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DISCRETE SCHRÖDINGER OPERATORS WITH

SYMMETRIC BOUNDARY CONDITIONS∗

JONQ JUANG† , WEN-WEI LIN‡ , AND SHIH-FENG SHIEH†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 524–533

Abstract. In this paper, we investigate the one-dimensional discrete Schrödinger equation with
general, symmetric boundary conditions. Our results primarily concern the number of energy states
lying in the wells.
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1. Introduction. Allowing a > 0, we consider a discrete version of the eigen-
value problem of the Schrödinger operator

−
(

1

m(x)
u′
)′

+ V (x)u = λu(1.1a)

on a finite interval I = [−a, a]. Here V (x) denotes the quantum well potential defined
by

V (x) =

{
−v, x ∈ [−b, b],
0 otherwise,

(1.1b)

where a > b > 0 and v > 0. Moreover, m(x) is assumed to be a piecewise constant
function. Specifically,

m(x) =

{
m′, x ∈ [−b, b],
m otherwise.

(1.1c)

To discretize (1.1a), we divide [−a, a] into equal parts of length h and assume a and
b are integer multiples of h, i.e., a = (M +N + 1)h and b = Nh. The node points of
the discrete equation are

xi =

(
a

N +M + 1

)
i, −M −N − 1 ≤ i ≤M +N + 1.
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Using a standard central-differencing technique, we then obtain the discrete version
of (1.1) as follows:

ui+1 − 2(1 −m′(λ+ v))ui + ui−1 = 0, −N + 1 ≤ i ≤ N − 1,(1.2a)

ui+1 − 2(1 −mλ)ui + ui−1 = 0, N + 2 ≤ |i| ≤ N +M,(1.2b)

uN+1

m+m′ +
uN−1

2m′ − uN
m+m′ −

uN
2m′ + (λ+ v)uN = 0,(1.2c)

uN+2

2m
+

uN
m+m′ −

uN+1

2m
− uN+1

m+m′ + λuN+1 = 0,(1.2d)

u−N−1

m+m′ +
u−N+1

2m′ − u−N

m+m′ −
u−N

2m′ + (λ+ v)u−N = 0,(1.2e)

and

u−N−2

2m
+

u−N

m+m′ −
u−N−1

2m
− u−N−1

m+m′ + λu−N−1 = 0.(1.2f)

We remark that the discrete formulation (1.2) of (1.1a) has been normalized in such
a way that the step size h of the discretization is absorbed in λ and v. The following
“symmetric” general boundary conditions are imposed:

uN+M+1 = βu−(N+M) + γu(N+M)(1.2g)

and

u−(N+M+1) = βu(N+M) + γu−(N+M).(1.2h)

In particular, β = 0 and γ = 1 (resp., γ = 0 and β=1) correspond to Neumann (resp.,
periodic) boundary conditions.

Eigenvalue ratios and gaps for the Schrödinger operators have been investigated
by many authors (see, e.g., [1, 2, 5, 9, 10] and the works cited therein). On the
other hand, the number A(d) of eigenvalues less than a bound d is also of interest.
Some partial results concerning the asymptotic behavior (i.e., as d→ ∞) of A(d) are
contained in [3]. We are led to investigate in this paper the number of energy states
(eigenvalues) for a discrete Schrödinger problem (1.2a)–(1.2h) lying in the wells by
the following work. In [6, 8], the spatial tunneling (from one well to the other) occurs
in coupled quantum wells when the energy states in both wells are aligned. In the
case of the hole tunneling in the coupled quantum wells, the tunneling mechanisms
are significantly complicated due to band mixing effects. When the energy states are
approximately aligned between heavy hole and light hole, the mixing tunneling occurs.
Moreover, it was reported in [7] that the chaotic tunneling effect was generated when
these two tunneling effects have a strong interaction between them. Our effort here
is the first step toward understanding those phenomena.

Our main results are recorded in section 2. Specifically, we construct the charac-
teristic equations of the problem (1.2a)–(1.2h). By analyzing the properties of such
equations, we are able to compute the number of energy states in the well for some
general, symmetric boundary conditions.

2. The main results. We begin with the following definition.
Definition 2.1. An eigenvector (ui)

N+M+1
i=−(N+M+1) of (1.2a)–(1.2h) is said to be

symmetric (resp., antisymmetric) if ui = u−i (resp., ui = −u−i).
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Proposition 2.1. Each eigenvector of (1.2a)–(1.2h) is either symmetric or anti-
symmetric.

Proof. It follows from the rank one modification of the symmetric matrices (see,
e.g., [4]) that every eigenvalue of (1.2a)–(1.2h) is simple. Let (ui)

N+M+1
i=−(N+M+1) be an

eigenvector corresponding to some eigenvalue λ. Note that (u−i)
N+M+1
i=−(N+M+1) is also

an eigenvector associated with λ. Thus, ui + u−i and ui − u−i are in the eigenspace
corresponding to λ. We see that ui +u−i is symmetric and ui−u−i is antisymmetric.
The assertion of the proposition now follows from the facts that every eigenspace is
one-dimensional and that one of the vectors ui + u−i and ui − u−i is nonzero.

Definition 2.2. Let λ be an eigenvalue of (1.2a)–(1.2h) whose corresponding
eigenvector is symmetric (resp., antisymmetric); then λ is said to be symmetric (resp.,
antisymmetric).

We remark that Definition 2.2 is well defined since every eigenspace is one-
dimensional. We next derive some “characteristic” equations whose roots are eigen-
values of the system (1.2a)–(1.2h). To this end, we first assume λ is a symmetric
eigenvalue; then

ui+1 − 2(1 −m′(v + λ))ui + ui−1 = 0 for |i| ≤ N − 1.

Hence,

ui = A(si + s−i) for |i| ≤ N,(2.1)

where A is a constant to be determined and

s = 1 −m′(v + λ) +
√

(1 −m′(v + λ))2 − 1(2.2)

is a root of the characteristic polynomial x2−2(1−m′(v+λ))x+1 = 0. In particular,
for

−v +
2

m′ ≥ λ ≥ −v,(2.3)

we see that

ui = 2A cos iθ.(2.4)

Here θ = cos−1(1 −m′(v + λ)). For N + 2 ≤ |i| ≤ N +M ,

ui+1 − 2(1 −mλ)ui + ui−1 = 0,

and we have that

(2.5a)
(2.5b)

ui =

{
Bti−N + Ct−(i−N), N + 1 ≤ i ≤ N +M + 1,

Bt−(i+N) + Cti+N , −(N +M + 1) ≤ i ≤ −(N + 1).

Here B and C are constants to be determined and

t = (1 −mλ) +
√

(1 −mλ)2 − 1.(2.6)

Using the boundary condition (1.2g) and the fact that u is symmetric, we see that

uN+M+1 = (β + γ)uN+M .(2.7)
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Applying (2.5a) to (2.7), we get

C = (t2M+1)

(
β + γ − t

1 − (β + γ)t

)
B(2.8)

:= (t2M+1)(Dβ)B.

Hence,

ui = B(ti−N + t2M+1(Dβ)t−(i−N)), N + 1 ≤ i ≤ N +M + 1.(2.9)

We next consider the connection at i = N and i = N + 1. Let

(2.10a,b) α =
2m

m+m′ and α′ =
2m′

m+m′

at i = N ; we thus write (1.2c) as

α′uN+1 + (1 − α′)uN − 2(1 −m′(λ+ v))uN + uN−1 = 0.(2.11)

Using (2.11), (2.1), and (2.8), we see that (2.11) reduces to

A(1 − α′)(sN + s−N ) +A(−2(1 −m′(λ+ v))(sN + s−N )) +A(sN−1 + s−N+1)

(2.12)

= −α′B(t+ (Dβ)t2M ).

Noting that sN and s−N satisfy the recursive relation as given in (1.2a) with i = N ,
we see that (2.11) reduces to

A[(α′ − 1)(sN + s−N ) + (sN+1 + s−(N+1))] = α′B(t+ (Dβ)t2M ).(2.13)

At i = N + 1, a similar process yields

Aα(sN + s−N ) = B[(α− 1)(t+ (Dβ)t2M ) + (1 + (Dβ)t2M+1)].(2.14)

Dividing (2.13) by (2.14), we conclude that every symmetric eigenvalue is a root of

[
α− 1

α′ +
1 + (Dβ)t2M+1

α′(t+ (Dβ)t2M )

]−1

=
α′ − 1

α
+

1

α

sN+1 + s−(N+1)

sN + s−N
,(2.15)

where Dβ is defined in (2.8). Similarly, we obtain that every antisymmetric eigenvalue
is a root of [

α− 1

α′ +
1 + (D−β)t2M+1

α′(t+ (D−β)t2M )

]−1

=
α′ − 1

α
+

1

α

sN+1 − s−(N+1)

sN − s−N
.(2.16)

To investigate (2.15) and (2.16), we need to set up the following notations:

ξ±i :=
1 + (D±β)t2i+1

t+ (D±β)t2i
=
t−i + (D±β)ti+1

t1−i + (D±β)ti
,(2.17)

η±i :=
si+1 ± s−(i+1)

si ± s−i
,(2.18)

f±(λ) =
α′

(α− 1) + ξ±M
,(2.19)
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and

g±(λ) =
α′ − 1

α
+
η±N
α
.(2.20)

Now (2.15) and (2.16) can be written as

f+(λ) = g+(λ)(2.21)

and

f−(λ) = g−(λ).(2.22)

Definition 2.3. Equations (2.21) and (2.22) are called the symmetric and anti-
symmetric characteristic equations of system (1.2a)–(1.2h).

Obviously, the roots of symmetric (resp., antisymmetric) characteristic equations
are the symmetric (resp., antisymmetric) eigenvalues of system (1.2a)–(1.2h). The
following useful recursive formulas can be verified directly:

ξ±i+1 = 2(1 −mλ) − 1

ξ±i
, 0 ≤ i ≤M − 1,(2.23a)

ξ±0 =
1

γ ± β ,(2.23b)

and

η±i+1 = 2(1 −m′(v + λ)) − 1

η±i
, 0 ≤ i ≤ N − 1,(2.24a)

η+
0 = 1 −m′(v + λ), η−0 = ∞.(2.24b)

In the following, we shall study the properties of functions f± and g±.
Proposition 2.2. For whatever λ is defined, d

dλf
±(λ) > 0 and d

dλg
±(λ) < 0.

Proof. We illustrate only the proof of d
dλg

+(λ) < 0. The rest is similar. Using
(2.24) we see that

d

dλ
η+
i+1 = −2m′ +

1

(η+
i )2

d

dλ
η+
i

and

d

dλ
η+
0 = −m′ < 0.

By induction, we conclude that d
dλη

+
N < 0 and, hence, that d

dλg
+(λ) < 0.

To further study f± and g±, we need the following map:

Fλ,m(ξ) = 2(1 −mλ) − 1

ξ
.(2.25)

Proposition 2.3. The following assertions hold true:
(i) Fλ,m maps [1,∞] ∪ [−∞, 0) into [1,∞) for λ ∈ (−∞, 0].
(ii) Fλ,m maps [−∞,−1] ∪ (0,∞] into (−∞,−1] for λ ∈ [

2
m ,∞

)
.

(iii) Fλ,m(ξ) is strictly increasing on (−∞, 0) and on (0,∞) for any λ.
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We skip the proof of Proposition 2.3.
Proposition 2.4. Let 2 > α > 0. If γ + β ≤ 1 (resp., γ − β ≤ 1), then

f+(λ) (resp., f−(λ)) is continuous on (−∞, 0]. Moreover, g±(λ) are continuous on
(−∞,−v]∪[−v + 2

m′ ,∞
)
. If −1 ≤ γ+β (resp., −1 ≤ γ−β), then f+(λ) (resp.,f−(λ))

is continuous on [ 2
m ,∞).

Proof. Let λ ∈ (−∞, 0]. If γ ± β ≤ 1, then ξ±0 ∈ [1,∞) or (−∞, 0). Suppose
ξ±0 ∈ [1,∞). Then it follows from Proposition 2.3(i) that

ξ±M (λ) = FM
λ,m(ξ±0 ) ∈ [1,∞).(2.26)

Hence −1 + α+ ξ±M (λ) 
= 0, and so f± is continuous on (−∞, 0].
Suppose λ ∈ (−∞,−v] ∪ [−v + 2

m′ ,∞
)
. Then η−0 , η

+
0 = 1 −m′(v + λ) ∈ [1,∞] ∪

[−∞,−1]. It then follows from Proposition 2.3(i)–(ii) that

η±N (λ) = FN
λ+v,m′(η±0 ) ∈ (−∞,−1] ∪ [1,∞).

Hence, g±(λ) is continuous on (−∞,−v] ∪ [−v + 2
m′ ,∞

)
. If −1 ≤ γ + β and λ is in

[ 2
m ,∞), then Fλ,m(ξ+0 ) ≤ −2− (γ+β) ≤ −1. Hence, ξ+M (λ) = FM

λ,m(ξ+0 ) ∈ (−∞,−1].
The case for −1 ≤ γ − β can be similarly obtained. We thus complete the proof of
the proposition.

It is clear from Proposition 2.4 that the singularities of g±(λ) occur in
(−v,−v + 2

m′
)
,

and that, for −1 ≤ γ + β ≤ 1, the singularities of f±(λ) stay in
(
0, 2

m

)
.

Proposition 2.5. (i) For λ ∈ (−v,−v + 2
m′

)
, g+(λ), respectively, g−(λ), has

singularities at

−v +
1

m′

(
1 − cos

2k − 1

2N
π

)
=: dk, i = 1, 2, . . . , N,(2.27a)

respectively,

−v +
1

m′

(
1 − cos

k

N
π

)
=: ek, k = 1, 2, . . . , N − 1.(2.27b)

(ii) The following ordering holds true:

−v < d1 < e1 < d2 < e2 < · · · < en−1 < dn < eN := −v +
2

m′ .(2.27c)

Proof. The proof of Proposition 2.5(i) follows from (2.18). The ordering in (2.27c)
is obvious.

Our main concern in this paper is the number of energy levels (eigenvalues) falling
in the well, that is, the number of eigenvalues whose value is no greater than zero.
Hence, the characterization of the singularities of f±(λ) on

(
0, 2

m

)
will not be pursued

here.
Proposition 2.6. (i) Let 0 < α < 2. If γ ± β ≤ 1, then

α′

α+ 1
< f±(0) =

α′

(α− 1) + 1−(γ±β−1)M
γ±β−(γ±β−1)M

≤ α′

α
.

Consequently, f±(−v) < α′
α . (ii) g+(−v) = α′

α , α+1
α > g−(−v) > α′

α . (iii) If v > 2
m′ ,

then g±(0) < α′−2
α .
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Proof. It follows from l’Hôspital’s rule that

lim
λ→0

ξ±M = lim
t→1

1 + (γ±β)−t
1−(γ±β)t t

2M+1

t+ (γ±β)−t
1−(γ±β)t t

2M
=

1 − (γ ± β − 1)M

γ ± β − (γ ± β − 1)M
.

To see the estimates for ξ±M at λ = 0, we consider the map F0,m, as defined in (2.25).

It is then clear that 1 ≤ ξ±M < 2. Hence, α′
α+1 < f

±(0) ≤ α′
α as claimed. Since f±

is increasing on (−∞, 0], we obtain that f±(−v) < α′
α . The assertions in (ii) are

trivial. If v > 2
m′ , then, for λ = 0, η0 = 1 − m′v ≤ −1. Using Fv,m′ , we see, via

Proposition 2.3(ii), that η+
N (0) ≤ −1, and, hence, g+(0) ≤ α′−2

α . Similarly, we obtain

that g−(0) ≤ α′−2
α .

Notation 2.1. Set R1 = {(γ, β) : β ≤ 0, γ − β ≤ 1} and R2 = {(γ, β) : β ≥ 0,
γ + β ≤ 1}.

Proposition 2.7. Let 2 > α > 0. If (γ, β) ∈ R1 (resp., (γ, β) ∈ R2), then
f−(λ) ≥ f+(λ) (resp., f−(λ) ≤ f+(λ)) on (−∞, 0]. The equality holds only if β = 0.

Proof. We first note that R1

⋃
R2 = {(γ, β) : γ + β ≤ 1 and γ − β ≤ 1}. Let

(γ, β) ∈ R1; then one of the following three cases holds:

ξ+0 ≥ ξ−0 ≥ 1, 0 > ξ+0 ≥ ξ−0 , and ξ−0 > 1 > 0 > ξ+0 .(2.28)

Furthermore, if the order of ξ+0 and ξ−0 satisfies one of the three cases in (2.28),
then Fλ,m(ξ+0 ) ≥ Fλ,m(ξ−0 ) ≥ 1. It then follows from Proposition 2.5(ii)–(iii) that
ξ+M (λ) = FM

λ,m(ξ+0 ) ≥ FM
λ,m(ξ−0 ) = ξ−M (λ). Consequently, f+(λ) ≤ f−(λ). The other

case can be similarly obtained. It is clear that f−(λ) = f+(λ) only if ξ+0 = ξ−0 or,
equivalently, β = 0.

Proposition 2.8. (i) g+(λ) < g−(λ) for λ ∈ (−∞, d1) ∪⋃N−1
i=1 (ei, di+1).

(ii) g+(λ) > g−(λ) for λ ∈ ⋃N
i=1(di, ei) ∪ [eN ,∞).

Proof. For λ ∈ (−∞,−v], η+
0 = 1 − m′(v + λ) ≥ 1. It follows from Propo-

sition 2.3(i) that Fv+λ,m′(ξ) ≥ 1 for ξ = η+
0 or η−0 . Hence, we see, via Proposi-

tion 2.3(iii), that g+(λ) < g−(λ). It is clear that

lim
λ→d−

i

g+(λ) = −∞, lim
λ→d+

i

g+(λ) = +∞, i = 1, 2, . . . , N,(2.29a)

and

lim
λ→e−

i

g−(x) = −∞, lim
λ→e+

i

g−(x) = ∞, i = 1, 2, . . . , N − 1.(2.29b)

We next show that g+(λ) and g−(λ) do not intersect with each other. To this end,
we set

e(s) :=
s2N+1 − s2N−1

s4N − 1
.

If s2N+1 − s2N−1 = 0, then s2 = 1. Now,

lim
s→1

e(s) = lim
s→1

(2N + 1)s2N − (2N − 1)s2N

4Ns4N−1
=

1

2N
.

Similarly,

lim
s→1−

e(s) = − 1

2N
.
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Fig. 1.

Thus, e(s) is nonzero for all λ. It then follows from Proposition 2.2, equation (2.8),
and the fact that g+(λ) does not intersect with g−(λ) for all λ that the assertions of
the proposition hold true.

Using the assertions of Proposition 2.8, we give a rough drawing of g+(λ) and
g−(λ). Figure 1 reflects only the information of g±(λ) obtained in Proposition 2.8. It
is by no means an accurate drawing of the graphs of g±(λ).

We are now ready to state our main results.
Notation 2.2. Set S = {−v < λ < 0: λ is the symmetric eigenvalue of system

(1.2a)–(1.2h)}, and Sa = {−v < λ < 0: λ is the antisymmetric eigenvalue of system
(1.2a)–(1.2h)}. The cardinalities of S and Sa are denoted by #s and #sa, respectively.
The sum of #s and #sa is denoted by #.

Theorem 2.1. Let 2 > α > 0. Suppose (γ, β) ∈ R1

⋃
R2 and v > 2

m′ . Then
#s = N + 1 and #as = N .

Proof. Using Proposition 2.6, we see that f±(−v) < g±(−v). Thus, all eigenvalues
of the system are greater than −v. It also follows from Proposition 2.6 that f±(0) ≥
α′

α+1 >
α′−2
α = g±(0). Hence, we conclude, via Figure 1, that # ≥ 2N + 1. However,

the other eigenvalues of the system comes from the intersection of f±(λ) and g±(λ)
on

(
0, 2

m

)
. Upon using the fact that f±(0) ≥ g±(0), we conclude that # ≤ 2N + 1.

Hence # = 2N + 1. It is clear from Figure 1 that the assertions of the theorem
hold.

Remark 2.1.
1. Theorem 2.1 implies that if the depth of the well is “sufficiently large,” then

all the energy levels fall in the well.
2. Using Propositions 2.6 and 2.7, one also sees that for Neumann boundary

conditions (γ = 1, β = 0), at least one energy level falls in the well regardless
of the size of the well.

Theorem 2.2. Let (γ, β) ∈ R1, β 
= 0, and v ≤ 2
m′ . If ek < 0 < dk+1 for some

1 ≤ k ≤ N , the following table holds true:

f+(0) > g+(0)
f+(0) > g−(0) f−(0) < g−(0) g+(0) > f−(0)

#s k + 1 k + 1 k
#as k + 1 k k
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If dk < 0 < ek for some 1 ≤ k ≤ N , the following table holds true:

f−(0) > g−(0)
f+(0) > g+(0) g+(0) > f+(0) f−(0) < g−(0)

#s k + 1 k k
#as k k k − 1

If ek < 0 = dk+1 for some 1 ≤ k ≤ N , the following table holds true:

f−(0) > g−(0) f−(0) < g−(0)
#s k + 1 k + 1
#as k + 1 k

If dk < 0 = ek for some 1 ≤ k ≤ N , then the following table holds true:

f+(0) > g+(0) f+(0) < g+(0)
#s k + 1 k
#as k k

Proof. We first note that if (γ, β) ∈ R1 and β 
= 0, then f+(λ) > f−(λ) on
(−∞, 0]. The assertions of the theorem now follow from Propositions 2.2, 2.4, 2.8 and
Figure 1.

For (γ, β) ∈ R2 or β = 0, similar tables as above can be obtained. In each of the
tables above, the largest numbers of #s and #as occur when f±(0) > g±(0). We next
show that this is the case when the length v of the well is sufficiently close to 2

m′ .
Theorem 2.3. Let m ≈ m′ and (γ, β) ∈ R1. Suppose v ≤ 2

m′ and v is sufficiently
close to 2

m′ . Then f±(0) > g±(0). Consequently, only the second column of each table
in Theorem 2.2 holds.

Proof. Direct calculation would yield that

g+(ek) =
α′ − 1

α
+

1

α
cos

kπ

N

and

g−(dk) =
α′ − 1

α
+

1

α
sin

(2k − 1)π

2N
.

Suppose v
(≤ 2

m′
)

is sufficiently close to 2
m′ . Then ek, dk ≥ 0 only if k is sufficiently

large. If k is large, then g+(ek−1) < 0 and g−(dk−1) ≈ 0, where we may assume
that dk−1, ek−1 < 0. Since g± are decreasing, g+(0) < g+(ek−1) < 0 and g−(0) <

g−(dk−1) ≈ 0. However, we see, via Proposition 2.6(i), that f±(0) = α′
α+1 > 0. We

thus complete the proof of the theorem.
We conclude the paper by mentioning some possible future related work. First, the

study of discrete higher-dimensional Schrödinger problems is of considerable interest.
Second, it would also be of interest to study a continuous version of the problem
described in this paper. Finally, though the calculations would get more complicated,
our approach here can be used to treat nonsymmetric boundary conditions.
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