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Abstract

We consider theoretically spin correlations in an 1D quantum wire with Rashba-Dresselhaus

spin-orbit interaction (RDI). The correlations of non-interacting electrons display electron-spin

resonance at a frequency proportional to the RDI coupling. Interacting electrons on varying the

direction of external magnetic field transit from the state of Luttinger liquid (LL) to the spin

density wave (SDW) state. We show that the two-time total spin correlations of these states are

significantly different. In the LL the projection of total spin to the direction of the RDI induced field

is conserved and the corresponding correlator is equal to zero. The correlators of two components

perpendicular to the RDI field display a sharp ESR driven by RDI induced intrinsic field. In

contrast, in the SDW state the longitudinal projection of spin dominates, whereas the transverse

components are suppressed. This prediction indicates a simple way for experimental diagnostic of

the SDW in a quantum wire.
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Introduction.—Abanov et al. [1] predicted a sharp ESR in a quantum wire driven by

an intrinsic momentum dependent RDI of the spin-orbit-interaction origin. The electron

interaction in [1] was neglected. In the work [2] theory of the RDI spin resonance was

extended to the interacting 1D electron system described as the Luttinger liquid (LL).[3–5]

Theory [2] showed that the ESR persists in the electronic LL with slightly modified shape

of line. However, Starykh et al. [6] predicted that a quantum wire with the RDI subject to

external magnetic field perpendicular to the intrinsic field develops an SDW with the wave

vector 2kF , an inhomogeneous state with physical properties rather different from the LL.

Multiple experiments on 1D wires (c.f. the review [7] and its references) have proved

validity of the LL model. However, neither the ESR nor the SDW state was observed

experimentally in quantum wires with the RDI. The standard way of the resonance

observation, i.e. resonance absorption of an electromagnetic wave, gives a very weak

signal since the total number of electrons in a wire is typically small. Therefore, it

requires enormous power of the incident wave in the terahertz range of frequencies at

helium temperature.[1] The standard method of the SDW observation in the bulk is

neutron scattering which doesn’t work well for wires for the same reason. Purely magnetic

measurements also are impossible. Here we propose to overcome these difficulties by using

the spin noise measurements method developed by Crooker et al.[8] In this method they

measured total spin fluctuations in real time observing induced by them Faraday rotation of

the light polarization. They were able to see them in quantum dots [9, 10] that also contain

not too large number of electrons. Therefore, their method is specially intended for weak

signals. It does not require e-m sources of ultra-high power. The recently developed ultrafast

spin noise spectroscopy have achieved frequency resolutions up to hundreds of Ghz.[11]

In this work we calculate spin correlators in the 1D interacting electron system with the

RDI for both the ordinary LL and the SDW states. Different properties of spin correlations

for these two states make it possible to identify them experimentally.

Model.—We consider a quantum wire with the RDI in single channel regime, in which

the electrons occupy only the lowest band of the transverse motion. Thus, the system is

effectively 1D. We also assume zero temperature and the thermodynamic limit, i.e. wire’s

length being much larger than all other length scales. In 1D the most general form of the RD

Hamiltonian is HRD = α(n̂ ·σ)p, where α is the RDI coupling constant with dimensionality

of velocity, n̂ is a unit vector in the spin space, σ is the vector of Pauli matrices, and p
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is the 1D momentum. (Later we set ~ = 1 and write everywhere wave vector k instead of

momentum p.) We choose the spin-orbit axis to be z−axis and assume the external magnetic

field to lie in the xOz plane: b = 1
2
gµBB = b‖ẑ + b⊥x̂. The Hamiltonian reads:

H =
∑

i

[
k2
i

2m
+ (αki − b‖)σi,z − b⊥σi,x] +Hint, (1)

where i labels electrons and Hint denotes the e-e interaction. We assume external field to be

weak: b ≪ αkF , and the RDI velocity being much smaller than the Fermi velocity: α ≪ vF .

The time-ordered spin correlators are defined as:

ST
aa(t) = 〈Tt Sa(t)Sa(0)〉 = 〈eiH|t|Sae

−iH|t|Sa〉, (2)

where Sa(t) is the total spin projection operator along direction a = x, y, z, and 〈〉 denotes
the average over the ground state. The retarded correlators can be obtained from the time-

ordered ones as SR
aa(t) = −2Θ(t) ImST

aa(t) [12], where Θ(t) is the Heaviside step function.

Let us analyze the symmetry of our model. The e-e interaction is invariant under any

spin rotation. Thus, in the absence of the RDI and external field the Hamiltonian is SU(2)

invariant and all three components of the total spin are conserved. A finite RDI coupling

α and/or parallel field b‖ reduces the symmetry group to U(1), in which case only Sz is

conserved. In the presence of non-zero transverse field b⊥, the U(1) symmetry is also broken

and neither of the total spin components is conserved.

Ideal 1D Fermi gas.—Before calculating the spin correlators of interacting electrons, it

is instructive to solve the same problem for the ideal 1D Fermi gas. In the presence of the

RDI and the external magnetic field, the spectrum consists of a pair of asymmetric parabola

with avoided crossing. If b ≪ αkF and α ≪ vF , the four Fermi momenta are approximately

kστ = τkF − σm[α− τ
b‖
kF

+
b2⊥

2kF (αkF−τb‖)
], where σ = ± denotes the spin-up/down bands and

τ = ± denotes right/left movers. At T = 0 spin correlators can be obtained directly by

calculating the ground state average:

SR
xx(t) = SR

yy(t) = Θ(t)
2l

παt
sin(2αkF t) sin(2mα2t), SR

zz(t) = 0, (3)

where l is the wire’s length, and spins are in units ~/2 ≡ 1/2. The Fourier transforms are:

SR
xx(ω) = SR

yy(ω) =
l

2πα
log

(ω + iδ)2 − [2α(kF +mα)]2

(ω + iδ)2 − [2α(kF −mα)]2
, SR

zz(ω) = 0, (4)
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where δ = 0+. The x and y components are equal and the z component vanishes, respecting

the U(1) symmetry. The imaginary part of SR
xx(ω) has a narrow peak around ω = 2αkF of

the width 4mα2. In the resonance interval of frequency 2α(kF −mα) < |ω| < 2α(kF +mα),

the absorption intensity ℑSR
xx is constant. Disorder can change this exotic shape of line.

Interacting electrons and bosonization.—For interacting electrons we apply Luttinger

liquid theory, detailed description of which can be found in [12, 13]. In 1D the interaction

between fermions near Fermi points is always strong enough to destroy the Fermi-excitations.

Instead the Bose-excitations play the role of almost free quasiparticles. Before translation to

the bosonic language (bosonization), the original quadratic spectrum of fermions is linearized

around the Fermi points, and the infinite sea of negative energy levels is filled. The extension

of the fermion spectrum to −∞ contradicts to the initial spectrum of fermions limited from

below. Usually this does not lead to mistakes in physical results if the substantial range

of momenta is close to the Fermi points. However in some problems a broader range of

momentum is important. Namely this happens in the case of the total spin correlators as it

will be shown later. In this situation the LL theory can be used only together with a proper

cut-off of negative momenta.

Below we consider the bosonization for the fermions with the RDI in a parallel external

field. In terms of the fermionic particle field Ψσ(x), Hint reads: Hint =
1
2

∑

σ,σ′

∫

dxdx′U(x−
x′)Ψ†

σ(x)Ψ
†
σ′(x′)Ψσ′(x′)Ψσ(x). We do not specify a form of the e-e interaction, except that it

is assumed to be repulsive and short-ranged. The field Ψσ(x) is the sum of the right and left

movers fields Rσ and Lσ. These chiral fields are expressed in terms of bosonic fields in a way

that respects fermionic anticommutation relations. Details of the bosonization procedure

are presented in the Supplemental Material [14]. The resultant Hamiltonian in terms of the

bosonic charge fields φc, θc and spin fields φs, θs reads:

H = Hc +Hs,

Hc =
1

2

∫

dx[
vc
Kc

(∂xφc)
2 + vcKc(∂xθc)

2],

Hs =
1

2

∫

dx[
vs
Ks

(∂xφs)
2 + vsKs(∂xθs)

2] +HC , (5)

where Kc = {1 + [2Ũ(0) − Ũ(2kF )]/(πvF )}−
1
2 , vc = vF/Kc, Ks = [1 − Ũ(2kF )/(πvF )]

− 1
2 ,

vs = vF/Ks are the Luttinger parameters, and HC = gC
2(πa0)2

∫

dx cos(
√
8πφs − 4b‖

vF
x) with

gC = Ũ(2kF ). (Ũ(q) is the Fourier transform of U(x).) We approximated Ũ(2(kF +
σb‖
vF

))
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by Ũ(2(kF )), and ignored a term mixing charge and spin fields ∝ b‖
ǫF

≪ 1. The charge and

spin degrees of freedom in this Hamiltonian are separated. The charge Hamiltonian Hc is

completely quadratic, but the spin Hamiltonian Hs contains a cosine term HC . If HC can be

neglected, the remaining quadratic Hamiltonian Hs describes the ordinary LL state. When

HC dominates, φs field becomes pinned to one of the minima of cosine, resulting in ordering

in the spin sector – the SDW state.

SDW in weak magnetic field.—Starykh et al. [6] proved that static SDW appears when

external field is directed perpendicular to the internal one and strongly exceeds it. We

consider a more realistic limit b ≪ αkF , and first fix b⊥ = 0. The charge Hamiltonian Hc

is quadratic and does not change in magnetic field. To renormalize the spin part we define

following [6] spin currents: ~JR =
∑

ν,ν′=∓ R†
ν
~σνν′

2
Rν′ , ~JL =

∑

ν,ν′=∓ L†
ν
~σνν′

2
Lν′. In terms of

these currents, Hs reads:

Hs = 2πv′s

∫

dx{(Jz
RJ

z
R + Jz

LJ
z
L) + ysJ

z
RJ

z
L

+ yC [(cos
4b‖
vF

x)(Jx
RJ

x
L + Jy

RJ
y
L) + (sin

4b‖
vF

x)(Jx
RJ

y
L − Jy

RJ
x
L)]}, (6)

where v′s =
√

2v2s(0)− v2F = vF [1 − Ũ(2kF )/(2πvF )], and the initial values of coupling

constants are ys(0) = yC(0) = −Ũ(2kF )/(πv
′
s). The constants Ks, gC and ys, yC are

connected by relations: Ks =
√

(2− ys)/(2 + ys), gC = −πv′syC . At b‖ = 0, Hs reduces to:

Hs = 2πv′s
∫

dx[(Jz
RJ

z
R + Jz

LJ
z
L) + ysJ

z
RJ

z
L + yC(J

x
RJ

x
L + Jy

RJ
y
L)]. The renornalization group

(RG) equations for the vertices ys and yC in one-loop approximation read: dys/dλ = y2C,

dyC/dλ = ysyC, where the running RG parameter is λ = log(lr/a0) and lr is the running

scale of length. The integral of motion y2C −y2s = y2C(0)−y2s(0) = 0 implies that the RG flow

goes along the separatrix to the fix point ys = yC = 0. Thus, at large scales Ks → 1 and

gC → 0. The renormalization of gC to zero means irrelevance of HC . The renormalization

of Ks to 1 demonstrates the SU(2) invariance, since the RDI can be removed by a unitary

transformation[2]. Therefore, at zero field the Hamiltonian is renormalized to a completely

quadratic one. No SDW appears, and the system remains in an ordinary LL state with

Ks = 1. In finite b‖ the SDW state also does not exist. The parallel field violates the

SU(2) symmetry leaving only the U(1) symmetry. In this case the term HC develops an

oscillating factor exp(i
4b‖
vF

x). For a more general case including also b⊥, it is modified to

exp[i
4b‖
vF

(1 − b2⊥
2α2k2

F
−b2

‖

)x]. The component b⊥ enters only as a higher order correction. Due
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to oscillation the renormalization stops at a scale l0 =
vF
4b‖

determined by the strength of b‖

rather than the size of the system (l). For the parallel external field ∼ 100Gs, l0 is of the

order of several micrometers. (In numerical estimates we use the data for In0.53Ga0.47As;

see [1] for references). Thus, in the thermodynamic limit l ≫ l0, any weak parallel field

destroys the SDW. The coupling constants are not renormalized, and HC can be neglected.

In completely perpendicular field the SDW should exist as proved in [6]. Thus, in weak

field limit, SDW appears only if the external field is completely perpendicular. The possible

states of the wire are summarized in Table 1. But they may be different at stronger field

b & αkF . Starykh et al. [6] considered opposite limiting case b ≫ αkF and argued that a

weak parallel field does not destroy SDW.

Table 1. States of the wire at b ≪ αkF .

external field renormalization state

b = 0 ys → 0, yC → 0 ordinary LL

b‖ 6= 0 none ordinary LL

b‖ = 0, b⊥ 6= 0 ys → −∞, yC → −∞ SDW

Spin density correlations.—Below we calculate the spin density correlators for the

ordinary LL state and the SDW state. At b ≪ αkF the Fermi momenta are approximately

kστ = τkF − σmα. In the ordinary LL state, the cosine term HC can be dropped and

the Hamiltonian becomes completely quadratic. The Luttinger parameters are given in the

text following Eq. (5), except Ks = 1 at zero external field. Spin density operators read:

sa(x) = Ψ†
σ(x)σa,σσ′Ψσ′(x), where a = x, y, z. The time-ordered spin density correlators are

saa(x, t) = 〈Tt sa(x, t)sa(0, 0)〉. Applying the bosonization one can express spin correlators

as path integrals over bosonic fields. Details of calculation are placed in [14]. The results

are:

sxx(x, τ) = syy(x, τ) =
a
Ks+

1
Ks

−2

0

π2

(y2s − x2) cos(2mαx)

(x2 + y2s)
1+Ks

2
+ 1

2Ks

+
a
Kc+

1
Ks

−2

0

π2

cos(2kFx) cos(2mαx)

(x2 + y2c )
Kc
2 (x2 + y2s)

1
2Ks

,

szz(x, τ) =
Ks

π2

y2s − x2

(x2 + y2s)
2
+

aKc+Ks−2
0

π2

cos(2kFx)

(x2 + y2c )
Kc
2 (x2 + y2s)

Ks
2

, (7)

where ys/c(τ) = vs/cτ , τ is imaginary time, and a0 is an ultraviolet cut-off. Each correlator

contains contributions from small q and from q ∼ 2kF . For weakly interacting case Kc, Ks ≈
1, and both decay as x−2 and oscillate.
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The SDW state exists at completely perpendicular field, when yC flows to the strong

coupling limit yC → −∞. HC is relevant and dominates the spin Hamiltonian. The field φs

is pinned to φs = (N + 1
2
)
√

π
2
(N is an integer), whereas its conjugated field θs is completely

uncertain. Correlators of the charge fields remain the same as in ordinary LL. The correlators

sxx(x, τ) and syy(x, τ) decay exponentially to zero being averaged with the oscillating factor

eiθs . But szz(x, τ) survives since θs doesn’t appear in its expression:

szz(x, τ) =
2

(πa0)2
cos(2kFx)(

a0
√

x2 + y2c
)Kc . (8)

It is determined exclusively by the charge degrees of freedom. It oscillates with the wave

vector 2kF and decays power-like with
√

x2 + y2c . For Kc ≈ 1 it decays as x−1 which is

slower than x−2 decay of the ordinary LL case. This is the result of ordering in the SDW

state.

Total spin correlations.—We aim to obtain the Fourier transforms of the two-time total

spin correlators. Eqs. (7) and (8) present the time-ordered spin density correlators

for imaginary time τ . The imaginary-time-ordered total spin correlators read ST
aa(τ) =

∫ l

0

∫ l

0
dxdx′saa(x − x′, τ) ≈ l

∫∞
−∞ saa(x, τ). Their Fourier transforms are ST

aa(ω) =
∫∞
−∞ eiωτST

aa(τ). The Fourier transform of the retarded correlator SR
aa(t) is related to the

time-ordered one as analytic continuation: SR
aa(ω) = ST

aa(iω → ω + iδ), where δ = 0+ [12].

Details of calculation see in [14].

However, when integrating the correlator szz(x, τ) over x, we are faced with the fact that,

in the absence of the transverse field, the integral is not constant in time in contradiction

with the exact conservation of the z-component of the total spin. For the SDW state SR
zz(ω)

is also not a constant, but the SDW appears only in non-zero transverse field that violates

the Sz conservation. Such a contradiction was first noted by Tennant et al. [15] (see their

appendix) and they treated it phenomenologically assuming that the oscillating term is a

complete derivative.

This discrepancy originates from filling of infinite Fermi sea, a crucial assumption in

the LL model [4, 5, 12, 13]. Electron and hole excitations in this model are completely

symmetric. In real wires the relativistic particle-hole symmetry is violated. In particular,

the momenta of holes cannot exceed kF by modulus. This limitation is not important if

essential for a problem momenta are close to ±kF . This is the case for the spin-Peierls

instability leading to the appearance of the SDW. However, the momenta far from kF bring
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a significant contribution to the total spin. Therefore, the LL model does not respect the

total spin conservation. Nevertheless, calculations for the non-interacting case within the

Fermi gas model shows that the cut-off of the integration at some negative moment kD leads

to conserving Sz if kD < kF .[14] This cut-off produces additional terms in the spin density

correlator so that at kD = 0,

szz(x, τ) =
1

π2

y2 − x2

(x2 + y2)2
+

1

π2

cos(2kFx)

x2 + y2
− 2

π2

y(y cos(kFx)− x sin(kFx))e
−kF y

(x2 + y2)2
, (9)

where y = vF τ . The third term in Eq. (9) is the cut-off correction. After integration over

x it completely cancels the contribution of the second term. The first term is contribution

of small momentum transfer. Its integration gives zero.

Unfortunately, it is not clear how to introduce the proper cut-off in LL model. The

conjectured form of szz(x, τ) is given by Eq. (38) in [14]; it tends to the exact free electron

correlator of Eq. (9) at vanishing interaction and, after integration over x, the correction

approximately cancels the term with the transfer of momentum by 2kF . Anyway, the result

(9) obtained for free electrons shows that, at b = 0, at a proper cut-off the contribution of

the 2kF momentum transfer to Szz exactly vanishes. The same is correct in the presence of

b‖. In the presence of non-zero b⊥ its smallness is determined by the smallness of b⊥. Further

we neglect this part of the correlator. For the same reason we neglect the contribution of the

2kF -transfer of momentum to the transverse spin correlators. Contribution from the small

momentum transfer must be retained. We then arrive at a simple result for the LL state:

SR
xx(ω) = SR

yy(ω) = A0[ω
2
s + (ω + iδ)2][ω2

s − (ω + iδ)2]
Ks
2

+ 1
2Ks

−2, SR
zz(ω) = 0. (10)

where ωs = 2mαvs and A0 =
l(

a0
2vs

)
Ks+

1
Ks

−2
Γ(2−Ks

2
− 1

2Ks
)

πvsΓ(1+
Ks
2

+ 1
2Ks

)
. The SDW state that appears only in

the transverse field violating the total spin conservation does not require such a fine tuning.

Its total spin correlators are:

SR
xx(ω) = SR

yy(ω) = 0, SR
zz(ω) = ASDW [ω2

0c − (ω + iδ)2]
Kc
2

−1, (11)

where ω0c = 2kFvc, and ASDW =
2l(

a0
2vc

)Kc−2Γ(1−Kc
2
)

πvcΓ(
Kc
2
)

.

Relation to experiment.—The results given by Eqs. (10) and (11) show that measurements

of the total spin correlators can be used as a diagnostic tool for identification of the state

of the electronic liquid in the quantum wire, is it the LL or the SDW. Besides of that we

predict that in the ordinary LL state the transverse correlators display the spin resonance
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at ωs = 2mαvs ≈ 2kFα. For Ks ≈ 1 the shape of the resonance line is almost Lorentzian

[1]. The position of resonance agrees with the previous non-interacting result Eq. (4).

In the SDW state only the z correlator survives and it has a peak at a relatively high

ω0c = 2kFvc ≈ 2kFvF . A typical value for this frequency in semiconductors is 1014 Hz. At

much lower frequency it is almost constant.

Experimentally, the Faraday rotation method [9, 10] measures directly the spin

correlations in real time. At zero field the system is in the ordinary LL state, and we

expect peaks at ω = 2mαvs for directions perpendicular to the RDI axis. The direction of

the RDI axis is not a priori known. It must be found utilizing the U(1) symmetry of the

transverse spin correlations. Applying the magnetic field perpendicular to the RDI axis, one

can check whether the wire transits to the SDW state. At this transition the longitudinal

correlator suppressed in the LL state becomes dominant, whereas the transverse correlators

are suppressed.

The considered quantum wire problem is closely related to a quantum antiferromagnetic

spin chain problem, where Dzyaloshinskii-Moriya interactions plays a similar role as RDI.[6]

Thus, studies on spin chain systems, e.g. [16, 17] may also be helpful for understanding the

physics of quantum wires.

Conclusions.—We calculated the spin density and total spin correlators in the quantum

wire with RDI in the ordinary LL state and in the SDW state. They display different

dependencies on directions and different positions of resonance peaks. Thus, experimental

studies of spin correlations in quantum wires can be employed for detecting the SDW driven

by properly directed magnetic field and electron resonance on the intrinsic field induced by

the RDI. The impurity scattering does not change the results significantly if the mean free

path is larger than 1/(mα), typically 10-30 nm. The corresponding mobility is ∼(1-3)×103

cm2/(Vs).

We thank Oleg A. Starykh, Nikolai A. Sinitsyn and Fuxiang Li for helpful discussions of

theoretical problem and experimental situation.
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SUPPLEMENTAL MATERIAL

BOSONIZATION

Here we present the procedure of bosonization in some details. We follow prescriptions

given in Ref. [6] in the main text. The chiral fermionic fields are defined as:

Rσ(x) =
∫

dk
2π
ei(k−kσ+)xaσ(k), Lσ(x) =

∫

dk
2π
ei(k−kσ−)xaσ(k), where aσ(k) is the Fermi

annihilation operator in momentum space. The second quantized wave-function operator

Ψσ(x) = eikσ+xRσ(x) + eikσ−xLσ(x). The interaction Hamiltonian Hint contains several

quartic products of fermionic chiral fields. We neglect the strongly oscillating terms like

ei(kσ′−−kσ′+)x′
R†

σ(x)Rσ(x)R
†
σ′(x′)Lσ′(x). By assumption, U(x− x′) decreases rapidly beyond

the effective interaction radius, whereas the fields Rσ(x), Lσ(x) vary on much longer scales.

Therefore, it is possible to integrate first over the difference x− x′ neglecting the change of

the chiral fields. After these simplifications we obtain:

Hint =
1

2

∑

σ,σ′

∫

dx{Ũ(0)(R†
σRσ + L†

σLσ)(R
†
σ′Rσ′ + L†

σ′Lσ′)

+ [Ũ(2kF +
(σ + σ′)b‖

vF
)e

i
2(σ′−σ)b‖

vF
x
R†

σLσL
†
σ′Rσ′ + h.c.]}, (12)

where Ũ(q) is the Fourier transform of U(x). We have dropped the arguments of the chiral

fields while keeping in mind that coordinate of the first two fields in any term is x and that

of the last two is 0.

The chiral fermionic fields are now expressed in terms of chiral bosonic fields φR/Lσ
as

R± = η±√
2πa0

ei
√
4πφR± , L± = η±√

2πa0
e−i

√
4πφL± , where a0 is the ultraviolet cut-off, and η± are

the so-called Klein operators. The bosonic fields obey commutation relations: [φRσ
, φLσ′ ] =

i
4
δσσ′ , [φR/Lσ

(x), φR/Lσ′ (y)] = ± i
4
δσσ′ sgn(x − y). The Klein operators η± can be viewed as

Majorana fermions which satisfy: {ησ, ησ′} = 2δσσ′ , η†σ = ησ, η+η− = i. The commutation

relations of bosonic fields ensure anticommutation relations of chiral fermionic fields with

the same spin index σ. But commutators of bosonic fields between different spin species

always vanish, so to ensure anticommutations between fermionic fields with different σs the

Klein operators must be introduced. The chiral densities are R†
σRσ =

∂xφRσ√
π

, L†
σLσ =

∂xφLσ√
π

.

Finally, following general rules [12] we introduce charge fields φc, θc and spin fields φs, θs

related to the chiral fields as: φRσ
= (φc−σφs)−(θc−σθs)

2
√
2

, φLσ
= (φc−σφs)+(θc−σθs)

2
√
2

. Plugging these

expressions into the Hamiltonian with a careful usage of the commutations we arrive at the

11



bosonized Hamiltonian Eq. (5) in the main text.

CALCULATION OF SPIN DENSITY CORRELATIONS

Here we present calculations of the spin density correlations for the ordinary LL state.

In terms of the bosonic fields, the spin density operators reads:

sx(x) =
1

πa0
sin[

√
2π(θs − φs)− 2mαx] +

1

πa0
sin[

√
2π(θs + φs)− 2mαx]

+
1

πa0
sin[

√
2π(θs − φc) + (2kF − 2mα)x] +

1

πa0
sin[

√
2π(θs + φc)− (2kF + 2mα)x],

sy(x) =
1

πa0
cos[

√
2π(θs − φs)− 2mαx] +

1

πa0
cos[

√
2π(θs + φs)− 2mαx]

+
1

πa0
cos[

√
2π(θs − φc) + (2kF − 2mα)x] +

1

πa0
cos[

√
2π(θs + φc)− (2kF + 2mα)x],

sz(x) = −
√

2

π
∂xφs(x)−

1

πa0
sin[

√
2π(φc − φs) + 2kFx] +

1

πa0
sin[

√
2π(φc + φs) + 2kFx].

(13)

Let us define the partition function as a functional integral:

Z =

∫

DΦ(x, τ)e
∫ β

0
dτ

∫

dxL(Φ(x,τ)), (14)

where τ = it + ǫ sgn(t)(ǫ = 0+) is the imaginary time, β = 1/(kBT ), Φ = (φc, θc, φs, θs) is

the 4-vector of fields, and L(Φ(x, τ)) is the Lagrangian associated with the Hamiltonian H .

Note that for the ordinary LL state H is completely quadratic and thus invariant under a

uniform translation of any bosonic fields: Φi(x) → Φi(x) + Ai, a symmetry which we use

later. In the functional integral language, the time-ordered correlation for operators A(Φ)

and B(Φ) is:

〈Tτ A(τ)B(0)〉 = 1

Z

∫

DΦ(x, τ)A(Φ(τ))B(Φ(0))e
∫ β

0
dτ

∫

dxL(Φ(x,τ)). (15)

Later we will drop the time ordering symbol Tτ and use directly 〈〉 to denote the time-

ordered average. The Lagrangian L can be written as L(Φ) = −1
2
ΦMΦ = 1

2
ΦiMijΦj , where

the Fourier transform of the matrix M(x, τ) is:

M(q, ω) =















vcq2

Kc
iqω 0 0

iqω vcKcq
2 0 0

0 0 vsq2

Ks
iqω

0 0 iqω vsKsq
2















. (16)
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Note that here ω is the imaginary frequency associated with τ . The inverse of M(q, ω) reads:

M−1(q, ω) =















Kcvc
Ω2

c
− iω

qΩ2
c

0 0

− iω
qΩ2

c

vc
KcΩ2

c
0 0

0 0 Ksvs
Ω2

s
− iω

qΩ2
s

0 0 − iω
qΩ2

s

vs
KsΩ2

s















, (17)

where we denoted Ω2
c/s = v2c/sq

2 + ω2. Let Φi(q, ω) be the Fourier transform of Φi(x, τ).

Then:

〈Φi(q, ω)Φj(−q,−ω)〉 = βlM−1
ij (q, ω). (18)

Correlations for φs/c(x, τ) and θs/c(x, τ) can be obtained from Eq. (18) by inverse Fourier

transform. The results at zero temperature are:

〈(φs/c(x, τ)− φs/c(0, 0))
2〉 = Ks/c

2π
log

x2 + ys/c(τ)
2

a20
, (19a)

〈(θs/c(x, τ)− θs/c(0, 0))
2〉 = 1

2πKs/c

log
x2 + ys/c(τ)

2

a20
, (19b)

〈φs/c(x, τ)θs/c(0, 0)〉 = − i

2π
Arg[ys/c(τ) + ix], (19c)

where ys/c(τ) = vs/cτ + a0 sgn(τ). The argument in Eq. (19c) is defined with a branch cut

at (−∞, 0].

When calculating the spin density correlators saa(x, t) employing Eq. (13), there

appear terms of three types: (a) 〈∂xφs(x, τ)∂xφs(0, 0)〉, (b) 〈∂xφs(x, τ)e
i
∑

AiΦi(0,0)〉, and (c)

〈ei
∑

BiΦi(x,τ)ei
∑

CiΦi(0,0)〉, where Ai, Bi, Ci are numerical coefficients. For their calculation we

employ the invariance of H and L under the uniform translation of Φi. For terms of type (b)

with Ai 6= 0, the translation Φi → Φi+π/Ai changes the sign of the averaged value leaving the

Lagrangian invariant. Thus, the average 〈∂xφs(x, τ)e
i
∑

AiΦi(0,0)〉 must be zero if at least one

Ai 6= 0. For terms of type (c), a similar argument shows that 〈ei
∑

BiΦi(x,τ)ei
∑

CiΦi(0,0)〉 = 0

if at least one of the sums Bi + Ci 6= 0. As a result, szz(x, τ) reduces to:

szz(x, τ) =
2

π
〈∂xφs(x, τ)∂xφs(0, 0)〉

+
1

4π2a20
[ei2kF x〈ei

√
2π(φc(x,τ)−φs(x,τ))e−i

√
2π(φc(0,0)−φs(0,0))〉+ h.c.]

+
1

4π2a20
[ei2kF x〈ei

√
2π(φc(x,τ)+φs(x,τ))e−i

√
2π(φc(0,0)+φs(0,0))〉+ h.c.]. (20)
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From Eq. (19a) it follows that

2

π
〈∂xφs(x, τ)∂xφs(0, 0)〉 =

2

π
∂x∂x′〈−1

2
(φs(x, τ)− φs(x

′, 0))2〉|x′=0

=
2

π
∂x∂x′ [−Ks

4π
log[

(x− x′)2 + ys(τ)
2

a20
]]|x′=0 =

Ks

π2

y2s − x2

(x2 + y2s)
2
. (21)

For the second term in Eq. (21) we apply the formula 〈eiA〉 = e−
1
2
〈A2〉 valid for any Gaussian

distributed variable A. Let calculate for example an average:

〈ei
√
2π(φc(x,τ)−φs(x,τ))e−i

√
2π(φc(0,0)−φs(0,0))〉

= 〈ei
√
2π(φc(x,τ)−φs(x,τ))−i

√
2π(φc(0,0)−φs(0,0))〉 = e−π〈[φc(x,τ)−φs(x,τ)−φc(0,0)+φs(0,0)]2〉

= e
−π[Kc

2π
log x2+yc(τ)

2

a2
0

+Ks
2π

log x2+ys(τ)
2

a2
0

]
= (

a0
√

x2 + y2c
)Kc(

a0
√

x2 + y2s
)Ks. (22)

Similar calculations can be done for other terms in szz(x, τ) and for the other two spin

density correlators, which lead to the results Eq. (7) in the main text. The z direction

spin density correlators of the SDW state can also be calculated in the same way, with φs

replaced by a constant that minimizes HC .

INTEGRALS OF TOTAL SPIN CORRELATIONS

We calculate from the spin density correlators the total spin correlators by integrate over

the coordinate. The integrals that must be evaluated are of the forms:

I1 =

∫ ∞

−∞
dτ

∫ ∞

−∞
dxeiωτ cos(kx)

y2s − x2

(x2 + y2s)
a
,

I2 =

∫ ∞

−∞
dτ

∫ ∞

−∞
dxeiωτ cos(kx)

1

(x2 + y2c )
b(x2 + y2s)

c
,

I3 =

∫ ∞

−∞
dτ

∫ ∞

−∞
dxeiωτ cos(kx)

1

(x2 + y2c )
d
, (23)

where k ≥ 0 and a, b, c are constants, and ω is imaginary frequency associated with τ . Of

them, I1 or I2 are parts of the correlations with small q or q ∼ 2kF of the ordinary LL state,

and I3 corresponds to the (z component) correlation of the SDW state.

The integrals can be performed by changing to polar coordinates (r, φ) where x = r cos φ
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and ys = r sinφ. For example, I1 reads:

I1 =
1

vs

∫ 2π

0

dφ

∫ ∞

0

dreir(k cosφ+ ω
vs

sinφ) r
2(sin2 φ− cos2 φ)

r2a−1

= − 1

vs

∫ 2π

0

dφ

∫ ∞

0

dre
ir

√

k2+ω2

v2s
cos(φ−arctan ω

kvs
) cos(2φ)

r2a−3

=
πΓ(3− a)

vsΓ(a)

k2v2s − ω2

k2v2s + ω2
(
k2v2s + ω2

4v2s
)a−2. (24)

Similarly we can calculate I3, and also I2 provided we approximate both vc and vs to be

vF . The results are:

I2 =
πΓ(1− b− c)

vFΓ(b+ c)
(
k2v2F − ω2

4v2F
)b+c−1,

I3 =
πΓ(1− d)

vcΓ(d)
(
k2v2c − ω2

4v2c
)d−1. (25)

Applying these results to the correlations and analytically continuing to real frequency

by iω → ω + iδ, we obtain the correlations for the ordinary LL state:

SR
xx(ω) = SR

yy(ω)

= A0(ω
2
s + ω2)(ω2

s − ω2)
Ks
2

+ 1
2Ks

−2 +
1

2
Ax

2kF
[(ω2

+ − ω2)
Kc
2

+ 1
2Ks

−1 + (ω2
− − ω2)

Kc
2
+ 1

2Ks
−1],

SR
zz(ω) = Az

2kF
(ω2

0 − ω2)
Kc
2

+ 1
2Ks

−1, (26)

and those for the SDW state:

SR
xx(ω) = SR

yy(ω) = 0, SR
zz(ω) = ASDW (ω2

0c − ω2)
Kc
2

−1, (27)

where we defined the frequencies ωs = 2mαvs, ω0 = 2kFvF , ω± = 2(kF±mα)vF , ω0c = 2kFvc,

and the amplitudes

A0 =
l( a0

2vs
)Ks+

1
Ks

−2Γ(2− Ks

2
− 1

2Ks
)

πvsΓ(1 +
Ks

2
+ 1

2Ks
)

,

Ax
2kF

=
l( a0

2vF
)Kc+

1
Ks

−2Γ(1− Kc

2
− 1

2Ks
)

πvFΓ(
Kc

2
+ 1

2Ks
)

,

Az
2kF

=
l( a0

2vF
)Kc+Ks−2Γ(1− Kc

2
− Ks

2
)

πvFΓ(
Kc

2
+ Ks

2
)

,

ASDW =
2l( a0

2vc
)Kc−2Γ(1− Kc

2
)

πvcΓ(
Kc

2
)

. (28)
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ω everywhere in these expressions is understood to have a small imaginary part. Note that

the expressions for the q ∼ 2kF parts of the ordinary LL correlations are only approximations

when vc and vs are both close to vF .

We remind that the conservation of Sz requires that SR
zz(ω) = 0 at any ω in the absence

of the transverse external magnetic field. In the main text we have demonstrated that

this discrepancy is associated with the inconsistency of the LL model at negative, large by

modulus k and how this discrepancy can be corrected.

NON-INTERACTING MODEL WITH VARYING FILLING DEPTH OF FERMI

SEA

We calculate the spin density correlators for the non-interacting case with no RDI and

zero external field to illustrate the effect of filling of Fermi sea on the spin correlations. The

original quadratic spectrum is Ek = k2/(2m), where in the ground state the momentum

states k ∈ (−kF , kF ) are occupied. These states all have non-negative energies. But in the

LL model, the spectrum is linearized in such a way that the ground state is a filled Fermi

sea with infinite depth. The spectrum is Ek = ±vFk for right and left movers, respectively.

We will consider a more general model with a cut-off kD: in the ground state the occupied

states are k ∈ (−kD, kF ) for right movers, and k ∈ (−kF , kD) for left movers (See Fig. 1).

The parameter kD denotes the depth of the Fermi sea: the lowest occupied level of each

species of movers has energy −vFkD. In this model, the total number of electrons is finite at

any finite kD. kD = 0 corresponds to the case when there’s only one band with non-negative

energy states, which is the case of the original model where electrons fill from zero energy

to the Fermi surface. kD = ∞ corresponds to the case of filling an infinite sea and of infinite

number of particles, as assumed in the LL model. The field operator Ψσ(x, t) reads:

Ψσ(x, t) = eikFxRσ(x, t) + e−ikF xLσ(x, t), (29)

where Rσ(x, t) and Lσ(x, t) are the chiral fields. The Fourier expansion of the chiral field

contain the operators of annihilation in momentum space as Fourier coefficients:

Rσ(x, t) =
1√
l

∑

k

ak,σe
i(kx−kvF t),

Lσ(x, t) =
1√
l

∑

k

bk,σe
i(kx+kvF t). (30)
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FIG. 1. Spectra: (a) for the original model; (b) for the generalized model.

Since the factors e±ikF x are placed in front of sums in Eq. (30), the summation proceeds

from −kF − kD till zero for right movers and from 0 till kF + kD for left movers. At zero

temperature the momentum space field operators satisfy:

〈a†k1,σ1
ak2,σ2〉 = δk1,k2δσ1,σ2Θ(−k1)Y (k1 + kF + kD),

〈ak1,σ1a
†
k2,σ2

〉 = δk1,k2δσ1,σ2Θ(k1),

〈b†k1,σ1
bk2,σ2〉 = δk1,k2δσ1,σ2Θ(k1)Y (−k1 + kF + kD),

〈bk1,σ1b
†
k2,σ2

〉 = δk1,k2δσ1,σ2Θ(−k1). (31)

The averages of all other pairings between a, a†, b, b† vanish. The spin density operators are

sa(x, t) = Ψ†
σ(x, t)σa,σσ′Ψσ′(x, t). The correlator of z-components of spin at positive time

reads:

szz(x, t) = 〈sz(x, t)sz(0, 0)〉

= 〈Ψ†
+(x, t)Ψ+(x, t)Ψ

†
+(0, 0)Ψ+(0, 0)〉+ 〈Ψ†

−(x, t)Ψ−(x, t)Ψ
†
−(0, 0)Ψ−(0, 0)〉

− 〈Ψ†
+(x, t)Ψ+(x, t)Ψ

†
−(0, 0)Ψ−(0, 0)〉 − 〈Ψ†

−(x, t)Ψ−(x, t)Ψ
†
+(0, 0)Ψ+(0, 0)〉. (32)

We then apply Wick’s theorem and express each term as a sum of all possible pairings

of operators. Due to the reflection symmetry of the spin space, 〈Ψ†
+(x, t)Ψ+(x, t)〉 =

〈Ψ†
−(x, t)Ψ−(x, t)〉. Thus,

szz(x, t) = 2〈Ψ†
+(x, t)Ψ+(0, 0)〉〈Ψ+(x, t)Ψ

†
+(0, 0)〉. (33)
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In terms of chiral fields we find:

szz(x, t) = 2(e−ikFx〈R†
+(x, t)R+(0, 0)〉+ eikF x〈L†

+(x, t)L+(0, 0)〉)

× (eikF x〈R+(x, t)R
†
+(0, 0)〉+ e−ikF x〈L†

+(x, t)L
†
+(0, 0)〉). (34)

The chiral field averages are readily found employing Eqs. (30) and (31):

〈R†
+(x, τ)R+(0, 0)〉 =

1

2π

1− e−(kF+kD)(−ix+vF τ)

−ix+ vF τ
,

〈L†
+(x, τ)L+(0, 0)〉 =

1

2π

1− e−(kF+kD)(ix+vF τ)

ix+ vF τ
,

〈R+(x, τ)R
†
+(0, 0)〉 =

1

2π

1

−ix+ vF τ
,

〈L+(x, τ)L
†
+(0, 0)〉 =

1

2π

1

ix+ vF τ
, (35)

where we assumed τ > 0. Note that if kD → ∞ (the LL prescription), 〈R†
+(x, t)R+(0, 0)〉 =

〈R+(x, t)R
†
+(0, 0)〉 and 〈L†

+(x, t)L+(0, 0)〉 = 〈L+(x, t)L
†
+(0, 0)〉, as a consequence of

electron-hole symmetry. For finite kD, electrons and holes are not symmetric. Thus,

〈R†
+(x, t)R+(0, 0)〉 6= 〈R+(x, t)R

†
+(0, 0)〉.

Plugging these results into Eq. (34), we get:

szz(x, τ) =
1

π2

v2F τ
2 − x2

(x2 + v2F τ
2)2

+
1

π2

cos(2kFx)

x2 + v2F τ
2

− 2

π2

e−(kD+kF )vF τ (vF τ cos(kDx)− x sin(kDx))(vF τ cos(kFx)− x sin(kFx))

(v2F τ
2 + x2)2

. (36)

The first and the second term in Eq. (36) corresponds to the contribution of small q and

the q ∼ 2kF part, respectively (compare Eq. (7) in the main text). The third term depends

on kD, and it vanishes as kD → ∞.

The total spin correlation is obtained after integration over x:

Szz(τ) = l

∫ ∞

−∞
dxszz(x, τ) =

le−2kF vF τ

πvF τ
− le−2max(kF ,kD)vF τ

πvF τ

=







0 for 0 ≤ kD ≤ kF ,

l
πvF τ

(e−2kF vF τ − e−2kDvF τ ) for kD > kF .
(37)

In the second line in the equation (37), the first term comes from the q ∼ 2kF part, and

the second term comes from the kD-dependent part. If 0 ≤ kD < kF these two terms cancel

each other, but if kD > kF they do not cancel. Thus, the total z spin correlation is zero if
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0 ≤ kD < kF , and it becomes non-zero when kD exceeds kF . At kD → ∞ as is in the LL

model, Szz(τ) =
l

πvF τ
e−2kF vF τ . Therefore, it is clear that non-zero Szz results from inclusion

of negative energy states.

Next we should extrapolate Eq. (37) to the interacting case. Corrected szz(x, τ) should

satisfy: 1. its integration over x should give zero; 2. in the non-interacting limit it should

reduce to Eq. (9) in the main text. A candidate could be:

szz(x, τ) =
Ks

π2

(y2 − x2)(1− e−kF y cos(kFx)) + 2xye−kF y sin(kFx)

(x2 + y2)2

+
aKc+Ks−2
0

π2

cos(2kFx)− 2
Kc
2

+Ks
2

−1e−kF y cos(kFx)

(x2 + y2)
Kc
2

+Ks
2

, (38)

where we have approximated both vc and vs to be vF . It satisfies condition 2. For condition

1, the first term integrate exactly to zero, but the correction to the second q ∼ 2kF term

only compensates the original result to the leading order in 1/(kFy). Finally, spin density

correlations of the transverse directions must be corrected in a similar manner.
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