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ABSTRACT

Global energy consumed by communication and information technologies is expected to in-

crease rapidly due to continuous usage of wireless standards and the expansion for their require-

ments [1]. In the next generation wireless communications, Multi Input and Multi Output (MIMO)

systems are most promising technology to achieve high spectral efficiencies, while going past var-

ious challenges like resource and energy constraints [2]. There exists many detection algorithms

like Maximum Likelihood (ML), Zero Forcing (ZF), Minimum Mean Square Error (MMSE) which

have low silicon complexity but consume significant power for high-end MIMO systems, due to

their high computational complexity.

And then there are certain low power detection algorithms like real domain breadth first search

K-best, with either conventional enumeration or Schnorr Euchner (SE) based enumeration. This

improvement through either, comes with cost of comparatively high silicon complexity and sacri-

fices the performance in terms of detection bit error rate (BER). The complex domain equivalent

may improve the BER performance but it’s dedicated algorithm ensures even higher silicon com-

plexity. Several modifications have been performed on original complex domain K-best algorithm

to decrease its high silicon complexity, retaining the better performance of the system.

This work focuses on study and implementation of original real SE based K-best algorithm [3].

It also features my attempt to perform theoretical analysis of original complex domain detection

algorithm, and to implement modified [4] and improved versions of complex domain to decrease

its high silicon complexity, retaining BER performance. This work also focuses on exploration and

implementation of past attempts on design modifications of complex domain algorithms and com-

pare them across different attributes such as performance, computational and silicon complexity.

Few system level and algorithmic level enhancements have been proposed and implemented for

low complexity detectors explored. Dynamic fixed point iterative version of original real domain

detector [3] has been studied and implemented, along with possible enhancements for complex

domain detector. Pipelined hardware architecture of real domain SE based K-best detector [5] has

ii



also been studied as part of this work, with the intention of extending this to dynamic fixed point

version and also complex domain detector.
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1. INTRODUCTION

The demand for high spectral Wireless Communications have been increasing rapidly in many

applications and also plays a crucial role in many technological advancements. The exploration of

spatial dimension can increase the throughput of the wireless communication system and can meet

the bandwidth requirements of modern day applications and customers. This technology termed

as Multi Input Multi Output (MIMO) systems is the most promising technology to build next

generation wireless systems because of their diversity gain and spatial multiplexing capabilities.

The vast usage of various networking devices clearly defines the importance of such technologies

and the need for their development and implementation in practical usages. Various emerging

applications resulted in many wireless standard protocols and bandwidth specifications. However

the increasing demand for certain bandwidth and high data rates may degrade the quality of data

transmission. The available spectrum of bandwidth should be utilized efficiently which can be state

of the art wireless communication algorithms and their power efficient VLSI implementations. [6]

1.1 MIMO Systems & Technology

Multi-path signal propagation by usage of more than single antenna at transmitting and re-

ceiving end of the wireless communication is referred to as Multi input Multi output systems.

The channel throughput of over 480 Mbps used in IEEE 802.11n wireless LAN standard was

achieved using MIMO technology. Due of their higher spectral efficiency, they can easily satisfy

high throughput requirements compared to single antenna aided communication systems. MIMO

systems exploit the usage of spatial dimension which helps in tackling resource constraint and

impairment problems in wireless communications.

The spatial dimension along with time and frequency division multiplexing defines MIMO

systems as most promising technology for various important applications like Worldwide Interop-

erability for Microwave Access (WiMAX) [7], Wireless Local Area Network (WLAN) [8]. The

antennas at source and receiver ends can be used together to minimize BER or to increase data
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bandwidth. Hence a Trade off between Quality of Service (QoS) and spectral efficiency can be

achieved by varying the diversity gain and multiplexing gain, displayed by MIMO systems. The

channel reliability can be increased by beam-forming and space time coding techniques. This is

referred to as diversity gain and the corresponding diversity order is mathematically represented

as slope of BER graphical representation of the channel reliability with respect to its Signal to

Noise Ratio (SNR) value. Such high reliability of transmission can be achieved by transmitting

redundant information across different propagation paths in the system. Thus channel interference

and independent fading can be overcome with redundant information received at the other end,

decreasing the co-channel interference value significantly.

The different propagation paths can also be used to transmit different sources of information

thus increasing the bandwidth and degrees of freedom in the system. This is possible at cost of

lower reliability and possibly high amount of bit errors across the transmission channel. The spa-

tial multiplexing MIMO systems can be compared to Orthogonal Frequency Division Multiplexing

(OFDM) systems where sub-channels of different adjacent frequencies transmit independent mod-

ulated data but with the advantage and possibility of creating various sub-channels within same

bandwidth. As the name suggests, each transmitted signal is multiplexed onto different number

of spatial channels, which is equal to number of receiver antennas. This possibility leads to Multi

User MIMO (MU-MIMO), where different independent spatial information can be transmitted to

multiple users at the receiver end.

Spatial multiplexing MIMO systems showcase their advantage in high data bandwidth with the

cost of channel transmission reliability and special attention needs to be given to the design of

antenna at receiver end to improve reliability of multiplexed transmission. Moreover designing en-

ergy efficient MIMO receiver antennas with high reliability is one of the most challenging tasks due

to spatial interference in the channel and resulting complex implementation of signal detectors, to

be integrated on each receiver antenna [1]. This has motivated me to explore various low complex-

ity detection algorithms for spatially multiplexed MIMO systems and the possible enhancements

that can be made to either, decrease silicon or computational complexity, or to decrease BER of
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MIMO detectors. To define the importance of such low complexity detection algorithms and to

display impact of enhancements made to them, I have decided to implement the low complex-

ity detection algorithms and their enhancements made, on High M-QAM constellations and then

advance our exploration onto massive MIMO systems.

1.2 Quadrature Amplitude Modulation

When two carriers with phase difference of 90 degrees are modulated, two dimensional bit

to symbol mapping can be achieved due to combination of amplitude and phase variations. The

amplitude variation of each symbol refers to distance of symbol from the center, and the phase vari-

ation contributes to angular direction of symbol. This results in Quadrature Amplitude Modulation

(QAM), which is combination of Amplitude Shift Keying (ASK) and Phase Shift Keying (PSK).

QAM modulation is widely applied in digital transmission of radio communications ranging from

cellular technology to various wireless applications, due to its higher data bandwidth. Since it

is derived from independent double side-band suppressed carries, the possible data bandwidth is

twice the bandwidth of ordinary modulation techniques, when compared across same number of

symbols.

For an M-Ary QAM modulation, each symbol is composed of log2(M) bits and the correspond-

ing constellation diagram consists of
√
M rows and

√
M columns with total number of M symbols

in constellation diagram. All symbols along same row have identical second half number of bits

and all symbols along same column have identical first half number of bits. This observation gives

rise to the concept of real domain and complex domain part of complex symbol representations in

the constellation diagram.

Let us take an example of 64-QAM and try to understand its constellation diagram and its

organization, from mathematical point of view. Figure 1.1 represents constellation diagram of

64-QAM which was directly generated from MATLAB.

A 64-QAM constellation diagram, as shown above, has 64 symbols in total, spread across 8

rows and 8 columns. Each constellation symbol has been constructed from 6 bits, before transmit-

ting them across wireless medium. It can be deduced that all six symbols across same row have
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Figure 1.1: 64-QAM Constellation Diagram

identical second three bits, and different last three bits, resulting in real domain part of complex

representation and all six symbols across same column have identical first three bits and different

last three bits resulting in complex domain part of complex representation. Hence one complex

symbol can be split into two real domain symbols for computational processing for detection. This

representation concept has been used to implement two different low complex detection algorithms

as we see later in this research work.

As we increase the modulation order, we can achieve higher levels of spectral efficiency and
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can transmit data at faster rates. More information can be transmitted across the channel, with same

amount of power consumption as one symbol of high modulation order consists of more number of

bits. But as we increase modulation order, their symbols become more susceptible towards noise

and channel interference. Currently, due to lack of cutting-edge low power MIMO detectors, wire-

less communication systems have been using dynamic modulation orders to transmit data through

wireless medium. The modulation order is adapted based on channel characteristics observed at re-

ceiver antennas. Lower modulation techniques can be used to perform reliable transmission of data

with lower bandwidth, and higher modulation techniques can be used to increase data transmission

rates, sacrificing performance, thus ultimately leading to redundant transmission of data.

Therefore, in this work, I have focused on high order constellations like 64-QAM, 256-QAM

and 1024-QAM. The susceptible behaviour of symbols at high modulation order, makes it harder

to design low complexity MIMO detector, that consumes low power and can concurrently achieve

BER performance comparable to Maximum Likelihood (ML) detection algorithm. I have focused

on exploring such existing algorithms which have previously displayed decent BER performance

on high modulation orders, and I have made my attempt, to make enhancements to existing algo-

rithms where ever it seemed necessary and possible, aiming to either improve BER performance

or to further decrease power consumption.

1.3 Shannon Hartley Theorem

Shannon Hartley defines the theoretical limit for information transmission rate through the

channel. With specified noise interference and bandwidth, it gives an upper limit for amount

of error free digital information that can be transmitted over a communication channel [9]. The

Shannon Hartley equation for channel capacity of Single Input Single Output (SISO) system is

defined in (1.1) below.

C = B × log2(1 + SNR) (1.1)

where C is Channel Capacity, B is Channel Bandwidth, SNR is Signal Noise Ratio.
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The channel capacity can be increasing by increasing channel bandwidth. But this also in-

creases vulnerability of transmission due to faster modulation carrier and multiple path fading, as

expected. But introducing multiple signal paths by expanding along spatial dimension, condition

of transmission channel can be accurately interpreted at receiver antennas. Usage of multiple sig-

nal paths increases reliability of transmission, along with information rate. Assuming we have N

number of spatial streams corresponding to N ×N MIMO system, the improved Shannon Hartley

equation can be represented as in (1.2) below, approximately increasing the maximum channel

capacity by N times, making MIMO systems promising technology for high throughput commu-

nications.

C = N ×B × log2(1 + SNR) (1.2)

where N is spatial order of MIMO system, C is Channel Capacity, B is Channel Bandwidth,

SNR is Signal Noise Ratio.

1.4 Massive MIMO Systems

The capability of spatial multiplexing MIMO Systems to serve multiple subscribers or multiple

devices can be scalable with respect to number of antennas used on transmitting base stations and

also on the receiving end. In simple words, any MIMO system with high antenna count on either

transmitting end can be referred to as massive MIMO system. To successfully handle the multi

fold data transmission increase in upcoming communication era, massive MIMO systems are one

of the most promising technology, especially in close range or Line of Sight (LOS) wireless com-

munication systems. They are most effective in compact areas where performance reliability and

faster data transmission rates are mandatory requirements of consumers. Massive MIMO systems

provide higher spectral efficiency and reliability due to large number of signal paths, compared

to conventional MIMO systems. They also provide reduction in transmission latency and com-

prehensive detection power when perceived from standpoint of power consumed per frame. Such

potential of massive MIMO systems, when integrated with ability of high quadrature amplitude
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modulation orders substantially increases spectral efficiency and transmission data rates of future

fifth generation wireless communication systems (5G).

However to make use of these attractive advantages, provided by massive MIMO systems and

high QAM orders, there are more challenges to overcome, compared to conventional MIMO sys-

tems, especially in low SNR channel regions. Most significant are increased spatial interference,

computational complexity, silicon complexity and performance of MIMO detector. Large scale

Spatial Modulation Multi User MIMO (SM-MIMO) is another sought after technology, capable of

providing similar performance requirements, but has its own drawbacks [10]. As part of this thesis,

I have focused on exploring various low power detection algorithms, which can provide acceptable

level of performance, on massive MIMO systems. Such algorithms were analysed, implemented

and possible algorithm enhancements have been proposed theoretically and also have been im-

plemented during this research. Hardware architecture design enhancements of such detection

algorithms have also been theoretically reported.

1.5 Low Density Parity Check Decoding Systems & their Importance

The received signals at MIMO detector are transformed into symbols which are combination

of bits and corresponding Likelihood Ratio (LLR) values. The LLR values represent the likeliness

of particular bit, to have been transmitted as a ’1’ or ’0’, at base end transmitting antennas. But

the detection by itself doesn’t provide lowest bit error rate performance possible, and thus need

powerful decoding mechanism like low density parity check decoder, which can flip incorrectly

detected bits and thus significantly decrease bit error rate, sometimes even to its one tenth order.

All bits of each LDPC codeword that was transmitted may have been flipped due to noise

interference and variable channel conditions. There are various well-known algorithms that LDPC

codes can be decoded. Belief propagation, message passing and the iterative algorithms are few to

mention. Soft LDPC decoding system iteratively check the bit probabilities which were referred

to as LLR values earlier. An LDPC system is organized as variable nodes which contain message

information bits and check nodes which update bit probabilities based on each message information

bit received from variable nodes, which are connected to it. If a variable node is connected to check
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node, it is referred to as ’1’ in parity check matrix. Each parity check matrix represents spatial

bipartite graph with connections between variable nodes and check nodes. They are referred to as

’low density’ due to very low number of connections between them thus reducing computational

power consumption by its nature. Along with simple computational operations like update, LDPC

decoder also provide an advantage of parallelism leading to various types of LDPC decoders in

terms of their functionality, performance, speed depending on user requirements.

Let us assume check nodes, Ci, i ∈ (1, 2, ..., r) and variable nodes Vj , j ∈ (1, 2, ..., n) and also

a connection between variable node Vk and check node Cq. For this connection, the check node

Cq is updated by using all the message bit information from variable nodes connected to it, except

message bit from variable node Vk. This update is performed based on equation used to construct

LDPC codewords at the transmission such as even number of ’1’ bits in every codeword etc. The

bit probabilities for ’1’ and ’0’ are updated accordingly and transmitted to variable node Vk for its

update, by using all bit probabilities of check nodes connected to it, except LLR values received

from check node Cq. At same time, all the high bit probability message bits on variable nodes are

gathered to form codeword and to perform parity check, for its validation. The iteration between

variable nodes and check nodes is continued as explained above, until parity check equation is

satisfied.

Both MIMO detection and LDPC decoding systems together achieve significantly better BER

performance compared to their individual capabilities. Belief propagation with double bipartite or

single tripartite graphs can be used to simultaneously process MIMO detection and iterative soft

LDPC decoding as proposed in [11]. But complexity of using concurrent bipartite or tripartite

graphs may increase linearly with massive MIMO systems. In this thesis work, I have generated

results with BER performance, by independently implementing massive MIMO detector as a stan-

dalone. For future work, we plan to integrate the performance achieved by this independent MIMO

detector, with fully parallel LDPC decoding system to achieve even better BER performance.
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1.6 Thesis Outline

The structure of this thesis is organized as follows: Chapter I gives an brief introduction about

MIMO technology and its significance. It conveys my motivation for this research work. Chapter

II describes about configuration and simulation framework of system models used to derive ex-

perimental results. It also gives a brief touch on existing detection algorithms, to make this work,

self-explanatory. Chapter III is emphasized about design exploration of various low complex de-

tection algorithms, compares implementation results for fixed point iteration and floating point

versions. It also defines an outline for challenges and possible enhancements for explored algo-

rithms. Chapter IV is focused on potential enhancements that can lead to lower silicon complexity

or power consumption of massive MIMO detection algorithms. It juxtaposes implementation re-

sults of existing algorithms with their enhanced versions, to acknowledge better performance in

the latter. Chapter V eventually gives summary of this thesis work and presents possible future

work that can be developed on top of this research.
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2. EXPERIMENTAL FRAMEWORK FOR DESIGN EXPLORATION AND

ENHANCEMENT

This chapter has been divided into five major sub-chapters. The first sub-chapter describes

about basic MIMO system model and other attributes involved in defining model such as noise

interference, transmitted and received vectors, channel matrix relating to observed wireless chan-

nel conditions. The second sub-chapter showcases the configurations and dimensions of system

models that have been used for this research work. The third part describes about the simulation

tools and framework of MIMO libraries that have been used to generate base stations for transmis-

sion, and gives details of modulation orders, dimensions of MIMO systems and coding type. The

fourth sub-chapter gives a very brief implementation outline and describes plan of action that was

used for Chapter III and Chapter IV. The final sub-chapter introduces existing and very well-known

detection algorithms for making this work, self explanatory.

2.1 Basic MIMO System Model

An equivalent baseband complex MIMO system, where number of transmit antennas is denoted

by NT and number of receiving antennas is denoted by NR (≥ NT ), can be modelled as shown in

(2.1).

Ỹ = H̃x̃+ ñ (2.1)

where Ỹ ∈ CNR×1 represents complex received signal vector, H̃ ∈ CNR×NT is randomly

generated complex channel matrix imitating Rayleigh fading channel model, x̃ ∈ CNT×1 repre-

sents complex transmitted vector with symbol modulation order and ñ ∈ CNR×1 represents ran-

domly generated additive white Gaussian noise complex vector with zero mean and co-variance of

σ2×INR
. The Signal to Noise ratio (SNR) is represented by σ, which is mathematically represented

as shown in (2.2)
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SNR = 1/σ2 (2.2)

At each base station antenna, bits to be transmitted are mapped onto ’Q’ possible complex

symbols, taken from complex constellation (Sk ∈ Ω) derived with respect to quadrature amplitude

modulation, where each complex symbols or constellation point is comprised of log2(Q) distinct

transmission bits. Each frame can be referred to as NT such constellation points which are trans-

mitted from NT base station antennas. Assuming the basic system model described above, at

any given time t, NT complex symbols each with bit sequence of length log2(Q) are concurrently

transmitted into wireless channel. Hence transmission rate of defined MIMO system in spatial

multiplexing mode is given by NT × log2(Q) distinct bits per channel use or per frame.

As discussed above, each complex constellation symbol from QAM order ’Q’ can be repre-

sented as shown in (2.3).

Sk = S r
k + S i

k (2.3)

where S r
k , S i

k ∈ (−
√
Q+ 1), (−

√
Q), ...,−1,+1, ..., (

√
Q− 2), (

√
Q− 1). There are

√
Q

possible real valued entries for building in-phase and quadrature parts of constellation diagram.

Also if we refer to each constellation point from 1.1, the first half bits can be connected to real part

of constellation symbol (S r
k ) and second half can be attributed to complex part (S i

k ). Hence each

complex constellation point can be split into two real domain constellation points for detection

processing, to reduce constellation search space Ω for detecting symbol, closer to received vector.

The following table 2.1 provides concise conversion of complex domain MIMO equation to real

domain equivalent.

And the corresponding real domain basic MIMO equation can be represented as shown in (2.4)

below.

Y = Hx+ n (2.4)
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Table 2.1: Conversion of Complex domain MIMO system to Real domain MIMO system

Attribute Complex Domain Real Domain Equivalent
Received Vector CNR×1 R2NR×1

Channel Matrix CNR×NT R2NR×2NT

Transmitted Vector CNT×1 R2NT×1

Noise CNR×1 R2NR×1

Constellation Ω ω
Possible Entries Q

√
Q

Symbol bit length log2(Q) (1/2)× log2(Q)

where Y ∈ C2NR×1 represents real domain received signal vector, H ∈ C2NR×2NT is real

domain channel matrix, x ∈ C2NT×1 represents real domain transmitted vector with symbol mod-

ulation order ’Q’ and n ∈ C2NR×1 represents real domain noise equivalent. This implies that

detecting 2 × NT real domain symbols from C2NR×1 received vector is equivalent to detecting

NT complex symbols from CNR×1 complex vector. This can also be perceived from (2.5). It is

assumed that MIMO detector is provided accurate estimate of channel condition matrix H̃ which

can be achieved through training of pilot symbols.

|ω| 2×NT = |Ω| NT (2.5)

Let us assume this basic MIMO system model to derive main objective of any MIMO detection

algorithm. The original MIMO problem is to derive best possible estimate of transmitted complex

symbol vector z̃, from complex vector received from channel Ỹ , after transmitting through its noise

interference by minimizing euclidean noise equivalent. This can be defined as shown in 2.6

ˆ̃z = argmin
s̃∈Ω NT

|| Ỹ − H̃ s̃ || 2 (2.6)

Typical MIMO detector checks every constellation symbol to find best estimate for correspond-

ing transmitted symbol, minimizing the euclidean distance as shown in (2.6). The correctness of

estimate depends on various characteristics like detection algorithm being used, dimensions of

MIMO systems, modulation order, channel conditions and noise interference in wireless medium.
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The complex MIMO detection problem can be transformed to real domain MIMO detection prob-

lem using real value decomposition (RVD) as described in (2.1). Hence real domain equivalent

can be represented as shown in (2.7) below.

ẑ = argmin
s r ∈ω 2NT

|| Y −H s r || 2 (2.7)

Hence it can be deduced that NT ×NR complex MIMO problem can be solved as 2NT × 2NR

real domain MIMO problem. Once all 2NT levels of detection in real domain, the symbols are

de-mapped back into their bit sequence representation. The Log Likelihood ratio values of each of

these bits is calculated and they are dispatched to LDPC decoding system for further processing,

to improve bit error rate. Before reaching MIMO detector, the received vector has to go through

pre-processing, which includes channel estimator to extract channel matrix from previously known

transmitted pilot symbols, representing wireless medium conditions and then QR decomposition

and Lattice Reduction (LR) for better detection performance. Lattice Reduction (LR) increases

orthogonality of channel matrix and its new basis vectors are less correlated with better properties

for symbol estimation and detection [12]. In this research work, MIMO detector is assumed to

have knowledge of channel matrix, since this work has been focused on detection algorithms and

their enhancements.

2.1.1 QR Decomposition

The CORDIC algorithm using Given’s rotation [13] has been used to perform QR decompo-

sition on channel matrix. The channel matrix H̃ ∈ CNR×NT is transformed into unitary matrix

Q̃ ∈ CNR×NT and upper triangular matrix R̃ ∈ CNR×NT , using equation shown in (2.8) below.

Since Q is an unitary matrix, Q̃ H = Q̃ −1, it’s conjugate transpose is equal to matrix inverse.

H = Q×R (2.8)

The basic MIMO equation defined in (2.1) is multiplied with Q H to perform nullify operation.

This updates basic MIMO equation as shown in (2.9, 2.10) for complex domain and (2.11, 2.12).
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Ỹ Q̃ H = (H̃x̃+ ñ) Q̃ H (2.9)

Ȳ = Ỹ Q̃ H = R̃x̃+ n̄ (2.10)

Y Q H = (Hx+ n) Q H (2.11)

Y̌ = Y Q H = Rx+ ň (2.12)

where R̃ is an upper triangular matrix derived from QR decomposition of channel matrix and

n̄ = ñQ̃ H . The resultant noise vector n̄ retains the properties of ñ, which is white Gaussian noise.

Hence the MIMO problem equation, defined in 2.6 can re-defined as shown in (2.13).

ˆ̄z = argmin
s̃∈Ω NT

|| Ȳ − R̃ s̃ || 2 (2.13)

and the corresponding real domain equivalent of MIMO problem, defined in 2.7 can re-defined

as shown in (2.14)

ž = argmin
s r ∈ω 2NT

|| Y̌ −R s r || 2 (2.14)

This transformation allows us to solve complex MIMO problem, one antenna level at a time,

due to nature of upper triangular channel matrix, formed from QR decomposition.

2.2 System Model Experimental Configurations

This section describes all the experimental configurations and antenna dimensions of MIMO

system model, defined in (2.4), that have been used to evaluate low complexity algorithms that

were explored and upon which enhancements were made. The configurations of all models used,

for generating implementation results, are displayed in Table 2.2 below.
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Table 2.2: System Model Experimental Configuration Table

System Models Antenna Configurations Used (NT×NR) Transmission Order of
’Q’ QAM order

K

Configuration 1 (8 × 8), (25 × 25), (40 × 40), (50 × 50),
(60 × 60), (80 × 80), (100 × 100) and
(120× 120) complex MIMO systems

64-QAM
256-QAM
1024-QAM

5

Configuration 2 (8 × 8) Conventional MIMO System, for
different K-Best possible estimations

64-QAM
256-QAM
1024-QAM

5,10,15
20,100

Configuration 3 (100 × 100) Massive MIMO System, for
different K-Best possible estimations

64-QAM
256-QAM
1024-QAM

5,10
15,20

Configuration 4 (8× 8) Conventional MIMO System 4-QAM, 16-QAM
64-QAM, 256-QAM
1024-QAM, 4096-QAM

5

Configuration 5 (100× 100) Massive MIMO System 4-QAM, 16-QAM
64-QAM, 256-QAM
1024-QAM, 4096-QAM

5

Where ’Q’ is constellation order, NT represents number of transmit antennas at base station, ’K’
represent number of K-Best estimates at each antenna level
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The system models defined as per first configuration in Table 2.2 were used to evaluate de-

tection algorithms behaviour with respect to antenna dimensions of MIMO system. I have imple-

mented real domain K-Best, complex domain K-Best, enhanced complex domain K-Best MIMO

detectors to observe their performance as we advance from conventional MIMO systems to massive

MIMO systems with higher antenna dimensions. The second configuration was used to evaluate

performance transition of K-Best possible estimates in conventional MIMO systems, as we in-

crease number of estimates, allowed per antenna level. The third configuration was used to perform

similar evaluations, but on massive MIMO systems. I have used high modulation order values Q

= 64, 256, 1024 in all configurations. Using high modulation order constellations further increases

spectral efficiency and comprehensive throughput of system as a whole, with reduced power con-

sumption. Massive MIMO systems with high modulation orders as described in first configuration

also decreases overall communication latency by transmitting same amount of information, with

less number of frames than conventional MIMO systems.

However powerful MIMO detection algorithms and hence, extensive computational power are

essential to derive accurate estimation of symbols, in massive MIMO systems with high modu-

lation order. This accounts for exponential increase in energy consumption at receiver antenna,

causing it one of the significant factor, while designing massive MIMO detectors. As part of this

thesis work, detection algorithms which are capable of achieving good trade-off between spectral

efficiency and energy consumption, depending on application requirements for bit error rate or

communication latency, have been explored and their possible enhancements were implemented.

2.3 Simulation Framework & Tools

I have used features of MATLAB MIMO toolbox to set up NT base antennas to transmit com-

plex modulation symbols, and to design MIMO multipath fading channel. This set up imitates

Rayleigh fading channel, filters complex baseband input frames through it and generates complex

received vector. These were used to evaluate performance of detections algorithms explored and

to present bit error rate implementation results in this thesis work, for both floating point and fixed

point iterations. As mentioned earlier, the MIMO detectors are expected to have knowledge of
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channel conditions and channel estimation matrix H̃ . This simulation framework is valid in high

noise interference and obstacle rich scattering environments.

The implementation results for all configurations described in Table 2.2 are presented in this

thesis work, using simulation framework elucidated before. I have presented results for high mod-

ulation orders Q = 64, 256, 1024 for significant reasons explained below. Due to high power

requirements and design challenges, majority of to-date literature results reported on performance

of low power K-Best detection algorithms explored in this work, were limited to lower modulation

orders Q = 4, 16, 64. High QAM orders, especially Q = 64, 256 are standardized constellations

for various IEEE global standards.

2.4 Implementation Outline

This is summary of implementation outline that I followed throughout the stretch of my thesis

work. Initially I have evaluated floating point versions of existing low power MIMO detection al-

gorithms - Real domain Schnorr Euchner (SE) based K-Best MIMO detector and Complex domain

SE based K-Best MIMO detector, which can provide extremely low computational complexity. I

have implemented fixed point iterative versions of those, by calculating minimum number of frac-

tional bits for each variable used for simulations. I have evaluated performance of above detectors

on massive MIMO systems with high modulation order, thus fortifying their reliability and compat-

ibility towards such system configurations. I have performed these simulations for N ×N MIMO

system, N = 8, 25, 40, 50, 60, 80, 100, 120 with modulation orders as per latest 3GPP standards,

defined for 5G communication systems.

Later, I have implemented possible enhancements for Complex domain K-Best detector, which

I have elucidated in Chapter IV, in floating point and fixed point iterative versions. I have also

implemented fractional bit width varying fixed point arithmetic Real domain K-Best detector in

MATLAB, which can be integrated with clock gating power optimization technique to further

reduce power consumption at higher antenna levels of massive MIMO systems.
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2.5 Traditional MIMO Detection Algorithms

As discussed in 2.6, main objective of any MIMO detector is to extract best estimate of trans-

mitted complex symbol vector z̃, from received complex vector Ỹ after transmitting through chan-

nel conditions and noise interference, defined by H̃ and ñ respectively. MIMO detectors are fun-

damentally categorized into hard and soft decision MIMO detectors. Soft detectors reach at their

final decision to extract best possible estimate, after exchanging information with decoding sys-

tems. They are used in error correction coded MIMO detectors where detector has to exchange soft

information iteratively with decoding system like Fully parallel LDPC decoder. The Log Likeli-

hood ratio values of bits, de-mapped from detected symbols are used as basis for soft information.

Hard decision detectors are mainly used for uncoded or coded communication systems, where final

decision is reached without iterative exchange of information.

Since LDPC codes or other potential error correction codes (ECC) is standardized usage for

any modern wireless communication systems, soft decision MIMO detectors have most practical

applications with forward error correction (FEC) capability and provide better performance for

high end MIMO system models.

Based on performance, MIMO detectors are fundamentally categorized into optimal, sub-

optimal and near-optimal algorithms [3]. And each of these algorithms bring their inherent trade-

off between performance, computational complexity, silicon complexity and power requirements.

Exhaustive search Maximum Likelihood detector is well-known algorithm for achieving optimal

performance but displays exponential increase in complexity with number of transmit antennas

NT and modulation order ’Q’ and thus an incorrect option for practical applications. Various

sub-optimal and near-optimal algorithms with low power requirements and complexity are being

developed or improved to achieve enough bit error rate performance, required for practical appli-

cations.

Sub-optimal detectors are further categorized into linear and non-linear detectors, based on

presence of additional non-linear interference cancellation logic embedded into them. Various sub-

optimal linear detectors like Zero Forcing (ZF) and Minimum Mean Square Estimation (MMSE)
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algorithms significantly decrease complexity problem associated with ML detector, with price of

significant drop in bit error rate performance. Non-linear detectors also fail to improve perfor-

mance noticeably.

Near-optimal detectors performs better than sub-optimal linear or non-linear detectors with

practical computational complexity. However this trade-off mainly depends on algorithm used for

their exhaustive search. The main focus of this thesis work, the Real domain SE based K-Best and

Complex domain SE based K-Best algorithm along with their enhancements, fall into category

of breadth first search detection algorithms with near-optimal performance fixed throughput and

are independent of channel SNR. Sphere decoding is well-known example of depth first search

detection, which has capability to achieve ML performance, if it is executed without termination.

However, since this is not practically applicable, they are classified for near-optimal performance

and their execution time is dependent on channel conditions, noise interference and resultant SNR

of wireless medium. For rest of this chapter, I have briefly elucidated sub-optimal linear and non-

linear, and ML detectors, for making this thesis work, self-explanatory.

2.5.1 Maximum Likelihood Detection

The MIMO problem defined in (2.13) describes that fundamental solution to find symbol with

minimum argument value || Ȳ − R̃ s̃ || 2, is to traverse through all possible constellation symbols

Ω for modulation order ’Q’, used for transmitting them. Maximum Likelihood detection algorithm

exactly shadows that logic and thus resulting in optimal bit error rate performance. At each an-

tenna level, ML detector searches all possible constellation points (|Ω| = ’Q’), and chooses closest

possible solution to transmitted complex symbols [2]. For NT × NR MIMO system, considering

possible symbols at all antenna levels, total number of computations for ML detector is Q NT ,

where NT is number of transmit antenna levels and ’Q’ is modulation order. In real domain, num-

ber of computations for ML detector is Q 2NT , since there are twice as many antenna levels to

estimate, virtually.

Hence though it provides optimal bit error rate performance, the complexity of ML detector

exponentially increases with number of transmit antennas and constellation order. ML detector
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has high power requirements, especially for massive MIMO systems with high modulation order,

and thus not considered a practical solution to (2.13). However, the optimal performance defined

by ML detection simulations is considered as reference to other low power MIMO detectors, to

categorize them as sub-optimal and near-optimal based on their bit error rate performances.

2.5.2 Linear MIMO Detectors

Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) detection algorithms are well-

known detection models for sub-optimal linear MIMO detectors. Their linear complexity provides

linear estimation of transmitted symbols based on (2.13) by cancelling noise interference and effect

induced by transmission medium [14]. All linear MIMO detectors aim at building channel reversal

matrix ’L̃’ based on their respective least square version. This is later used to achieve linear esti-

mation of transmitted symbol vector ’x̃’ by multiplying received complex vector ’Ỹ ’ with channel

reversal matrix, as shown in (2.15) below.

z̄ = Γ(L̃× Ỹ ) (2.15)

where z̄ is linear estimate of transmitted complex vector x̃ as defined in (2.1). Since resultant

output vector may not contain values restricting to constellation points |Ω|, additional slicing op-

erator Γ should be used to extract meaningful estimate, from resultant vector. The slicing operator

Γ maps each resultant value to nearest constellation symbol. The linear detector solving equation

as defined in (2.15) aims at processing all antenna level concurrently, decreasing comprehensive

computational complexity and also detection performance, especially for symmetric MIMO sys-

tems (NT = NR). In the next couple of sub-sections, I have briefly introduced ZF and MMSE

detectors for making this thesis work, self-explanatory.

2.5.2.1 Zero Forcing Detection

Zero Forcing detector uses Moore-Penrose inverse [15] of channel response matrix to deter-

mine channel reversal matrix (L̃) as described previously, using least squares solution. ZF detector

exhibits extremely poor performance for asymmetric MIMO systems with low SNR regions. How-
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ever, it filters out complete interference in high SNR regions where NT ≥ NR, due to its extremely

low computational complexity. The channel response matrix (H̃ ∈ C NT×NR), with possibility of

being an asymmetric matrix, is multiplied with its conjugate transpose (H̃ ∗), to transform it to

invertible symmetric matrix. Later H̃H̃ ∗ is multiplied with its inverse to form Moore-Penrose in-

verse of channel response matrix H̃ . This computation extracts ZF estimate for transmitted symbol

vector as shown in (2.16, 2.17) below.

H̃ ∗ Ỹ = H̃ ∗(H̃x̃+ ñ) = H̆x̃+ n̆ (2.16)

z̄ ZF = H̃ ∗ Ỹ H̆ −1 = x̃+ ñ ZF (2.17)

where ñ ZF represents ZF estimation error with error co-variance matrix σ 2(H̃ ∗ H̃) −1σ 2(H̃ ∗ H̃) −1σ 2(H̃ ∗ H̃) −1. It

can de deduced that when H̃ is close to being singular, ZF detector showcases poor performance

due to high noise amplification as per error co-variance defined above. Thus ZF detector is at-

tractive model for practice in high SNR regions where noise doesn’t effect transmitted symbols

significantly.

2.5.2.2 Minimum Mean Square Estimation Detectors

ZF performs significantly poor in noise amplification conditions. The ZF construction of chan-

nel reversal matrix L̃ doesn’t consider noise parameter, making it susceptible. As name suggests,

the Minimum Mean Square Error estimation is calculated by taking mean square between trans-

mitted complex symbols and output of MMSE detector z̄. The channel reversal matrix for MMSE

detector is similar to that of ZF detector, except that it also includes noise parameters making

it prone to noise amplification. It can be derived using orthogonal principle, and final result of

channel reversal matrix is defined in (2.18) below.

L̃ = (H̃ ∗ H̃ + σ 2I) −1H̃ ∗ (2.18)
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where I is representation of identity matrix with dimension NT × NT , for complex MIMO

detectors. This channel reversal matrix, which represents trade-off between channel and noise

interference, is multiplied with received complex vector Ỹ to get an MMSE estimate z̄ ZF of trans-

mitted vector x̃, as defined in (2.19) below.

z̄ MMSE = L̃Ỹ = Ỹ (H̃ ∗ H̃ + σ 2I) −1H̃ ∗ (2.19)

The performance of MMSE detector is still considered as sub-optimal, even when their esti-

mate is processed iteratively to arrive at a better estimate. Hence it can be deduced that they are

not practically capable for usage in low SNR regions, irrespective of their lower computational

complexity, due to their significant increment in bit error rate.

2.5.3 Non-Linear Detectors

Linear detectors solves for symbols from all antenna levels concurrently where as non-linear

detectors estimate symbols going from easiest possible estimate and using that knowledge to esti-

mate later signals at other antenna levels. Successive interference cancellation (SIC) and Bell-labs

layered space time decoder (BLAST) are two well-known detection models for non-linear detec-

tors, with sub-optimal performance.

2.5.3.1 Successive Interference Cancellation

As the name suggests, given nature of non-linear detectors, easier symbols are estimated ini-

tially and their interference contribution is removed from received vector, before moving to esti-

mate symbol for next antenna level. This cancellation provides additional diversity at higher itera-

tions, increasing by ’1’ for each iteration. After successively cancelling the interference caused by

previous symbols, channel reversal matrix and slicing function Γ are used to provide best possible

estimate for current level, similar to linear MIMO detectors.

However symbol ordering of cancellation is significant in determining their bit error rate per-

formance. If the contribution of symbol with highest interference is processed and cancelled first,

then remaining symbols are estimated with better bit error rate. Thus interference cancellation
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order and its resultant error accumulation at each antenna level definitely influences estimation of

following symbols.

2.5.3.2 Bell-Labs Layered Space Time

BLAST detector is based on successive interference cancellation algorithm, by dynamically

cancelling interference at each antenna level under processing. This iterative algorithm assumes

that interference from all symbols, except the symbol under estimation, must be nullified, by mul-

tiplying received vector with nullifying vector. Hence this detection model is combination of SIC

and ZF algorithms, by locally generating linear nullifying vector by using Zero Forcing or Min-

imum Mean Square Estimation detection models. Similar to SIC, detection performance is sig-

nificantly dependent on symbol ordering for processing and their interference cancellation, with

quadratic complexity with respect to number to transmit antennas NT . However, BLAST detector

outperforms fundamental SIC and various linear detectors discussed above but still considered as

sub-optimal detector, compared to performance of ML detector. Various near-optimal detectors

including K-Best detectors, with better performance and lesser complexity have been elucidated in

this chapter.

2.5.4 Lattice Detectors

Near-optimal detectors are capable of achieving best possible estimates, closer to ML detection

performance, but with lesser complexity, which depends on algorithm of the MIMO detector. If

each column in channel response matrix is considered as basis vector for any lattice under assump-

tion, the MIMO problem defined in (2.6) can be considered as finding shortest lattice vector in

given lattice [3]. And this gives rise to new kind of detectors called lattice detectors, which can

achieve near-optimal performance. Moreover various pre-processing techniques such as lattice re-

duction can be used to increase orthogonality of basis vectors in channel matrix through which

lattice points can be easily differentiated. The more orthogonal, basis vectors are, the more faster

it is to find best possible estimate at each antenna level.

If we consider R̃ as defined in 2.13, since it’s an upper triangular matrix, each row starting
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from bottom of matrix can be re-constructed as one antenna level in tree search problem to find

best possible estimate at each tree level, as there are NT rows in R̃. In fundamental tree problem,

each complex node in current level has ’Q’ possible child nodes among which best estimate has

to be calculated by minimum partial euclidean distance (PED). And since R̃ is an upper triangular

matrix, PED estimate of i th row depends on error accumulation based on symbols estimated in all

post-processed rows ((i + 1) th, (i + 2) th, (i + 3) th, ..., N th
T ). The complexity of this tree search

problem or closest lattice point problem at each tree level can be considered as NP-Hard, since

arbitrary channel response lattice matrix is considered for calculating minimum PED. Accurately

speaking, across lattice formed by basis vectors of channel response matrix, received symbol vec-

tor can be a point on it, if channel noise is assumed to be absent. Since noise is always present in

MIMO problems, the lattice search gives us best possible estimate of transmitted symbols, by find-

ing lattice point closest to received symbol vector with noise. This can be achieved by expanding

all lattice points at each antenna level or intelligently choosing order for expanding or calculating

PED of each lattice point.

The computational complexity of near-optimal lattice detectors depends on number of child

nodes being expanded at each antenna level of tree search. Hence we should rationally decrease

number of expanded child nodes or choose intelligent ordering for expansion to find best possible

estimates at each tree level. At every node on each level, symbols which are farther from noiseless

received vector or very unlikely can be pruned by introducing constraint for minimum acceptable

PED, thereby reducing number of child nodes to be expanded and hence their complexity. Tree

search can be performed by expanding complete path from root to leaf nodes or by expanding all

child nodes at once in each level and going forward with selected bunch from current level to next

tree level until leaf nodes are reached. This is referred to as depth first search and breadth first

search respectively.

Depth First Search (DFS) algorithm expands all nodes along single path from root to leaf node

at once, and move back and forth based on PED calculated at each level of that path. Sphere

decoding (SD) is well-known detection model for DFS algorithm, which has been discussed in
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next sub-section. Breadth First Search (BFS) expand all possible child nodes at current level and

considers selected bunch of nodes with minimum PED value for processing at next tree level. This

algorithm doesn’t move back once nodes are selected at previous levels in tree search. Fundamental

K-Best algorithm is well-known example for BFS algorithm. In this thesis work, I have focused

on exploring different modified versions of K-Best algorithm for massive MIMO systems with

high modulation order, and implemented possible enhancements to further decrease computational

complexity or increase detector performance.

2.5.4.1 Sphere Decoder

Sphere decoder is based on limited depth expansion of Depth First Search algorithm. As name

suggests, the radius of sphere ’r’ is used as constraint upon which all symbols which are inside

such sphere with received vector as origin, are expanded [16]. For complex MIMO system, this

can be defined as shown in (2.20) below.

r 2 > ||Ỹ − H̃ s̃|| 2, s̃ ∈ Ω NT (2.20)

where s̃ represents all possible constellation lattice points in Ω. Since PED values of all child

nodes depend on error accumulation based on symbols estimated previously, if any node at current

level exceeds sphere radius constraint, all child nodes within its depth search can also be expected

to violate radius constraint. Hence eligible nodes can be easily identified and inadmissible nodes

can be pruned without expanding majority of search tree, based on radius constraint. This sig-

nificantly reduces comprehensive computational complexity of MIMO system, which depends on

radius constraint. Due to this reasoning, it is also referred to as least sphere decoder (LSD). Sphere

decoder can also be implementing using BFS algorithm. The choice of radius constraint may lead

to best possible estimate of transmitted symbols or no estimate at all, if radius is smaller than nec-

essary. It is difficult to predict initial sphere radius constraint, in BFS sphere decoder as all eligible

nodes inside radius constraint may suddenly become inadmissible, when moved to it next tree

level, without giving any estimate for transmitted vector. However DFS sphere decoder gives bet-
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ter prediction of initial sphere radius constraint, leading to considerable reduction in computational

complexity. However if noise amplification is higher or received signal is weaker, the required ini-

tial sphere radius constraint may need to be larger. This leads to expansion on majority of leaf

nodes and hence all their parent nodes, influencing complexity reduction to no effect. However

if any sphere decoder is executed without ever terminating, it can lead to optimal performance,

matching bit error rate of ML detector. Since throughput of this algorithm depends on many fac-

tors like channel interference, noise amplification, received signal, it’s performance is varying and

may need extra hardware overhead to make it reliable.

From next chapters, our focus is shifted towards K-Best MIMO detectors, which is well-known

detection model for Breadth First Search traversal algorithms. I have explored various existing

modified K-Best algorithms and presented their implementation results. I have also presented

possible enhancements to increase performance or reduce computational complexity of K-Best

detectors.
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3. DESIGN EXPLORATION OF EXISTING LOW COMPLEX DETECTION ALGORITHMS

3.1 Introduction

Breadth First Search based detectors expands all potential nodes on current tree level, and

progresses to expand child nodes of only selected bundle of nodes, from current level. Unlike

depth first search based detectors, this is non-recursive scheme, meaning that they progresses in

forward direction only without re-visiting levels that have already been processed. In general BFS

based algorithms, Partial Euclidean Distance is considered as measuring criteria for constructing

selective bundle of nodes from current level. Fundamentally, it can be elucidated that all nodes

with PED values less than distance constraint can be added to admissible set of nodes, whose child

nodes are to be expanded in next tree level. As traversal reaches to bottom of tree search and once

admissible leaf nodes are selected based on minimum PED criteria, traversal from root node to

each leaf node represents one of best possible estimate solution for transmitted complex vector,

based on detection algorithm being used.

Any version of K-Best detector is considered a breadth first search based algorithm and fun-

damental K-Best detector is well-known among them. Unlike sphere decoder, the bit error rate

performance from K-Best algorithm is independent of channel SNR. Their algorithmic flow is fea-

sible to design pipelined hardware architecture giving them edge over other MIMO detectors. This

chapter is organized as follows: Initially I have included brief introduction about theory of con-

ventional K-Best algorithm along with possible pre-processing techniques like Lattice Reduction

and QR Decomposition on channel response matrix. Later I have elucidated real domain SE based

K-Best algorithm with its advantages and drawbacks. I have implemented floating point and fixed

point versions of corresponding MIMO detector, from scratch, suing MATLAB and presented be-

haviour evaluation results. I have introduced complex domain SE based K-Best algorithm and

followed the same organization for its improved version, with reduced complexity. At end of this

chapter, I have briefly introduced possible enhancements that can be made, to explored detectors,
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to increase their performance or decrease their complexity, even further.

3.2 Conventional K-Best Detection Algorithm

The MIMO problem defined in (2.13) can be interpreted as tree search problem with complex

parent and child nodes, where each tree level represents one row of R̃ or best possible estimates for

one transmitted symbol. In (2.1), We assumed complex MIMO system with antenna dimensions

NT×NR, thus resulting in dimensions ofNR×NT for H̃ . After processing channel response matrix

with QR Decomposition using Given’s rotation, the resultant MIMO system has been transformed

to (2.10), and upper triangular matrix R̃, with dimensions ofNT×NT . Thus for MIMO system with

NT transmit antennas, there exists NT number of rows in upper triangular matrix R̃. Considering

we should solve for best possible estimate for transmitted vector x̃ of dimensions NT × 1, each

estimated symbol corresponds to solving each row in R̃.

Considering dependency of current estimate on earlier computed estimates and intrinsic prop-

erty of error accumulation, Solving for NT symbols can be assumed as tree search problem with

mapping last row of R̃ mapped with root node, until first row of R̃ is mapped with processing leaf

nodes. Each parent node at any level has to expand or perform computations of Partial Euclidean

Distances as defined in (2.13), on all complex constellation points ’Q’, as per modulation order

Q-QAM. Thus as conventional tree search, each complex parent node has to expand all ’Q’ child

nodes at each tree level, to finally arrive at estimated vector of dimensions NT with minimum

comprehensive error accumulation. Expanding all child nodes from root level to leaf results in

exponential increase in computational complexity, which is similar to ML detection complexity.

Conventional K-Best algorithm aims at reducing computational complexity by expanding only

selected bundle of nodes at each tree level. Starting from root node, it expands all child nodes

to compute their PED values, and selects only K-Best children after sorting them based on PED

criterion. The child nodes present in K-Best set are considered for further expansion, pruning all

other child nodes which had high PED value, than first K-Best child nodes. Thus computational

complexity for estimating transmitted symbol at level ′e′ in search tree, has been reduced from

expanding Q e nodes to expanding Q × K nodes. The expanded nodes at level ′e′ are sorted to
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extract K-Best possible candidates for next level. For MIMO system with NT transmit antennas

and modulation order ’Q’, complex PED computation for tree level ′e′ can be performed as defined

in (3.1) below.

PED s̃e
[e] = Ỹ[e] − R̃ees̃e −

NT∑
i=(e+1)

R̃eiŝi , s̃e ∈ Ω [e] , |Ω| = Q (3.1)

where ŝi represents earlier processed complex parent nodes for this particular K-Best path, s̃e

represents one of all possible child nodes from constellation Ω.

Conventional K-Best algorithm for real domain works in identical way, except that there are

2NT number of tree levels to solve for, as defined in (2.14) for any real MIMO system model,

assumed in (2.12), constructed from real value decomposition of original complex MIMO system

model, defined in (2.10). The double order increase in number of search levels increase compre-

hensive latency for hardware implementation. However number of possible child nodes per parent

node is reduced from ’Q’ to ’
√
Q’. Moreover unlike complex tree search, all PED values are to

be computed with real numbers thereby reducing computational and sorting complexity. Using

conventional K-Best algorithm further reduces this complexity from expanding
√
Q

e nodes to

expanding
√
Q×K nodes, at tree level ′e′. Processing with higher number of K-Best possible can-

didates per tree level increases computational complexity and also leads to optimal performance,

and vice versa. For any complex MIMO system with modulation order ’Q’, as number of possible

candidates ’K’ at each tree level reaches modulation order value ’Q’, K-Best algorithm reaches

optimal performance of ML detector, along with it computational complexity. However choosing

extremely low K-Best possible candidates per tree level drastically effects bit error rate perfor-

mance. Therefore, it is crucial to arrive at appropriate value of K-Best possible candidates taking

into account of resultant computational complexity and detection performance. For MIMO system

with NT transmit antennas and modulation order ’Q’, real PED computation for tree level ′e′ can

be performed as defined in (3.2) below.
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PED se
[e] = Y[e] −Reese −

2NT∑
i=(e+1)

Reiŝi , se ∈ ω [e] , |ω| =
√
Q (3.2)

where ŝi represents earlier processed real parent nodes for this particular K-Best path, se rep-

resents one of all possible child nodes from constellation ω.

The resultant output of K-Best algorithm is K-Best estimate of paths from root node to leaves

in search tree. The path or estimated vector with lowest accumulated PED can be considered as

output for hard decision detector, where as all K-Best paths can be considered for computing their

Log Likelihood Ratio values for soft decision detector. The LLR values can be transferred to

decoding systems like LDPC, Turbo for iterative processing. However for massive MIMO systems

with high modulation order, more number of K-Best possible candidates are required for achieving

reasonable performance from MIMO detector. However this significantly increases computational

complexity, which has been our major concern primitively. This can be solved by intelligently

expanding child nodes starting from highest probable node to be included in K-Best set for current

tree level. This can be continued till K-Best candidates are added to K-Best set of current level

before progressing further. Later in this chapter, I have explored such modified versions of existing

low complexity K-Best algorithms in real and complex domains.

3.3 Possible Pre-Processing Enhancements

Before processing each antenna level in search tree, few pre-processing enhancements like

Lattice Reduction and QR Decomposition have to be made on channel response matrix and re-

ceived signal vector. I have used CORDIC algorithm using Given’s rotation [13] for performing

QR decomposition on channel response matrix H̃ . QR decomposition is well-known for its dis-

advantages with respect to its hardware latency and power requirements. An efficient hardware

design of QR decomposition algorithm being used is crucial for taking advantage of its capability

to dismantle complex MIMO problem into antenna level wise processing. This ultimately leads to

pipelined hardware design and implementation of MIMO detectors.

K-Best algorithm is nothing but searching for lattice points on lattice generated from basis
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column vectors of channel response matrix. Since channel response matrix is arbitrarily formed

from channel estimation of previously transmitted pilot symbols, the lattice search problem can be

categorized as NP-Hard problem. Hence, it would be efficient to increase orthogonality of lattice

by changing basis vectors using Lattice Reduction technique. This makes searching for lattice

points easier and quicker, thereby reducing latency of detection.

3.4 Schnorr Euchner Based Real Domain K-Best MIMO Detection

ANT×NR complex MIMO system as defined in (2.1) can re-defined as 2NT×2NR real MIMO

system as defined in (2.4). This has been evidently declared in Table. 2.1, using real value decom-

position of complex MIMO system. Hence real MIMO system can be solved according to problem

equation defined in (2.7). The channel response matrix has been processed through QR decom-

position (2.8) to dissolve H̃ into unitary matrix Q̃ and upper triangular matrix R̃. After necessary

adjustments, we have arrived at (2.12) with problem equation of (2.14). The updated real MIMO

system problem has upper triangular matrix R̃ with channel information, which is compatible for

sequential antenna level wise estimation of transmitted symbols and hence, pipelined hardware de-

sign and implementation of MIMO detector. As defined in previous section, the equation defined

in (2.14) can be re-organized as tree search problem, where each level of tree represents lattice

point search problem locally, where lattice is formed by basis vectors of R̃.

Hence we have 2NT ×2NR real domain MIMO system, with modulation order ’Q’ and K-Best

possible candidates to select on each tree level from available
√
Q child nodes for each parent node,

in real domain. In conventional K-Best algorithm, estimation starts from root node of tree, which

represents bottom row of upper triangular matrix R and proceeds to top row, by estimating K-Best

possible estimates at each row or tree level. At each antenna level, only K-Best child nodes with

lowest PED values are considered as K-Best possible estimates for that level and their child nodes

are expanded in next tree level, pruning possibilities of other child nodes in current level. Even

though this modification reduces computational complexity of detector to certain extent, compared

to typical tree search problem, this doesn’t seem to be advantageous with massive MIMO systems

or high modulation orders due to their requirements for larger value of K-Best candidates being

31



short-listed per antenna level, leading to increased computational complexity. This exhaustive

exploration for K-Best candidates can be perceived by taking one of configuration model, defined

in Table. 2.2. Let us assume 100 × 100 massive MIMO system, transmitted with 256-QAM

order symbols. As tree search problem, each parent node has
√

256 = 16 possible real nodes for

computing their PED values and sorting them to find lowest K-Best candidates. Since there exists

K-Best parent nodes from previous level, total number of child nodes expanded at any tree level

is given by 16K. Hence comprehensive computational complexity of real domain massive MIMO

system using conventional K-Best algorithm is 3200K, where number of symbols to be expanded is

considered as basis for complexity. Since we are using high modulation order, there is a necessity

for larger value of K-Best candidates at each antenna level, to achieve better performance from

detector. In general complexity can be represented as
√
Q×K×2NT , for estimation of transmitted

symbol vector. Hence complexity linearly increases with antenna dimensions of MIMO system,

modulation order and K-Best possible estimates at each tree level.

The complexity can be significantly reduced by intelligently expanding child nodes, starting

from node with highest probability of having lowest PED and being included into K-Best possible

estimates for that level. Schnorr Euchner based K-Best algorithm, proposed in [17], reduces com-

plexity of real domain MIMO system from
√
Q×K × 2NT to (2K − 1)× 2NT . The modulation

order doesn’t have any kind of impact either on number of K-Best candidate requirements at each

tree level or on computational complexity, leading to stable performance of MIMO detector, even

with lower K-Best values. In SE based K-Best algorithm, each row from upper triangular matrix

R or each tree level is processed using SE row enumeration technique for estimation of K-Best

possible candidates for that level. At any tree level ′e′, symbol is estimated using lattice point

search assuming noiseless received vector on given lattice, with channel interference alone. This

is termed as Zero child and it may not represent one of lattice points due to various assumptions

made during its calculation. Hence zero child is used as an measure for lowest possible PED and

it is mapped to its closest lattice point or constellation symbol. Hence nearest lattice point to zero

child, is estimated with lowest PED, and is termed as first child (FC) for that parent node in tree
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level ′e′. In other words, first child is one of the child nodes, with lowest PED and highest proba-

bility to be included as one of the K-Best possible candidates for level ′e′. Hence there exists one

first child for each parent node in tree level. For estimation of K-Best candidates on tree level 2NT

or root node, there exists only one parent node and hence only one first child. For tree levels ′e′ ∈

(2NT − 1, 2NT − 2, ..., 3, 2, 1), there exists K-Best parent nodes and hence ’K’ first child nodes

need to be computed on each parent node, assuming noiseless received vector on lattice, using

lattice search problem. All first child nodes are added to current sorter list for level ′e′ and it is

sorted based on their respective path accumulated PED value and the one with lowest will be first

one to get added to K-Best list of next level. This is referred to as distributed sorting of first child

nodes, unlike global sorting of all child nodes in conventional K-Best algorithm. That first child

is replaced by its local next best child node in current sorter list and this process is repeated until

there exists K-Best possible estimates for tree level ′e+ 1′.

3.4.1 Design Exploration

As defined before, estimation starts from bottom row of upper triangular matrix R in 2.12

system model. The single first child of tree level 2NT is computed assuming noiseless channel

interference only received vector and is added to K-Best list for current level. At every antenna

level, length of current sorter list should be ’K’, except for 2NT , where it should be one. Hence

the single element sorter first, which currently holds first child is replaced by its local best child,

calculated by Schnorr Euchner row enumeration technique [17]. When elements are placed along

row or column, the Schnorr Euchner row enumeration traverses from first child to its adjacent best

child nodes, alternatively on its either sides. In this way, current child which is about to replace

one of its predecessor in current sorter list, is closest unexpanded node to zero child and is used

only after all better child nodes have already been added to current sorter list and considered for

sorting based on their respective path accumulated PED values.

At tree level ′e′, first child of particular parent node, selected after sorting, is added to K-Best

list of tree level ′e+ 1′. The next child, which has next lowest path accumulated PED locally, from

same parent node, replaces its first child in current sorter list. The current sorter list is sorted again
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Table 3.1: Real Domain General Complexity Analysis

MIMO Detection
Algorithm

Complexity 256-QAM, K=5
(Model Example 1)

1024-QAM, K=5
(Model Example 2)

ML
√
Q

2NT 16200 32200

Conventional
K-Best [18]

√
Q×K × 2NT 16000 32000

Real domain SE based
K-Best [17]

(2K − 1)× 2NT 1800 1800

Where ’Q’ represents modulation order, NT represents number of transmit antennas (NT =
100) in Model examples 1 & 2), ’K’ represents K-Best possible estimates at each tree level.
Number of expanded nodes during detection is taken as basis for complexity factor since it is
most computationally extensive and latency effecting portion of MIMO detector.

to find best child node with minimum respective path accumulated PED value, which is added to

K-Best list for next level. The next child, for corresponding parent of best child, previously added

to K-Best list of next level, replaces its predecessor in current sorter list. This procedure is iterated

until there exists K-Best possible candidates, which turn into ’K’ parent nodes for next level. This

noiseless channel interference only lattice search problem with Schnorr Euchner row enumeration

is iterated over all antenna levels, finally resulting in K-Best possible path estimates from root node

to leaves, for transmitted symbol vector. This algorithmic flow corresponding to Schnorr Euchner

row enumeration delivers similar performance for high modulation order, even with low number

of K-Best possible estimates at each antenna level. As a result there exists linear dependency of

computational complexity on antenna dimensions alone, leaving out effect of modulation orders,

making it practicable for massive MIMO systems with high modulation order.

3.4.2 General Complexity Analysis

The general computational complexity analysis comparing Real domain SE based K-Best de-

tector with ML detector and conventional K-Best detector has been provided in Table. 3.1.
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3.4.3 Benefits & Drawbacks

The main advantage of real domain SE based K-Best algorithm is its computational complexity

and its limited dependencies on other attributes, as elucidated. It increases linearly only with an-

tenna dimensions of MIMO system, giving reliable performance on massive MIMO systems with

high modulation order, provided reasonable number of K-Best possible candidates. As mentioned

before, there is no dependency on modulation order, due to SE based row enumeration technique

applied for defining expansion order of all child nodes of current tree level. As a result, it ex-

pands 2K-1 child nodes, compared to K ×
√
Q child nodes in conventional K-Best algorithm. It is

compatible with various pre-processing improvements like Lattice Reduction [18] and QR Decom-

position techniques [13]. The detection latency is always independent of constellation size, and

only varies with antenna dimensions [17]. Due to real value decomposition of complex MIMO sys-

tem into real domain, all computations have to be performed only with real numbers, significantly

reducing silicon complexity required. The algorithmic flow can be used to implement hardware

design in pipelined manner, further reducing comprehensive latency of detector.

The real domain MIMO detectors are known for providing similar bit error rate performance

compared to their complex domain counterparts. However due to their higher degrees of free-

dom related to compatibility, there are few instances where they have experimentally proven to be

beneficial, than their complex counterparts. As discussed in Chapter II, performance of VBLAST

MIMO detectors is significantly impacted by detection ordering and real domain VBLAST MIMO

detector outshines its complex domain counterpart owing to its optimal ordering [19].

The main drawback of real domain SE based K-Best algorithm is real value decomposition of

complex MIMO system NT × NR into real domain MIMO system 2NT × 2NR, with twice an-

tenna dimensions at transmitting and receiving end. Therefore there exists, twice the number of

tree search levels, compared to that of complex MIMO system. thereby increasing comprehensive

hardware latency of system. Since all digital transmission modulation schemes like quadrature am-

plitude modulation, phase shift keying are composed of complex constellation symbols, complex

domain MIMO detectors are succinct way to reverse effect of channel interference and noise ampli-
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fications. As a result, real domain MIMO detectors are not effectively applicable for near Gaussian

[20], differential [21] and non-rectangular constellations. Essentially, real domain MIMO detec-

tors are effectively practical, if real and imaginary part are uncorrelated as defined in Chapter I

(1.1). Therefore complex MIMO systems are flexible practical applications and since SE based

K-Best algorithm can be easily expanded to complex domain, VLSI implementation of pipelined

hardware architecture for complex domain MIMO system will prove to be highly efficient.

3.4.4 Fixed Point Iteration

The Real domain SE based K-Best MIMO detector was implemented using MATLAB and

hence, all default variables required in algorithm are assigned floating point representation with bit

width 64. Using default floating point representation for writing hardware description languages

will result in excessive and wasteful utilization of hardware area and power consumption, due to

higher number of flip flops or registers. The width of each variable can be reduced to a fixed point,

without impacting the performance of detector. Hence it is mandatory to convert floating point

representation to fixed point representation for efficient hardware implementation of design. How-

ever extremely smaller bit widths may result in unpredictable behaviour of detector, deteriorating

its bit error rate performance. The bit widths of all intrinsic variables should be selected such that

they are lowest possible bits required for each variable, without effecting performance of detector

and resulting in desired precision.

It is conventional to use MATLAB fixed point arithmetic toolbox to integrate fixed point objects

into all intrinsic variables in algorithm before running extensive simulations to select highest fixed

point bit width for all variables and gradually decrease fractional bits to find lowest bit width, based

on resulting performance and desired precision. This gives us dynamic range of fixed point values

and the lowest bit width for each variable with desired performance can be selected as its optimized

fixed point representation. But if there are significantly high number of fixed point objects going

through iterative MATLAB extensive simulations for arriving at bit error rate performance curve,

it requires substantial amount of memory and time to derive optimized fixed point representations

for all concerned variables, using MATLAB fixed point iterative toolbox. Integrating fixed point
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arithmetic manually into algorithmic flow decreases each simulation run time by approximately

ten times. This has proven to be of great advantage, in case of simulating high number of frames,

on massive MIMO systems, to derive detection performance curves.

Floating point variable ’P’ can be converted to its fixed point representation ’Y’ , with ’F’

fractional bits, as defined in (3.3) below.

Y = bP × 2 F e (3.3)

where b.e is rounding function to its nearest integer value. And corresponding real value repre-

sentation ’K’ that is consequence of length of fractional bits ’F’, used in fixed point representation

is defined in (3.4) below.

K = Y × 2 −F (3.4)

All fixed point arithmetic operations can be performed for estimating K-Best candidates and

computing bit error rate, by first converting floating point variables to their fixed point represen-

tation as defined in (3.3) and performing arithmetic operations and finally deriving real value rep-

resentation of fixed point result as defined in (3.4). I have followed this procedure to convert real

domain SE based K-Best algorithm to its fixed point arithmetic representation and have achieved

fixed point bit widths of key variables as shown in Table. (3.2).

Table 3.2: Fixed Point Bit Width Table for Real Domain

Attribute Fractional bit width Fixed point bit width
Received Vector (Ỹ ) 25 33
Channel Matrix (H̃) 25 33
Upper Triangular Matrix (R̃) 25 33
Noise (σ) 9 9
Modulation Order ’Q’ 0 5
Noise vector (ñ) 25 33
K-Best value 0 5
LLR 7 15
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where fractional bit width represents number of fractional bits assigned to fixed point bit width

representation. Fixed point bit width is also referred to as Word Length.

3.4.5 Implementation Results

MIMO System model with configurations defined in Table. 2.2 were used to evaluate perfor-

mance behaviour of Real domain SE based K-Best algorithm, described above. The presented re-

sults were generated from extensive simulations, by transmitted ten thousand randomly generated

frames based on configured modulation order. In NT × NR complex MIMO system, each frame

is composed of NT randomly defined complex constellation symbols from quadrature amplitude

modulation, which are decomposed into 2NT real valued symbols for processing in detector, on

receiver end. I have analysed dependency of bit error rate on antenna dimensions and channel SNR

values, on different high modulation orders discreetly. Starting with first configuration of system

models, I have studied performance of real domain K-Best algorithm, on different antenna dimen-

sions, to define dependency of performance on conventional and massive MIMO systems. The

second configuration of system models were utilized to evaluate behaviour of bit error rate in con-

ventional MIMO systems, using different ranges of channel SNR values, from weak signal power

to weak noise power. I have also reported this behaviour for different number of K-Best possible

candidates on each tree search level. The third configuration was used to evaluate detection perfor-

mance in massive MIMO systems, using different possible channel SNR values. I have analysed

the same, using different number of K-Best estimates at each antenna level. One set of antenna

dimensions was selected from first configuration to build conventional and massive MIMO system

models respectively. All performance curves presented in this thesis work were generated from

their respective MIMO detectors, without taking benefit of integrating Low Density Parity Check

decoding system. I have calculated Log Likelihood values for all above configurations, which can

serve as ingress for any potential iterative decoding systems, for achieving better performance.

This is elucidated in detail, as possible extensions of this research work, in Chapter V.

The performance curves presented in Figure. 3.1, Figure. 3.2 and Figure. 3.3 defines behaviour

of bit error rate, with respect to different antenna dimensions of complex MIMO system, configured
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Figure 3.1: 64-QAM Dependency of BER Vs Antenna Dimensions, apropos of various channel
SNR values.
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Figure 3.2: 256-QAM Dependency of BER Vs Antenna Dimensions, apropos of various channel
SNR values.
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Figure 3.3: 1024-QAM Dependency of BER Vs Antenna Dimensions, apropos of various channel
SNR values.

to transmit with Q-QAM {Q = 2N , N = 6,8,10}, based on real domain SE based K-Best algorithm.

All the graphs are on semi-log scale with bit error rates presented on logarithmic scale and antenna

dimensions on linear scale. From Figures 3.1, 3.2 and 3.3, it can deduced that performance of

current MIMO detector appears to be identical on lower channel SNR values SNR ∈ [1, 10], irre-

spective of antenna dimensions of MIMO system model. In such regions, the transmitted complex

symbol vectors are equally deteriorated by high noise amplifications. The weakened received bit

stream provides resulting bit error rate values that appear to reach low asymptotic limit of cur-

rent MIMO detection performance, irrespective of any antenna dimension. It can also be deduced

that bit error rate is heavily dependent on antenna dimensions, across higher channel SNR values

SNR > 10. It increases with increase in number of transmit and receiving antennas, which can

be reasoned as follows. The number of transmitted symbols in each frame increases with antenna

dimensions. The respective path accumulated PED and its corresponding error propagation plays

a crucial role in estimating K-Best possible candidates at higher levels of upper triangular matrix

R̃ or deeper levels of search tree. As accumulated error increases in deeper branches of search tree
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Figure 3.4: 64-QAM Dependency of BER Vs SNR, apropos different K-Best estimates.

or higher range of antenna levels, the capability of current MIMO detection algorithm to match its

corresponding correct transmitted lattice point decreases, thus increasing comprehensive bit error

rate of MIMO detector. This occurs at any high dimensional system model, irrespective of channel

SNR value but at lower channel SNR, this effect is masked by high asymptotic limit of detector,

as elucidated above. However, for higher channel SNR values, bit error rate doesn’t reach such

lower performance limits and this error accumulation effect at higher antenna levels can be clearly

observed, as presented in Figure 3.1, Figure. 3.2 and Figure. 3.3.

The performance curves presented in Figure 3.4, Figure 3.5 and Figure 3.6 are related to sec-

ond and third configurations in Table 2.2 respectively. It defines behaviour of bit error rate, with

respect to different number of K-Best possible candidates on each antenna level, with each system

model configured to transmit with Q-QAM (Q = 64,256,1024), based on real domain SE based

K-Best algorithm. Both of these graphs are on semi-log scale with bit error rates presented on

logarithmic and channel SNR values on linear scales. From Figures 3.4, 3.5 and 3.6, it can be

deduced that detector produces better performance as number of K-Best possible estimates per

antenna level increases. It has been established previously that, in 2NT × 2NR real valued MIMO
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Figure 3.5: 256-QAM Dependency of BER Vs SNR, apropos different K-Best estimates.
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Figure 3.6: 1024-QAM Dependency of BER Vs SNR, apropos different K-Best estimates.

system, modulated with Q-QAM, if number of K-Best candidates on each tree level ′e′ is equal

to
√
Q

e, performance of this MIMO detector can reach to that of optimal ML detector. However
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since is not practically feasible, appropriate number of K-Best candidates need to be selected to

arrive at reasonable performance required by various applications. It can be observed that perfor-

mance behaviour is significantly effected by K-Best value, only in low channel SNR values. The

transmitted complex symbol vectors are possibly effected to high degree of deviation in response

to increased noise amplification in the channel medium. Thus higher number of paths are needed

to be considered to increase the probability of accurately estimating transmitted symbol on each

tree search level. This can be achieved by increasing number of K-Best possible candidates to be

propagated onto next search level, resulting in broadening of lattice point search problem locally,

on each antenna level. It can also be deduced that this effect is not noticeable in behaviour of bit

error rate in higher channel SNR values SNR > 35. The detection performance, in configura-

tions related to high channel SNR values, appears to be unanticipated as it depends on randomized

transmitted vectors and their ease of detection. However since transmitted vector can be accu-

rately estimated from lower number of K-Best candidates due to less degree of deviation and weak

noise amplification in wireless medium, detection performance is equally good and balanced for

different number of K-Best candidates. Thus performance improvement with respect to increase

in number of K-Best candidates per antenna level, is not noticeable.

The performance curves presented in Figure 3.7 and Figure 3.8 represents behaviour of bit error

rate with respect to different modulation orders, Q = 4,16,64,256,1024,4096 complex symbols per

constellation, for real domain SE based K-Best algorithm. The presented graphs are on logarithmic

scale with bit error rate values presented on vertical and modulation order on horizontal axis.

The performance observed in Figures 3.7 and 3.8 can be correlated with that of Figures 3.1, 3.2

and 3.3. The probability of deviation for transmitted symbols in presence of noise, increases

with modulation order. This generally occurs irrespective of channel SNR, as there exists log2Q

nodes which increases with modulation order. In low channel SNR ∈ [1, 10], performance of

MIMO detector is equally deteriorated by high noise amplification and weaker signal strength,

irrespective of modulation order and antenna dimensions. Though performance can be improved

by increasing K-Best possible candidates per antenna level, at significantly lower SNR values

43



0 2 4 6 8 10 12 14 16
10

−8

10
−6

10
−4

10
−2

10
0

log
2
Q

B
it 

E
rr

or
 R

at
e 

(B
E

R
)

BER vs Q−QAM Behaviour Evaluation (8 X 8 MIMO System)

 

 

SNR = 1
SNR = 5
SNR = 10
SNR = 15
SNR = 20
SNR = 25
SNR = 30
SNR = 35
SNR = 38
SNR = 40
SNR = 45
SNR = 50

Figure 3.7: BER Vs Modulation Order (8 × 8 MIMO System), apropos different SNR channel
values.
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∈ [1, 10], this improvement and modulation order effect is concealed by lowest performance

limit of MIMO detector. On the contrary, performance curve shows its dependency on modulation

order or antenna dimensions across high channel SNR (> 10), which increases with either of

configuration parameters. The bit error rate is not degraded to such extent, in higher channel SNR

values. Hence performance curve can be observed with high estimation error on each antenna

level, for high modulation order, due to high possibility of deviation. This results in higher path

accumulated error propagation across deeper antenna levels, for high modulation orders.

3.4.6 Possible Enhancements

At initial levels of K-Best symbol estimation in tree search, fixed point precision is highly

important. High error propagation at initial levels of tree will lead to massive fluctuations in de-

tection at later antenna levels. If majority of K-Best candidates estimated at top levels of tree are

incorrect, compared to corresponding transmitted symbols, the respective path accumulated error

propagation will be significantly high. And estimation of K-Best candidates at level ′e′ in real

valued tree is dependent on all previously estimated symbols at levels (i, i ∈ [e + 1, 2NT ]) and

error accumulation of their resulting path from level 2NT to ′e + 1′. Hence estimation of symbols

at lower levels in tree are heavily dependent on accuracy of estimation for symbols at higher levels

of tree. Let us assume lattice point search problem on tree level ′e′ with inadequate number of

fractional bits. This may lead to inaccurate or unpredictable behaviour of detector, resulting in

incorrect estimation of symbols. When this path accumulated error propagates to tree level ′e+ 1′,

the updated path accumulated error corresponding to unerring symbols will appear to be higher,

and detector selects its neighbourhood lattice points as one of K-Best candidates for level ′e + 1′.

This effect further deteriorates estimation at lower tree levels leading to estimation of completely

irrelevant symbols and as a result, rest of tree levels exhibit faulty detection of their corresponding

transmitted symbols, with high bit error rate. Hence fixed point precision and its resulting perfor-

mance should match corresponding default floating point performance, atleast during initial levels

of tree search during lattice point detection.

However as we go down the search tree, fixed point precision or fractional bits of variables
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can be gradually reduced without effecting performance of MIMO detector noticeably. This can

be reasoned as follows. As symbols are estimated accurately at top levels of tree due to high

fixed point precision, the respective path accumulated error propagation corresponding to estimated

correct symbols would be lower, and it would be higher for symbols, surrounding them. Hence

respective path accumulated error propagation for all K-Best estimated candidates from previous

level will be lower, as required, leading to reasonable performance at lower levels of tree. After

gradually decreasing fixed point bit width as we move down search tree, it needs to be maintained

constant after certain levels due to minimum requirement limit for fractional bits in fixed point

precision.

Though this slightly increases bit error rate of MIMO detector, decreasing number of variable

bits per each level of detection can result in significant reduction of power consumption for massive

MIMO systems, as there exists hundreds of antenna levels in search tree. This work has been

explored further and implementation results have been presented in Chapter IV, to observe trade-

off between bit varying fixed point precision and performance of MIMO detector.

3.4.7 Challenges

Real domain SE based K-Best algorithm is not practically applicable for star constellations,

Gaussian and non-rectangular constellations, that have their broad scope of discrete industry ap-

plications. Modulation standards like quadrature amplitude modulation, phase or amplitude shift

keying suffers performance loss in transmission rate, due to their uniform shaping and equidis-

tant constellation structures [22], and this gap between Gaussian channel capacity and Shannon

theoretical limit can be reduced by introducing non-uniformity in constellation shaping of sym-

bols. However real domain detectors can’t be used for such constellations as correlation exists

between real and imaginary part of complex symbols. Typical complex domain MIMO detec-

tors are reliable alternative as all digital transmissions naturally use complex symbol constellation

standards for wireless communication. However either of them are inter-convertible to each other

and original complex valued MIMO detectors are capable of achieving performance of real valued

counterparts. I have explored original complex valued SE based K-Best algorithm later in this
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Chapter. At the end of this Chapter, I have also explored modified version of complex domain

SE based K-Best algorithm with reduced complexity [4], with lower complexity and presented its

implementation results. Based on my exploration study and after observing reduced performance

results of this modified version, I have proposed possible enhancements that can be assembled into

it, in order to dynamically achieve trade-off between performance of original complex domain SE

based K-Best MIMO detector and its computational complexity, to achieve reasonable bit error

rate, based on application requirements.

3.5 Schnorr Euchner Based Complex Domain K-Best MIMO Detection

In this section, I have explored complex valued SE based K-Best MIMO detector and reported

computational complexity and challenges related to its hardware implementation. A NT × NR

complex MIMO system has been defined in 2.1 and its corresponding problem equation has been

defined in 2.6. There is no need to utilize real value decomposition as all complex symbols are to

be estimated as they were transmitted without disintegrating real and imaginary parts. Hence there

exist NT levels in search tree, half compared to real valued tree. However lattice point search with

complex valued computations, on each antenna level results in higher local complexity in both

computational and silicon implementations. Regardless of higher complexity, complex valued

detectors are of more interest practically, due to their broadened scope of possible applications in

various communication systems with different modulation techniques.

The channel response matrix H̃ as defined in 2.1 can be processed through CORDIC QR de-

composition algorithm to disintegrate H̃ into unitary matrix Q̃ and upper triangular matrix R̃, as

defined in 2.8. After further computations, we derive updated complex MIMO problem 2.13, that

composes upper triangular matrix R̃ ∈ C NT×NT , with channel information. The updated struc-

ture of MIMO problem 2.13 induces compatibility for sequential estimation of transmitted sym-

bols, starting from bottom row of R̃. This sequential iterative estimation with accumulated error

propagation, can be utilized to design pipelined hardware architecture of complex valued MIMO

detector. Hence MIMO problem defined in 2.13 can be re-structured as tree search problem with

complex valued lattice point search problem locally, on each antenna level, where lattice is con-
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structed from basis vectors of R̃. The orthogonality of basis vectors or lattice can be increased

using Lattice reduction [12], resulting in efficient estimation of possible candidates on each level.

Let us assume NT × NR complex valued MIMO system, with modulation order ’Q’ and K-

Best possible estimates for each antenna level, from available Q child nodes on each parent node,

in complex domain. The complex constellation with modulation order Q = 64 has been presented

in Figure 1.1, with
√
Q complex symbols on each horizontal and vertical axes. In complex val-

ued conventional K-Best algorithm, lattice point search starts from bottom row of upper triangular

matrix R̃ and proceeds until estimation of leaf nodes in search tree, by expanding all child nodes

of K-Best possible candidates from previous level. At each antenna level, all complex child nodes

are expanded by computing their respective path accumulated PED values and only lowest K-Best

child nodes are considered for next tree level. This reduces complexity, compared to ML detec-

tion, by pruning expansion of other child nodes and their respective paths at later tree levels. This

algorithmic flow results in limited reduction of computational complexity, compared to typical tree

search problem, which is not efficient with detection in massive MIMO systems with high modu-

lation orders due to their high requirements for K-Best possible candidates to be progressed into

next tree level, each time. Let us examine one configuration of complex MIMO system model, de-

fined in Table 2.2 to understand exhaustiveness in its algorithmic expansion. In 100× 100 massive

MIMO system model, configured with 256-QAM, according to search tree, each complex parent

node has Q = 256 possible complex child nodes for computing and sorting their respective path

accumulative PED value, to short-list lowest K-Best candidates, which are parent nodes for next

level. Since each level has K-Best parent nodes from previous level, total number of child nodes

expanded at any tree level according to conventional K-Best algorithm is given by 256 K. Hence

comprehensive computational complexity for current complex valued massive MIMO system with

conventional K-Best algorithm is given by 100 × 256 K = 25600 K, where number of complex

symbols to be expanded is considered as basis for complexity. This is significantly higher than that

of identical real valued MIMO system model, which turned out to be 3200K.

With high modulation order, there is requirement for considering higher number of K-Best
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possible candidates at each antenna level, to achieve reasonable detection performance. Hence in

general computational complexity of complex valued conventional K-Best MIMO detector can be

defined as Q × K × NT , for detection of complete transmitted vector, which increases linearly

with modulation order, antenna dimensions and K-Best candidates required at each antenna level.

This complexity is resultant of number of expanded child nodes, in process of searching for best

estimates of transmitted vector. Thus it can be greatly decreased by intelligently reducing number

of expanded child nodes, by always starting expansion of child node with highest probability to

get included in K-Best candidates for current level. Complex domain SE based K-Best algorithm,

as proposed in [3] reduces complexity of complex valued MIMO system from Q × K × NT to

(3K − 2) × NT . The resultant computational complexity (3K − 2) × NT is lower than that of

its real valued counter part (2K − 1) × 2NT , irrespective of modulation order. It doesn’t effect

performance of MIMO detector, when transmission is configured with high channel SNR values,

providing stable performance on lower K-Best candidates per antenna level.

The algorithmic flow of real valued and complex valued MIMO SE based K-Best detectors

are similar, except building current sorter list and selecting first child, next child on each sorted

iteration, for building K-Best candidates on each antenna level. Just to re-cap, estimation starts

with root node in search tree, which corresponds to bottom row of upper triangular matrix R̃. Each

row ′r′ ∈ (NT , NT − 1, ..., 3, 2, 1) in R̃ is processed using SE based row enumeration technique

for short-listing K-Best candidates on each antenna level ′r′. At any tree level ′r′, zero child is

computed by assuming noiseless received symbol Ỹr on any given lattice, constructed from basis

vectors of R̃, using equation defined in 3.5 below.

ZCr = Yr −
NT∑

i=r+1

(R̃r,iz̄i) (3.5)

where z̄i represents processed estimates at corresponding levels in respective path in search

tree and ZCr represents of current parent node on tree level ′r′. Since zero child is computed

as lattice point without considering noise effects, resulting point may not be constellation point

from configured modulation order. The nearest lattice point is defined as first child (FC) for
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corresponding parent node on tree level ′r′. Hence first child can be considered to one of child

nodes with highest probability to get included as K-Best possible candidate for current tree level.

There exists K-Best parent nodes and same number of first child nodes, on every tree level ′r′ ∈

(NT − 1, NT − 2, ..., 3, 2, 1), except for tree level NT , where there exists only one parent node and

first child. On each antenna level, ’K’ first child nodes are computed, sorting local child nodes on

respective parents, and all first child nodes are included into current complex sorter list for current

level ′r′. Respective path accumulated PED values, calculated as defined in 3.6 are used for sorting

first child list, and the one with lowest PED value, termed as best first child, is included into K-Best

candidates for next level, and is removed from current complex sorter list. The local child node

with next lowest PED value, computed from same parent of best first child, is included into current

sorter list to next sorting iteration. This procedure is iterated until K-Best possible estimates are

selected on current tree level ′r′, which serves as parent nodes for tree level ′r + 1′.

PED FCi
r = Ỹr − R̃r,rFCi −

NT∑
j=r+1

R̃r,j z̄j , FCi, i ∈ (1, 2, ..., K − 1, K) (3.6)

where z̄i represents processed estimates at corresponding levels in respective path in search tree

and FCi, i ∈ [1 K] represents current complex sorter list. Later in this section, I have explored

procedure of intelligently selecting and expanding child nodes with possibly next lowest PED,

locally on each parent node, using complex SE row enumeration technique.

3.5.1 Design Exploration

Complex SE based K-Best algorithm differs from its real counterpart only in row enumeration

techniques. The complex SE row enumeration should expand on both horizontal and vertical axes

unlike real valued SE row enumeration, which expands only along horizontal or real axis. However

zero child, first child are computed similar to that of real valued counterparts, except that complex

PED computations are performed on respective complex matrix elements as defined in 3.6, unlike

real matrix elements in real valued detectors. The estimation begins with bottom row of complex

upper triangular matrix R̃ as defined in 2.10, after QR decomposition. The single zero-child of
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tree level NT is computed by ignoring noise amplification effect, and assuming noiseless channel

interference only received vector. This leads to single first child, that is the first candidate to

get added to K-Best list of current level. The length of current sorter list on any antenna level is

not constant and varies between ’K’ and ’2K-1’ as elucidated. The complex SE row enumeration

expands in two directions - horizontally and vertically, using real valued SE row enumerations on

either of them. In horizontal direction, one of the next expanded nodes will be computed by using

real valued SE based row enumeration on real part of complex first child, and is termed as real

best node. In vertical direction, other of the next expanded nodes is computed by using real valued

SE based row enumeration on imaginary part of complex first child, and is termed as imaginary

best node. This is visualized in Figure 1.1. Hence if first child has to be replaced in current

sorter list, two expanded nodes, each from horizontal and vertical axes are added to current sorter

list, increasing its length by one. If such replacement occurs in every iteration, when best node

from current sorter list is added to K-Best candidates, in K th iteration on same level, length of

current sorter list will increase to ’2K-1’ child nodes. However, on any iteration, if best node that

is added to K-Best candidates doesn’t have same imaginary value as first child of its corresponding

parent node, then the complex SE based row enumeration occurs only along vertical axes. This

results in expansion along vertical axis alone, and only one next expanded node is calculated by

performing real valued SE row enumeration on imaginary part of best node, that was added to

K-Best candidates in this iteration. This replaces best node in current sorter list without changing

its length for this iteration. Hence it’s length can vary between ’K’ in 1 st iteration to ’2K-1’ in

K th iteration on same antenna level.

For antenna level NT , single first child node is added to K-Best list and is replaced by corre-

sponding real and imaginary best nodes in current sorter list. Current sorter list is sorted on each

iteration and child node with lowest respective path accumulated PED values, as computed in 3.6

and termed as best next-child, is selected as one of K-Best candidates in current level. If imagi-

nary part of any best next child is equal to that of first child, on corresponding parent, it is replaced

by real and imaginary best nodes in current sorter list. However if imaginary part is different than
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that of first child on same parent, then it is replaced by only its imaginary best node, in current

sorter list. The real and imaginary best nodes are selected for any best next child, by performing

real valued SE based row enumeration technique on real and imaginary axes respectively. Hence

depending on which element of current sorter list is best next child and is added to K-Best can-

didates, it is updated accordingly by replacing best next child with successive nodes as discussed

above. This occurs at end of each iteration, and current sorter list is sorted again for best next child

in next iteration.

At any tree level ′r′ ∈ (NT − 1, NT − 2, ..., 3, 2, 1), there exists ’K’ parent nodes and hence

’K’ first child nodes initially. The complex first child of particular complex parent node, with

minimum respective path accumulated PED value, as computed in 3.6, termed as best first-child

is selected after sorting, and is added to K-Best list of tree level ′r + 1′. The current sorter list is

updated accordingly as elucidated above, and is sorted again to find best next child node with min-

imum respective path accumulated PED value. The best next child is added to K-Best candidates

in current level, and it is replaced by successive real and imaginary best nodes or only the latter,

depending on imaginary part of best next child. After K th iteration, K-Best possible candidates

are selected from current level, which serves as ’K’ parent nodes for next tree level ′r + 1′. The

initial noiseless channel interference only lattice search problem, followed by complex valued SE

based row enumeration is iterated over NT antenna levels, resulting in K-Best possible path esti-

mates from root node to leaves in search tree. This algorithmic flow of original complex domain

SE based K-Best MIMO detector has potential to reach stable performance of real valued coun-

terpart, for massive MIMO systems with high modulation order. There exists linear dependency

on antenna dimensions alone, as reasonable performance can be achieved with lower number of

K-Best possible estimates irrespective of any modulation order, making it attractive for detection

in massive MIMO systems with high modulation order. However, it has high silicon complexity

on account of numerous complex PED computations and their sorting for ’K’ iterations, on each

antenna level. Various challenges associated with it have been elucidated later in this section.
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Table 3.3: Complex Valued SE Based K-Best General Complexity Analysis

MIMO Detection
Algorithm

Worst Case
Complexity

256-QAM, K=5
(Model Example 1)

1024-QAM, K=5
(Model Example 2)

ML Q NT 256100 1024100

Conventional
K-Best [18]

Q×K ×NT 128000 512000

Complex domain SE
based K-Best [17]

(3K − 2)×NT 1300 1300

Where ’Q’ represents modulation order, NT represents number of transmit antennas (NT =
100) in Model examples 1 & 2, ’K’ represents K-Best possible estimates at each tree level.
Number of expanded nodes during detection is taken as basis for complexity factor since it is
most computationally extensive and latency effecting portion of MIMO detector.

3.5.2 General Complexity Analysis

The general computational complexity analysis comparing complex valued SE based K-Best

detector with ML detector and complex valued conventional K-Best detector has been provided in

Table. 3.3.

3.5.3 Challenges

For any tree search detectors with error propagation, performance is significantly effected by

accuracy of estimation on top levels of tree. The real valued detectors are capable of achieving bet-

ter performance than complex counterparts due to redundant channel information, in decomposed

real channel response matrix ’H’, compared to original complex channel matrix ′H̃ ′. However

complex valued detectors are capable of achieving better performance if real and imaginary parts

of constellation points are not completely uncorrelated. Designing efficient pipelined hardware

architecture for complex valued SE based K-Best algorithm can be demanding due to silicon com-

plexity associated with complex computations and sorted involved at every iteration, and dynamic

nature of current sorter list in complex valued SE based row enumeration. As a result, there is

no detailed design of such pipelined architecture till date, for complex valued SE based K-Best
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algorithm.

In the next section, I have explored modified version of complex valued SE based K-Best

MIMO detector with reduced complexity in original complex valued row enumeration [4], and

presented its implementation results using MATLAB. Though silicon complexity associated with

row enumeration was reduced, the performance observed to be drastically effected by modification

in original complex valued SE row enumeration. Since majority of potential lattice points were not

even considered for expansion and not being included in current sorter list on each antenna level, I

have proposed enhancements that can be integrated into this modified version, which can dynam-

ically control the broadening of lattice point search to required number of complex layers. This

proposed enhancement has been defined in detail, in Chapter IV, and implementation results have

been presented to dynamically observe improvement in performance with broadening of search

along complex layers or their imaginary axes.

3.6 Modified Complex Domain K-Best MIMO Detection

In this section, I have explored modified version of complex valued SE based K-Best MIMO

detector with reduced complexity and evaluated bit error rate performance and various benefits and

drawbacks associated with it. Let us assume NT × NR MIMO system with Q-QAM modulation

order as defined in 2.1. After performing QR decomposition on channel response matrix H̃ , the

resultant upper triangular matrix R̃ can be correlated with tree search problem with NT levels and

leaves, and each row equation starting from NT level to top level, can be solved as lattice point

search problem. Hence iterative application of lattice point search problem over NT levels can

lead to estimation of NT × 1 transmitted vector x̃. Lattice point search on respective levels, was

distinctly performed using different enumeration algorithms, followed by sorting and resulting in

one of K-Best possible estimate, in each iteration, for each level i, i ∈ (NT , NT − 1, ..., 3, 2, 1). In

real valued MIMO detector explored in Section 3.4, real SE based row enumeration was utilized

to intelligently expand limited number of child nodes on each antenna level, resulting in reduced

complexity as defined in Table 3.1. In complex valued MIMO detector, explored in Section 3.5,

original complex SE based row enumeration was used to expand best successive child nodes for
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expanding. For any complex symbol s̃ = sr + jsi, s̃ ∈ Ω NT , real valued SE based row enumer-

ation is performed individually on real and imaginary part of s̃, sr and si respectively, to derive

next best real and imaginary child nodes, on horizontal and vertical axes of constellation diagram

respectively, as shown in Figure 1.1. Both next best real and imaginary child nodes are added to

current sorter list, if imaginary part of its predecessor is identical to that of their first child node,

from same parent. If not, only the latter is considered into current sorter list, for processing through

next iteration.

The small modification in enumeration technique being used, can significantly impact both

computational complexity and performance of MIMO detector as it is iteratively used ’K’ times to

construct K-Best possible estimates, forNT levels, onNT ×NR MIMO system, leading inNT ×K

modifications in the detection algorithm. One such modification was proposed in [4], that reduces

silicon complexity associated with complex enumeration. Also computational complexity can be

dynamically controlled by using parameter termed as Rlimit, which controls horizontal width

for estimation of first child on each parent in current level. However computation with respect

to zero-child and first-child is performed similar to original complex domain SE based K-Best

MIMO detector, by using noiseless channel interference adjusted lattice problem and respective

path accumulated error propagation problem, as defined in 3.5 and 3.6 respectively. This modified

algorithm differs from previous version, in selecting next best successive child nodes, when a child

from same parent node is included as one of K-Best possible candidates in current iteration, on any

tree level i, i ∈ (NT , NT − 1, NT − 2, ..., 2, 1). In this section, I have elucidated the reasoning and

theory behind modification of complex SE based row enumeration, presented in [4] along with its

effect on general complexity analysis and performance evaluation across different system model

configurations, defined in Table 2.2. The trade-off associated with its performance and possible

flexible variations of computational complexity has been discussed.

3.6.1 Design Exploration

Modified segment in complex valued SE based K-Best algorithm is the row enumeration tech-

nique used for determining best next child nodes on each respective parent node, for estimating
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K-Best possible candidates on any antenna level i, i ∈ (NT , NT − 1, ..., 3, 2, 1). Although compu-

tational complexity depends on additional parameter Rlimit, modified complex valued SE based

row enumeration significantly reduces silicon complexity associated with it. The parameter Rlimit

refers to horizontal width across zero-child, to estimate first-child within expanded child nodes,

with identical imaginary parts si but different real parts sr, in complex constellation symbol s̃ ∈ Ω.

Let us assume NT ×NR complex MIMO system with Q-QAM modulation order. The correspond-

ing complex constellation is composed of ’Q’ complex symbols with
√
Q complex symbols on

each row and column individually. All complex symbols that belong to same row have equal

imaginary parts si and that belong to same column are equally real-valued sr. Hence range of

additional parameter Rlimit is [1,
√
Q], which defines complexity as defined in Table 3.4.

The zero-child is computed similar to original complex valued row enumeration as defined in

3.5. After zero-child is computed, all child nodes around zero-child within horizontal width of

Rlimit are expanded and their respective path accumulated PED values are computed as defined

in 3.6. The child node with minimum PED value is selected as first-child, unlike original complex

valued row enumeration in which closest child node to zero-child as first child. Hence increasing

horizontal width broadens the estimation search for first-child by expanding more child nodes that

belong to same row, thus increasing both detection performance and computational complexity.

However the resulting edge with respect to trade-off between bit error rate and horizontal width,

depends on degree of noise amplification and randomly generated transmit vector x̃.

Starting with bottom row of upper triangular matrix R̃, which corresponds to NT antenna level

in estimation search tree, zero-child is computed by assuming noiseless channel interference only

received vector, as represented mathematically in 3.5. The first-child for each corresponding zero-

child is computed by expanding child nodes across zero-child, till pre-determined horizontal width,

and selecting child node with minimum respective path accumulated PED value. At level NT ,

length of current sorter list is Rlimit at any K-Best candidates iteration. However at any antenna

level r, r ∈ (NT − 1, NT − 2, ..., 3, 2, 1), length of sorter list is given by K × Rlimit since there

exists ’K’ parent nodes on any antenna level r and each parent node initially expands ’Rlimit’ child
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nodes locally.

After determining first-child of parent node on any antenna level i, i ∈ (NT , NT − 1, ..., 1),

modified complex row enumeration expands only in vertical direction of constellation diagram.

The 64-QAM constellation is presented in Figure 1.1. All child nodes that replaces their preceding

first-child are generally termed as next-child and immediate next-child is termed as imaginary

best node. In vertical direction next child nodes are computed by using real-valued SE based row

enumeration on imaginary part of complex first child, and current next-child that is about to replace

its predecessor is termed as imaginary best node. After sorting all first-child nodes, the first-child

node with minimum PED value, termed as best first-child is added to K-Best possible candidates

for current level i. Imaginary best node is computed along complex vertical layer of local first child

using expanding child nodes across it, alternatively on either side. The best first child is replaced

by its corresponding local imaginary best node, in current sorter list of length K ×Rlimit.

For antenna level NT , single zero-child is computed using 3.5 and its corresponding first-child

is determined by computing respective path accumulated PED value 3.6 of child nodes across zero-

child, with horizontal width of Rlimit, and selecting child node with minimum PED value. The

Rlimit child nodes comprises sorter list for first K-Best candidate iteration. Since on levelNT there

exists only one parent node, its corresponding first-child is added as one of K-Best candidates, and

it is replaced by imaginary best node, in current sorter list. In second K-Best candidate iteration,

current sorter list, with imaginary best node or next child node and remaining ’Rlimit-1’ child

nodes, is sorted and the child with minimum PED value, termed as best next child is added as

one of K-Best possible candidates for this iteration. Hence the current sorter list is updated by

replacing best next child with successive imaginary best nodes for remaining iterations and sorted

for best next child till K-Best candidates are selected from level NT . At the end of processing for

level NT , one best first child and ’K-1’ best next child nodes comprises K-Best possible estimates,

which serves as parent nodes for next level NT − 1.

From tree level NT − 1, there exists ’K’ parent nodes unlike level NT , that had only one par-

ent node. Hence there exists ’K’ zero-child nodes. Considering ’Rlimit’ expanded nodes across

57



zero-child on each parent node, current sorter list with K × Rlimit child nodes with different

respective level paths, are sorted to determine best first-child for current K-Best candidate iter-

ation. Using modified complex valued row enumeration, imaginary best node is computed for

parent node of best first-child. It replaces best first-child in current sorter list, and K × Rlimit

nodes with one updated child, are again sorted to determine best next-child, for current K-Best

candidate iteration. AfterK th iteration, K-Best possible estimates for levelNT −1 are determined

and they serve as ’K’ parent nodes for level NT − 2. The noiseless lattice point search or zero-

child computation, followed by modified complex row enumeration is iterated over antenna levels

i, i ∈ (NT , NT − 1, ..., 1), resulting in K-Best estimates of NT × 1 transmitted symbol vector.

The modified complex SE based row enumeration significantly reduces silicon complexity due to

uncomplicated expansion technique used for updating current sorter list. However it also effects

detection performance due to inadequate expansion of child nodes along vertical layers other than

that of best first-child, determined on each antenna level. Various enhancements and challenges

associated with it have been elucidated in this section.

3.6.2 General Complexity Analysis

The modification in complex valued SE based row enumeration, reduces computational com-

plexity to (Rlimit+ 1)×K ×NT , compared to worst-case complexity (3K − 2)×NT , exhibited

by original complex valued detector. It introduces new parameter Rlimit, that can be accessed

by user to tune the trade-off between performance and computational complexity. However silicon

complexity is reduced significantly due to simpler complex valued enumeration being integrated in

modified version. The general complexity analysis comparing modified complex valued SE based

K-Best algorithm with Maximum Likelihood and complex valued conventional K-Best algorithms

has been provided in Table 3.4.

3.6.3 Benefits & Drawbacks

The major benefit of modified complex valued SE based K-Best algorithm is lower silicon

complexity for building current sorter list in each K-Best candidate iteration. The computational
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Table 3.4: Modified Complex Valued SE Based K-Best General Complexity Analysis

MIMO Detection
Algorithm

Worst Case
Complexity

256-QAM,
K=5
(Model 1)

1024-QAM,
K=5
(Model 2)

ML Q NT 256100 1024100

Conventional
K-Best [18]

Q×K ×NT 128000 512000

Modified Complex domain
SE based K-Best [4]

(Rlimit+ 1)×K ×NT 3000 3000

Where ’Q’ represents modulation order, NT = 100 in Model examples 1 & 2, ’K’ represents
K-Best possible estimates at each tree level and Rlimit = 5 represents horizontal width for first
child estimation

complexity is dynamically programmable due to additional parameter Rlimit that refers to hori-

zontal width expansion for first-child, as elucidated in Section 3.6.1. As a result, maximum child

nodes that should be expanded, for selecting K-Best estimates on each antenna level can be given

byRlimit+K−1 per antenna level, compared toK×
√
Q child nodes in real valued conventional

K-Best and K ×Q in complex valued conventional K-Best algorithm. Complex row enumeration

technique is utilized to expand next-child nodes, resulting in non-dependency of complexity and

detection latency on modulation order. It can be integrated with various pre-processing techniques

such as low latency QR Decomposition using CORDIC algorithm [13], Lattice Reduction [12].

The complex-valued SE based row enumeration can be designed with pipelined hardware imple-

mentation, implementing each pipeline stage with antenna level, spitting out K-Best candidates

immediately without waiting for complete K-Best possible estimates on each level. This ensures

reduced comprehensive detection latency of MIMO detector. This is also practically compatible

with MIMO system models configured with Gaussian, star and non-rectangular constellations [19].

The major drawback would be the inability of algorithmic flow to perform broadened expansion

in searching for K-Best candidates on each level. As discussed in Section 3.6.1, only the vertical

layer corresponding to first-child on each parent is expanded to determine next child nodes. If
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noise amplification and channel interference disturbs both real and imaginary part of transmitted

complex symbol during wireless transmission, corresponding detection at receiver end becomes

out of reach of modified row enumeration, which can be elucidated as follows. Let us assume

complex symbol s̃ = sr + jsi has been transmitted through wireless medium. If only real part of

transmitted complex symbol is altered due to channel and noise response, the resulting zero-child

computed using 3.5, points to sr + jsi, sr = sr ± 2× i, i ∈ Z as first-child. The original trans-

mitted real part can be reached by expanding child nodes along horizontal axes using additional

parameter Rlimit until sr + jsi is added to current sorter list, as one of next child nodes. If only

imaginary part of transmitted complex symbol is altered due to channel and noise response, the

resulting zero-child computed using 3.5, points to sr + jsi, si = si ± 2 × i, i ∈ Z as first-

child. As vertical layer along first-child is expanded, the original transmitted imaginary part can

be reached by expanding child nodes along vertical layer, in successive iterations, until sr + jsi

is added to current sorter list, as one of next child nodes. However if both real and imaginary

parts are altered by channel interference and noise amplification, the resulting zero-child points to

sr+jsi, sr = sr±2×i, si = sr±2×k, i, k ∈ Z as first-child. As only horizontal and first-child

related vertical child nodes are expanded, the transmitted symbol sr + jsi can never be reached

and expanded, for it to be added to current sorter list. Hence it can be deduced that s̃ constellation

point is not even in consideration for selecting K-Best possible candidates for current level. This

significantly degrades bit error rate performance of MIMO detector, as observed in implementation

results presented in this section.

3.6.4 Fixed Point Iteration

The modified complex domain SE based K-Best detector was implemented using MATLAB

with default floating point representation for all variables. As elucidated in Section 3.4.4, to avoid

wasteful utilization of hardware area and power consumption, the width of each variable can be

reduced to fixed point representation, thus reducing register width required for that particular vari-

able. The fixed point representation can be defined as least possible width that each intrinsic

variable should have, to mimic performance of floating point representation. As MATLAB fixed
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point arithmetic toolbox requires substantial amount of memory and time, to perform extensive

simulations on complex domain K-Best algorithm, I have integrated fixed point arithmetic directly

into algorithmic flow, to achieve bit error rate performance curves, with significantly smaller sim-

ulation time. This exhibited appreciable impact, especially for simulation large number of frames

on massive MIMO systems with high modulation order.

The conversion of floating point into fixed point representation has been defined in 3.3 and

3.4. All fixed point arithmetic required for implementing enumeration and detection logic can

be performed, by converting into fixed point representation and performing required arithmetic

operations, and finally deriving real value representation of fixed point result with corresponding

precision. This procedure was implemented to convert modified complex domain SE Based K-

Best algorithm into fixed point iteration and observed fractional bit width and word lengths of

major variables as defined in Table 3.5.

Table 3.5: Fixed Point Bit Width Table for Modified Complex Domain

Attribute Fractional bit width Word Length
Received Vector (Ỹ ) 25 30
Channel Matrix (H̃) 25 30
Upper Triangular Matrix (R̃) 25 30
Noise (σ) 9 9
Modulation Order ’Q’ 0 5
Noise vector (ñ) 25 30
K-Best value 0 3
LLR 7 12

where fractional bit width represents number of fractional bits assigned to fixed point bit width

representation.

3.6.5 Implementation Results

The performance of modified complex domain SE based K-Best MIMO detector was evaluated

using MIMO system model configurations defined in Table 2.2. As elucidated in Section 3.4.5,
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Figure 3.9: BER Vs Modulation Order (8 × 8 MIMO System), apropos different SNR channel
values.

each frame in NT × NR MIMO system transmits NT complex symbols, modulated with config-

ured constellation order. The behaviour and dependency of bit error rate in regard to different

modulation orders has been studied and analysed in this section. The performance graphs pre-

sented in this section were generated from standalone MIMO detector without taking advantage of

iterative decoding systems. However soft output resulting from MIMO detector were sequentially

used to calculate Log Likelihood values. They serve as ingress into potential iterative decoders

such as LDPC decoding system introduced in Section 1.5. The graphs presented in 3.9 and 3.10

represents dependency of bit error rate in regard to different modulation orders, {Q = 2N , N = 2, 4,

6, 8, 10, 12} on modified complex domain algorithm elucidated in Section 3.6.1 [4]. To maintain

consistency with other explored algorithms, the graphs are on logarithmic scale with bit error rate

and modulation order on vertical and horizontal axis respectively.

The bit error rate is expected to increase with modulation order or antenna dimensions, due to

gradual rise in path accumulated error propagation, for broader lattice search or deeper tree levels

respectively. From 3.9, 3.10, it can be deduced that in low channel SNR ∈ [1, 10], bit error rate
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Figure 3.10: BER Vs Modulation Order (100×100 MIMO System), apropos different SNR channel
values.

has been equally deteriorated due to high noise amplification and weaker signal strength in the

transmission medium. Irrespective of system configuration, the resulting bit error rate from SNR

∈ [1, 10] represents low asymptotic limit of modified complex domain MIMO detector and hence

it can be observed to be near-equivalent among all modulation orders and antenna dimensions, in

their respective graphs. Across high channel SNR values SNR > 10, bit error rate is dependent on

system configuration. However juxtaposing Figures (3.7, 3.8) with Figures (3.9, 3.10) respectively,

it can be observed that modified complex domain detector exhibits inferior performance compared

to real domain detector, which was explored in Section 3.4. By examining through extensive sim-

ulations and debugging of modified complex domain algorithm, it was perceived that substandard

performance is resultant of complex row enumeration to determine next child nodes in subsequent

K-Best iterations on each antenna level.

To understand defect in modified complex row enumeration, let us consider 8 × 8 MIMO

system, configured with 16-QAM modulation order. Hence constellation is composed of
√

16 =

4 complex symbols along each horizontal and vertical axis. Let us assume a frame with 8 th
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antenna transmitting s̃ 8 = 1 − j3 complex symbol. The binary code bit symbol mapping for

16-QAM modulation order has been defined in Table 3.6. Based on bit symbol mapping, each

complex symbol can be constructed from log2 16 = 4 bits, where first half bits contribute to real

mapping and later half bits contribute to imaginary mapping. Using channel information, zero-

child can be computed by assuming noiseless channel interference only received vector, using 3.5

and nearest lattice point is determined as first-child node. Let us assume first-child is determined

to be s̃ 8
FC = 3 − j3 complex signal, that is just adjacent to transmitted symbol s̃ 8 = 1 − j3.

As elucidated in Section 3.6.1, modified complex row enumeration selects only the imaginary

best nodes along vertical layer of first-child node s̃ 8
FC and Rlimit real best nodes across zero-

child, along horizontal axis, as successive next-child nodes for building current sorter list in each

K-Best iteration, if child node from same parent has been added to K-Best possible candidates

for next tree level. The expansion order has been mentioned thoroughly in Section 3.6.1. From

analysis of corresponding expansion of nodes with respect to modified complex row enumeration,

it has been determined that expansion order is favourable towards selecting imaginary best child

nodes (3 − j3, 3 − j1, 3 + j1, 3 + j3) of first-child s̃ 8
FC = 3 − j3, than Rlimit horizontal child-

nodes (1 − j3,−1 − j3,−3 − j3). Hence based on PED values computed by 3.1, enumeration

tends to expand majority of existing imaginary best nodes on vertical layer, before considering

real best nodes of first-child. It was observed that original transmitted symbol s̃ 8 = 1 − j3

was expanded only after selecting all imaginary best nodes (3 − j3, 3 − j1, 3 + j1, 3 + j3).

Hence higher K-Best candidates are required to expand real best nodes, especially with high

modulation order. The resultant performance of modified complex domain detector relies heavily

on accuracy of estimating first-child node and was determined to be inferior than its real domain

counterpart, especially for high channel SNR values SNR > 10. Moreover modified complex row

enumeration doesn’t explore diagonal children to first-child. The theoretical analysis behind this

major drawback has been elucidated in Section (3.6.3, 4.2.1.1) and corresponding enhancements

have been proposed in Section (4.2.1.1 and 4.2.1.2) in detail.
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Table 3.6: 16-QAM Binary Code Bit Symbol Mapping

Bit Real Mapping Imaginary Mapping Complex symbol
00 -3 +3 −3 + j3 (0000)
01 -1 +1 −1 + j1 (0101)
10 +1 -1 +1− j1 (1010)
11 +3 -3 +3− j3 (1111)

3.6.6 Possible Enhancements

Modified complex row enumeration expands only vertical layer corresponding to first-child

node, that was determined by sorting nodes across zero-child with horizontal width Rlimit. As

elucidated in Section 3.6.3, if both real and imaginary part of transmitted complex symbol are ef-

fected by channel inteference and noise amplification to the extent that zero-child doesn’t relate

to either of them, the modified row enumeration doesn’t even consider original transmitted con-

stellation point for building K-Best possible candidates. This inadequate expansion along vertical

layers significantly degrades detection performance for high modulation orders. Besides consid-

ering first-child vertical layer, expanding vertical layers corresponding to other child nodes within

Rlimit horizontal width can increase possibility of expanding original transmitted complex sym-

bol. Selecting that child node as one of K-Best possible estimates for that level, decreases bit error

rate accordingly. This enhancement has been elucidated in Chapter IV of this thesis work.

The Dynamic Fixed Point enhancement that has been integrated into Real domain SE based K-

Best MIMO detector can also be implemented in Complex domain detectors. Fixed point precision

is significant especially in higher levels of search tree. Also in modified complex row enumera-

tion, since initial K-Best iteration determines first-child node and expansion of only corresponding

vertical layer, precision computation of first-child impacts comprehensive performance of detec-

tion for that antenna level. Inadequate number of fractional bits at initial stages of estimation may

result in high error propagation and unpredictable behaviour of detector by causing broad fluc-

tuations at deeper antenna levels. However fixed point bit widths with respect to each variable

can be gradually reduced as each antenna level is processed. This has been elucidated in Section
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3.4.6. It can drastically reduce power consumption for massive MIMO systems, by turning off in-

active register bits using clock gating technique, at deeper tree levels. This enhancement has been

elucidated in Chapter IV where observed fractional bit widths & word lengths of variables and

corresponding implementation results have been presented in Chapter IV, only for real domain SE

based K-Best MIMO detector. The similar enhancement can be easily extended towards modified

complex valued SE based K-Best MIMO detectors.

3.6.7 Challenges

Complex valued detections are outperformed by their real valued counterparts, if transmission

is configured with rectangular constellation orders and if real and imaginary parts of correspond-

ing constellation symbols are uncorrelated. Due to redundancy of channel information from real

value decomposition of complex channel response matrix H̃ , real valued detections are known to

achieve better performance. The major challenge for implementing modified complex row enumer-

ation is determining efficient values for additional parameter Rlimit, that controls performance and

computational complexity. Selecting higher than required width unnecessarily explores additional

number of child nodes, and selecting smaller horizontal width may result in missing out consider-

ation of original transmitted complex symbol. The similar explanation stands for requirement of

determining efficient number of K-Best possible candidates per each antenna level. Hence defining

appropriate Rlimit and K values for different configurations of system model is quite challenging

and may require additional learning algorithms integrated into MIMO detector.

Complex valued detectors have less freedom of manipulation, compatibility of integrating ad-

ditional features and degree of flexibility in selecting optimum detection ordering [19], than corre-

sponding real valued counterparts, results in better performance from the latter. Though complex

valued detectors have edge with broad range of practical applications using Gaussian, star or non-

rectangular constellations, design of pipelined hardware architecture for various complex signal

processing techniques, that are required to characterize such improper, non-circular or unsymmet-

rical complex constellation symbols [23] is very challenging. However due to existing correlation

between real and imaginary parts of unsymmetrical complex symbols, complex valued detectors
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outperform their real valued counterparts. For such applications, real valued detectors need to

assume absence of correlation, for performing real value decomposition of unsymmetrical com-

plex symbols, to process them for detection. As this uncorrelated assumption violates intrinsic

properties of unsymmetrical constellation symbols, the performance of real valued detectors are

degraded, compared to that of complex valued counterparts, defining significance of the latter.

3.7 Summary

In this chapter, I have explored real domain SE based K-Best MIMO algorithm [17] and its

modified complex counterpart [4]. I have presented general complexity analysis and implemen-

tation results associated with them, using various configurations of system model, described in

Table 2.2. Additionally, I have also explored original complex valued row enumeration technique

for utilizing it to elucidate about the modifications performed in complex valued row enumeration

technique. The analysis of performance behaviour has been reported in Section 3.4.5 and 3.6.5.

Real domain detectors can perform comparatively better than their complex domain counterparts,

if transmission is configured using rectangular and symmetric modulation techniques. This can be

mostly observed in detection ordered based algorithms like VBLAST, LSD, K-Best MIMO detec-

tors and is due to their high degree of compatibility, manipulation and extra redundancy in channel

information attained using real value decomposition of complex MIMO system. However complex

valued detectors can be utilized over broader range of constellations like Gaussian, non-rectangular

and star with unsymmetrical and improper complex symbols [19]

3.7.1 A Peep into Possible Enhancements

In the next chapter, I have proposed two major enhancements that can be integrated into detec-

tion algorithms that have been explored in this section. First is the dynamic fixed point iteration

through which involves progressive decrement of fractional width of each variable as tree levels

are processed. Each bit reduction can be correlated to increase in unused flip-flops or register bits

on each antenna iteration. Modern power reduction techniques like clock gating can be utilized to

turn off such unused register bits while designing pipelined hardware architecture for the detection
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algorithms. I have presented simulation implementation results of dynamic fixed point iterative

real domain SE based K-Best MIMO algorithm and compared performance with that of its floating

point representation. This can be easily extended to any sequential ordering detection algorithms

like complex valued K-Best detectors. Second involves possible enhancement to modified com-

plex valued row enumeration [4] elucidated in 3.6.1. This has already been briefly introduced in

Section 3.6.6.
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4. DESIGN ENHANCEMENT OF EXISTING LOW COMPLEX DETECTION

ALGORITHMS

4.1 Dynamic Fixed Point Arithmetic Variation

Every variable in algorithm used for simulations is defined with floating point representation

by default. For floating point variable, the default word length is 64 bits among which majority

corresponds to fractional bits. The word length of any variable can be correlated to width of reg-

ister, instantiated for that variable, in hardware. If floating point representation is used to directly

design RTL for any algorithm, each variable corresponds to 64-Bit register, leading to high con-

sumption of area and power. However similar performance can be achieved by fixing word length

and fractional length of all internal variables in algorithm. Such fixed width can be determined

by performing extensive simulations on algorithm, by decreasing length of variables gradually and

observing the resultant performance from algorithm.

In real domain SE based K-Best algorithm, efficient fixed point conversion can be utilized

to significantly reduce comprehensive power and area consumption of corresponding hardware

design, especially for massive MIMO system with high modulation order. The floating point rep-

resentation from MATLAB was converted to fixed point counterpart, using procedure defined in

Section 3.4.4 by manually integrating fixed point logic into algorithm and using extensive simu-

lations to determine efficient widths of internal variables. The resulted fixed point bit widths of

each major variables have been presented in Table 3.2. The fractional bit widths listed in Table

3.2 represents minimum width of respective variable, to achieve performance of floating point

representation, on any system model configuration of MIMO system. For any algorithm, there ex-

ists critical segments that can determine its final performance and requires high precision in fixed

point performance. However, there also exists non-critical segments where bit width can be varied

in circumstances where slight degradation in internal computations doesn’t effect local estimation

or lattice point search and the resulting comprehensive performance of detector. This phenomenon
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can be utilized effectively to reduce power consumption at deeper level of tree search, in massive

MIMO systems with high modulation order.

In this section, I have elucidated Dynamic Fixed Point Iteration in real valued SE based

K-Best MIMO detector and presented its implementation results by juxtaposing it with original

floating point performance. Finally various challenges and limitations in regard to affixing this

design enhancement have been discussed.

4.1.1 Fixed Point Design Enhancements

The critical segment of real domain SE based K-Best detector is estimation of K-Best pos-

sible candidates at initial levels of search tree, where fixed point precision is extremely signif-

icant. Since calculation of partial euclidean distance of any node at tree level is based on re-

spective path accumulated error propagation, high resulting error at initial antenna levels can lead

to high fluctuations in selecting best possible estimates at later level. Hence at any tree level

′r′, estimation of K-Best possible candidates is highly dependent on all earlier processed levels

i, i ∈ (r + 1, r + 2, ..., 2NT − 1, 2NT ) and their resultant propagated errors. Hence as we go

down search tree, lattice point search at lower levels gradually increases its dependency factor

on fixed point precision of algorithm. If fractional bit width is lower than minimum required as

computed from extensive simulations, it may result in unpredictable nature of detector, from sig-

nificant degradation of its performance to detecting lattice points irrelevant to transmitted possible

constellation symbols. If current tree level ′r′ is effected due to lower fixed point precision, all

antenna levels after current level, i, i ∈ (r − 1, r − 2, ..., 3, 2, 1) results in faulty detection of their

corresponding transmitted symbols, due to respective path accumulated error propagation on all

of them. This defines significance of precision at initial iterations of any sequential or ordered

detection algorithms and their resulting performance should be identical to that of floating point

representation during local lattice point search. The non-critical segments of real domain SE based

K-Best detector can be defined as lower levels of search tree. Fixed point precision or fractional

bits of variables can be gradually reduced without effecting estimation of K-Best candidates on

each antenna level. If estimation occurs with high precision at critical segments of detection, the

70



resulting path accumulated error doesn’t fluctuate or impact estimation of K-Best candidates often.

The corresponding PED values of unerring symbols would be lower and it would be higher for all

neighbourhood symbols surrounding it. This further results in propagation of lower accumulated

error, resulting in reasonable comprehensive performance of detector.

As part of this enhancement, I have gradually reduced minimum fixed point bit widths defined

in Table 3.2, for important variables in design. For processing K-Best candidates on tree level 2NT ,

the bit width was set accordingly to Table 3.2. As we move down the search tree, I have started

gradually reducing width of fixed point variables by one bit, until number of fractional bits reach to

lower minimum, termed as Bit Width Limit. The bit width limit is defined as minimum number of

fractional bits required by particular variable, to achieve reasonable comprehensive performance

of detector on any configuration of MIMO system model. Let us assume 25 × 25 MIMO system

configuration as defined in Table 2.2. The Table 4.1 presents dynamic variation of fixed point

iterations, with bit width limit 8, on 25× 25 MIMO system.

Table 4.1: Dynamic Fixed Point Bit Width Table for Real Domain

Attribute OFBW 50 (2NT ) 49 48 34 33 32 31

Received Vector (Ỹ ) 25 25 24 23 9 8 8 8

Channel Matrix (H̃) 25 25 24 23 9 8 8 8

Upper Triangular Matrix (R̃) 25 25 24 23 9 8 8 8

Noise (σ) 9 9 8 8 8 8 8 8

Modulation Order ’Q’ 0 0 0 0 0 0 0 0

Noise vector (ñ) 25 25 24 23 9 8 8 8

K-Best value 0 0 0 0 0 0 0 0

LLR 7 7 7 7 7 7 7 7

Where Original Fractional Bit Width (OFBW) represents minimum fixed point fractional bits
required to achieve performance of floating point representation. Dynamic Bit Width (DBW)
represents dynamically adjusted fractional bit widths on respective antenna levels starting from
2NT = 50.
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where original fractional bit width represents minimum fixed point fractional bits required to

achieve performance of floating point representation. Dynamic Bit Width represents dynamically

adjusted fractional bit widths on respective antenna levels.

In Table 4.1, Dynamic Fixed Point Iteration for 25× 25 MIMO system with Bit Width Limit

12, has been studied. The fixed point precision of first tree level 2NT = 50, is derived from

Original Fractional Bit Width, from Table 3.2. It represents minimum bit width required by each

variable to achieve performance of floating point representation. As we move down tree level,

fractional bit width is decreased by one bit gradually, until Bit Width Limit is reached. Once

fractional bit width reaches its Limit, all antenna levels after will have constant fixed point width,

equal to Bit Width Limit. The Bit Width Limit can be adjusted based on configuration of MIMO

system model. It can be deduced from implementation results that Bit Width Limit may need to

be higher with massive MIMO systems or high modulation order, to achieve similar performance

as floating point representation. However, the maximum value of Bit Width Limit that is sufficient

for any configuration of MIMO system model, to achieve floating point detection performance, is

15 Bits.

Since bit width of simulation variables correlate with register width, when designing RTL,

decreasing bit width dynamically on each iteration reduces active flip-flops gradually as shown in

Table 4.1. This can be effectively implemented using power reduction techniques such as clock

gating to completely switch off inactive register at deeper levels of search tree. From theoretical

perspective, this provides significant reduction in comprehensive power consumption, for massive

MIMO systems. This research work presents implementation results, generated by simulation of

dynamic fixed point iterative real domain SE based K-Best algorithm. Dynamic Fixed Point Bit

Variation can be used on any sequential or ordered detection algorithm and has significant impact

in reduction of comprehensive power consumed by MIMO detector.

4.1.2 Implementation Results

MIMO System model with configurations defined in Table 2.2 were used to evaluate perfor-

mance of dynamic fixed point iterative version of Real valued SE based K-Best algorithm, elu-
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cidated above. The implementation results has been presented to compare resultant performance

of dynamic fixed point version with their corresponding floating point representation. Table 4.2,

comprises of Dynamic bit width variations used for 100× 100 massive MIMO system, with re-

spect to each antenna level, starting from root node to leaves in search tree, that have been used

to generate performance comparison graphs between bit error rate and channel SNR values for

100×100 massive MIMO system. The Bit Width Limit of 15 fractional bits has been decided after

observing derived performances of various bit widths, from extensive simulations. The behaviour

evaluation for each performance curve has been elucidated in Section 3.4.5. Similar reasons can

be assumed here because of identical performance curves observed as shown in this section. This

section is mainly focused on juxtaposing performance of dynamic fixed point bit width varying

real domain SE based K-Best algorithm and its floating point counterpart.

Table 4.2: Dynamic Fixed Point Bit Width (100× 100 MIMO System)

Attribute 200 (2NT ) 199 191 190 189 100 50 1

Received Vector (Ỹ ) 25 24 16 15 15 15 15 15

Channel Matrix (H̃) 25 24 16 15 15 15 15 15

Upper Triangular Matrix (R̃) 25 24 16 15 15 15 15 15

Noise (σ) 9 9 9 9 9 9 9 9

Modulation Order ’Q’ 0 0 0 0 0 0 0 0

Noise vector (ñ) 25 24 16 15 15 15 15 15

K-Best value 0 0 0 0 0 0 0 0

LLR 7 7 7 7 7 7 7 7

Each column represents dynamically adjusted fractional bit widths on respective antenna levels
starting from 2NT = 200.

The performance curves presented in Figure 4.1 have been generated utilizing varying fixed

point bit width from Table 4.2. It represents behaviour of bit error rate for different modulation
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Figure 4.1: Dynamic Bit Width Varying BER Vs Modulation Order (100 × 100 MIMO System),
apropos different SNR channel values.

orders, Q=4,16,64,256,1024,4096 constellations. The presented graphs are on logarithmic scale

with bit error rate and modulation order on vertical and horizontal axes respectively. It can be

observed that performance of dynamic bit width variation algorithm over different modulation

orders for massive MIMO systems, as presented in Figure 4.1, is almost identical to that of its

floating point counterpart in Figure 3.8, over different channel SNR values. This can also be

proved by computing average mean square difference between BERdynamic and BERfloatingpoint,

as defined in 4.1.

Table 4.3, comprises of Dynamic bit width variations used for 8 × 8 MIMO system model,

configured with 64-QAM modulation order, to generate performance curves between bit error rate

and channel SNR values. Ten Fractional Bits (lower than 100×100 MIMO system) were adequate

in achieving detection performance, equivalent to that of its floating point representation.

Similar analysis has been performed for conventional MIMO systems with 8× 8 antenna con-

figuration as system model. The performance curves presented in Figure 4.2 have been generated

utilizing dynamic fixed point bit width variation, from Table 4.3. The behaviour of bit error rate
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Table 4.3: Dynamic Fixed Point Bit Width (8× 8 MIMO System)

Attribute 16 (2NT ) 15 10 9 8 3 2 1

Received Vector (Ỹ ) 25 24 23 19 18 17 11 10

Channel Matrix (H̃) 25 24 23 19 18 17 11 10

Upper Triangular Matrix (R̃) 25 24 23 19 18 17 11 10

Noise (σ) 9 9 9 9 9 9 9 9

Modulation Order ’Q’ 0 0 0 0 0 0 0 0

Noise vector (ñ) 25 24 23 19 18 17 11 10

K-Best value 0 0 0 0 0 0 0 0

LLR 7 7 7 7 7 7 7 7

Each column represents dynamically adjusted fractional bit widths on respective antenna levels
starting from 2NT = 16.

for different modulation orders, {Q = 2N , N = 2,4,6,8,10,12} constellations has been evaluated

by using logarithmic scale in Figure 4.2, with bit error rate and modulation order on vertical and

horizontal axes respectively. The performance of dynamic bit width variation algorithm over dif-

ferent modulation orders for conventional MIMO systems, as presented in Figure 4.2, is within

reasonable deviation from performance of its floating point counterpart, as presented in Figure 3.7,

over different channel SNR values. This can also be proved mathematically by computing average

of squared euclidean distance between BERdynamic and BERfloatingpoint, as defined in 4.1.

The dynamic fixed point performance curves 4.1 and 4.2 has been juxtaposed with floating

point counterparts 3.8 and 3.7 respectively, to compute resultant average performance degradation.

Each numerical value listed in Table 4.4 has been computed using 4.1. For each model configu-

ration, corresponding numerical value represents average of absolute difference between bit error

rate achieved from dynamic fixed point algorithm and floating point version, over channel SNR

values listed in 4.2. It can be observed that all numerical values in Table 4.4 are reported in order

of 10 −2, thereby establishing integrity of proposed fixed point enhancement.
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Figure 4.2: Dynamic Bit Width Varying BER Vs Modulation Order (8×8 MIMO System), apropos
different SNR channel values.

∆ =

∑ 50
snr=1 |BER dynamic

snr −BER floatingpoint
snr | 2

N
, (4.1)

SNR N×1 = {1, 5, 10, 15, 20, 25, 30, 35, 38, 40, 45, 50} (4.2)

The performance curves presented in Figure 4.3, 4.4 and 4.5 represents bit error rate, for

system models of different antenna dimensions NT × NT , configured with modulation order

Q=64,256,1024 respectively. All graphs are on semi-logarithmic scale with bit error rates on ver-

tical logarithmic axis and NT on horizontal linear axis. Table 4.5 presents degree of deviation for

performance of dynamic fixed point version with respect to its floating point counterpart, described

in Section 3.4. Each numerical value is defined as average of squared euclidean distance 4.1 and

they can be observed to be in orders of 10 −3 for each system configuration, that may have been

resulted from inconsistency of transmitted vectors used in either simulations. This mathematically

proves integrity of dynamic fixed point bit width varying algorithm, as it is capable of achieving
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Table 4.4: Performance Comparison Table over Modulation Orders

H
HHH

HHNT

M
4 16 64 256 1024 4096

8× 8 0.0064 0.0025 0.0105 0.0094 0.0148 0.0075

100× 100 0.0024 0.0040 0.0065 0.0050 0.0035 0.0023

Where each numerical value represents ∆, the mean square difference over SNR ∈ [1, 50], be-
tween bit error rate performance, achieved from Dynamic Fixed Point Varying MIMO Detector
and Floating Point MIMO Detector for NT ×NT MIMO system, configured with corresponding
modulation order, as defined in 4.1.

20 40 60 80 100 120 140
10

−4

10
−3

10
−2

10
−1

10
0

Number of Transmit Antennas (N
T
)

D
yn

am
ic

 F
ix

ed
 P

oi
nt

 V
ar

yi
ng

 W
id

th
 B

it 
E

rr
or

 R
at

e 
(B

E
R

)

BER vs N
T
 (64−QAM) MIMO Detector

 

 

SNR = 1
SNR = 5
SNR = 10
SNR = 15
SNR = 20
SNR = 25
SNR = 30
SNR = 35
SNR = 38
SNR = 40

Figure 4.3: 64-QAM Dependency of Dynamic Bit Width Varying BER Vs Antenna Dimensions,
apropos of various channel SNR values.

performance in proximity of their corresponding floating point MIMO detectors. Hence analysis

of performance behaviour elucidated in Section 3.4.5 can be extended to these graphs as well.

The performance curves presented in Figure 4.6 and 4.7 defines behaviour of bit error rates

over second and third system model configurations defined in Table 2.2. Dynamic fixed point ver-

sion of real domain SE based K-Best algorithm has been evaluated using different K-Best possible
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Figure 4.4: 256-QAM Dependency of Dynamic Bit Width Varying BER Vs Antenna Dimensions,
apropos of various channel SNR values.
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Figure 4.5: 1024-QAM Dependency of Dynamic Bit Width Varying BER Vs Antenna Dimensions,
apropos of various channel SNR values.
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Table 4.5: Performance Comparison Table over Antenna Dimensions

PPPPPPPPPQAM
NT 8 25 40 50 60 80 100 120

64 0.0091 0.0024 0.0029 0.0046 0.0064 0.0021 0.0025 0.0051

256 0.0416 0.0113 0.0497 0.0107 0.0382 0.0080 0.0114 0.0260

1024 0.0187 0.0094 0.0289 0.0253 0.0239 0.0084 0.0333 0.0023

Where each numerical value represents ∆, the mean square difference over SNR ∈ [1, 50], be-
tween bit error rate performance, achieved from Dynamic Fixed Point Varying MIMO Detector
and Floating Point MIMO Detector for NT ×NT MIMO system, configured with corresponding
modulation order, as defined in 4.1.

candidates per antenna level. This has been analysed on conventional and massive MIMO systems

by utilizing 8 × 8 and 100 × 100 system models respectively. Semi-logarithmic scale was used

to present these graphs with bit error rate of vertical logarithmic axis and channel SNR values on

horizontal linear axis, over different K-Best candidates. Juxtaposing performance curve in Figure

4.6 and 4.7 with Figure 3.4 and (3.5, 3.6) respectively, it can be deduced that dynamic fixed point

achieves identical bit error rates with respect to its floating point algorithm. This has also been ob-

served in earlier comparisons between behavioural analysis of bit error rate with different antenna

dimensions and modulation orders, over various channel SNR values, defined in 4.2. This clearly

determines integrity in detection performance, for integrating dynamic fixed point enhancement

to any sequential ordered or tree based MIMO detectors. Thus various benefits of this enhance-

ment defined in Section 4.1.3 can be derived, along with achieving near-equivalent performance,

compared to their floating point counterparts.

4.1.3 Benefits & Prevailing Challenges

The main benefit of dynamic fixed point version of real valued SE based K-Best MIMO detec-

tor is reduction in number of active registers which gradually increase as we move down estimation

tree. This enhancement is scalable to any system model configuration depending on performance

requirements and it provides significant impact with respect to its benefits, on high end system
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Figure 4.6: 64-QAM Dependency of Dynamic Bit Width Varying BER Vs SNR, apropos different
K-Best estimates.
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models like massive MIMO systems with high modulation order. It can be integrated into any

sequential or ordered MIMO detectors, especially with simple clock gating management logic for

feed-forward detectors like breadth first search algorithms. It presents high degree of freedom and

compatibility due to its capability of dynamic adjustment in bit width limit and custom fixed point

bit width, for critical antenna levels.

The main challenge for effectively integration of dynamic nature into fixed point iteration, is to

determine least possible bit width limit, that can be scalable for any system model configuration.

As presented in previous sub-section, 100× 100 massive MIMO system possessed requirement of

atleast 15 fractional bits on majority of longest variables in detection algorithm. However, 8 × 8

supported Bit Width Limit of 10, to derive performance that can be related to floating point coun-

terpart. Each bit reduction in any fixed point variable can be correlated with turning off flip-flop

in register, corresponding to that variable in hardware design. This can be achieved with various

modern power reduction techniques such as clock gating. Additional circuitry is required to man-

age clock gating of registers on various tree levels. The complexity of clock gating circuitry can

be higher for non feed-forward MIMO detectors like depth first search sphere decoders, which

can be reasoned as follows. High precision is required at initial tree levels of estimation, due to

delicate and critical path accumulated error propagation nature of tree algorithms. Huge variations

in performance may be observed if such critical segments of algorithm are processed with inad-

equate precision. Due to additional clock gating circuitry, dynamic fixed point iteration may not

be effective for low end system model configurations like 2 × 2 or 4 × 4 MIMO systems. Hence

reasonable trade-off should be considered between comprehensive power reduction with respect to

clock gating and additional complexity introduced with it, besides gaining reasonable performance

from dynamic fixed point iteration.

4.2 Design Enhancements in Modified Complex Domain K-Best MIMO Detection Algo-

rithm

In this section, I have described potential enhancements that can be integrated in modified

complex valued SE based K-Best algorithm, defined in Section 3.6.1. Two different versions of
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enhancements with respect to their complex row enumeration have been proposed and have been

elucidated later in this Section. The changes made in enumeration technique can significantly al-

ter detection latency, performance and in few cases, computational complexity of MIMO detector

as the same algorithm is iteratively implemented for K × NT times, assuming NT × NR MIMO

system with K-Best possible candidates on each antenna level. The algorithmic flow of original

complex-valued SE based row enumeration is known for its high silicon complexity and hence,

modification was proposed in [4], to simplify the procedure associated with complex row enumer-

ation. Computational complexity can be dynamically altered with additional parameter Rlimit that

corresponds to horizontal width of expansion for determining first child of each parent node in cur-

rent level. This has been elucidated in Section 3.6.1, along with general computational complexity

analysis in Table 3.4.

However, the modification in complex row enumeration introduced constraints in regard to ex-

panding vertical layers within horizontal width Rlimit. As elucidated in Section 3.6.3, child nodes

on vertical layer that doesn’t correspond to first-child are not considered for updating current sorter

list. If both real and imaginary parts of transmitted complex symbol are altered in wireless medium,

by channel interference and noise amplification, in the manner that neither of them is determined

in first-child node of any parent, algorithmic flow of modified row enumeration makes sure that

the original transmitted symbol is not expanded or considered into current sorter level for any

value of K-Best possible candidates. This occurs because only nodes that exist on perpendicu-

lar layers with first-child as intersection node, are expanded with Rlimit as width for horizontal

layer and K for vertical layer. This has been symbolically explained in Section 3.6.3. This in-

adequate consideration of constellation symbols degrades performance of lattice point search and

detection performance for high modulation orders. I have proposed two different enhancements in

complex row enumeration that increases probability of expanding transmitted complex symbol in

lattice point search. Both versions explore multiple vertical layers across horizontal width Rlimit.

Additional parameter LayerLen indicates number of vertical layers across first-child, that should

be considered to build or update current sorter list. The first enhancement explores LayerLen
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vertical layers, retaining computational complexity. The second enhancement also explores Lay-

erLen but it is further instrumental in improving detection performance with moderately higher

computational complexity. However the complexity can be dynamically controlled using parame-

ters LayerLen and Rlimit based on performance requirements. In this section, I have elucidated

theory behind either enhancements proposed in this thesis work and presented general complexity

analysis along with their implementation results with system model configurations defined in Table

2.2.

4.2.1 Enumeration Design Enhancements

Both enhancements are induced in algorithmic flow of complex valued row enumeration used

for determining next child nodes of each parent, for updating current sorter list in K-Best iterations

on each antenna level. It introduces additional parameter LayerLen that corresponds to expanded

vertical layers with respect to nodes across horizontal width Rlimit. As elucidated in Section 3.6.1,

at initial K-Best iteration for determining first-child of each parent, Rlimit nodes are expanded

across zero-child. All nodes exist on horizontal axis, implying that they have different real parts sr

and identical imaginary parts si of complex constellation symbol s̃ ∈ Ω NT .

A NT ×NR MIMO system, configured with Q-QAM modulation order transmits NT complex

symbols per frame, where each symbol is modulated using ’Q’ constellation points. For every

complex symbol s̃ = sr + jsi, there exists exactly
√
Q− 1 complex symbols with either identical

real part sr or imaginary part si in constellation. Hence for every zero-child computed, range of

possible values of Rlimit can be given by [1,
√
Q] and of LayerLen is [1, Rlimit]. The computa-

tional complexity associated with either enhancements can be dynamically controlled using these

additional parameters, as presented in Table 4.6. For any parent node, zero-child and its resulting

first-child are computed similar to modified row enumeration defined in Section 3.6.1. However

algorithmic flow for selecting next-child nodes and building current sorter list has been enhanced

by broadening search along vertical layers, as described below.
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4.2.1.1 First Enhancement

Let us assume that complex symbol s̃ m = s m
r + js m

i has been transmitted using any antenna

level m ∈ (NT , NT − 1, ..., 1) and using channel information, zero-child z̃c = zcr + jzci has been

computed as defined in 3.5, for any parent node Pi, i ∈ (1, 2, ..., K). According to initial expan-

sion of child-nodes across zero-child z̃c, Rlimit lattice points are expanded by computing their

respective path accumulated PED values using 3.6. S = {s̃ n, n ∈ (1, 2, ..., Rlimit)} child-nodes

are sorted and corresponding node with lowest PED value, s̃ FC ∈ S = {s FC
r + js FC

i } is selected

as first-child in initial K-Best iteration. Let us assume L = {s̃ t ∈ S, t ∈ (1, 2, ..., LayerLen)} are

LayerLen child-nodes with lowest PED from S, after sorting. Hence it can also be deduced that

{s̃ FC = s̃ t, t = 1} ∈ S,L. In modified row enumeration 3.6.1, only, the child nodes on vertical

layer M FC corresponding to s̃ FC is considered for updating current sorter list. And in successive

K-Best iterations, child nodes s̃ ∈M FC = {s FC
r +jsi} that have same real part as first-child node

s̃ FC , are added to current sorter list using row enumeration, defined in Section 3.4.1 for sorting in

next iteration, if any predecessor nodes are added to K-Best possible candidates, in that iteration.

This enumeration doesn’t explore vertical layers V t 6= V FC , {t ∈ (2, ..., LayerLen)} and as a re-

sult if first-child s̃ FC has both different real and imaginary parts, compared to original transmitted

symbol s̃ m, i.e. if s FC
r 6= s m

r and s FC
i 6= s m

i , then corresponding transmitted point s̃ m is not

considered into current sorter list and hence not selected as one of K-Best possible candidates for

antenna level m.

In first enhancement, in lieu of always expanding the vertical layer V FC in every iteration, ver-

tical layers V t, t ∈ (1, 2, ..., LayerLen) corresponding to child nodes, that were added to K-Best

possible candidates in successive K-Best iterations, are expanded for next iteration for updating

current sorter list. Also it is not effective to expand vertical layers for complex symbols, with

large PED values that exist over large distance from first-child node s̃ FC . The limit of verti-

cal layers considered for expansion, is defined by additional parameter LayerLen. Hence if S =

{s̃ n, n ∈ (1, 2, ..., Rlimit)} are initially expanded for defining first-child node, vertical layers are

expanded for L = {s̃ t ∈ S, t ∈ (1, 2, ..., LayerLen)} and if any child node from remaining nodes,
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s̃ ∈ S, /∈ L, is added to K-Best candidates, child node from V FC are expanded. Let us assume

s̃ t̄ ∈ L, {t̄ ∈ t = (1, 2, ..., LayerLen)} is added to K-Best possible candidates in second iteration,

vertical layer corresponding to t̄, i.e. V t̄ is expanded instead of V FC and next-child computed on

that vertical layer, using row enumeration 3.4.1 is added to current sorter list, for next iteration.

The proposed first enhancement broadens the scope of search for original transmitted symbol

s̃ m, thus increasing detection performance. This also increases probability of detecting complex

symbols where s FC
r 6= s m

r and s FC
i 6= s m

i , by expanding vertical layers V t, t ∈ (1, 2, ..., LayerLen).

It can de deduced that number of expanded child nodes for selecting K-Best possible candidates on

antenna level m, are exactly identical to that of modified complex row enumeration 3.6.1. Hence

the proposed first enhancement possibly provides better performance with identical computational

complexity and with similarly reduced silicon complexity, compared to original complex SE based

row enumeration, as defined in Section 3.5.1.

4.2.1.2 Second Enhancement

The second enhancement constantly fluctuates size of current sorter list by adding one next-

child node from all vertical layers V t, t ∈ (1, 2, ..., LayerLen), in few K-Best iterations. No

vertical layer is expanded till all Real best nodes within horizontal width of LayerLen are selected

as K-Best candidates for that tree level. Once all LayerLen nodes are selected, imaginary best

node corresponding to each real best node is computed and LayerLen nodes are replaced by their

successive next child nodes. This increases the probability of selecting more number of real best

nodes, compared to imaginary best nodes along vertical layers, resolving the condition in relation

to favourable expansion of imaginary nodes, observed in modified complex enumeration. Let us

assume S = {s̃ n, n ∈ (1, 2, ..., Rlimit)} are initially expanded for defining first-child node, and

s̃ t̄ ∈ L, {t̄ ∈ t = (1, 2, ..., LayerLen)} is added to K-Best possible candidates in any successive

iteration, then all vertical layers V t, {t ∈ (1, 2, ..., LayerLen)} corresponding to L = {s̃ t, t ∈

(1, 2, ..., LayerLen)} are expanded instead of only V FC as in modified complex row enumeration

3.6.1 or V t̄ as in the first enhancement, elucidated above. As a result, for each predecessor node

that is added to K-Best possible candidates, next-child is individually computed on all vertical
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layers, using row enumeration 3.4.1 and LayerLen child nodes are added to current sorter list,

for next iteration. This enhancement has the potential to resolve conditions related to expansion

of child nodes, diagonal to FC and favourable expansion of imaginary best nodes, than real best

nodes.

The proposed second enhancement also broadens the scope of search along all vertical lay-

ers V t, t ∈ (1, 2, ..., LayerLen) uniformly, intelligently expanding reasonable number of child

nodes with similar silicon complexity as 3.6.1 and 4.2.1.1. Uniform enumeration across all ver-

tical layers further increases detection performance, compared to proposed first enhancement, at

the expense of higher computational complexity in the former. The general complexity analysis of

either enhancements and the implementation results for first enhancement, have been presented in

this section.

4.2.2 General Complexity Analysis

Computational complexity can be dynamically controlled by additional parameters introduced

with the modifications Rlimit and LayerLen, that corresponds to horizontal width and vertical

layers respectively. The first proposed enhancement retains computational complexity of modi-

fied complex row enumeration (Rlimit + 1) × K) × NT and corresponding general complexity

analysis has been given in Table 3.4. However the second proposed enhancement for modified

complex row enumeration, utilizes LayerLen to tune trade-off between computational complexity

and detection performance, and corresponding complexity can be given by {[(Rlimit+ 1)×K] +

[

⌈
K−LayerLen
LayerLen

⌉
× LayerLen]} × NT . The general complexity analysis of either enhancements,

comparing Maximum Likelihood and original complex valued conventional K-Best algorithms

have been provided in Table 4.6

4.2.3 Fixed Point Iteration

Either of proposed enhancements were implemented using MATLAB with variables using de-

fault floating point representation with word length of 64 bits. Fixed point iteration has been

utilized, as defined in Section 3.4.4, to avoid unnecessary area and power consumption, associated
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Table 4.6: Enhanced Complex Valued SE Based K-Best General Complexity Analysis

MIMO Detection
Algorithm

Worst Case Complexity 256-QAM,
K=5
(Model 1)

1024-QAM,
K=5
(Model 2)

ML Q NT 256100 1024100

Conventional
K-Best [18]

Q×K ×NT 128000 512000

First Version of
Enhancement

(Rlimit+ 1)×K ×NT 3000 3000

Second Version of
Enhancement

{[(Rlimit+1)×K]+[

⌈
K−LayerLen
LayerLen

⌉
×

LayerLen]} ×NT

3000 3000

Where ’Q’ represents modulation order, NT = 100 in Model examples 1 & 2, ’K’ represents
K-Best possible estimates at each tree level and Rlimit = 5, LayerLen = 5 represents horizontal
width for first child estimation and vertical layers expanded respectively.

with corresponding hardware design implementation. Fixed point arithmetic has been integrated to

algorithmic flow of MIMO detector using 3.3 and 3.4. After extensive simulations, the fractional

bit width of each intrinsic variable was placed at least possible width, to imitate performance of

floating point representation. Dynamic fixed point iteration, defined in Section 4.1.1 has been im-

plemented for real domain detector. It can be easily extended to either enhanced versions, defined

in 4.2.1.1 and 4.2.1.2, to further reduce power consumption, as elucidated in 4.1.1.

Both enhanced versions of modified complex domain SE based K-Best MIMO detectors were

extensively simulated and selected fractional bit width and word lengths of major variables have

been defined in Table 4.7

4.2.4 Implementation Results

The drawbacks of modified complex row enumeration were addressed and enhancements have

been proposed in Section 4.2.1.1 and 4.2.1.2. Complex MIMO detector described in Section

4.2.1.1 has been evaluated and corresponding performance results have been presented in this

section. The behaviour of bit error rate with respect to different modulation orders have been stud-
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Table 4.7: Fixed Point Bit Width for Enhanced Complex Domain

Attribute Fractional Bit Width Fixed Point Bit Width
Received Vector (Ỹ ) 25 30
Channel Matrix (H̃) 25 30
Upper Triangular Matrix (R̃) 25 30
Noise (σ) 9 9
Modulation Order ’Q’ 0 5
Noise vector (ñ) 25 30
K-Best value 0 0
LLR 7 12
Where Fixed Point Bit Width represents word length of each variable and Fractional
Bit Width represents number of fractional bits assigned.

ied and their resultant curves have been presented for different channel SNR values as shown in

Figure 4.8 and Figure 4.9. The bit error rate was derived by standalone MIMO detector. However

the Log Likelihood ratio values of each bit in soft output can be computed sequentially and can be

processed with iterative decoders to significantly improve the resultant bit error rate.

The first enhancement considers incomplete expansion of child nodes into account and selects

child nodes from all vertical layers as elucidated in Section 4.2.1.1. While the performance be-

haviour with respect to each modulation order is identical to previously explored algorithms and

slightly better than modified complex detector, it derives higher bit error rate at higher channel

SNR values, compared to real domain detector. This can be correlated to pre-existing complica-

tion that has been discussed in Section 3.6.5, pertaining to inclination of expanding most of the

imaginary best nodes before expanding atleast one real best node of the first child corresponding

to any parent node. This defect in complex row enumeration blocks detection algorithm to achieve

much lower bit error ratio during transmission through high SNR channel. Hence further enhance-

ments are required to halt expansion of unnecessary imaginary best nodes, thereby forcing atleast

surrounding real best nodes around first child, to get selected into current sorter list. This anal-

ysis determines that ideal complex row enumeration would imitate expansion nature of original

complex domain row enumeration [3], but with lower silicon complexity.
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Figure 4.8: BER Vs Modulation Order (8 × 8 MIMO System), apropos different SNR channel
values.
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Figure 4.9: BER Vs Modulation Order (100×100 MIMO System), apropos different SNR channel
values.
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4.2.5 Benefits & Prevailing Challenges

All benefits of modified complex valued SE based K-Best algorithm, defined in Section 3.6.3

can be extended to either enhancements, besides those, elucidated in this section. The proposed en-

hancements broadens the intelligent expansion of child nodes during lattice point search, increasing

probability of estimating transmitted symbol, accurately, on each antenna level. The major benefit

of either enhancements would be reduced silicon complexity for estimated best next child nodes

on each antenna tree level. Moreover computational complexity can be dynamically controlled us-

ing LayerLen, Rlimit depending on complexity of system model configuration. Massive MIMO

systems with high modulation order {Q = 2N , N = 8, 10, 12} may require higher values of these

additional parameters to achieve detection performance required by communication systems. How-

ever Massive MIMO systems with lower modulation order {Q = 2N , N = 2, 4, 6} and conventional

MIMO systems can exhibit appreciable performance with lower parameter values, thus reducing

computational complexity and resulting power consumption. MIMO detectors corresponding to

either of enhancements, can be integrated with pre-processing techniques such as QR Decomposi-

tion [13], Lattice Reduction [12] as elucidated in Section 2.1.1. Sequential processing of tree levels

can be utilized to design pipelined hardware architecture, representing each antenna level into one

pipeline stage. The overall detection latency of MIMO detector can be decreased by processing and

forwarding of each K-Best candidate on any tree level, without waiting for estimating all K-Best

candidates on current level. Complex detectors are compatible with broad range of constellations

like Gaussian, star, rectangular and non-rectangular [19], thus making them promising alternative

for above constellation dependent practical communication systems, especially for Line Of Sight

applications. Most importantly, due to sequential ordering detection, dynamic fixed point iterative

technique, defined in Section 4.1.1 can be integrated into MIMO detectors with either enhance-

ments, for efficient hardware design in regard to corresponding area and power consumption.

If real and imaginary parts of constellation symbols are completely uncorrelated, real valued

detectors outperform complex valued counterparts due to redundant channel information from real

value decomposition of complex channel matrix H̃ . Though modified and enhanced complex
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valued MIMO detectors relatively have low silicon complexity than original complex valued algo-

rithms, it is possible at expense of degraded performance for massive MIMO systems with high

modulation order. The major challenge would be to determine efficient and least possible values

for additional parameters LayerLen, Rlimit and K, to decrease computational complexity and also

to achieve detection performance required by applications. Selection of larger values unnecessar-

ily expands higher number of child nodes, and selecting smaller values may result in inadequate

expansion of child nodes, for estimating transmitted symbol vector. As described in Section 3.6.7,

determining appropriate values for such parameters, on various system model configurations can

be achieved with Lookup Tables (LUT) or additional pre-processing learning algorithms, inte-

grated into detector. Though complex detectors are applicable for non-rectangular constellation

configured MIMO system models, designing pipelined hardware architecture is very challenging

due to necessity of various advanced signal processing techniques, for processing transmitted un-

symmetrical symbols.
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5. CONCLUSION

Different low power MIMO detectors, efficacious on massive MIMO systems with/or high

modulation order have been explored in this research work. Initially mandatory technological

introductions have been discussed, presenting the thesis outline. Different elementary MIMO

detectors with performance categorization has been studied along with simulation tools and ex-

perimental framework utilized in this work. Section 3.4 explored Real domain SE based K-Best

algorithm [17] and corresponding results were generated using various system models, defined in

Table 2.2. Dynamic fixed point bit width varying version of real domain detector was proposed in

Section 4.1.1 and resultant performance was juxtaposed with original floating point counterpart, by

presenting implementation graphs and by computing average squared euclidean distance between

BERdynamic and BERfloatingpoint over different channel SNR values, defined in 4.2. The possible

benefits for dynamic fixed point enhancement has been clearly elucidated in Section 4.1.3. The

proposed dynamic fixed point enhancement can be extended to any sequential processing detec-

tion algorithm including all versions of Complex Domain SE based K-Best algorithms explored

and proposed in this research.

Section 3.5 explored theory for original work on Complex Domain SE based K-Best algo-

rithm [17]. Advantages and possible modifications have been reported in Section 3.5.3, that have

been explored in Section 3.6.1. Based on enumeration design analysis, enhancements have been

proposed in Section 4.2.1.1 and 4.2.1.2 and their implementational results have been presented.

For any MIMO system model configuration, performance of all detectors explored and proposed

in this research work are ordering based on their bit error rate performance in Table 5.1. The

general complexity analysis of all explored and proposed algorithms have been discussed in their

corresponding sections.
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Table 5.1: MIMO Detection Algorithms Performance Ordering

ML > Original Real Domain K-Best SE Based MIMO Detector [17] [5]
≥ Dynamic Fixed Point Real Domain MIMO Detector (Proposed in Section 4.1.1)
≥ Original Complex Domain MIMO Detector [3] [5]
≥ Improved Complex Domain MIMO Detector (Proposed in 4.2.1.1 and 4.2.1.2 ?)
≥ Modified Complex Domain MIMO Detector [4]

Where ML represents maximum likelihood optimal detection performance and ? refers to detec-
tion algorithms that have been proposed in this research work but their performance hasn’t been
evaluated yet. They have been included in this ordering based on theoretical analysis of their
detection algorithms

5.1 Comprehensive Analysis

All sequentially processed MIMO detectors that have been explored, can be designed with

pipelined architecture, resulting in reduced comprehensive latency. In the event of transmission

with rectangular constellation systems, Real domain detectors are expected to outperform their

Complex domain counterparts, due to availability of extra redundancy in channel response ma-

trix H , generated from real value decomposition of complex channel response matrix H̃ . This

can be observed only if real and imaginary part of complex constellation symbols are completely

uncorrelated. It has been reflected in implementation results presented for Real domain SE based

K-Best algorithm and its corresponding complex counterpart. However Complex domain detectors

establishes their authority in flexibility of selecting different constellations like Gaussian, star or

non-rectangular systems with unsymmetrical and non circular complex symbols [19], where real

and imaginary parts are correlated. But it requires complex valued computations intricate signal

processing techniques, that results in high computational complexity for designing efficient hard-

ware architecture. The analysis behind performance curves have been presented in their respective

sections and possible enhancements for improving bit error rate has also been discussed.

Dynamic fixed point Real domain SE based K-Best MIMO detector, proposed in this work,

achieves near-equivalent performance to that of floating point version [17], but with reduced com-

prehensive active register count. Hence inactive registers can be turned off using modern power
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reduction techniques such as clock gating, that has been discussed briefly in Section 5.2.1. The

proposed real domain pipelined architecture can be extended to dynamic fixed point bit width

varying version by integrating additional clock gating enable signals, to turn off corresponding

flip-flops, as processing goes into deeper pipelined levels in MIMO detector architecture. Also

certain sub-blocks used for designing real domain architecture in [17] and [5] can be extended,

with minimal modifications, to implement original complex domain MIMO detector as it differs

only in Complex row enumeration technique, compared to Real domain counterpart. Since there

exists no detailed design and study of efficient pipelined hardware architecture for original Com-

plex domain SE based K-Best algorithm, explored in Section 3.5, it can be explored as potential

and interesting extension to this research. The pipelined architecture for Real domain SE based

K-Best algorithm, explored in Section 3.4 has been proposed all inclusive, in [5] and [17].

5.2 Possible Future Work

The performance evaluation in this research was performed assuming MIMO detector as a

standalone algorithm. The bit error rate can be significantly decreased if MIMO detector is con-

nected to decoding system such as LDPC decoder. As elucidated in Section 1.5, each of K-Best

possible estimate vectors Z̃i,∈ C NT×1 {i = 1, 2, ..., K} are taken into account, one at a time,

for computing Log Likelihood Ratio values and forwarding them sequentially to decoding sys-

tems. Hence LLR values corresponding to each estimated soft output Z̃i is processed through

iterations between variable nodes and check nodes until parity check equation utilized to construct

the transmitted LDPC codewords is satisfied. The elaborated functionality of decoding iterations

in Section 1.5 provides fundamental knowledge of algorithmic flow for LDPC system. Standalone

MIMO detection algorithms that were explored and proposed in this work, can be integrated with

fully parallel LDPC decoding system, as potential developments of this research work. Finally in

this section, from the perspective of hardware design, I have presented a brief outline of potential

practical developments for implementing dynamic fixed point bit varying real domain algorithm,

by using modern power reduction techniques such as clock gating that can be utilized to integrate

with existing real domain SE based K-Best pipelined architecture, proposed in [17].

94



5.2.1 Clock Gating Enhancements

The theory of dynamic fixed point bit width varying technique has been proposed in Sec-

tion 4.1.1 and corresponding results have been presented. The performance proved to be near-

equivalent to that of floating point version, with difference in the orders of 10 −3, computed per

4.1. The average of squared euclidean distance across SNR values 4.2 has been presented in Table

4.4 and Table 4.5, evaluating this enhancement apropos modulation order and antenna dimen-

sion respectively. The ideal next development would be to integrate this technique into existing

pipelined hardware architecture for real domain detector ([5], [17]).

Let us assume 100×100 massive MIMO system configured with modulation order Q-QAM. As

presented in Table 4.2, bit width of major internal variables at level 2NT = 200 is experimentally

determined to be 25, and it is gradually decreased as processing moves down the search tree.

Variable H̃ is required to be stored in 25-Bit register, in hardware. All 25-Bits will be accessed for

execution of instruction during processing of level 2NT = 200. In next pipelined stage, only 24

active bits are required as bit width. Starting from 190 th antenna level, 15 active bits are adequate,

thereby reducing [190× (25− 15)] + {
∑ 15

i=0 i } = 2200 Bits all-inclusive for each variable, thus

decreasing significant hardware area and power consumption. For NT × NT MIMO system, if

Original Fractional Bit Width, defined in Table 4.2 is determined to be ’K’ and Bit Width Limit is

defined as ’L’, then corresponding area and power reduction can be associated with inactive bits

and general expression for inactive bits NA all-inclusive for each variable, throughout the MIMO

detector can be given as 5.1.

NA = [(NT + L−K)× (K − L)] +
L∑

i=0

i (5.1)

Modern power techniques like clock gating or additional enable signals can be used to reduce

dynamic power dissipation by pruning NA inactive bits to avoid unnecessary switching activity.

Increasing NA can result in more power reduction than area, due to high number of lattice search

processing iterations required to estimate K-Best candidates on each antenna level. Simple gating
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controller can be integrated externally with MIMO detector to maintain an account of inactive bits

on current level for each variable.
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