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Shock-wave formation is a generic scenario of wave dynamics known in nonlinear acoustics, fluid

dynamics, astrophysics, seismology, and detonation physics. Here, we show that, in nonlinear optics,

remarkably short, attosecond shock transients can be generated through a strongly coupled spatial and

temporal dynamics of ultrashort light pulses, suggesting a pulse self-compression scenario whereby

multigigawatt attosecond optical waveforms can be synthesized.

DOI: 10.1103/PhysRevLett.110.183903 PACS numbers: 42.65.Sf

A shock wave is a generic term for an abrupt, often
discontinuous, transient disturbance of physical parame-
ters that exhibits a clearly pronounced wavelike behavior
as it propagates through a medium [1–3]. Examples of
shock waves are found in fluid dynamics, nonlinear acous-
tics, astrophysics, seismology, and detonation physics and
include such diversified natural phenomena as thunder,
volcanic and stellar explosions, earthquakes, and tsunamis
[4]. An important class of shock waves, observed in ocean
physics, acoustics, and nonlinear electrodynamics, is pro-
duced through a nonlinear wave steepening. In optics,
this type of nonlinearity translates into the intensity depen-
dence of the group velocity, leading to a self-steepening
of one of the pulse edges. Following the early theoretical
predictions in the 1960s [5], optical shock waves have
been experimentally demonstrated [6,7] and insightfully
explained [8] in terms of the nonlinear wave-evolution
equation as a part of the classical work on spectral broad-
ening of ultrashort laser pulses in nonlinear media. In more
recent studies, shock-wave effects have been shown to play
an important role in supercontinuum generation in highly
nonlinear fibers [9,10], as well as in ultrafast optical wave-
form dynamics in laser-induced filaments [11–14].

One-dimensional shock-wave effects, observed in opti-
cal fibers [15], are known to steepen the trailing edge of
the pulse but do not lead to pulse shortening. Similar to
hydrodynamic shocks, which obey a set of well-defined
conservation and propagation laws [16], 1D shock waves
in nonlinear optics have been shown to satisfy energy and
photon-number conservation [17–19] and to evolve in
accordance with fundamental equations of electrodynam-
ics [15], allowing in some approximations compact ana-
lytical self-similar solutions.

Here, we demonstrate that a three-dimensional dynam-
ics of ultrashort light pulses, which involves strongly
coupled spatial and temporal nonlinear effects, can give
rise to isolated optical shock transients with remar-
kably short, subfemtosecond pulse widths, suggesting an
ionization-free pulse self-compression scenario whereby

multigigawatt attosecond optical waveforms can be
synthesized.
In our analysis, we use the generalized nonlinear

Schrödinger equation for the field envelope A�Aðt;r;zÞ,
modified to include ionization effects [11,12,20]:
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Here r is the radial coordinate, r2
r ¼ ð1=rÞð@=@rÞrð@=@rÞ

is the transverse Laplacian, z is the propagation coordinate,
kð!Þ ¼ ð!=cÞnð!Þ, ! is the radiation frequency, nð!Þ
is the frequency-dependent linear refractive index, T ¼
1þ ði=!0Þð@=@tÞ is the self-steepening operator, t is
the retarded time, !0 is the central frequency of the pulse,
n2 and n4 are the coefficients in the power-series expansion

of the refractive index in the field intensity, �TH ¼
ð!=ckð!ÞÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�0=�0Þ
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is the nonlinear susceptibility responsible for third-
harmonic generation, and Dð!Þ ¼ kð!Þ � ð!=VÞ is the
dispersion operator, V ¼ ½@kð!Þ=@!��1

!0
being the group

velocity.
Ionization effects are included through the Ri½A� term:
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where F is the Fourier transform from t to !, F�1 is the
inverse Fourier transform, �ð!Þ ¼ ð�0e

2!�cÞ=ðmkð!Þ�
ð1þ!2�2cÞÞ is the inverse bremsstrahlung cross section,
e is the electron charge, m is the electron mass, �0 is the
vacuum permeability, �c is the electron momentum
transfer time, Nat is the atomic density, WðjAj2Þ is the
single-atom photoionization rate, and Ui is the ioniz-
ation potential. The electron density Ne � Neðt; r; zÞ is
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found from the equation ð@NeÞ=ð@tÞ ¼ NatWðjAj2Þ þ
ð�ð!0Þ=UiÞNejAj2, which accounts for photoionization
and impact ionization.

To identify the scaling laws behind the dynamics of
ultrashort optical waveforms, we use the dimensionless
time and space variables � ¼ !0t, � ¼ !=!0, � ¼ r=a,
and � ¼ z=Ld, where a is the initial beam radius, Ld ¼
ð!0a

2=2cÞn0 is the diffraction length, and n0 ¼ nð!0Þ to
represent Eq. (1) in the following dimensionless form:
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Here, A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�a2=PcrÞ
p

A is the dimensionless field
amplitude, � ¼ �TH=n2, � ¼ ðn4=n2ÞðPcr=�a

2Þ, 	 ¼
Ld=Li, Li ¼ ½ð!0=cÞðNat=2NcrÞ��1 is the ionization
length, Ncr ¼ ð!2

0�0mÞ=e2 is the critical plasma density,

Nat is the density of the gas atoms, 
 ¼ Ld=LPA, LPA ¼
½ð�a2=PcrÞðUi=2ÞNat!0��1 is the photoabsorption length,
and W ðjAj2Þ ¼ !�1

0 WððPcr=�a
2ÞjAj2Þ. Deriving

Eq. (3), we do the standard assumption that the impact
ionization is negligible, since pulse duration is much
shorter than the electron momentum transfer time �c.

The input peak power in our simulations was chosen
slightly below the critical power of self-focusing Pcr ¼
�2
0=ð2�n0n2Þ, where �0 ¼ 2�c=!0 is the central wave-

length and n0 is the linear field-free refractive index. The
initial beam sizes and the focusing geometry were varied in
a broad range to achieve a specific scenario of space-time
self-focusing where the self-steepening of the trailing edge
of the pulse is accompanied by the diffraction of the
leading edge of the pulse, allowing a shock wave to evolve
toward an extremely short pulse width.

Equations (1)–(3) are integrated numerically by using
the split-step method [21]. The linear parts of Eqs. (1)–(3)
are simulated by using the Hankel transform [22] in the
radial coordinate. The nonlinear parts in these equations
are computed by using the fourth-order Runge-Kutta pro-
cedure. The computational grid is uniform along t with a
step �t ¼ 41 as and �� ¼ 0:1. The grid along the radial
coordinate consists of 2048 points at the nodes of the first-
order Bessel function, with the radial coordinate varied
from 3:7 �m to 1 cm. The step size along z is adjusted
so that the nonlinear phase shift at each step does not
exceed 0.01 rad. The equation for the electron density is
integrated by using the Heun scheme of the second-order
Runge-Kutta method.

Helium was chosen as a nonlinear medium in our simu-
lations because of its high ionization potential (Ui �
24:59 eV), providing a broad transparency range, needed
to support the spectrum of subfemtosecond shock-wave
transients. The nonlinear refractive indices for helium

are n2 � 3 � 10�8ðp=p0Þ cm2=TW and n4 � �1�
10�11ðp=p0Þ cm4=TW2 [23–26], where p is the gas pres-
sure and p0 is the atmospheric pressure. The entire disper-
sion profile of the gas is included in the model through the
nð!Þ data for helium from Ref. [27]. The third-harmonic
term in Eqs. (1)–(3) may have a detectable influence on the
shape of ultrashort shock transients studied in this work
but does not lead to dramatic changes in the scenario of
shock-wave generation and is omitted from the numerical
analysis presented below. Third-harmonic generation and
other physical effects and factors that may influence this
scenario will be considered in greater detail in a follow-up
publication.
Laser pulses with a peak power well above Pcr tend to

form filaments in accordance with the standard filamen-
tation scenario as beam self-focusing due to the Kerr
nonlinearity of the gas is balanced by ionization-induced
defocusing. As shown by the extensive earlier work (see,
e.g., Refs. [11,12] for review), this regime of beam dyna-
mics, accurately reproduced in our simulations, enables
pulse compression to few-cycle pulse widths. A drastically
different scenario of field evolution is observed for loosely
focused laser beams with peak powers slightly below Pcr.
This regime of nonlinear spatiotemporal field dynamics is
illustrated in Fig. 1(a) for an input field with a peak power
P ¼ 0:8Pcr taken in the form of Gaussian pulse with
dimensionless pulse width �0 ¼ 70 and Gaussian spatial
profile, focused in helium with a focal length f ¼ 0:65Ld.
An ultrashort shock wave is seen to build up on the trailing
edge of the pulse [Fig. 1(a)] as a result of this spatiotem-
poral field evolution. The minimum pulse width of this
shock transient, achieved at z ¼ 1:1Ld, is 1.36 fs. The
beam focusing geometry in these simulations is adjusted
in such a way as to enhance pulse compression and to avoid
any noticeable ionization effects. Comparison of the simu-
lations performed by using the full model of Eqs. (1)–(3)
[filled circles in Fig. 1(b)] with simulations where ioniza-
tion, high-order nonlinearity and ionization, or dispersion
effects were switched off [open circles, triangles, and
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FIG. 1 (color online). (a) Spatiotemporal map of the on-axis
field amplitude A for f ¼ 0:65Ld and (b) the minimum dimen-
sionless FWHM pulse width on the beam axis as a function of
R ¼ f=Ld calculated with the full model (solid line, filled
circles), with ionization switched off (dashed line, open circles),
with ionization and high-order nonlinearity switched off (dotted
line, triangles), and with dispersion switched off (dash-dotted
line, rectangles) for P ¼ 0:8Pcr, �0 ¼ 70.
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rectangles in Fig. 1(b)] shows that the minimum pulse
width of the shock transient, arising on the trailing edge
of the pulse, is controlled by the tradeoff of the effects
related to dispersion, high-order nonlinearities, and, to
some extent, ionization. For tightly focused beams [small
R in Fig. 1(b)], high-order nonlinearities and ionization
effects limit the pulse width. In the regime of loose focus-
ing large R in Fig. 1(b), dispersion effects start to play a
significant role, limiting the minimum pulse width of the
shock transient.

When the effects of impact ionization are negligible
(which is the case within a broad range of parameters,
including the regime considered here), the spatiotemporal
field dynamics leading to the generation of ultrashort opti-
cal shocks can be scaled in the peak power through a
coordinated adjustment of the gas pressure p / P�1, the

input beam diameter d0 / P1=2, and the focal length f / P.
As a specific example of high-power attosecond shock
generation, we consider the evolution of laser pulses with
a central wavelength �0 ¼ 800 nm and an input pulse
width of 30 fs (�0 ¼ 70), corresponding to a typical output
of mode-locked Ti:sapphire lasers. The input pulse ener-
gies are set equal to 43 and 50 mJ, corresponding to input
peak powers P0 of 1.36 and 1.7 TW, respectively, at a
helium pressure p ¼ 0:02 bar. With the input beam diame-
ter and the linear focal length taken equal to d0 ¼ 2:9 mm
and f ¼ 15:5 m, the maximum electron density generated
by the laser pulse is 5� 1013 cm�3, and the longitudinal
profiles of the field intensity and electron density along the
beam path [Fig. 2(a)] drastically differ from typical field
intensity and electron density profiles with extended pla-
teaus observed in the filamentation regime [11,12].

To isolate the shock-wave effects in the generation of an
ultrashort peak on the trailing edge of the pulse, seen in
Figs. 3(a), 3(b), and 4(a), we performed simulations with
the shock operator T in Eqs. (1) and (3) replaced by the
identity operator.With the shock-wave effects switched off,
a drastically different type of field evolution is observed

[Figs. 3(c) and 3(d)]. For peak powers below Pcr [P ¼
0:8Pcr in Fig. 3(c)], the pulse retains its symmetric shape,
as the peak of the pulse propagates with the same group
velocity as its edges. As the peak power approaches Pcr,
ionization effects become noticeable, defocusing the trail-
ing edge of the pulse [Fig. 3(d)]. Generation of an ultrashort
pulse is not observed in any of these regimes when the
shock term is disabled.
The shock term, as can be seen from Figs. 3(a)–3(d),

tends to push the most intense part of the pulse toward its
trailing edge, giving rise to subfemtosecond shock tran-
sients on the back of the pulse [seen at 15< t < 20 fs in
Figs. 3(a) and 3(b)]. The physics behind shock-wave for-
mation in this regime is intuitively clear, as the highest-
intensity fraction of the pulse propagates slower than its
edges due to the positive Kerr-effect-induced change in the
group index of the gas. Unlike 1D shock waves, 3D shock
transients can evolve toward much shorter, attosecond
pulse widths due to a strongly coupled dynamics of the
optical field in space and time. Specifically, in the regime
illustrated by Fig. 3(a), a shock wave tends to increase the
field intensity on the trailing edge of the pulse, enhancing
the self-focusing of this portion of the waveform (Fig. 5).
Since the field intensity on the leading edge of the pulse is
much lower, this part of the pulse undergoes strong dif-
fraction, facilitating the generation of an ultrashort shock
transient. Enhancement of pulse compression due to self-
steepening on the trailing edge of the pulse is confirmed by
numerical simulations performed with and without the
shock-wave term in Eqs. (1) and (3) (Fig. 5). At the point
of maximum pulse compression [z ¼ 26 m in Fig. 3(a)], an
ultrashort shock is tightly confined to the pulse section
where the beam size is minimal due to the most efficient
self-focusing.
The field waveform produced as a result of this spatio-

temporal field dynamics features an extremely short peak
on a long pedestal [Fig. 4(a)]. The spectrum of this pedestal
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FIG. 2 (color online). (a) The maximum field intensity (solid
line, left axis), the maximum electron density (dashed line, left
axis), the on-axis FWHM pulse width after spectral filtering
(solid line, right axis), and FWHM pulse width of the spectrally
filtered field integrated over the beam (dash-dotted line, right
axis) as functions of the propagation distance z and (b) the
field spectrum on the beam axis for �0 ¼ 800 nm, �p ¼ 30 fs,

f ¼ 0:65Ld, and P0 ¼ 0:8Pcr in helium at p ¼ 0:02 bar.
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FIG. 3 (color online). Spatiotemporal maps of the on-axis field
(in GV/cm), calculated with (a), (b) and without (c), (d) the
shock term in Eq. (1) for the initial central wavelength �0 ¼
800 nm, input pulse width �p ¼ 30 fs, f ¼ 0:65Ld, and input

peak power P0 ¼ 0:8Pcr (a), (c) and P0 ¼ Pcr (b), (d) in helium
with p ¼ 0:02 bar.
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is centered around the input spectrum [shown by the
dashed line in Fig. 4(b)], while its temporal power profile
follows the input pulse [the dashed line in Fig. 4(a)]
slightly distorted by the shock wave. The spectrum of the
ultrashort peak at 15< t < 20 fs in Fig. 3(a) displays a
strong blueshift [Figs. 2(b) and 4(b)], translating into a
strong chirp of the electric field on the beam axis [Fig. 4(c)].
Because of this spectral shift, the ultrashort shock wave can
be separated from the pedestal through spectral filtering.
In contrast to filamentation compression schemes, where
the laser fluences are prohibitively high for a direct intra-
filament filtering of the compressed pulse, the laser fluence
around the point of maximum pulse compression in our
scheme is below 2 J=cm2, which allows a spectral filter to
be inserted in the laser beam at z ¼ 21 m to block the
spectrum of the pedestal [as shown by the dash-dotted line
in Fig. 4(b)] and to produce an extremely short shock
transient across the entire beam with the FWHM pulse
width estimated, following the integration over the beam,
as 460 as. The maximum field intensity in this 0.46-fs pulse
is about 2� 103 times higher than the intensity of a
prepulse 15 fs before the peak and 1:6� 104 times higher
than the postpulse intensity 15 fs after the peak. The
total energy carried by this 0.46-fs shock wave is
0.03 mJ, translating into a peak power of 52 GW. The
FWHM pulse width in the spectrally filtered shock wave
calculated as a function of the propagation path is shown
in Fig. 2(a). The integral pulse width of the compressed
shock transient across the entire beam [dash-dotted curve
in Fig. 2(a)] closely follows the on-axis pulse width, shown
by the solid line in this figure. Equations (1) and (3) are still
valid for such field transients, since all the necessary

conditions for the applicability of these equations,
ð1=jAjÞj@A=@zj � k0 and jk0 � ð!0=VÞj � k0, are satis-
fied, with k0 ¼ ð!0=cÞnð!0Þ [20]. Indeed, for the regime
where attosecond shock transients are generated, we have
maxfð1=jAjÞj@A=@zjg�10cm�1 and jk0 � ð!0=VÞj �
0:05 cm�1, while k0 � 8� 104 cm�1.
A broad transparency range free of any electronic reso-

nances is critical for attosecond shock wave generation,
as it helps reduce absorption, dispersion-induced pulse
stretching, and precursor formation [28]. For helium, the
first electronic resonance corresponds to the 1s� 2p tran-
sition and occurs at 1s�2p � 5:13 PHz. For the attosecond

shock transient in Fig. 4(d), the high-frequency part of the
spectrum falling beyond 1s�2p carries less than 10�11 of

the total radiation energy and less than 10�5 of the energy
of the attosecond waveform behind the spectral filter.
Under these conditions, effects related to precursor forma-
tion are negligible.
Unlike laser-induced filaments, where few-cycle field

transients are generated as a part of an ultrafast strongly
coupled spatiotemporal dynamics, which stretches these
transients within extremely short propagation paths, atto-
second optical shock waves demonstrated in this work are
generated with loosely focused beams, at low gas pres-
sures, and in the regime where ionization effects are neg-
ligible. Because of all these factors, such waveforms
maintain their pulse widths over much longer propagation
paths. Specifically, at p ¼ 0:02 bar, the 0.46-fs field wave-
form shown in Fig. 4(d) remains shorter than 0.65 fs within
a propagation path of 70 cm, allowing this field waveform
to be extracted from a gas medium with an appropriate
pressure gradient, thus making it suitable as a subfemto-
second probe for time-resolved experiments.
In summary, unlike 1D shock waves in optical fibers,

3D shock transients can evolve toward remarkably short,
subfemtosecond optical waveforms, suggesting a pulse
self-compression scenario whereby multigigawatt attosec-
ond optical waveforms can be synthesized.
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