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The leading asymptotic terms of the three-body Coulomb scattering wave function

A. M. Mukhamedzhanov,1 A. S. Kadyrov,2 and F. Pirlepesov1

1Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA
2Centre for Atomic, Molecular and Surface Physics,

Division of Science and Engineering, Murdoch University, Perth 6150, Australia
(Dated: September 12, 2018)

The asymptotic wave function derived by Alt and Mukhamedzhanov [Phys. Rev. A 47,
2004 (1993)] and Mukhamedzhanov and Lieber [Phys. Rev. A 54, 3078 (1996)] has been refined
in the region where the pair (β, γ) remains close to each other while the third particle α is far away
from them (ρα → ∞, rα/ρα → 0). The improved wave function satisfies the Schrödinger equation
up to the terms of order O(1/ρα

3), provides the leading asymptotic terms of the three-body scatter-
ing wave function with Coulomb interactions and gives further insight into the continuum behavior
of the three-charged-particle wave function and helps to obtain 3 → 3 scattered wave. This opens
up further ways of solving and analysing the three-body Schrödinger equation by numerical means.

PACS numbers: 21.45.+v, 25.10.+s, 03.65.Nk, 34.10.+x

I. INTRODUCTION

The quantum dynamics of three charged particles is described by Schrödinger’s equation which should be supple-
mented by proper boundary conditions. Merkuriev and Faddeev [1] claimed that the solution of this equation exists
and is unique if the boundary conditions are known in all asymptotic regions. There are two types of the three-body
scattering wave functions. The first type evolves from an initial three-body incident wave describing three incident
particles in continuum. The second type of the three-body scattering wave function evolves from a two-body incident
wave corresponding to collision of a two-body bound state with a third particle.
The three-body incident wave represents the leading asymptotic terms of the total three-body scattering wave

function [1, 2, 3]. The knowledge of the three-body incident wave is important for many reasons: as a leading term
of the three-body wave function it can be used in calculations of the breakup matrix elements if the kinematics is
such that the asymptotic region gives the leading contribution; the knowledge of the three-body incident wave is
necessary in direct solution of the three-body Schrödinger equation for the scattering wave function of the first type.
The asymptotic behavior of the three-body incident wave depends on the asymptotic region under consideration. In
the asymptotic region where two particles, for example β and γ, are close to each other and far away from the third
particle α, the three-body incident wave can be written as an asymptotic series in powers 1/ρα, where ρα is the distance
between the c.m. of the system (β, γ) and the third particle α. The leading asymptotic terms O(1) and O(1/ρα) of
the three-body incident wave for charged particles have been obtained analytically in [2, 3]. These asymptotic terms
satisfy the Schrödinger equation up to O(1/ρ2α). In this work we will derive all the leading asymptotic terms of the
three charged particles incident wave of order O(1/ρ2α). Combined with the previously derived terms of order O(1)
and O(1/ρα) [2, 3], they provide the asymptotic solution of the Schrödinger equation for three charged particles in
continuum up to terms O(1/ρ3α). The terms O(1/ρ2α) satisfy first order differential equations. It is worth mentioning
that the terms O(1/ρ3α) are the next order terms compared to the three-body scattered wave which is O(1/R5/2),
where R is the hyperradius. This term, as well as the leading-order asymptotic terms of the three-body wave function
of the second type have been given in Refs. [4, 5]. Practical ways of extracting the scattering and breakup amplitudes
using these asymptotic wave functions have been presented in Refs. [6, 7].
The paper is organized in the following way. In Section I we introduce the three-body nomenclature and give the

statement of the problem. In Section II we recall some of the important relations relevant to two-body scattering.
In Sections III-V we present asymptotic solutions of the three-body Schrödinger equation in all orders which can be
obtained analytically with the asymptotic method. Finally, Section F concludes the paper.

II. STATEMENT OF THE PROBLEM

We consider a non-relativistic three-body problem for charged particles of mass mα and charge zα, α = 1, 2, 3 in
the continuum state. We follow the notations used in Ref. [2]. The Greek letters stand for constituent particles of
the three-body system or for the pair of two other particles. For example, α labels the particle or the pair β + γ.
Such a supplemental notation is customary in few-body physics. The following conventional notations for the two
body quantities are also used: Aα ≡ Aβγ , where α 6= β 6= γ. The Jacobi coordinates are determined as follows: rα
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is the relative coordinate between particles β and γ, and kα is its canonically conjugated momentum. µα =
mβmγ

mβγ
is

their reduced mass, mβγ = mβ +mγ . Similarly, ρα is the relative coordinate between the c.m. of the pair (β, γ) and

particle α, and qα is its canonically conjugated relative momentum. Mα = mαmβγ/M , M =
3∑

ν=1
mν is total mass of

the three-body system. There are three sets of Jacobi coordinates rν ,ρν , where ν = α, β, γ. We frequently need the
relations between the coordinates, and conjugate momenta for a channel ν = β, γ and the corresponding α−channel
variables. They are given by the following relations

(
ρν

rν

)
=

(
− mα

M−mν
ǫνα

µν

Mα

−ǫνα − mν

mβγ

)(
ρα

rα

)
(1)

(
qν

kν

)
=

(
− mν

mβγ
ǫνα

−ǫνα
µα

Mν
− mα

M−mν

)(
qα

kα

)
, (2)

where ν = β, γ and the antisymmetric symbol ǫαν = −ǫνα, with ǫαν = 1 for (α, ν) being a cyclic permutation of
(1, 2, 3), and ǫαα = 0. The motion of the three particles is described by the Schrödinger equation in the configuration
space

{E − Trα − Tρα
− V }Ψ

(+)
kαqα

(rα,ρα) = 0, (3)

where V =
3∑

ν=1
Vν , Vν = V C

ν (rν)+V
N
ν (rν). The Coulomb potential is given by V C

α (rα) =
Zβ Zγ e2

rα
, Zν e is the charge of

particle ν. Similarly, V N
ν is the nuclear potential between the particles of the ν− pair, where ν = α, β, γ. Trα = −

△rα

2µα
,

is the kinetic energy operator for the relative motion of particles β and γ, and Tρα
= −

△ρα

2Mα
is the kinetic energy

operator for the relative motion of particle α and the center of mass of the pair (β, γ), respectively.
Our aim is to derive the asymptotic behavior of three-body incident wave up to terms O(1/ρ3α) in the asymptotic

region Ωα, where rα/ρα → 0 and ρα → ∞. This incident wave provides the leading asymptotic terms of the three-body
scattering wave function of the first type. General asymptotic behavior of the three-body scattering wave function is
given by [1]

Ψ
(+)
kα,qα

≈ Ψ̃
(+)
kα,qα

+
∑

ν=α, β, γ

ϕν(rν)
M

(ν)
3→2

ρν
ei qν ρν−iην ln(2qν ρν)

+
M3→3

R5/2
eiκR−i λ0 ln(2κR). (4)

Here the first term is the incident three-body wave, the sum over ν provides the two-body outgoing scattered waves
and corresponds to the 3 → 2 processes. The last term descibes the outgoing three-body scattered wave. Also,
ηα = (Zβ + Zγ)Zα e

2Mα/qα is the Coulomb parameter for the Coulomb interaction between particles α and the
center of mass of the system β + γ; the Coulomb pasrameter λ0 is determined in Ref. [5]. We use the system of units
such that ~ = c = 1. Formally we can determine the incident wave as an asymptotic difference

Ψ̃
(+)
kα,qα

≈ Ψ
(+)
kα,qα

−
∑

ν=α, β, γ

ϕν(rν)
M

(ν)
3→2

ρν
ei qν ρν−iην ln(2qν ρν)

−
M3→3

R5/2
eiκR−iλ0 ln(2κR). (5)

From this equation it is clear that the three-body incident wave is a part of the full wave function, which does not
contain the outgoing two- and three-body scattered waves. For better understanding of the three-body incident wave
we consider first the two-body case.

III. ASYMPTOTIC TWO-BODY SCATTERING WAVE FUNCTION

We will be referring to the two-body Coulomb scattering throughout this work. Therefore we present here some
important relations for the two-body scattering. Let us consider two charged particles with mass mi and charge
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Zi e, i = 1, 2, interacting via the pure Coulomb potential V = Z1 Z2 e
2/r. Scattering of two particles is described by

the Schrödinger equation

{E −H}ψ
(+)
k (r) = 0, (6)

where η = Z1 Z2 e
2 µ/k is the Coulomb parameter, E = k2/(2µ) is the relative kinetic energy of the interacting

particles 1 and 2, H = − △r /(2µ) + V is two body Hamiltonian, and µ = m1m2/(m1 + m2) is reduced mass of
particles 1 and 2. For the pure Coulomb interaction case Eq.(6) can be solved analytically. Substituting

ψ
(+)
k (r) = eik·rN 1F1(−iη, 1, iζ), (7)

into Eq.(6) gives the differential equation for the confluent hypergeometric function (also called the Kummer function)

[
△r

2µ
+
ik · ▽r

µ
− V ] 1F1(−iη, 1, iζ) = 0, (8)

N = e−πη/2Γ(1 + iη) is the normalization factor, and parabolic coordinate ζ = kr− k · r. 1F1(−iη, 1, iζ) is called the
Kummer function because Eq. (8) rewritten in terms of z = i ζ becomes the Kummer differential equation [8, 9]:

z
d2 1F1(a, c; z)

dz2
+ (c− z)

d 1F1(a, c; z)

dz
− a 1F1(a, c; z) = 0. (9)

Here a = −iη, c = 1. Note that the Kummer function 1F1(a, c; z) is a regular solution at ζ = 0 (or r = 0) of the

Kummer equation. Correspondingly, ψ
(+)
k (r) given by Eq. (7) is the normalized regular solution of the two-body

Coulomb scattering problem. The Kummer function can be expressed in terms of the Whittaker functions Wλ,µ(z)
using Eqs. (9.220.3) and (9.233.2) [10]:

1F1(−iη, 1; i ζ) =
1

Γ(1 + i η)
eπ η 1

(i ζ)1/2
ei ζ/2W1/2+i η(i ζ)

+
1

Γ(−i η)
e−i π(1/2+i η) 1

(i ζ)1/2
ei ζ/2W−1/2−i η,0(e

−i π i ζ). (10)

Each term of Eq. (10) also satisfies the Kummer differential equation (9) providing a singular solution. Substituting
Eq. (10) into the Kummer equation leads to the Whittaker differential equation for each term:

d2Wλ,0(z)

dz2
+ (−

1

4
+
λ

z
+

1
4 − ν2

z2
)Wλ,0(z) = 0. (11)

Here λ = ±(1/2+ i η) and z = ±i ζ. Evidently that both Whittaker functions in Eq. (10) satisfy the same Whittaker
equation because it is invariant under simultaneous transformation z → −z, λ→ −λ. Coming back to the normalized
regular solution of the Schrödinger equation we can present it as a sum of two singular solutions:

ψ
(+)
k (r) = eik·rN 1F1(−iη, 1, iζ)

= ψ
(0)
k (r) + ψ

(sc)
k (r). (12)

The first singular solution, as we will see below, is the incident wave

ψ
(0)
k (r) = eik·rF (1)(ζ), (13)

and the second singular solution is the scattered wave

ψ
(sc)
k (r) = eik·rF (2)(ζ), (14)

F (1)(ζ) = e
πη
2 (iζ)−

1
2 ei

ζ
2Wiη+ 1

2 ,0
(iζ), (15)

F (2)(ζ) = −i
Γ(1 + iη)

Γ(−iη)
e

πη
2 (iζ)−

1
2 ei

ζ
2W−iη− 1

2 ,0
(e−i π iζ). (16)
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Evidently that for η = 0 the incident wave becomes the plane wave eik·r and the scattered wave just disappears. It
follows from Eq. (9.227) [10] that (|z| > 0)

W1/2,0(z) = e−z/2z1/2
∞∫

0

dte−t 1

t+ z
. (17)

and from Eq. (6.922.2) [10]

W−1/2,0(z) = e−z/2z1/2
∞∫

0

dte−t 1

t+ z
. (18)

Taking into account the asymptotic behaviour at |z| → ∞ of the Whittaker function, Eq. (9.227) [10],

Wλ,0(z)
|z|→∞
= zλe−z/2

[
1−

(λ− 1/2)2

z
+O(

1

z2
)

]
, (19)

we derive the asymptotic behavior of F (1)(ζ):

F (1)(iζ)
|ζ|→∞
= eiη ln ζ

[
1 +O(

1

iζ
)

]
. (20)

Correspondingly the asymptotic behavior of the Coulomb distorted incident wave

ψ
(0)
k (r)

r→∞
= eik·reiη ln ζ [1 +O(

1

i ζ
)]. (21)

The asymptotic behavior of F (2)(ζ) is given by

F (2)(iζ)
ζ→∞
= fC eiζ

r
e−iη ln 2kr

[
1 +O(

1

iζ
)

]
, (22)

where fC is the on-the-energy-shell Coulomb scattering amplitude:

fC = −η
Γ(1 + iη)

Γ(1− iη)
(−i)−iηeπη/2

e−iη ln sin2 θ
2

2k sin2 θ
2

. (23)

The asymptotic behavior of the scattered wave is given by

ψ
(sc)
k (r)

r→∞
= fC e

ikr

r
e−iη ln 2kr [1 +O(

1

iζ
)]. (24)

Taking into account Eqs. (12), (21), (24) we get the asymptotic behavior of the Coulomb scattering wave function
for a system of two particles in the coordinate space:

ψ
(+)
k (r)

r→∞
= eik·reiη ln ζ [1 +O(

1

iζ
)] + fC e

ikr

r
e−iη ln 2kr [1 +O(

1

iζ
)]. (25)

Note that this asymptotic behavior is valid only for |ζ| → ∞. For r → ∞ it is valid for all directions in the

configuration space except for the so-called singular direction, for which k̂ · r̂ = 1. Here â = a/a.
One can observe a very interesting feature in the case of the two-body Coulomb scattering. The regular solution,

according to Eq. (12), consists of two singular solutions, incident and scattered wave, each of them also satisfies the
Schrödinger equation. Correspondingly, the asymptotic Coulomb scattering wave function consists of two terms. The
first one, eik·reiη ln ζ (1 +O( 1

iζ ) is the asymptotic form of eik·rF (1)(iζ) and represents the Coulomb distorted incident

wave. The Coulomb distortion not only generates a logarithmic phase factor η ln ζ as an additional phase factor to
the plane wave phase factor k · r, but it also generates an infinite series in powers of 1/ζ. This is in contrast to the
two-body scattering problem for particles interacting via short-range potentials, where the incident wave is given just
by the plane wave. The second term in Eq. (25) is the asymptotic form for eik·rF (2)(iζ). It generates the outgoing
two-body spherical wave times the Coulomb scattering amplitude and also contains a factor which can be written as
an asymptotic expansion in powers of 1/ζ.
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IV. ASYMPTOTIC THREE-BODY INCIDENT WAVE

After consideration of the incident wave for the two-body case, it is easier to proceed to the incident wave for
the three-body case. By definition, the incident three-body wave is the part of the total three-body scattering wave
function of the first type, which does not contain two- and three-body scattered waves. We have shown that the
two-body incident wave is a singular solution of the two-body Schrödinger equation . It is naturally to ask whether
the three-body incident wave is a solution of the three-body Schrödinger equation . An educated guess tells us that
the answer may be ”yes”. First, the scattering wave function of the first type which consists of the three-body incident
and scattered waves (two- and three-body) is a regular solution of the three-body Schrödinger equation . However
there are also singular solutions of the three-body Schrödinger equation . And it is very plausible that the three-body
incident wave is one of the singular solutions while the scattered wave represents another singular solution. However,
we cannot prove it until an analytical expression for the three-body incident wave will be available.
Our goal in this work is to derive the asymptotic incident three-body wave function in the leading orders

O(1), O(1/ρ2α), O(1/ρ
2
α) in the asymptotic region Ωα, where particles β and γ are close to each other and far away

from particle α. We will demonstrate that the terms of order O(1/ρ2α) can be derived without explicit solution of the
three-body Schrödinger equation . In principle the method we use can be applied to get even the higher order terms
of the three-body incident wave but it is worth mentioning that the next order term in the asymptotic expansion
of the three-body incident wave O(1/ρ3α) is inferior to the outgoing three-body scattered wave O(1/R5/2). Hence
for practical applications one need to know the three-body scattered wave before getting the term O(1/ρ3α) in the
asymptotic expansion of the three-body incident wave. A knowledge of the three-body incident wave up to terms
O(1/ρ3α) allows us to write down the leading asymptotic terms of the three-body scattering wave function of the
first type in the asymptotic region Ωα up to terms O(1/ρ3α). Note that the expressions for the asymptotic incident
three-body wave in two other asymptotic regions Ωβ and Ωγ can be derived by simple cyclic permutation of indexes
α, β and γ. As we have mentioned earlier, the asymptotic incident three-body wave is the part of the total three-body
scattering wave function of the first type, which does not contain two- and three-body scattered waves. This wave
function should smoothly transform into the asymptotic incident three-body wave function in the asymptotic region
Ω0. This smooth matching is an important part of the boundary conditions that provides a unique solution.
The leading asymptotic term of the three-body incident wave in Ω0 derived by Redmond [11, 12] is given by

Ψ
(0)(+)
kα,qα

(rα,ρα) = eikα·rα eiqα·ρα

∏

ν=α, β, γ

ei ην ln ζν , (26)

where

ζν = kν rν − kν · rν . (27)

ηα =
Zβ Zγ e

2 µα

kα
(28)

is the Coulomb parameter of particles β and γ, µα is the reduced mass of particles β and γ. It is the three-body
Coulomb distorted plane wave. For practical applications Merkuriev [1], Garibotti and Miraglia [13] extended the
asymptotic Redmond’s term by substituting the confluent hypergeometric functions for the exponential Coulomb
distortion factors. This extended wave function, often called the 3C wave function, is given by

Ψ
(3C)(+)
kα,qα

(rα,ρα) = eikα·rα eiqα·ρα

∏

ν=α, β, γ

Fν(ζν), (29)

where

Fν(ζν) = Nν 1F1(−i ην, 1; i ζν), (30)

1F1(−i ην , 1; i ζν) is the confluent hypergeometric function and

Nν = e−π ην/2 Γ(1 + i ην). (31)

Note that

ψkα
(rα) = eikα·rα Fν(ζν) (32)
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is the Coulomb scattering wave function of particles β and γ moving with the relative momentum kα and is well-
behaved even in the singular directions (ζν < C for rν → ∞) where the Redmond’s asymptotic term is not determined.
If any of the particles is neutral, then the resulting asymptotic solution becomes the plane wave for the neutral par-
ticle and the exact two-body scattering wave function for the charged pair. However, neither Redmond’s asymptotic

term Ψ
(0)(+)
kα,qα

(rα,ρα) nor the 3C wave function Ψ
(3C)(+)
kα,qα

(rα,ρα) are asymptotic solutions of the Schrödinger equation
in the asymptotic domains Ων , ν = α, β, γ. Redmond’s asymptotic term, by construction, satisfies the asymptotic
Schrödinger equation up to terms O(1/r2α, 1/r

2
β, 1/r

2
γ). However, in the asymptotic region, Ων , the distance between

the particles of pair ν is limited: rν < C′. Hence the terms O(1/rν) are not small and the potential V C
ν in the

Schrödinger equation has to be compensated exactly rather than asymptotically as happens when we use the Red-
mond’s asymptotic wave function in Ω0. In the 3C wave function two very important effects are absent. Consider,
for example, the asymptotic region Ωα. In this region rα << ρα. Hence the two-body relative motion of particles
β and γ is distorted by the Coulomb field of the third particle α [2]. The second evident defect in the 3C function
is the absence of the nuclear interaction between particles β and γ which can be close enough to each other in Ωα.
Nevertheless, the 3C wave function can be used as a starting point to derive the the leading asymptotic terms of the
three-body incident wave in Ωα [2, 3], because this asymptotic three-body incident wave should match the Redmond’s
asymptotic term in Ω0. We will demonstrate now how important the condition of the matching of the asymptotic
wave functions is on the border of different asymptotic regions [2].
In the Redmond’s asymptotic incident wave three logarithmic phase factors appear, one phase factor for each pair

rather than two phase factors in the factorized solution. It is a very important conclusion. In all the conventional
approaches for breakup processes, including coupled channels codes like FRESCO, the three-body scattering wave
function is approximated by the factorized one. From the consideration above, it is clear that if Coulomb interactions
are important, such an approximation is not accurate. If the interactions are short-range, the factorized solution
matches the asymptotic solution in Ω0 and is justified in the asymptotic region Ωα. It has been shown in [2, 3] that

the actual asymptotic solution of the asymptotic Schrödinger equation Ψ
(as)
kαqα

(rα,ρα), which matches the Redmond’s

asymptotic term in Ω0, cannot be written in a factorized form and has a quite complicated behavior. In [2, 3] all

the leading asymptotic terms up to O(1/ρ2α) of the asymptotic wave function Ψ
(as)
kαqα

(rα,ρα) have been derived in the
asymptotic region Ωα. In this work we will present a derivation of the expansion of the asymptotic wave function,

Ψ
(as)
kαqα

(rα,ρα), up to terms O(1/ρ3α). The derived asymptotic expansion contains all the terms O(1), O(1/ρα) and

O(1/ρ2α). Since we are looking for the terms O(1/ρ2α), we need to keep the terms up to O(1/ρ3α). Instead of the
asymptotic expansion of the Coulomb potentials V C

β (rβ) and V C
γ (rγ) in terms of 1/ρα, we will start our derivation

from the exact three-body Schrödinger equation (3). The terms of O(1/ρ3α) will be dropped later. The asymptotic
wave function in Ωα should match the asymptotic wave function in Ω0. The 3C wave function satisfies Eq.(3) up to
terms O(1/r2α, 1/ρ

2
α) and we can use it as the initial wave function. However, this wave function should be modified

to satisfy the Schrödinger equation in Ωα. Note that usually in the literature it is assumed that the Redmond’s
asymptotic term satisfies the Schrödinger equation in Ω0 in the leading order only. First we will show that the 3C
wave function satisfies the Schrödinger equation in Ω0 up terms of order O(1/r2ν). To this end we just substitute the
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3C wave function (29) into the Schrödinger equation (3):

(E − Trα − Tρα
− V )[eikα·rα+iqα·ρα ϕkα

(rα)ϕkβ
(rβ)ϕkγ

(rγ)]

= eikα·rα+iqα·ραϕkβ
(rβ)ϕkγ

(rγ)[
△rα

2µα
+
ikα · ▽rα

µα
− Vα

+
△ρα

2Mα
+

i[qα − i
∑

ν=β,γ

▽ρα
lnϕkν

] · ▽ρα

Mα

+
▽rαϕkγ

· ▽rαϕkβ

µαϕkβ
ϕkγ

+
▽ρα

ϕkγ
· ▽ρα

ϕkβ

Mαϕkβ
ϕkγ

]ϕkα
(rα)

+eikβ·rβ+iqβ ·ρβϕkα
(rα)ϕkγ

(rγ)[
△rβ

2µβ
+
ikβ · ▽rβ

µβ
− Vβ

+
△ρβ

2Mβ
+

i[qβ − i
∑

τ=α,γ
▽ρβ

lnϕkτ
] · ▽ρβ

Mβ

+
▽rβϕkγ

· ▽rβϕkα

µβϕkα
ϕkγ

+
▽ρβ

ϕkγ
· ▽ρβ

ϕkα

Mβϕkα
ϕkγ

]ϕkβ
(rβ)

+eikγ ·rγ+iqγ ·ργϕkα
(rα)ϕkβ

(rβ)[
△rγ

2µγ
+
ikγ · ▽rγ

µγ
− Vγ

+
△ργ

2Mγ
+

i[qγ − i
∑

ω=α,β

▽ργ
lnϕkω

] · ▽ργ

Mγ

+
▽rγϕkβ

· ▽rγϕkα

µβϕkα
ϕkβ

+
▽ργ

ϕkβ
· ▽ργ

ϕkα

Mγϕkα
ϕ
k̃β

]ϕkγ
(rγ). (33)

Here

ϕkν
(rν) = Nν F (−iην , 1; i ζν) = F (1)

ν (i ζν) + F (2)
ν (i ζν). (34)

Taking into account

[
△rν

2µν
+
ikν · ▽rν

µν
− Vν ]ϕkν

(rν) = 0 (35)

we derive

(E − Trα − Tρα
− V )[eikα·rα+iqα·ρα ϕkα

(rα)ϕkβ
(rβ)ϕkγ

(rγ)]

= O(1/r2α, 1/r
2
β, 1/r

2
γ). (36)

We did not use any approximation to get Eq. 36. Thus the 3C wave function indeed satisfies the Schrödinger equation
in Ω0 up to the terms O(1/r2α, 1/r

2
β , 1/r

2
γ), i. e. after substitution of the 3C wave function into the Schrödinger equation

all the terms of order O(1) and O(1/rα) are exactly compensated. Hence the 3C wave function can be used as a
starting wave function with a proper modifications to look for an asymptotic solution in Ωα. Taking into account
Eq. (34) we can rewrite the 3C wave function as in a form which is suitable for consideration in the Ωα asymptotic
domain:

Ψ
(3C)(+)
kα,qα

(rα,ρα) = eikα·rα eiqα·ρα

× [F
(1)
β (iζβ)F

(1)
γ (iζγ)NαFα(iζα) + F

(2)
β (iζβ)F

(1)
γ (iζγ)NαFα(iζα) (37)

+F
(1)
β (iζβ)F

(2)
γ (iζγ)NαFα(iζα) + F

(2)
β (iζβ)F

(2)
γ (iζγ)NαFα(iζα)].

Here, asymptotically, for |ζν | → ∞, the first term F (1)(ζν) ∼ O(1) and the second term F (2)(ζν) ∼ O(1/ζν). Hence
in the asymptotic domain Ωα F (1)(ζν) and F (2)(ζν), ν = β, γ, can be treated asymptotically while ϕkα

(rα) should
be considered explicitly, because Ωα includes the region, where rα is limited. Moreover, in the asymptotic region
Ωα the relative motion of particles β and γ is distorted by the third particle α due to the long-range Coulomb
interaction. It means that the wave function of the relative motion of particles β and γ in Ωα will be different from
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the wave function eikα·rα NαFα(iζα) describing the relative motion of particles β and γ in the absence of the third
particle. Since interacting particles β and γ can be close to each other in Ωα, their nuclear interaction should also
be taken into account. Following [3] we replace each Nα Fα(iζα) in Eq. (38) by the corresponding unknown function

ϕ
(nm)
α (rα), n,m = 1, 2:

Ψ
(as)(+)
kα,qα

(rα,ρα) = eikα·rα eiqα·ρα

×[F
(1)
β (iζβ)F

(1)
γ (iζγ)ϕ

(11)
α (rα, ρα) + F

(2)
β (iζβ)F

(1)
γ (iζγ)ϕ

(21)
α (rα, ρα)

+F
(1)
β (iζβ)F

(2)
γ (iζγ)ϕ

(12)
α (rα, ρα) + F

(2)
β (iζβ)F

(2)
γ (iζγ)ϕ

(22)
α (rα, ρα)]. (38)

Derivation of ϕ
(nm)
α (rα), n,m = 1, 2 is our final goal. Now we substitute Eq. (38) into the Schrödinger equation

(3). When substituting Eq. (38) into the Schrödinger equation we assume that each term of the sum (38) satisfies
the Schrödinger equation . Moreover, as we will see, each function ϕα(rα, ρα) depends on the preceding functions

F
(n)
β (iζβ)F

(m)
γ (iζγ) where n,m = 1, 2, i.e. for each term in (38) the modification is different. We also take into

account that

(
1

2µν
∆rν + i

1

µν
kν ·∇rν − V C

ν )F (1,2)
ν (iζν) = 0. (39)

Substitution of the first term of Eq. (38) into the Schrödinger equation generates the equation for ϕ
(11)
α (rα):

F
(1)
β (iζβ)F

(1)
γ (iζγ)[

1

2µα
∆rα +

1

2Mα
∆ρα

+ i
1

µα
kα·∇rα + i

1

Mα
qα·∇ρα

+

1

µα

∑

ν=β,γ

∇rα lnF (1)
ν (iζν)·∇rα +

1

Mα

∑

ν=β,γ

∇ρα
lnF (1)

ν (iζν)·∇ρα
− Vα(rα) +

1

µα
∇rα lnF

(1)
β (iζβ)·∇rα lnF (1)

γ (iζγ) +
1

Mα
∇ρα

lnF
(1)
β (iζβ)·∇ρα

lnF (1)
γ (iζγ)]

×ϕ(11)
α (rα, ρα) = 0. (40)

Since particles β and γ are allowed to be close in Ωα their interaction potential is given by the sum of the Coulomb and
nuclear potentials. Now we will simplify this equation by dropping all the terms O(1/ρ3α) and explicitly compensate

all the terms O(1), O(1/ρα), O(1/ρ
2
α). We consider only the nonsingular directions, i. e. k̂ν ·̂rν 6= 1, ν = β, γ. To

analyze the fifth term in the brackets we use equations

F (1)
ν (iζν) = F̃ (1)

ν (iζν)[1 − i
η2ν
ζν

+O(1/ζ2ν )], (41)

F̃ (1)
ν (iζν) = ei ην ln ζν , (42)

∇rα lnF (1)
ν (iζν) = ∇rα ln F̃ (1)

ν (iζν)− i
mν

mβγ

η2ν
kν r2ν

r̂ν − k̂ν

(1− k̂ν · r̂ν)2
+O(1/r3ν), (43)

∇rα ln F̃ (1)
ν (iζν) = ∇rαe

mν
mβγ

ǫν αrα·∇ρα ln F̃ (1)
ν (iζνα)

= ǫν α
mν

mβγ
∇ρα

ln F̃ (1)
ν (iζν α) +

m2
ν

m2
β γ

(rα · ∇ρα
)∇

ρα
ln F̃ (1)

ν (iζν α), (44)

∇ρα
ln F̃ (1)

ν (iζν α) = iην ǫνα
1

ρα

k̂ν − ǫαν ρ̂α

1− ǫαν k̂ν · ρ̂α

+O(
1

ρ2α
), (45)

∇rα [−i
η2ν
ζν

] = i η2ν
mν

mβ γ

1

kν ρ2α

k̂ν − ǫαν ρ̂α

(1− ǫαν k̂ν · ρ̂α)2
+O(

1

ρ3α
). (46)
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To estimate the sixth and the ninth terms we use equations

∇ρα
lnF (1)

ν (iζν) = iην
1

rν
ǫνα

k̂ν − r̂ν

1− k̂ν · r̂ν
+O(

1

r2ν
) (47)

= iην ǫνα
1

ρα

k̂ν − ǫαν ρ̂α

1− ǫαν k̂ν · ρ̂α

+O(
1

ρ2α
). (48)

To estimate the eigth term we use equation

∇rα lnF (1)
ν (iζν) = iην

mν

mβγ

1

rν

k̂ν − r̂ν

1− k̂ν · r̂ν
. (49)

Note that in Ωα radius rα is limited a priori (more strictly, it is allowed to grow but slower than ρα). That is why
we cannot use an asymptotic expansion in terms of 1/ζα in the asymptotic region Ωα. Eqs (44), (45), (46) and (48)
are valid only in Ωα, while Eqs (43), (47) and (49) are valid both in Ω0 and Ωα.
Thus we reduced a three-body problem in the asymptotic domain Ωα to a two-body problem: we need to find a

solution of Eq. (40), which describes the relative motion of particles β and γ in the presence of the third particle
α, which is far away, but it still distorts the relative motion of particles β and γ due to the long-range Coulomb

interaction. This distortion results in the dependence of ϕ
(11)
α (rα, ρα) on ρα. When ρα increases this distortion

should be weakened. Hence, ϕ
(11)
α (rα, ρα) actually depends on 1/ρα and

∇ρα
ϕ(11)
α (rα, ρα) ∼

1

ρ2α
. (50)

Because of that we may drop the second and sixth terms in Eq. (40) and rewrite it in the form

[
1

2µα
∆rα + i

1

µα
kα·∇rα + i

1

Mα
qα·∇ρα

+
1

µα

∑

ν=β,γ

∇rα lnF (1)
ν (iζν)·∇rα

−Vα(rα) +
1

µα
∇rα lnF

(1)
β (iζβ)·∇rα lnF (1)

γ (iζγ)

+
1

Mα
∇ρα

lnF
(1)
β (iζβ)·∇ρα

lnF (1)
γ (iζγ)]ϕ

(11)
α (rα, ρα) = 0. (51)

The last two terms are of O(1/ρ2α). Note that to satisfy this equation up to terms of O(1/ρ3α) all the terms of O(1/ρ2α)
must be compensated. Taking into account Eqs (44) and (46) we can rewrite Eq. (51) as

[
1

2µα
∆rα + i

1

µα
k(11)
α (ρα)·∇rα + i

1

Mα
qα ·∇ρα

+
1

µα

∑

ν=β,γ

m2
ν

m2
β γ

(rα ·∇ρα
) (∇ρα

ln F̃ (1)
ν (iζν α)·∇rα)− Vα(rα)

+(ǫβ α ǫγ α
1

mβ γ
+

1

Mα
)∇ρα

lnF
(1)
β (iζβ α)·∇ρα

lnF (1)
γ (iζγ α)]

×ϕ(11)
α (rα, ρα) = O(1/ρ3α). (52)

We introduced here a new local momentum

k(11)
α = kα − i

∑

ν=β,γ

mν

mβγ
[ ǫν α ∇ρα

ln F̃ (1)
ν (iζν α) + i η2ν

1

kν ρ2α

k̂ν − ǫαν ρ̂α

(1− ǫαν k̂ν · ρ̂α)2
]. (53)

Note that variables ∇rα and ∇ρα
are mixed up only in the fourth term of Eq. (52). We are looking for a solution in

the form

ϕ(11)
α (rα, ρα) = ϕ

(11)
α (0)(rα, ρα) (1 +

χ(ρ̂α)

ρα
) +

ϕ
(11)
α (1)(rα, ρα)

ρ2α
, (54)
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where ϕ
(11)
α (0)(rα, ρα) is a solution of

[
1

2µα
∆rα + i

1

µα
k(11)
α (ρα)·∇rα − Vα(rα)]ϕ

(11)
α (0)(rα, ρα) = 0. (55)

χ(ρ̂α) ∼ O(1) and is a solution of the first order differential equation

i
1

Mα
qα·∇ρα

χ(ρ̂α)

ρα

= −(ǫβ α ǫγ α
1

mβ γ
+

1

Mα
)∇ρα

ln F̃
(1)
β (iζβ α)·∇ρα

ln F̃ (1)
γ (iζγ α). (56)

Finally ϕ
(11)
α (1)(rα, ρα) ∼ O(1) is a solution of the inhomogemeous equation

[
1

2µα
∆rα + i

1

µα
k(11)
α ·∇rα − Vα(rα)]ϕ

(11)
α (1)(rα, ρα) = −i

ρ2α
Mα

qα ·∇ρα
ϕ
(11)
α (0)(rα)

−
ρ2α
µα

∑

ν=β,γ

m2
ν

m2
β γ

(rα ·∇ρα
)∇

ρα
ln F̃ (1)

ν (iζν α)·∇rα ϕ
(11)
α (0)(rα, ρα). (57)

Note that all the equations (55), (56) and (57) are ”two-body” differential equations. On the left hand side they
contain gradients and Laplacians over only one of the variables, rα or ρα. Therefore these equations can easily be
solved numerically.
Now we consider the second term of Eq. (38). It satisfies the equation

F
(2)
β (iζβ)F

(1)
γ (iζγ)[

1

2µα
∆rα +

1

2Mα
∆ρα

+ i
1

µα
kα·∇rα + i

1

Mα
qα·∇ρα

+

1

µα
[∇rα lnF

(2)
β (iζβ) +∇rα lnF (1)

γ (iζγ)]·∇rα

+
1

Mα
[∇ρα

lnF
(2)
β (iζβ) +∇ρα

lnF (1)
γ (iζγ)]·∇ρα

− Vα(rα) +

1

µα
∇rα lnF

(2)
β (iζβ)·∇rα lnF (1)

γ (iζγ) +
1

Mα
∇ρα

lnF
(2)
β (iζβ)·∇ρα

lnF (1)
γ (iζγ)]

×ϕ(21)
α (rα, ρα) = O(1/ρ3α). (58)

Here, in the nonsingular directions (k̂ν · r̂ν 6= 1, ν 6= α)

F (2)
ν (iζν)

ζν→∞
= ην

Γ(1 + i ην)

Γ(1− i ην)

e−i ην ln ζν

ζν
ei ζν [1 +O(

1

ζν
)]. (59)

Also, in the nonsingular directions for ν 6= α

∇rα ln F (2)
ν (i ζν) = i∇rα ζν +O(1/rν) = i

mν

mβ γ
kν(k̂ν − r̂ν) +O(1/rν) (60)

= i
mν

mβ γ
kν (k̂ν − ǫαν ρ̂α) +O(1/ρα) (61)

and

∇ρα
lnF (2)

ν (iζν) = i∇ρα
ζν +O(1/rν) = iǫνα(−kν r̂ν + kν) +O(1/rν) (62)

= i kν (ρ̂α − ǫαν k̂ν) +O(1/ρα). (63)

When deriving (58) we took into account that

(
1

2µν
∆rν + i

1

µν
kν ·∇rν − V C

ν )F (2)
ν (iζν) = 0. (64)

To get an asymptotic equation from Eq. (58) which is valid up to O(1/ρ3α), all the coefficients of O(1), O(1/ρα)
and O(1/ρ2α) should be kept in the left-hand-side of the equation. Since in the nonsingular directions in Ωα region,
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F
(2)
β (iζβ) ∼ O(1/ρα) only coefficients of O(1) and O(1/ρα) in the brackets of Eq. (58) should be left. Taking into

account Eqs (44), (61) and (63) we get

[
1

2µα
∆rα + i

1

µα
k(21)
α (ρα)·∇rα − Vα(rα)

+i
1

µα

m2
β

m2
β γ

kβ
1

ρα
(rα − ρ̂α (ρ̂α·rα))·∇rα + i

1

Mα
q(21)
α ·∇ρα

(65)

−i ǫαβ
1

mα
kβ (k̂β − ǫαβ ρ̂α) ·∇ρα

ln F̃ (1)
γ (iζγ α)]ϕ

(21)
α (rα, ρα) = O(1/ρ2α).

Here ∇ρα
ln F̃

(1)
γ (iζγ α) is given by Eq. (45). We also introduced new local momenta

k(21)
α (ρα) = kα +

mβ

mβ γ
kβ (k̂β − ǫαβ ρ̂α) + i (i ηβ + 1)

mβ

mβ γ

1

ρα

k̂β − ǫαβρ̂α

1− ǫαβk̂β · ρ̂α

, (66)

and

q(21)
α (ρα) = qα + kβ (ρ̂α − ǫαβ k̂β). (67)

We also took into account that for ν 6= σ 6= τ, ν 6= τ , ǫν τ , ǫν σ = −1, and

−ǫαγ
1

mβ γ
(k̂β − ǫαβ ρ̂α) +

1

Mα
(ρ̂α − ǫαβk̂β) = −ǫαβ

1

mα
(k̂β − ǫαβ ρ̂α). (68)

We are looking for a solution of Eq. (66) in the form

ϕ(21)
α (rα,ρα) = ϕ

(21)
α (0)(rα,ρα) +

ϕ
(21)
α (1)(rα, ρα)

ρα
, (69)

where ϕ
(21)
α (0)(rα, ρα) satisfies

[
1

2µα
∆rα + i

1

µα
k(21)
α (ρα)·∇rα − Vα(rα)]ϕ

(21)
α (0)(rα, ρα) = 0. (70)

Finally ϕ
(21)
α (1)(rα, ρα) ∼ O(1) is a solution of equation

[
1

2µα
∆rα + i

1

µα
k(21)
α (ρα)·∇rα − Vα(rα)]ϕ

(21)
α (1)(rα, ρα)

= −[i
1

µα

m2
β

m2
β γ

kβ (rα − ρ̂α (ρ̂α·rα))·∇rα ]ϕ
(21)
α (0)(rα, ρα)

−i
ρα
Mα

q(21)
α ·∇ρα

ϕ
(21)
α (0)(rα, ρα)

+i ǫαβ
ρα
mα

kβ (k̂β − ǫαβ ρ̂α) ·∇ρα
ln F̃ (1)

γ (iζγ α)ϕ
(21)
α (0)(rα, ρα). (71)

Since in Eq. (71) we keep only terms of order O(1/ρα) local momentum k
(21)
α (ρα) can be replaced by

k
(21)
α(0)(ρα) = kα +

mβ

mβ γ
kβ (k̂β − ǫαβ ρ̂α). (72)

A formal solution of Eq. (71) is

ϕ
(21)
α (1)(rα, ρα) = ϕ

(21)
α (0)(rα, ρα) + e−k(21)

α (ρα)·rα

∫
d r′αG(rα, r

′
α) e

k(21)
α (ρα)·r

′

α

[−[i
1

µα

m2
β

m2
β γ

kβ (r
′

α − ρ̂α (ρ̂α·r
′

α))·∇rα ]ϕ
(21)
α (0)(r

′

α, ρα)

−i
1

Mα
q(21)
α (ρα) ·∇ρα

ϕ
(11)
α (0)(r

′

α)

−i ǫαβ
1

mα
kβ (k̂β − ǫαβ ρ̂α) ·∇ρα

ln F̃ (1)
γ (iζ

′

γ α)ϕ
(21)
α (0)(r

′

α, ρα)], (73)
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Here ϕ
(21)
α (0)(rα, ρα) is a solution of the homogeneous Eq. (70).

The third equation for ϕ
(12)
α (rα, ρα) is obtained by substituting the third term in (38) to (3). Following the same

steps, which we used to derive the second equation, or just interchanging β ↔ γ in (58) we find ϕ
(12)
α (rα, ρα) in the

following form:

ϕ(12)
α (rα,ρα) = ϕ

(12)
α (0)(rα,ρα) +

ϕ
(12)
α (1)(rα, ρα)

ρα
, (74)

where ϕ
(12)
α (0)(rα, ρα) is a solution of

[
1

2µα
∆rα + i

1

µα
k(12)
α (ρα)·∇rα − Vα(rα)]ϕ

(12)
α (0)(rα, ρα) = 0. (75)

We can derive a similar to Eq. (71) equation for ϕ
(12)
α (1)(rα, ρα) which has a formal solution

ϕ
(12)
α (1)(rα, ρα) = ϕ

(12)
α (0)(rα, ρα) + e−k

(21)
α (ρα)·rα

∫
d r′αG(rα, r

′
α) e

k
(12)
α (ρα)·r

′

α

[−[i
1

µα

m2
β

m2
β γ

kβ (r
′

α − ρ̂α (ρ̂α·r
′

α))·∇rα ]ϕ
(12)
α (0)(r

′

α, ρα)

−i
1

Mα
q(12)
α (ρα) ·∇ρα

ϕ
(11)
α (0)(r

′

α)

−i ǫαβ
1

mα
kβ (k̂β − ǫαβ ρ̂α) ·∇ρα

ln F̃ (1)
γ (iζ

′

γ α)ϕ
(12)
α (0)(r

′

α, ρα)]. (76)

The fourth equation can be derived after substituting the last term of Eq. (38) into Eq.(3) and it is automatically

satisfied up to the terms of order O(1/ρα
3) in Ωα because the product F

(2)
β (iζβ)F

(1)
γ (iζγ) = O(1/ρα

2). The fourth

term in Eq. (38) leads to an equation for ϕ
(22)
α (rα, ρα):

F
(2)
β (iζβ)F

(2)
γ (iζγ)[

1

2µα
∆rα +

1

2Mα
∆ρα

+ i
1

µα
kα·∇rα + i

1

Mα
qα·∇ρα

+
1

µα
[∇rα lnF

(2)
β (iζβ) +∇rα lnF (2)

γ (iζγ)]·∇rα

+
1

Mα
[∇ρα

lnF
(2)
β (iζβ) +∇ρα

lnF (2)
γ (iζγ)]·∇ρα

−Vα(rα) +
1

µα
∇rα lnF

(2)
β (iζβ)·∇rα lnF (2)

γ (iζγ) (77)

+
1

Mα
∇ρα

lnF
(2)
β (iζβ)·∇ρα

lnF (2)
γ (iζγ)]× ϕ(22)

α (rα,ρα) = O(1/ρ3α).

Using the same arguments we have used before, we may drop all the terms containing derivatives over ρα when looking

for a solution in leading order. Then the equation for ϕ
(22)
α reduces to

[
1

2µα
∆rα + i

1

µα
k(22)
α (ρα)·∇rα − Vα(rα)]ϕ

(22)
α (rα, ρα) = 0, (78)

with a local momentum

k(22)
α (ρα) = kα +

∑

ν=β,γ

mν

mβ γ
kν (k̂ν − ǫαν ρ̂α). (79)

If Vα is a pure Coulomb potential, Vα = V C
α , then Eqs (55), (70), (75), (78) have the following solution

ϕ(ij)
α (rα, ρα) = N (ij)

α (ρα)F (−iη
(ij)
α (ρα), 1; iζ

(ij)(ρα)), (80)

Here, i = 1, 2; j = 1, 2 and N
(ij)
α (ρα) is defined as

N (ij)
α (ρα) = e−πη(ij)

α (ρα)/2Γ(1 + iη(ij)α (ρα)), (81)
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where η
(ij)
α (ρα) =

zβzγ e2µα

k
(ij)
α (ρα)

, and ζ(ij)(ρα) = k
(ij)
α (ρα)rα − k

(ij)
α (ρα) · rα.

If Vα is not a pure Coulomb potential, then the differential equations above, which parametrically depend on ρα,
should be solved numerically. Since all equations are of the two-body type, numerical methods are well developed
and have been in use for a long time. They can be applied to solve the differential equations above as well. All the
solutions found this way are valid in all directions of the asymptotic region Ωα except for singular directions.

Thus, returning to Eq. (38) we can claim that, having derived all four wave functions ϕ
(ij)
α (1)(rα, ρα), i, j = 1, 2, we

know the asymptotic behavior of the three-body incident wave of the scattering wave function of the first type in the
asymptotic region Ωα up to terms O(1/ρ3α).

V. GENERALIZED ASYMPTOTIC SCATTERING WAVE FUNCTION VALID IN ALL REGIONS

Ων , ν = α, β, γ

Now we are in position to present a generalized asymptotic scattering wave function which satisfies the Schrödinger
equation up to second order and which is valid in all the asymptotic regions:

Ψ
(αβγ)(+)
kαqα

(rα,ρα) ≡ eikα·rα+iqα·ραϕ
k̃α

(rα)ϕk̃β
(rβ)ϕk̃γ

(rγ). (82)

After substituting (82) into (3) and dropping the higher order terms we get,

{E − Trα − T~ρα
− V }[eikα·~rα+iqα·ραϕ

k̃α
(rα)ϕk̃β

(rβ)ϕk̃γ
(rγ)]

= eikα·rα+iqα·ραϕ
k̃α

(rα)ϕk̃γ
(rγ)[

△rα

2µα
+
ik̃α · ▽rα

µα
− Vα]ϕk̃α

(rα) (83)

+eikβ·rβ+iqβ ·ρβϕ
k̃α

(rα)ϕk̃γ
(rγ)[

△rβ

2µβ
+
ik̃β · ▽rβ

µβ
− Vβ ]ϕk̃β

(rβ)

+eikγ ·rγ+iqγ ·ργϕ
k̃α

(rα)ϕk̃β
(rβ)[

△rγ

2µγ
+
ik̃γ · ▽rγ

µγ
− Vγ ]ϕk̃γ

(rγ)

=





O( 1
r2α
, 1
r2
β

, 1
r2γ
), rα, rβ , rγ ∈ Ω0

O( 1
r2
β

, 1
r2γ
), rβ , rγ ∈ Ωα

O( 1
r2α
, 1
r2γ
), rα, rγ ∈ Ωβ

O( 1
r2α
, 1
r2
β

), rα, rβ ∈ Ωγ

, (84)

where the local momentum is given by

k̃ν = kν − i
∑

τ=α,β,γ

(1− δν,τ )▽rν lnϕ
k̃τ
. (85)

In the asymptotic region Ω0, each local momentum, k̃ν , can be replaced by the corresponding asymptotic momentum,
kν . In the asymptotic region Ωα, Eq.(84) reduces to the one quasi-two-particle differential equations:

[
△rα

2µα
+
ik̃α · ▽rα

µα
− Vα]ϕk̃α

(rα) = O(
1

rβ
,
1

rγ
). (86)

Solution of this equation is evident and provides the Coulomb-nuclear scatttering wave function with the local mo-

mentum k̃α. Similarly we can get the asymptotic solution in leading order in the other two asymptotic regions Ωβ

and Ωγ .

VI. CONCLUSION

We derived the three-body asymptotic incident wave, which satisfies the Schrödinger equation in the asymptotic
region Ων , ν = α, β, γ up to terms of order 1/ρ3ν. This asymptotic incident wave gives the leading asymptotic terms
of the three-body scattering wave function of the first type and is an extention of the asymptotic wave function derived
in [2, 3]. Equivalently, similar wave functions satisfy the Schrödinger equation up to O(1/ρ3ν), ν = β, γ. It is worth
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mentioning that the asymptotic solution satisfying the Schrödinger equation , in the asymptotic region Ων up to the
O(1/ρ2ν) can be found analytically [2, 3]. To find an asymptotic solution satisfying the Schrödinger equation in Ων

up to terms of O(1/ρ3ν) we need to solve two-body type differential equations numerically. The next order term in
the asymptotic three-body scattering wave function represents the outgoing 3 particles→ 3 particles scattered wave
and has been given in [7].
The resulting asymptotic solution provides extended boundary conditions in all the asymptotic regions and can be

used in the direct numerical solution of the Schrödinger equation or in approximate perturbation calculations as a
leading asymptotic term of the three-body scattering wave function.
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