditions are provided at this stage: 

𝑦𝑒 =
𝐿ℎ

2 ∙ 𝑛𝑓𝑟𝑎𝑐
 (6.3) 

𝑀𝑎𝑥.  𝐶𝑢𝑚. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 <  0.5 × 𝑂𝐺𝐼𝑃 (6.4) 

𝑃𝑚𝑎𝑥 > 𝑃𝑒𝑓𝑓 (6.5) 

The fracture spacing (ye) is dependent on total horizontal well length (Lh) and the 

number of fractures, n. Lh is given as 4,495 ft. Original gas in-place (OGIP) is calculated 

based on volumetric method with porosity (ϕ), saturation (Sw), fracture half-length (xf), 

fracture spacing (ye), number of fractures (nfrac), reservoir thickness (h), initial formation 

volume factor (Bg,ini). 

𝑂𝐺𝐼𝑃 =
∅ ∙ 2𝑥𝑓 ∙ 2𝑦𝑒 ∙ 𝑛𝑓𝑟𝑎𝑐 ∙ ℎ ∙ (1 − 𝑆𝑊)

𝐵𝑔,𝑖𝑛𝑖
 (6.6) 

𝑛𝑅𝑇𝐴 =
𝐴𝐹𝑟𝑎𝑐,𝑅𝑇𝐴

4 ∙ 𝑥𝑓 ∙ ℎ
 (6.7) 
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The initially optimized parameters and new OGIP are then fed into the modified 

RTA, and the effective fracture surface area (AFrac,RTA) is estimated based on transient gas 

flow rate data during the formation linear flow period. Next, the second optimization is 

carried out, and the obtained AFrac,RTA is used as a new constraint for the number of 

fractures (nRTA) and fracture spacing (ye) as shown Eqs. 6.7 and 6.3 (nFrac = nRTA), 

respectively. Consequently, the new optimized parameters honor production history and 

are constrained by analytical transient rate analysis method.  

 Figure 6.3 shows the proposed optimization method. Figure 6.3a has the shale gas 

production well with a total fracture surface area equal to AFrac, with the production rate 

qg. Figure 6.3b, the modified RTA method gives the fracture surface area AFrac,RTA for the 

production qg. In general, RTA gives the effective surface contributing to the production. 

Hence, this area is somewhat less than the actual surface area, i.e., AFrac,RTA < AFrac, 

because, although some of the fractures exist, their contribution to production could be 

reduced or negligible. The optimization considers this effective surface area as a constraint 

such that not only the production rate but also the effective surface area is honored, i.e., 

AFrac,OPT = AFrac,RTA. As in Figure 6.3c, the optimization returns the number of planar 

fractures (nRTA) assuming a uniform completion based on Eq. 6.7. 

Comparison of nRTA from Eq. 6.7 to the designed value, ndesign (based on the product 

of the number of fractures in each stage x number of stages), indicates the quality of the 

hydraulic fracturing: 

𝐼𝐻𝐹 =  
𝑛RTA

𝑛design
 (6.8) 
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Figure 6.3 Proposed optimization method using modified RTA method as a 

constraint. 

 

 

Figure 6.4 Hydraulic fracturing quality index, IHF. 

 

 If IHF is close to unity then the hydraulic fracturing is completed as designed. 

However, if IHF < 1.0, for example IHF = 0.5, then the completion has been completed with 

50 % success. This could be due to unsuccessful stages of fracturing, when the number of 

fractures is less than the designed number of fractures, and/or it could be due to the 

presence of un-propped or partially-propped fractures that were formed but did not 

contribute to the production. If IHF > 1.0, then the hydraulic fracturing has been done 

successfully, and it led to the development of a complex fracture network. These are 
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shown in Figure 6.4. Hence, following the optimization one would proceed and identify 

the hydraulic fracturing quality and the nature of fracture complexity of the horizontal 

shale gas well using the hydraulic fracturing quality index. 

6.4. Results and Discussion 

The gas flow rate (red) and the flowing bottomhole pressure (blue) of a shale gas 

well from Sichuan basin in China are plotted as a function of the production time in Figure. 

6.5. At the time of this analysis, we have data only up to 273 days. The initial reservoir 

pressure is 5,466 psi. The flow rate drops eventually to zero due to wellbore shut-in. 

 The gas flow rate and the cumulative gas production are plotted as a function of 

the production time on a log-log scale in Figure 6.6. Here, we can observe the dominant 

negative half slope trend in the gas flow rate between 100 and 130 days, indicating 

formation linear flow. The start of boundary-dominated flow regime is not clear on the 

plots because the production data only includes this early production history of the well. 

Pseudo-time (tap) as given in Eq. 6.9 is calculated using trapezoidal rule, and the plot of 

the reciprocal of the flow rate versus the square root of pseudo production time is plotted 

in Figure 6.7. 

𝑡𝑎𝑝 = ∫
𝑘𝑔

𝜇 ∙ 𝑐𝑡
𝑑𝑡

𝑡

0

 (6.9) 

𝐴𝐹𝑟𝑎𝑐,𝑅𝑇𝐴 = 𝑓𝑐𝑝 ∙
1261.2𝑇

𝑠𝑙𝑜𝑝𝑒√(∅)𝑖

∙
1

∆𝑚𝑘(𝑝)
∙ 𝑛𝑅𝑇𝐴 (6.10) 
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The straight line for the linear flow regime is used to calculate the slope and the effective 

fracture surface area (AFrac,RTA) from Eq. 6.10.  

The history-matching and optimization were conducted constraining to the field 

data, and the best fit result is shown in Figure 6.8. Clearly, the gas flow rate is honored 

(Figure 6.8b) and the matched pressure profile follows the observed bottom hole pressure 

well (Figure 6.8a). In Figure 6.8 the blue mark includes the trends without applying the 

RTA method, i.e., just the optimization was performed. The difference in matched 

pressure is negligible. For early production up to around 30 days, fractures primarily 

influence the production history, and afterwards flow in the matrix starts to affect the 

production. In Figure 6.8a, our matching overestimates the pressure, and more of pressure 

depletion is needed between 45 and 165 days. This indicates that there are additional 

obstacles associated with hydrocarbon flow in matrix, we did not catch. Other possibility 

is on our uniform reservoir and fracture model. Considering further heterogeneity can 

improve the history-matching while it also increases the computational cost. This will be 

addressed in a future publication. 

 

 



 

112 

 

 

Figure 6.5 Production history plot of gas flowrate (qg) and calculated bottomhole 

pressures (Pwf) versus production time. 

 

 

Figure 6.6 Gas flow rate (qg) and cumulative gas production (Gp) versus production 

time (Log-Log scale). 
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Figure 6.7 The reciprocal of the gas flowrate (1/qg) versus square root of pseudo 

production time (sqrt (tap)). 

 

 

Figure 6.8 History-matching and optimization results with and without rate transient 

analysis.  
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Table 6.3 Comparison of optimization results.  

 xf w0 η ϕ k0 m Pmax nfrac AFrac 

 ft in psi-sec  mD  psi  acre 

without RTA 643 0.138 3.3E+12 0.044 0.0268 0.309 10,512 61 414 

with RTA 427 0.278 1.9E+12 0.069 0.0419 0.480 10,334 33 149 

 

 The optimized variables are compared in Table 6.3. Although the difference in 

history-matched pressure data in Figure 6.8a is negligible, the optimized values vary 

significantly depending on the implementation of the RTA method. Total surface area 

(AFrac) is estimated using Eqs. 6.7 and 6.11 for the cases of with and without RTA, 

respectively. The implementation of RTA results in a discrepancy in the surface area 

estimation. Optimization without RTA shows 177% over-estimation with respect to the 

case with RTA.  

𝐴𝐹𝑟𝑎𝑐 = 4 ∙ 𝑛𝑓𝑟𝑎𝑐 ∙ 𝑥𝑓 ∙ ℎ (6.11) 

This is a typical issue of non-uniqueness when dealing with multidimensional problems. 

Shortage of information can lead to a set of solutions having good history-matching results 

with an ignorable difference. They, however, are merely combinations of individual 

variable and do not have any physical correlation. The RTA method provides the strong 

analytical constraint (Eq. 6.7) with the optimization honoring production data. The 

transient analysis is very efficient and has been successfully applied to many field cases.   
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 Next, we discuss the hydraulic fracture quality of this well based on the 

optimization with RTA. Our optimization gave us equivalent 33 planar fractures for the 

predicted surface area. The lateral part of the well is 4,600 ft, and 15 stages of fracturing 

designed with each stage has 3 groups of perforations. Hence ndesign is 45. Then the 

hydraulic fracturing quality index for this well is 73%: 

𝐼𝐻𝐹 =
𝑛𝑅𝑇𝐴

𝑛𝑑𝑒𝑠𝑖𝑔𝑛
=

33

45
= 0.73 

Further, the designed fracture spacing was 4,600/45 = 102 ft; on the other hand the 

optimization results gives: 4,495/33 = 136 ft. Hence the uniform spacing between the 

fractures is predicted about 25 % larger than the designed value. 

Another important feature of the modified RTA we adopted in this study is the 

calibrated dynamic matrix permeability. In general, consideration of the time-dependent 

permeability helps better history-matching (Appendix F). Figure 6.9 shows the profile of 

stress-sensitive matrix permeability over the production history. The optimized values in 

Table 6.3 were used for Figure 6.9a. The optimization with RTA predicts higher matrix 

permeability mainly stemming from higher initial matrix permeability (k0) value, while 

the difference is reduced over the time due to different exponent m. For comparison, in 

addition, the model parameters suggested based on the core flooding experiments are 

shown in Table 6.4 for other shale plays. For the rest of the parameters, the same values 

of w/ RTA in Table 6.3 were used to build the data in Figure 6.9b. 

Next, the stress-sensitive fracture width is predicted over the production history in 

Figure 6.10. The stress profile of the grid of the well, which experiences the fastest 
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pressure drop was used and provided together in the secondary y-axis. RTA-assisted 

optimization shown in red predicts a larger fracture width up to 17 years. In Eq. 6.2, w0 

and the first term on the right hand side primarily decide the fracture width over early 

production period. After 100 days, the fractures start to close due to plastic deformation  

 

Figure 6.9 Matrix permeability based on Gangi’s model versus production time. 

 

Table 6.4 Gangi’s parameters measured in the laboratory. 

 k0 m Pmax 

 mD  psi 

Eagle Ford 0.098 0.97 8,037 

Bakken 0.065 0.95 8,027 

Wolfcamp 0.005 0.86 8,336 
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Figure 6.10 Dynamic fracture width and closure stress versus production time. 

 

of the matrix with increasing compressional stress. The fracture closing started much later 

if the RTA method is not implemented in the optimization. The viscoelastic coefficient, η 

and the accumulation of the effective stress over time in the second term in parenthesis in 

Eq. 6.2 lead to reduction in fracture width in later production. As η is smaller, the fracture 

width is more sensitive to accumulated stress and the fractures tend to close faster.  

 The impact of the dynamic fracture width on the predicted bottomhole pressure 

and on the gas reserve is studied in and on the gas reserve is studied in Figure 6.11. In the 

history-matching and optimization, the viscoelastic coefficient is intentionally controlled 

to the huge number to maintain the constant fracture width. The calibrated parameters are 

shown in Table 6.5. Figure 6.11a clearly shows that consideration of dynamic fracture 

width results in better history-matching, and the constant width model causes 194 % error 
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in AFrac. In addition, as expected, the constant width model overestimates the cumulative 

production. The fractures close and production becomes difficult with dynamic model. 

After 20 years, the error reaches to around 23 %. Taking account that later production does 

not have significant impacts on cumulative production, this error is substantial. 

6.5. Conclusions 

History-matching on the basis of optimization has been a routine computational 

method to characterize the reservoirs and forecast the reserves. The multi-dimensional 

optimization often provides non-unique solutions, and deciding one representative 

solution is a challenging task. In this study we suggest incorporating analytical solution 

associated with an RTA method into the optimization to have physically meaningful 

results for the horizontal shale gas wells with multiple fractures. The analytical approach 

brings in new and plausible physics, hence, plays an important role as a constraint in the 

optimization process. This enables us to estimate more accurately the effective fracture 

surface area associated with the production. The implementation of the RTA-based 

fracture surface area to the optimization has led to significantly different reservoir and 

completion qualities. The proposed method can be easily applied to the existing 

workflows. 
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Figure 6.11 The impact of dynamic fracture width on history-matching and 

cumulative gas production.  

  

 

 

 

Table 6.5 Comparison of optimization results with and without dynamic fracture 

width model. 

 xf w0 η ϕ k0 m Pmax nfrac AFrac 

 ft in psi-sec  mD  psi  acre 

Dynamic width 427 0.278 1.9E+12 0.069 0.0419 0480 10,334 33 149 

Constant width 512 0.284 1.0E+15 0.068 0.0015 0.220 12,976 82 439 
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7. SUMMARY 

 

 Any production consideration from source rocks should include a discussion on 

the compositional nature of in-situ hydrocarbon fluids and its connection to the rock 

matrix. The present works demonstrate that the fluid composition varies in organic 

nanopores as a function of the pore size, when the produced fluid composition is re-

distributed into the nanopores. Forecasting of production including the nano-confinement 

effects can be done computationally only by measuring the produced fluid composition 

periodically and repeating the re-distribution calculations using the methodology 

presented in this work. The production related field studies can also shed light into this 

fundamental issue. 

 The recovery of fluids in large pores are due to fluid expansion. But the 

thermodynamic recovery calculations in this article show that nano-confinement does not 

allow efficient expansion of the fluids and recovery becomes a slave of the hydrocarbon 

molecules desorption. However, fluid desorption in nanopores is not as efficient a 

mechanism as expansion in large pores. Thus, we addressed the stripping effects of CO2 

and C2H6 to the condensed hydrocarbons in kerogen. Ethane, in particular, has clear 

advantages over carbon dioxide because ethane controls desorption of heavier 

hydrocarbons from the pores more effectively and, hence, can improve the recovery 

efficiency. 

Further, we suggest incorporating analytical solution associated with an RTA 

method into the optimization to have physically meaningful results for the horizontal shale 
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gas wells with multiple fractures. The analytical approach brings in new and plausible 

physics, hence, plays an important role as a constraint in the optimization process. This 

enables us to estimate more accurately the effective fracture surface area associated with 

the production. The proposed method can be easily applied to the existing workflows. 
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APPENDIX A. VOLUMETRIC METHOD OF HYDROCARBON IN-PLACE IN THE 

PRESENCE OF NANO-CONFINEMENT EFFECTS  

 

A.1. Hydrocarbon Volume in Large-pores 

 Earlier we have described the effective hydrocarbon porosity in Eq. 3.2. Now 

dividing each term in the equation with the bulk density of the rock, b, we convert the 

equation to pore volume (ft3) in one ton of rock as follows: 

𝑉𝑝,𝐻𝐶 =  𝜀𝑉𝑝 + (1 − 𝜀)𝑉𝑝 =  𝑉𝑝,𝐿𝑎𝑟𝑔𝑒 + 𝑉𝑝,𝑁𝑎𝑛𝑜  (A.1) 

where is volume fraction of large pores. Hence, the effective hydrocarbon pore volume 

Vp,HC involves the summation of the volume Vp of the hydrocarbons in large pores, and 

of the volume (1-Vp in the organic nanopores in which Vp is the total pore volume (ft3) 

in one ton of rock.  

 Now, let’s define n as the number of bulk hydrocarbon molecules stored in unit large 

pore volume (molecule number/Å3) under the reservoir pressure and temperature 

conditions. This number comes from NPT molecular simulation of the mixture with the 

produced fluid composition, and n is equal to the total number of molecules N divided by 

the computational box volume predicted from the simulation. The total number of moles 

of the hydrocarbon molecules stored in the large pores volume in one ton of source rock 

is equal to ɛ x Vp x n/NA, where NA is Avogadro’s number (= 6.023x1023 molecule 
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number/mol). Finally, using the gas law equation, the volume of the hydrocarbon 

molecules stored in the large pores volume in one ton of source rock in standard ft3/ton is: 

𝑉𝑝,𝐿𝑎𝑟𝑔𝑒 = 𝜀𝑉𝑝 × (
𝑛

𝑁𝐴
) × (

𝑅𝑇𝑠𝑐𝑧𝑠𝑐

𝑃𝑠𝑐
)  (scf/ton) (A.2) 

   

Here, zsc=1.0 is taken. Since the hydrocarbons in large pores volume is in the bulk state, 

the same results could have been obtained using the traditional volumetric approach. 

A.2. Hydrocarbon Volume in Nano-pores 

 Calculation for hydrocarbon volume stored in nanopores is more elaborate and 

involves further partitioning the nanopores volume into its constituents as follows. 

Consider pore volume for the specific nanopore size dp in a ton of source rock: 

𝑉𝑝,𝑁𝑎𝑛𝑜,𝑑𝑝 =  𝑉𝑝 × 𝑉%,𝑑𝑝 /100 (A.3) 

where V%dp is the volume percent of the nanopore with size dp in the source rock, as 

obtained from incremental pore volume distribution vs. pore size data.  

 If the simulated number density of hydrocarbon molecules in the nanopore i is equal 

to ni (molecule number/Å3), the hydrocarbon volume stored in the pore under the standard 

conditions is:  
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𝑉𝐻𝐶,𝑁𝑎𝑛𝑜,𝑑𝑝  = 𝑉𝑝,𝑁𝑎𝑛𝑜,𝑑𝑝 × ( 
𝑛𝑑𝑝 

𝑁𝐴
 ) × (

𝑅𝑇𝑠𝑐𝑧𝑠𝑐

𝑃𝑠𝑐
) 

(A.4) 

 
= 𝑉𝑝 × ( 

𝑉%,𝑑𝑝 

100 
 ) × ( 

𝑛𝑑𝑝 

𝑁𝐴
 ) × (

𝑅𝑇𝑠𝑐𝑧𝑠𝑐

𝑃𝑠𝑐
) 

Hydrocarbons stored in all the nanopores are then the summation of the latter equation: 

𝑉𝐻𝐶,𝑁𝑎𝑛𝑜  = ∑ 𝑉𝐻𝐶,𝑁𝑎𝑛𝑜,𝑑𝑝

𝑑𝑝,𝐿

𝑑𝑝1

= 𝑉𝑝 (
𝑅𝑇𝑠𝑐𝑧𝑠𝑐

𝑁𝐴𝑃𝑠𝑐
) ∑ ( 

𝑉%,𝑑𝑝 

100 
 ) 𝑛𝑑𝑝 

𝑑𝑝,𝐿

𝑑𝑝1

 (A.5) 

Here the summation is over the organic nanopores, dp =1 nm ... dp,L with confined 

hydrocarbons. 

A.3. Initial Hydrocarbon In-place including Nanopore Confinement Effects 

 Then, the total hydrocarbon in place is: 

𝑉𝑝,𝐻𝐶  =  𝑉𝑝,𝐿𝑎𝑟𝑔𝑒 + 𝑉𝑝,𝑁𝑎𝑛𝑜  
 

(A.1) 

 

=  𝑉𝑝 (
𝑅𝑇𝑠𝑐

𝑁𝐴𝑃𝑠𝑐
) × (𝜀 × 𝑛 + ∑

𝑉%,𝑑𝑝

100
× 𝑛𝑑𝑝 

𝑑𝑝,𝐿

𝑑𝑝

) 

 

(A.6) 

 

=  1.2603 × 106 × 𝑉𝑝 × (𝜀 × 𝑛 + ∑
𝑉%,𝑑𝑝

100
× 𝑛𝑑𝑝 

𝑑𝑝,𝐿

𝑑𝑝

) (scf/ton) (3.4b) 

 
=  7.59 ∙ 105 ∙ 𝑉𝑝 ∙  (𝜀 ∙ 𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙 + ∑

𝑉%,𝑑𝑝

100
∙ 𝜌𝑑𝑝,𝑚𝑜𝑙

𝑑𝑝,𝐿

𝑑𝑝1

) (scf/ton) (A.7) 
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in which  and ρb are total porosity and rock density respectively. The units for ρb, n, ndp, 

V%,dp, ρbulk,mol and ρdp,mol are g/cm3, molecule numbers/A3, molecule numbers/A3
, 

percentage, mol/cm3 and mol/cm3, respectively.  and ε are dimensionless fraction. 

A.4. Description of Total Amount of Hydrocarbons Stored Considering Trapped 

Hydrocarbons 

𝐺∗ =  
∅ ( 1 − 𝑆𝑤)

𝜌𝑏𝐵𝑔
− 𝑉𝑇 =  

∅ ( 1 − 𝑆𝑤 − 𝑆𝑡𝑟𝑎𝑝𝑝𝑒𝑑𝐻𝐶)

𝜌𝑏𝐵𝑔
 (A.8) 

𝑆𝑡𝑟𝑎𝑝𝑝𝑒𝑑𝐻𝐶 =  
𝑉𝑇 𝜌𝑏𝐵𝑔

∅
 (A.9) 

in which VT  is the volume of hydrocarbons trapped in pores with pore size less than dp,T. 

ɛT is the fraction of the pore volume with respect to total hydrocarbon pore volume. Vw is 

the volume occupied by water, and Sw is the fraction of the effective porosity filled with 

water (Sw=Vw/Vtotal) in that, saturation. 



 

 

141 

 

APPENDIX B. RE-DISTRIBUTED COMPOSITION OF HYDROCARBONS IN 

NANOPORES 

 

 The molecular simulation data of number density, ndp is shown for the mixtures. The 

unit is molecule number/Å3.  

Table B.1 Re-distribution data of Mixture 1. 

Pore size 

nm 

Pressure, psi 

1,000 2,000 3,000 4,000 

1 1.64470E-02 1.91210E-02 2.05476E-02 2.14873E-02 

2 6.34491E-03 8.99244E-03 1.04546E-02 1.14225E-02 

3 4.25710E-03 6.54835E-03 8.10483E-03 9.24243E-03 

4 3.44131E-03 5.51966E-03 7.08200E-03 8.28042E-03 

5 2.99967E-03 4.96896E-03 6.51975E-03 7.74248E-03 

6 2.71755E-03 4.61611E-03 6.15761E-03 7.40395E-03 

7 2.52469E-03 4.37908E-03 5.91590E-03 7.16439E-03 

8 2.38728E-03 4.20261E-03 5.73210E-03 6.99766E-03 

9 2.28148E-03 4.06515E-03 5.59246E-03 6.86644E-03 

10 2.19708E-03 3.96061E-03 5.48584E-03 6.76284E-03 

20 1.83658E-03 3.50119E-03 5.01895E-03 6.31499E-03 

30 1.71969E-03 3.35534E-03 4.86371E-03 6.17070E-03 

40 1.66313E-03 3.28391E-03 4.79195E-03 6.10363E-03 

 

Table B.2 Re-distribution data of Mixture 2. 

Pore size 

nm 

Pressure, psi 

1,000 2,000 3,000 4,000 

1 9.09467E-03 9.64178E-03 1.08049E-02 1.14782E-02 

2 7.83185E-03 8.67527E-03 9.40256E-03 9.89705E-03 

3 6.50690E-03 7.34560E-03 8.01632E-03 8.72932E-03 

4 5.37134E-03 6.87299E-03 7.65877E-03 8.29691E-03 
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5 4.20080E-03 6.08877E-03 7.03823E-03 7.91339E-03 

6 3.75660E-03 5.77459E-03 6.89685E-03 7.73877E-03 

7 3.36752E-03 5.35527E-03 6.58847E-03 7.56853E-03 

8 3.18191E-03 5.20842E-03 6.51724E-03 7.41944E-03 

9 2.94923E-03 4.97044E-03 6.31335E-03 7.30789E-03 

10 2.83330E-03 4.87600E-03 6.29839E-03 7.23811E-03 

20 2.21453E-03 4.23979E-03 5.81463E-03 6.85437E-03 

30 2.02780E-03 4.04023E-03 5.70812E-03 6.78050E-03 

40 1.92611E-03 3.93897E-03 5.70812E-03 6.75536E-03 

 

Table B.3 Re-distribution data of Mixture 3. 

Pore size 

nm 

Pressure, psi 

1,000 2,000 3,000 4,000 

1 9.27741E-03 1.01492E-02 1.07224E-02 1.10809E-02 

2 7.68607E-03 8.48476E-03 8.95253E-03 9.34449E-03 

3 6.64071E-03 7.32058E-03 7.77733E-03 8.18333E-03 

4 6.39283E-03 6.93540E-03 7.53386E-03 7.90476E-03 

5 6.18440E-03 6.68116E-03 7.25953E-03 7.71296E-03 

6 6.12751E-03 6.47927E-03 7.14970E-03 7.64122E-03 

7 6.06551E-03 6.37878E-03 7.09036E-03 7.54682E-03 

8 5.93642E-03 6.15606E-03 6.88658E-03 7.42778E-03 

9 5.92348E-03 6.09331E-03 6.92817E-03 7.41872E-03 

10 5.81912E-03 5.93203E-03 6.76639E-03 7.35176E-03 

20 5.61356E-03 5.45715E-03 6.52959E-03 7.14957E-03 

30 5.26936E-03 5.26242E-03 6.46539E-03 7.08516E-03 

40 4.27687E-03 5.14203E-03 6.42272E-03 7.07104E-03 
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APPENDIX C. EXAMPLE CALCULATION OF INITIAL HYDROCARBON IN-

PLACE WITH NANO-CONFINEMENT EFFECTS 

 

Here, we include an example calculation showing how the nano-confinement 

effects can be introduced to the classical volumetric method calculations using empirical 

correlations proposed in this study. For the calculations, we consider 5 % total porosity 

and 35 % water saturation for the formation and the bulk density of the rock is taken 2.5 

g/cm3. We use Mixture 3 composition given in Table 3.1 as the bulk hydrocarbon fluid 

produced, which has 53.8 % Methane, 16.4 % Ethane, 12.7 % Propane, 10.5 % n-Butane 

and 6.6 % n-Pentane. For the calculation we consider that the formation holds 60 % of the 

pore volume as large pores, i.e., ɛ is 0.6. The rest of the pores are made of nanopores with 

10 % 10 nm pores, 10 % 8 nm pores, 10 % 6 nm pores 5 % 4 nm pores and 5 % 2 nm 

pores. 

1. Calculate z-factor for the bulk fluid mixture 

 z-factor is needed to calculate the bulk molar density of the produced fluid mixture. 

It is first necessary to determine the pseudo critical pressure and temperature of the 

mixture as, 

𝒑𝒑𝒄 = ∑ 𝒙𝒊𝒑𝒄𝒊𝒊 = 0.538·668 + 0.164·708 + 0.127·616 + 0.105·551 + 0.066·489 = 643.86 psi 

𝑻𝒑𝒄 = ∑ 𝒙𝒊𝑻𝒄𝒊𝒊 = 0.538·343 + 0.164·550 + 0.127·666 + 0.105·765 + 0.066·845 = 495.40 °R 

where xi are the mole fractions of each component in the bulk fluid. Next step is to 

calculate pseudo-reduced pressure and pseudo-reduced temperature.  
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𝒑𝒑𝒓 =
𝒑

𝒑𝒑𝒄
=

𝟒𝟎𝟎𝟎 𝒑𝒔𝒊

𝟔𝟒𝟑. 𝟗 𝒑𝒔𝒊
= 𝟔. 𝟐                                𝑻𝒑𝒓 =

𝑻

𝑻𝒑𝒄
=

𝟔𝟑𝟓. 𝟔𝟕 °𝐑 

𝟒𝟗𝟓. 𝟒 °𝐑
= 𝟏. 𝟐𝟖 

where p and T are the initial reservoir conditions, which are 4,000 psi and 176 °F (= 635.67 

°R). Then using the calculated ppr, Tpr and the Standing-Katz correlation chart (Standing 

and Katz 1942), z-factor is obtained as 0.815. PC-SAFT equation of state gives 0.814, 

which confirms the z-factor value obtained.  

2. Calculate molar density of the bulk fluid mixture 

 To calculate the bulk molar density at the initial reservoir conditions, the real gas 

isothermal compressibility equation is adopted. 

𝝆𝒃𝒖𝒍𝒌,𝒎𝒐𝒍 =
𝒑

𝒛𝑹𝑻
=

𝟒𝟎𝟎𝟎 𝒑𝒔𝒊

(𝟎.𝟖𝟏𝟓)∙(𝟏𝟐𝟎𝟓.𝟗𝟏𝟑 
𝒄𝒎𝟑∙𝒑𝒔𝒊 

𝑲∙𝒎𝒐𝒍
)∙(𝟑𝟓𝟑.𝟏𝟓 𝐊)

=0.01155 
𝒎𝒐𝒍 

𝒄𝒎𝟑 

3. Calculate hydrocarbon in-place using volumetric method 

 Now, we are ready to calculate the formation volume factor and to predict the 

hydrocarbon in-place. We shall do this calculation twice. First, we ignore the nanopore 

confinement effects and use the classical volumetric method for the calculation. 

We have formation volume factor without nano-confinement effects: 

Bg = 0.02829· z ·T/p = 0.02829·0.815·635.67/4000 = 3.6641·10-3 ft3/scf 

Using Equation 3.4a: 

𝑮 = 𝟑𝟐. 𝟎𝟑𝟔𝟖
∅(𝟏−𝑺𝒘)

𝝆𝒃𝑩𝒈
 = 𝟑𝟐. 𝟎𝟑𝟔𝟖

𝟎.𝟎𝟓( 𝟏−𝟎.𝟑𝟓)

𝟐.𝟓 ·𝟑.𝟔𝟔𝟒𝟏·𝟏𝟎−𝟑 
 = 113.7 scf/ton 

With nano-confinement effects: 

Taking 𝝆𝒃𝒖𝒍𝒌,𝒎𝒐𝒍 = 0.01155 mol/cm3, the coefficients c and d are calculated using 

Equations 3.10b and 3.10c: 
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c = -26159.41 · 0.011552 + 599.0111 · 0.01155 – 3.32647 = 0.102354 

d = 92405.03 · 0.011552 - 2121.03 · 0.01155 + 12.83228 = 0.661549 

Next, using Eq. 3.10a and the calculated values of the coefficients c and d, we determine 

the molar density of the confined fluid for each nanopore:  

𝜌𝑑𝑝,𝑚𝑜𝑙 = [𝑐 ∙ ln(𝑑𝑝) + 𝑑] ∙ (
𝜌𝑑𝑝,𝑚𝑜𝑙,𝐶𝐻4

𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙,𝐶𝐻4
) ∙ 𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙  (mol/cm3) (3.16a) 

where ρdp,mol,CH4 /ρbulk,mol,CH4 are obtained from Table 3.2 for each pore.   

ρ2nm,mol  = [0.102354 · ln(2) + 0.661549] · 1.93546 · 0.01155 = 0.016375 mol/cm3 

ρ 4nm,mol  = [0.102354 · ln(4) + 0.661549] · 1.40306 · 0.01155= 0.013020 mol/cm3 

ρ 6nm,mol  = [0.102354 · ln(6) + 0.661549] · 1.25455 · 0.01155= 0.012243 mol/cm3 

ρ 8nm,mol  = [0.102354 · ln(8) + 0.661549] · 1.1857 · 0.01155= 0.011975 mol/cm3 

ρ10nm,mol = [0.102354 · ln(10) + 0.661549] · 1.14591 · 0.01155= 0.011875 mol/cm3 

Next, we calculate the formation volume factor with nano-confinement effects using Eq. 

3.9:  

𝐵𝑔
∗ =

4.22092 × 10−5

𝜀 × 𝜌𝑏𝑢𝑙𝑘,𝑚𝑜𝑙 + ∑
𝑉%,𝑑𝑝

100 × 𝜌𝑑𝑝,𝑚𝑜𝑙
𝑑𝑝,𝐿
𝑑𝑝1

  (ft3/scf) (3.9) 

𝐵𝑔
∗ = 4.22092 · 10−5

/[0.65 × 0.01155 + (0.05 · 0.01638 + 0.05 · 0.01302 + 0.1 · 0.01224

+ 0.1 · 0.01198 +  0.1 · 0.01188)] 

= 𝟑. 𝟑𝟓𝟑𝟑·10-3 ft3/scf 

Again, using Equation 3.8: 

𝑮 = 𝟑𝟐. 𝟎𝟑𝟔𝟖
∅(𝟏−𝑺𝒘)

𝝆𝒃𝑩𝒈
∗  = 𝟑𝟐. 𝟎𝟑𝟔𝟖

𝟎.𝟎𝟓( 𝟏−𝟎.𝟑𝟓)

𝟐.𝟓 ·𝟑.𝟑𝟓𝟑𝟑·𝟏𝟎−𝟑 
 = 124.2 scf/ton 
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This gives (113.7-124.2)/113.7x100 = -9.2 % error in hydrocarbon in-place for 

neglecting the nano-confinement effects. 
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APPENDIX D. RE-DISTRIBUTED COMPOSITION OF HYDROCARBONS-CO2 

MIXTURES IN NANOPORES 

 

Table D.1 Mole fraction in nanopores with CO2 injection into bulk phase. 

Mole fraction of 
CO2 in bulk 

Pressure 
Psi 

Pore 
size 
nm 

CO2  CH4 C2H6 C3H8 n-C4H10 n-C5H12 

0.0 

500 

2 0.000 6.545 7.646 13.445 27.407 44.957 

4 0.000 8.707 8.478 14.749 27.633 40.433 

6 0.000 15.145 10.361 15.335 26.431 32.728 

1,500 

2 0.000 15.059 11.842 17.230 26.548 29.321 

4 0.000 21.589 13.900 17.479 23.463 23.569 

6 0.000 25.017 14.314 16.937 22.861 20.871 

2,500 

2 0.000 25.668 15.121 16.608 21.314 21.289 

4 0.000 35.406 15.907 15.821 17.731 15.135 

6 0.000 40.304 16.091 15.012 15.729 12.864 

3,500 

2 0.000 31.106 16.103 16.624 20.523 15.645 

4 0.000 40.030 16.415 15.012 16.005 12.538 

6 0.000 44.206 16.370 14.286 14.798 10.340 

0.1 

500 

2 0.031 0.056 0.068 0.124 0.268 0.453 

4 0.034 0.082 0.078 0.138 0.273 0.394 

6 0.049 0.161 0.099 0.145 0.255 0.290 

1,500 

2 0.061 0.137 0.110 0.154 0.239 0.299 

4 0.068 0.193 0.126 0.157 0.216 0.239 

6 0.072 0.224 0.133 0.160 0.205 0.206 

2,500 

2 0.083 0.227 0.134 0.158 0.217 0.180 

4 0.086 0.321 0.146 0.145 0.164 0.138 

6 0.090 0.357 0.146 0.139 0.148 0.120 

3,500 

2 0.089 0.271 0.141 0.143 0.188 0.169 

4 0.091 0.364 0.148 0.136 0.145 0.115 

6 0.095 0.402 0.148 0.131 0.124 0.099 

0.3 

500 

2 0.100 0.046 0.054 0.112 0.249 0.439 

4 0.113 0.074 0.067 0.122 0.242 0.384 

6 0.154 0.135 0.082 0.121 0.210 0.297 

1,500 

2 0.185 0.103 0.085 0.127 0.203 0.297 

4 0.204 0.149 0.097 0.130 0.190 0.230 

6 0.219 0.174 0.102 0.129 0.178 0.197 

2,500 

2 0.249 0.178 0.104 0.124 0.169 0.176 

4 0.261 0.248 0.116 0.119 0.135 0.121 

6 0.274 0.282 0.117 0.110 0.121 0.096 
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3,500 

2 0.272 0.213 0.108 0.119 0.156 0.132 

4 0.274 0.282 0.113 0.112 0.118 0.102 

6 0.282 0.314 0.114 0.104 0.104 0.081 

0.5 

500 

2 0.185 0.037 0.047 0.096 0.234 0.401 

4 0.249 0.086 0.062 0.101 0.188 0.314 

6 0.279 0.110 0.065 0.095 0.173 0.278 

1,500 

2 0.326 0.077 0.066 0.107 0.181 0.243 

4 0.363 0.115 0.076 0.103 0.158 0.186 

6 0.391 0.141 0.079 0.100 0.136 0.152 

2,500 

2 0.428 0.129 0.079 0.098 0.125 0.141 

4 0.446 0.180 0.082 0.087 0.100 0.105 

6 0.460 0.203 0.084 0.081 0.090 0.082 

3,500 

2 0.445 0.160 0.083 0.090 0.108 0.115 

4 0.467 0.206 0.086 0.081 0.088 0.072 

6 0.473 0.226 0.085 0.076 0.073 0.067 

0.7 

500 

2 0.297 0.025 0.034 0.078 0.188 0.378 

4 0.389 0.060 0.044 0.077 0.154 0.276 

6 0.433 0.072 0.044 0.074 0.142 0.235 

1,500 

2 0.619 0.080 0.049 0.067 0.094 0.091 

4 0.639 0.110 0.052 0.058 0.072 0.068 

6 0.651 0.122 0.050 0.054 0.063 0.059 

2,500 

2 0.619 0.080 0.049 0.067 0.094 0.091 

4 0.639 0.110 0.052 0.058 0.072 0.068 

6 0.651 0.122 0.050 0.054 0.063 0.059 

3,500 

2 0.644 0.096 0.051 0.060 0.072 0.079 

4 0.655 0.127 0.053 0.053 0.063 0.049 

6 0.667 0.136 0.052 0.049 0.054 0.041 

0.9 

500 

2 0.516 0.012 0.018 0.049 0.134 0.271 

4 0.614 0.025 0.020 0.043 0.098 0.200 

6 0.651 0.028 0.020 0.040 0.091 0.169 

1,500 

2 0.735 0.019 0.020 0.039 0.075 0.112 

4 0.784 0.031 0.021 0.034 0.054 0.076 

6 0.809 0.035 0.020 0.029 0.044 0.064 

2,500 

2 0.839 0.029 0.019 0.027 0.038 0.047 

4 0.863 0.039 0.020 0.024 0.028 0.026 

6 0.871 0.043 0.019 0.021 0.022 0.023 

3,500 

2 0.864 0.033 0.019 0.024 0.029 0.030 

4 0.871 0.043 0.019 0.020 0.025 0.021 

6 0.876 0.047 0.019 0.019 0.021 0.018 
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APPENDIX E. RTA METHODS WITH ANALYTICAL SOLUTIONS FOR 

FRACTURE SURFACE AREA 

 

Table E.1 Comparison of the original and modified RTA methods. 

 
 
 
 
 
 

𝑨√𝒌 method proposed by 

Wattenbarger et al. (1998) 

Modified RTA method proposed by 

Pelaez-Soni et al. (2017) 

1/qD 
𝑘ℎ[𝑚(𝑝𝑖) − 𝑚(𝑝𝑤𝑓)]

1424𝑞𝑔𝑇
 

𝑥𝑓ℎ[𝑚(𝑝)𝑘𝑖 − 𝑚(𝑝)𝑘]

2236𝑞𝑔𝐿𝑇
 

tD 
0.00633𝑘𝑡

(𝜙𝜇𝑐𝑡)𝑖𝑦𝑒
2

 
0.00633𝑘𝑡𝑎𝑝

𝜙𝐿2
 

m(p)  m(p)k 2 ∫
𝑝

𝑧𝜇

𝑝

𝑝0

𝑑𝑝 2 ∫
𝑘𝑔𝑝

𝑧𝜇

𝑝

𝑝𝑏

𝑑𝑝 

t  tap  t 𝑡𝑎𝑝 = ∫
𝑘𝑔

𝜇𝑐𝑡

𝑡

0

𝑑𝑡 

mcp  mcpk 
315.4𝑇

𝑥𝑓ℎ√(𝜙𝜇𝑐𝑡)𝑖

∙
1

∆𝑚(𝑝)√𝑘
 

315.4𝑇

𝑥𝑓ℎ√(𝜙)𝑖

∙
1

∆𝑚(𝑝)𝑘

 

AFrac 𝑓𝑐𝑝 ∙
1261.2𝑇

𝑚𝑐𝑝√(𝜙𝜇𝑐𝑡)𝑖

∙
1

∆𝑚(𝑝)√𝑘
∙ 𝑛 𝑓𝑐𝑝 ∙

1261.2𝑇

𝑚𝑐𝑝√(𝜙)𝑖

∙
1

∆𝑚(𝑝)𝑘

∙ 𝑛 
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Figure E.1 Flow chart of modified RTA method proposed by Pelaez-Soni et al. (2017). 
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APPENDIX F. IMPACT OF DYNAMIC PERMEABILITY ON HISTORY 

 

 
Figure F.1 History-matching and optimization results with and without dynamic 

matrix permeability model.  
 

 

 

 

 

 

 

Table F.1 Comparison of optimization results with and without dynamic matrix 

permeability model. 

 xf w0 η ϕ k0 m Pmax nfrac 

 ft in psi-sec  mD  psi  

Dynamic perm 427 0.278 1.86E+12 0.069 0.0419 0480 10,334 33 

Constant perm 413 0.304 4.42E+12 0.075 0.0020 1.000 1.0E+10 13 

 


