ARTICLE

Received 19 Feb 2016 | Accepted 24 Jun 2016 | Published 5 Aug 2016

Self-assembled oxide films with tailored nanoscale
ionic and electronic channels for controlled
resistive switching
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Resistive switches are non-volatile memory cells based on nano-ionic redox processes that
offer energy efficient device architectures and open pathways to neuromorphics and cognitive
computing. However, channel formation typically requires an irreversible, not well controlled
electroforming process, giving difficulty to independently control ionic and electronic
properties. The device performance is also limited by the incomplete understanding of the
underlying mechanisms. Here, we report a novel memristive model material system based on
self-assembled Sm-doped CeO, and SrTiOs films that allow the separate tailoring of
nanoscale ionic and electronic channels at high density (~10'%inch ~2). We systematically
show that these devices allow precise engineering of the resistance states, thus enabling large
on-off ratios and high reproducibility. The tunable structure presents an ideal platform
to explore ionic and electronic mechanisms and we expect a wide potential impact also on
other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and
neuromorphics.
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range of emerging non-volatile random-access memory

technologies for faster, higher density and low energy

memory are now being explored worldwide to overcome
the emerging challenges of scale, speed and energy of today’s flash
floating-gate metal-oxide-semiconductor field-effect transistor
technology based on silicon. Among them, resistive random
access memory (ReRAM, also termed as memristive device) is
one of the promising candidates for the future non-volatile
random-access memory. ReRAM has the potential for
high-density integration, fast operation, low-power consumption,
and fabrication compatibility with silicon complementary metal-
oxide-semiconductor technology!. In addition, by mimicking
biological neurons, memristive devices have the potential to
combine logic + memory O}Z)erations and hence are of interest in
future cognitive computing”.

Metal oxide resistive switching structures have been widely
studied for ReRAM. They have several advantages over phase
change memories, ferroelectric RAMs and magnetoresistive
RAMs (ref. 3), but still there is a lack of reproducibility in their
properties. They also typically exhibit lower endurance than the
aforementioned alternatives and need a high-voltage (5-20V)
electroforming process*°. The understanding of memristive
switching in oxide materials is also incomplete. Various models
have been proposed such as filamentary conduction, charge
trapping defects states, trap-controlled space-charge-limited
current and a change of a Schottky-like barrier>®. In fact,
these effects are not mutually exclusive, the essential feature of all
of the aforementioned models being the migration of oxygen
vacancies and electrons under an applied electric field>’~11.

For valence change resistive switching, the undesired
but essential electroforming process which induces random
filamentary conduction channels in oxide films induces a redox
reaction leading to reduction of the oxygen content in the film to
form positively charged oxygen vacancies plus neutralizing
electronic carriers>®12714, However, the coupling of the ions
and electrons makes the understanding of the resistive switching
mechanism unclear. Also, it is difficult to independently
control ionic and electronic properties of such channels and
the stochastic nature of the electroforming process makes the
understanding of the switching process more difficult.

To strongly advance the understanding of resistive switching,
we propose a structure in which ionic and electronic channels are
decoupled into separate channels and electroforming is inherently
not required. Hence, this work is focused on engineering and
testing such a structure as a model material system. This was
done through creating vertical heteroepitaxial nanocomposite
(VHN) films. We show that unique and highly tunable
memristive properties result in which the electronic current is
controlled by the ionic vacancy concentration in the ionic
nanochannels. The structure allows information to be encoded in
the confined ionic nanochannels which is closer to nature’s purely
ionically based information transfer of chemical synapses and
hence gives promise for future cognitive computing devices.

50 Sm-doped CeO, (SDC): 50 SrTiO; (STO) (atomic ratios of
Sm to Ce: 0, 0.1, 0.2 and 0.3 in SDC) was chosen as the model
nanocomposite system to study. In this system, SDC nanocolumns
play the ionic role, and the vertical interfaces between SDC and
STO play the electronic role in resistive switching. SDC is a
well-known oxygen ionic conductor with tunable vacancy
concentration depending on the Sm doping level'>~!7. Recently,
we discovered high temperature (from 360 to 673K) ionic
conduction in SDC:STO nanocomposites, which grow very easily
by self-assembly from a single-pulsed laser deposition target!®. It
was found that very fast conduction SDC ionic nanopillars formed
in the STO film matrix. On the other hand, the resistive switching
behaviour of the SDC:STO structures was not explored before.
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Here, at room temperature, we exploit the high ionic conduction
in the SDC nanopillars as well as electronic conduction at the
SDC/STO interface, to form, for the first time, a separate jonic and
electronic nanochannel device. In these structures, to tune the
Schottky barrier we modify the nanopillar ionic conduction by using
different Sm doping levels in the SDC. We demonstrate that the
SDC:STO structures are electroforming-free with high endurance.
Moreover, we demonstrate for the first time that the concentration
of mobile oxygen vacancies precisely controls the low-resistance
state (LRS). The novel structures have wide application beyond
resistive switching to other electronics and energy ionotronic
technologies where vertical, fast ionic or tunable mixed (ionic and
electronic) conduction is required, for example, solid state ionic
gating, fuel cell cathodes and neuromorphic computing!®.

Results

Formation of SDC:STO vertical heteroepitaxial nanocomposites.
We first present the results of an optimum film (in terms of
resistive switching): 20 at.% SDC:STO VHN film grown on 0.5
wt.% Nb-doped SrTiO; (Nb:STO), using a film growth rate of
0.03nms ! by pulsed laser deposition. As we show later, 20%
Sm is the optimum doping concentration for the highest ionic
conduction (highest mobile vacancy concentration), and also that
growth rate is important for controlling crystalline perfection,
both of these factors being very important for optimal device
performance.

Figure la,b show scanning transmission electron microscopy
(STEM) high-angle annular dark-field (HAADF) images in a
cross-sectional view and plan view, respectively, indicating phase
separation and vertically aligned phases (see also Supplementary
Fig. 1). The higher atomic number phase, namely the SDC, is
brighter than STO. Figure 1c is a highly magnified HAADF image
of an SDC/STO interface, showing an atomic-scale sharp and
epitaxial interface with an orientational relationship that the SDC
[001] axis is parallel to the STO [001] axis and the SDC [100] axis
is parallel to the STO [110] axis. The three-dimensional alignment
nature of the VHN films was studied using four-circle
X-ray diffraction (XRD). The XRD -20 scan of 20 at%
SDC:STO VHN film with a nominal thickness of ~200nm
on Nb:STO shows only (00]) peaks of SDC and STO (Fig. 1d)
without traces of other phases or orientations, confirming their
high degree of crystallographic orientation and no intermixed
crystalline phases.

The lattice constants of bulk cubic SDC and STO are 5.433 A in
JCPDS # 75-0158 and 3.905 A in JCPDS # 35-0734, respectively.
Thus, the SDC nanopillars are grown on the Nb:STO substrate
with an energetically favourable 45° in-plane rotation to minimize
in-plane lattice mismatch (1.6%), as shown by the ¢-scan (Fig. le).
For the SDC:STO film on the Nb:STO further structural
information was obtained from reciprocal space maps (RSMs)
around STO(2 03) (Fig. 1f). The SDC (2 2 4) peak was observed
in the lower g, region than the (2 03) peak of the STO. The
out-of-plane and the in-plane lattice parameters of SDC were
calculated to be 5430 and 5443 A, respectively, from a
combination of the ®-20 scan and the RSM, corresponding
to moderate compression along the out-of-plane direction
(0.05%) and moderate expansion along the in-plane direction
(0.18%). Figure 1g shows a crystallographic model of the
vertical SDC(100)/STO(110) interface based on the STEM and
XRD analyses.

Resistive switching behaviour in nanocomposite-based device.
Figure 2a,b show a schematic illustration for a (Pt (top)/20
at.% SDC:STO VHN film (nominal thickness: 30 nm)/Nb:STO
(bottom)) device and repeated R-V scans of the device,
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Figure 1 | Structural characterizations of VHN. Structural properties of 20 at.% SDC:SrTiO5 (STO) VHN from 0.03nms ~ ! growth rate which was the
optimized film from the point of view of a high on/off ratio on resistive switching. (a,b) Phase ordering in cross-sectional view and plan view of SDC:STO, as
revealed by STEM HAADF images. Scale bars, 30 nm. (¢) High-resolution HAADF image of the vertical interface. Scale bar, 2nm. (d) XRD w-20 scan
of SDC:STO nanocomposite film. (e) 360° ¢-scans of the (111) peak of STO and the (111) peak of SDC. (f) RSM around the STO(-203) reflection.

(g) Crystallographic model of a SDC:STO VHN around vertical interface between SDC and STO.

respectively. For all the electrical measurements, bipolar voltage
signals were applied to the circular top Pt electrode with a
diameter of 50 um while the bottom Nb:STO electrodes were
grounded. The device exhibited non-volatile resistive switching as
a function of voltage (V). An electroforming process is not
required for reproducible resistive switching properties. One of
the curves shown in Fig. 2b was the first scan from the pristine
state which was almost the same as the successive R-V curves.
The device was switched to LRS by applying a negative bias and
switched to high-resistance state (HRS) by applying a
positive bias. This counterclockwise resistance variation has been
reported for a number of oxygen vacancy migration-based
resistive switching systems!!™1%. The device exhibited uniform
resistance variations for over 10°-cycles (Fig. 2¢ with alternative
voltage pulses of -5 and + 5V for switching and a read voltage of
-0.3V), and retention of the original resistance state without
degradation (Fig. 2d). In contrast to these devices, plain SDC and
STO films required electroforming processes for reversible
resistive switching and after electroforming they showed lower
on-off ratios and poorer endurance (Supplementary Fig. 2). XRD
-20 scans for an SDC film and an STO film on Nb:STO are
provided in Supplementary Fig. 3.

To study conduction and resistive switching mechanisms in the
VHN films, we compare optimized VHN films and plain films
formed from individual phases at first. Before electroforming,
the plain film structures: [Pt/20 at.% SDC film/Nb:STO] and
[Pt/STO film/Nb:STO] both showed asymmetric and rectifying
I-V characteristics (Fig. 3ab, respectively), as expected. The
results are consistent with that expected for Schottky-like barriers
on top electrode interfaces because SDC and STO are n-type

materials, Pt is a high work-function metal and the bottom
interface with Nb:STO substrate is an ohmic contact>!%11:20,

Turning now to the case of the Pt/SDC:STO VHN/Nb:STO
devices, the SDC nanocolumns and the STO matrix are n-type
semiconductors and their vertical interface regions are also n-type
oxides due to the high concentration of oxygen vacancies?’.
Thus, by considering only these facts (not taking into account
the presence of mobile oxygen vacancies), asymmetric -V
curves of the VHN structure would be expected to be similar to
those observed for the plain SDC and STO devices. Under a
small applied bias, an asymmetric and rectifying characteristic
was shown (Fig. 3c). The highly asymmetric I-V curve
indicates an interface-limited conduction of the VHN device
rather than a bulk-limited conduction. There are four main kinds
of interface-limited conduction mechanisms: Schottky emission,
direct tunnelling, Fowler-Nordheim tunnelling and interface-
limited trap-assisted tunnelling?l?2. The direct tunnelling and
Fowler-Nordheim tunnelling can be ruled out in our case because
our oxide layers are thick (>30nm). The current density across a
Schottky barrier for an applied bias voltage V23

e(¢bn - \/m)

kgT

J=A"T?exp | — (1)

where A* is the effective Richardson constant, T is the absolute
temperature, kg is Boltzmann’s constant, e is the electron charge,
edpn is the height of the Schottky barrier, ¢, is the dielectric
constant of the film, &, is the permittivity of free space and d is the
sample thickness. If a Schottky barrier controls the current, a
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Figure 2 | Resistive switching of VHN-based device. (a) Schematic

of the measurement configuration of SDC:SrTiO3 (STO) VHN device.
(b) Electroforming-free R-V hysteresis loops in SDC:STO VHN device.
(¢) Uniform resistance variation with repeated electrical cycles. (d) The
retention characteristics of both resistance states.

semilog plots of J/T2 (or I) versus V1’2 can be fitted by a straight
line. The semilog plot of I versus V2 for the VHN device
indeed shows a straight line fit (Supplementary Fig. 4). In
addition, a clear non-linear relationship between log I versus V!
rules out the trap-assisted tunnelling mechanism?. Therefore,
in the SDC:STO VHN device, the intrinsic conduction in the
HRS is mainly governed by Schottky emission. Interestingly, as
the absolute value of negative bias increased, the current
dramatically increased, resulting in a completely different I-V
curve shape (Fig. 3d) from the small applied bias case (Fig. 3c). In
addition, the I-V scan with an applied bias range of +2V
showed a clear hysteresis.

Figure 3 shows that the current in the VHN device was 2-4
orders of magnitude higher than in the plain STO and SDC
devices (with the same film thickness), respectively, using the
same voltage amplitudes. This indicates that the interface between
the Pt and VHN vertical interfaces has a narrower barrier width
and/or lower barrier height than those of plain films because
electronic conduction in both plain and VHN cases are mainly
governed by Schottky emission?®?>. This is supported by
conductive atomic force microscopy (c-AFM) measurements
indicating higher electronic conductivity along the vertical
hetero-interfaces of the VHN film (Supplementary Fig. 5).
Electronic conduction of STO can be easily tuned, among
other oxides, by chemical doping of a small amount of dopants or
by increasing oxygen vacancy concentrations’®=30, The most
likely reason for the higher conductivities of the STO:SDC vertical
interfaces is a higher concentration of oxygen vacancies along the
vertical interfaces by structural mismatch of the two materials
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Figure 3 | I-V curves of devices before electroforming. (a) Plain 20 at.%
SDC film device. (b) Plain SrTiO3 (STO) film device. (¢,d) 20 at.% SDC:STO
VHN firm device.

(STO: perovskite, ¢=0.3905nm, SDC: fluorite, ¢=0.5430 nm)
than that of the bulk STO part, leading to higher carrier densities
along the vertical interfaces®’ (Supplementarg Fig. 6). We note
that in the VHN system, ionically conducting!® and electronically
insulating vertical SDC nanocolumns are embedded in an
ionically and electronically insulating, but interfacially
electronically conducting, SrTiO; (STO) matrix. Device area-
dependent-resistance values were measured (Supplementary
Fig. 7). It was found the resistance values in HRS and LRS
decreased with increasing Pt electrode area, which is consistent
with the fact that our devices have uniformly distributed
electronic nanochannels.

To investigate the modulation of the Schottky barrier between
the SDC-STO interface and the Pt electrode, we extracted the
barrier height, e¢, =kpT In(A* T%/],), where J, is a saturation
current density, from I-V curves with different temperatures
(293, 313, 333 and 353K)3132. For simplicity, we used the
effective  Richardson constant of A*=120Acm 2K~ 2
The increasing absolute value of the negative sweep voltage
caused the barrier height (with positive bias) to decrease
(Supplementary Fig. 8), which implies that the oxygen
vacancy accumulation at the top interface is the cause of the
barrier height decrease.

Separate ionic and electronic nanochannel model. Based on the
aforementioned results, we propose a separate ionic and
electronic nanochannel model for the resistive switching
mechanism of SDC:STO VHN (SDC: ionic nanochannel,
SDC-STO vertical interface: electronic nanochannel)-based
devices. Overall, the observed resistive switching behaviour in the
SDC:STO VHN device can be explained by the modulation of
the interfacial electronic barrier formed on the interface between
the top Pt electrode and VHN film due to the migration of
oxygen vacancies to or away from the top Pt electrode under the
applied electric field. Figure 4 shows separate ionic and electronic
nanochannel model for resistive switching of the SDC:STO
VHN film device. The simplification of schematic showing
cross-sectional SDC:STO VHN film device by discarding bulk
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switching of the SDC:SrTiO3 VHN film device. The simplification of SDC:SrTiO3 VHN film device is depicted in Supplementary Fig. 9. HRS, high-resistance

state; LRS, low-resistance state.

STO parts is depicted in Supplementary Fig. 9. The simplification
is based on the following features. First, the plain SDC and
plain STO showed much lower electronic conductivities than the
nanocomposite case and required the electroforming processes
for the reversible resistive switching behaviours (Fig. 3 and
Supplementary Fig. 2). Second, the electronically conductive
channels in the SDC:STO nanocomposite devices are the vertical
interfaces of SDC and STO, as shown in Supplementary Fig. 5.
The bulk STO and SDC parts are more electronically insulating
compared with their vertical interfaces. Third, from the ionic
point of view, the ionic conductivities of bulk STO in the
SDC:STO vertical nanocomposite films are much lower than
those of the SDC parts (SDC columns)?8.

Assuming an ideal interface, without Fermi pinning, electrons
face a metal-to-semiconductor barrier, e¢y, = e(¢p, — 1), where
¢m is the metal work function and y is the semiconductor
electron affinity, under negative bias and a semiconductor-to-
metal barrier, eVy;=-e(¢p, — Ps) =epy, — (Ec — Eg), where ¢,
Ec and Ep are the work function, the conduction band
minimum and the Fermi level of the semiconductor, respectively,
under positive bias for electronic conduction. We define these
interface electronic barriers as Schottky-like barriers (Fig. 4 and
Supplementary Fig. 6). If we assume that there is no mobile
dopant (oxygen vacancy) whose position is influenced by the
external electric bias and a fully depleted region, in the negative
bias condition, Vi; increases while the barrier width decreases
and ¢y, remains constant. In the positive bias condition, Vy;
decreases while the barrier width increases and ¢y, still remains
constant. In the following we assume that the oxygen vacancy
concentration at the Pt/nanoelectronic interface is manipulating
the depletion width of a Schottky barrier’®>. When a small
negative bias is applied, the width and height of the Schottky-like

barrier decreases by oxygen vacancy accumulation at the
electrode-nanocomposite interface. The negative bias also
decreases the barrier width. As the absolute value of the
negative bias increases, the barrier width and height decreases
further, causing the device to go into the LRS. Although the
absolute value of negative bias decreases, the barrier is still small
owing to the memory effect of oxygen vacancy positions because
there is no strong driving force for oxygen vacancy migration
towards the bottom electrode. When a small positive bias is
applied to the device, additional oxygen vacancies are still on top
due to the memory effect. Thus, the barrier is influenced by both
oxygen vacancies on the top interface and the positive bias, which
maintains the LRS of the nanocomposite device. As the absolute
value of the positive bias increases, the oxygen vacancy
accumulation is significantly reduced. However, the barrier is
not effectively recovered because of the high positive bias. The
barrier is influenced by both the removal of the accumulated
oxygen vacancies and the positive bias, competitively. When the
absolute value of positive bias decreases, the barrier is influenced
only by a decrease in the positive bias because there is no oxygen
vacancy accumulation on the interface between the top Pt
electrode and VHN film. Thus, the barrier height is recovered by
a decrease in the positive bias, leading to the HRS of the device.
Cyclic I-V scans of self-assembled SDC:STO VHN devices
clearly exhibit oxygen vacancy effects as can be seen from the
voltage-dependent resistance behaviour (Fig. 4).

While the results discussed above underline the importance of
oxygen vacancies on resistive switching, to definitively prove and
quantify their role, different dopant (Sm®*) concentrations in
the SDC component (ionic channel) of the films were studied to
induce different ionic conductivities (mobile oxygen vacancy
concentrations). Figure 5a—-d show resistance values of the HRS

| 7:12373 | DOI: 10.1038/ncomms12373 | www.nature.com/naturecommunications 5


http://www.nature.com/naturecommunications

ARTICLE

a Ce0,-STO b 10 at.% Sm-doped Ce0,-STO e
1 09 E T T 1 09 E T T 1 05 LA B B | :
a 107§ ~ 1074 o F2.0
& 10°; & 10°] s
3 4
1033 103; E 15 o
10’ ‘ ‘ ‘ 10’ : ‘ | Y g g
10° 10' 102 10° 10° 10" 10? 10° 10 [ 2
Number of cycles Number of cycles &3 o ol 1.0 ::.){,
n: \\ . [}
c 20 at.% Sm-doped Ce0,-STO d 30 at.% Sm-doped Ce0,-STO [N 05 3
109 i T T T 109 E T T L i
{ - =
~ 1074 1074 10 eoec0 |
C‘::’105: <} 105 3 g RinLRS oo
m] L
« 108 1 T 108 3 Oionic N 1ef. 15 |
10" ] ‘ ‘ ‘ 10" ] : , —
10° 10 102 108 100 10 102 10° 0.0 0.1 02 03

Number of cycles

Number of cycles

Atomic ratio of Sm to Ce
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and the LRS of 0, 10, 20 and 30 at.% SDC:STO VHN films,
respectively under alternating pulses of + 5 and -5V. These films
all exhibited electroforming-free resistive switching properties.
It is observed that the HRS values are very close (to within 15%)
for all the compositions studied in this work, as shown in
Fig. 5a-d (and Supplementary Fig. 10). Oxygen vacancies are
depleted at the interfaces between Pt and VHN films by applying
the high positive biases in all the devices. Thus, the resistance
values in HRS under high positive biases were similar regardless
of intrinsic oxygen vacancy concentrations on the VHN films
with the different Sm>* contents. On the other hand, the LRS
values decrease when the Sm doping ratios increase from 0 to
20% and then increase again when the doping ratios increase to
30%. Figure 5e shows that there is a direct inverse correlation of
LRS with ionic conductivity. The ionic conductivity at 600 °C was
used!®. The values below 600°C, as is applicable for our
measurements, scale with doping concentration in the same
order as that of the high temperature data'®>. We note that there
will be some Joule heating effects giving very local temperature
rises for further enhanced ionic conduction®’. At 30 at.%, Sm
defect association leads to a decrease in mobile oxygen vacancy
concentration and hence is consistent with the rise in the
resistance value of LRS for this highest doping level**. Hence, the
role of oxygen vacancy concentration on LRS is indeed clearly
proven. Overall, the effect of tuning of the resistance of the
LRS while keeping the resistance of the HRS constant is that the
on-off ratio is precisely controlled (Supplementary Fig. 10).
The maximum on-off ratios achieved are hi§h at ~10% and are
sufficient for practical memory applications®>.

Effect of film growth rate on device performance. Finally, the
proof of the need for both high ionic conductivity and
high quality vertical electronic conducting channels to give
forming-free, high endurance and tunable on-off ratio devices is
made systematically by deliberately reducing perfection in the
structures. This was done by increasing film growth rate from
0.03 to 0.50 nm's ~ . The growth rates are labelled Rate 1 (for the
slowest growth rate) to Rate 4 (for the fastest growth rate). As the
growth rates increased, the nanocolumn widths decreased as
shown in AFM images (Fig. 6a). TEM cross-section images of the
SDC:STO VHNSs (Fig. 6b for Rate 2 and 6¢ for Rate 4) confirmed
smaller width columns of SDC in the STO matrices (Fig. 6d,e). In
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a thin-film growth process, the most thermodynamically stable
phases (taking into account epitaxial stabilization) will grow on
the substrate during deposition and cooling®. There are different
phase separation mechanisms; nucleation and growth, spinodal
growth and pseudo-spinodal growth depending on the chemical
miscibility. In the nucleation and growth mechanism of
immiscible two phases, the phase with a higher interfacial
energy with the substrate forms nucleation islands that grow into
columns, whereas the other phase with a lower interfacial ener
undergoes layer-by-layer growth and becomes the plain matrix”°.
A higher growth rate leads to a shorter resting time 7 of a growth
unit and hence a shorter growth unit diffusion length on a
substrate, resulting in smaller nucleation islands, and
consequently smaller column widths. The diffusion length of a
growth unit can be roughly estimated by*” L ~ 2v/Dr, where D
stands for diffusion coefficient and 7 for diffusion time. Thus, if
the dominant growth mechanism is the diffusion-controlled
nucleation and growth, a plot of column width versus (growth
rate) ~ /2 will show straight line fits to the data. Our data agrees
well with the diffusion length equation (Supplementary Fig. 11),
which is strong evidence of a diffusion-controlled nucleation and
growth mechanism of the SDC:STO VHNS.

High-resolution TEM images (Supplementary Fig. 12) showed a
less perfect lattice structure than the lower growth rate cases.
Figure 6f shows XRD w-rocking curves of SDC(002) peaks
of the VHN films deposited at different growth rates. Higher
growth rates led to higher full width at half maximum values in the
o-rocking curves indicating more tilted ionic and electronic
channels and their degradation of the crystallinity, consistent with
the TEM results. Figure 7a shows that electroforming-free resistive
switching behaviour is only observed for the slowest grown
samples which are the most aligned, highly crystalline samples with
high ionic conductivity (high concentration of mobile oxygen
vacancies). Indeed, Fig. 7b,c show the resistance values of pristine
states at room temperature and the jonic conductivity (obtained
from impedance spectroscopy measurements) for the different
growth rates, respectively, showing clearly the samples grown at
lower rates have higher electronic and ionic conductivity (a higher
concentration of mobile oxygen vacancies). In the case of the two
fastest grown samples, even after the electroforming process, low
on-off ratios and poor endurance were exhibited, as shown in
Fig. 7d,e. Hence, the results clearly show that high performance
memristive devices are achieved only when films have a high
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Figure 6 | Structural characterizations of VHN deposited from different film growth rates. (a) Atomic force microscopy images of 20 at.% SDC:STO
VHN films deposited from different film growth rates. Scale bars, 20 nm. (b,c) Cross-sectional STEM HAADF images of SDC:STO VHN films grown from
Rate 2 and Rate 4, respectively. S and C stand for STO and SDC, respectively. Scale bars, 20 nm. (d) Column widths and full width at half maximum
(FWHM) values in w-rocking curves of SDC:STO VHN films as a function of film growth rates. Error bars are provided as s.d. (e) Typical depiction of
SDC:STO VHN film on Nb-doped STO substrate, in which the SDC columns are embedded in an STO matrix. (f) XRD w-rocking curves of SDC:STO VHN

films deposited from different film growth rates.

concentration of mobile oxygen vacancies in the ionic SDC
channels and when the ionic (SDC) and electronic channels
(vertical interfaces) are well crystallized, highly aligned and
connected through the film thickness.

Discussion
A novel solid state ionic memristive composite oxide thin-film
system was designed and demonstrated. These films, composed of
separate ionic and electronic nanochannels gave electroforming-
free resistive switching devices with highly tunable LRS and high
HRS/LRS resistance ratios (~10%). High switching variability
between different devices combined with small HRS/LRS resistance
ratios as shown by the majority of oxide ReRAMs, usually ~10 to
102 (ref. 38), have recently called the applicability of conventional
oxide ReRAMs for memory arrays into question®”. Forming-free
ReRAMs with low variability and high on/off ratios, as shown by
our devices, are therefore ideal model-systems for resistive
switches.

The LRS was shown to correlate directly with the mobile
oxygen vacancy concentration (ionic conductivity) in the SDC
and was precisely tuned by varying the Sm doping level in the

SDC. This tuning enabled high on-off ratios to be achieved.
The device performance was improved significantly compared to
the plain SDC film- and STO film-based devices which required
high-voltage forming processes and have problems of reprodu-
cibility and endurance. Integration of memory devices in dense
memory arrays is challenging for conventional oxide ReRAMs
which rely on electroforming processes. After device fabrication,
each device needs to be formed separately in a controlled manner
due to the large deviation of the forming voltages usually
observed. Moreover, the device parameters of access transistors
(such as channel length/width and gate oxide thickness) to select
individual memory cells need to be matched to the high forming
voltages. Therefore, the design of forming-free oxide ReRAMs is
also highly desirable from a practical point of view.

The form of I-V characteristics could be explained very clearly
by invoking oxygen vacancy migration effects. The straightness
and perfection of the ionic and electronic nanochannels was
shown to be critical to the device performance. Nanocomposite-
based microscale devices were demonstrated. To test the
feasibility of nanoscale devices, we measured I-V cycles using a
c-AFM tip on a vertical interface of the SDC:STO VHN film on
the Nb:STO substrate (Supplementary Fig. 13). Reversible
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Figure 7 | Electronic and ionic transport properties of VHN deposited
from different film growth rates. (a) Electroforming-free resistive
switching properties of SDC:STO VHN films depending on full width at half
maximum (FWHM) values in w-rocking curves; Rate 1 (red square); Rate 2
(red circle); Rate 3 (turquoise triangle); Rate 4 (turquoise hexagon).

(b) Resistance values of the pristine states of the device with SDC:STO
VHN films deposited from different growth rates (read voltage: 0.2 V). Error
bars are provided as s.d. (¢) Temperature-dependence of ionic conductivity
(Gionic) for SDC:STO VHN films deposited from different growth rates.
(d,e) Resistance variation with repeated electrical cycles (with applied
voltages of -5 and + 5V for switching and a read voltage of -0.3V) of
SDC:STO VHN film devices with different growth rates.

resistive switching behaviour was observed, which indicates that
the VHN-based devices work with nanoscale electrodes.

We note that the physical cogency of a common ionic and
electronic channel as presumed in the original model published
by Strukov et al%® and a violation of the Landauer principle,
among others, have recently led to scientific dispute*!*2, With the
spatially separate ionic and electronic nanochannels found in our
SDC:STO devices, we have experimentally proven for the first
time that resistive switches can indeed be modelled by separate
ionic and electronic channels®’,

We also note that the high density (~10'2inch~2) VHN
structures in this work avoid degradation problems of dense,
nanoscale features, which will be required for high density
memories. Such nanoscale features formed from plain oxide films
will require ion or electron beam milling steps which are

8

problematic since these processes lead to surface oxygen defects
and associated uncontrolled electronic conduction®4.

There are however limitations of the nanocomposite model
system studied in this work for practical ReRAM applications.
First, the pulsed laser deposition process we use here is not in
line/fully compatible with current integrated semiconductor
manufacturing. In this context, epitaxial oxides can nowadays
be grown by scalable, industrial growth routes such as reactive
co-evaporation®®. The nanocomposite films of this study could
be grown in a similar way. Also, our devices have the potential to
be integrated into state-of-the-art silicon technology since growth
of epitaxial oxides and nanocomposite oxides on silicon is now
well-established?®47. Second, relatively high voltages and currents
were used in this experimental set-up for resistive switching.
Thus, considerable power consumption is required for device
operation. Third, the endurance we achieve is somewhat
exceeding 10° cgrcles, which is below the record 10'? cycles
reported before®®. On the other hand, the electroforming-free
switching behaviour of our devices with better control over the
built-in nanochannels promises space for improved device
performance. For example, the use of integrated transistors
close to the switching device to control the current in the LRS
(ref. 49) is one way to achieve higher endurance and variability.
Further improvement strategies should include doping of each
nanocomposite component, and tuning of the nanocomposite
materials and electrodes allowing separate ionic and electronic
channel formation. In addition, the nanocolumn widths, which
are controlled by the film growth rates, need to be larger than
17 nm for the devices to be electroforming-free (Fig. 7a, Rates 1
and 2). Concerning the scalability, switching on the 20 nm scale
using c-AFM on a nanocolumn is feasible, suggesting that
VHN-based devices work with nanoscale electrodes
(Supplementary Fig. 13). However, the reported nanocolumn
geometry can potentially result in large device to device variance
(due to electrodes partially covering a nanocolumn). Therefore,
enhancement of the nanocomposite film crystallinity is a
key-aspect for applicability. By increasing the degree of
crystallinity, electroforming-free properties can be achieved
using a smaller nanocolumn width to potentially further reduce
the device scale without producing a large device to device
variance.

Finally, the use of the separate ionic and electronic nanochan-
nel structures demonstrated here could have many benefits in
other ionotronics areas, for example:

The spatial separation between conductance channels for
different species is in good agreement with the classical
Hodgkin-Huxley-Model®® for the simulation of biological
neurons (for example, physically separate potassium and sodium
ion channels). Here the two spatially separated channels, namely
the ionic and electronic nanochannels, respectively, emulate
spatially separated channels of bio-neurons. Such an analogy is
not found in conventional memristive systems (where the ionic
and electronic path are locally indistinguishable) making the
spatially separate vertical channel structure a model system for
artificial cognitive systems based on solid state ionotronics.

For ionic gating for transistors or memory applications, plain
solid ionic films do not transfer ions sufficiently rapidly but the
structures studied here have orders of magnitude higher ionic
conduction!®, Furthermore, there are several potential advantages
of solid ionic memory devices over liquid ionically gated oxide
memory devices which are being widely researched®! =>4,

For cathodes in fuel cells, mixed conductors are required but it
is very difficult to have sufficient ionic and electronic
conduction below 500°C. The separate channel structures
have overcome these limitations by inducing enhancements in
both channels, controlled by careful materials selection. In
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addition, one can precisely tune the ion conductivity by adjusting
the growth rate (Fig. 7c).

Methods

Film fabrication. Nanocomposite film growth was developed on the basis of that
of ref.18. Films were grown on 0.5 wt.% Nb-doped SrTiO; (001) single-crystalline
substrates by pulsed laser deposition with a KrF laser (1 =248 nm) with a fluence
of 1.5-4.5] cm ~ 2 and a repetition rate of 1-10 Hz. A polycrystalline 20 at.% SDC
target, a polycrystalline STO target and polycrystalline targets containing SDC
(Sm>* concentrations: 0, 10, 20 and 30 at.%) and STO of 50:50 molar ratio were
used for plain SDC films, plain STO films and SDC:STO VHN films, respectively.
During deposition, the substrate temperature was 825 °C. Deposition was kept in
an O, atmosphere of 0.2 mbar. The samples were post-annealed at 700 °C for 1h
under 900 mbar O,. We deposited circular Pt electrodes by DC-magnetron
sputtering onto the film surface with shadow masks for electrical measurements.

Characterization. The phase and the crystalline quality of thin films were
investigated by w-20 and asymmetric XRD on a PANalytical Empyrean high-
resolution X-ray diffractometer using Cu-Kot radiation (2 = 1.5405 A). w-rocking
curves were obtained by measuring diffracted beam intensities around the SDC
(002) as a function of the angle between incident X-rays and sample surface ().
For investigating in-plane orientation, ¢ scans were obtained by 360° in-plane
sample rotation around (111) peaks of the films and substrates. RSMs were
collected about the STO (-203). w-20 diffraction peaks and RSM peaks were used
to calculate lattice parameters of the films. An FEI TitanTM G2 80-200 STEM with
a Cs probe corrector, operated at 200 kV was used to evaluate the structural
properties across the interface. Cross-sectional samples were prepared by a
standard manual grinding and thinning of samples with a final ion-milling step
(Gatan PIPS 691 precision ion polishing system). The plan-view TEM sample was
prepared by using focused ion beam with 3keV Ga ions used as a final finishing
step. The cross-sectional, and plan-view STEM images are taken in along [100] and
[001] STO substrate direction, respectively. To determine film surface morphology,
AFM (Multimode 8 SPM with Nanoscope V controller) was performed. To
investigate local conduction at vertical interfaces, we employed an Agilent 5500
scanning probe microscope. Commercial silicon tips coated with platinum/iridium
were used for conductive AFM. We measured the resistances using a two-probe
station with a hot plate and a Keithley 2440 source-meter. To measure ionic
transport characteristics with temperature variation, we used a hot plate and an HP
4294A Precision Impedance Analyser. For all measurements, Nb-doped STO
substrates were grounded and the voltage is applied to the Pt electrodes.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information file.

The numerical values of the data shown as the graphs are available upon request
from the corresponding author.
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