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ABSTRACT 

 

Distribution Transformer (DT) is an integral component of a distribution network. Electric 

utilities have invested interest in reducing DTs failure rates. This paper presents a method for 

prediction of probability of DT failure by analyzing a correlation between weather data and 

historical DT failure data. Logistic regression prediction model is used in order to predict DT 

failure, and to extract the correlation between weather parameters and DT failure rates. Accuracy 

of prediction is reliable, which is presented using evaluation metrics. This method not only has a 

vital significance for the maintenance of DTs, but also improves the economic efficiency and 

reliability of distribution network operation. 
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NOMENCLATURE 
 

 DT                         Distribution Transformer 

AT                          Average Temperature 

HT                          Highest Temperature 

RH Relative Humidity 

MWS                      Maximum Wind Speed 

WG Wind Gust 

PT                           Precipitation 

AUC Area Under the Receiver Operating Characteristic Curve 

ROC                       Receiver Operating Characteristics 

LV                          Low Voltage 

KMA                      Korea Meteorological Administration 
 
tp                            true positive 
 
fp                            false positive 
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1. INTRODUCTION 
 

Firstly, the importance of distribution (DT) and the causes of DT failure is addressed. The 

portion of weather factors as a main cause of DT failure is pointed out. After we look over the 

impact of DT failure dividing quantitative losses and qualitative losses, then the research objective 

is considered.  

 

1.1 Motivation 

The Distribution Transformer (DT) is a vital link in the chain of power apparatus supplying 

electric power to the customers [1]. DT failures have a major financial impact on both utility 

company and customers. The utility companies invest large amount of money annually for 

maintenance of distribution transformers [2, 3]. Utility customers may experience loss of power 

due to transformer failures, which also translates to a potential economic impact for the customers 

[1]. Likelihood and impact of transformer failure rates is regularly assessed and DTs may be 

replaced according to set of criteria during the evaluation [1]. However, there is still a limited 

capability to mitigate DT failures caused by weather [4, 5]. A practical utility example given in 

Table 1 [6] illustrates that the rate of DT failures caused by weather is still high and presents the 

second highest cause after aging, also affected by weather.  

Table 1.1: The causes of DT failure from JeonllaNambo of South Korea (2011-2018) [6] 

 

Cause The number Rate [%] 
Aging 337 27.2 
Weather 333 26.9 
Corrosion 155 12.5 
Animal contact 145 11.7 
Lack of maintenance 92 7.4 
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Table 1.1: (continued) The causes of DT failure from JeonllaNambo of South Korea  [6] 

Cause The number Rate [%] 
Overloading 87 7.0 
Foreign objects 25 2.0 
Tree 18 1.5 
People error 16 1.3 
Manufacture error 15 1.2 
Flooding 13 1.0 
Installment error 3 0.2 
Fire 1 0.1 
Total 1,240 100 

 

1.2 The impact of DT failure  

When we talk about impact of losses due to outages occurrence, we can divide them into 

quantitative losses and qualitative losses. They matter significantly for both utilities and customers.  

The quantitative losses include workforce time engagement and economical loss. Once failure 

occurs, employees in utility company respond to the complains of customers who experienced 

outage, by providing maintenance or replacing equipment. This process can take from one day up 

to a week depending on the kind of an outage. The employees may have to delay their own 

scheduled work while dealing with a sudden and unexpected outage problem and have additional 

urgency taking care of customers who experience outage. Sometimes even the mental stress caused 

by communicating with angry customers may have a large impact on employee’s work efficiency 

[7]. In addition, utility company faces an economic loss by not selling electricity during the time 

of an outage, and maintenance cost imposed by replacement of failed equipment. [8]  

When it comes to qualitative losses, utility company may lose the trust by the customers about 

reliability of their service [9]. Especially when it comes to customers who run their own 

commercial business, utility can lose customer’s trust even for a short outage, which may create 

substantial economic loss for customers [10]. As a result, utility company may have high 
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probability of losing future customers because customers who experience a sudden outage can 

transfer to another utility company if available. 

 

1.3 Research Objective  

The utility companies have many challenges to prevent DT failure. There are various causes 

of DT failure, which are aging, weather, corrosion, animal contact, out of maintenance, 

overloading, etc. (see Table1).  The utilities study these causes and implement diagnosis to try to 

decrease these factors [11].  In some cases, it is not obvious what combination of the causes has 

the higher impacts on DT failures, so researching the cause-effect relationship between weather 

parameters and failures requires further efforts [12, 13]. Our research identifies weather predictors 

causing DT failure, and analyzes how they correlate by presenting probability prediction. If utility 

companies embrace such methods in the future, they can be utilized as an essential risk-based 

decision-making tool, which is proactive.  

 

1.4 Conclusions  

The impact of DT failure is extensive, from economic loss to the loss of customer’s reliability. 

Therefore, it is essential for the utility companies to try to decrease impact of DT failure. The 

predictive methods of DT failures caused by weather have not been addressed extensively in the 

past. This is because weather is not precisely predictable and there is limitation in being able to 

prevent DT failure due to strength and volatility of nature. Thus, if we analyze the correlation 

between DT failure rates and weather parameters, and prepare for future weather based on weather 

forecast, failure could be reduced by advanced implementation of mitigation methods such as 

timely positioning field crews or timely replacement or repair of transformers 
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2. SURVEY OF PRIOR WORK 

 

In this section, we take a look at different maintenance practice and published work by others. 

The difference and limits between them and my research are analyzed. Based on studying the prior 

work, I present the research topic that I will be focusing on for my research.  

 

2.1  Different maintenance practice 

The causes of transformer failure are separated into fundamental and derived causes [12, 14]. 

The fundamental causes are failures that occur in the secondary interior components of the 

transformer due to mechanical, electrical or thermal stress such as winding, bushing, tap, core, 

tank, protection system, and cooling system [14, 15, 16]. On the other hand, derived causes are 

deduced from primary causes causing failure, which are aging, weather, overloading, corrosion, 

lack of maintenance, animal contact, installment error, and etc. Our research considers also some 

extra causes of DT failure. In summary, many factors are affecting DT failure comprise aging, 

weather, overloading, corrosion, out of maintenance, animal contact, installment error, people’s 

error, etc. in JeonllaNamdo (see Table 1). Among the causes, aging, corrosion and overloading 

constitute 47%, which combined is the largest reason (Table 1). While we sampled one region of 

South Korea, the causes of DT failure in other regions are representative of the entire country. In 

order to decrease the failure rate caused by aging, corrosion and overloading, utility company 

implements different methods including internal inspection. It comprises of visual examination 

such as checking oil leakage and internal pressure [15], electric measurements for electrical 

insulation resistance tests [14], short circuit test [15, 17], leakage current measurement [15, 18], 
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and gas chemical tests such as Dissolved Gas Analysis (DGA) [19,20], Furan Analysis [21] , 

Health Index [22, 23] and infrared thermography [19, 24].   

 It is relatively easy to figure out faults of DT by visual inspection and electric measurement 

methods because it takes short time to perform tests and the visibility of impacts is clear.  However,  

to identify DT fault by visual inspection and electric measurements may not be sufficient. In 

contrast, DGA is currently the most accurate method to verify the internal status of insulation of 

gas and oil-paper transformer to determine a need for maintenance [25]. But, it takes a lot of time 

to carry on the procedure, and it is costly to implement for all transformers. In addition, extracting 

oil from on-site pole mounted transformer for DGA is a dangerous work, and also not convenient 

from the operation standpoint because DT has to be de-energized. To solve these problems, Furan 

analysis is introduced. It takes very short time because the result of test comes out on site instantly, 

but the approach been still studied, and not standardized until now [21]. The Health Index 

represents a practical tool that combines the results of operating observations, field inspections, as 

well as site and laboratory testing providing the overall health of the asset. The Health Index can 

effectively be employed but it needs justification for a capital plan because it needs various 

diagnosis tools to implement the analysis. Furthermore, infrared thermography is relatively easy 

method, but there is limit that it represents temperature only at a certain time, and it primarily can 

be used for verifying aging of connection components like bushing and connection lines.  

As it may be noted, none of these standard practices in the electric utility consider causes of 

DT failure inflicted by weather.  
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2.2   Published work by others 

 
While there are a quite a few papers that study the causes of DT failure, very limited research 

is done on prediction of weather-related distribution transformer failures. One of them [26] 

analyzes the root causes of failure, overvoltage and overloading, as well as the electrical surge 

affecting the core and winding failure. It considers fundamental causes of DT failure, and does not 

address weather parameters as causes. The other study [27] shows the main causes (Tree, animal, 

contamination, nature disaster, and human) according to geographical regions. This paper focuses 

a classification of causes to impact of regional failure rates of Thailand. According to study about 

DT failure root causes in India [28], they classify utility side and manufacturer sides. Utility side 

includes prolonged overloading, improper LT and HT protection, single phase loading, unbalanced 

loading, and etc. while there are poor insulation covering on conductor, improper joints and 

connection, and incomplete drying, and etc. as causes of manufacturer side. It mentions extreme 

weather as a one of external causes, however, does not consider the weather parameters as a 

principal cause. Literature explains how the causes of DT failure, represented through a diagnosis 

values represent current status of a DT. The insight into weather parameters related causes is 

largely missing. Some studies analyzed lightning impact, but without the insight into complete 

weather parameters [29, 30, 31]. Their focus was on finding the causes of mechanical external 

failure. Such analysis focuses on lightning-induced voltages and correlation between low voltage 

surge arresters and grounding resistance [32].  

When it comes to studying prediction of DT failure, one of the references creates an algorithm 

for predicting the probability of failure applying extreme value theory [33]. This research of 

prediction generates a derivation from expected valued using an extreme distribution, however, it 

does not provide decision-making tool. In this study, they extract history data and current status of 
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DT using sensor measurement are considered. It utilizes the degree of polymerization value in 

order to identify overall health of the insulation paper. Another prediction method, AMI (Advanced 

Metering Infrastructure) reading [34] is used to collect voltage data of DT for the limited period. 

It then analyzes each prediction using various approaches, which are DNN (Deep Neural Networks) 

features using digital signal processing techniques, and gradient-boosting machines [35]. This 

research uses AMI reading as a collection of historical data, but the information about DT health 

is very limited utilizing voltage. The data represents only an overvoltage, which is not enough to 

verify DT failure.   

 

2. 3 Conclusions 

    As explained, utility companies implement various diagnosis and measurement techniques 

according to standard and process. However, DT failure still occurs often, which tells that we 

need to research other approach. Our research provides such an approach by using logistic 

regression to analyze weather-related failures. The main advantage is that it can be used as an 

input to the replacement decision-making process using correlation of weather data, hence 

alleviating the limits of existing maintenance met 
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3. PROBLEM FORMULATION 

 

For problem formulation, we introduce the hypothesis that the weather parameters are expected 

to have high impact on DT failure. Then the hypothesis premise is that the correlation between 

weather data and DT failure can be represented with the probability prediction by using logistic 

regression. Eventually, we present the evaluation of the results by analyzing the AUC (Area Under 

Curve) and coefficient values.  

 

3.1 Research Hypothesis 

The causes of DT failure are various and weather impact accounts for about 27%. Power utility 

company primarily implements diagnosis against causes of aging and overloading of DT. However, 

there is a limitation of insight for failure caused by weather. Utility company personnel know that 

there is correlation between weather and DT failure (Table 1), [36]. But they do not know about 

the correlation between specific parameter of weather and failure. The parameters of weather data 

include lightning, average temperature, highest temperature, relative humidity, maximum wind 

speed, wind gust, and precipitation. Highest temperature, precipitation, and lightning are expected 

to have higher impact on DT failures according to empirical data. The hypothesis premise is that 

the correlation between weather data and DT failure rates can be solved by logistic regression. 

Furthermore, in terms of high temperature, the hypothesis which the probability of failure can 

increase with high temperature by 86℉ or 89.6℉ is assumed.  Therefore, the degree of high 

temperature is classified into 86℉ or below, 86℉ - 89.6℉, and 89.6℉ or above.  
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3.2  Proposed approach  

While the utility companies are aware that there is a correlation between weather and DT 

failure according to their field experiences, typically it is not known which weather parameter is 

most relevant among different parameters, and such correlation is not quantified. In order to verify 

the correlation between weather parameters and DT failure rates, it is necessary to collect historical 

weather and DT failure data. The information of DT failure and historical weather data is processed 

by using logistic regression. The goal of the logistic regression implemented in this study is 

prediction of future failures. We calculate coefficients of correlation between parameters and 

failure and apply to the data test set next. 

Through this method, the degree of correlation between parameters of weather data and DT 

failure is measured and the probability of each failure is calculated. 

 

3.3 Methodology 

Extracting DT failure data is the first step. We will illustrate the process by using an example. 

In our case we are considering data from South Korea associated with Korea Electric Power 

Company. The area where the largest number of failures occurred the most in South Korea is 

selected and events are sorted by the dates of failure and areas. The next step is matching the areas 

of failure and areas where weather stations are located. The weather stations are selected at one of 

the closest locations. The last step is extracting the historical weather data according to the times 

and locations of DT failures. The weather station provides weather data about Lightning [0/1] (LI), 

Average Temperature [℉] (AT), Highest Temperature [℉] (HT), Relative Humidity [%] (RH), 

Maximum Wind Speed [m/s] (MWS), Wind Gust [m/s] (WG), and Precipitation (mm) (PT).  
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The information of DT failure history and associated weather data is analyzed by using logistic 

regression. The AUC and coefficient values are used for the results evaluation.   

 

3.4 Experimental validation 

During testing, we calculated the accuracy of prediction and consider maintenance of DT 

according to result of prediction. Logistic regression is a recognized method for gaining probability 

from relationship between dependent variables and independent variable. The DT failure data is 

extracted from real utility company for the most recent five years. There are 22 cities, 24 branches 

and 16 Korea Meteorological Administration (KMA) weather stations in JeonllaNamdo. The 

historical weather data is extracted from closest KMA location where failure occurs. The region 

of one branch covers on average 225.28mi2. 237 historical DT failures are extracted and weather 

data is also collected according to the dates of these failures. For implementation of logistic 

regression, 148 weather data sets for dates when there was no outage are extracted. The total 

number of weather data samples is 385, which are sum of 237 dates with failure and 148 dates 

without failure. 90% of the total weather data is used for training set and remaining 10% of the 

data is used for testing set. The possible event of failure is one out of two; Y=1 and Y=0, which 

means failure occurrence and no failure respectively. The result is presented by probability of each 

failure and the accuracy of probability is described by using Receiver Operating Characteristics 

(ROC) graph.  

 

3.5  Conclusions 

The weather has an impact on DT failure and it is necessary to figure out the degree of 

correlation between the parameters of weather and DT failure.  The reliable DT failure data and 
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historical weather data are extracted and processed. In order to validate the correlation, logistic 

regression is used and analyzed. The result values of logistic regression are the probability of 

failure events. The accuracy of probability is computed by using training set and test set of failure 

events. Through the decision-making process based on the predictive failure analysis the utility 

company can develop efficient maintenance strategies for DT.   
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4.  DATA SOURCES 

 

In this section, we look over how historical DT failure data and weather data is addressed. 

Especially, we study from what source we select and why we choose the specific data. Thus, we 

elaborate the process of preparing the data for the study and make it methodological.  

 

4.1 Historical outages  

We studied step down transformers (22.9KV-220V) used in the distribution sectors in South 

Korea. The 237 DT failure events we selected comprise the data set. The various predictor 

variables are used for our study for modeling purpose. We also applied preprocessing steps to 

extract useful features and prepare data for prediction algorithm. We collected data for modeling 

outage events used for prediction and analysis starting from year 2011 up to year 2018. Before 

applying the logistic regression, let us go through our adjusted modeling data in simple descriptive 

statistical measures. The historical outages are extracted for five causes: lighting, tree contact, 

snow, rain, and dust. We select weather related parameters among causes of DT failure that utility 

company classifies. The distribution of locations of DT failures is demonstrated by mapping with 

ArcGIS [37] as shown in Fig 1.  
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Figure 4.1: Mapping of DT failure in JeonllaNamdo 
 
 
 

 
 

Figure 4.2:  JeonllaNamdo area [38] 
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The region is JeonllaNam-do in South Korea and the size of the region is 4,729mi² with the 

popularity of 190 million and 842,668 households. It consists of 22 cities as described in Fig. 2, 

which account for 12.3% of the entire land area. The JeonllaNam-do area ranks first in the number 

of DTs and poles, route length and the length of low voltage lines in Korea as shown in Fig 3 and  

Fig 4. There are 1,447,320 poles and 242,577 DTs in JonllaNamdo area (see Table 2), which 

accounts for the largest portion in the country.  Furthermore, the area has more countryside and 

seaside coverage, more than in other states, which make it is more vulnerable to weather impacts.  

 
 

 
 

Figure 4.3:  Distribution facilities in Korea [38] 
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Figure 4.4:  The comparison of Distribution facilities by region [38]  

 

Table 4.2: Distribution facilities in JeonllaNamdo [6] 
 

 

 
 

From 1/1/2011 to 11/2/2018 the number of total outages was 1,025, where failures caused by 

weather account for 237, which represents 24% of the total. The causes of all outages include 

Pole Distribution line Ground line 
(m) Route length 

(c-m) 
Total length 

(m) 

1,447,329 64,706,019 180,300,997 23,442,293 

Transformer Protective Device 

Bank Number 
 

Capacity 
(kVA) 

Breaker Equipment COS 

103,793 242,577 9,251,963 11,868 1,412 71,933 
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lightning, three contact, snow, aging, overload, bird contact, people fault, installation fault, 

manufacture fault, corrosion, fire, etc. 

The data used for the logistic regression is extracted from outages caused by weather. Aging 

and overload are related to temperature. Since those are not direct causes, they are excluded.  

The dates which have outages caused by weather are denoted as Y=1 and the dates which don’t 

have any outages are denoted as Y=0, and historical weather data are extracted for those dates.  

JeonllaNamdo consists of 22 cities (see Table 3), and the size of cities averagely 225.28 mi².  

 

Table 4.3: Size of a city in JeonllaNamdo [38] 
 

No. City Size (mi$) 

1 Kwangju 193.51 

2 Mokpo 19.94 

3 Yeosoo 197.12 

4 Sooncheon 351.73 

5 Naju 234.90 

6 Kwangyang 178.81 

7 Damyang 175.72 

8 Koksung 211.38 

9 Gurae 171.14 

10 Goheong 311.72 

11 Bosung 256.33 

12 Hwasoon 303.83 

13 Jangheong 240.28 

14 Kangjin 193.41 

15 Haenam 398.21 

16 Youngam 233.27 

17 Mooan 173.64 
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Table 4.3: (continued) Size of a city in JeonllaNamdo [38] 
 

No. City Size (mi$) 

18 Hampyeong 151.39 

19 Youngkwang 183.38 

20 Jangsung 200.16 

22 Wando 153.07 

22 Jindo 169.93 

23 Sinan 253.25 

 

4.2  Historical weather data 

The region is located in the southwest part of South Korea, thus has many areas, which spread 

along long seaside as shown in Fig 1 and in Fig 2. This is the reason it has a strong oceanic climate.  

The climate of the region has different properties of weather between seaside cities vs islands and 

inland mountainous areas. The average of highest temperature from 2011 to 2015 is 94.46℉ as 

values given in Fig 5 suggest, and the average temperature in August is 78.62℉ as described in 

Fig 6. Additionally, there is a lot of precipitation in the region in April and August with an average 

of 159.6 mm as shown in Fig 7.  
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Figure 4.5: Temperature by year in JeonllaNamdo [38] 

Figure 4.6: Average Temperature by month in JeonllaNamdo [38] 
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 Figure 4.7: Precipitation by month in JeonllaNamdo [38] 

 

The historical weather data is extracted from Korea Meteorological Administration (KMA). 

Branches of utility company in JeonllaNamdo are 24, and 13 branches coincide with locations of 

KMA (see Table 4). In ‘consistency’ section of table 4, ‘Consistent’ means a branch and a KMA 

station are located in the same city. There are 16 KMA stations in JeonllaNamdo [39] area, and 

the branches which don’t have KMA stations are selected nearest to the existing KMA locations.  

 

Table 4.4: Distribution Branches and KMA station locations [38, 39] 
  

 

 

                                                

 

No. Branches KMA place Consistency 

1 Kangjin Kangjin Consistent 

2 Koheoung Koheoung Consistent 

3 Koksung Sooncheon  

4 kwangsan Kwangju  
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Table 4.4: (continued) Distribution Branches and KMA station locations [38, 39] 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

KMA stations provide weather factors as follows: average temperature [˚F], the highest 

temperature [˚F], the lowest temperature [˚F], relative humidity [%], cloudiness, irradiation 

(MJ/𝑚$),		sunshine [hour], average wind speed [m/s], maximum wind speed [m/s], wind gust [m/s], 

snow depth [cm], precipitation [mm], lightning [with/without], and evaporation [mm]. We selected 

average temperature [˚F], the highest temperature [˚F], relative humidity [%], maximum wind 

speed [m/s], wind gust [m/s], snow depth [cm], precipitation [mm], lightning [with/without] as 

No. Branches KMA place Consistency 

5 Kwangyang Kwangyang Consistent 

6 Kwangju Kwangju Consistent 

7 Naju Kwangju  

8 Damyang Kwangju  

9 Mokpo Mokpo Consistent 

10 Mooan Mokpo  

11 Bosung Sooncheon  

12 Seokwangju Kwangju  

13 Sooncheon Sooncheon Consistent 

14 Sinan Jindo  

15 Yeosoo Yeosoo Consistent 

16 Youngkwang Youngkwang Consistent 

17 Youngam Kwangju  

18 Wando Wando Consistent 

19 Jangsung Kochang  

20 Jangheoung Jangheoung Consistent 

21 Jindo Jindo Consistent 

22 Hampeung Youngkwang  

23 Haenam  Haenam Consistent 

24 Hwasoon Kwangju  
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weather variables. We did not choose cloudiness, irradiation [MJ/𝑚$],		sunshine [hour], and 

evaporation [mm], the lowest temperature as parameters since these are not related to causes of 

DT failure based on papers that analyze causes of DT failure [22, 15, 16, 27]. Snow depth variable 

is selected, however, there was no date when there was snow among selected dates. Hence, snow 

depth is excluded from parameters of weather data.  

The weather parameters that are taken into account are shown in Table 5.  

 

Table 4.5: Parameters of weather data 

 
 
4.3  Economic evaluation of the failure impact  

When failure occurs, the utility utilizes lots of time to restore service and labor of employees 

to repair equipment. Most of employees spend one or two days dealing with work orders about the 

customer’s complains and repairing or replacing DT. In addition, the utility cannot sell electricity 

during the time of failure. It usually takes four hours to replace old DT and the loss of electricity 

causes loss of revenue from 20 to 150 customers connected to the transformer during this time. In 

the long term, customers may lose faith in supply of electricity, and there is a high chance for 

utility to lose the customers in the future. From the customer’s point of view, they experience 

sudden outage, without any warning. If they run business directly attending a service for customers, 

they might not be able to provide such service to their customers and as a result they experience 

Lightning [0/1]  

(LI) 

Average 

Temperature [˚F] 

(AT) 

Highest Temperature 

[˚F] (HT) 

Relative Humidity [%] 

(RH) 

Maximum Wind Speed [m/s] 

(MWS) 

Wind Gust [m/s] 

(WG) 

Precipitation [mm]  

(PT) 
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an economic loss. Most of customers who experience outage don’t receive compensation and they 

consume the economic burden caused by the outage leaving them unhappy about the experience.  

 

4.4  Conclusions 

The region where DT failures occur is selected by criteria such as area that failures occur the 

most, the number of distribution facilities such as pole mounted DT, and length of distribution 

lines. In addition, the reason that this specific area is chosen is the number of historical weather 

events such as storm, rain, lighting etc. The historical weather data is extracted from Korea 

Meteorological Administration stations. They provide the weather data on their website without 

cost. The KMA stations closest to the locations where DT failures occurred are selected.  
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5. PREDICTION MODEL 

 

The theoretical foundation, which it is the most important part of this research, is related to the 

prediction model. We study the reasons why we consider logistic regression as a prediction model 

for my research, and take a look at specific theory and mathematical foundations. Finally, it is 

demonstrated that logistic regression is the most appropriate method to represent correlation 

between weather parameters and DT failure.  

 

5.1 Prediction Model  

The goal of this research is to estimate the probability of DT failure caused by weather. 

For this purpose, logistic regression, a probabilistic nonlinear discriminant classifier, is 

considered as the method. Logistic regression is the fitting regression analysis to execute in 

the case that the dependent variable is binary. Logistic regression is useful for explanation of 

the relationship between one dependent binary variable and one or more independent 

predictors. In addition, the more familiar method of maximum likelihood is adopted, because 

it has better statistical characteristics. Maximum likelihood is a very broad method that is 

used to fit the non-linear models that we research. Finally, the condition that DT failure 

caused by weather takes binary values (i.e., failure/no failure) satisfies selection of logistic 

regression. Since there is a limit of modeling by a linear function due to complexity of the 

correlation between weather parameters and DT failure, logistic regression model is able to 

represent the correlation between DT failure and weather parameters through a non-linear 

function. In addition to such modeling advantage, logistic regression model can also inherit 

the advantage of classical linear regression in terms of coefficients interpretation. [40] 
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5.2 Logistic Regression  

Logistic regression is used for modeling a binary response (i.e., failure/no failure) in many 

applications [41, 42]. This model estimates the probability of the response occurring P(X) = 

Pr (Y=1│X) through a nonlinear function of explanatory variables X. In this study, it is 

natural that the response variable Y is a DT failure, i.e., 1 (failure) and 0 (no failure), and 

weather predictors like Lightning (LI), Average Temperature (AT), Highest Temperature 

(HT), Relative Humidity (RH), Maximum Wind Speed (MWS), Wind Gust (WG), and 

Precipitation (PT) are available for modeling logistic regression. Specifically, X is n × (p+1) 

design matrix where n is the number of observations and p is the number of weather predictors. 

Naturally, the number of coefficients is eight by seven predictors and an intercept. The 

corresponding coefficients β of predictors designate the effect of the weather predictors on 

the probability of DT failure in Eq (1).  

 

𝛃 = [β.,… , β0]1                                                          (1) 

 

In Eq (1), β. is an intercept that when every weather variable is set to zero.  β2 ~ β0 are 

the effects of the corresponding weather variables on the probability of DT failure: LT, AT, 

HT, RH, MWS, WG, and PT respectively.  

 The basic intuition behind using maximum likelihood to fit a logistic regression model is as 

following Eq (3): we seek estimates such that the predicted probability of failure for each 

individual DT is most likely to agree with its observed failure. This intuition can be formalized 

using the mathematical Equations (2) called a likelihood function.  
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ℓ(𝛃) = 	∏ 𝑝(𝑥8)			∏ (1 − 𝑝(𝑥8;	)8;:=>;8:=>?2                                    (2) 

 

𝜷A =	max
D

ℓ(𝛽)                                                             (3) 

 

The estimates βF., … , βF0 are chosen to maximize this likelihood function.  

We model 𝑝̂(𝒙) using a function that gives outputs between 0 and 1 for all values of 𝑥. 

In logistic regression, we use the logistic function with discrete values.  

Once the coefficients have been estimated  by using Eq (3), the probability of failure is given 

by 

𝑝̂(𝒙) = I𝒙
𝑻𝜷A

2KI𝒙𝑻𝜷A
                                                           (4) 

 

5.3 Conclusions 

Logistic regression is used as a way to build a probabilistic classifier in this research. Each 

probability of DT failure is computed according to historical DT failure data and weather data. We 

use maximum likelihood function to fit a logistic regression model, and the coefficients of 

parameters of weather data are calculated by using logistic regression model.   
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6. RESULTS EVALUATION 
 

Lastly, we discuss the experimental setup and model evaluation. In terms of evaluation metrics, 

AUC significance and coefficient analysis are used for analysis of the results. Every probability of 

DT failure event is calculated and we expect the results are analyzed appropriately by using 

evaluation metrics.  

 

6.1 Data Processing 

The causes of transformer failure are various such as aging, weather, animal contact, 

overloading, corrosion, out for maintenance, installment fault and people caused fault. The 

extracted failures for this study are the ones caused by weather. The date of failure is used to collect 

weather data during the failure occurrence. The weather data for the date with no outages is also 

collected because it is necessary for calculating the area under ROC curve. When selecting dates 

of no outage, not only outages caused by weather but also outages caused by other factors are 

excluded. The dates of no outage are selected with the same time interval AS used between the 

dates of outages. In addition, KMA data is chosen from the closest station from a branch of the 

utility company where DT failure occurs.  

Every weather variable except for lighting is a continuous variable. Lightning variable is 

classified into 0 (without lighting) and 1 (with lightning).  

 

6.2 Experimental Setup 

All DT failures have their own failure number and date, and the failure data spans from 2011 

to 2018. The weather data is correlated through the date and location of failure [39]. The historical 

DT failure data is divided into the training and testing sets. Training and testing sets are used for 
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model validation. Out of entire data set some portion of the population for training is selected to 

build prediction model, then prediction model can be validated by getting the predictions on the 

remaining observations called testing set. We select the proportion 90:10 for training and testing 

sets. The total number of DT failure is 237, and 90% of the total is selected for the training set. 

The remaining 10% of the data is used for the testing sets for model estimates. There is total of 

148 of no failure cases used.  

The probability of the occurrence of 385 weather data sets is represented as a result of logistic 

regression.  When a probability of DT failure is lower than 0.5, we show Y=0, and when a 

probability is above 0.5, we assign Y=1. The degree of high temperature (HT) is classified into 

two temperature thresholds such as 86℉ and 89.6℉ in order to make interpretation of HT 

coefficient precisely. The basic loading of distribution transformer for a normal life expectancy is 

continuous loading under a constant 30°C (86℉) ambient temperature as discussed in [43].  

 

6.3 Model Evaluation and Effect of Predictors  

To evaluate logistic regression, Receiver Operating Characteristics (ROC) [44] graphs are 

useful for organizing classifiers and visualizing their performance. The Area Under Curve 

(AUC) [45] is used, and the estimated coefficients quantify the effect of weather on the 

probability of failure. AUC is the most popular metric for visualizing the performance and 

analyzing the coefficient serves as intuitive interpretation of the effects of predictors. 

 

 

 

 



 

28 
 

 

6.3.1 AUC significance 

 

Figure 6.8: Confusion matrix and common performance metrics  

 

To distinguish between the actual class and the predicted class, we use the labels Y, N for the 

class predictions produced by a model as shown in Fig 8 [23]. There are four possible cases. If the 

prediction is failure when real value is failure, it is true positive, and if the prediction is failure 

when real value is no failure, it is false negative. On the other hand, if the prediction is no failure 

when real value is no failure, it is true negative, and if the prediction is no failure when real value 

is failure, it is false positive.   

The true positive rate of a classifier is estimated as                  

tp	rate	 ≈ 1QRI	STU8V8WI
1TVXY	STU8V8WIU(VQRI	STU8V8WIKZYXUI	STU8V8WI)

    

The false positive (fp) rate of the classifier is estimated as 

fp	rate	 ≈
𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 
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Figure 6.9: An example of ROC Curve 

 

ROC (Receiver Operating Characteristics) graphs [45] are two-dimensional graphs in which 

tp rate is plotted on the Y axis fp rate is plotted on the X axis as shown in Fig 9. An ideal ROC 

curve will approach the top left corner, so the larger the AUC the better the performance. This is 

because if the false positive value shown on X-axis is smaller, and the true positive value on Y-

axis is larger, the larger the Area Under Curve (AUC), which means that the accuracy of the model 

is high as shown in Fig 9.  

 

6.3.2 Coefficient analysis  

     Coefficients show how the corresponding predictors have an impact on an outcome by 

describing the magnitude. Seven weather predictors are shown in X-axis and magnitude of the 

corresponding coefficient values are represented in Y-axis as shown in Fig 10. It shows which 

weather parameter among variables such as LI, AT, HT, RH, MWS and PT has the largest effect 

on DT failure.  
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Figure 6.10: An example of coefficient value graph 

 

6.4 Results 

The partial results from predicting probability of DT failure can be represented as given in 

Tables 6, 7, and 8. The prediction results by logistic regression are summarized in the Table 9. 

 

Table 6.6: Probability of DT failure (HT: 86℉ or below) 

 

LI AT HT RH MWS WG PT Failure 
(Y=1/0) 

Logistic 
Prob. 

Logistic 
Pred. 

1 71.96 low 192 4.7 13.7 180 0 0.961671 1 
1 70.7 low 138 7.1 12.8 17.2 0 0.874356 1 
1 34.34 low 163 12.4 18.8 0.2 0 0.936093 1 
1 78.98 low 222 5.8 10.9 15.9 0 0.941851 1 
0 40.1 low 152 14.2 21.7 1 0 0.743072 1 
0 68.36 low 135 7.3 13.8 22.3 0 0.550675 1 
0 48.38 low 121 6.1 8.7 0 0 0.425061 0 
1 81.14 high 128 5.7 9.3 13 0 0.867763 1 
0 73.04 high 107 4 7 2.5 0 0.396732 0 
0 76.28 high 145 4.5 8.1 50.5 0 0.595443 1 
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Table 6.7: Probability of DT failure (HT: 86℉ - 89.6℉) 

 

 

 

Table 6.8: Probability of DT failure (HT: 89.6℉ or above) 

 

The prediction of probability according to an event is presented in Table 9.  

 

LI AT HT RH MWS WG PT Failure 
(Y=1/0) 

Logistic 
Prob. 

Logistic 
Pred. 

0 54.86 low 115 13.3 17.4 48.1 0 0.761106 1 
1 70.7 low 138 7.1 12.8 17.2 0 0.854838 1 
1 77.36 low 216 14.5 20.8 57.2 0 0.979367 1 
1 60.98 low 195 6.2 10.7 12.6 0 0.868762 1 
0 56.66 low 212 5.8 21.6 21.6 0 0.667786 1 
1 63.14 low 162 5.2 0 0 0 0.782837 1 
0 68.36 low 135 7.3 22.4 22.4 0 0.621972 1 
1 71.06 low 66 8.4 0.1 0.1 0 0.724282 1 
0 67.64 low 170 4.6 10 10 0 0.537834 1 
1 76.1 low 203 5.9 86.1 86.1 0 0.970742 1 

LI AT HT RH MWS WG PT Failure 
(Y=1/0) Logistic Prob. Logistic 

Pred. 
1 75.92 low 168 4.2 5.7 0 0 0.828777 1 
1 53.24 low 149 6.1 8.5 0 0 0.79653 1 
0 31.46 low 154 4.5 13.7 1.3 0 0.405346 0 
1 74.66 low 219 9 12.4 12.4 0 0.922829 1 
1 81.14 high 128 5.7 9.3 13 0 0.861096 1 
0 75.38 low 127 4.3 6.9 0 00 0.446147 0 
1 71.96 low 192 4.7 13.7 180 0 0.982402 1 
1 77.54 low 209 7.7 10.4 52.6 0 0.94545 1 
1 67.28 low 220 11.9 24 92 0 0.972105 1 
1 72.5 low 113 11.5 16.9 45 0 0.909012 1 
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Table 6.9:  Event Vs. Prediction of failure 

Degree 
of HT 

Failure(Y/N) Prediction 
Y=0 Y=1 

86℉ or 
below 

Y=0 113 47 
Y=1 35 190 

86℉ -
89.6℉ 

Y=0 112 47 
Y=1 36 190 

89.6℉ or 
above 

Y=0 111 54 
Y=1 37 183 

 

For the case of 86℉ or below, 113 cases are predicted as no failure (i.e., Y=0), and 47 cases 

show prediction that there will be a failure (i.e., Y=1). For the cases of 86℉-89.6℉, and 89.6℉ or 

above, 112 events and 111 cases are predicted as no failure respectively. On the other hand, 190 

cases in 86℉-89.6℉ and 183 cases in 89.6℉ or above have prediction of failure (see Table 9). The 

accuracy of prediction the condition of 86℉ or below is 0.789 by calculating (113+190)/384 in. In 

the cases of 86℉ - 89.6℉, and 89.6℉ or above, the accuracy of prediction is 0.786 ((112+190)/384) 

and 0.766 ((111+183)/384) respectfully. For 86℉ or below, the accuracy of prediction of 

probability is the highest. 

The AUC is 0.796, 0.798 and 0.764 in HT 86℉ or below, 86℉ - 89.6℉, and 89.6℉ or above 

respectively as shown in Fig 10, which means the result can be considered as very good. The AUC 

of HT 86℉ and below have the highest values (see in Fig 11, a)). HT is divided by three groups 

(0/1) according to the temperature. We assume that probability of DT failure would increase by 

HT. Three section of HTs such as 86℉ or below, 86℉-89.6℉, and 89.6℉ or above are selected. 

For example, for a certain temperature below 86℉, the probability is 0 and if the temperature is 

above 86℉, the value is 1. 
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Figure 6.11: ROC for classification by logistic regression 

 

 

 

 

a) HT: 86℉ or below 

  

b) HT: 86℉ - 89.6℉ c) HT: 89.6℉ or above 
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Table 6.10: Coefficient values 

 

 

 

 

 

 

The positive coefficient of the predictor indicates that the predictor increases the probability 

of DT failure, while the negative coefficient makes the probability of DT failure decrease. That is, 

predictor with the positive coefficient is the most relevant contributor to the failure, and predictor 

with the negative coefficient is the least relevant contributor to the failure. The positive coefficient 

is likely to have an effect on failure, and on the other hand, negative coefficient is less likely to 

have an influence on failure. The coefficients for DT failure as shown in Table 10 and in Fig 12, 

which are LI, AT, HT, RH, MWS and PT, have all positive values. Lightning is the most influential 

coefficient, since it is the biggest one and high temperature is the second. 

Degree of HT LI AT HT 
86℉ or below 1.7455 0.003565 0.21771 
86℉ - 89.6℉ 1.4329 0.007634 0.30125 

89.6℉ or above 1.3649 0.010839 0.78165 

RH MWS PT 
0.01176 0.13367 0.005994 
0.008571 0.0823 0.01289 
0.007447 0.060257 0.01922 
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Figure 6.12: Coefficients value estimate 

 

We realize that lightning and higher temperature, especially 89.6℉ or above have the biggest  

effect on DT failure as shown Fig 12 c). For the coefficient value of HT, there is no huge 

differences between 86℉ or below and 86 ℉ - 89.6℉ from 0.21771 to 0.30125 in Table 10. 

However, the value increases for 89.6℉ or above as 0.78165. The Average Temperature has low 

correlation but it is positive. In the case Average Temperature is positive, HT coefficient turns into 

 

a) HT: 86℉ or below 

  

b) HT: 86℉ - 98.6℉ c) HT: 89.6℉ or above 
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the important factor, which is in turn associated with higher probability of DT failure. On the other 

hand, Relative Humidity, Maximum Wind Speed, and Precipitation have a low positive correlation. 

 

6.5 Conclusion 

The logistic regression model is used to be calculated the probability for different types of 

weather caused failures. In addition, the prediction model shows relatively high-level accuracy, 

where the average AUC is 0.78. Every parameter has positive value, and Lightning and HT is the 

most important factor that affects the DT failure. HT has more effect on failure when it has high 

temperature such as 89.6℉ or above.   
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7. RESEARCH SUMMARY AND FUTURE WORK  

 

In this last section, research summary is discussed. We summarize the discovery associated 

with results, and then we look further what will need to be studied more in the future research.  

 

7.1 Research summary 

The Thesis describes the use of a logistic regression prediction model for estimation of 

probability of distribution transformers failure by using correlation of weather parameters. The 

main findings of our study are: 

•   The variety of weather predictors causing DT failure are identified as being Lightning [0/1], 

Average Temperature [℉], Highest Temperature [℉], Relative Humidity [%], Maximum Wind 

Speed [m/s], Wind Gust [m/s], and Precipitation [mm].  

•    The prediction model shows high-level accuracy, where the average AUC is 0.78. Each 

AUC is 0.796 in case of HT 86℉ or below, 0.798 in condition of HT between 86℉ - 89.6℉, and 

0.764 in HT 89.6℉ or above.  

•   The coefficient values estimate show that all weather predictors, LI, AT, HT, RH, MWS 

and PT, with three HT conditions have positive value indicating all predictors have positive effect 

on failure. Lightning and HT being the most important factor which affect the DT failure. HT has 

more effect on failure when it reaches high temperature such as 89.6℉ or above.  

•   The hypothesis which the probability of failure can increase with temperature by 86℉ or 

89.6℉ is proven through categorizing the degree of high temperature, and this work quantifies the 

risk of DT failure by coefficient analysis. There is a substantial increase in risk.  
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•  This work provides more reliable model than existing physical-based model that are not 

considered in physical-based model.  

Ø Utility Benefits  

•  The approach is a fundamental step to predicting not only DT failure but also other outages 

of other components in the power network. 

•   The logistic regression can be applied for other variables such as Health Index, historical 

maintenance work as well as weather variable. Therefore, the prediction of failure can be more 

accurate, and it covers every cause of DT failure by addressing comprehensive causes.  

•   The risk analysis of each DT enables when all DT data of distribution grids are used as well 

as DT failure data. Through this work, utility company is able to utilize proactive maintenance in 

preparation for lighting and heat wave as a strategy of choice and concentration.    

•  Utilities can create more precise criteria by defining future weather data as one of the 

maintenance criteria. By using the maintenance criteria, DT failure rate can be declined, and losses 

of utility company and customers will decrease.  

 

7.2 Future work 

The parameters of weather data are correlated when considering impact on DT failures. For 

example, Average Temperature is correlated to High Temperature and there is correlation between 

Maximum Wind Speed and Wind Gust and Relative Humidity and Precipitation respectively. In 

order to verify more detailed correlation between variables, further correlation study is needed.  

For analysis of correlation between variables, the least absolute shrinkage and selection operator 

(LASSO) logistic regression [46, 47] can be used. In statistics and machine learning, 

the LASSO  is a penalized regression method that performs variable selection in order to enhance 
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the prediction accuracy and interpretability of the statistical model it produces. LASSO was 

originally formulated for least squares models. This simple case reveals a substantial insight into 

the behavior of the estimator, including its relationship to other method such as a ridge 

regression and best subset selection and the connections between LASSO coefficient estimates 

and so-called soft thresholding. It also reveals that (like standard linear regression) the coefficient 

estimates need not be unique if covariates are collinear.  

 

7.3 Conclusion 

The hypothesis that the probability of failure can increase with high temperature, and a range 

of temperature can be specified is proven through categorizing the degree of high temperature. 

This research quantifies the risk of DT failure over weather variables, and provides more reliable 

model than existing physical-based model by considering various variables. My proactive 

maintenance, DT failure can be reduced, and losses of utility and customers will decrease.  
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