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ABSTRACT

While gravitational effects of dark matter are observed at galactic and larger scales,

other behaviors are more elusive. Two approaches for extra-solar studies of dark mat-

ter interaction are from an energy perspective and through spectral searches. Energy

injections into the intergalactic medium over the age of the Universe from exotic in-

teractions, including dark matter, result in a perturbed gas evolution which has mea-

surable impacts on both the cosmic microwave background (CMB) as well as the 21

cm absorption line. Sizable particle spectra are also produced in areas of dense matter

concentrations. This work studies the effects of energy injections and spectral signals in

the context of dark matter, and limits are placed on multiple models using results from

Planck, Fermi-LAT, MAGIC, VERITAS, AMS, and EDGES. Decaying dark matter is

well constrained by 21 cm absorption, especially for 2e and 2γ modes and most mod-

els with dark matter lighter than 20 GeV. Primordial black hole evaporation strongly

affects both the CMB and the 21 cm line; while the limits from CMB measurements

are comparable to current leading bounds, those from 21 cm absorption are an order of

magnitude stronger. In four-body annihilation models, spectral signals weaken slightly

while the CMB remains mostly unchanged. Gauge boson bremsstrahlung annihilation

improves the reach of velocity suppressed model searches with spectral signals from

the galactic center proving the most stringent.
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1. INTRODUCTION

Dark matter composes over 20% of the Universe today. However, its very nature

makes it difficult to measure; as such, there are numerous models that aim to describe

its properties. These models can be tested through experimental approaches ranging

from direct detection, measuring dark matter interactions with the detector; collider

experiments, searching for dark matter creation through missing energy in a high energy

particle collision; and indirect detection, looking for the effects of dark matter on other

structures such as galaxies or the entire Universe.

Different dark matter models can be probed and have their parameter spaces con-

strained by current high energy experiments. In this work, we focus on probing dif-

ferent well-motivated models through numerous indirect detection methods. These

constraints are imposed by searching experimental results for deviations from the stan-

dard. Experiments of particular interest for this work are Planck [1], EDGES [2, 3],

and Fermi [4–8] as they allow for different approaches to be considered and produce

complimentary limits.

Planck measured the cosmic microwave background (CMB), an imprint of the Uni-

verse at redshift z ≈ 1100 as photon radiation decoupled from matter. Dark matter

interacted during this time and injected energy into the Universe, thus increasing the

ionization fraction and the temperature of the intergalactic medium. These in turn

changed how the CMB formed and propagated.

EDGES measured the 21 cm absorption line, a photon spectral feature associated

with the Hydrogen hyperfine structure corresponding to the energy involved in flipping

a Hydrogen electron’s spin. The absorption line is produced once the Universe has

cooled sufficiently, z ≈ 20. The line is also sensitive to the gas temperature; as it

increases, the amount of absorption decreases. This feature is of particular interest

because it allows for a probe of the “dark ages” before star and galaxy formation.
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Dark matter interactions also produce their own spectra which contributes to the

cosmic ray flux. Fermi-LAT measured the gamma-ray flux for the entire sky which is

used to constrain dark matter interactions by searching for particle flux greater than

the predicted background. The galactic center and dwarf spheroidal satellite galaxies

are locations of particular interest for these searches as they contain a high expected

signal rate or a low background, respectively.

In this work, we use experimental results to place constraints on different decaying

and annihilating dark matter models, as well as investigate the fraction of dark matter

content that may be composed of primordial black holes (PBH), a black hole that

formed in the early Universe. In Sec. 2, we describe the process by which energy is

injected into the Universe by different dark matter interactions, describe the efficiencies

of different absorption processes (Sec. 2.1) and look at their effect on the CMB (Sec. 2.3)

and the 21 cm absorption line (Sec. 2.4). Sec. 3 investigates methods by which we may

use the spectra produced by dark matter interactions produced in our galaxy (Sec. 3.1)

and in satellite dwarf spheroidal galaxies (Sec. 3.2). Descriptions and constraints for the

different models explored are presented in Sec. 4. The individual models investigated

are decaying dark matter (Sec. 4.1), primordial black holes (Sec. 4.2), annihilating dark

matter into two- and four-body final states (Sec. 4.3), and dark matter annihilation via

a bremsstrahlung gauge boson (Sec. 4.4). The results are summarized in the conclusion

(Sec. 5).
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2. ENERGY DEPOSITION IMPRINTS∗

The ΛCDM model provides a good description for the evolution of the Universe

as it expanded and cooled. It includes all Standard Model particle interactions; any

additional particle interaction not included that couples to the Standard Model will

interact with the intergalactic medium (IGM). For our purposes, the IGM includes all

matter in the Universe. These interactions transfer energy to the Universe, affecting its

evolution. Dark matter interactions that couple to the Standard Model are no different.

With the additional energy source provided by these interactions, perturbations to

the Universe’s standard history will form, and they will leave an imprint observable

today. [9–16]

The Universe’s evolution can be contained within two parameters: the history of

the ionization fraction, xe, and the IGM temperature, TIGM. The total amount of

energy injected into the Universe will vary depending on the daughter products in the

additional interactions. We will present the particular form of the injection rate for the

different models investigated later in their respective sections. For now, we will simply

express the injection rate by its simple symbolic definition, dE/dV dt, the differential

rate at which energy enters the system over time and volume. While we will discuss the

energy injections under the assumption that they are being produced by dark matter,
∗Parts of this section are reprinted with permission from:

S. Clark, B. Dutta, Y. Gao, L. E. Strigari, and S. Watson, “Planck Constraint on Relic Primordial
Black Holes,” Phys. Rev. D95 no. 8, (2017) 083006, arXiv:1612.07738 [astro-ph.CO]. c© 2017
American Physical Society

S. J. Clark, B. Dutta, and L. E. Strigari, “Dark Matter Annihilation into Four-Body Final States
and Implications for the AMS Antiproton Excess,” Phys. Rev. D97 no. 2, (2018) 023003,
arXiv:1709.07410 [astro-ph.HE]. c© 2018 American Physical Society

S. Clark, B. Dutta, Y. Gao, Y.-Z. Ma, and L. E. Strigari, “21 cm limits on decaying dark matter and
primordial black holes,” Phys. Rev. D98 no. 4, (2018) 043006, arXiv:1803.09390 [astro-ph.HE].
c© 2018 American Physical Society

S. J. Clark, J. B. Dent, B. Dutta, and L. E. Strigari, “Indirect detection of the partial p wave via
the s wave in the annihilation cross section of dark matter,” Phys. Rev. D99 no. 8, (2019) 083003,
arXiv:1901.01454 [hep-ph]. Published by the American Physical Society.
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the approach presented is valid for any new energy interaction with the IGM.

The energy produced by additional interactions add pressure to the evolution of xe

and TIGM by inducing an increased level of ionization and gas heating. These additions

are described by [14, 16–19]

dxe
dz =

(
dxe
dz

)
orig
− 1

(1 + z)H(z)(Ii(z) + Iα(z)), (2.1)

dTIGM

dz =
(

dTIGM

dz

)
orig
− 2

3kB(1 + z)H(z)
Kh(z)

1 + fHe + xe
, (2.2)

where (dxe/dz)orig and (dTIGM/dz)orig are the standard recombination equations with-

out additional energy injections and are described in detail in Ref. [16, 17] and are

shown in Equations 2.7 and 2.8 for convenience. H(z) is the Hubble parameter, kB

is the Boltzmann constant, and fHe is the helium fraction. Ii, Iα, and Kh are factors

that relate energy injection to hydrogen’s ground state ionization, Lyman-α excited

hydrogen ionization, and heating the gas respectfully. They have the form [16]

Ii(z) = fi(E, z)dE/dV dt
nH(z)Ei

, (2.3)

Iα(z) = fα(E, z)(1− C)dE/dV dt
nH(z)Eα

, (2.4)

Kh(z) = fh(E, z)dE/dV dt
nH(z) , (2.5)

C = 1 +KΛ2s,1snH(1 + xe)
1 +KΛ2s,1snH(1− xe) +KβBnH(1− xe)

. (2.6)

where dE/dV dt is the energy injection from the interaction method. The particular

form for each model will be discussed in their individual sections. nH is the hydrogen

number density. Ei and Eα are respectfully the energy required to ionize the ground

and first excited energy states in hydrogen. Λ2s,1s is the decay rate from the 2s to

1s energy level. βB is the effective photoionization rate, and K = λ3
α/(8πH(z)), with

λα as the Lyman-α wavelength. C is a parameter relating to the probability that an

4



excited hydrogen electron will decay through two-photon emission before being ionized.

Collisional de-excitation effects are subdominate and not included [15, 16, 20]. fc(E, z)

with c = i, α, h are effective efficiencies [19, 21] for the injection to be absorbed into

different channels. Because the injections for masses considered here are relativistic,

energy injected into the gas may not be absorbed until a later redshift. This results

in energy absorption produced during different epochs occurring at the same time.

fc(E, z) encapsulates this behavior and is defined as the ratio of energy absorbed to

the amount injected into the IGM at a given redshift. This energy pile-up effect can

cause the effective efficiency to be greater than one. The procedure used for calculating

the effective efficiencies will be discussed in Sec. 2.1.

As stated earlier, the terms with lower script “orig” in Equations 2.1 and 2.2 refer

to the unaltered standard evolution equations [16, 17],

(
dxe
dz

)
orig

= C

(1 + z)H(z) × (x2
enHαB − βB(1− xe)e−hν2s/kBTG), (2.7)(

dTIGM

dz

)
orig

= 8σTaRT
4
CMB

3mecH(z)(1 + z)
xe

1 + fHe + xe
(TG − TCMB), (2.8)

where αB is the effective recombination rate. These equations describe the interactions

between neutral and ionized hydrogen gas as it cools and thermalizes. Dark matter

energy injections provide additional pressure that leads to increased ionization and

heating. One outcome of the injections is an increase to the surface of last scattering

for photons that will make up the CMB.

2.1 Effective Efficiency

In the formalism presented in Sec. 2, all interaction transient behavior has been

combined into the effective efficiency for each absorption channel, fc(E, z). These have

been calculated previously for photon and electron injections into several channels of

interest [19, 21]. Previously, effective efficiencies have been approximated by simple

xe dependent equations where the energy injection is taken to be instantaneous. This

5



technique is known as the “SSCK” method and is described in further detail in Ref. [16,

22]. This approach does not incorporate the pile-up features that were discussed earlier.

Here we extend upon the analyses from Ref. [19, 21] to include additional interactions,

and also expand the effective efficiency calculation to higher energies. In particular, we

will be describing trends that arise in general when calculating an effective efficiency

from a spectra and leave any model specific properties for their individual discussion.

The various fc(E, z) equations are complex, developed from the interactions of

high energy particles with the IGM as they thermalize with the environment. They

are species, energy, redshift, and channel dependent. However, the effective efficiency

of a specific interaction can be simplified by first determining the individual effective

efficiencies for single long lived products, principally photons, electrons, neutrinos, pro-

tons, and their antiparticles, as well as the spectra of these products for the particular

interaction of interest. The single efficiencies and the spectra are then combined into

an effective efficiency for the interaction through

fc(mχ, z) =
∑
s

∫
fc(E, z)sE(dN/dE)sdE∑
s

∫
E(dN/dE)sdE

, (2.9)

where s is the particle species, c is the channel by which the energy is absorbed by

the environment, E is the initial injection energy, (dN/dE)s is the particle spectrum,

and fc(E, z) is the effective efficiency for this particular particle [23]. For our analysis,

we use the effective efficiencies for electrons and photons calculated in Refs. [19, 21].

Also similar to these authors, we set the neutrino and proton efficiencies to be zero.

This assumption is warranted for neutrinos interact weakly with the IGM and protons

do not significantly impact the CMB [11]. We also assume that unstable particles

produced in the initial interaction decay instantaneously; all medium interactions are

solely attributed to stable decay products.

For some of the efficiency calculations performed, it is necessary to include injections

6



greater than those presented in Ref. [21] requiring the additional assumption that the

efficiency remains constant at high energies. This assumption is supported by Ref. [22].

They observed that the efficiency asymptotes to a constant at high energies as the

dominant behavior becomes a pair production/Inverse Compton scattering cascade.

To provide a descriptive example for effective efficiency calculations, we will consider

annihilation cascade models with two- and four-body final states as an illustrative

example. The particulars of these models will be discuss in more detail later. We

calculate the spectra of stable products with PYTHIA [24–26]. Results from our

calculation for several representative cases are shown in Figure 2.1. Unless explicitly

stated, we assume that the mass of the mediator is related to the mass of the dark

matter as mφ = mχ/2. The four-body interactions are χχ → φφ where the φ then

decays into two Standard Model particles. Also, while we assume φ is a scalar, the

constraints imposed are equally valid for a vector particle. From Figure 2.1, we note

that quark and lepton spectra are very similar to other quark and lepton spectra

regardless of flavor or the number of final products. As an extension, this indicates

that their efficiencies should also be similar. Also of note, because only photons and

electrons interact strongly with the IGM, energy that is deposited into the proton and

neutrino spectra is be associated with missing energy and will result in a reduction

to the interaction’s efficiency. Furthermore, electroweak corrections [26, 27] were not

taken into account in these spectral calculations. However, these corrections mainly

influence the spectra at low energies and thus will result in only a very minor alteration.

The spectra in Figure 2.1, the efficiencies from Ref. [21], and Equation 2.9, combine

to calculate the efficiencies for each interaction. The efficiencies for χχ→ φφ followed

by φ→ bb̄ are shown in Figure 2.2. Other interactions have a nearly identical structure,

where the primary difference between each interaction is a shift in the magnitude of

the efficiency. This is a result of more energetic particles receiving a larger weight

due to the calculation being an energy efficiency map explained in more detail below.
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Figure 2.1: Two- and four-body annihilation spectra for various channels. E is the
particle’s kinetic energy. Spectra: (top to bottom) photon, electron, proton, neutrino.
Dark matter mass: (left to right) 102, 103, 104 GeV. The spectra from the various quark
channels are all very similar in both magnitude and shape. Reprinted with permission
from Ref. [28].
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Figure 2.2: Effective efficiency maps for dark matter annihilation to 4b. The 4b in-
teraction is χχ → φφ followed by φ → bb̄. Different annihilation interactions have a
map with a nearly identical structure but with slight differences in amplitude as seen
in Figure 2.3. Reprinted with permission from Ref. [28].

Another important feature is, at a single redshift, the efficiency is nearly uniform over

mass, especially from z = 200− 1000. As a result, the constraints established by this

energy injection have a simple dependence on dark matter mass.

Figure 2.3 shows the effective efficiency as a function of redshift for various channels

calculated with a dark matter mass of 103 GeV. The redshift dependence for these

curves are similar, with the most significant variation coming in their amplitudes.

This feature can easily be understood by noting that the efficiency is energy dependent,

favoring contributions by higher energy particles. Since the efficiency is a ratio of the
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total energy absorbed to the total energy injected into the environment, the higher

energy structure of the spectrum contributes the most to the shape of the efficiency,

and for all cases, the leading term is the electron injection. Other terms contribute

minor alterations, particularly at late times when high energy particles make weaker

contributions. The normalization factor is a result of the amount of energy contributing

to other products, in particular protons and neutrinos. Since this energy is considered

lost in the calculation, any energy entering these channels results in a loss of efficiency.

Another feature that results in the uniformity between the different interaction

types and also the various mass ranges is due to the averaging effect that comes from

Equation 2.9. While the original efficiencies observed in Ref. [19, 21] have a substantial

degree of variance with injection energy, combining efficiencies together with a continu-

ous spectrum results in washing out these features, adding to the similarities observed

in Figure 2.3 as well as the near uniform features observed with energy in Figure 2.2.

For convenience and in order to establish a comparison to other works, Table 2.1

provides equivalent average effective efficiencies for an injection following the “SSCK”

approach discussed in Ref. [15, 16]. To make a comparison between the values reported

in Ref. [16], the hydrogen ionization, Lyman-α excitation, and heating channels were

summed into a single efficiency and averaged over z = 800−1000. The energy absorbed

by the environment in our method of utilizing individual channels is comparable to

approaches that use a single averaged value provided by similar works at the 5% level.

The trends discussed are fairly constant when high energy particles are created due

to increased weight given to the more energetic particles. Even more so, at very high

energies, the particles tend to have the same efficiency. Large variations do occur as can

be observed on the left side of the efficiency graphs in Figure 2.2. To illustrate these

large differences, Figure 2.4 presents the effective efficiencies for primordial black holes

emitting Hawking radiation in the 1015−1017 g mass range. This is another model that

will be considered and is detailed later. The emitted particles are both cooler, resulting
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Figure 2.3: Effective efficiency for various annihilation final states for a dark matter
mass of 103 GeV. The structural features of each channel are nearly identical. Reprinted
with permission from Ref. [28].

Annihilation mχ feff Annihilation mχ feff
Model [GeV] Model [GeV]
χχ→ eē 102 0.4322 χχ→ bb̄ 102 0.2098

103 0.4290 103 0.2036
104 0.4293 104 0.1981

χχ→ µµ̄ 102 0.1664 χχ→ φφ 102 0.2093
103 0.1579 φ→ bb̄ 103 0.2057
104 0.1604 104 0.1989

χχ→ τ τ̄ 102 0.1414 χχ→ φφ 102 0.1446
103 0.1364 φ→ τ τ̄ 103 0.1359
104 0.1381 104 0.1367

χχ→ W+W− 102 0.1821 χχ→ φφ 102 0.1769
103 0.1763 φ→ bb̄ or τ τ̄ 103 0.1708
104 0.1720 each at 50% branching ratio 104 0.1679

χχ→ tt̄ 103 0.1911
104 0.1873

Table 2.1: The integrated channel technique for calculating effective efficiencies com-
pared with the “SSCK” approach. The “SSCK” approach is discussed in detail in
Ref. [15, 16]. Reprinted with permission from Ref. [28].
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Figure 2.4: Effective efficiency maps for primordial black holes emitting Hawking ra-
diation. Channels: (left to right, top to bottom) hydrogen ionization, Lyman-α exci-
tations, heating, and continuum photons. Reprinted with permission from Ref. [23].

in more variation in the efficiencies, as well as the interaction’s redshift dependence is

quite different. Black hole radiation is dependent on the black hole number density

while annihilation depends upon the number density squared. An interesting feature

in the black hole efficiency maps is the quick transition from high efficiency to poor

efficiency with increasing mass. This efficiency “edge” also moves with redshift and is

observable in some of the experiments discussed below.

2.2 Recombination History

In order to illustrate the effects of energy injections on the Universe, alterations

to xe and TIGM are shown for a few example PBH masses in Figure 2.5. The percent

12



change relative to the standard is indicated. Figure 2.5 shows that there is only a

minor variation relative to the standard case in both xe and TIGM at large redshifts,

with significant deviations only apparent at ∼ z = 200− 300. The minimal deviation

at high redshift supports the use of the effective efficiencies [22] for high redshift cal-

culations like the CMB described below. In addition, constraints set at later redshifts

have the potential to be more stringent by imposing strict behavior. As will be seen

in Sec. 2.4, matter temperature variations are even more suppressed. Comparing to

direct measurements, xe and TIGM are both well below observational limits [29–31] for

standard values of cosmological parameters,

xe(z ∼ 7) = 0.66+0.12
−0.09 xe(z ∼ 8) < 0.35

log10(TIGM(z = 4.8)) = 3.9± 0.1 log10(TIGM(z = 6.08)) = 4.21+0.06
−0.07.

(2.10)

We note that contributions from reionization and structure formation are not included

in this calculation, though it may be possible that PBHs around the masses studied

can represent a significant contribution to reionization [18].

Since there is a large variation in the ionization fraction at later times, assumptions

made about the effective efficiencies weaken. In order to observe possible errors intro-

duced due to this large deviation, an ionization history developed using the “SSCK”

prescription [16, 22] and the same cosmological parameters is also given in Figure 2.5.

While there is an even larger variation at late times, up to two orders of magnitude, xe

and TIGM are still far below the observational constraints. Additionally, they have only

minor variation relative to the standard during the period of interest at high redshift.

2.3 Cosmic Microwave Background

The cosmic microwave background (CMB) is an image of the background radiation

spectrum from the time of recombination z ∼ 1100. It formed as the photon back-

ground decoupled from matter due to ions condensing to form neutral atoms. While it

13



↓

10
1

10
2

10
3

10
-3

10
-2

10
-1

1+z

x
e

MBH (g)

No BH

1⨯1015

5⨯1015

1⨯1016

101 102 103

100

101

102

103

1+z

T
IG

M

↓

10
1

10
2

10
3

10
-3

10
-2

10
-1

1+z

x
e

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

1+z

T
IG

M

10
1

10
2

10
3

10
-6

10
-3

10
0

1+z

Δ
x
e

10
1

10
2

10
3

10
-9

10
-6

10
-3

10
0

10
3

1+z

Δ
T

IG
M

Figure 2.5: Comparison of xe and TIGM evolution for different models. Ionization
fraction (left) and temperature of the IGM (right) due to PBH energy injection using
effective efficiencies (top), using the “SSCK” prescription (middle), and percent change
from the no PBH case (bottom). Bounds on the parameters are also plotted. The
PBH density ΩBH for each mass is taken to be at the 95% confidence limit discussed
in this work for Planck constraints. The legend applies to all graphs. Reprinted with
permission from Ref. [23].
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is very uniform, small spatial features do exist and correspond to thermal equilibrium

distances. Injections from particle interactions discussed in Sec. 2 help to disguise

these variations by allowing pockets to be stronger coupled. Figure. 2.6 shows how

injections can alter correlations between different regions. The main properties used

are the CMB anisotropy power spectra correlations Temperature-Temperature(TT),

Temperature-(E-mode) (TE), and (E-mode)-(E-mode) (EE). E-mode is the electric

polarization of the photon background. For this figure, the injections are assumed

to be provided by PBHs where their abundance includes all the dark matter content.

Note that smaller PBHs inject more energy. This increased energy injection scales as

the inverse cubic of the mass.

The energy injection results in a scale-dependent deviation from the standard case;

there is an increase in the power spectrum at small multipoles and a decrease at large

multipoles (large multipoles correspond to small angular separations). This behavior

occurs because the energy injection increases the width of the last scattering surface.

Perturbations on scales smaller than this width are suppressed as photons are able to

be correlated at larger distances, as can be most easily seen for TT correlations. In

addition, the TE and EE spectra peaks shift with increasing injections. These shifts are

due to increased contributions by monopole perturbations which trace to polarization

and are introduced with the increase to the scattering surface [9].

To place constraints on model properties from CMB, we fit the simulated spectra to

Planck half mission data [32]. The likelihood used was TT,TE,EE+lowP, a combination

of TT, TE, and EE correlations as well as B-mode correlations for l ≤ 29. Figure 2.7

shows the posterior probability densities for a few example cosmological parameters,

both with and without PBHs. The distributions are consistent with each other, up to

minor shifts well within experimental uncertainties. Allowing us to fix them for ease

of calculation without introducing large systematic uncertainties due to correlations

between parameters. Note that this has been highlighted in previous studies of the
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Figure 2.6: Alterations to the CMB power spectrum from energy injections. CMB
correlations TT (left), TE (middle), and EE (right) for various PBH masses. Effects
from annihilation and decay have similar effects. Reprinted with permission from
Ref. [23].

impact of dark matter annihilation and decay on the CMB [33].

For calculating the constraints, we use the CMB theoretical modeling software

CAMB [34, 35] and a modified version of HyRec [17]. Again, the Planck data

likelihood set used was Planck TT,TE,EE+lowP [1]. Fitting parameters were per-

formed for a single mass with CosmoMC [36, 37] using all Planck polarization am-

plitudes [1] in addition to parameters specific to each model. Since there is little

variation in the base cosmological parameters, for computational convenience, we take

the six principal cosmological parameters to be fixed to their best fit values in the

case of no additional energy injection [1] unless otherwise stated. The six princi-

pal cosmological parameters are: the physical baryon density, Ωbh
2 = 0.022252; the

physical CDM matter density, Ωch
2 = 0.11987; the CMB acoustic scale parameter,

100θMC = 1.040778; the reionization optical depth, τ = 0.0789; primordial curvature

perturbations, ln(1010As) = 3.0929; and the scalar spectral index, ns = 0.96475 [1, 38].

The confidence limit is defined as the cumulative distribution centered around the

median, which corresponds closely to the peak of the distributions in Figure 2.7.

We note that since the six base cosmological parameters were fixed, the parameters

may be more strongly constrained than in a fit with more parameter freedom. Sys-

tematics induced by parameter fixing were checked by performing a fit with all of the
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Figure 2.7: Change in the posterior probability distributions for a few principal cos-
mological parameters for injections from PBHs of mass 2 × 1016g. Single variable
distributions (top) with most probable values normalized to one, where blue (solid)
lines represent no PBH case while red (dashed) includes PBHs. Correlations between
different parameters (bottom) with inner and outer curves correspond to 68% and 95%
confidence levels respectfully. Reprinted with permission from Ref. [23].

17



base cosmological parameters free to vary for a single PBH mass of 2 × 1016 g. The

constraint on ΩBH weakened by up to a factor of three.

2.4 21 cm Absorption Line

The measurement of the 21 cm line is a target of several current and future obser-

vations, and is projected to provide a wealth of new cosmological data that will shed

light on the so-called “Dark Ages” of cosmology prior to star formation. (For reviews

see, Ref. [39, 40])

Recently the Experiment to Detect the Global Epoch of Reionization Signature

(EDGES) reported the observation of 21 centimeter absorption lines at high redshift

z = 15 − 20, with an absorption signature of T21 = −500+200
−500 mK (99% C.L.) at a

redshift of z ≈ 17.2 with a central value of 78 MHz. It had a best-fit neutral hydrogen

spin temperature TS much lower than conventional astrophysical expectations, leading

to strong absorption signals [2]. If confirmed, the abrupt lowering of TS relative to the

cosmic microwave background temperature TCMB near z ∼ 20 has been interpreted [2, 3]

as due to the re-coupling of TS to the hydrogen gas temperature TG by the Wouthuysen-

Field effect [41, 42], where a lower-than-standard hydrogen gas temperature has been

proposed that may arise from cooling effects [3] via interactions with hypothetical

particles. This result can be interpreted as demonstrating a stronger absorption signal

than standard astrophysical expectations, and has sparked a flurry of studies in the

dark matter literature, including implications for dark matter-baryon couplings [43–

51], dark matter annihilation [52–55], decaying dark matter [55–57], primordial black

holes [56, 58], fuzzy dark matter [59], dark sectors [60–63], and non-cold dark matter

models including warm dark matter and axions [64–69].

From another perspective, the observation of 21 cm signals also places a bound [52]

on hypothetical processes that are capable of heating up the intergalactic medium

(IGM) prior to the reionization time, e.g., by the energy injection from the annihilation

of dark matter [70–72].
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Beside mapping the Universe’s mass distribution at high redshift, the 21 cm ab-

sorption line(s) measurement is also a potent probe of the temperature evolution in

the CMB and the intergalactic medium. Before the light from the first stars ionized

the intergalactic gas, the neutral hydrogen resonantly absorbs the 1.42 GHz radiation

line as the CMB passed through. This 1.42 GHz or 21 cm wavelength spectral line

corresponds to the hyperfine energy split between aligning and anti-aligning the spin of

the electron and that of the nucleus in the ground state of the neutral hydrogen, which

form a spin-0 singlet and a spin-1 triplet. The population ratio between the triplet

and singlet states is described by the spin temperature as N1/N0 = 3 e−0.068K/TS , where

0.068 K is the equivalent temperature of the 21.1 cm wavelength corresponding to the

hyperfine energy splitting ∆E = 5.9× 10−6 eV.. The 21 cm absorption intensity from

the radiation background, i.e. the CMB, is given by the brightness temperature [73],

T21 ≈ 0.023K · xHI(z)
(0.15

Ωm
· 1 + z

10

) 1
2 Ωbh

0.02

(
1− TCMB

TS

)
, (2.11)

where xHI is the neutral (HI) fraction of the intergalactic hydrogen gas. For redshift

z ≥ 20 prior to reionization time, xHI ' 1 in standard astrophysics. Ωm and Ωb are

the total matter and baryon fractions of the critical energy density of the Universe,

and h is the Hubble constant in the unit of 100 km s−1Mpc−1. The latest precision

measurements of these cosmological parameters are given by the Planck experiment [1].

With the presence of neutral hydrogen xHI > 0 and a colder spin temperature than

the radiation background, TS < TCMB, the absorption feature in the CMB will emerge

with T21 < 0.

Hydrogen atoms decouple from the CMB at z ∼ 200. The background radiation

temperature scales with redshift as TCMB = 2.7K·(1+z), while the matter temperature

scales as (1+ z)2 and cools faster than the CMB after decoupling. Hence, for hydrogen

gas, its TS and TG drop below TCMB during the cosmic “dark age”, as observed in
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Figure 2.8. The CMB photons can still flip the HI hyperfine states and bring TS into

equilibrium with TCMB. In this period, we typically expect TG < TS < TCMB, with TS

approaching TCMB as interactions with CMB photons flip the hyperfine state and draw

the spin temperature towards the CMB temperature. Entering the reionization epoch,

the Lyman-α emissions from stars recouple TS to TG through the Wouthuysen-Field

effect [41, 42, 74, 75], and TS demonstrates a rapid drop to the colder TG. This leads

to a drop in T21 and the expectation for a 21 cm absorption signal.

EDGES measured a rapid lowering of TS at z ' 21, that would require TS ' TCMB

to be reached before z ' 21, and TS quickly re-couples to TG by z ∼ 17− 18 [2]. While

the 21 cm absorption signal prior to z ∼ 14 is consistent with the cosmic reionization

picture [76], the maximal signal strength T21 = −500 mK [2] at z = 15−20 is more than

twice compared to the expectation from standard astrophysics. The central redshift of

the T21 trough is earlier than expected and indicates for an enhanced star formation

rate in galaxies [77]. The flat shape of T21(z) in this redshift range is also unaccounted

for in a standard evolution process [2]. Ref. [3] reported this low T21 result as a 3.8σ-

strong absorption excess, and that the widened gap between TS from TCMB may rise

from new physics.

However, the foreground contamination for radio astronomy observations is at least

four orders of magnitude higher than the 21 cm brightness temperature. This makes

it extremely tricky to remove and measure the underlying signal. In Ref. [2], the

EDGES group used the polynomial foreground model to fit the galactic synchrotron

and atmospheric signal in frequency space and remove it. But there could be some low-

level foreground or systematics in the system that can potentially bias the results. The

EDGES data can be tested and verified by future 21 cm experiments like PRIZM [78],

HERA [79], LEDA [80], and SKA [81]. Here, we adopt a similar approach as in

Ref. [52], that such detection of strong 21 cm absorption by EDGES would constrain

the amount of accumulated high-energy particle injection that could have heated up
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Figure 2.8: TG, TS, and TCMB evolution in standard astrophysics. TS approaches TCMB
after the z ∼ 200 decoupling, suppressing the 21 cm absorption until TS recouples to
TG after the formation of the earliest stars. Reprinted with permission from Ref. [56].

TG by the reionization epoch, which would narrow down the difference between TS and

TCMB for z = 15− 20 and cause significant reduction in the 21 cm absorption signal.

Dark matter interactions can be a steady source of Standard Model particles as dis-

cussed in Sec. 2. The photons and electrons, injected at high energy and can typically

reach up to O(10−1)MDM, gradually lose energy by interacting [14, 18, 19] with the

intergalactic medium via ionization, Lyman-α excitations, gas temperature heating, as

well as scattering off the background continuum photons that is studied in Ref. [53] as

another explanation of the EDGES data with a heated photon radiation background.

For 21 cm measurements, both the corrections to xe and TG can affect T21, especially

at a time when TS re-couples to TG. A reasonable choice to consider is at the central

redshift z ' 17 where EDGES detected absorption signals. Constraints can be placed

by requiring the heating from new physics raises the radiation temperature by ∆T21 no

more than 100 or 150 mK, this limit corresponds to a less than half or 3/4 suppression

of the standard astrophysical T21 = −200 mK absorption strength. In standard astro-

physics this temperature rise can wipe out or greatly suppress the 21 cm absorption
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signal. It is also larger than EDGES’s T21 1σ up-fluctuation uncertainty (+200 mK by

99% credence level [2]).

The ∆T21 = +100 or +150 mK limits are based on the temperature evolution

by standard astrophysical processes, and should be considered as proof-of-principle

estimates for new physics’ heating effect on the IGM in light of a 21 cm signal discovery.

As EDGES measures a stronger 21 cm signal than that from standard astrophysics,

if hypothetic gas cooling also exists, it could partially negate the effect of heating

processes, and the same ∆T21 would require a larger energy injection rate. In case of

dark matter, gas cooling demands a prohibitive DM-baryon scattering cross-section [44,

45] with a limited dark matter mass range. Under the minimal coupling assumptions,

a 1024−26s decay lifetime is usually mediated by effective interactions that are too

weak to facilitate sufficient DM-baryon scattering, thus additional DM-SM coupling

structures would become necessary to make dark matter’s cooling effect significant,

which introduces more modeling assumptions on dark matter. Also, the potentially

large uncertainty in the low frequency range of the cosmic radiation field [61, 82, 83]

can lead to significant correction to the 21 cm absorption rate, which would also affect

the required amount of energy injection heating accordingly. Alternative new physics

mechanisms, and radiation field background assessment can be probed or improved

from future experiments.

We use the numerical package HyRec [17] to compute the temperature evolutions,

with the energy injection corrections implemented into the evolution equations. The

Wouthuysen-Field effect is included into the calculation by defining [73]

TS = TCMB + ycTG + yLyαTLyα

1 + yc + yLyα
, (2.12)

yc = C10

A10

T?
TG
, (2.13)

yLyα = P10

A10

T?
TLyα

, (2.14)
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where A10 = 2.85× 10−15s−1 is transition’s spontaneous emission coefficient, C10 is the

collisional de-excitation rate of the triplet hyperfine level, P10 ≈ 1.3× 10−12SαJ−21s
−1

is the indirect de-excitation rate due to Lyman-α absorption, T? = hν0/kB = 0.068 K

is the Lyman-α energy, TG is the hydrogen gas temperature and is the same as TIGM

from Sec. 2, TLyα is the Lyman-α background temperature, and TLyα = TG for the

period of interest, Sα is a factor of order unity that incorporates spectral distortions

[74], and J−21 is the Lyman-α background intensity written in units of 10−21 erg cm−2

s−1 Hz−1 sr−1 and is estimated by an average of the early and late reionization results

of Ref. [84].

This work does not aim at a rigorous analysis of astrophyiscal reionization models.

Instead, we assume TS reaches the strong coupling limit, with J−21 � 1 [73] during

EDGES’ signal creation at the early redshift range 17 < z < 20 of the reionization

era. We model J−21 by taking the average of the two scenarios in Ref. [84], and this

assumption will qualify as a conservative constraint on the heating from new physics

energy injections: Our choice J−21 suffices for the strong coupling limit. As long as the

strong coupling limit is satisfied, the TS result and its associated new-physics constraint

remains unchanged for different values of J−21. In the case of a much lower J−21 away

from the strong coupling limit, the coupling between TS and TG is weaker, less new-

physics heating is required, and the bound strengthens.

It is also noted that we do not include the X-ray heating effects for the depth of

T21 signal at z ∼ 17, which would become dominant at later redshift and closes the

T21 trough near full ionization, which EDGES measurement indicates to happen at

z = 14. In this analysis we focus on the maximal T21 strength that depends on the gas

temperature at the beginning of the reionization era, and our bounds without X-ray

effects is conservative as additional astrophysical heating reduces the 21 cm signal. To

fully describe the T21 features form the EDGES data, a detailed model that incorporates

astrophysical heating would be needed.
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Also note, that by the measurement’s definition, deviations of TIGM must be much

larger in the late Universe compared to restrictions we required in Sec. 2.2 around the

time of recombination. While this introduces an error to the effective efficiencies, the

amount of deviation is minimal and incorporating the effect would lead to stronger

bounds due to the increased coupling of the ionized gas to the photon background.

We use the cosmological parameters Ωm = 0.3, Ωb = 0.04, ΩΛ = 0.7, and h = 0.7 for

21 cm calculations throughout this work unless stated otherwise. Figure 2.9 illustrates

the heating effect on TG and T21 from dark matter decay, assuming contribution from

100% of the relic density and the DM→ e+e− channel. Also shown are the same

results for PBHs. Heating of neutral hydrogen becomes manifest at near-reionization

time. Note that variations in cosmological parameters do slightly affect the result.

Cosmological parameter variation within Planck’s constraint is expected to lead to

O(1) correction. As an example, for the best fit of Planck’s TT,TE,EE+lowP data,

Ωm = 0.316, Ωb = 0.049, ΩΛ = 0.684, and h = 0.67 [1], the 21 cm constraints shown

in Sec. 4 weaken by a factor of 1.6. Tested specifically for PBH and decaying models.

Constraints utilizing the 21 cm estimates were made by requiring the T21 correction

to its standard astrophysical value at z ' 17 to be less than 100 and 150 mK, namely

T21(z = 17) < −100 and −50 mK respectively.
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Figure 2.9: Effect of energy injections on 21 cm parameters. Dark matter decay (left)
and primordial black hole evaporation (right) lead to higher TG (top) and T21 (bottom)
in the reionization epoch. Here dark matter mass is 100 GeV and decays into an e+e−

final state. The black hole mass is 1016 g. For convenience, TCMB (black) and TS (faded)
are also shown in the TG graphs. Reprinted with permission from Ref. [56].
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3. INTERACTION SPECTRA DETECTION∗

During a dark matter interaction, particle spectra are produced. In Sec. 2, we

looked at the effects that these particles have on the IGM and proceeded to investigate

methods by which to constrain dark matter by its influence on the evolution of the

Universe. An alternative method is to observe dark matter spectra directly. Galaxies

form dense regions of dark matter. These locations can be treated as sources for

different scenarios. The measured particle flux from these sources can be compared with

predicted spectra to place bounds on the associated model. The spectra for a particular

model is calculated in the exact same way as for effective efficiency calculations, see

Sec. 2.1. The initial products from the interaction are produced. These particles

propagate through their decay chains until they reach a stable form. In some cases,

the spectra should be further altered to account for interaction the particles experience

as they transverse from creation to observation at Earth, such as passing through

galactic dust.

The particle flux predicted by a dark matter interaction originating from an object

is characterized by [8]

Φdec = 1
4π

1
mχτχ

∫ Emax

Emin

dN
dE dEJdec, (3.1)

Φann = 1
4π
〈σv〉χ
2m2

χ

∫ Emax

Emin

dN
dE dEJann, (3.2)

where mχ is the dark matter mass, τχ is the dark matter lifetime, and 〈σv〉χ is the dark
∗Parts of this section are reprinted with permission from:

S. J. Clark, B. Dutta, and L. E. Strigari, “Dark Matter Annihilation into Four-Body Final States
and Implications for the AMS Antiproton Excess,” Phys. Rev. D97 no. 2, (2018) 023003,
arXiv:1709.07410 [astro-ph.HE]. c© 2018 American Physical Society

S. J. Clark, J. B. Dent, B. Dutta, and L. E. Strigari, “Indirect detection of the partial p wave via
the s wave in the annihilation cross section of dark matter,” Phys. Rev. D99 no. 8, (2019) 083003,
arXiv:1901.01454 [hep-ph]. Published by the American Physical Society.
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matter thermally averaged cross-section. Emin and Emax form the range of measured

energies. Jdec and Jann are the J-factors for decay and annihilation. The J-factors

contain all of the astrological information of the interaction, while the rest of the

equations describe the particle physics interaction. The J-factors for the two cases are

Jdec =
∫

∆Ω
dΩ

∫
l.o.s.

ρχ(r)ds, (3.3)

Jann =
∫

∆Ω
dΩ

∫
l.o.s.

ρ2
χ(r)ds, (3.4)

where they are integrated over the line of sight from the source to the observer and

all observed angles. ρχ is the dark matter distribution function. As will be seen,

primordial black holes can be treated identically as decaying dark matter models for

this purpose.

The two main locations considered for a signal in this manner are the galactic cen-

ter (GC) and dwarf spherical galaxies (dSph). The GC has the benefit of producing

a large flux due to the high dark matter density. However, it suffers from large un-

certainties. On the other hand, dSph have low uncertainties and produce very clean

signals; however, they suffer from a lack of signal. In the following subsections, we will

look at the general approaches used to constrain dark matter characteristics through

spectra observations.

3.1 Galactic and Galactic Center Analysis

We begin discussing the constraints from diffuse gamma-ray data. As a note, in

Sec. 4.3, we perform an analysis that incorporates estimates on the same data. This

was an early work, and the approach is outlined in the section. It is similar to the

antiproton comparison outlined in Sec. 3.3. Our data selection and analysis method

generally follow that of Refs. [85, 86]; we will note the particular aspects in which they

differ. We use Fermi Science Tools version v11r5p31, and select Pass 8 SOURCE-class
1https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
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events for mission elapsed time 239557417 s to 554861541 s. We apply the recom-

mended (DATA_QUAL>0)&&(LAT_CONFIG==1) filter to ensure quality data and a zenith

cut zmax = 100◦ to filter background gamma-ray contamination from the Earth’s limb.

For our Region-of-Interest (ROI), we take the R90 region as defined in Ref. [86],

corresponding to a cut on the photon direction 90◦ from the galactic center. This

amounts to taking data from half of the sky, with the regions in the galactic plane,

corresponding to longitudes > 6◦ and galactic latitudes > 5◦, masked out. In this

region, we take the dark matter density profile to be isothermal, ρ(r) = ρ0/[1+(r/rs)2],

where rs = 5 kpc, and ρ0 is normalized so that the dark matter density at the location

of Sun is ρ (r� = 8.5 kpc) = 0.4 GeV cm−3. This density profile was chosen because

it provides the least stringent constraints on the models that we consider. We have

verified this by examining the impact of alternative distributions, in particular NFWc

from Ref. [86]. For the NFWc profile constraints, we use photons within only a 3◦

angle from the galactic center. NFWc is an adiabatically contracted NFW dark matter

profile, ρ(r) = ρ0/[(r/rs)γ(1 + r/rs)3−γ], where rs = 20kpc and γ = 1.3.

To produce constraints for a given dark matter mass, mDM, we consider photons

emitted from models that contain a line like feature within the energy range 0.4mDM <

Eγ < 2.25mDM. This peak will typically be from a bremsstrahlung gamma-ray emission

in our analysis, but it can be applied to any such line-like feature. The lower bound

is set in order to contain photons from the peak of a bremsstrahlung emission of

the spectrum. The maximum energy was chosen so as to include a large sample of

background photons, to ensure that the background is well fit by a power law. We have

verified that for our entire mass range, we are in the regime in which our uncertainties

are dominated by statistics rather than systematics, so that the power law fit for the

background is a good description of the data. Within this energy range we perform

a binned likelihood analysis, with photons in equally spaced logarithmic bins, with 50

bins per decade. We determine the best fit power law index for the background, and
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Figure 3.1: Comparison between different galactic center fitting techniques. The aver-
aging routine (dashed) is approximately the median of the result directly obtained from
the galactic center data (solid). The fitted spectrum is produced from annihilation to
electrons plus a boson with a mediator mass ratio 1.1. Reprinted with permission from
Ref. [87].

then generate a new set of pseudo-data from this fit. We fit this pseudo-data to a

background plus the desired model. For a given model, we define the limits as where

the TS statistic for the log-likelihood exceeds TS > 1.355.

In Figure 3.1, we demonstrate differences that arise between our smoothing algo-

rithm and our analysis that calculates the galactic center constraints straight from the

Fermi data. Our smoothing approach fits the data to a power law and then performs

the least likelihood analysis off the fit. This approach helps remove statistical fluctu-

ations present in the data. However, we lose the capacity to identify a positive source

signal. Comparing the two, the smoothed result is approximately the median of the

baseline calculation.

3.2 Dwarf Spheroidals

Constraints using dwarf spheroidal galaxies (dSph) were performed through use of

the pre-generated likelihood functions provided in Ref. [88]. The photon flux observed
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at Earth is calculated by

Φ = 1
8π
〈σv〉
m2

DM
× J, (3.5)

where J is the J-factor, which incorporates the dark matter distribution within the

dSph as well as its distance from the observer. For our analysis we adopt the J-factor

values used in Ref. [8]. A log-likelihood analysis is performed on the combined system

of all the dSphs to obtain the null likelihood probability for the stacked flux [8].

The pre-generated likelihood functions used were evaluated with the assumption

of a continuum signal. As such, they are not effective at performing the line searches

discussed in Sec. 3.1. However, they are ideal for identifying continuum signals. These

types of signals are frequently present in hadronizing decay chains. The bremsstrahlung

model mentioned before produces large numbers of W/Z bosons making this an ideal

search method.

3.3 Antiproton Excess

AMS [89] has recently published a measurement of the anti-proton spectrum, hint-

ing at a possible excess relative to those expected from astrophysical sources. This

measurement is also of interest because, unlike the gamma-ray [90] and positron ex-

cess [91], it is unlikely that these results can be explained by unresolved sources such

as pulsars that contribute to diffuse radiation. This measurement may be important

for dark matter, because antiprotons are a major constituent of some dark matter

annihilation spectra.

Several authors have considered antiproton production from annihilating dark mat-

ter in light of the AMS data, and have found preferred models, such as χχ→ bb̄ [92].

We utilize these results to extend the constraints of one of our models, annihilation

to a four-body final state model, but they can also be performed for other scenarios.

We make the comparison by using the spectrum outputs by PYTHIA discussed pre-
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viously as an additional source term in GALPROP2 [93]. This provides us with the

antiproton spectra measured on Earth as a result of dark matter annihilation in the

galaxy. For GALPROP, we use parameters that are similar to those in Ref. [92],

specifically an NFW dark matter density profile with a characteristic halo radius of 20

kpc and a fixed characteristic density of 0.43 GeV/cm3 at radius 8.5 kpc.

Antiproton spectra between the two- and four-body cases are very similar. The

most pertinent degree of freedom for comparison is the mediator mass. Figure 3.2

shows the annihilation antiproton flux spectra after propagation through the galaxy.

The shape of the spectra is mostly unaltered when comparing to the injection spectrum

before propagation. Photon spectra for the same cases is also shown highlighting a key

difference between the antiproton and the photon spectra for different mediator masses.

While different mediator masses result in minimal variation in the photon spectrum,

there is a significant difference in the antiproton spectrum, allowing antiprotons to be

used as a probe of mediator properties. These differences arise from the kinematics

and decay properties of the mediator daughter particles.

These post-propagation spectra are used to estimate four-body antiproton excess

constraints by association with the constraints calculated in Ref. [92]. The comparison

between the two- and four-body constraints is made by matching dark matter masses

between the two models with the same spectral midpoint, defined as the energy where

half of the antiprotons have greater energy. The cross-section comparison is performed

through

〈σv〉4 = 〈σv〉2 ×
∫ Emax

Emin

dΦ2

dEp̄
dEp̄ ×

(∫ dΦ4

dEp̄
dEp̄

)−1

, (3.6)

where 〈σv〉i is the thermally averaged cross-section. dΦi/dEp̄ is the post-propagation

antiproton flux at Earth for a reference cross-section of 2 × 10−26cm3/s. Ep̄ is the

antiproton energy. Emin and Emax are the minimum and maximum energy of the

experiment. For AMS antiprotons, this energy is ∼ 430 MeV to 1.8 TeV. Note that
2https://galprop.stanford.edu
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Figure 3.2: Antiproton and gamma-ray spectra for 4b final state interactions. The dark
matter mass is 100 GeV. Antiproton flux (left) spectra observed at Earth from galactic
annihilations, where E is the antiproton’s kinetic energy. Gamma-ray spectra (right)
from a single annihilation. Note that the shape of the antiproton spectra before and
after propagation is nearly identical. Around mφ/mχ = 0.7 the 2b and 4b spectra are
nearly identical. There is little variation in the photon spectra for different mediator
masses above Fermi-LAT’s sensitivity. For AMS, there are significant differences above
the minimum sensitivity. Reprinted with permission from Ref. [28].

dΦi/dEp̄ is dependent on the inverse square of the dark matter mass in addition to

the annihilation spectra. The index i differentiates between two- and four-body terms

where the spectral midpoints are equal. This method was chosen due to the correlation

between mass, peaks, and widths. With increasing dark matter mass, the spectral

width increases while peak remains nearly constant.
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4. RESULTS∗

In this section, we discuss the motivation for the models investigated and present

constraints imposed by the procedures outlined in Sec. 2 and Sec. 3. The models are

decaying dark matter (Sec. 4.1), primordial black holes (Sec. 4.2), dark matter annihi-

lations into four-body final states (Sec. 4.3), and dark matter annihilation through a

bremsstrahlung gauge boson (Sec. 4.4).

4.1 Decay

In order for a decaying dark matter candidate to survive to today, it must be

incredibly stable. However, its influence can still be felt. One such way is by injecting

energy that can be observed by 21 cm absorption detection experiments [72, 94–99].

The decay of dark matter is insensitive to small-scale matter density distributions

and gives a steady energy injection rate,

dE
dV dt = ΓDM · ρc,0ΩDM(1 + z)3, (4.1)

where ΓDM is the dark matter decay width, ρc,0 is the current critical density of the

Universe. In comparison to the (1+z)6 redshift dependence in dark matter annihilation,

the injection rate from dark matter decay drops much slower and can be more significant
∗Parts of this section are reprinted with permission from:

S. Clark, B. Dutta, Y. Gao, L. E. Strigari, and S. Watson, “Planck Constraint on Relic Primordial
Black Holes,” Phys. Rev. D95 no. 8, (2017) 083006, arXiv:1612.07738 [astro-ph.CO]. c© 2017
American Physical Society

S. J. Clark, B. Dutta, and L. E. Strigari, “Dark Matter Annihilation into Four-Body Final States
and Implications for the AMS Antiproton Excess,” Phys. Rev. D97 no. 2, (2018) 023003,
arXiv:1709.07410 [astro-ph.HE]. c© 2018 American Physical Society

S. Clark, B. Dutta, Y. Gao, Y.-Z. Ma, and L. E. Strigari, “21 cm limits on decaying dark matter and
primordial black holes,” Phys. Rev. D98 no. 4, (2018) 043006, arXiv:1803.09390 [astro-ph.HE].
c© 2018 American Physical Society

S. J. Clark, J. B. Dent, B. Dutta, and L. E. Strigari, “Indirect detection of the partial p wave via
the s wave in the annihilation cross section of dark matter,” Phys. Rev. D99 no. 8, (2019) 083003,
arXiv:1901.01454 [hep-ph]. Published by the American Physical Society.

33

http://dx.doi.org/10.1103/PhysRevD.95.083006
http://arxiv.org/abs/1612.07738
http://dx.doi.org/10.1103/PhysRevD.97.023003
http://arxiv.org/abs/1709.07410
http://dx.doi.org/10.1103/PhysRevD.98.043006
http://arxiv.org/abs/1803.09390
http://dx.doi.org/10.1103/PhysRevD.99.083003
http://arxiv.org/abs/1901.01454


at lower z. For this work, we restrict ourselves to a minimal dark matter decay scenario

for a generic lifetime constraint.

4.1.1 Decay Constraints

For decaying dark matter, we investigated the 21 cm constraints and compared

them with existing bounds. Figure 4.1 illustrates the constraint on the decay lifetime

τDM for dark matter masses from MeV up to 100 TeV. The constraint assumes generic

two-body decay channels. The DM→ e+e− channel is the most stringently constrained

due to its high fraction of electrons in the final state. µ+µ− and bb̄ final states are also

plotted, which have lower f(E, z) in comparison. µ+µ−, bb̄ are also much smoother

than e+e− due to the wide spectra of stable final particles which results in most of

the features of the electron and photon effective efficiencies averaging out. As lower

energy injection requires less time to deposit its energy into the intergalactic medium, f

increases with lower MDM, as demonstrated in the shape of τDM constraint. This leads

to a significantO(1027)s bound for sub-GeV dark matter lifetime that is complementary

to gamma-ray search limits [100, 101] from Fermi-LAT data. The 21 cm bound is also

stronger than the CMB damping constraint from Planck [33] by more than one order

of magnitude. This indicates that the TS ' TG in the reionization epoch is a very

sensitive test of energy injection. µ+µ− and bb̄ final states for masses above 30 GeV

produce weaker bounds than Fermi-LAT’s dwarf galaxy [100] and Galactic [86, 102]

gamma-ray measurements. τ+τ− final states result in weaker bounds for all tested

masses but reach comparable results at mDM = 10 GeV. Because e+e− produces few

gamma-rays and has a high f(E, z), the 21 cm result is expected to be much more

constraining than an analysis with Fermi-LAT results.

The shape of the constraints is a direct result from the effective efficiency maps

discussed in Sec. 2.1. Masses that occur near a peak absorption efficiency have a

corresponding high constraint. The shifting of the peaks between Planck and 21 cm

results is due to the z dependence of the effective efficiency. Dominant features present
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Figure 4.1: Dark matter decay constraints. 21 cm lower-bounds on dark matter decay
lifetime. The dark matter decay panels assume DM→ e+e− (top left), DM→ γγ (top
right), DM→ µ+µ− (center left), DM→ τ+τ− (center right), and DM→ bb̄ (bottom)
final states. Current CMB damping constraints [33] from Planck (solid) and dwarf
galaxy bounds [100] from Fermi-LAT (gray dashed) are also shown for comparison.
Reprinted with permission from Ref. [56].
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in the efficiency map shift to higher dark matter masses at late redshift and are observed

in the calculated maps [19].

Also note the enhanced lifetime in the γγ channel at injection below 0.1 MeV

due to higher photon energy absorption efficiencies. At ∼KeV mass dark matter, the

lifetime bound is higher than 1027s. This bound is below the 1029s·(MDM/KeV) [103]

requirement for explaining the 3.5 KeV X-ray excess [104]. Testing this signal would

need O(mK) T21 sensitivity at future measurements.

4.2 Primordial Black Holes

Shortly after the Big Bang, large density fluctuations in the early Universe may

have resulted in the formation of primordial black holes (PBHs) [105–108]. There is

a wide range of allowed masses for PBHs. Depending on the epoch and conditions

during formation, PBH masses can be anywhere from approximately a gram to a

million solar masses. While low mass PBHs would have already evaporated through

Hawking radiation [109], large ones with masses MBH > 5 × 1014 g would still be

present today. It is also possible to have prolonged PBH formation during a non-

radiation-dominated phase of the Universe where PBHs can form with a continuum

mass distribution, rather than mostly at one particular mass scale as in the conventional

radiation dominated case [110–113]. Stable PBHs can be cosmologically-significant,

and may serve as an ideal dark matter candidate [114]. For a review of PBH formation

and relevant constraints, see Ref. [115–117], and Ref. [118] for constraints on horizonless

exotic compact objects. Also see Ref. [112, 119, 120] for recent studies of PBH formation

under nonthermal conditions.

Depending on PBH abundance, Hawking radiation from PBHs with lifetimes longer

than the age of the universe may be observable. Extragalactic gamma-rays strongly

constrain PBHs in the mass range ∼ 1015 − 1017 g [114]. PBHs in the mass range

∼ 1017 − 1020 g are bounded by femtolensing of gamma-ray bursts [121], and PBHs in

the mass range ∼ 10−10 − 10 M� are constrained by gravitational microlensing [122].
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In addition, PBHs with mass & 10 M� may be constrained by the accretion of matter

in the early universe [119, 123, 124]. Black holes at approximately this mass are

constrained by X-rays observations [125].

Our focus on PBHs will be to set new constraints in the mass range ∼ 1015 − 1017

g using the most recent Planck cosmic microwave background (CMB) data [32] and

21 cm [114, 126] EDGES results [2, 52]. The CMB is sensitive to additional sources

of energy injection during the recombination epoch, which leads to damping of the

anisotropies. For PBHs, this energy injection is due to Hawking radiation. As we

show, the Planck and EDGES data now places a stronger bound on PBHs over a

larger fraction of this mass range than the previous most stringent bounds derived

from the extragalactic gamma-ray background (EGB). Other authors have also used

Planck data to bound PBHs in the mass regime that we study [127, 128]; as discussed

below we precisely identify the mass regime over which the CMB and EGB bounds are

dominant. In addition we note that our analysis is distinct from previous studies that

used early-time distortions of the CMB to bound PBHs in the mass range 1011 − 1012

g [129].

The theoretical formalism that we utilize to constrain PBHs is similar to that used

to constrain dark matter annihilations and decays [16, 19, 21, 22, 130]. From the

perspective of energy injection, PBH evaporation is most similar to decaying dark

matter in that the energy injection only depends on the PBH mass, PBH abundance,

and is occurs at a fairly steady rate to present time. This energy injection can have

a significant impact on ionization at low redshift. However unlike dark matter which

can frequently produce heavy Standard Model particles, PBHs with mass > 1015g

mostly radiate electrons, photons, and other (near) massless species, but generally not

much heavier particle species. Because PBHs with mass > 1018g are too cold to emit

electrons, their injection into the CMB is unobservable, and the bounds are weak above

this mass.
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4.2.1 Blackhole Radiation Properties

PBHs radiate a spectrum of particles through Hawking radiation, which decay into

photons, electrons, protons, and neutrinos. These particles then deposit their energy

into the IGM, see Sec. 2. PBH energy injection is described by

dE
dV dt = ṀBH c

2 nBH

= ṀBH

MBH
ρc c

2 ΩBH(z)

= ṀBH

MBH
ρc c

2 ΩBH,0 (1 + z)3,

(4.2)

where nBH is the PBH number density, ρc is the critical density of the Universe today,

MBH is the PBH mass, ΩBH(z) is the PBH density relative to the critical density, and

ΩBH,0 is the value of ΩBH(z) today.

Note that the above equations assume that PBHs are comprised of a single mass and

the mass does not changes as it radiates. This is satisfied as long as the lifetime is large

compared to the age of the universe and is satisfied by the masses considered, MBH =

1015 − 1017 g, to at worst the percent level. Apart from some cosmetic differences,

Equation 4.2 is identical to that for decaying dark matter, Equation 4.1 [33].

The characteristics of the PBH radiation spectra are equated through Hawking

radiation to that of a blackbody object radiating with temperature

TBH = 1
8πGM = 1.06 TeV× 1010 g

MBH
(4.3)

and with an emission spectrum

dN
dEdt ∝

Γs
eE/TBH − (−1)2s , (4.4)

where s is the spin of the radiated particle, and Γs is the absorption coefficient for the
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particle. For low TBH, the absorption coefficient can deviate greatly from the geometric

optic limit [131, 132],

Γs(M,E) = 27G2M2E2

~2c6 . (4.5)

Hawking radiation causes black holes to lose mass at a rate [114, 131, 132]

ṀBH = −5.34× 1025F (MBH)M−2
BH g3 s−1. (4.6)

where F (MBH) is a measure of the fraction of emitted particles normalized to unity for

MBH � 1017 g, and evaluated by summing over the various particles.

F (MBH) =
(∑

i

fi

)
(4.7)

The fractions for particles of different spins emitted in the region of interest are [132]

f0 = 0.267, fγ1 = 0.06, f3/2 = 0.02,

f g2 = 0.007, f ν1/2 = 0.147, f e±1/2 = 0.142.
(4.8)

Equations 4.2 and 4.6 are combined with the emitted spectra fractions from Equa-

tion 4.8 to provide the energy injection rate for PBH. For MBH = 1015 − 1017 g, this

rate is
dE

dV dt = 3.67× 1025M−3
BH ρc c

2 ΩBH,0 (1 + z)3 g3 s−1. (4.9)

Because neutrinos do not interact with the medium, they have been ignored from this

calculation. In order to account for this, they are also ignored in the PBH effective

efficiency calculation. We have verified that this simplification for PBHs is valid. The

only error introduced with these assumptions is an underestimation in the PBH mass

loss rate. Because we are considering PBH that do not change mass by an appreciable

amount over the age of the Universe, this underestimation has no affect on the results.
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Figure 4.2: PBH constraints. CMB damping exclusion bounds [23] for ΩBH at the
95% confidence level (shaded region) and the 21 cm bound estimates for ∆T of −100
(dashed) and −150 mK (short dashed) [56] compared with the same exclusion bound
enforced by extragalactic gamma-ray background [23, 114] (solid) constraints, assuming
100% of the background produced by PBHs and the femtolensing excluded area [115,
133] (top right). Reprinted with permission from Ref. [56].

4.2.2 PBH constraints

Figure 4.2 shows the 95% confidence limit from Planck CMB measurements as well

as the 21 cm EDGES estimate bounds for T21 = −50 and −100 mK. The constraints

follow the expected inverse cube relationship to the PBH mass which is predicted by

the energy injection formula with 21 cm beating out Planck by an order of magnitude.

In addition to the cubic dependence on mass, there is also a highly nonlinear rela-

tionship to the effective efficiency. This nonlinearity is most prevalent for PBH masses

around 1 − 4 × 1016 g [23] for CMB and peaks at 1016 g for 21 cm [56]. Comparing

effective efficiencies, in Figure 2.4, the trend is correlated with the efficiency values

that occur near the time of recombination and reionization respectfully. As the effi-

ciency value decreases, it is required for a larger amount of total energy to be created

in order to produce the same effect. For this reason, as the efficiency experiences a

large decrease in this mass range, the allowable maximum mass fraction increases. This
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nonlinear behavior is also observed in [127] to a much lesser degree.

The EGB constraints were recreated following the prescription outlined in Ref. [114,

115], the number density of photons, nγ0, with energy Eγ0 and their intensity is

nγ0(Eγ) = ΓBH

MBH
Eγ

∫ min(t0,τ)

tmin
dt(1 + z)−2 Ṅγ

Eγ
(MBH, (1 + z)Eγ) (4.10)

I = c

4πnγ0 (4.11)

where tmin is the time when photon creation begins. The quantity Ṅγ/Eγ(MBH, Eγ) is

the photon spectrum given by Equation 4.4, which we take at the high energy limit.

For PBHs in our mass range, peak intensity occurs at ∼ 1 − 30 MeV. Constraints

were imposed by matching the intensity to the upper bound of the COMPTEL EGB

experimental data [134].

EGB constraints are also shown in Figure 4.2 as well as those imposed by fem-

tolensing [115]. Currently, Planck provides the strongest constraints on the abundance

of PBHs for masses ∼ 1015 − 1016 g, while the EGB dominates for masses & 1016 g.

We find that 21 cm have the potential to be stronger than all of the other results.

Note that while using a similar approach, this conclusion differs from that of

Ref. [127]. Figure 4.3 shows a comparison between the results calculated in this work

and those from Ref [127]. For low mass PBHs, our work calculates a stronger constraint

than the EGB; for larger masses, a weaker constraint is produced. The calculation in

Ref [127] has the opposite relationship.

4.2.3 Continuum Photons

Injections also produce a of continuum photons that can affect the CMB by creating

spectral distortions [21]. The continuum is defined as the photons produced by injection

that are sub 10.2 eV, and thus do not interact with neutral Hydrogen. The continuum

photons contribute by altering the CMB signature away from a Boltzmann distribution.

Ref. [135] investigated limits to these spectral distortions modeling the distortions as
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Figure 4.3: Comparison of PBH CMB results to other works. CMB exclusion bounds
for ΩBH at the 95% confidence level (shaded region) [23] compared with the same
exclusion bound enforced by EGB, assuming 100% of the background produced by
PBHs (dashed). Also included is an approximation of the bound found in Ref. [127]
(short dashed). Reprinted with permission from Ref. [23].

a Bose-Einstein distribution with a chemical potential µ, µ-type distortions. In order

to get a baseline estimate on the effect that continuum photons produced by a dark

matter candidate have on the CMB, we conducted a similar approach. Assuming the

injection alters the perfect blackbody spectrum with the same µ-type distortions, these

distortions will be approximately

µ = 1.4δργ
ργ

= 1.4
∫ t2

t1

ρ̇γ
ργ

dt, (4.12)

where ργ and ρ̇γ are the energy density of the CMB and the distortion injection rate

on the CMB respectfully. ρ̇γ is the interaction injection rate into the continuum. The

result is

µ = 1.4
∫ z2

z1

(dE/dV dt)Cont.

ρcΩγ(1 + z)4
dz

(1 + z)H(z) , (4.13)

with Ωγh
2 ∼ 2.47× 10−5.

Current limits on these distortions are |µ| < 9.0 × 10−5 at two sigma [135]. A
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Figure 4.4: PBH CMB constraints compared with limits imposed by spectral distor-
tions. Exclusion bounds for the fraction of dark matter composed of black holes at the
95% confidence level for CMB anisotropies (shaded region) and spectral distortions.
The various curves correspond to different integration limits in Equation 4.12. The
most constraining uses z = 0 to infinity (dashed), and the second uses z = 6 to infinity
(short dashed). Reprinted with permission from Ref. [23].

comparison of this constraint and the CMB value discussed in this section is shown

in Figure 4.4. The constraints produced by CMB are stronger by several orders of

magnitude than limits produced assuming a µ-type or similar distortion. The only

limits that approach the CMB result are those that consider alterations at extremely

late times; however, these can be ignored because CMB photons at late redshifts are

already much cooler than the 10.2 eV limit assumed by the injections in this calculation.

Therefore, the actual constraints on by more careful analysis would be weaker.

4.3 Four-body Annihilation

Dark matter annihilation into Standard Model (SM) particles is now being probed

by many high energy gamma-ray and cosmic ray experiments. Of particular interest

are Fermi-LAT observations of dwarf spheroidals (dSphs) [4–8] which have constrained

s-wave dark matter at the thermal relic scale for dark matter with mass ∼ 10 − 100

GeV, for several well-motived annihilation channels. These results are complemented by

cosmic microwave background (CMB) data, most recently from the Planck satellite [1],
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which extend the constraints on thermal relic dark matter to lower masses.

Though the aforementioned observations do not show conclusive evidence for a

dark matter annihilation signal, there are several results when considered separately

that may be consistent with a dark matter annihilation interpretation. These include

the long-standing Fermi-LAT galactic center excess (GCE) [90, 136–139], and more

recently the antiproton measurements from AMS [89]. These possible hints of dark

matter may be reconciled with the null results from the Fermi-LAT and CMB for

some well-motivated dark matter annihilation models [92, 140–145]. However, there is

not a large region of dark matter mass and annihilation cross-section parameter space

in which the dark matter annihilation interpretation of these data sets are mutually

satisfied.

We study a wide range of dark matter annihilation final states, and using these,

explore the possibility that all of the above experiments may be consistent with one an-

other. In particular, we focus on four-body final states, final states that arise through

the decay of a light mediator. In all of these scenarios, we compute the energy in-

jection into the intergalactic medium (IGM) which imparts a measurable imprint on

the CMB, and place constraints on the annihilation cross-section using the latest data

from Planck. We compare these constraints to similar ones imposed by Fermi-LAT and

at higher energies by MAGIC [146] and VERITAS [147]. We explore whether or not

these constraints are consistent with the dark matter annihilation interpretation of the

antiproton excess measured by AMS [92, 140], and show that for light mediators it is

possible to explain the AMS data with dark matter annihilation, and remain consis-

tent with the GCE, for dark matter masses mχ ∼ 60− 100 GeV and mediator masses

mφ/mχ . 1.

Here, we investigate the differences in constraints between the typical two-body

annihilation verse a four-body annihilation. In the two-body case, we assume fermionic

dark matter annihilates a Standard Model anti-particle pairs, χχ → SM SM. For the
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four-body example, fermionic dark matter annihilates to two new scalars. These scalars

then decay into Standard Model anti-particle pairs; χχ→ φφ, followed by φ→ SM SM.

For both cases, the energy injection rate is

dE
dV dt = ρ2

c c
2 Ω2

DM
〈σv〉
MDM

(1 + z)6, (4.14)

where ρc is the critical density of the Universe and ΩDM is the dark matter content,

both measured at z = 0. The thermally averaged cross-section is 〈σv〉, and mχ is the

dark matter mass [16].

4.3.1 Four-body Annihilation Constraints

We constrained the annihilating dark matter models with Planck data. We also

compared with results from some high energy gamma-ray experiments, in particular

Fermi-LAT, MAGIC, and VERITAS. Most of the published constraints by Fermi-LAT,

MAGIC, and VERITAS have been calculated for two-body final state models. Using

these constraints, we estimated the four-body constraints following the prescription

outlined in Ref. [148]. This procedure hinges upon the photon energy spectrum from

multiple species being similar and allows us to cast a calculated constraint from one

model into an unknown model simply by comparing the spectra. To perform this

relationship, we consider the relation,

〈σv〉4 = 〈σv〉2 ×
(
mχ,4

mχ,2

)2

×
∫ Emax

Emin

dN2

dEγ
dEγ ×

(∫ Emax

Emin

dN4

dEγ
dEγ

)−1

, (4.15)

where 2 and 4 are tags that denote quantities from the two- and four-body models

respectively, Emin and Emax are the lower and upper bounds for the measured photon

energies, and dN/dEγ is the photon spectrum from the process, including the decays

of unstable products. The four-body dark matter mass is chosen so that its spectrum,

defined as (Eγ)2dN4/dEγ, has a peak at the same energy as the peak of the two-
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Annihilation Model Fermi-LAT Fermi-LAT + MAGIC VERITAS
4τ 2τ 2τ 2τ

2b2τ 2b 2b 2b
2t 2b 2b —
4b 2b 2b 2b

Table 4.1: Spectral combinations for converting constraints from two- to four-body.
Estimate constraints for models in the first column were produced for each experiment
listed in the first row by converting bounds from the listed model as described in
Equation 4.15. The symbol (—) signifies the constraint has already been calculated
for the respective experiment. Reprinted with permission from Ref. [28].

body spectrum for a given mass mχ,2. The energies Emin and Emax are set at 0.5

GeV and mχ respectively for Fermi-LAT and Fermi-LAT+MAGIC. They are set at 50

GeV and up to 50 TeV for VERITAS. Because we are scaling the four-body spectrum

constraints from the two-body constraints, we note that starting with different two-

body spectra may produce different constraints on four-body models. To minimize the

error introduced through this method, we started with the two-body spectrum that

most closely matches the extrapolated model. Table 4.1 lists the two-body spectra

used to produce the four-body constraints when using Equation 4.15.

Figure 4.5 combines the limits calculated from Planck as well as those converted

for Fermi-LAT, MAGIC, and VERITAS. Each line represents the respective 95% con-

fidence limit. The overall effect for the Fermi-LAT, MAGIC, and VERITAS bounds

moving from two- to four-body is a slight weakening. This shift originates from a

larger fraction of photons being produced below the detection threshold. For Planck,

on the other hand, the limits for two- and four-body final states are very similar. This

similarity is attributed to the CMB being sensitive to the total energy injected into

its system rather than on the particular spectra of injected particles, which results in

very different models having near identical constraints. Because the Planck bound is

stationary while Fermi-LAT, MAGIC, and VERITAS weaken in response to chang-

ing between two- and four-bodies, the Planck bounds tend to strengthen slightly in
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comparison to the other constraints.

For the lepton final states, 2τ and 4τ Planck constraints are significantly weaker

than Fermi-LAT up to mass ∼ TeV, above which the Planck constraints are stronger as

Fermi-LAT loses sensitivity. At higher masses, the Planck constraints are comparable

to, but slightly weaker than, the VERITAS bounds, and are generally weaker than the

MAGIC constraints. The Planck constraints on the 2e and 2µ final states, on the other

hand, are stronger than Fermi-LAT at low masses, and are significantly stronger at

higher masses. As the Planck constraints continue into the TeV range, they are much

stronger than VERITAS. With the addition of MAGIC, the constraints from Fermi-

LAT, MAGIC, and VERITAS approach the Planck result ∼ 400 GeV and ∼ 1 TeV.

We note that the simple prescription used to estimate constraints based on different

channels cannot be used for MAGIC to obtain 2e constraints due to the lack of a well

defined peak in its spectrum. However, the 2e bounds would be expected to be similar

to those from 2µ because of their spectral similarities.

For the quark and quark-lepton final states, the constraint for 2t, 2b, 4b, 2b2τ , and

2W are almost identical because of their similarities in decay chains. At low energies,

Planck constraints are significantly weaker than Fermi-LAT throughout Fermi-LAT’s

sensitive range. At higher energies, Planck limits are comparable to slightly stronger

than the VERITAS bounds up to the end of its range. The MAGIC results are stronger

than both Planck and VERITAS at high masses.

In general, we note that Fermi-LAT continues to have stronger constraints for lower

dark matter masses than Planck. At the high end, Planck is comparable to VERITAS

and at some masses is better than VERITAS; however, it is usually weaker than MAGIC

at higher masses. It should be noted that due to Fermi-LAT, MAGIC, and VERITAS

having poor efficiencies for light particles, Planck produces a stronger constraint for

electrons and muons at all dark matter masses.

The tension between Fermi-LAT and galactic center excess dark matter interpreta-
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Figure 4.5: Two- and four-body annihilation constraints. Constraints on the annihila-
tion cross-section for several channels using Planck, Fermi-LAT, Fermi-LAT + MAGIC
and VERITAS. The limits are at the 95% level. Reprinted with permission from
Ref. [28].
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Figure 4.6: 4b antiproton best fit results. Constraints imposed by AMS data (red) for
χχ→ φφ followed by φ→ bb̄. Also shown are the upper limits on dark matter annihi-
lation calculated by Fermi-LAT (blue), Planck (purple), and GCE (black). Reprinted
with permission from Ref. [28].

tions is also loosened through transitioning from two- to four-body annihilation [148].

By incorporating these results with those for 4b antiproton and connecting it to the

2b antiproton constraints from Ref. [92] through a similar process as the photon con-

version as described in Sec. 3.3, further constraints on the four-body parameter space

can be made. In Figure 4.6, we show the allowed region to explain the antiproton

data. Each line represents the respective 95% confidence limit. The preferred region

depends greatly on the mediator mass with larger mediators preferring heavier dark

matter masses and higher annihilation cross-sections due to the mediator becoming

less boosted with increased mass. This shifting of the preferred parameter space per-

mits measurements of the antiproton flux to differentiate between different four-body

annihilation models. The best overlap with other experiments occurs at a mediator

mass of approximately 70% the dark matter mass. This region shows good overlap

with other experiments, particularly the GCE, and is consistent with both Fermi-LAT

and Planck bounds.

Since the 4b final state provides a good fit to the GCE and the AMS antiproton
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data, one may wish to construct a model for such final states arising from dark matter

annihilation. In Ref. [148], an additional U(1)B−L was considered to fit the GCE after

satisfying the null detections from dwarf spheroidal galaxies. In this model, the dark

matter candidate annihilates into two new Higgs (φ), which finally decays into mostly

2b and 2τ via a loop containing an extra heavy Z boson associated with the new gauge

symmetry. However, for the combined AMS and the GCE fit, the presence of τ in the

final state creates a problem. In this case, an additional U(1)B−xL symmetry can be

invoked to obtain the fit where 0 ≤ x ≤ 1. For the best fit x → 0 is needed, where

each φ primarily decays into 2b and the dark matter annihilation dominantly produces

4b in the final state.

4.4 Bremsstrahlung Annihilation

The annihilation cross-section, (σv)ann, is one of the key quantities that describes

the nature of dark matter interactions with the Standard Model. The annihilation

cross-section in the early universe sets the relic abundance for thermally produced

dark matter. There are several observational bounds on the annihilation cross-section,

for example high energy gamma-ray data [8, 147] and the cosmic microwave background

(CMB) [149] as we saw in Sec. 4.3. The redshifted 21 cm line arising from a spin-flip

transition in neutral hydrogen gas prior to the era of recombination [150] has recently

been recognized as an important probe of dark matter annihilation and decay. The 21

cm measurements are sensitive to the annihilation cross-section at redshifts z . 15 [52].

The dark matter annihilation cross-section can be expressed as a partial-wave

expansion in powers of the square of the relative velocity between the annihilat-

ing particles [151]. The evolving nature of the dark matter velocity implies that

the leading order annihilation process may differ over the course of the evolution of

the universe and during cosmological structure formation. For example, dark matter

that is a Majorana fermion can naturally annihilate dominantly as a p-wave process,

(σv)ann ∝ v2, during the era of dark matter freeze-out where the relative velocity
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squared is v2 ∼ T/mDM ∼ 1/20. There exist s-wave annihilation channels to two

fermion final states, for example, but these are chirality suppressed by mass ratio fac-

tors of (mf/mDM)2 [152]. This can be contrasted with dark matter in the galactic halo,

which has a virial velocity v2 ∼ 10−6, and thereby reduces the observational importance

of the p-wave process. This implies that annihilation to three-body final states, which

proceed via s-wave annihilation due to the bremsstrahlung of a bosonic state [153], can

provide the leading order annihilation channel.

Typically, three-body annihilation dominates over two-body annihilation as the

mass of the particle mediating the interaction approaches that of the dark matter [154–

159]. This also provides an alternative means of accessing the parameter space in the

so-called compressed mass region, where the masses are nearly degenerate. However,

the degeneracy does not need to be extreme in order to obtain a large effect from

vector bremsstrahlung, which provides a natural region of parameter space that can

be probed by experiment.

These considerations suggest that, in the case of dark matter annihilation to fermion

pairs, final state radiation and internal vector bremsstrahlung of photons and the elec-

troweak W/Z bosons are irreducible processes which present an interesting target for

observational searches. Photon bremsstrahlung can produce a line-like spectral fea-

ture [153], and the subsequent decay of the radiated W and Z bosons produce addi-

tional diffuse photon signals which provide a complementary avenue of investigation.

Here, we examine constraints on dark matter annihilating predominantly through

s-wave channels in the present universe as a result of electromagnetic and electroweak

bremsstrahlung, but whose relic abundance is set in the early universe by p-wave an-

nihilations. We consider Fermi-LAT observations of dwarf spheroidals (dSphs) and

diffuse gamma-ray data. We are thus able to simultaneously probe both of these par-

tial wave components for a single dark matter model. We demonstrate that current

observations are able to constrain such models, which can be contrasted with the case
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of dark matter annihilating only through p-wave processes which is wholly inaccessible

to observational limits. We discuss the constraints in the context of both thermal and

non-thermal models. Bounds on the dark matter annihilation cross-section from 21 cm

observations are also presented along with a comparison to the constraints from CMB

data.

We highlight in particular the final state consisting of neutrinos only. This two-

body final state is quite difficult to probe observationally, but the addition of a final

state photon allows for more strict experimental constraints. [160] A complication arises

due to SU(2)L invariance, which makes producing a neutrinos-only final state as the

dominant annihilation channel a non-trivial task, as one would expect the annihilation

to also produce charged leptons. However we introduce a model which produces a

neutrino-only final states without allowing final state charged lepton production, while

respecting gauge invariance.

4.4.1 Lifting velocity suppression via bremsstrahlung

In what follows, we will adopt a single-component SUSY-inspired simplified model

of dark matter consisting of a Majorana dark matter particle, χ, whose fractional

abundance gives the totality of the dark matter (fDM = 1), and which annihilates to

Standard Model particles through t- and u-channel exchange of a charged scalar.

The annihilation cross-section for a pair of non-relativistic dark matter particles of

total orbital angular momentum L and relative velocity, v, is expressed as a partial

wave expansion σv ∝ v2L [151]. Using general considerations [161, 162], one finds that

models with Majorana pair annihilation may naturally proceed dominantly through a

p-wave process. As it has s-channel annihilations only through pseudoscalar, scalar,

or axial-vector exchange with L = 0, s-wave processes arise only in models with pseu-

doscalar mediators, though the pseudoscalar typically couples through a Yukawa-like

interaction, introducing a mass suppression in the same mold as chirality suppression.

As is well-known [152], the axial-vector exchange also contributes an L = 0 partial-wave
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which is chirality suppressed for annihilation to light final state fermions of mass mf

by the factor m2
f/m

2
DM. There also exist t- and u-channel annihilation modes through

scalar exchange (as in SUSY and SUSY-inspired models) that produce chirality sup-

pression, as can be seen through a Fierz transformation to the s-channel where the

axial-vector contribution is apparent [163].

Chirality suppression for annihilation to a pair of final state fermions may be evaded

by annihilation to a three-body final state through the bremsstrahlung emission of a

boson. This has been demonstrated in photon, gluon, and electroweak bremsstrahlung

for t- and u-channel annihilation, as well as Higgstrahlung from an s-channel anni-

hilation mode [153–157, 164–168]. For galactic dark matter with virial velocities of

v ∼ O(10−3), there are regions of parameter space where the three-body final state

process can dominate over the two-body final state. Specifically, the three-body fi-

nal state process will increase relative to the two-body final state as the mediator

mass approaches the dark matter mass. However, as we will demonstrate, the split-

ting between the dark matter mass and mediator mass does not need to be extremely

fine tuned in order for a non-negligible effect to arise. This allows for the intriguing

situation where the relic abundance of Majorana dark matter can be set by p-wave

annihilation while signals at later times are most strongly constrained by s-wave pro-

cesses induced through bremsstrahlung. It should be emphasized that bounds on dark

matter models must necessarily include the effects of such irreducible bremsstrahlung

processes.

Inclusion of the photon bremsstrahlung process induces a spectral feature that

provides a target in line searches for gamma-ray observatories. This can be seen in the

left column of Figure 4.7, which displays the photon spectrum for 100 GeV dark matter

annihilating to charged fermion pairs, e+e−, µ+µ−, and τ+τ− for different values of the

mediator to dark matter mass ratio from 1.05 to 1.5. We classify these annihilations as

two-to-two interactions. We also show the thermally averaged differential cross-section
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for νν cases in Figure 4.8 for mass ratios 1.05 to 2. We use the MSSM with a slepton

mediator to calculate the e, µ, τ final states, and introduce a new model to calculate

the ν final states, described in the following paragraph. However, this analysis can

be applied to any model with the same final states. This spectrum demonstrates the

line-like feature that arises at the kinematic endpoint of the annihilation process, as

well as showing that the lower energy spectral feature increases as the mediator mass

approaches the dark matter mass. If the dark matter mass is large enough to produce

on-shell W/Z bosons, as in the right column of Figure 4.7, where the dark matter mass

is 300 GeV, the line-like feature persists, but the low energy spectrum is enhanced from

W/Z decays.

In addition to searches with final state charged leptons, we also consider neutrino-

only final states. Generally speaking, if a model contains a νν̄ final state from dark

matter annihilation, indirect detection becomes challenging (though bounds on the

annihilation cross-section can be determined [169–172]). However, the situation is

improved if a νν̄γ final state is available. One can think about a possible model (for

other models that produce a νν̄ final state, see for example [172]) for such a scenario

with the following Lagrangian:

L ⊃ λφφ∗ρρ† + λ′L̄vρνR (4.16)

Here ρ =

ρ+

ρ0

 is a Z2 scalar doublet, which we assume does not get a vacuum

expectation value (VEV), and φ is a scalar singlet which acts as the dark matter

candidate responsible for 27% of the energy density of the universe. The relative

masses are such that φ is lighter than ρ and L, and ρ can decay to φ via a Higgs

coupling term given by φ∗ρH. L̄v is a vector-like heavy Z2 odd lepton doublet, and νR

is a singlet right handed neutrino with a mass of mνR
' 1 MeV. In such a scenario,

the φ annihilates into a pair of νR via a triangle loop containing L±, ρ∓ or L0
v, ρ

0. A
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photon can be emitted from any of the internal charged legs associated with L±v , ρ∓ to

make the final state νν̄γ.

The spectra were created using the differential cross-section from Ref. [153]. We

verified the validity of the expression and also checked that no appreciable variations

occur for massive leptons upto the τ mass. We used Pythia [24–26] to produce the

decay spectrum of unstable particles. The neutrino differential cross-sections were

created following the same procedure.

4.4.2 Bremsstrahlung Constraints

The resulting constraints from gamma-ray lines are shown in Figure 4.9 for χχ→

ff̄ + γ/W/Z final states. We also show the thermally-averaged cross-sections for each

of these final states for the scenarios where the dark matter primarily annihilates into

ff̄ (p-wave dominated) at freeze out. Various colored lines, both for experimental

and theory scenarios, are shown for different mediator to dark matter mass ratios.

The e, µ, τ final states shown are based on the MSSM model where the neutralino and

slepton mass differences vary between 5% and 100%. We note that though we use SUSY

for the purposes of an example, this analysis can be applied to any classes of models

including t- and u-channel scalar mediators with similar mass ratios to that of the

dark matter. LHC searches for slepton masses leave a large amount of unconstrained

parameter space for the selectron and smuon for mass differences of ∆M(mẽ, µ̃, χ̃0
1
) ≤ 60

GeV with respect to the neutralino DM particle [173], and stau masses are constrained

to be mτ̃ > 100 GeV from LEP limits [174–177] (LHC limits on stau masses are

approaching a similar level [178]).

The constraints in Figure 4.9 can be used to place constraints on various dark matter

scenarios. We find that the constraint rules out a dark matter mass mDM . 30 GeV for

a mediator to dark matter mass ratio of ' 5%. With the NFWc profile, the constraint

becomes 70 GeV for e, µ and τ final states. We used the MSSM parameter space for

the charged lepton scenarios. For the ννγ final state we use the model described above
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Figure 4.7: Gamma-ray spectra from annihilation to charged leptons and a gauge boson
bremsstrahlung. The dark matter has mDM = 100 GeV (left) and mDM = 300 GeV
(right). Various mediator mass ratios, mmed/mDM, are shown. Lepton final states are
electron (top), muon (middle), and tau (bottom). Only the two-to-two and photon
bremsstrahlung are considered for the 100 GeV cases while 300 GeV includes the two-
to-two and photon/W/Z bremsstrahlung. Reprinted with permission from Ref. [87].
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Figure 4.8: Differential thermally averaged cross-section for annihilation to neutrinos
and a photon bremsstrahlung. The dark matter has mDM = 100 GeV annihilating into
neutrino and gamma-ray final states. Various mediator mass ratios, mmed/mDM, are
shown. Reprinted with permission from Ref. [87].

with λ ∼ 2, and we assume all the charged heavy state masses are the same.

In Figure 4.10, we show the current s- and p-wave annihilation rates required to

produce the appropriate dark matter abundance. Here we have calculated the me-

diator to dark matter mass ratios necessary for obtaining the relic abundance with

micrOMEGA [179, 180]. In comparison with Figure 4.9, the thermal dark matter

line corresponds closely with mmed/mDM = 1.05 for dark matter masses above 100

GeV. The larger mass ratios presented in the figure can arise in non-thermal scenarios

described below. We find that the p-wave component today is small except in the case

of lighter dark matter masses. When the dark matter mass becomes small, the mass

difference between the mediator and dark matter increases. As the mass ratio increases,

the s-wave component is suppressed. We see that the current reach is nearly an order

of magnitude from the s-wave component for a dark matter mass around 100 GeV. We

do not show the neutrino final state figure here because the p-wave component is model

dependent, e.g., based on our Lagrangian we do not have any ν̄ν final states unless we

assume large values of Dirac mass for the neutrinos. In such a scenario, the ννγ final

57



emmed/mDM

1.05

1.1

1.2

1.5

2.0

GC: Isoth

GC: NFWc

Theory

102
10-30

10-29

10-28

10-27

10-26

10-25

MDM [GeV]

〈σ
v
〉
[c

m
3
/s
]

μmmed/mDM

1.05

1.1

1.2

1.5

2.0

GC: Isoth

GC: NFWc

Theory

102
10-30

10-29

10-28

10-27

10-26

10-25

MDM [GeV]
〈σ

v
〉
[c

m
3
/s
]

τmmed/mDM

1.05

1.1

1.2

1.5

2.0

GC: Isoth

GC: NFWc

Theory

102
10-30

10-29

10-28

10-27

10-26

10-25

MDM [GeV]

〈σ
v
〉
[c

m
3
/s
]

νmmed/mDM

1.05

1.1

1.2

1.5

2.0

GC: Isoth

GC: NFWc

Theory

102
10-32

10-31

10-30

10-29

10-28

10-27

10-26

10-25

MDM [GeV]

〈σ
v
〉
[c

m
3
/s
]

Figure 4.9: Gauge boson bremsstrahlung constraints from the galactic center and the-
oretical thermal predictions. Constraints on the annihilation cross-section using null
detections of gamma-ray lines from Fermi-LAT data (solid lines). These constraints
assume the isothermal profile, as defined in the text. The theoretically-calculated cross-
section for various mediator mass ratios,mmed/mDM, are shown as dashed lines. Lepton
final states are electron (top left), muon (top right), tau (bottom left), and neutrino
(bottom right). The gamma-ray lines constraints using the NFWc dark matter profile
are shown as short dashed. Reprinted with permission from Ref. [87].
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state would provide the necessary relic abundance.

The non-thermal scenario can be constrained from Figure 4.9. The non-thermal pic-

ture emerges generically in UV theories like string theory due to the presence of grav-

itationally coupled scalars [181–186] which are displaced from their minimum during

inflation which can be of order MP [187]. After the end of inflation, when H ≤ mmod,

the moduli start dominating the energy density of the universe which gets reheated

when the moduli decay. Since the moduli are gravitationally coupled, they tend to

decay very late with a reheating temperature Trh ∼
√

ΓMP ∼ mmod

√
mmod/MP , where

Γ is the decay width of the modulus and mmod is the mass of the moduli. Trh needs to

be larger than TBBN in order to maintain the successful BBN predictions.

If we use the NFWc profile, we can constrain the reheat temperature (Trh > 0.5

GeV) for a dark matter mass ∼ 100 GeV (with the freeze-out temperature, Tf ∼ 5

GeV) to charged lepton final states for MSSM parameter space. The constraint on Trh

is model dependent since the dark matter annihilation calculation not only depends on

the mass scales of dark matter, mediator, and final states but also on the couplings.

In the case of the MSSM, the coupling is gweak. This can be different for other models

leading to larger annihilation cross-sections and a reduced Trh lower limit.

In a non-thermal scenario, the dark matter abundance is given by the expres-

sion [188, 189]

(
nχ
s

)
= min


(
nχ
s

)obs 〈σv〉th

〈σv〉

√√√√ g∗(Tf)
g∗(Trh)

Tf

Trh
, YφBrφ

 , (4.17)

(nχ/s)obs ' Ωobs (ρcrit/mχsh
2), while Yφ ' 3Trh/4mφ is the yield of dark matter abun-

dance from modulus decay, and Brφ is the branching ratio of the modulus decay into

R-parity odd particles. The first term refers to the annihilation scenario, while the

second term refers to the branching Scenario. In the branching scenario, the dark

matter is frozen-in, and the value of the cross-section is only bounded from above. In
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Figure 4.10: Comparison between s- and p-wave galactic virial velocity cross-sections
with galactic center constraints. Upper bound constraints imposed by the galactic
center (long-short dashed) and the theoretical calculated cross-section for various final
states which satisfy the thermal dark matter abundance. The dashed lines show the s-
wave and the solid lines show the p-wave component today. Reprinted with permission
from Ref. [87].

Figure 4.9, the annihilation scenarios are constrained.

In Figure 4.11, we compare the dSph and diffuse gamma-ray constraints for e+e−,

µ+µ−, τ+τ−, and νν final states in conjunction with a final state gauge boson. Gener-

ally across the entire mass range, we find that the constraints from diffuse gamma-ray

data are more stringent than those from dSphs.

The constraints we find can be compared to those previous found in Ref. [85], which

uses a similar approach. AtmDM ∼ 90 GeV, there is a slope change that is present in all

cases. This is a direct result ofW/Z boson channels becoming dominant pathways. The

remaining differences between our results and Ref. [85] may be attributed to binning

resolution for the data and the model.
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Figure 4.11: Gauge boson bremsstrahlung constraints from the galactic center and
dSph with thermal relic predictions. Upper bound constraints imposed by dSph (solid),
the galactic center (dashed) and the theoretical calculated cross-section for thermal
dark matter (long-short dashed) for various mediator mass ratios, mmed/mDM. Lepton
final states are electron (top left), muon (top right), tau (bottom left), and neutrino
(bottom right). We also show the galactic center using a less conservative dark matter
profile (short dashed). Reprinted with permission from Ref. [87].
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We show 21 cm estimate constraints for the p-wave dominated model in Figure 4.12.

We also compare the 21 cm and diffuse constraints for ff̄ + γ/W/Z and find that the

galactic center constraint from Fermi are currently much more constraining than 21 cm

observations. In contrast to the diffuse constraints, the ν̄νγ final state is constrained at

about the same level as the other leptonic final states, rather than providing the most

stringent bounds. Although there are currently a few orders of magnitude separating

the 21 cm and diffuse bounds, there are upcoming 21 cm observations which can

increase the competitiveness of this method, thus providing a useful tool from a different

cosmic epoch in the investigation of p-wave models.

The cosmic microwave background (CMB) is an additional method to be considered.

Figure 4.13 compares the 21 cm results to those of the CMB. The current 21 cm results

are comparable to the CMB with the CMB being slightly stronger by approximately

a factor of 5. However, they are both much weaker than both the dSph and diffuse

constraints.
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Figure 4.12: Gauge boson bremsstrahlung constraints from the galactic center and 21
cm with thermal relic predictions. Upper bound constraints imposed by 21 cm with
∆T = −100 mK (solid), the galactic center (dashed) and the theoretical calculated
cross-section for thermal dark matter (long-short dashed) for various mediator mass
ratios, mmed/mDM. Lepton final states are electron (top left), muon (top right), tau
(bottom left), and neutrino (bottom right). We also show the galactic center using a
less conservative dark matter profile (short dashed). Reprinted with permission from
Ref. [87].
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Figure 4.13: Comparison between 21 cm and CMB constraints on annihilation through
boson bremsstrahlung. While the CMB (dashed) is more constraining than the 21 cm
(solid), it is still much weaker than both GC and dSph. The data set used in the
comparison is annihilation to electrons plus a boson with mediator mass ratio 1.1.
Reprinted with permission from Ref. [87].
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5. CONCLUSION∗

We studied multiple indirect detection methods of dark matter including CMB

anisotropy, 21 cm absorption, and diffuse and targeted spectral signatures. We con-

nected these methods with available experimental data. We applied these methods to

multiple models including decaying, PBHs, annihilations into two and four-bodies, and

bremsstrahlung boson emitting annihilations and provide constraints on their param-

eter spaces.

CMB anisotropies and 21 cm absorption signatures rely upon the history of the

Universe. Dark matter candidate interaction inject energy into the Universe thus al-

tering its evolution and change the nature of these two measurements. The key focus

of their interactions is an investigation into the absorption’s effective efficiencies and

alterations to the ionization fraction and gas temperature. We also focused on the

alterations to the CMB and 21 cm line as a result of these injections. For our CMB

bound, we model the energy absorption not as instantaneous, but rather using red-

shift dependent efficiency. The energy injection results in an increase in the ionization

fraction at late times as well as an increase in the IGM temperature, leading to dis-

tortions of the CMB anisotropies. Larger fractional changes occur at large multipoles

because of the increase of the width of the last scattering surface. As far as the 21 cm
∗Parts of this section are reprinted with permission from:
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anomaly measured by EDGES, we do not attempt to explain it, but use the experi-

mental error to provide estimations to constraints. We also reviewed spectral detection

techniques and incorporated them into measuring multiple types of signals including

diffuse gamma-ray emission from the galaxy and the galactic center, gamma-ray source

searches from satellite dwarf spheroidal galaxies, and galactic antiproton excess signals.

We considered dark matter decay channels DM → e+e−, γγ, µ+µ−, τ+τ−, bb̄ and

obtained τDM ≥ 1026−27s bounds on the dark matter lifetime by requiring the heating

process raises the gas temperature to no higher than -100 mK or -50 mK. For e+e−,

γγ final states, the 21 cm observation provides the best bound in the dark matter

mass-lifetime parameter space. For bb̄ and µ+µ− final states, the 21 cm observation

bound becomes better than all the existing constraint for mDM < 30 GeV. For τ+τ−

final states, constraints are similar for mDM ≈ 10 GeV. The 21 cm bound is found to

be better than current CMB damping constraint from Planck data.

Since the removal of extremely large foreground from the data is difficult, the

EDGES result needs to be verified by future 21 cm experiments like PRIZM, HERA,

LEDA, and SKA. If the absorption signal is verified in the future, the 21 cm absorption

can prove to be a powerful probe to non-standard heating processes. It is worth

emphasizing on the 21 cm’s sensitivity to e±, γ injections in the sub-GeV energy range

as demonstrated in Figure 4.1. In contrast to the poor absorption efficiency at TeV

or higher energy scale, the sub-GeV bound on decaying dark matter can nicely fill

in the MeV-GeV range where the indirect search bounds are current less stringent in

comparison to X-ray and hard gamma-ray limits.

PBHs are of great interest in cosmology. They reveal conditions in the early universe

and can serve as a dark matter candidate. There are several standard mechanisms that

have been proposed to detect PBHs; these include detection of Hawking radiation,

detection of radiation produced from accretion disks, and gravitational lensing. Each

method is capable of targeting different PBH mass ranges. In this work, we have
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focused on PBHs with masses in the range 1015− 1017 g. We have improved and made

more precise the constraints in this mass range using the CMB and 21 cm. We also

looked at EGB and spectral distortion considerations.

Using Planck data, we show that CMB distortions from Hawking radiation al-

low for stringent constraints on the density of 1015 − 1017 g PBHs of ΩBH . 3.3 ×

10−9(mBH/M?)3.8. We show that for mass ∼ 1015 − 1016 g, the CMB constraints are

stronger than the constraints from the ∼ 1 − 30 MeV EGB, which imply, ΩBH .

1.4×10−8(mBH/M?)3.2. Constraints imposed by CMB spectral distortions from Hawk-

ing radiation producing sub 10.2 eV photons are also much weaker than our constraint.

Constraints with 21 cm further strengthen the PBH constraints by an order of magni-

tude over CMB Planck results.

In the future, our theoretical analysis may be improved by including a mass spec-

trum of PBHs. In addition, even though we have used the EGB to bound the contribu-

tion of PBHs, it may be interesting to consider the EGB as a signal of PBHs. This is

an exciting possibility because the origin of this ∼ MeV gamma-ray background is not

yet known [190–192]. Future missions to measure MeV gamma-rays will be especially

important for the study of PBHs [193].

We have examined experimental constraints on general four-body dark matter anni-

hilation models, in which the final state Standard Model particles are produced through

an unstable mediator. We compare these constraints on the annihilation cross-section

to previously reported constraints on two-body decay models, and find that the cur-

rent gamma-ray and Planck data is sufficient to strongly constrain four-body final state

models over a large range of interesting parameter space. For most cases considered,

we show Fermi-LAT, MAGIC, and VERITAS limits are weaker in the four-body than

the two-body channel. This occurs because a larger fraction of photons are produced

below the detection threshold of these experiments in the four-body channel. On the

other hand, the Planck constraints on four-body models are nearly identical to those
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on two-body models over a large range of dark matter masses. This is because CMB

measurements are relatively insensitive to the shape of the energy spectrum of the

decay products.

We have examined the implications of these four-body models in the context of

recent AMS antiproton data, finding a sensitivity to the mediator mass not observed

in current gamma-ray experiments. We have identified a particular scenario with dark

matter mass ∼ 60 − 100 GeV, and mediator mass ∼ mφ/mχ . 1 in which four-body

decay models are able to explain the AMS data. We also find that this regime is

consistent with the Fermi-LAT galactic center excess. As a general result, we highlight

that including light mediators allows for a plausible dark matter interpretation of the

gamma-ray and antiproton data in a larger range of parameter space relative to two-

body models.

We further look at an important extension to dark matter annihilation scenarios

through bremsstrahlung boson emission. For if dark matter self-annihilates to Stan-

dard Model final states, its dominant annihilation channel can vary over the course of

cosmic history due to a velocity dependence. This will dramatically suppress p-wave

annihilations relative to s-wave for non-relativistic dark matter. If dark matter were to

annihilate dominantly through a p-wave process, it will be observationally very chal-

lenging to probe with standard indirect detection techniques. We have investigated

well-motivated models which annihilate dominantly via a p-wave process to two-body

final states in the very early universe, but can have a leading three-body final state

annihilation when the dark matter is non-relativistic. The cross-section is enhanced

by the well known mechanism of internal and final state vector boson bremsstrahlung

of W/Z/γ, leading to ff̄ +W/Z/γ final states.

The model framework we have adopted is a rather general, SUSY-inspired model

with Majorana dark matter of mass mDM annihilating via t- and u-channel exchange of

charged mediators of mass mmed. Annihilation to three-body final states is enhanced
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as the mediator mass approaches that of the dark matter. We have included the

dependence of this ratio in our analysis. We find that the bounds are fairly insensitive

to mmed/mDM as it is varied from 1.05 to 2.0. We have employed complementary

aspects of the different final state bosons in order to strengthen the bounds on dark

matter annihilation. Specifically, the photon bremsstrahlung can produce line-like

features which can be constrained with data from the Fermi satellite via well-known

line search techniques. As the dark matter mass is increased, the massive W and Z

bosons become kinematically available, providing complementary signals to the photon

line search through the addition of a continuum spectrum produced by the W and Z

decays.

Some aspects of this work to highlight are the use of recent 21 cm observations to

constrain annihilations with vector bremsstrahlung, and the development of constraints

using the ν̄νγ final state. Developing bounds on dark matter physics from 21 cm

observations are quickly becoming a standard tool in the field, though the limits derived

in the current work are significantly weaker than those from dSph and diffuse data

from the Fermi satellite searches. Final states consisting of neutrinos accompanied by

no other particles, or dominantly annihilating to neutrinos without the existence of

charged lepton final state channels, lead to a very difficult search. However, we have

demonstrated that in some dark matter models, ν̄νγ final states can actually provide

leading constraints compared to those from charged leptons, `+`−γ, from diffuse and

dSph searches, with the 21 cm observations for ν̄νγ final states producing bounds

competitive with those from `+`−γ.

Although models of dark matter dominantly annihilating to two-body final states

through p-wave processes are quite challenging to probe observationally, we see that

the situation is not hopeless. We found that some dark matter masses are constrained

while for non-thermal scenarios the reheating temperature Trh gets constrained. By

investigating scenarios where three-body final states open s-wave channels, p-wave
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models can still provide a fertile ground for current and future investigations.
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