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ABSTRACT

We give a unified derivation of the large-volume corrections to
the gravitational action due to spin-0 bosons and spin-4 fermions.
We use these results to give a critical discussion of previous
analyses of woramhole effects on the pion and neutrino masses. We
formulate plausible hypotheses leading to the prediction
= 44/130 for the ratio of up and down quark masses,
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For some time it has been speculated that quantum gravitational effects might
have significance even for the physics observable at energies far below the Planck
mass m, ~ 107 GeV. 1In particular, it has been suggested that quantum fluctuations
in the topology of space-time might be important. Calculations have been made of
their possible wmodifications to elementary particle masses [1], and it has beeun
conjectured that they might engender information loss leading to the breakdown of
quantum coherence [2]. Until recently, the relevance of these speculations has
been difficult to assess, because a consistent formulation of quantum gravity has
not been avallable. However, this handicap has now been partly overcome by two
technical developments. One is the realization that string theory may furnish a
consistent and finite quantum theory of gravity, and the other is the development
[3] of a phenomenological "wormhole calculus”™ suitable for discussing some quantum
topological effects. These cannot yet be discussed precisely in string theory,
although this may be used to justify some of the assumptions made in "deriving” the

wormhole calculus,

Dramatic consequences have been claimed for the wormhole calculus, including
an intrinsic uncertainty in the fundamental constants of physics [3], a modifica-
tion of conventional quantum mechanics [2] and the vanishing of the cosmological
constant [4]. It should be stressed immediately that there are several theoretical
and practical questions about the latter argument. These include sign questions
related to the rotation between Lorentzian and Euclidean metrics [5,6], the sup=—
pression of large wormholes [7], the extremization of Newton's constant [8], and
the behaviour of particle masses [9-12]. Whilst admitting the pertinence of these
questions, we are sufficiently excited by the claimed success with the cosmological
constant [4] to re—explore implications of the wormhole calculus for particle

masses.

Various authors [9-12] have calculated the logarithmic corrections to the
effective action associated with the masses of elementary spin-0 bosons and spin-3
fermions. On the basis of these calculations, it has been argued [9-12] that
scalar masses m, such as the pion mass are driven to zero, and fermion masses m%
such as the neutrino mass to infinity, by wormhole dynamics. These argumeals are
subject to two types of objection. One is that the arguments have been couched in
terms of ultra-violet logarithms log(mZ/Aiv), whereas it 1is more natural te
consider infra-red logarithms log(mzrz) in the large-volume 1limit r » w, The
second objection is that full attention has not been paid to the requirements of
chiral symmetry, On the ome hand, this constrains the form of the effective action
and forbids certain troublesome terms. On the other hand, it gives relations
between pseudoscalar meson and quark masses: mi ~ A . m , in apparent conflict with

QD q
the expectations that mo + 0 and mé > =,



In this paper, we first address the technical problem of the mass-dependent
logarithms. We calculate them consistently in the infra-red limit for both spin-0
bosons and spin-% fermions, and recover the results previously obtained from a
trace anomaly argument [11]. Then we re—examine the argument that wormholes drive
m_ + 0, and confirm that this occurs logarithmically {9-11], with appropriate
chiral symmetry preventing the power-law disappearance suggested in Ref. [12]. We
do not see how the pion's composite nature [11] could evade this conclusion, but

instead formulate hypotheses that lead to the prediction

m, Imy = u4/130 . (1

Our hypotheses are that (1) mi = (m +md) as conventionally believed, (2) me/md

A

QCD"* u
ig fixed, as im many Grand Unified Theories (GUTs) {[13], and (3) the first-gener-
ation neutrinc mass o= mi/M where M is some large independent mass scale, as also

occurs in many GUTs [l4].

It has been pointed out that wormholes introduce a new uncertainty into the
values of all physical parameters. Coleman, in his scenario for the vanishing of
the cosmological constant, proposed the idea that it 1s possible to predict the
most probable values of other constants of Nature, such as particle masses, coup-
lings, mixing angles, etc. This "big fix" could be realized by maximizing the
probability distribution, given by the double exponentials of the effective action,
with respect to the parameters of the low-energy effective theory ([4]. In the
dilute gas approximation and neglecting any kind of wormhole self-interactions, the
probability of finding the wormhole parameters of species 1 between the values g«

i
and ai+dai, is given as

dP = N - Td; Zex) §¢0 2

- T
Zey = exp (e %)

+opot (3

where, if the Ri are the physical couplings and masses,

™ = rf%‘? (A+x) (4)

N
and f(x) is determined by the boundary conditions used to define the wave function

of the Unilverse [2].

For cosmological scales of size r, the leading dependence of the effective

action comes from large and smooth background gravitational metrics
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while the next~to-leading term of order O(R2) has the general form

l:k(%\ ~ g'iqxq [ A<~ (16w 6)—‘42 + P R‘"Q‘,thaf’*_

+¥ K RYW+ 3R 1. (5b)

In this effective action, matter loops have been integrated out from the wormhole
scale MWH down to the cosmological scale, and so the cosmological constant A,
Newton's constant (16nG)~!, as well as the parameters B, y and & depend on the
physical masses, couplings and whatever other parameters exist in a low-energy
physical theory. On top of this, the crucial point is that they depend also on the

wormhole parameters « To make a prediction for the values of the particle masses

m and the renormalizid couplings hi, at some low—-energy scale ML, which we take to
be of the order of r~!, to be used in the expansion (5b), we must find the depend-
ence of A, (L6nG)~1, 8, vy, & on mi(ML) and li(ML). This dependence is induced by
quantum fluctuations of the matter fields with characteristic scales from r to

l/mi. This infra-red regime will give unique logarithmic contributions.

The contribution of matter loops to the effective action (5b) has been calcu-
lated by many authors in the past, but for different purposes {15-19]. Recently,
Klebanov, Susskind and Banks [9] found unfortunate predictions from the wormhole
scenario for particle masses. The pion mass was driven to zero, and Majorana
neutrino masses induced by wormholes went to infinity. Wise and Grinstein also
found that the masses of elementary scalar fields are driven to zero [10]. TLater
they simplified their calculation using the trace anomaly of the energy-momentum
tensor [11], and showed how other couplings can in principle be determined. On the
other hand, Preskill [8] presented detailed arguments that it is not possible to
determine the most probable values of masses and couplings unless we Kknow the
detalls of the fundamental theory at the Planck scale. His arguments are based on
two maln observations. The first was that, since gravity has a universal coupling
to all forms of matter, Newton's constant, (16mG)~1, will necessarily depend on all
couplings and masses through renormalization effects, such as matter loops, with
the dominant contributions coming from close to the Planck scale. Secondly, he
argued that the maximization condition for (1676)~! must determine the values of
all the species of wormhole parameters and hence the values of all constants of

Nature, once the explicit dependence of (16wG)~! on the constants is known.

In the hope that there are other possibilities open for avoiding mass predic-
tions for bosons and fermions [9,10] that conflict with the reality, we recall that

above the wormhole scale the fundamental field theory presumably inherits broken or
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exact symmetries of a superstring theory. The effect of integrating over wormholes
could, in principle, leave some remnants of these symmetries in the theory below
the wormhole scale MWH’ and hence some degeneracy of the maximum of (1676)~! in the
wormhole parameter space. Thus the maximization of Newton's comstant in the space
of wormhole parameters, A(a) = 0, should only reduce the dimensiomality of this
space, leaving the way for other physical constants to be determined. This
jindeterminacy in the wormhole parameter space also leaves open the way for a modi-

fication of conventional quantum mechanics, as argued in Ref. [2].

Before we expose our ideas on the mass problem, we would like to describe in
some detail a possibly new method of calculating the infra-red dependence of A,
(16nG)~1, B, vy and & for a spherical universe of radius r, on the masses of par-
ticles with spin L. Although the results are known but scattered in various papers,
for completeness we present them here in some detail. For & spherical universe of

radius r, the action in relation (5b) becomes {15-17,10} (85 = 8n2/3):

CJ‘},\:Q;[/\-T“ - (6m 6Y M2 v 4+ ] (6)

with
c= 24f +36y + 1445, (7

In the following we shall calculate the logarithmic infra-red dependence of A,
(167G)=! and c on particle masses and on the natural infra-red cut-off r, which, as
can be shown by power-—counting arguments, is unique, To this end we apply zeta

function regularization to the ultra-violet divergences [153].

Here we shall only discuss massive particles of spin L = 0 and L = 3, as the

cases L » 1 require gauge fixing of the non-physical degrees of freedom and the
*

calculation of induced Fadeev~Popov determinants ). The kinetic energy operators

whose determinants will be calculated are:
- - []'+“ﬂ2 8
q, (8)
and
\») -m
Q,, = ¥ On )

The renormalization of the effective action, in relatiom (6), is then given by

*)} A shortcut has been taken in [17] using index theorems, a unified gauge-fixing
procedure for all spins and reducible SU(2) representations of tensors on curved
backgrounds.



ST, = ‘1 430% det &, (10)
and

oT,

- -?o& det &tlz Q, . (11)

- .1
(1__ 21

The kinetic operators for spin L have, for a spherical space-time, the following

eigenvalues and degeneracies {17,19]:

= X 2
N = [ 04 Q2LIm+c AP +w (12a)
LLH
4n= 5 WH) (42L42) (mL42 ), Nzo,1,2 (12b)
and
= O c = 4 |
=0 } L“_‘"'i (13)
Then, introducing a renormalization scale [13] M, we obtaln:
- 1< 4 w(Mr)t
T - - o) - 1 . (o)
ST,= -3 3. -5 g [ 25T 7.6 (14)
and
ST -4 %' 4 W (Mr )
7 2 e @t 3 -&%&Y )]- B {oy (15)
2 "* L_:%- y
where the C:function is defined by
o0
~Z
2
ey = Z 4, (27 (16)
L e

We extract next the large r behaviour of the CL—function, keeping terms up to those
linear in z, since we need only CL(O) and Ci(o). We use for this, and here we
differ from other authors, the Plana summation formula, from which we find an

integral representation of the CL-function
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This relation holds for any function analytic in the right half-plane with slower

than exponential growth for large [{].

The CL—function can be written using (12a,b) as

)
2L44 (18)
TLC"L) = :1—7:0[ FC\),Z'-f) + (2L+2-XL) {(n,ZJ] ,
2n+21L+3
femzy = — 2 (19)
Cn% C2u43)ny X ]
with
X = mvh ¢ . (20)
We apply (17) for the expression in relation (18),
o0 o0
T0 5 S S WP (R Y Gt L/ S S G o
Z_(“m‘l): ?-E x7.—1" it 5 vzt —_
n=e L L o€ ~1 -1y (trt) (t:_t)“(h-&‘f (21)
where
1, = J-—-B 4 (L+Ez).' (222)
- z 22b
A= X - (Le3) (220)
The integrand in Eq. (21) in the region
(23)
It =¥ <t 2 +0,
Zn/xL
is exponentially small (~ e ) for large r. Expanding in powers of t/tc in the

region 0 < t < ltcl’ up to terms linear in z, we find, up to expomentially small

corrections, that
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(24)

‘—bz[“m:-w] 3 co)

Sr1,2 - 525 é‘:"’uz %-2’%2-6032 +42'§Z—L"% “QU%%*— ‘(2"3
-4 byt 4 Loy 100y S, @

where

2 Ln*
$=wmr , S .- -31—1- (26)

Since the energy scale for which the effective action is given by Eqs. (24) and

(25) is of order r, we choose

M~ (27)

Hence the CL(O) terms do not contribute when we keep only terms that increase at

least as ~ log E.

So finally the cosmological constant A, Newton's constant (lﬁnG)‘l and the

parameter c are renormalized in the infra-red as

2 4 o g wr? .
A= éqntm %m r (28a)

S(iéw@\-’_ 1wt (A4 Loy wir? (28b)
1922 §

(28¢)

Se= L 58 Loyy
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by massive particles of spin L = 0, and



SA= 61 MH(42_240%m7r’) (29a)
{
SUbn 6T = 4irln2 w2 (-3¢ %Km"r’) (29b)

B s o (-4 g,

by massive particles of spin L = 4.

The r-independent m* and m? terms in (28a=-c) and (29a-c) are non-universal, as
has been observed by Preskill [8], because they receive contributions from gravita-
tional and other interactions. TFrom (28c) and (29c), we see that scalar particles
maximize the probability distribution (2) when oy + 0, while spin-% particles maxi-
mize (2) when m% + o [9,10].

We now comment on the phenomenological Implications of the results (28), (29).
pur first remark is that we do not think that it is correct, as was proposed in
Ref. [11], to avoid the conclusion that m_ > 0 by dissolving the pion into its
constituent gquarks. The relevant region for maximizing the probability is the far
infra-red, r >> m;l, where the pion appears elementary. Our second remark concerns

the comment in Ref. [12] that a term in the effective action of the form

2z
r » g&"x{% Uepr R (30)
where ¢ is a spin-0 boson, would yield at the tree level an extremum
2z
-l-— ~ _zq"'z UC?)

° Vce)

where V(¢$) is the conventional scalar potential for the ¢ field. 1In the chiral

) (31)

limit mq, m; = 0, the function U is independent of the pion field n, like the
potential V., Chiral symmetry allows U,V « mif(ﬂz), in which case the tree-level
contribution (31) to the effective action vanishes « mi, whereas the one-loop
correctlion (28) only vanishes logarithmically, and hence dominates in the interest-—

ing limit of small mn.

We have no further suggestion how to avoid the vanishing of mn, but we can

offer some suggestions on how to obtaln interesting mass relatioms in the limit of



-9 -

small m . We include in the effective action all the stable hadrons and leptons

*)

associated with the lightest generation

SCz= %60n® 2. Sc = 5%-3 .QO%N:‘,:‘ {1_2_401“3«

u,4,€,v(

-‘”2 (‘eﬂt M:t\z-{-\»eo&ﬂtft) -'(1 "eﬂ& M: ‘-z . (32)

For the hadrons in (32) we use the standard QCD expectations:

o (33a)
W,
(33b)
Mew = b Aacb + 0 Cwmy),
where a and b are numerical coefficients that are calculable in principle but
ek
unknown in practice ). In the interesting limit mog << AQCD’ we may write

Y= 119 'e”% gy %6 -eu% (/\G-(bﬂ
-1y vﬂo%(mcr) - 22 «eoz(mver‘ ) (34)

We note that AQCD would appear to be driven to zero by Eq. (34), but will not
pursue this matter. Instead, we formulate some motivated hypotheses about the

fundamental fermion masses in (34).

(1) We expect that me/md {s fixed, as in many GUTs [13]. For example, in the
minimal SU(5) GUT (which is not in conflict with a recent lattice estimate
[20]), before remormalization m and o, are given by a single SU(5)-invariant
Higgs coupling and moo=my. Since wormhole effects can only generate gauge-

d

invariant operators, they can change the values of md and m,» but not their

ratio.

(2) We adopt the standard GUT seesaw formula [14] for the neutrino mass:

2z
- ™M (35)
M"c - “ /M ) |

*) OQur results are not essentially changed by including heavier generations.

#%) Similar results are obtained if baryocus are dropped from Eq. (32).
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where M is some large mass=—scale from beyond the Standard Model.

Under these hypotheses, Eq. (34) becomes

Sc = 474 dog (o dmy v - 4Ly cwpe) -W*f’o‘,m“r) (36)
_+ R

Assuming that m, is fixed by some other consideration, and treating x = mu/md as

variable, 8C (36) is extremized when
A%y fexyny = 4Y /x a7
f.e.,
My fwy = /430 (38)

The best phenomenological estimates of f /md are around 0.56 [21], so the predic-
ticn (38) is not obviously successful ‘. Also, the wormhole calculus approach
that we have used is questionable, However, we feel that the prediction (38) cannot
yet be excluded. Moreover, we think that it is important to identify plausible
hypotheses within the wormhole framework that lead to testable experimental

predictions.
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