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ABSTRACT

One of the most commonly used methods for quantifying fluid velocity profiles is particle

image velocimetry (PIV). This non-invasive measurement technique employs seeding particles in

a transparent simulant fluid flowing through a geometry of interest at Reynolds number (Re) in

the regime of what is expected during operation. A laser sheet is projected through the fluid to

illuminate the particles, and two subsequent photographs of the particle-seeded fluid are taken

with a ∆t recorded between the two images. Displacement of the particles from one image to the

other, δi, which is calculated using a generalized cross correlation, along with the known ∆t, are

used to determine a velocity of a fluid element in the laser plane. Efforts to expand this planar

two-dimension two-component (2D2C) method to a volumetric three-dimension three-component

(3D3C) PIV have been pursued, which require large computational resources for processing. This

study aimed to quantify a 3D3C velocity measurement in a prototypical pressurized water reactor

(PWR) geometry of rods with a mixing vane spacer grid.

A new matched-index-of-refraction (MIR) facility for rod bundle and spacer grid testing was

developed and constructed within the Thermal-Hydraulics Laboratory of the Nuclear Engineering

Department at Texas A&M University (TAMU). The facility was designed to overcome the chal-

lenge of producing high fidelity and low uncertainty data, especially near the mixing vanes, where

data is sparsely available. This investigation explores an innovation in MIR fluid and presents

results for a full field 3D3C velocity measurement at Re=27,390. The full field measurements

are constructed via trilinear interpolation from multiple 2D2C PIV measurements. These 3D3C

ensemble-averaged velocity, root-mean-square (RMS) fluctuating velocity, Reynolds stresses, and

vorticity fields are presented downstream of a prototypical PWR spacer grid in a 5×5 rod bundle.

A full field uncertainty quantification (UQ) of the results is also provided. Profiles taken at different

subchannel positions having similar geometrical features are compared to demonstrate coherence

of the results and quality of the MIR for improved PIV. New data of the complex flow near and

within the mixing vanes region of the spacer grid could be measured with the new methodology.
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NOMENCLATURE

A cross sectional flow area

C12 cross correlation between images 1 and 2 in a frame

DH hydraulic diameter

Eval PRANA vectory validation variable

I measured intensity of tracer particle reflectance

L characteristic length

M magnification factor

P kinematic pressure

Pw wetted perimeter

Rφ statistical residual for an arbitrary variable’s mean, φ

Re Reynolds number

T temperature

Xi digital position coordinate

δi component-wise displacement between a image pair

λ wavelength of electromagnetic radiation

F {φ} Fourier transform of an arbitrary variable, φ

µ fluid viscosity

ν kinematic viscosity

ρ fluid density

σφ statistical standard deviation for an arbitraty variable, φ

n refractive index

nD refractive index at the Fraunhofer “D” sodium emmission near 589 nm wavelength

p rod pitch length

tL largest scale eddy turnover time

tp response time of a particle in fluid flow

v



u, v, w velocity vector

ui shorthand velocity vector

x, y, z Cartesian coordinates

xi shorthand Cartesian coordinates

2D2C two-dimension two-component

2D3C two-dimension three-component

3D2C three-dimension two-component

3D3C three-dimension three-component

CASL Consortium for Advanced Simulation of Light Water Reactors

CCD charge-coupled device

CFD computational fluid dynamics

CW clockwise

DAS data acquisition system

DNS direct numerical simulation

DOE U.S. Department of Energy

DWO Discrete Window Offset

EPDM ethylene propylene diene terpolymer

FEP fluorinated ethylene propylene

FOV field of view

KAERI Korea Atomic Energy Research Institute

LDV laser Doppler velocimetry

LES large-eddy simulation

MIR matched-index-of-refraction

NIST the National Institute of Standards and Technology

NPSH net positive suction head

NPT national pipe thread

NS Navier-Stokes
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OD outer diameter

PIV particle image velocimetry

PMMA poly(methyl methacrylate)

PVC polyvinyl chloride

PWR pressurized water reactor

RANS Reynolds-averaged Navier-Stokes

RMS root-mean-square

ROI region of interest

RPC robust phase correlation

RTD resistance temperature detector

SPIV stereoscopic particle image velocimetry

SS stainless steel

TAMU Texas A&M University

UOD universal outlier detection

UQ uncertainty quantification

V&V verification and validation

VFD variable frequency drive
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1. INTRODUCTION

Nuclear reactors are commonly used in commercial electrical power generation stations. One

of the most prevalent electricity generating nuclear reactors is the pressurized water reactor (PWR).

Within a PWR core, fission is used to generate heat in fuel rods, which is transferred to high

pressure water in the primary coolant loop. This high pressure coolant is then used as the heat

source in a steam generator to boil water in the secondary loop, which is used to spin a turbine

connected to an electric generator. Spacer grids, like the one shown in Figure 1.1, are an important

part of fuel rod assemblies in PWRs. They improve mechanical strength, reduce vibration, and

ensure rod pitch length (p) spacing. Mixing vanes, which can be clearly seen extending from the

top of a grid in Figure 1.1, are added to the downstream end of spacer grids in order to increase

turbulent mixing within subchannels. This mixing improves thermal hydraulic performance of

fuel rod assemblies and increases the convective heat transfer to the primary coolant. For these

reasons, spacers grids with mixing vanes have been studied extensively using numerical, mostly

computational fluid dynamics (CFD), and experimental methodologies [7, 9, 1, 10, 11, 12, 13].

Figure 1.1: Computer rendering of 5×5 spacer grid.
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1.1 Motivation, Verification, and Validation

With the fast increase of computational power over the past decade, CFD studies have shifted

to more advanced models of turbulent flow characteristics such as large-eddy simulation (LES) and

even direct numerical simulation (DNS), that has led to the possibility of in-depth understanding

of small scale localized phenomena [14].

These highly spatially resolved numerical data sets need to go through a process of verification

and validation (V&V) [15] to be confidently used in a decision making process. For the validation

process, equally resolved experimental data that provide high level of information is required [16,

17]. A well quantified and low relative uncertainty is also crucial for proper interpretation of

V&V results, as it might hinder the ability to assess the quality of the selected model [18]. Proper

information on spatial position of the measurements and its uncertainty is also crucial as this is a

problematic aspect in comparisons of numerical and experimental data sets [17].

One of the leading experimental techniques for obtaining detailed measurement of the flow

field with theoretically low uncertainty in rod bundles is the use of non invasive PIV in a MIR

flow loop [1, 3, 19, 20, 21]. These laser-based techniques present some notable advantages over

previously used experimental methods for velocity measurement such as hot-wire anemometry.

Specifically, changes to geometry and disturbances to flow characteristics can be avoided, so long

as suitable seeding particles are used.

1.2 Theory and Governing Equations

For notational convenience purposes in this dissertation, Cartesian coordinates (x, y, z) are

written as xi, and the velocity vector (u, v, w) is rewritten as ui.

For homogeneous incompressible flows where fluid density (ρ) is constant, the mass conserva-

tion equation is used to describe the flow of a fluid element in xi space. Often called the continuity

equation [22], it can be written as

∂ui
∂xi

= 0. (1.1)
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Assuming no external forces, the Navier-Stokes (NS) equation for all xi, which describes the

conservation of momentum, are given as

∂ui
∂t

+ uj
∂ui
∂xj

= −∂P
∂xi

+ ν
∂2ui
∂x2

j

, (1.2)

where ρ and fluid viscosity (µ) are combined as µ/ρ which is kinematic viscosity (ν). Absolute

fluid pressure is similarly combined with ρ as kinematic pressure (P ). Equations 1.1 and 1.2 define

a closed problem with four unknowns: u, v, w, and P .

In increasingly turbulent systems, the fluctuating component of velocity increases, increasing

computational demand. To simplify the problem, the spatial velocity vector, ui, is split into its

mean component and temporal fluctuation, which is called Reynolds decomposition, given by

ui (xi, t) = ui (xi) + u′i (xi, t) . (1.3)

Where ui (xi) is the average of each velocity component over a sufficient time period to ensure

statistically stationary flow as

ui (xi) = lim
T→∞

1

T

∫ t0+T

t0

ui (xi, t) dt. (1.4)

One important property of this averaging is that the mean of the fluctuating quantity is equal to

zero
(
u′i = 0

)
. Applying this time averaging to the continuity equation (1.1), results in

∂ui
∂xi

= 0, (1.5)

and applied to the NS equation (1.2) gives

uj
∂ui
∂xj

+
∂u′iu

′
j

∂xj
= −∂P

∂xi
+ ν

∂2ui
∂x2

j

, (1.6)

in which the time derivative has been averaged to zero and a new variable has been introduced
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which must either be calculated, or modeled. This term, u′iu′j , is the Reynolds stress and is highly

dependent on the type of flow being characterized. This additional term presents an issue in clos-

ing the system of equations defined by Equations 1.5 and 1.6. There are 6 additional variables to

be determined, and each individually fluctuating component cannot be simply calculated. To mit-

igate this, closure models are often implemented, in which each individual component of u′iu′j is

determined algebraically or empirically. Further description of Reynolds-averaged Navier-Stokes

(RANS) closure models is beyond the scope of this dissertation, and the reader is directed to works

such as Pope [22] for further information.

Due to properties of the Reynolds average, the fluctuating component cannot simply be mea-

sured repeatedly and averaged, as would be done for the mean velocity components. This requires

the RMS of the velocity component to be used in it’s stead, which is defined as

ui,RMS =

√√√√ 1

N

N∑
n=1

(ui,n − ui)2. (1.7)

This amounts to the standard deviation of the velocity measurements, and provides a meaningful

measure of the fluctuating component, as well as velocity error.

Lastly, for eddy scale analysis which can aid in ultra-high-resolution CFD filter size quantifica-

tion, vorticity of the velocity field should be quantified. This pseudovector quantity describes local

spinning motion of fluid via the following relationship:

ωi = ∇× ui =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
× (u, v, w) (1.8)

=

(
∂w

∂y
− ∂v

∂z
,

∂u

∂z
− ∂w

∂x
,

∂v

∂x
− ∂u

∂y

)
. (1.9)

Because this quantity is not explicitly transported in current CFD, an evolution equation for ωi

is not required. This pseudovector does not represent a physical quantity which can be directly

measured, but provides a convenient and elegant manner for displaying results. Further reading

can again be found in Pope [22], as well as Majda & Bertozzi [23].
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1.3 Previous Work & Literature Review

As stated, a number of previous studies on prototypical PWR mixing vane spacer grids have

been conducted. At the Thermal-Hydraulics Laboratory of the Nuclear Engineering Department at

TAMU, a 5×5 rod bundle was previously constructed using FEP tubes filled with water. A study of

2D2C PIV was conducted by Dominguez and Hassan [1] with good results which are summarized

in Figure 1.2. This experiment demonstrated the usefulness of 2D2C measurements in an axial

orientation for forced flow in the presented geometry.

Figure 1.2: 2D2C PIV results for an FEP MIR constructed 5×5 rod bundle performed at TAMU
[1, 2]. Reprinted with permission from Conner et al [2].
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A two-dimension three-component (2D3C) study was later conducted within the same test

section at TAMU [3, 4] as is shown in Figure 1.3. Quantitative analysis of this data was extensive,

however images and data close to the mixing vane were difficult to collect, due to construction and

materials limitations presented by the mock fuel bundle. As well, use of FEP tubes presented a

unnecessary contributor to uncertainty, as the rod geometry was relatively soft and experienced a

tendency to move with flow induced vibrations. Image collection through multiple layers of rods

was also difficult to achieve, as light transmission through the rod walls was relatively low when

compared to the working fluid.

(a) u (b) v (c) w

Figure 1.3: Mean velocity component results using SPIV for an FEP MIR constructed 5×5 rod
bundle performed at TAMU [3, 4]. Reprinted from Childs et al [4].

In order to make measurements on prototypical PWR rod bundles, a number of PIV studies

was performed by Holloway, McClusky, and others within the Department of Mechanical Engi-

neering at Clemson University [5, 6, 10]. This rod bundle was constructed without the use of MIR

materials. This was a novel measurement which made use of photon interactions properties in the

fact that refracted light was kept in plane by only making measurements with axial-slicing planes.

A velocity field from one of these measurements is portrayed in Figure 1.4.
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Figure 1.4: Transverse velocity results from PIV studies on prototypical rod bundles using axial
cross section laser planes [5, 6]. Reprinted with permission from Conner et al [2].

The PIV measurements made at Clemson were limited to single subchannels due to use of a

borescope. This required numerous measurements to be taken in order to quantify flow throughout

the full geometry. As such, measurements were made out to maximum of 4.2DH downstream of the

mixing vane. These measurements were used largely for calculations in heat transfer alterations,

and were not specifically for velocity quantification. As such, they were effective for their purpose,

but were not the highest resolution data which has been presented in a 5×5 rod geometry.

One of the current highest resolution datasets which exists for a 5×5 rod bundle is included in

the benchmark test for CFD [8]. This data, which is shown in part in Figure 1.5, was collected

using laser Doppler velocimetry (LDV) on a 2.6× scaled rod geometry.

Due to the measurement type selected, velocity vectors were collected at a minimum of 1.0DH

from tips of mixing vanes. This presents a volume of data within the ROI of the mixing vane’s

effects, which was yet not studied. As well, the 2.6× scaling of the geometry permitted for fairly

large subchannels which may not represent relative scales for vorticity and turbulent structures that
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Figure 1.5: KAERI benchmark - high fidelity data within 2.6× oversized subchannels [7, 8].
Reprinted with permission from Chang et al [7].

exist in a prototypical PWR. geometry.

In order to study this near-vane region in a prototypical geometry, a new rod bundle and flow

loop construction was proposed for the use of a new MIR combination. This new construction,

which is has been extensively studied and is partly described in this dissertation, permits high

resolution, and high fidelity data near and even within the mixing vane region. An improved MIR

combination and relatively high test section optical clarity may permit recognized planar 2D2C and

2D3C measurements in any x-, y-, or z-normal direction. A detailed uncertainty quantification of

each planar measurement may reveal areas for improvement of the measurement in the particular

geometry. It has been proposed that a number of measurement planes also presents a method for

combining multiple PIV planes in order to generate a three-dimension three-component (3D3C)

full field velocity measurement.
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2. PROJECT SCOPE

Research project requirements and specifications were outlined based on previous works’ lit-

erature review. Test specifications were constrained by a turbulent flow condition regime, and full

field velocity measurements. Objectives are provided in the following section, along with their

associated requirements, and specifications.

2.1 Objectives

Primary objectives of the research described in this dissertation were three fold:

1. Determine a new MIR combination for PIV measurements to improve on limitations of cur-

rent state-of-the-art materials.

2. Design, procure, and construct a generalized-test section, isothermal experimental flow loop

facility making use of the new MIR combination.

3. Collect full field velocity measurements to characterize fluid flow in a experimental 5×5-

mock fuel assembly with prototypical mixing vane spacer grids in a fully turbulent flow

regime.

2.2 Requirements & Specifications

Requirements for the project were defined as what the experimental flow loop must do. Spec-

ifications were defined as how the requirements would be met. Table 2.1 provides the primary

requirements of the experimental facility, which were comparable to previous flow loops as had

been constructed at the Thermal-Hydraulics Laboratory of the Nuclear Engineering Department at

TAMU.
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Table 2.1: Requirements and Specifications for the MIR, isothermal flow loop.

Requirement Specification
Velocity measurements in edge, corner, and
interior subchannels shall be possible in or-
der to facilitate a full field reconstruction.

Edge, corner, and interior subchannel mea-
surements will be made possible via MIR
materials selection and a fully transparent,
minimum intrusion test section.

The Reynolds number shall constitute a fully
turbulent flow regime.

The selection of full-port valves, large piping
and hosing, low fluid viscosity, and appropri-
ate pump sizing with sufficient net positive
suction head (NPSH) will ensure Reynolds
number (Re) of at least 14,000 and beyond
30,000.

Fluid flow shall be volumetrically rate mea-
sured and controlled.

Flow rate will be driven with a centrifu-
gal pump controlled by a variable frequency
drive (VFD), and measured via a high preci-
sion flow meter.

The flow loop shall be temperature measured
and controlled to ensure isothermal opera-
tion.

Temperature will be measured with a digital
sensor, and controlled by a secondary water
loop scaled to the selected pump.

Flow-induced vibrations shall be minimized
in the fuel assembly and support structure.

Rubber isolation pads, flexible hosing, and
metal framing will be utilized where appro-
priate to dampen vibrations in the test section
and instrumentation.

The flow loop shall be protected from over-
pressurization to prevent test section, or pip-
ing failure.

Overpressure protection will be provided via
a semi-closed loop construction, which shall
always be open to atmospheric pressure.

All temperature, pressure, and flow rate mea-
surements shall be made such repeatability is
possible.

A data acquisition system (DAS) will be
used to record simultaneous measurements
of temperature, pressure, and flow rate.

Sufficient length shall be provided to ensure
fully developed flow, and quantify inlet con-
ditions for the ROI in the test section.

A fully transparent channel will be utilized
for the test section to ensure measurement
capability upstream of the ROI, which is
to be no less than prototypical distance for
PWR spacer grids.
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3. FACILITY DESCRIPTION

Prior to construction of the experimental facility, a detailed design of the visualization test

section, as well as the flow loop required to achieve the desired experimental conditions was con-

ducted. The following sections describe the selection process of materials for MIR, as well as

construction of the flow loop.

3.1 Matched Index of Refraction Materials

Several MIR facilities have been build over the past years to study rod bundles [3, 20, 24, 25].

Many material combinations of MIR fluids and rods have been studied with each combination ex-

hibiting strengths and weaknesses in different experimental parameters. In order to provide better

PIV measurements in a PWR prototypical 5×5 rod bundle, an extensive study of new MIR com-

binations was conducted and a new pair has been determined to provide better light transmission

and closer MIR. Table 3.1 presents a list of common MIR combinations used for rod bundles along

with their refractive indexes and known limitations. The last row of the table presents the new

combination of materials used in experiments for the presented research dissertation.

The used fluid is the organic solvent D-limonene and for the transparent rods, borosilicate glass.

As shown in Table 3.1 the refractive index at the Fraunhofer “D” sodium emmission near 589 nm

wavelength (nD) of the materials match to the fourth decimal at ambient temperature. This new

combination shares the rigidity of quartz rods without the trade-off of a fluid with high viscosity.

In fact, D-limonene has both density (1.18 ratio) and viscosity (1.05 ratio) comparable to water,

which makes working with the fluid and obtaining data at considerably high Re simpler. These

characteristics make the new material combination one of the most promising for MIR experiments

in rod bundles yet. An example of the MIR combination can be seen in Figure 3.1.

The observed MIR as shown in the Figure 3.1 represents a good qualitative example of the use

of D-limonene with borosilicate glass. To determine a best working condition for the fluid and

rod MIR, a short study of the refractive index (n) of the MIR materials was conducted. From the
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Table 3.1: Summary of fluids and potential rod materials at 22.2◦C.

Fluid Rod material Fluid / Rod (nD) Limitations
Water FEP [3, 24] 1.333 / 1.350

(∆nD = 0.017)
[26, 27]

FEP tubes are flexible and
easily deformed. Rela-
tively low transmission of
light.

Mineral oil Quartz [20] 1.4585 / 1.4584
(∆nD = 0.0001)
[28, 29]

Oil has a high viscosity
compared to water. Quartz
is difficult to machine.

p-Cymene PMMA [25] 1.4908 / 1.4912
(∆nD = 0.0004)
[30]

PMMA index of refraction
changes under stress and
heat. Porosity leads to
decay of transparency and
stress crazing under degra-
dation from p-Cymene.

D-Limonene Borosilicate glass 1.4726 / 1.4727
(∆nD = 0.0001)
[31, 32]

Difficult to machine glass.

Figure 3.1: Borosilicate glass tube submerged in a non-mixed combination of D-limonene and
water. Lack of light ray refraction can be observed via the horizontal lines on the glass container,
which are partially behind the submerged tube.

National Institute of Standards and Technology (NIST), a functional form of the refractive index of

the working fluid, D-limonene, as a function of T and transmitted λ was determined. The resulting

values for n are shown in Figure 3.2. The frequently cited measurement for nD, is highlighted.
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A difference of n can be seen from this wavelength and that of the laser used in experimentation,

which is highlighted by the green line at 532 nm.

Figure 3.2: Refractive index of D-limonene as a function of transmitted light λ and fluid T .

Using data from Corning Inc., the approximate refractive index for borosilicate glass was cal-

culated over the same combined domain of transmitted light wavelength and temperature (λ, T ).

Resultant values for refractive index as shown in Figure 3.3. Due to the nature of borosilicate

glass, the refractive index is much less sensitive to temperature than it is to photon λ. The 532 nm

wavelength of the laser used in experimentation is once again highlighted.

Differences in n of the two materials was then calculated over the Tλ domain. Resulting dif-

ferences is shown in Figure 3.4. To maintain a minimum difference of refractive index, the fluid

working temperature was determined to be somewhere in the range of 22–26◦C. Unfortunately, the

data for borosilicate glass refractive index is fairly sparse, and exact content-formulas of glass con-
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Figure 3.3: Refractive index of borosilicate glass as a function of transmitted light λ and medium
T .

stituent materials is not well published, so this range was only an estimate, and exact temperatures

had to be determined qualitatively during experimentation.

3.2 Fluid Considerations

Due to the use of the new fluid for MIR studies, a number of compatibility tests were required

to ensure wetted materials’ longevity and functionality while immersed in D-limonene. These test

were similar in nature, although significantly less extensive, to a number of chemical consider-

ation tests which were made during the study of PMMA-constructed wire-wrapped rod bundles

immersed in p-cymene, which was also conducted at the Thermal-Hydraulics Laboratory of the

Nuclear Engineering Department at TAMU [33]. As was observed during the procurement of test

quantities of D-limonene, plastic is commonly used for packaging. Plastics, however, experience

adverse reactions when exposed to D-limonene for extended periods of time. Occasionally, D-

limonene may permeate the walls of plastic packaging bottles and cause labeling to fall off, as it is
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Figure 3.4: Difference of refractive indexes of borosilicate glass and D-limonene as a function of
transmitted light λ and medium T .

an effective solvent for most adhesive compounds.

To determine suitability of experimental facility materials, chemical compatibility of D-limonene

was performed with borosilicate glass and glued polycarbonate in order to examine the behavior of

test section materials (Section 3.3) in the presence of the simulant fluid. Chemical immersion test-

ing was also performed with polyvinyl chloride (PVC), as well as buna-N, which were the selected

materials for the flow loop construction (Section 3.5).

Affects of D-limonene to the surfaces of borosilicate glass were observed to be negligible. No

change to the matching of refractive index of the fluid and borosilicate glass tubes was quantifiable,

even after multiple days of immersion. Similar results were observed with small sections of glued

polycarbonate sheets. As well, the methyl acrylate adhesive for the polycarbonate test pieces

appeared to maintain strength if the suggested curing time was observed. As such, the test section

materials were determined to be sufficiently compatible with the simulant fluid.
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PVC and buna-N, which were selected for loop construction and joint sealing, respectively,

are listed as “fair” in the context of chemical compatibility with D-limonene. With this in mind,

the materials were immersed in D-limonene for a number of days to determine their resistance

to chemical degradation. After the test, no difference was observed from the samples, and the

materials were deemed sufficiently compatible for use in construction of the flow loop.

Unfortunately, many of the PVC valves and tank fittings which were used in the construction of

the loop were improperly determined to have buna-N seals, and were instead fitted with ethylene

propylene diene terpolymer (EPDM). This material was not tested for chemical compatibility, and

is not recommended for use in D-limonene applications. As such, a large volume of D-limonene

was lost due to the failure of a tank fitting seal after being immersed in the fluid for a number of

days following filling of the flow loop.

After completion of the facility operation which provided the data for the presented investiga-

tion, a redesign of the flow loop was completed using only stainless steel (SS) piping with viton

and nylon seals. These materials are all well documented as compatible with D-limonene, as well

as other organic solvents. Retrofitting of the experimental facility has led to a marked improvement

in the operation of the flow loop and collection of data from the test section. Further analysis of

the improved test loop is beyond the scope of this study, however, and is expected to be described

in later work.
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3.3 Visualization Test Section

To assemble a rod bundle as similar as possible to a PWR fuel rod geometry, borosilicate glass

tubes were used to construct a 5×5 rod bundle. Glass tubes with outer diameter (OD) equal to

9.59 mm were selected. These tubes were the closest to a PWR fuel rod OD which were readily

commercially available. Each tube was filled with D-limonene and caped at both ends. To quantify

the uncertainty of the OD, each tube was individually measured along its length and displayed a

total expanded uncertainty of ±0.11 mm. Expanded uncertainty of the OD included tolerances

from the tube manufacturer and the standard deviation of OD measurements. The bundle was

constructed with three prototypical spacer grids which exhibit dimensions similar to a PWR 17×17

fuel bundle. The grids were positioned 51.0 cm apart as is typical for a PWR. Figure 3.5 shows

the mock fuel rod bundle during construction prior to installment in a transparent test section. The

center spacer grid was selected as the ROI to ensure a fully developed flow profile, as might be

seen in an average selection of 5×5 rods in a PWR.

Figure 3.5: Photo of glass tube rod bundle construction prior to insertion in test section. The ROI
is highlighted.

The visualization region consisted of a high quality square cross section polycarbonate chan-

nel with dimensions of 66.5×66.5×1524 mm (±0.3×0.3×5 mm). The test section used in the

presented experiments is shown in Figure 3.6. Drawings of the test section are contained in Ap-

pendix A.

The bundle was positioned in the test section by pressing the grids against two of the walls
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Figure 3.6: Photo of test section installed in the facility before D-limonene filling. The ROI is
highlighted.

using set screws on the test section wall at specific heights which can be seen in Figure 3.7. By

positioning the grids in one corner, relative angle between the test section wall and spacer grid was

eliminated. Flow induced movement of the grid relative to the test section wall was also greatly

reduced. This allowed for observation of the impact on bulk flow of a non-symmetric gap between

the bundle and test section walls.

For quantitative analysis, some length measurements within the presented dissertation have

been normalized with hydraulic diameter (DH). This is calculated as in Equation 3.1, and is equal

to 10.27 mm for the presented test section.

DH =
4A

Pw

, (3.1)
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(a) Far wall (b) Close wall

Figure 3.7: Positioning of glass tube bundle in the polycarbonate test section. Set screws were
used from two adjacent walls (3.7a) to fix the spacer grids in a corner edge of against two walls
(3.7b).

Equation 3.1 makes use of the cross sectional flow area (A) inside the 66.5 mm×66.5 mm square

test section and between the 25 rods of diameter 9.59 mm, approximately 26.3 cm2, and wetted

perimeter (Pw) of the test section and rods, approximately 1.02 m.

3.4 Plena

Inlet and outlet plena for the visualization test section, shown in Figure 3.8, were fabricated

from SS plate. A 66.8×66.8 mm square cross section channel was welded to a square flange

with holes that matched the pattern on the test section’s connection flanges. The other end of the

square channel was welded to a sealed mixing box with dimensions 241×241×102 mm. Two

opposite walls of the mixing box were fitted with a 2” national pipe thread (NPT) through hole.

The lower plenum, shown in Figure 3.8a, was also fit with a 1” NPT through hole in the bottom

for instrumentation and draining, however was not used for the purposes of this study.

The upper plenum was fit with a removable top plate as can be seen in Figure 3.8b. This

permits for the use of a transparent top plate for later PIV measurements to be performed from the

top of the test section, however is beyond the scope of this investigation. Detailed drawings used
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(a) Lower plenum (b) Upper plenum

Figure 3.8: Plena used for connection of experimental test section with flow loop.

for fabrication of the plena are contained in Appendix B.

3.5 Flow Loop and Instrumentation

A sketch of the facility’s layout is presented in Figure 3.9. The facility was designed to isolate

the test section from the vibration induced by the flow and the pump of the main circuit while

allowing flexibility to adapt different test sections. Dimensions of the test section region can be

easily varied, allowing flexibility and re-usability of the flow loop with different MIR test sections.

The 15 Hp pump is capable of flow rates greater than 20 l/s, which allows experiments to

be performed at high Re. The flow rate is controlled using a VFD connected to the pump. A

400 l tank provides the working fluid to the system. A secondary water cooling loop is built into

the tank to maintain an isothermal fluid state during operation. This is particularly important for

MIR experiments as the refractive index is seen to vary with fluid temperature as described in

Section 3.1.

The circuit is instrumented with a high precision Sierra InnovaMass vortex shedding volumet-
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Figure 3.9: Facility flow loop layout sketch.

ric flow rate meter (0.7 % of reading accuracy). This flow meter includes an integrated absolute

pressure sensor (±3.5 kPa accuracy), and temperature measurements (±1◦C accuracy) via a resis-

tance temperature detector (RTD).

3.6 Flow Conditions for Re=27,390

The experiments were performed under the flow conditions shown in Table 3.2. Combined

uncertainty for temperature, pressure, and flowrate was calculated using the above referenced ac-

curacy for the loop flow meter, along with the standard deviation of each measurement taken over

the course of each experimental run.

Uncertainty for the density of D-limonene was calculated using the Tait equation for liquids, as

found from NIST, using the maximum deviation from nominal values of temperature and pressure

as input parameters [34]. A similar approach was used for the viscosity of D-limonene using the

equation of state for fluid viscosity laid out by Andrade [35, 36], making use again of maximum
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deviations from nominal temperature.

Table 3.2: Experimental fluid flow conditions.

Parameter Value Uncertainty Units
Temperature 22.2 2.1 ◦C
Pressure 195.4 7.3 kPa
Density 841.9 3.6 kg/m3

Viscosity 907 54 µPa.s
Flow rate 7.51 0.13 l/s
Re 27390 480 -
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4. PARTICLE IMAGE VELOCIMETRY METHODOLOGY*

The following chapter details the collecting of images for multiple measurement planes of

2D2C velocity fields. These measurements were collected in a manner to provide all components

necessary to reconstruct a full 3D3C velocity field. For each plane, a detailed uncertainty quantifi-

cation (UQ) was performed and is outlined. A full field uncertainty was also constructed from the

multiple planes similar to the 3D3C velocity field.

4.1 Two Dimension Two Component Image Collection

A 2D2C PIV setup was assembled to perform measurements of the velocity field in the 5×5

rod bundle downstream of the middle spacer grid in the test section. A total of 45 velocity fields

parallel to the x and z axes were measured across the full test section width. Figure 4.1 shows

the PIV setup of the six planes between and outside the five rows of rods used which were used

for preliminary analysis, as well as the defined axes origin for both directions of collection. Even

though in the picture there are rods and fluid in the test section, due to MIR, they can’t be seen.

Figure 4.1 shows the positions of the xz measured planes relative to the rod bundle. Planes J-

AA and R-II were each positioned two pitches (2p) away from each other at geometrically symmet-

ric positions relative to the spacer grid. These planes were selected for preliminary analysis as they

were expected to show symmetrically coherent velocity profiles with small differences attributed

to the distance to the walls of the test section.

To determine frame separation time, as well as appropriate particle seeding size for the pre-

sented Re, the largest scale eddy turnover time (tL) defined by Equation 4.1 was calculated to be

on the order of 10−3s. Where the diagonal distance between two non-adjacent rods surrounding

a sub channel is considered the characteristic length (L), which is 8.23 mm; the spatiotemporal

*Sections 4.1–4.3 are reprinted, in part and with modifications, with permission from A. A. C. dos Santos,
M. Childs, T. D. Nguyen, and Y. Hassan, “Convergence study and uncertainty quantification of average and statis-
tical PIV measurements in a matched refractive index 5×5 rod bundle with mixing vane spacer grid,” Experimental
Thermal and Fluid Science, vol. 102, pp. 215–231, 2019.
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Figure 4.1: Image of the PIV setup.

average axial bulk velocity, 〈w〉, is the characteristic velocity.

tL =
L

〈w〉
(4.1)

The fluid was seeded by silver-coated hollow glass spheres with a mean diameter, dp, of 13 µm

and density, ρp, of 1.6 g/cc. These particle parameters were used to calculate the response time of

a particle in fluid flow (tp) defined by Equation 4.2 [38], which was on the order of 10−5 s.

tp =
d2
pρp

18µ
(4.2)

The Stokes number, defined as the ratio of the time of a particle to the characteristic time of the

flow, was determined to be much less than one, ensuring the tracer particles follow the flow closely

[39].

A pass-through time of 0.019 s, defined as the mean time taken for all the particles present in a

image to move out of the field of view (FOV), was calculated. As such, a 0.1 s time delay between
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image pairs was sufficiently large to ensure statistical independence of the subsequent image pairs.

An intra-pair time delay of 100 µs was small enough to ensure a maximum particle displacement

of 14.98 pixels. These characteristics allow for good statistical convergence of PIV since each

pair is significantly spaced in time relative to the flow, however limiting the ability to capture time

resolved flows.

To illuminate the tracer particles, a 532 nm 200 mJ double head pulse laser was used to generate

two 1.5 mm (0.146DH) thick sheets of light 100 µs apart every 0.1 s. A double exposure IMPERX

Bobcat 2.0 four megapixel charge-coupled device (CCD) camera with 50 mm focal length, f , lens

with f/2 aperture was used to capture the flow field in the entire width of the test section from

0–5DH downstream of the spacer grid. The camera was synchronized to the laser using a signal

board connected to a DAS so that image pairs of the flow field were obtained at the correct moment

with ∆t between laser pulses. The captured images had 2352×1768 pixels of resolution and 12

bit of depth. The double exposure camera allows two high resolution images to be captured in

quick succession. At each measurement plane a total of 2000 image pairs were collected over the

course of 200 s. This number was determined sufficient to perform a convergence analysis while

still keeping the total number of images low enough for timely analysis.

The camera was mounted to a computer-controlled traverse system, as was the laser optics

that project the light sheets. The BiSlide® traverse system enabled a movement step of 63.67µm

(0.0062DH) with high precision of both the camera (ycam) and laser sheet (ylsr). The laser plane

was swept through the entire depth of the test section as shown in Figure 4.2. Focus of a single

laser sheet was achieved using the lens adjustments, after which the camera and lens settings were

maintained and the camera only moved by the traverse system. To maintain focus on the plane

at different laser sheet positions the camera was moved a distance proportional to laser step by a

factor of the inverse of the refractive index of D-limonene based on the Snell’s law as shown in

Equation 4.3.
∆ylsr

∆ycam

=
nair

nlim

. (4.3)

This technique allowed all planes measured with the same camera setup and field of view. This

25



Figure 4.2: Laser plane alignment and camera orientation for first test, consisting of measurements
of u and w. The origin corner is highlighted in red.

can be demonstrated in Figure 4.3 that shows planes taken at the center of the rods of the first and

fifth row of rods from the camera. In the figure both rods and spacer grid in view are highlighted

to demonstrate the effectiveness of the traversing method.

The camera was aligned with the face of the test section and the laser sheets were aligned

by visual assessments against physical references and using images obtained by the camera. For

example, the diameter of the rods was measured in the image as the laser plane was rotated slightly

about an x-parallel axis until the relative difference in measurable diameter from top to bottom of

the image was less than the physical tolerance of the rod diameter from caliper measurements. This

correlated to a rod diameter measurement of 339± 3 pixels. Angular alignment was also evaluated

in the image assessing rod rotation and possible pitch and yaw of the plane. This was performed

evaluating the dimensions of rods from the images taken at their center at the bottom to top and left

to right. The results were a rotation angle no greater than −0.28± 0.27◦, pitch of ±0.12◦ and yaw

±0.16◦ considering clockwise (CW) positive rotation relative to the images collected. The small
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Figure 4.3: Image focus and alignment relative to the rods and grid at the first and fifth rod row.
Camera positioning for the first test is also shown, and the origin corner is highlighted in red.

observed rotation angle was corrected in the results to avoid bias error.

To evaluate and verify rod positions in the test section, images were taken with the laser plane

projected through the center of each row of rods as shown in Figure 4.3. An assessment of x

displacement relative to the average columnar-center of each rod was performed and is presented

in Figure 4.4. Based on this evaluation using ImageJ [40], the total maximum error of positioning

of the measured rod centers for each row was of 5 pixels, and appeared independent of position

of the rod within the test section, indicated by a discontinuous color gradient in Figure 4.4. Depth

positioning, y, of the laser was obtained by finding the PIV measurable limits in the depth of the

test section, ie the total distance the laser could be traversed while still being projected through the

test section open channel. It was found that the entire test section channel was measurable and that

the depth uncertainty was of 0.073DH. This uncertainty is attributed to glue on the inside corners
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of the test section, which prevented laser sheet projection at the minimum and maximum depth of

laser sheet placement, and did not greatly affect measurements in the bulk of the test section. More

on this is discussed in laser sections.

Figure 4.4: Pixel displacement relative to the average position of the center of the rods between
planes taken at the center of the rods.

A double exposure four mega pixel CCD camera was used to capture the flow field in the entire

width of the test section from -0.1DH–5DH downstream the spacer grid. The captured images had

2352×1768 pixels of resolution and 12 bit of depth. The double exposure CCD camera allows two

high resolution images to be captured in quick succession. The same image resolution and capture

rate were used for all image collection during the experimentation.

Images were first collected at all measurement planes parallel to the xz-plane as a first test

for quantification of velocities u and w. This required the scanning of the laser plane throughout
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the test section in y as described by the Equation 4.3. The test section was then rotated 90◦ CW

about the z axis when viewed from above. Within the ROI, this correlates to an axes mapping of

x → y, and y → −x, with no change in the z axis. Rotation of the test section permitted velocity

components v and w to then be measured without adjustment of the camera and laser setup. Image

collection for the second test proceeded the same as described for the first test, with scanning of

the laser and camera in the x coordinate following the same pattern as described for y in test 1,

which was governed by Equation 4.3 and is illustrated in Figure 4.5.

Figure 4.5: Laser plane alignment and camera position for second test, consisting of measurements
of v and w. The origin corner is highlighted in red.
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4.1.1 Particle Image Velocimetry Cross Correlation & Image Processing

In order to measure fluid velocity between collected images in both photos of each frame, the

measured intensity of tracer particle reflectance (I) within the digital position coordinate (Xi) is

compared between two images. This is accomplished by calculating a cross correlation between

images 1 and 2 in a frame (C12), which is given as Equation 4.4 [41, 42]:

C12 (δi) = E {I1 (Xi) I2 (Xi + δi)} (4.4)

' F−1 {F {I2 (Xi)} · F {I1 (Xi)}∗} , (4.5)

where δi is a digital displacement which is determined by the window sizing in PIV, and is calcu-

lated for every point within the Discrete Window Offset (DWO). The Fourier-based correlation ap-

proximation, F {φ} in Equation 4.5, is employed to increase computational efficiency in PRANA

[43]. This algorithm generates a Xi space function of C12, with peaks each correlating to an offset

defined by τ . Each of these peaks define a possible displacement within the processed window

based on particle pattern recognition.

Before cross correlation was applied to the image set, a background subtraction preprocess-

ing of the captured images was performed by subtracting from every image the sum of all images

divided by the number of collected images. This removes most of the bright areas present in the

images due to reflections from the spacer grids. Figure 4.6 shows an example image obtained after

the background subtraction operation. In the figure a saturated contrast image is shown that indi-

cates not all of the brightness from the mixing vanes was removed with the background subtraction

process due to changing reflection intensity on the vanes between images. This fact was used to an

advantage in data processing, as is explained below.

The PIV images were processed using the PRANA PIV code [43]. Advanced multi-pass, multi-

grid PIV processing using DWO and robust phase correlation (RPC) algorithms were used as

described in Equation 4.5. Three interrogation window passes were performed. The first pass was

of 64×64 pixel with 50% overlap to respect the 1/4 window rule for maximum displacement of
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Figure 4.6: Background subtracted images of a measurement plane R as indicated from Figure 4.2.
Image B has saturated brightness and highlights that the spacer grid vanes are still visible; however,
rods are not, even though that in this image there are two rows of rods in front of the plane.

the first PIV grid mesh [44, 42]. The final pass of 32×32 pixels with 75% overlap yielded a mesh

of 294×221 displacement vectors.

The universal outlier detection (UOD) method [45] with checks for additional peaks and vector

replacement was used to validate the velocity field. If a vector is outside of validation criteria

when compared to its 8 neighbors in a 3×3 vector space, it is replaced by the vector obtained by

the second- and third-largest peaks calculated in cross-correlation, successively. If the vector fails

these validation tests, it is replaced by the median of the 8 neighboring vectors. When the last

happens, a 1 is written to Eval saved within the results file; if the vector passes the validation,

Eval is set to 0.

It is expected that validation will fail in sporadic locations of the vector field due to random

effects [46, 47, 48]. Regions with large illumination noise, such as a reflection on the vanes, and

low particle sampling areas, such as in shades produced by the spacer grid, are expected to show

a consistent failure in validation. With the knowledge of this fact, points with systematical failure

to validate within a large data set could be eliminated from the vector field, as they are probably

non-physical vectors in regions that can’t be measured due to shading or surface reflections. Based

on this, PRANA’s Eval parameter was used to eliminate bad vectors from the field.

The averaged evaluation parameter for each of the preliminary measurement planes is presented
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in Figure 4.7. A mask was applied only to the bottom and sides of the image that were consistently

dark. As can be seen in the Figure 4.7, high (> 0.4) average evaluation parameter (Eval) can be

seen in the region where the vanes are located and near the edges of the image. At these regions,

relatively large fractions of the displacement vector in the 2000 vector fields data set was replaced

due to validation failure. Using this data, a threshold was established, removing any vector with

a Eval > 0.4. At the spacer grid region a stricter Eval threshold of 0.3 was defined eliminating

more vectors that could be influenced by errors propagated from the bright areas.

Figure 4.7: Average of PRANA’s Eval in all preliminary planes.

It is interesting to note in Figure 4.7 that the edges of the field all contain poor validation vec-

tors. This occurs due to lack of surrounding information for validation, and is present immediately

adjacent to any masked region. This is one of the justifications for this approach of vector elimi-

nation instead of traditional masking. Masking also influences the flow field measurements in its

near vicinity, due to the small number of neighbor vectors which are used in UOD comparison

[49]. Manually masking complex geometries is unreliable and time consuming and could gener-
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ate over and under masked regions. Automated masking and machine learning PIV processing

is being developed and shows potential, however still have limitations in reflection regions and

non-stable images [49] or rely on very strong, well defined reflective regions and some manual po-

sitioning [50]. This method moves towards automation in an attempt to reduce qualitative masking

approach.

Figure 4.7 also shows that rod reflections, though small, were present. These reflections, how-

ever, where a function of the position of the laser sheet relative to the mixing vanes, and not a

problem with the MIR. This can be seen in comparison of Planes B and QQ, which show similar

Eval in the bulk of the flow even though they are at the near-wall extremes of the test section.

Looking at the Eval averaged over the entire field of each plane yields similar results within ±5%

with no tendency in function of depth.

4.2 Two Dimension Two Component Calibration

Images of a calibration plate placed inside a parallel, identical size, test section were taken to

convert pixel displacement as collected from the CCD camera to length units via the M . This is

required due to the change of media of the reflected laser light from the D-limonene and polycar-

bonate of the test section ROI construction, and the air in which the camera resides. Because the

camera was moved a different length than the laser in order to accommodate for the different n the

two objects were moving in, the total distance from object plane to lens (Z0 in Raffel et al [38])

was changing, while length from the lens to the image collection plane (z0 [38]) remains fixed. A

unit-less M cannot be determined as is the standard for optical measurements [38].

The calibration plate used was a LaVision 058-5-DSDP plate; it was moved using a microm-

eter traverse system for calibration of M . The plate contains 132 reference dots spaced 5 mm

(±0.02 mm) apart in two perpendicular directions. An example calibration image is shown in

Figure 4.8. ImageJ [40] was used to find the centroid of every point on the analyzed images.

The pixel-wise hypotenuse between each point was then determined, and a ratio of mm/pixel was

calculated using the known distance between points.

As can be seen in the calibration image in Figure 4.8, some of the calibration plate extended
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Figure 4.8: Calibration plate image at plane B used in determination of M for the first test. Similar
images were collected for the second test.

out of the camera’s FOV. This is due to the use of two cameras stacked in the z direction in order to

collect a larger total FOV. Additional processing of these images is reserved for future work, and is

beyond the scope of this dissertation. Even with the use of a fraction of the calibration plate in the

image, a relative uncertainty of the calculated M for each image plane, as well as between image

planes, was sufficiently small to assume a constantM for each test. This made for a streamlining of

image post processing, and was the goal of the camera laser movement as described in Section 4.1.

For the first test, which consisted of measurements of u and w1, sixteen plane positions were

used to define the magnification factor. Fifteen planes were used for the second test, which con-

sisted measurements of v and w2. The calculated M was 2.8446×10−2 mm/pixel (±2.0926 ×

10−4 mm/pixel) for the u and w1 measurements. M was calculated as 2.8484×10−2 mm/pixel

(±2.6666× 10−4 mm/pixel) for measurements of v and w2. Data for calculating each test’s M are

contained in Appendix C. Calculated uncertainty for each test M included machining tolerance of

the calibration plate as described above, and 2x the standard deviation (σφ) of the magnification

ratio calculated in each image. Further uncertainty is described in Section 4.3. After calibration

was complete, the test specific M was used along with the PIV ∆t to scale each pixel-wise dis-
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placement field to a velocity field measurement using Equation 4.6.

4.3 Particle Image Velocimetry Uncertainty Quantification

A detailed uncertainty quantification (UQ) was performed for each of the 2000 velocity fields

calculated at each of the 45 planes for both tests. Positioning uncertainty of vector fields within the

test section geometry was also quantified. This work was described in detail for six preliminary

analysis planes in dos Santos et al [37], and is reproduced here.

To calculate uncertainty, first the instantaneous velocity must be defined. The instantaneous

velocity components are obtained as a function of M in mm/pixel, component-wise displacement

between a image pair (δi) in pixels, and the intra-pair time delay, ∆t, in seconds. The relation for

ui is defined in Equation 4.6:

ui = M
δi
∆t

(4.6)

The combined and expanded component-wise velocity uncertainty, Uui , can be defined as the

quadrature sum of each individual variable uncertainty contribution as shown in Equation 4.7 mul-

tiplied by the coverage factor of 2 for a 95% uncertainty band.

(
Uui
ui

)2

=

(
2
UM
M

)2

+

(
2
Uδi
δi

)2

+

(
2
U∆t

∆t

)2

(4.7)

4.3.1 Calibration & Digital Displacement Uncertainty

Similar to described as in Section 4.2, uncertainty of the magnification factor, UM , was calcu-

lated as shown in Equation 4.8.

(UM)2 = (Ucal)
2 + (Udev)

2 + (Udist)
2 + (Uα)2 (4.8)

In Equation 4.8, Ucal is the uncertainty of dot position and size due to physical manufacturing

limits of the calibration plate, Udev is the plane positioning uncertainty, defined as the maximum

difference between M values obtained in the evaluated planes, Udist is the distortion of the image
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due to lens and camera detector, defined as the maximum standard deviation of the magnification

factor (σM ) calculated on a calibration image, and Uα is the angle of the calibration plate relative to

the camera plane, calculated assuming the largest angle of 0.5◦ based on image angle assessment

of the calibration plate.

Uncertainty of coordinate-wise pixel displacement, Uδi , was calculated as Equation 4.9.

(Uδi)
2 = (Usubpixel)

2 + (Uβ)2 (4.9)

This uncertainty is attributed toUsubpixel, the sub pixel resolution limit of the DWO method used

in PRANA [51, 52], as well as the laser measurement plane angle relative to the “true” velocity

plane, Uβ , estimated assuming the largest possible angular deviation based on angles assessed with

the calibration images as previously discussed.

The time delay uncertainty U∆t can be estimated as the sum of all possible delays that can

occur. As all of the processes are electronically controlled this value is very small and estimated

as U∆t = 20ns which is orders of magnitude lower than the value of ∆t.

Table 4.1 presents the values for each uncertainty sources accounted. Displacement uncertainty

due to the angle Uβ has different values for each velocity component. It is one of the major

components and has heavy implications for the lateral velocity components uncertainty, Uu and

Uv.

4.3.2 Uncertainty as Convergence Residual

A statistical convergence analysis was performed to assess the mean velocity fields. A variable

residual (Rφ) was calculated using Equation 4.10.

Rφ = φs − φs−1 (4.10)

In Equation 4.10 φ indicates an arbitrary measured variable, such as u, and s indicates the set-

number, which determines the number of frames used in the calculation, as in Table 4.2. Each

image set contains a number of image pairs 20% greater than the previous to assess the rate of
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Table 4.1: Relative uncertainty values.

Parameters Value(
Ucal
M

)
0.00400(

Udev
M

)
0.00080(

Udist
M

)
0.00341(

Uα
M

)
0.00669(

UM
M

)
0.01165(

Usubpixel
δi

)
0.03/δi(

Uβ
δx

)
u

0.04838/δx(
Uβ
δy

)
v

0.04843/δy(
Uβ
δz

)
w

0.00746/δz

convergence. By using a constant increase rate of frames, convergence is not weighted and over-

estimated as the size of step grows [47].

Table 4.2: Set sizes for residual convergence calculation.

s N
1 156
2 187
3 224
4 269
5 323
6 388
7 465
8 558
9 670

10 804
11 965
12 1157
13 1389
14 1667
15 2000

Figure 4.9 exemplifies the convergence study results presenting the average residual for data

37



taken along a horizontal line for various axial positions. The lateral velocity component u and the

shear Reynolds stress (Ru′w′) are presented.

Figure 4.9: Convergence of u velocity component and u′w′ Reynolds stress.

Convergence behavior was similar for all planes and in all positions along the axial direction,

which are shown in Figure 4.9, even in the region within the spacer grid (z/Dh < 0.6). This
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behavior was present for all variables. The exponentially convergent behavior observed matches

expected theoretical convergence of statistically independent PIV data based on studies performed

with synthetic images [47]]. These findings evidence that a high MIR quality was obtained and

also that the results are consistent and well converged at the last set.

Figure 4.10 shows the final residual value for the full data set with 2000 velocity field frames at

all planes, for all variables. Residual results are averages along lines crossing the width of the test

section in x at various heights z. It can be observed that all planes converged to similar residual

values in every section of the flow field for each evaluated variable. This is another indication

that a the MIR combination used provides high quality images, even at relatively deep regions

of measurement. Higher residuals, which are expected, can be observed at the spacer grid vane

regions, and close to the maximum z coordinate of the velocity field due to poor sampling in this

region. Lower sampling, however, is due to the elimination of vectors based on larger Eval. As

well, these higher residuals are still within experimental error and are accounted for in the UQ

propagation.

Figure 4.10: Convergence of measured and derived quantities for all preliminary planes at the final
set, where 2000 velocity fields are used.
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4.3.3 Statistical Uncertainty Propagation

Propagation of uncertainty for the averaged velocity can be considered as the sum of the mean

of Uui , Uui , the convergence residual, Rui , and the standard deviation of the instantaneous velocity

(σui) divided by the square root of the effective number of image pairs [47], N , as shown in

Equation 4.11. Convergence of the variables (Figure 4.10) showed exponentially approaching zero

behavior for the variables, assuming this behavior true for an increasing data set, the value for Rui

was taken as the residual of the full set.

(Uui)
2 =

(
Uui
)2

+ (2Rui)
2 +

(
2
σui√
N

)2

. (4.11)

It is important to note that the effective number of pairs for each plane in this dissertation is

the total number of pairs, N=2000, since each pair is statistically independent to each other. This

is guaranteed due to the large relative time step between pair measurements, equal to 4 full flow

passings and >40tL. Making use of the large number of statistically independent instantaneous

flow fields to calculate average velocity, the fluctuating component, u′i, can be determined using

Equation 4.12.

u′i = ui − ui. (4.12)

The combined and expanded uncertainty of this derived variable is, in turn, calculated from

both contributing variables as shown in Equation 4.13.

(
Uu′i
)2

= (Uui)
2 + (Uui)

2 . (4.13)

Similarly to the velocity components, uncertainty for the fluctuating velocity, as RMS, was

propagated as shown in Equation 4.14.

(
Uu′i

)2

=
(
Uu′i
)2

+
(

2Ru′i

)2

+

(
2
σu′i√
N

)2

. (4.14)
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In which it is important to note that even though the mean of the fluctuating component is 0, the

uncertainty of that measurement about a mathematical mean can still be quantified (ie u′i = 0 6⇒

Uu′i
= 0). This could provide an overestimate of fluctuating uncertainty, however, as the RMS of

the measurements is equal, but only shifted by one mean, as indicated in Equation 4.12. Further

understanding of this UQ should be investigated. Making use of the Equation 4.13, Reynolds

stress, u′iu
′
j , combined and expanded uncertainties can be calculated using Equation 4.15.

(
Uu′iu′j

)2

=
(
u′jUu′i

)2
+
(
u′iUu′j

)2

. (4.15)

The propagated uncertainty for the average Reynolds stress based on the same assumptions can

be calculated as shown in Equation 4.16.

(
Uu′iu′j

)2

=
(
Uu′iu′j

)2

+
(

2Ru′iu
′
j

)2

+

(
2u′j

σu′i√
N

)2

+

(
2u′i

σu′j√
N

)2

(4.16)

Uncertainty for the Reynolds stresses could be underestimated using the presented method due

to the finite spatial resolution of the PIV algorithm that does not allow the detection of fluctuations

of length scales smaller than the interrogation window [47]. A detailed analysis of the PIV algo-

rithm response of a known flow and the computed uncertainty would be necessary to assess this

uncertainty component and is beyond the scope of this dissertation.

4.3.4 Coordinates uncertainty

Positioning uncertainty is one of the most crucial quantities for validation of highly resolved

CFD results [17]. V&V efforts are frequently troubled by profiles that would match if only they

were in a slightly different position within the flow geometry. However, the lack of proper in-

formation on position uncertainty prevents certain conclusions of spatial profile positioning be

made and good validation achieved. Position expanded uncertainty can be calculated according to

Equation 4.17.

(Uxi)
2 = (2UM)2 + (2Upos)

2 + (2UPIV )2 + (2Uangle)
2 , (4.17)
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which is attributed to the magnification factor uncertainty, UM , uncertainty of measurement plane

angles relatives to the “true” coordinates of the expected flow components, Uangle, uncertainty of

PIV vector mesh spacing, UPIV , and uncertainty of reference geometry position in the field Upos.

For the in-plane transverse coordinates, x in test 1 and y in test 2, angle uncertainty is pro-

gressive relative to a reference point. Considering the maximum deviation due to estimated angle

based on the image-central reference point, gives a maximum value of 5.75 pixels for Uangle. For

Upos there is a 2 pixels uncertainty based on imageJ [40] assessment. Finally, UPIV was considered

4 pixels, equal to half the most resolved PIV mesh size. Depth uncertainty of an arbitrary measure-

ment plane was due to the traverse and reference positioning uncertainty. Absolute uncertainty for

each vector coordinate is described in Table 4.3

Table 4.3: Vector positioning uncertainty values.

Test Uxi
No. Coord. (mm)

x 0.411
1 y 0.267

z 0.411
x 0.285

2 y 0.409
z 0.409

4.4 Full Field Three Dimension Two Component, and Three Dimension Three Component

Reconstruction

In order to analyze the full axial cross section of the visualization region, the test section depth

was discretized into 45 y-normal planar measurements as shown in Figure 4.2. The ∆y between

measurement planes was determined using the estimated laser sheet thickness. This set of 45 planes

results in a near full field measurement of two components of time-averaged velocity, specifically

u and w1. This combination of data sets was called a three-dimension two-component (3D2C)

measurement.
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To generate the data set, each vector quantity in every plane was linearized into a single row.

Every row was then assigned a third coordinate value based on its corresponding plane’s depth

in the test section. For example, every point in plane E was assigned a y=6.75. The planar data

was then concatenated and sorted based on the full xi assigned from PRANA and the described

concatenation process.

A similar discretization was achieved for measurements of v and w2, as described above. The

∆x was once again determined by laser sheet thickness, and in order to maintain a similar number

of laser sheets across the test section depth. These planes were also assigned depth, x, positions

according to plane identification. The full vector data was then concatenated as rows into a 3D2C

measurement and sorted based on xi.

With the concatenated 3D2C measurements, a horizontal (z-normal) slice of the now-volumetric

data was made, which was perpendicular to the plane of data collection. Positions in z were se-

lected as similar as possible between the two datasets. This permitted for comparison of multiple

profiles along geometrically symmetric profile lines as shown in Section 5.4.

4.4.1 Three Dimension Three Component Reconstruction via Trilinear Interpolation

In order to present high resolution data for each variable of interest measured, as well as derived

quantities such as RMS components, shear stress, and vorticity, a highly discretized spatial mesh

was desired. Generation of the spatial mesh was accomplished using the high resolution of vector

spacing from 2D2C planes for both tests 1 and 2. For example, the 45 planar discretization of

the y coordinate in test 1 was combined with the 294 displacement vector discretization in y from

test 2’s 2D2C planes, as described in Section 4.1.1. Due to the z offset of images between the two

tests, this resulted in a doubling of vector resolution in the axial direction.

To calculate values at the new, highly discretized mesh, a trilinear interpolation method was

used, as described by Kang [53], and summarized here. To calculate an arbitrary variable, φ, at

a point of interest in the new mesh x, y, z the eight closest neighboring data points (φ000, .., φ111)

were selected as shown in Figure 4.11.

With the nearest neighbors of existing data determined, a coordinate-wise distance from each
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(x0, y0, z0)
φ000

(x0, y0, z1)
φ001

(x1, y0, z0)
φ100

(x1, y0, z1)
φ101

(x0, y1, z0)
φ010

(x0, y1, z1)
φ011

(x1, y1, z0)
φ110

(x1, y1, z1)
φ111

φ
(x, y, z)

φ0

φ1

φ00

φ10

φ01

φ11

Figure 4.11: Depiction of data used for trilinear interpolation of data in the highly discretized
spatial mesh.

point is determined as

xd =
x− x0

x1 − x0

(4.18)

yd =
y − y0

y1 − y0

(4.19)

zd =
z − z0

z1 − z0

(4.20)

Interpolation along the first axis, shown as x here, is accomplished to generate four intermediate

values along axis parallel lines between the existing data points:

φ00 = φ000(1− xd) + φ100(xd) (4.21)

φ01 = φ001(1− xd) + φ101(xd) (4.22)

φ10 = φ010(1− xd) + φ110(xd) (4.23)

φ11 = φ011(1− xd) + φ111(xd) (4.24)

These can then be used to calculate interpolated values on planes which are parallel to the first two
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axes, x and y, as

φ0 = φ00(1− yd) + φ10(yd) (4.25)

φ1 = φ01(1− yd) + φ11(yd) (4.26)

Finally, the third coordinate is interpolated along in order to calculate the predicted value of φ at

(x, y, z).

φ = φ0(1− zd) + φ1(zd) (4.27)

This simple algorithm gives a weighted value of φwhich is inversely proportional to its distance

from all nearest neighbors. It is important to note that further interpolation, such as cubic or quintic,

could be used to incorporate further data points than just the eight closest neighbors. Due to the

smoothing which is achieved in PIV, however, this may lead to false approximations of values,

especially near walls or masked regions. As such, only the described 3D trilinear interpolation

method was used. Further study on approximations of values near walls and masked regions may

provide insight to the fluid mechanics scales which are resolved in PIV, however are beyond the

scope of this dissertation.
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5. RESULTS

The following chapter illustrates results for the 2D2C planar measurements for both tests 1 (y-

normal) and 2 (x-normal), quantified uncertainty for these planes, and the planar slices (z-normal)

from combined 3D3C data. The last contains a number of highly-resolved spatially interpolated

results for the 4 center subchannels, which exhibit highly symmetric flow structures.

5.1 Two Dimension Two Component Particle Image Velocimetry Results

The following section illustrates results from a mathematical mean for a number of vertical

planes which were measured during both test 1, and test 2; in which 2000 statistically indepen-

dent, discrete measurements of u and w1, and v and w2, respectively were collected. From these

measurements, the fluctuating component of velocity was calculated as the RMS and is presented.

Reynolds shear stress was also calculated and is illustrated for the planes. Vorticity fields were con-

currently calculated during the velocity averaging process, and each mean component of vorticity

was subsequently calculated. Mean vorticity fields for the planes are also presented.

In the following sections, plane II at y = 51.75 mm is used to illustrate the plane which had

the most rods between it and the CCD camera for measurement while still residing fully within

the spacer grid xy profile, and exhibiting flow forcing from the vanes. Plane IIII at x = 14.75 mm

is illustrated for test 2, which was also measured with the most rods between camera and plane

while still residing in the full spacer grid profile and exhibiting mixing vane effects. These planes

show similar velocity profiles, despite having a non-identical spacer grid and mixing vane pattern

which drives the flow. This illustrates an interesting phenomenon, which may warrant further

investigation into the full effect of vane placement and shape.

5.1.1 Mean Velocity

After processing of images and calibration of the pixel-wise calculated displacement, the mean

velocity fields were calculated for each plane. For brevity, planes II and IIII are presented here

with full results for each plane contained in Appendix D. For comparison of velocities, Figure 5.1
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which contains a measure of w1 from plane II is compared to w2, which is from plane IIII and

contained in Figure 5.2.

Figure 5.1: Mean axial velocity, w1, for plane II at y=51.75 mm.

Axial velocity, which is the dominant component is clearly affected immediately downstream

of the mixing vane tips, which can be seen in the velocity fields due to the vector elimination

described in Section 4.3. These points of lower axial velocity correspond to a greater transverse

component of velocity. Field measurements of u for plane II from test 1 are presented in Fig-

ure 5.3. These can be compared to v for plane IIII from test 2, which are presented in Figure 5.4.

Similarities can be seen between the presented planes due to the near-symmetry of the mixing vane

upstream of the velocity fields. Converging velocities can be seen in alternating subchannels along

the horizontal coordinate for both tests.

Of interest is the secondary peaks in transverse velocity near z=30 mm, which are clearly
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Figure 5.2: Mean axial velocity, w2, for plane IIII at x=14.75 mm.

resolved in both test results. These increases in non-axial flow stem from upstream peaks in out-

of-plane velocity, which cannot be measured with the 2D2C PIV. These present interest and need

for a full 3D3C reconstruction and are further illustrated in Section 5.4.
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Figure 5.3: Mean transverse velocity, u, for plane II at y=51.75 mm.

Figure 5.4: Mean transverse velocity, v, for plane IIII at x=14.75 mm.
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5.1.2 Fluctuating Root Mean Square & Shear Stress

For each of the 2000 measurements made for the final set, the instantaneous velocity com-

ponents were subtracted from the means in order to calculate the fluctuating components. These

were used for calculating the vertical RMS components, presented in Figures 5.5 and 5.6. RMS

for the transverse velocity components are contained in Figures 5.7 and 5.8. Strong turbulence can

be observed near the mixing vanes, which are again illustrated by the vector elimination process.

These regions are expected to have the greatest turbulence, as they exhibit strong effects from the

spacer grid geometry upstream of the mixing vanes, which have a more regular forcing pattern.

This region’s large number of irregular walls create many competing turbulent boundary layers

which appear to predominantly straighten within the z < 20 mm domain, as is most clearly seen

in the w′1,RMS and w′2,RMS plots.

Figure 5.5: RMS velocity, w′1,RMS, for plane II at y=51.75 mm.
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Figure 5.6: RMS velocity, w′2,RMS, for plane IIII at x=14.75 mm.

The RMS exhibit a random variance throughout the coordinate domain. This can be attributed

to statistical sampling, and is further emphasized by the convergence residual, which is discussed

in Section 5.2. Also of note is the increases in perceived RMS near the masked regions and the

edges of the FOV for the camera. These regions are artificially high, and would not be included in

a full result which includes measurements further downstream of the mixing vane. Processing and

analysis of this collected image data, however, is beyond the scope of this dissertation.
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Figure 5.7: RMS velocity, u′RMS, for plane II at y=51.75 mm.

Figure 5.8: RMS velocity, v′RMS, for plane IIII at x=14.75 mm.
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Reynolds shear stress was also calculated using the fluctuating velocity components. Due to

the nature of a 2D2C measurement, only 2 of the three components derived from Reynolds shear

stress were able to be measured with the vertical planes. Test 1 presented results for u′w′1 as in

Figure 5.9, and test 2 resulted in a measurement of v′w′2, which is contained in Figure 5.10.

Figure 5.9: Mean Reynolds shear stress, u′w′1, for plane II at y=51.75 mm.

Differences in convergence and PIV quality become more evident when shear stress is ana-

lyzed. As the fluctuating component and secondary statistics take more measurements to con-

verge, the combination of two results in a larger uncertainty, which correlates to less coherent

average measurements. Test 1, which presents results for u and w1 has higher overall values for

the shear stress, which indicates that the statistical convergence for this test was not as good as

test 2. Reasons for this are difficult to identify, although it could be attributed to a slight change

in the flow loop between the two test. A sparging line was added within the fluid storage tank,
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Figure 5.10: Mean Reynolds shear stress, v′w′2, for plane IIII at x=14.75 mm.

which reduced vibration, and minimized bubble appearance in the images collected by the CCD

cameras. Additional information is contained in Section 5.2, which highlights various uncertainty

components for the presented planes.
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5.1.3 Vorticity

For each velocity field measured, the associated vorticity component was calculated as in Equa-

tion 1.8. For test 1, ωy was calculated and is presented for plane II in Figure 5.11. Similarly, ωx

was calculated for the planes measured in test 2 and plane IIII is illustrated in Figure 5.12. These

vorticity fields show highly coherent and symmetric flow patterns.

Figure 5.11: Mean vorticity, ωy, for plane II at y=51.75 mm.

Sizes of the vorticity structures, which can be clearly seen in the ωi color contours can be used

for determination of mesh size, similar to characteristic length measurements, in high resolution

CFD calculations. These are useful for bridging gaps in resolution between DNS and LES or

filtered RANS. Further determination and use of these vorticity structures an illustration of possible

filter size is described later in Section 5.4.
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Figure 5.12: Mean vorticity, ωx, for plane IIII at x=14.75 mm.

5.2 Two Dimension Two Component Particle Image Velocimetry Uncertainty Results

5.2.1 Calibration & Digital Displacement Uncertainty Results

Uncertainty of magnification and digital displacement account for planes II and IIII, which

were the furthest away from the camera position while still exhibiting strong mixing vane influence

is shown in Figure 5.13 and 5.14, respectively. This component of is one of the largest contributors

to the total uncertainty for velocity. Vector elimination based on Eval can also clearly be seen at

the mixing vanes, where vector validation is poor, as well as the outside edge of the vector field,

where vector sampling is decreased.

This component of uncertainty represents the largest component of uncertainty for the first or-

der statistical mean velocities. This component could be reduced with higher resolution cameras,

as well as higher quality glass rods. Due to the commercial availability of the tubes used, a mini-

mum achievable physical uncertainty component would dwarf the other parts which are discussed
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Figure 5.13: Physical and magnification uncertainty for plane II at y=51.75 mm.

below. This was understood during quantification of the physical tolerances of the tubes and con-

struction of the rod bundle. Proof of concept for the combined measurement technique was the

primarily goal of this study, and was attained with the presented hardware setup.

5.2.2 Convergence Residual Results

Uncertainty due to residual convergence for planes II and IIII are shown as an example in

Figures 5.15 and 5.16, respectively. This uncertainty is calculated as described in Equation 4.10.

The random nature of this uncertainty component can be clearly seen in the apparent bright spots,

which have no well-defined pattern, unlike the physical calibration uncertainty. This uncertainty

component is fairly small when compared to the physical and magnification uncertainty, especially

at the last set when N=2000. This uncertainty is expected to trend toward zero as N →∞.

The convergence residual is even more emphasized for the fluctuating velocity RMS com-

ponents, which are presented in Figures 5.17 and 5.18 for planes II and IIII, respectively. It is
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Figure 5.14: Physical and magnification uncertainty for plane IIII at x=14.75 mm.

interesting to note the larger residuals near the subchannels, in particular nearest the edges of the

rods, which are indicated by the dotted lines. This is to be expected, as the curvature of the rods

along the line drawn from the point of reflection off the particle to the camera sensor would have

the largest number of interfaces to pass through with the most oblique angles possible. Additional

measurements are expected to decrease this uncertainty.

Results from the first test for u′RMS exhibit larger values of uncertainty overall when compared

to v′RMS. This may be attributed to the small improvements made to operation of the test loop

throughout the two tests, which reduced vibration in the mechanical structure as well as bubble

appearance which was discussed above.
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Figure 5.15: Residual uncertainty for mean transverse velocity of plane II at y=51.75 mm.

Figure 5.16: Residual uncertainty for mean transverse velocity of plane IIII at x=14.75 mm.
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Figure 5.17: Residual uncertainty for transverse RMS velocity of plane II at y=51.75 mm.

Figure 5.18: Residual uncertainty for transverse RMS velocity of plane IIII at x=14.75 mm.
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5.2.3 Propagated Statistical Uncertainty

An example of statistical uncertainty for planes II and IIII are shown in Figures 5.19 and 5.20,

respectively. This component of uncertainty is also relatively small when compared to magnifica-

tion. Although this component is expected to go to zero as N →∞ for some components, it does

not trend as quickly as the residual for mean components which are first order statistics.

Figure 5.19: Statistical uncertainty for mean transverse velocity of plane II at y=51.75 mm.

The random nature of this statistical uncertainty is somewhat visible in the minor tertiary peaks

which are exhibited in the bulk flow, especially in the middle of rods which are the larger gaps

between the dotted vertical lines. Although this is not as pronounced as is seen in the residual

uncertainty, it indicates the value of a large sample size to draw from. AsN →∞, This uncertainty

can be further reduced.

Statistical uncertainty components for the transverse RMS velocity components are portrayed
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Figure 5.20: Statistical uncertainty for mean transverse velocity of plane IIII at x=14.75 mm.

in Figures 5.21 and 5.22. These show a greater uncertainty than the first order statistical uncertainty

for the means discussed above. This correlates to a shift in dominant uncertainty, as these second

order statistics are of the same magnitude as the residuals, which is not the case for mean velocity

uncertainties. Additional measurements would aid in decreasing these values, which is the case for

all statistical uncertainty.

62



Figure 5.21: Statistical uncertainty for transverse RMS velocity of plane II at y=51.75 mm.

Figure 5.22: Statistical uncertainty for transverse RMS velocity of plane IIII at x=14.75 mm.
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5.2.4 Combined Uncertainty Results

For each measured and derived velocity component, each of the above illustrated uncertainties

were combined in quadrature as described in Equations 4.11. The combined uncertainty for mean

transverse velocity of planes II and IIII are presented in Figures 5.23 and 5.24, respectively.

Figure 5.23: Combined uncertainty for mean transverse velocity of plane II at y=51.75 mm.

Combined uncertainty for the first order statistical means can be seen to be dominated by the

physical calibration uncertainty. This uncertainty, while the largest source, was still well within

acceptable experimental error for the presented measurements, and approximately equal to toler-

ances of hardware used in loop and bundle construction. Improved manufacturing processes and

higher quality test section and rod materials may lead to a reduction in this uncertainty in future

experiments.

The combined uncertainty for RMS transverse velocity of planes II and IIII are presented in
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Figure 5.24: Combined uncertainty for mean transverse velocity of plane IIII at x=14.75 mm.

Figures 5.25 and 5.26, respectively. This uncertainty is seen to be random in nature, which is to be

expected for uncertainties of statistical components of a value measured in a statistically random

sampling manner, as was accomplished for this dissertation. More measurements are the only way

to greatly reduce this uncertainty, which was within acceptable experimental error for the data set

presented.
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Figure 5.25: Combined uncertainty for transverse RMS velocity of plane II at y=51.75 mm.

Figure 5.26: Combined uncertainty for transverse RMS velocity of plane IIII at x=14.75 mm.
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5.3 Combined Two Dimension Two Component Particle Image Velocimetry Results

As described in Section 4.4, each of the planes mean data was concatenated into a single

dataset. For each test 1 and 2, this resulted in two 3D2C data sets each with 2.9×106 vector points.

Many of the planes, which exhibited large x- or y-normal cross sections of rods, were useful in

quantifying subchannel velocity profiles, although they contained largely empty vector data within

the rods. The 3D2C measurements were sliced in a z-normal plane, and plotted for various axial

positions.

5.3.1 Mean Velocity

To compare the axial velocity measurements made in tests 1 and 2, w1 and w2 were plotted side

by side at a z plane nearest to the mixing vane tips, which are presented in Figure 5.27a. These

redundant measurements were qualitatively compared to one another to determine the effectiveness

of concatenating planes which have a relatively thick ∆xi when compared to the vector spacing

along a plane’s height or width. The axial velocity peaks can be somewhat distinguished in the

subchannels to be at opposing positions approximately 30◦ or 60◦ off an x-parallel line drawn

through each subchannel, as is exhibited in the measurements made in the KAERI benchmark [8].

Data presented in Holloway et al and others [5, 6, 10] show similar shapes, but at a 90◦ rotation.

This is highlighted further in the interpolated results in Section 5.4.

The flattening of the axial velocity profile downstream of the mixing vane can be observed

in comparison between the slices at z=6.03 and 36.87 mm. This flattening of velocity profile

correlates to a spatial average of 2.84 m/s which is calculated from desired Re near 28,000. This

profile flattening is one of the primary reasons for use of mixing vanes in PWRs, as a flattened

velocity profile does not exhibit the high levels of mixing as required for effective thermal transfer

in a coolant.

The mean transverse velocity components were also plotted side by side for comparison at a

number of axial heights and are portrayed in Figure 5.28. The velocity profiles are plotted with the

same color gradient to more clearly portray the differences in velocity near and far downstream of
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(a) z=6.03 mm

(b) z=36.87 mm

Figure 5.27: Mean axial velocity components w1, and w2 for test 1 (left) and test 2 (right), respec-
tively. Slices at z=6.03 mm (5.27a) and z=36.87 mm (5.27b).

the mixing vane. At the lower z=6.03 mm, the alterations to transverse velocity can be seen to be

highly local with large gradients. Each of the subchannels appears to have two large competing

velocity trends. Further from the mixing vane (z=36.87 mm), these strong transverse velocity

peaks appear to exist more in the narrow space between adjacent rods, which alternate direction
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with each p. Subchannels still exhibit crosscurrent flow, which shows a symmetry about any 2p

shift, although it is not as strong as very near to the vanes. This is to be expected for any viscous

fluid, which tends to smooth velocity profiles as is shown with the axial components of the fluid

velocity.

(a) z=6.03 mm

(b) z=36.87 mm

Figure 5.28: Mean transverse velocity components u, and v for test 1 (left) and test 2 (right),
respectively. Slices at z=6.03 mm (5.28a) and z=36.87 mm (5.28b).
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5.3.2 Fluctuating Root Mean Square & Shear Stress

The RMS was calculated for each velocity component measured in both tests, as illustrated in

Section 5.1. Similarly as was done with the mean components, the redundant axial velocity RMS

components were plotted side by side to qualitatively determine an effectiveness of the scanning

PIV method. Results for the RMS slices are contained in Figure 5.29. This plot begins to show

the possible weakness of the scanning method, as patterns become much more difficult to discern,

and symmetry is less coherent between the two tests. Still, good symmetry can be seen within a

single tests concatenated results from a 2p shift. This can be similarly observed in the RMS of the

horizontal velocity components which are contained in Figure 5.30.

Moving further from the mixing vane, as in Figures 5.29b and 5.30b, the decay of turbulence

can be observed. A greater than 80% decrease in relative turbulent intensity can be observed

just within the FOV for the single camera which was utilized for ROI analysis. Of interest in

the further downstream plots is the perceived increase in RMS velocity components near the y

maximum coordinate in test 1 and near the x minimum coordinate in test 2. These correlate to the

maximum distance between the particle illuminating laser plane and the CCD camera, which acts

as a qualitative indicator in the effect of the MIR in image collection. As discussed in Section 5.1,

positions which are “behind” relatively large number of rod/fluid interfaces experience greater

refraction of the particle-reflected light. This refraction of light throughout the test section before

it is able to reach the camera adds some uncertainty to each measurement. This leads to an increase

in statistical uncertainty, which is difficult to quantify. Ways to reduce this uncertainty may include

using a camera at each side of the test section, when possible, to minimize the material through

which the illumination plane is observed; or the collection of more image pairs, which will always

lead to a decrease in statistical uncertainty.

For each frame, the two fluctuating components were combined in a simple product termed the

Reynolds shear stress, which is the difficult term in Equation 1.6. The concatenated shear stress

datasets were sliced at the same z planes 6.03 mm and 36.87 mm for analysis which are shown in

Figure 5.31.
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(a) z=6.03 mm

(b) z=36.87 mm

Figure 5.29: Axial RMS velocity components w′1,RMS, and w′2,RMS for test 1 (left) and test 2 (right),
respectively. Slices at z=6.03 mm (5.29a) and z=36.87 mm (5.29b).

As it is for calculation in any CFD effort, shear stress is one of the most difficult derived quan-

tities to measure. This is demonstrated in the irregular patterns and overall incoherent nature of

shear stress plots. Interior subchannels exhibit some symmetry among 2p shifts, which is expected

for the mixing vane geometry, and also seen in the previous plots. These patterns are much more
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(a) z=6.03 mm

(b) z=36.87 mm

Figure 5.30: Transverse RMS velocity components u′RMS, and v′RMS for test 1 (left) and test 2
(right), respectively. Slices at z=6.03 mm (5.30a) and z=36.87 mm (5.30b).

difficult to discern in the exterior and near wall subchannels. This is especially difficult to combat,

as only one component of shear stress can be measured in a 2D2C PIV measurement plane, which

means that there is no redundancy between the two tests for comparison. While large areas of

increased Reynolds shear stress can be seen in every other main subchannel, very little can be de-
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termined other than large gradients exists near the mixing vane tips. Additional study of these same

planes with 2D3C SPIV may be able to determine more of the shape of the shear stress profiles,

and should be pursued further.

As seen in the velocity RMS plots, a rapid decay of turbulence and therefor shear stress, is

observable between the slice near the mixing vane and further downstream, Figures 5.31a and

5.31b, respectively. This is to be expected within the rod bundle, which acts as an effective flow

straightener without a mixing vane to disturb the fluid streamlines.

Further work to quantify Reynolds shear stress profiles would be beneficial for the presented

geometry, especially in a z-normal plane, which would be able to measure the third component of

shear stress, u′v′, which could not be quantified with the current PIV setup. Otherwise, with the

current dataset, better resolution is desired to speak quantitatively about shear stress profiles within

the PWR geometry. An attempt to improve this resolution is undertaken in Section 5.4.

5.3.3 Vorticity

Vorticity, as described by Equation 1.8, was calculated for each of the measurements taken in

both tests. The mean quantity of vorticity was similarly concatenated along with the velocity, RMS,

and shear stress components as shown in Section 5.1. The mean transverse vorticity components,

ωy, and ωx, were plotted at the same z slices in Figure 5.32.

Because vorticity is a calculation based on first order statistics, ie mean velocity, it shows much

better coherent structures than those seen in the velocity RMS or shear stress profiles. Within a

single test slice, good symmetry can be seen between subchannels separated by 2p. As well,

similar vortical structures can be seen between the two test slices, which is similarly observed

in the velocity profiles. At z=6.03 mm (Figure 5.32a), vector elimination can be clearly seen

in a regular pattern where the vanes protrude up into the dataset slice, which is the same vector

elimination as exhibited in the other measured variables and derived quantities. More pronounced

peaks and patterns in the vorticity can be seen downstream of the mixing vanes (Figure 5.32b), than

when compared to the second order statistical quantities, which exhibit rather chaotic behavior far

from the driving force of the mixing vane.
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(a) z=6.03 mm

(b) z=36.87 mm

Figure 5.31: Mean Reynolds shear stress u′w′1, and v′w′2 for test 1 (left) and test 2 (right), respec-
tively. Slices at z=6.03 mm (5.31a) and z=36.87 mm (5.31b).

Because of the apparent size of the vortical structures, it appears they may be good candidates

for resolution improvement via interpolation, as presented in Section 5.4.
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(a) ωi z=6.03 mm

(b) ωi z=36.87 mm

Figure 5.32: Mean transverse vorticity components ωy, and ωx for test 1 (left) and test 2 (right),
respectively. Slices at z=6.03 mm (5.32a) and z=36.87 mm (5.32b).
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5.4 Interpolated Three Dimension Three Component Particle Image Velocimetry Results

Following observation of the sliced data, an attempt to improve resolution for the data, as well

as a uniform grid mapping for 1:1 variable comparison, was achieved via the trilinear interpola-

tion described in Section 4.4. For an arbitrary selected (x, y, z) in the ROI, interpolation occured

between all eight adjacent datapoints which were inversely weighted based on distance from the

point of interest. Interpolated results are plotted on a simply modified z+ axis which is defined as

in Equation 5.1.

z+ = z − zvane, (5.1)

where zvane is the length of the mixing van tip away from the edge of the straps on the spacer

grid, approximately 6.06 mm as indicated in Figure 5.33. Due to the size of an average pixel in

the vertical 2D2C planar measurements, the spatially averaged position of the first vector placed

above the mixing vane’s tips does extend slightly into the vanes, however, this effect is very small,

as it is less than two pixels (<0.06 mm).

Figure 5.33: Length of mixing vane downstream of spacer grid used in determination of zvane.

To better observe the high discretized interpolated data the four center subchannels, oriented as

shown in Figure 5.34, were selected for data presentation. These subchannels represent the least
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affected by no slip behavior due to the test section polycarbonate walls. As such, these four center

subchannels are the closest to what may be seen in an average subchannel in a prototypical PWR.

Figure 5.34: Cross section of mixing vane spacer grid region used in presentation of center four
subchannel analysis.

5.4.1 Mean Velocity

To assess the trilinear interpolation results, and to compare velocity measurements made be-

tween the two tests, w1 and w2 were plotted side by side at a plane nearest to the tips of the mixing

vane in Figure 5.35. As in Section 5.3, these redundant measurements results provide a qualitative

assessment of the ability of the 45 plane coarse discretization to capture the same flow character-

istics which are seen in the >290 vector fine discretization of the same spatial domain.

The axial velocity component clearly shows the dual peak pattern in the center four subchan-

nels. These velocity peaks at approximate 30◦ or 60◦ lines off of x have been seen in studies such

as Holloway et al and others [5, 6, 10], as well as the KAERI benchmark [8]. The peaks are in

the open corners of the subchannels which are visible in Figure 5.34, while residing closer to the

following flat surface of the adjacent mixing vane. Peaks appear to be independent of the spring or
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(a) w1 (b) w2

Figure 5.35: Mean axial velocity for center four subchannels at z+=0.0DH (z=6.03 mm).

dimple shape below, which is likely due to the extremely small scale velocity disturbances these

features generate. The symmetric peaks can be distinguished in both tests’ results, and show good

coherence in most regions which were not masked. Over masking in some of the regions near the

rods can be seen to have eliminated a number of vectors, which prevented interpolation of data

close to some of the rods.

Flattening of the velocity axial profile was again observed downstream of the mixing vane,

as the profiles were plotted at z+=3.0DH in Figure 5.36. This velocity approaches the expected

average from the determination of Re, which is equal to 2.84±0.05 m/s.

Profiles for the mean transverse velocity components were also interpolated and plotted for

various heights downstream of the mixing vane. The profiles for both u and v at the mixing

vane tips are shown in Figure 5.37. Good symmetry of the dominant transverse velocity peaks

can be observed between the nonadjacent subchannels, as is expected for the presented geometry.

As well, the swirl pattern of non-dominant velocity components has been clearly resolved, even

though it was mostly indistinguishable in the combined profile slices without interpolation. This is
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(a) w1 (b) w2

Figure 5.36: Mean axial velocity for center four subchannels at z+=3.0DH (z=36.84 mm).

a good indicator that most, if not all, velocity scales have been resolved with the presented planar

discretization.

(a) u (b) v

Figure 5.37: Mean transverse velocity for center four subchannels at z+=0.0DH (z=6.03 mm).

79



Transverse velocity profiles further downstream of the mixing vane were plotted side by side.

The downstream profiles, in Figure 5.38, show the movement of the transverse velocity peaks

into the narrow space between rods, rather than the interior subchannel peaks which are seen in

the profiles immediately downstream of the vanes. The same expected symmetry of nonadjacent

subchannels can again be observed.

(a) u (b) v

Figure 5.38: Mean transverse velocity for center four subchannels at z+=3.0DH (z=36.84 mm).

With a 1:1 mapping of u, v, w, the vector components were then combined into a single ve-

locity vector magnitude, and plotted on the same slices in z. In-plane direction of the vectors was

indicated with magnitude arrows in Figure 5.39. Vectors were sample at 1/3 for clarity in visu-

alization. These plots show most clearly the previously seen axial-slice profiles as shown in the

studies by Holloway et al and others [5, 6, 10], as well as the KAERI benchmark [8].

Decay of the highly swirling velocity profile can be seen between the two axial slice profiles at

z+=0.0DH (z=6.03 mm) and z+=3.0DH (z=36.84 mm). The velocity approaches a two-directional

shear flow profile, with shear boundary layers existing along diagonal lines where x = y, which are
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(a) (b)

Figure 5.39: Mean velocity magnitude, |ui|, with transverse direction indicated by 1/3 sampled
arrows for center four subchannels at z+=0.0DH (5.39a) and z+=3.0DH (5.39b).

parallel in each subchannel. Also of note is the clearly visible symmetry at the most narrow point

between rods at the edges of the interior four subchannel domain. This repeatedly observed two-

subchannel symmetry may be useful for system codes or subchannel calculations. Unfortunately,

due to the coarse discretization of the direction normal to the most narrow width of the subchannel

between adjacent rods, additional information about highly discretized momentum flux between

subchannels cannot be determined.

5.4.2 Vorticity

From the mean fields presented in Section 5.3, a highly discretized vorticity field was generated

from the interpolation described in Section 4.4. The absolute vorticity fields at the mixing vane tips

are presented in Figure 5.40. The alternate subchannels again show good symmetry, even with the

interpolation occurring from datasets which were not collected on the same domain. This is a good

indicator that the number of planes used to discretize the ROI in the test section was sufficient to

capture most of the scales of velocity. Additional planes may be able to better resolve the smaller
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scale velocity components, however this may also require an improved laser optics setup, which

was not readily available.

(a) ωx (b) ωy

Figure 5.40: Mean transverse vorticity contours interpolated for center four subchannels at
z+=0.0DH (z=6.03 mm).

To quantify a characteristic vortical structure, the absolute vorticity field was nondimension-

alized using the characteristic timescale, which is the largest eddy turnover time as described by

Equation 4.1. With the vorticity nondimensionalized, contour lines where ωitL=±1 were presented

in Figure 5.41, and where ωitL=±2 presented in Figure 5.42 for the axial slice immediately down-

stream of the mixing vanes (z+=0.0DH).
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(a) ωxtL (b) ωytL

Figure 5.41: Mean transverse vorticity contours where ωitL=±1 for center four subchannels at
z+=0.0DH (z=6.03 mm).

(a) ωxtL (b) ωytL

Figure 5.42: Mean transverse vorticity contours where ωitL=±2 for center four subchannels at
z+=0.0DH (z=6.03 mm).
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6. CONCLUSIONS & FUTURE WORK

The objective of the presented research was to produce full field velocity data in a 5×5 square-

lattice rod bundle with PWR prototypical mixing vane spacer grids. Specifically, the experimental

data was intended to quantify uncertainty of vector measurement and positioning within the ROI,

as well as the first to measure velocity near, and even below, the tips of the mixing vanes. The

methodology to meet this objective was the utilization of an MIR test section and mock fuel rod

bundle. To this end, a new experimental flow facility with laser-based optical measurement tech-

niques such as 2D2C PIV and 2D3C SPIV was constructed.

Images were collected in each of forty five, 1.5 mm thick, planes in both a y-normal, and

x-normal orientation. The images were used in generation of a statistical significant number of

velocity measurements of u,w, and v, w, respectively. First- and second-order statistics were cal-

culated for each of the 90 measurement sets, as well as derived quantities such as Reynolds shear

stress and vorticity. The ensemble averaged datasets were concatenated based on laser sheet place-

ment within the mixing vane test section ROI. Slices of the datasets were then quantified at various

z-normal planes which were axially downstream of the mixing vane.

A detailed UQ was performed on the two datasets, which employed a number of recognized

methods for determining statistical uncertainty, as well as a novel UQ of the physical calibration,

and a statistical residual calculation for generation of a combined expanded uncertainty for each

quantity presented.

From the two combined datasets, a highly resolved full 3D3C velocity vector field was gener-

ated using a simple trilinear interpolation algorithm for the center four subchannels, which most

closely represent an average subchannel far from wall effects in a prototypical PWR geometry.

The interpolated data revealed a number of recognized characteristics which have been observed

by earlier studies of similar geometry. As well, redundant data showed good comparison after in-

terpolation, indicating a verification of the scanning PIV method employed. Derived components

from the dataset showed good symmetry, as expected from physical phenomena.
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Presented experimental work may be used to further the understanding of in-core coolant be-

havior in prototypical PWR geometry to facilitate possible uprates, as well as license extension

efforts. The data may be used for improvements in system and subchannel codes which are com-

monly used in efforts to meet regulatory needs. Further, the highly resolved data presented may be

used for V&V of CFD turbulence models, which demand detailed vetting before use in generalized

design efforts.

Further work includes a large number of images which were collected, and are available for

use in expansion of the current 3D3C dataset. These images were collected concurrent with the

presented data source, and provide similarly detailed data beyond the presented 4.8DH ROI. This

data may also provide a further understanding of the length of a mixing vane’s effects within the

rod bundle.

An additional image set was also collected with both cameras simultaneously as z-normal

planes for use in 3D2C SPIV analysis. This image set would be useful in a similar concatenation

manner for generation of another 3D3C velocity field to be compared to the current presented data

set. As well, images were collected upstream of the mixing vane which may be used for boundary

condition determination in CFD analysis efforts.
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APPENDIX A

TEST SECTION DRAWINGS

Drawings used in the fabrication of the test section were unavailable at the time of loop design

and construction. The following drawings were used in the approximations of as-built assembly of

the rod bundle and test section. All units are presented in inches.
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APPENDIX B

PLENA DRAWINGS

The following drawings were used in the fabrication of the plena which joined the test section

with the constructed flow loop. All units are presented in inches.
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APPENDIX C

CALIBRATION DATA

The following data was collected from images of the LaVision 058-5-DSDP calibration plate.

The number of planes used in the determination of M was constrained by the depth of the calibra-

tion box and the thickness of the plate.

Table C.1: Magnification factor calculations for measurements of u and w1. Depth of planes, y,
indicates nominal center position of the 1.5 mm thick sheet.

Plane y M UM
label (mm) (mm/pixel) (mm/pixel)

A 0.75 0.028468 0.00020271
B 2.25 0.028444 0.00020758
C 3.75 0.028446 0.00021149
D 5.25 0.028445 0.00021327
E 6.75 0.028440 0.00021327
F 8.25 0.028528 0.00021210
G 9.75 0.028438 0.00021101
L 17.25 0.028434 0.00022474

M 18.75 0.028435 0.00021848
N 20.25 0.028439 0.00020447
O 21.75 0.028433 0.00020413
P 23.25 0.028434 0.00020448
U 30.75 0.028440 0.00020161
V 32.25 0.028438 0.00020417
W 33.75 0.028431 0.00020843
X 35.25 0.028441 0.00020627

mean N/A 0.028446 0.00020926
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Table C.2: Magnification factor calculations for measurements of v and w2. Depth of planes, x,
indicates nominal center position of the 1.5 mm thick sheet.

Plane x M UM
label (mm) (mm/pixel) (mm/pixel)
AAA 65.75 0.028484 0.00029787
BBB 64.25 0.028485 0.00024864
CCC 62.75 0.028486 0.00024597
DDD 61.25 0.028485 0.00026202
EEE 59.75 0.028483 0.00026236

JJJ 52.25 0.028483 0.00026205
KKK 50.75 0.028486 0.00026453
LLL 49.25 0.028485 0.00025834

MMM 47.75 0.028484 0.00024522
NNN 46.25 0.028483 0.00024291
OOO 44.75 0.028485 0.00024766
PPP 43.25 0.028487 0.00024592

QQQ 41.75 0.028482 0.00031352
VVV 34.25 0.028487 0.00036713

WWW 32.75 0.028478 0.00023582
mean N/A 0.028484 0.00026666
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APPENDIX D

TWO DIMENSION TWO COMPONENT RESULTS

The following section contains results for mean velocity components, fluctuating RMS, Reynolds

shear stress, and vorticity for a selection of planes in the bundle. Results presented represent the

last set means for convergence analysis, N=2000. Planes selected correspond to positions in the

near-center of subchannels as indicated in Table D.1.

Additional planes which intersect rods have been omitted for brevity. Data collected from all

planes is available upon request.

Table D.1: Plane positions for select full subchannel planes.

Test Span Position Plane Position
No. Coordinates Coordiante Label (mm)

B 2.25
J 14.25

1 xz y R 26.25
AA 39.75
II 51.75
QQ 63.75
QQQQ 2.75
IIII 14.75

2 yz x AAAA 26.75
RRR 40.25
JJJ 52.25
BBB 64.25
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Figure D.1: w, y = 2.25mm. Figure D.2: w, y = 14.25mm.

Figure D.3: w, y = 26.25mm. Figure D.4: w, y = 39.75mm.

Figure D.5: w, y = 51.75mm. Figure D.6: w, y = 63.75mm.
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Figure D.7: w, x = 2.75mm. Figure D.8: w, x = 14.75mm.

Figure D.9: w, x = 26.75mm. Figure D.10: w, x = 40.25mm.

Figure D.11: w, x = 52.25mm. Figure D.12: w, x = 64.25mm.
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Figure D.13: u, y = 2.25mm. Figure D.14: u, y = 14.25mm.

Figure D.15: u, y = 26.25mm. Figure D.16: u, y = 39.75mm.

Figure D.17: u, y = 51.75mm. Figure D.18: u, y = 63.75mm.
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Figure D.19: v, x = 2.75mm. Figure D.20: v, x = 14.75mm.

Figure D.21: v, x = 26.75mm. Figure D.22: v, x = 40.25mm.

Figure D.23: v, x = 52.25mm. Figure D.24: v, x = 64.25mm.
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Figure D.25: ωy, y = 2.25mm. Figure D.26: ωy, y = 14.25mm.

Figure D.27: ωy, y = 26.25mm. Figure D.28: ωy, y = 39.75mm.

Figure D.29: ωy, y = 51.75mm. Figure D.30: ωy, y = 63.75mm.
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Figure D.31: ωx, x = 2.75mm. Figure D.32: ωx, x = 14.75mm.

Figure D.33: ωx, x = 26.75mm. Figure D.34: ωx, x = 40.25mm.

Figure D.35: ωx, x = 52.25mm. Figure D.36: ωx, x = 64.25mm.
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Figure D.37:
√
w′w′, y = 2.25mm. Figure D.38:

√
w′w′, y = 14.25mm.

Figure D.39:
√
w′w′, y = 26.25mm. Figure D.40:

√
w′w′, y = 39.75mm.

Figure D.41:
√
w′w′, y = 51.75mm. Figure D.42:

√
w′w′, y = 63.75mm.
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Figure D.43:
√
w′w′, x = 2.75mm. Figure D.44:

√
w′w′, x = 14.75mm.

Figure D.45:
√
w′w′, x = 26.75mm. Figure D.46:

√
w′w′, x = 40.25mm.

Figure D.47:
√
w′w′, x = 52.25mm. Figure D.48:

√
w′w′, x = 64.25mm.
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Figure D.49:
√
u′u′, y = 2.25mm. Figure D.50:

√
u′u′, y = 14.25mm.

Figure D.51:
√
u′u′, y = 26.25mm. Figure D.52:

√
u′u′, y = 39.75mm.

Figure D.53:
√
u′u′, y = 51.75mm. Figure D.54:

√
u′u′, y = 63.75mm.
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Figure D.55:
√
v′v′, x = 2.75mm. Figure D.56:

√
v′v′, x = 14.75mm.

Figure D.57:
√
v′v′, x = 26.75mm. Figure D.58:

√
v′v′, x = 40.25mm.

Figure D.59:
√
v′v′, x = 52.25mm. Figure D.60:

√
v′v′, x = 64.25mm.
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Figure D.61: u′w′, y = 2.25mm. Figure D.62: u′w′, y = 14.25mm.

Figure D.63: u′w′, y = 26.25mm. Figure D.64: u′w′, y = 39.75mm.

Figure D.65: u′w′, y = 51.75mm. Figure D.66: u′w′, y = 63.75mm.
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Figure D.67: v′w′, x = 2.75mm. Figure D.68: v′w′, x = 14.75mm.

Figure D.69: v′w′, x = 26.75mm. Figure D.70: v′w′, x = 40.25mm.

Figure D.71: v′w′, x = 52.25mm. Figure D.72: v′w′, x = 64.25mm.
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Figure D.73: Eval, y = 2.25mm. Figure D.74: Eval, y = 14.25mm.

Figure D.75: Eval, y = 26.25mm. Figure D.76: Eval, y = 39.75mm.

Figure D.77: Eval, y = 51.75mm. Figure D.78: Eval, y = 63.75mm.
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Figure D.79: Eval, x = 2.75mm. Figure D.80: Eval, x = 14.75mm.

Figure D.81: Eval, x = 26.75mm. Figure D.82: Eval, x = 40.25mm.

Figure D.83: Eval, x = 52.25mm. Figure D.84: Eval, x = 64.25mm.

138


	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Motivation, Verification, and Validation
	Theory and Governing Equations
	Previous Work & Literature Review

	PROJECT SCOPE
	Objectives
	Requirements & Specifications

	FACILITY DESCRIPTION
	Matched Index of Refraction Materials
	Fluid Considerations
	Visualization Test Section
	Plena
	Flow Loop and Instrumentation
	Flow Conditions for Re=27,390

	PARTICLE IMAGE VELOCIMETRY METHODOLOGY
	Two Dimension Two Component Image Collection
	Particle Image Velocimetry Cross Correlation & Image Processing

	Two Dimension Two Component Calibration
	Particle Image Velocimetry Uncertainty Quantification
	Calibration & Digital Displacement Uncertainty
	Uncertainty as Convergence Residual
	Statistical Uncertainty Propagation
	Coordinates uncertainty

	Full Field Three Dimension Two Component, and Three Dimension Three Component Reconstruction
	Three Dimension Three Component Reconstruction via Trilinear Interpolation


	RESULTS
	Two Dimension Two Component Particle Image Velocimetry Results
	Mean Velocity
	Fluctuating Root Mean Square & Shear Stress
	Vorticity

	Two Dimension Two Component Particle Image Velocimetry Uncertainty Results
	Calibration & Digital Displacement Uncertainty Results
	Convergence Residual Results
	Propagated Statistical Uncertainty
	Combined Uncertainty Results

	Combined Two Dimension Two Component Particle Image Velocimetry Results
	Mean Velocity
	Fluctuating Root Mean Square & Shear Stress
	Vorticity

	Interpolated Three Dimension Three Component Particle Image Velocimetry Results
	Mean Velocity
	Vorticity


	CONCLUSIONS & FUTURE WORK
	REFERENCES
	APPENDIX TEST SECTION DRAWINGS
	APPENDIX PLENA DRAWINGS
	APPENDIX CALIBRATION DATA
	APPENDIX TWO DIMENSION TWO COMPONENT RESULTS

