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ABSTRACT
Shear peak statistics has gained a lot of attention recently as a practical alternative
to the two point statistics for constraining cosmological parameters. We perform a
shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification
(SV) data, using weak gravitational lensing measurements from a 139 deg2 field. We
measure the abundance of peaks identified in aperture mass maps, as a function of their
signal-to-noise ratio, in the signal-to-noise range 0 ă S{N ă 4. To predict the peak
counts as a function of cosmological parameters we use a suite of N -body simulations
spanning 158 models with varying Ωm and σ8, fixing w “ ´1, Ωb “ 0.04, h “ 0.7
and ns “ 1, to which we have applied the DES SV mask and redshift distribution. In
our fiducial analysis we measure σ8pΩm{0.3q

0.6 “ 0.77˘ 0.07, after marginalising over
the shear multiplicative bias and the error on the mean redshift of the galaxy sample.
We introduce models of intrinsic alignments, blending, and source contamination by
cluster members. These models indicate that peaks with S{N ą 4 would require
significant corrections, which is why we do not include them in our analysis. We
compare our results to the cosmological constraints from the two point analysis on
the SV field and find them to be in good agreement in both the central value and its
uncertainty. We discuss prospects for future peak statistics analysis with upcoming
DES data.

Key words: gravitational lensing: weak; cosmological parameter; cosmology: obser-
vations; dark matter; methods: data analysis; methods: statistical

‹ Corresponding author: tomasz.kacprzak@phys.ethz.ch

1 INTRODUCTION

Weak gravitational lensing (WL) is a promising and pow-
erful probe for constraining cosmology because of its abil-
ity to map the 3D matter distribution of the Universe
in an unbiased way. The effects of WL are observable
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through small, but spatially coherent, distortions of galaxy
shapes. This technique was successfully used to constrain
cosmological parameters by several lensing surveys, most
recently by: Canada-France-Hawaii Telescope Lensing Sur-
vey (CFHTLenS) (Heymans et al. 2013a; Kilbinger et al.
2013), COSMOS (Schrabback et al. 2010), and Sloan Digi-
tal Sky Survey (SDSS) (Huff et al. 2011). Most recently, the
first weak lensing cosmological results from the Dark Energy
Survey (DES) were presented by The Dark Energy Survey
Collaboration (2015) (hereafter DES15).

Among WL observables, the shear two point (2-pt) cor-
relation function has so far received the most attention from
the WL community (Jarvis et al. 2003; Hoekstra et al. 2006;
Semboloni et al. 2006; Hetterscheidt et al. 2007; Kilbinger
et al. 2013; Heymans et al. 2013a). This statistic is a pow-
erful tool for constraining cosmology and the impact of sys-
tematic and measurement errors on it have been extensively
studied (see Kilbinger 2015, for a review). It has also been
used to plan and forecast coming missions such as Euclid
(Refregier et al. 2010; Laureijs et al. 2011) and LSST (LSST
Science Collaborations et al. 2009).

To optimally exploit the power of WL surveys to con-
strain cosmological models, it is commonly believed that us-
ing one type of statistic alone will not suffice (Petri et al.
2014; Osato, Shirasaki & Yoshida 2015); this is because dif-
ferent probes are generally affected by systematics in a dif-
ferent way, and combining and comparing them will help test
and understand and calibrate them better. Moreover, alter-
native statistics can capture additional information from the
non-Gaussian features in the matter distribution.

Shear peak statistics is one of these alternative probes
of WL. It aims to extract the cosmological information
from the ‘peaks’, i.e. regions of the map high signal-to-noise
(S{N ), produced by overdense regions of the matter den-
sity field projected along the line of sight. Massive clusters
imprint peaks in WL maps, which can be used to detect
and measure cluster masses, as first pointed out by the pi-
oneering papers of Kaiser & Squires (1993), Tyson, Wenk
& Valdes (1990) and Miralda-Escude (1991). Many of the
peaks with lower S{N are produced, not by single clusters,
but by the projection of many halos along the line-of-sight
(Yang et al. 2011). Random noise can also produce spurious
“peaks” in maps made from data.

With the introduction of the aperture mass by Schnei-
der (1996) the idea of detecting clusters as points of high
S{N in WL maps really took wing. A series of studies inves-
tigating optimal aperture filters, projection effects on cluster
mass determination, forecasts for future WL surveys, and
detections in available WL data followed (Hamana, Takada
& Yoshida 2004; Clowe, De Lucia & King 2004; Wang et al.
2004; Maturi et al. 2005; Hennawi & Spergel 2005; Tang &
Fan 2005; Dahle 2006; Marian & Bernstein 2006; Schirmer
et al. 2007; Maturi et al. 2007; Bergé et al. 2008; Abate
et al. 2009; Marian, Smith & Bernstein 2010). Indeed, for
a long time, shear peaks were mainly regarded as means
for WL cluster detection, before being considered as a WL
probe in its own right. This last idea became popular when
studies doing ‘blind’ peak detection in WL maps, gener-
ated from N -body simulations, showed that the peak abun-
dance scales with cosmological parameters in the same way
as the halo mass function (Reblinsky et al. 1999; Marian,
Smith & Bernstein 2009, 2010), and therefore can be used

to constrain the cosmological model (Dietrich & Hartlap
2010; Kratochvil, Haiman & May 2010; Marian et al. 2012a;
Bard et al. 2013). The shear-peak abundance can also con-
strain primordial non-Gaussianity of the local type, being
one of the most effective WL probes for this purpose (Mar-
ian et al. 2011; Maturi, Fedeli & Moscardini 2011; Hilbert
et al. 2012). Further analysis of simulated WL maps showed
that peak profiles and peak correlation functions can signif-
icantly improve the constraints on cosmology relative to the
peak abundance alone (Marian et al. 2013).

The shear peak abundance has the advantage, relative
to the cluster mass function, that it does not depend on a
mass-observable relation (the shear signal can be used di-
rectly to constrain cosmology, without having to be con-
verted into a virial mass). Another advantage of this method
is that it is sensitive to non-Gaussian features in the mass
distribution (Bergé, Amara & Réfrégier 2010; Pires, Leonard
& Starck 2012). However, it has the disadvantage that the
analytical predictions are relatively complicated (YuanShan
et al. 2014; Lin & Kilbinger 2015; Maturi et al. 2010; Reis-
chke, Maturi & Bartelmann 2015). Nonetheless, the consen-
sus so far among peak studies is that, as long as real data
maps are compared to simulated maps that have been im-
printed with the same characteristics – survey masks, source
distribution etc. – and the same analysis is applied to both,
the lack of reliable analytical predictions can be circum-
vented.

Several recent studies have made measurements of the
WL peak abundance from data, in particular from the
Canada-France-Hawaii Telescope (CFHT). Liu et al. (2015a)
have used the CFHT Lensing Survey (CFHTLenS) (Hey-
mans et al. 2012) shape catalogues (Miller et al. 2013) to ob-
tain convergence maps which they smoothed with Gaussian
filters of various sizes to identify peaks as local maxima. The
measured peak abundance – which included also the smallest
peaks, and even regions of negative convergence – was then
compared to results from simulated maps corresponding to
cosmologies with varying Ωm, σ8, w, and thus constraints on
the cosmological model were obtained. The latter were found
to be similar to those yielded by the convergence power spec-
trum, while combining the two probes tightened the con-
straints by a factor of « 2. Liu et al. (2015b) used the CFHT
Stripe 82 survey to also create Gaussian-smoothed conver-
gence maps, where peaks were detected as points of local
maxima, this time applying a more conservative detection
threshold of S{N ą 3. Using covariance matrices measured
from the data, the authors derived constraints on Ωm, σ8. Fi-
nally, Hamana et al. (2015) used Subaru/SuprimeCam data
(Miyazaki et al. 2002) to detect WL peaks in an area of
„ 11 deg2. This was also done in convergence maps, but
only high S{N pě 5q peaks were selected. These were shown
to correspond to optically confirmed clusters.

In this paper we present a measurement of the WL peak
abundance from another data set, the Dark Energy Survey
Science Verification (SV) data. Unlike the previous studies,
we measure peaks using the aperture mass maps, not con-
vergence, though we point out that convergence maps of
the SV data have been presented in Vikram et al. (2015);
Chang et al. (2015). We use simulated WL maps with cos-
mologies spanning the tΩm, σ8u plane to derive cosmological
constraints from our measurements. We extensively explore
the possible systematics affecting the peak statistics mea-
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surement. In our analysis, we model and marginalise the
shear multiplicative bias and the error in the mean of the
redshift distribution. Additionally, we explore (i) the impact
of the contamination of the source galaxy sample with clus-
ter galaxies, (ii) loss of background galaxies due to enhanced
blending at the positions of clusters and (iii) the impact of
intrinsic alignment of shapes of galaxies with respect to the
centres of the peaks.

Finally, we present constraints on the Ωm and σ8 pa-
rameters, when other cosmological parameters are fixed to
Ωb “ 0.04, h “ 0.7 and ns “ 1. We make a comparison
between the results from our analysis and the WL 2-pt pre-
sented in DES15. This allows us to check the consistency of
the results between these two methods, which may respond
to different systematics in a different way. We discuss the im-
pact of systematics and prospects for future peak statistics
analyses with DES.

The paper is structured as follows: in Section 2, we de-
scribe the shear catalogue, the photo-z catalogue, and the
numerical simulations used for this work. In Section 3 we
outline our filtering method and how we find and define
the shear peaks. In Section 4, we present our measurements
of the peak function, then discuss the systematic effects in
Section 5. Section 6 contains the details of construction of
the likelihood function. In Section 7, we present the cos-
mological constraints and finally, in Section 8, we draw our
conclusions.

A number of appendices give further details on aspects
of our work: Appendix A describes the modelling of the ef-
fect of the multiplicative bias and redshift error nuisance
parameters on the peak counts. Details of our interpolation
schemes are given in Appendix B. The calculation of boost
factors is described in Appendix C and the modelling of in-
trinsic alignments in Appendix D. Appendix E summarises
the Balrog catalogues used in this work and Appendix F
describes how we used an interpolation scheme to apply the
DES npzq and mask to the simulations.

2 THE DATA

The Dark Energy Survey is a five-year optical and near-
infrared (grizY ) survey of 5000 deg2, to limiting magnitude
iAB À 24, using the Blanco 4-m Telescope at the Cerro
Tololo Inter-American Observatory site in Chile (The Dark
Energy Survey Collaboration 2005). The survey instrument,
the Dark Energy Camera (DECam, Flaugher et al. 2015),
is a wide-field (2.2 deg in diameter), thick-CCD camera,
which was commissioned in fall 2012. During the Science
Verification (SV) period, which lasted from November 2012
to February 2013, data were taken in a way mimicking the
full survey on a relatively small sky area, approaching full-
survey depth in some areas.

We use the ngmix SV shear catalogue1 described by
Jarvis et al. (2015), which covers an area of 139 deg2. We
provide an overview of salient features for this work in sec-
tion 2.1 and refer readers to Jarvis et al. (2015) for full
details. The dataset has been used in other studies, for ex-
ample to constrain cosmology using 2-pt functions (Becker

1 http://des.ncsa.illinois.edu/releases/sva1

et al. 2015, DES15) and to make weak lensing mass maps
(Vikram et al. 2015; Chang et al. 2015).

As one of the goals of this paper is to make a com-
parison between the shear peak statistics and the two point
statistics methods, we will take as the fiducial configura-
tion the same data as in the 2-pt cosmological analysis of
DES15. We use the identical source galaxy sample and corre-
sponding shear measurements, as well as the source redshift
distribution npzq relying on photometric redshifts for the
non-tomographic configuration.

To make an empirical prediction of the peak abundance
as a function of cosmology, we use a suite of N -body simu-
lations, described in the Section 2.3. These simulations were
taken from Dietrich & Hartlap (2010) and span 158 cosmo-
logical models in the Ωm and σ8 plane.

We did not attempt to calculate the peak functions an-
alytically, as was demonstrated by YuanShan et al. (2014);
Maturi et al. (2010); Reischke, Maturi & Bartelmann (2015).
We decided to use a fully computational approach, which has
the advantage of allowing us to incorporate the exact DES
mask and shape noise in an easy way.

2.1 Shear catalogue description

Two lensing catalogues were created from the DES SV ob-
servations, using the ngmix (Sheldon 2014) and im3shape
(Zuntz et al. 2013) shape measurement methods, which con-
tain 3.44 million and 2.12 million galaxies respectively. The
point spread function (PSF) modelling was done with the
PSFEx software (Bertin 2011). Each galaxy comes with a
two-component shear estimate, a corresponding sensitivity
correction and a statistical weight. These catalogues were
thoroughly tested for systematics in Jarvis et al. (2015) and
Becker et al. (2015), and show B-modes and PSF leakage
consistent with zero. In this work we employ only the ng-
mix catalogue because of its higher source density, a decision
we share with Becker et al. (2015), DES15 and Kirk et al.
(2015). The raw number density of that catalogue is 6.9
galaxies/arcmin2, and the effective number density is 5.7
galaxies/arcmin2, after weighting by the signal-to-noise of
galaxies. Tests on simulations have shown possible sources
of multiplicative systematics related to model bias (Voigt &
Bridle 2010; Bernstein 2010; Kacprzak et al. 2014). Jarvis
et al. (2015) recommended the use of a Gaussian prior of
width σm “ 0.05 on the multiplicative correction factor.

2.2 Photometric redshifts catalogue description

The photometric redshift solutions for objects in the DES
SV shear catalogues were subjected to a series of valida-
tion tests, described in Bonnett et al. (2015). In that work,
four of the best-performing algorithms were examined, find-
ing good agreement between them. For this analysis we use
the redshift results obtained from running the skynet code
(Graff et al. 2014), which was also taken as the fiducial set of
solutions in the shear analysis of DES15. For further details
of the implementation of skynet and performance we refer
the reader to Bonnett et al. (2015). The resulting catalogue
was trimmed to 0.3 ă z ă 1.3, based on the mean red-
shift of the skynet probability distribution function. These
cuts exclude the least certain redshifts whilst having min-
imal impact on the lensing measurements. In DES15 the
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Figure 1. The grid of cosmological models in the simulations
from Dietrich & Hartlap (2010). Colour corresponds to the value

of S8 “ σ8pΩm{0.3q0.5 parameter. The central cosmological

model is marked by black cross. Other cosmological parameters
for these simulations were: h70 “ 1, ns “ 1 and Ωb “ 0.04.

uncertainty on the mean redshift was set to ∆z “ 0.05 and
the marginalisation with that prior included an independent
parameter for each redshift bin. For the case of the non-
tomographic measurements, a single prior with the same
width was adapted.

2.3 Simulations

We use a set of N -body simulations from Dietrich & Hart-
lap (2010), created with the publicly available TreePM code
GADGET-2 (Springel 2005). They use the ΛCDM model,
with initial conditions set by the transfer function of Eisen-
stein & Hu (1998). The simulation space spans two cosmo-
logical parameters: σ8, Ωm. The curvature is fixed at Ωk “ 0,
causing ΩΛ to vary accordingly. The grid of cosmological
models has 158 unique parameters pairs and is shown in
Figure 1. Other cosmological parameters were set to fixed
values: Ωb “ 0.04, ns “ 1, h70 “ 1. All simulations used
2563 dark matter particles in a box with 200 h´1

70 Mpc side
length. Particle masses vary with cosmology and range from
mp “ 9.3 ˆ 109Md for Ωm “ 0.07 to mp “ 8.2 ˆ 1010Md

for Ωm “ 0.62. The particle mass for our fiducial, non-
tomographic cosmology is mp “ 3.6 ˆ 1010Md. The force
softening in these simulations was set to ε “ 25h´1

70 kpc.
Propagation of light rays through the simulated matter dis-
tribution is done using the multiple lens-plane algorithm (for
example Hilbert et al. 2009; Blandford & Narayan 1986);
for more details about ray-tracing used here, see Dietrich &
Hartlap (2010). The central cosmological model was simu-
lated 35 times. The values for the central-cosmology param-
eters are Ωm “ 0.27, ΩΛ “ 0.73, S8=0.78.

Each cosmological model in the simulations, except the
central, has 5 patches of 6 ˆ 6 deg, corresponding to five
projections of the simulated N-body boxes, which gives 180
deg2. The central model has 35 such patches. Each of this
patches comes with a catalogue of galaxies with density of 25
galaxies/arcmin2, positioned uniformly in ra and dec. The
redshift distribution in these catalogues is deeper than the
SV survey (see Appendix F for details). We do not use these

catalogues directly in our analysis, as they do not have the
proper DES mask and redshift distribution. Instead, using
these catalogues, we produce new catalogues with applied
DES mask and npzq.

For the peak statistics, it is crucial to ensure that the
survey mask is correctly included in the simulations. Bard,
Kratochvil & Dawson (2014) studied the impact of masked
regions and designed a forward-modelling approach to tackle
the problem. We also find our measurement to be highly
impacted by the survey mask. To assess the impact of the
mask, we compare the number of shear peaks found in the
randomised shear maps in both the simulations and DES
data. After trying several schemes, we decided to create sim-
ulations which have exactly the same positions of galaxies
as the DES data. To do this, for each patch, we take the
positions of DES galaxies and assign shear values, according
to the simulations. We also kept the shape noise, weight and
multiplicative calibration factor of the DES galaxy. This way
we produced simulated catalogues which differed only by the
shear signal, which was taken from simulations. To assign a
shear value from simulations at a position of a DES galaxy,
we used an interpolation method, described in Appendix F.
This assignment is done only using galaxy positions, and ig-
noring the corresponding DES galaxy redshift; the relation
between position and redshift is broken in the simulations.
The redshifts are drawn from the DES npzq for the skynet
photo-z catalogue, described in Bonnett et al. (2015), and is
the same as in DES15. This approach is similar to the one
taken by Liu et al. (2015b), with the difference that we do
not use each individual galaxy photo-z. In Appendix F we
test this interpolation method and find it to perform very
well on noise-free data. See Section 3 and Appendix F for de-
tails regarding making flat shear field cutouts and applying
the survey mask.

As the peaks caused by random noise fluctuations (from
both shape and measurement noise) dominate our signal, we
have to include them in the analysis of simulations. Addi-
tionally, to get the empirical prediction for the number of
peaks as a function of cosmology, we have to make sure
that the uncertainty on the number of peaks in simula-
tions caused by shape and measurement noise fluctuations is
small. Therefore, for every cosmological model, we run 300
noise realisations of the DES footprint. These noise realisa-
tions are done by rotating each ellipticity by a random angle,
while keeping the ellipticity magnitude fixed. The sensitiv-
ity correction and the statistical weights also remain the
same. This configuration can be considered as a realistic
draw from the ellipticity noise distribution, as only the po-
sition angle is changed; the ellipticity modulus, which can
depend on the observing conditions, such as, for example,
PSF and sky background level, is preserved. This allows us
to get the uncertainty on the number of peaks in a S{N bin
for all cosmological models to be close to 5% of the uncer-
tainty on the number of peaks in the DES measurement for
that bin. This way the uncertainty on the number of peaks
predicted from simulations does not decrease the quality of
constraints significantly. Additionally, the interpolation of
the peak counts as a function of cosmology reduces the un-
certainty caused by shape noise and cosmic variance, as we
expect the peak counts to vary smoothly with cosmology.
Interpolation of likelihood should also benefit from that fea-
ture. (see Section 6.2 for details on interpolation schemes).

c© 0000 RAS, MNRAS 000, 000–000



Cosmology from peak statistics in DES SV 5

We found that the cosmological constraints do not change
when the number of noise realisations is changed from 300 to
200, and we conclude that adding further noise realisations
would not change the constraints. There are 35 simulations
of the central cosmology, which results in 10500 total noise
realisations of this model.

3 MAP MAKING

We create aperture mass maps from the DES SV shape cat-
alogues. The full survey area is divided into 20 patches, each
of size 3ˆ 3 deg2. This procedure makes the maps easier to
create and also enables us to apply the DES mask to sim-
ulations, as the simulation tiles have a size of 6 ˆ 6 deg2,
which is easy to divide into four 3 ˆ 3 patches. We found
that using smaller patches would cause larger loss in the
area covered due to edge effects. Also, using larger patches
of size 6 ˆ 6 deg2 allows us to cover the complicated DES
SV footprint without losing a large fraction of the area. By
dividing the footprint into these patches we will exclude a
small fraction of galaxies which do not belong to any patch.

After applying the DES mask and noise, the simulations
are analysed exactly in the same way as the DES data. An
aperture mass map is calculated on a grid covering the 3ˆ
3 deg2 patches, at a resolution 30 arcsec per pixel side. We
verified that an increase of the resolution to 20 arcsec per
pixel did not affect the shape and uncertainty on the peak
function for the central cosmological model. Each patch is
then used to create the mass map, using the aperture mass
filter technique (Schneider 1996).

3.1 The aperture mass filter

The aperture mass method consists of the smoothing of the
field with a filter function obeying certain properties. In the
case of the tangential shear, the filter Q must have finite
support, i.e. it goes to 0 after a certain radius, which defines
the aperture radius. For each point on the map grid, the
estimator for the aperture mass is

Mappθ0q “
1

ng

ÿ

i

Qi e
t
i, (1)

where θ0 is the pixel centre position, the index i runs over
ng source galaxies within the aperture radius θmax, Qi ”
Qpθi ´ θ0q is the value of the filter at radius θi relative to
θ0, and et

i is the value of the tangential shear of galaxy i
with respect to position θ0, such that

et
i “ ´<pei expr´2jφisq, (2)

where φi is the angular position of galaxy i about the centre
of the pixel. The S{N of this estimator is

S{N pθ0q “
?

2

ř

iQie
t
i

b

ř

iQ
2
i pe

2
1,i ` e

2
2,iq

, (3)

where e2
1,i and e2

2,i corresponds to two components of the
ellipticity of galaxy i. We used these equations, modified to

include shear sensitivity correction and statistical weights,

Mappθ0q “

ř

iQie
t
iwi

ř

i wisi
;

S{N pθ0q “
?

2

ř

iQie
t
iwi

b

ř

iQ
2
i pe

2
1,i ` e

2
2,iqw

2
i

ř

i wi
ř

i wisi
, (4)

where wi is the statistical weight and si is the shear sensi-
tivity correction as described in Jarvis et al. (2015). As the
multiplicative correction affects the variance of the noise, we
found it necessary to include it in the processing of the sim-
ulated data too. We include it in the following way: first we
multiply the shear in the simulation corresponding sensitiv-
ity, then we process the simulation data the same way as the
DES data, including the sensitivity correction. By using this
procedure we recover the correct shear in the analysis of the
simulations. This is possible because we do not expect the
sensitivity at a position of a DES galaxy to be correlated
with the shear of simulated peak.

We consider an aperture mass filter with a shape match-
ing the lensing signal of NFW halos (Navarro, Frenk &
White 1997). This filter is expected to be optimal for the
detection of clusters, as discussed in many previous studies
(Hennawi & Spergel 2005; Marian & Bernstein 2006; Mar-
ian, Smith & Bernstein 2010; Marian et al. 2012a). In par-
ticular we follow the work of Schirmer et al. (2007); Dietrich
et al. (2007); Dietrich & Hartlap (2010) and adopt the fol-
lowing expression for our filter:

Qpθq “
tanhpθ{θcq

θ{θc

1

1` expp6´ 150θq ` expp´47` 50θq
,

(5)

where θ [deg] is the distance relative to the aperture centre,
scaled by the aperture radius, and θc is a free parameter for
which we adopt θc “ 0.15, the same value as Hetterscheidt
et al. (2005) and Dietrich & Hartlap (2010). Regarding the
aperture radius, we consider three values, θmax “ t12, 20, 28u
arcmin. We use θmax “ 20 as our fiducial measurement,
and present results from other filter scales. We found that
θmax “ 20 and θmax “ 12 give constraints of similar width,
and slightly better than that from θmax “ 28. We processed
the maps with fixed filter size values, without using an adap-
tive scheme (Marian et al. 2012b). We did not attempt to
combine the results from many filter sizes, as it was done
by Liu J. et al. (2015). This choice of filter function heavily
downweights the central portion of peaks where the profile
shape of real halos could deviate from those in the simula-
tions due to baryonic effects and force softening.

3.2 Mass maps and peak identification

We process both the DES and simulated catalogues with
the aperture mass filter and use these processed maps to
identify the shear peaks. To identify a peak, we select map
pixels which have higher mass intensity than all their eight
closest neighbours. This approach is similar to others used
in peak statistics (Liu et al. 2015b; Liu J. et al. 2015; Mar-
ian et al. 2012b), although variations on this scheme have
been proposed (Dietrich & Hartlap 2010, for example). To
remove measurements from very low density areas and patch
edges we additionally require a peak to have no less than 0.5
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Figure 2. Example aperture mass map from a 3 x 3 deg patch of

DES SV data. The centre of this patch is ra=79.0, dec=-59.5 [deg].

Black circles identify peaks detected above a S{N ą 3 threshold,
and their size changes with their S{N . Not all identified peaks

are lenses, most of them are actually random noise fluctuations.

The colour bar shows the value of the aperture mass.

galaxies per arcmin2 within the area inside the aperture. In
total, in DES SV, we identified 969 peaks above 3σ thresh-
old. An average number of peaks for the randomised maps
was 676.4. Number of peaks above S{N ą 0 was 20165 and
20904.9 for DES and random peaks, respectively.

An example DES map of size 3ˆ 3 deg is presented in
Figure 2. In this map, there were 44 peaks identified above
the S{N ą 3 threshold, marked in black circles. Not all of
these peaks correspond to real clusters, as some of them are
created by random noise fluctuations.

4 PEAK FUNCTIONS

We construct peak functions from the aperture mass maps.
In our work, we define a peak function to be a count of the
number of peaks in bins of their S{N . Previous works often
used binning in S{N , although using the actual values of the
κ map is also an option (Liu et al. 2015b). The most com-
mon choice of the S{N range is to focus on the high S{N
peaks, although Bard, Kratochvil & Dawson (2014) and Liu
et al. (2015b) demonstrated that peaks with very low and
even negative S{N carry a large proportion of the cosmolog-
ical information (Dietrich & Hartlap 2010; Kratochvil et al.
2012). Many of the peaks are projections of many halos along
the line of sight (Yang et al. 2011; Marian, Smith & Bern-
stein 2009). Here, we decided to focus on low (S{N P r0, 2s)
and medium (S{N P r2, 4s) S{N peaks. We next detail the
considerations that we took into account when determining
the number of S{N bins and their upper limit.

4.1 Signal-to-noise range

Given the limited number of realisations of the central cos-
mology which are used to create the covariance matrix, we
focus on using as few S{N bins as possible, without sig-
nificant loss of information. We use 13 equally-spaced bins,
since a larger number does not strengthen cosmological con-
straints. We did not consider S{N bins that did not have
an equal width. For example, Dietrich & Hartlap (2010) and
Liu et al. (2015b) used roughly logarithmic bin widths. We
leave this sort of binning optimization to future work. We
also verified that our estimated covariance matrix is accu-
rate enough for this length of data vector (see Section 6.1).

We considered two arguments for deciding upon the
value of upper limit of the S{N range. Firstly, the high
mass end of the peak function corresponds to big clusters
and can carry significant cosmological information (see for
example Reischke, Maturi & Bartelmann 2015). Cluster sci-
ence also aims to extract that information (see for example
Rozo et al. 2010; Allen, Evrard & Mantz 2011). However,
accurate measurement of cluster mass with weak lensing is
a difficult task. Accurate “boost factors” have to be calcu-
lated to account for extra galaxies found in the cluster and
the decrease in the number of lensing source galaxies due
to blending; both these effects cause a decrease in the signal
of a peak. Additionally, intrinsic alignments can significantly
change the estimated S{N of the peak, especially in the case
of non-tomographic analysis. Both Applegate et al. (2012)
and Melchior et al. (2014) used boost correction factors to
calibrate cluster masses, and these corrections were on the
order of 10%. In this work, we also make an estimate of the
impact of the boost factor and intrinsic alignments on the
peak S{N , and find that the highest peaks with S{N ą 4.5
would require corrections of order ą 15%, which corresponds
to modifying the number of peaks by order of 30% (see Sec-
tion 5.3 and Appendix C). Even though the amount of in-
formation carried by the high end of the mass function is
large, we find that its measurement would be highly depen-
dent on the boost factor and intrinsic allignments modelling.
To avoid this, we choose to use only those S{N bins which
do not require significant value of boost factor corrections,
as compared to the statistical error on the number of peaks
in that bin. We found that when we use S{N ă 4.5, the
measurement of cosmological parameters is not heavily de-
pendent on the application of our estimated corrections.

Secondly, as mentioned before, we model the number
of peaks as a Gaussian likelihood. This is only an approxi-
mation, as in general the peak count will follow the Poisson
distribution, modified by the impact of sample variance (Hu
& Kravtsov 2003). A Gaussian distribution becomes a good
approximation to Poisson for mean count of greater than 30.
That is why we require the upper threshold of the highest
S{N bin to be such that this bin has more than 25 peaks for
every cosmological model, including noise peaks. The high-
est S{N limit was chosen separately for each of the filter
scales. The final upper limits on the S{N was chosen to be
4.4, p4.1, 4.1q for filter scale θmax “ 12 (20, 28) arcmin. The
selection of these values was also affected by our choice to
keep the S{N bin widths constant.

We analysed the maps with a range of filter scales, and
found that larger scales (ą 10 arcmin) tend to carry more
statistical power. We decided to use an aperture mass filter
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with radius of θmax “ 20 arcmin as our fiducial model (see
Section 3.1). Results from other filter scales with θmax “

t12, 28u arcmin are also reported, and achieve comparable
quality of constraints and similar central value. We did not
attempt to combine different filter scales, as was done in
some previous peak statistics works (Marian et al. 2012b;
Liu et al. 2015a); we leave this for the future work.

4.2 Peak function measurements for DES SV

Figure 3 shows the peak function from the DES data and
simulations for the fiducial filter scale of θmax “ 20 arcmin.
The top panel shows the number of peaks calculated in the
DES footprint for thirteen S{N bins. We also calculated the
peak functions from randomised maps. The bottom panel
presents the same peak functions after subtracting the mean
number of peaks from the randomised maps, which enables
better visual comparison of the DES and simulation results.
The number of noise realisations for randomised maps was
300 times the DES footprint. The blue points show the DES
measurement and the multi-colour lines correspond to peak
functions from the simulations, for various combinations of
Ωm and σ8 parameters. The colour corresponds to the value
of the S8 parameter corresponding to each model. The error
bars on the DES measurement come from the simulations of
the central cosmology.

For low S{N , the number of peaks in the randomised
shear fields is higher than in fields with cosmological sig-
nal. This can be understood by considering that the ob-
served shear data is a sum of two fields (Liu X. et al. 2015):
cosmological shear, with small amplitude and long wave-
length; and random shape noise, with large amplitude and
small wavelength. The filter is matched to have a smooth-
ing scale matching the scale of variation of the cosmological
shear field. Consider two extreme cases: a noise-only field
and signal-only field, both smoothed with the same filter.
The noise-only field will have more low S{N peaks and less
high S{N peaks than the signal-only field. The sum of both
fields will be a case in between the two extremes: it will
have less low S{N peaks and more high S{N peaks than
the noise-only field. Conversely, in the sum of both fields,
we will find more low S{N peaks and less high S{N peaks
than the signal-only field. Liu X. et al. (2015) presents ana-
lytical results for number of peaks in the presence of shape
noise for the case of convergence fields.

5 SYSTEMATICS

We consider several systematic effects that may influence
our measurement: shear bias, photo-z error, boost factors,
intrinsic alignments and the impact of baryons. We found
that shear multiplicative bias and photo-z error have a sig-
nificant impact on the peak function. To account for these
we marginalise over these systematics in a similar way to
DES15. This process is described in sections 5.1 and 5.2.
We estimate the impact of the boost factors and intrinsic
alignments, describing our results in sections 5.3 and 5.4
and Appendices C and D. We found that the potential im-
pact of these effects on high S{N peaks can be large. To
avoid applying large corrections, we did not include high
S{N peaks in our analysis.
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Figure 3. DES peak functions (blue points) over-plotted on peak

functions from simulations with different cosmological models.

The peak count was done using an aperture size of θmax “ 20
arcmin. The blue points with error bars in the top panel show

the number of peaks for the full DES SV area. The black dashed

line corresponds to the mean number of random peaks identified
in the DES area from 1000 noise realisations of the footprint.

The bottom panel shows the same data, but after subtracting the
number of random peaks. The colour scale shows S8 for each cos-
mological model. Error bars for the DES measurement are taken

from the central model in simulations. Vertical dotted lines corre-

spond to S{N bins boundaries. The grey shaded area shows the
range of S{N used in our analysis. The points on this plot are

correlated (see Section 6.1).

Baryons will affect the shear peaks in two ways. Firstly,
radiative cooling will cause the enhancement of the halo con-
centration (Yang et al. 2012), and thus increase the S{N of
high mass peaks, while leaving the mass of medium peaks
mostly unaffected. The second effect is stellar feedback,
which can reduce the mass of small halos and can cause
a decrease the count of medium peaks. Osato, Shirasaki &
Yoshida (2015) argue that those effects can partially com-
pensate each other. Regarding the impact on cosmological
parameters, Osato, Shirasaki & Yoshida (2015) showed that
omitting the baryonic processes in the emulation of the peak
function can cause 1 - 2 % biases in the Ωm and σ8 param-
eters. The level of uncertainty on the measurement from
the DES SV data is much larger than the values reported,
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therefore we do not include the treatment of baryons in our
analysis.

We also do not consider corrections for shear additive
bias, as we expect the influence of this effect to be small for
shear peak statistics. Shear additive error is mostly created
by leakage of PSF ellipticity into the estimated shear, and
it is proportional to PSF ellipticity. If the PSF ellipticity is
constant across the aperture area, then the additive term for
all galaxies within that aperture will be the same. If galaxies
are distributed uniformly within the aperture, the aperture
mass measurement will not be affected by the additive bias;
the tangential component of the additive systematic with
respect to the centre of the aperture will average out. How-
ever, if the galaxies lie on the survey edge mask, a additive
systematics may not vanish. Clampitt et al. (in prep.) pre-
sented an analysis of tangential shear around random points
in the DES SV data, which does not indicate the presence
of additive systematics. Given that result, we do not apply
any further calibrations for additive systematics.

5.1 Shear multiplicative bias

Multiplicative shear bias, m, is a major systematic error
expected in shear catalogues. It can be caused by various
effects arising from the shear measurement process, includ-
ing noise bias (Kacprzak et al. 2012; Refregier et al. 2012;
Melchior & Viola 2012), model bias (Voigt & Bridle 2010;
Bernstein 2010; Kacprzak et al. 2014), imperfect PSF correc-
tion (eg. Paulin-Henriksson, Refregier & Amara 2009). For
an overview of the shear measurement challenges and cur-
rent state of art methods, see the results from the GREAT3
challenge (Mandelbaum et al. 2014).

Peak statistics will be affected by the shear multiplica-
tive bias, as it directly scales the lensing signal and changes
the detection probability of a peak. Petri et al. (2014) found
that it can significantly affect the peak statistics. In this
work, we measure the impact of shear systematic bias, build
a model describing the number of peaks as a function of m,
and then use that model to marginalise the shear bias during
the measurement of cosmological parameters.

Jarvis et al. (2015) recommended a Gaussian prior on
m, centred on 0 with a width of 0.05, be used for the ng-
mix catalogue. We include this uncertainty in our cosmo-
logical parameter measurement by marginalising out the
multiplicative bias with this prior. First, we have to learn
how the peak function reacts to changes in multiplicative
bias. To do this, we create a new suite of simulations for
all cosmological models, with a multiplicative shear bias
added to the shear, while leaving the sensitivity correc-
tion and shape noise the same. We run these simulations
in two configurations, with m “ 0.05 and m “ ´0.05.
We assume a simple first order model, where the change
in the peak function following a change in m is linear:
pNpeakspmq´Npeakspm “ 0qq{Npeakspm “ 0q “ αmm, where
αm is a factor that we measure from simulations, for each
S{N bin. In Appendix A we describe this model in more
detail. In our analysis we define αm to always correspond to
the fractional change in number of peaks after subtracting
the number of peaks generated from randomised maps. The
number of peaks from randomised maps does not change
with varying shear systematics, as any cosmological signal
is removed by randomising the shear. From our simulations

we find αmpνq « 2, which is stable across the S{N bins.
This relation seems to be stable for all cosmological models,
as shown in Appendix A. We use this simple model later
for creating our likelihood and cosmological parameter in-
ference.

5.2 Photometric redshift error

Bonnett et al. (2015) found that, for the non-tomographic
case (0.3 ă z ă 1.3), the mean redshifts of the lensing sam-
ple determined by the four photo-z methods and external
data (spectroscopic and COSMOS photometric redshifts)
agreed to within a scatter of ∆z “ 0.02. When broken-up
into tomographic bins the scatter increased to ∆z “ 0.05 per
bin. These results directly informed the photometric redshift
uncertainty prior in the analysis of DES15, and must also
be taken into account in the present work. We note that
the non-tomographic cosmology from WL 2-pt functions in
DES15 also assumed ∆z “ 0.05, and not ∆z “ 0.02. In this
work we follow DES15 and use ∆z “ 0.05.

To include the uncertainty on the photo-z estimation we
use a similar approach to that applied for shear multiplica-
tive bias. We aim to create a scaling which relates the change
in the mean redshift of the sources to the change in the num-
ber of measured peaks. We run another two configurations
of the simulations: with photo-z shifted by ∆z “ ´0.05 and
∆z “ `0.05. This way we are able to measure the param-
eter α∆z, which quantifies this change for each S{N bin:
pNpeaksp∆zq ´ Npeaksp∆z “ 0qq{Npeaksp∆z “ 0q “ α∆z∆z.
Similar to the case of multiplicative bias, we find that a sim-
ple first order model is sufficient to describe the impact of
the shift of mean npzq. We find α∆zpνq « 3 for four S{N
bins, and this result is stable across redshift bins and cos-
mological models. See Appendix A for details. We use this
model in the cosmological inference process.

5.3 Boost factors

The strength of the shear signal will vary with the distance of
source galaxies to the lens, and will be the highest when the
distance between the lens and the source galaxy is roughly
the same as the distance between the lens and the observer.
This will cause the detection probability of a peak to depend
on the distribution of the redshifts of source galaxies at the
position of a peak. It is therefore important to make sure
that the redshift distribution at the position of the peaks
is the same in the DES data and in the simulations. The
procedure described in section 2.3 makes sure that the npzq
for the simulations is the same as in the DES survey, up to
photo-z error, for the wide field. However, the npzq is vary-
ing across the survey, both according to depth and to galaxy
clustering. In this work we address only the latter. At po-
sitions close to clusters, we expect to observe more galaxies
than in the wide field. These extra galaxies are cluster mem-
bers and do not carry any lensing signal from that cluster,
as they reside at the same redshift. In the simulations the
galaxy density is decorrelated from the dark matter density
and this can cause a difference between detection probability
between the DES survey and the simulations.

Additionally, the large number of cluster galaxies can
cause a reduction of the number of source galaxies, due
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to blending. When measuring cluster masses in early SV
data, Melchior et al. (2014) used the Balrog framework
(Suchyta et al. 2015) to derive boost factors to correct for
this effect. In this work, we use a similar approach to Mel-
chior et al. (2014) to investigate boost factors for every S{N
bin, analysing the number of galaxies surrounding the peaks
when using each of three samples: the DES data, the sim-
ulations, and the Balrog catalogues; the full procedure is
described in Appendix C.

We find that the boost factor corrections would be low,
generally below 5%. The dilution of the signal by extra clus-
ter galaxies is minimal (ă 2%). The effect of background
galaxies lost due to blending is more prominent and can
cause a 5% change in the S{N of the most massive peaks
included in our analysis (S{N ą 3.8). In our analysis we
created a combined correction for boost factors and intrin-
sic alignments (see Section 5.4), and limited our analysis to
those S{N bins for which these corrections do not signifi-
cantly change the cosmology constraints.

Note that these corrections may be different from those
usually reported in cluster lensing science, as they were cal-
culated using sets of peaks which also include spurious peaks
from random noise. Additionally, cluster masses and boost
factors used to correct them are derived by looking at the
source galaxies, which are selected such that they have a
higher redshift than the cluster. This removes most of the
cluster member galaxies, with only a fraction of the cluster
members leaking into the source sample. Here we do not
identify the redshifts of peaks and do not modify the sam-
ple of sources according to the position on the sky. This
means that all the cluster galaxies will be included in the
estimation of S{N of the peak, which can cause the boost
factors to be quite different in our work than those calcu-
lated in cluster lensing. Furthermore, many of the peaks will
not be placed at the position of a large cluster, and arise due
to chance projections of few smaller halos along the line of
sight (Yang et al. 2011; Marian, Smith & Bernstein 2009).

5.4 Intrinsic alignments

The distortion of a galaxy’s shape due to WL is very small.
The resulting shear is „ 1% of the amplitude of a typical
galaxy’s intrinsic ellipticity. Measurements of WL, whether
peak counts or WL 2-pt statistics, rely on the averaging of
the shapes of many galaxies. If the galaxies’ intrinsic ellip-
ticities are randomly distributed then they will average to
zero and the resulting statistic will be sensitive to the WL,
as desired.

In reality, it is very possible for processes during the
epoch of galaxy formation to produce populations of galax-
ies whose intrinsic ellipticity is correlated. We call this ef-
fect intrinsic alignment (IA) (Heavens, Refregier & Heymans
2000; Catelan, Kamionkowski & Blandford 2001; Hirata &
Seljak 2004). These IA correlations will contaminate mea-
sured cosmic shear signals. This has been extensively treated
in the WL 2-pt case (Bridle & King 2007; Joachimi & Bri-
dle 2010; Heymans et al. 2013b; Kirk et al. 2012), where
IAs source two additional terms which sum with the pure
WL signal to produce the observed correlation function.
One of the terms (the II, or Intrinsic-Intrinsic correlation)
is positive and sourced by the correlation of physically close
galaxies, while the other (the GI, or Gravitational-Intrinsic

cross-correlation) is negative and sourced by the correlation
of galaxies on the same patch of sky but separated along
the line of sight. IAs have also been considered in WL 3pt
measurements and galaxy-galaxy lensing (Shi, Joachimi &
Schneider 2010; Troxel & Ishak 2012b,a; Blazek et al. 2012).

WL peak counts will also experience the effect of IAs.
In this case, because peaks are identified through a filtered
sum of the lensing signal along a given line of sight, any IA
where galaxies align radially with structures along that line
of sight will produce a negative contribution to the resulting
mass intensity. Imagine a particular line of sight containing a
single massive cluster that produces a large integrated mass
intensity. If the cluster member galaxies are aligned such
that the satellite galaxies point towards the cluster centre
they will enter negatively into our filtered sum of elliptici-
ties, reducing the total observed mass intensity. We consider
only radial IA within clusters in this paper as this is in keep-
ing with previous attempts to model IAs using a halo model
(Schneider & Bridle 2010), which we build upon here. The
assumption of radial alignment is also consistent with the
latest observations, which support radial alignment among
more luminous (red) galaxies (Li et al. 2013; Singh, Mandel-
baum & More 2014) and see no evidence for any alignment of
fainter (red and blue) satellite galaxies (Chisari et al. 2014;
Sifón et al. 2015). There is no evidence for tangential align-
ment of satellite galaxies with respect to the central galaxy
position among any population.

Of course, for a galaxy’s alignment to influence the
peaks count, it must be included in the selection of sources.
This means it is possible to reduce the impact of IAs by
restricting the source selection. For example, a selection of
sources which are in a narrow redshift range, centred on a
relatively high redshift, would be expected to experience lit-
tle IA effect because the galaxies associated with the mass
fluctuations producing peaks are at significantly lower red-
shift and not included in the source selection (assuming red-
shift estimates are accurate for all galaxies). Peaks produced
by random noise will not suffer from IAs in any systematic
way. In this paper we use a broad redshift range for our
source population, therefore it is important to consider the
effect of IAs.

We can model the effect of IAs on peak counts by assum-
ing that IAs only affect peak counts through the alignment
of satellite galaxies inside individual halos along those lines
of sight identified as peaks. In these cases we can follow the
IA halo model of Schneider & Bridle (2010), where satellite
galaxies are assumed to be aligned towards the halo cen-
tre with some misalignment angle, β, between the satellite
galaxy major axis and the radial vector of the halo. The dis-
tribution of this misalignment angle was derived from simu-
lations and found to reduce the IA of satellite galaxies by a
factor of γ̄scale “ 0.21, where unity would represent perfectly
aligned galaxies. Other measurements from simulations find
a similar value (see Tenneti, Mandelbaum & Di Matteo 2015,
for example). The strength of the IA ellipticities can be as-
sumed to be equal to the intrinsic ellipticity distribution of
the satellite population. We describe how this model could
be integrated into our peak-counting formalism in Appendix
D. This very simple model calculates an expected change
in the S{N of a peak, given a number of cluster member
galaxies, background galaxies, and a fixed value of the γ̄scale

parameter.
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We use this model to estimate the expected corrections
that would have to be applied to modify the value of the
peak function in the simulations in order to account for in-
trinsic alignments. We find that for the majority of our cho-
sen S{N range the corrections would be very low, and for
the few highest bins the S{N needs to be scaled down by a
factor of „ 15%. We combine this correction with the boost
factor corrections, as shown in Appendices C and D. Figure
C3 shows these corrections, which are most important in
relatively high S{N bins. As we combine information from
many S{N bins, and only the highest bins need boost fac-
tor/ intrinsic alignments corrections, we do not expect the
final result to heavily depend on these. With that in mind,
we do not apply these corrections for our main cosmological
results and other variants. We explore the analysis variant
where the combined correction is applied in Section 7.2.

6 INFERENCE

In this section we describe the process of inferring cosmo-
logical constraints from the measured peak functions. The
steps involved in the inference process are: the construction
of the likelihood function, evaluating this function within a
specific prior and marginalising the systematic errors. We
consider a Gaussian likelihood with a covariance matrix de-
rived from simulations. The likelihood is evaluated on a four-
dimensional, densely sampled grid.

6.1 Likelihood analysis and covariance matrix
estimation

Let d̂ be our vector of measured data points, i.e. the number
of shear peaks in different bins of signal-to-noise. In order
to derive cosmological parameter constraints from our data
we assume that d̂ has a multivariate Gaussian distribution
(see Section 4.2 for the description of the noise model). Due
to shape noise and cosmic variance it fluctuates around a
mean value d as

d̂ „ N pd,Σq , (6)

where Σ is the covariance matrix of our data points. Both d
and Σ depend on the choice of cosmological parameters and
nuisance parameters which we both denote with π. In our
analysis we consider (cf. section 7)

π “ tΩm, σ8,m,∆zu. (7)

In a Bayesian approach we assign a posterior probability
density to our parameters from our measurement of d̂ as

ppπ|d̂q “
ppd̂|πq ppπq

ppd̂q
, (8)

where ppd̂|πq is the probability of measuring d̂ if the true
parameters are π, ppπq is a suitably chosen prior density in
parameter space (cf. sections 2 and 5 for the priors on our
nuisance parameters) and ppd̂q is just a normalization con-
stant. Under our Gaussian assumption the density ppd̂|πq is
given by

ppd̂|πq „ exp

ˆ

´
1

2
χ2
pd̂,πq

˙

, (9)

with

χ2
pd̂,πq “

´

d̂´ dpπq
¯T

Σ´1
pπq

´

d̂´ dpπq
¯

, (10)

where dpπq is the vector of values of our data points for a
set of cosmological models π. Our modelling of dpπq is de-
scribed in Section 6.2. In order to estimate the covariance
Σ we use the N-body simulations that were described in
Section 2.3. Each simulated realisation provides an indepen-
dent realisation of our data vector d̂i, i “ 1, . . . , Ns, where
Ns “ 35 ¨300 “ 10, 500 since our central cosmology was sim-
ulated 35 times and for each simulation an additional 300
noise realisations were generated. In the case where we apply
boost factors to our measurement, we also apply randomly
drawn boost factors/IA corrections according the error bars
shown in Figure C3 to the signal in our mock catalogues in
order to account for our uncertainties in this correction (cf.
Appendix C). The sample covariance estimate from these
realisations is given by

Σ̂ “
1

Ns ´ 1

Ns
ÿ

i“1

´

d̂i ´ d̄
¯´

d̂i ´ d̄
¯T

, (11)

where Ns “ 10, 500 and d̄ is the mean value of all mea-
sured data vectors. Note that in this way we are ignoring
the cosmology dependence of the covariance matrix, which,
according to Eifler, Schneider & Hartlap (2009), can have
a significant impact on likelihood contours. However, in the
absence of a precise modelling of the covariance matrix or a
large set of simulations with different cosmological parame-
ters there is no alternative to our procedure.

Under our Gaussian assumption Σ̂ follows a Wishart
distribution and hence its inverse Σ̂´1 is not an unbiased
estimate of the true inverse covariance matrix Σ´1. This can
however be corrected with a multiplicative factor (Kaufman
1967; Hartlap, Simon & Schneider 2007; Taylor, Joachimi
& Kitching 2013) and an unbiased estimate of χ2

pd̂,πq is
given by

χ̂2
pd̂,πq “

Ns ´Nd ´ 2

Ns ´ 1

´

d̂´ dpπq
¯T

Σ̂´1
´

d̂´ dpπq
¯

,

(12)

where Nd is the dimension of our data vector. Note that we
have set the number of realisations in Equation 12 as Ns “
10, 500, which is the total number of shape noise realisations
and shape noise is the dominant noise contribution.

We have checked this assumption by making a simple es-
timate of the fractional uncertainty on the parameter errors
derived from our covariance matrix. Using a noisy covari-
ance estimate from a finite number of realisations introduces
uncertainties to the constraints derived for cosmological pa-
rameters, i.e. uncertainties on the uncertainties we assign to
those parameters. Let p be a parameter of our model and
δp the uncertainty in that parameter derived from our likeli-
hood contours in parameter space. Then, assuming a Gaus-
sian data vector and also a Gaussian likelihood in parameter
space, Taylor & Joachimi (2014) derived the fractional un-
certainty on δp to be

∆δp

δp
«

a

2pNs ´Nd `Np ´ 1q

pNs ´Nd ´ 2q
, (13)

where Np is the overall number of constrained parameters.
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Inserting Ns “ 10, 500 into Equation 13 yields a frac-
tional uncertainty of „ 1.5%. We made an additional esti-
mate of this quantity by using jackknife resampling to es-
timate the standard deviation of δS8, the error on the S8

parameter. In this jackknife we removed 300 of our 10,500
peak function realisations at a time, re-calculating the co-
variance matrix each time. For each jackknife re-sampled
covariance matrix we calculated the central value of S8, as
well as the upper and lower 1-σ deviation from that value.
With these jackknife estimates we then calculated the stan-
dard deviation of ∆S8, finding a value of „ 2%. The good
agreement between the jackknife estimate and the result of
Equation 13 indicates that our modelling of the covariance
from the shape noise realisations is accurate.

The clustering of sources with the mass peaks is not
realistic in our simulations. In Section 5.3 and Appendix
C we discussed the impact of this problem on the peak
counts. This mismatch between the simulations and the DES
data may also have an impact on the covariance matrix of
the peak function. We expect it to increase the covariance
slightly, but we do not account for this in our analysis. In
principle this is possible to use simulations with realistic
clustering, but then a process of applying the DES mask
would require more investigation; it will no longer be pos-
sible to use exactly the same positions of galaxies in simu-
lations as we observed in the survey, which is what we did
in this work. In the future it will be important to be able
to quantify the joint impact of galaxy clustering and mask
effects.

6.2 Interpolation schemes

The empirical prediction of the number of peaks as a func-
tion of cosmological parameters is done on a finitely sam-
pled grid of simulations. To obtain the likelihood for points
in the Ωm and σ8 plane that do not lie on the grid, we
have to interpolate and extrapolate from the measured grid
points. This method has been used in previous studies, for
example Liu et al. (2015a) used two interpolation methods
based on Gaussian process and radial basis functions. In this
work, we obtain the likelihood in two fundamentally differ-
ent ways: (a) by interpolating the number of peaks for every
S{N bin through a basis expansion in Ωm and σ8, and (b)
by interpolating the χ2 for each simulation using radial basis
functions. The first approach is the fiducial method, and the
second is used to test the robustness of the fiducial result.

Details of these methods are given in appendix B. We
find that switching interpolation method makes little dif-
ference to our derived cosmology. The difference in central
value of S8 for both schemes is close to 1%, see Section 7.2
for comparison.

7 COSMOLOGICAL CONSTRAINTS

With only four parameters to consider, we can calculate the
likelihood of our data given the cosmological and systematic
parameters on a four dimensional grid. We model this like-
lihood as a multivariate Gaussian, with covariance matrix
calculated from the simulations; see Section 6.1 for more de-
tails. As detailed in Section 4, we chose our highest S{N bin
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 non-tomo
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Figure 4. Constraints on Ωm and σ8 from peak statistics in

DES SV (blue contour), compared to equivalent constraint from
DES cosmic shear 2-pt functions (orange). The contours represent

the 68% and 95% confidence limits. Across the Ωm{σ8 degener-

acy, the uncertainty on the measurement with peak statistics is
S8 “ σ8p

Ωm
0.3
qα “ 0.77 ˘ 0.07 with best fitting α “ 0.6. These

constraints include marginalisation over systematic errors: shear
bias and error in the mean of the redshift distribution. The orange

contours show the constraints from the non-tomographic DES SV

WL 2-pt measurement, with other cosmological parameters set
to the same values as used in the simulations for peak statistics:

h “ 0.7, Ωb “ 0.04 and ns “ 1. They also include marginalisation

of the systematic errors with the same priors.

such that the Gaussian likelihood will remain a good approx-
imation, which is the case for number of observations greater
than 25. The size of the parameter grid is chosen to be suf-
ficiently large so that any further increases in its size do not
bring any changes to the result. To marginalise the system-
atic errors, we sum the probability along the corresponding
directions in the grid, having normalised the likelihood cube
to unity.

In this section we present the fiducial constraints from
shear peaks in 7.1 before examining the effect of different
analysis assumptions in 7.2 and comparing results from the
peaks analysis to those from DES WL 2-pt statistics in 7.3.

7.1 Fiducial result

Figure 4 shows the fiducial constraints on Ωm and σ8

from shear peak statistics using our main analysis pipeline,
marginalised over both photo-z and shear measurement nui-
sance parameters. The corresponding measurement of S8 is
shown in Figure 5. The maximal constraint on the σ8-Ωm

degeneracy in the case of our peaks analysis is given by
S8 “ σ8p

Ωm
0.3
q
α
“ 0.77 ˘ 0.07, with α “ 0.6. We found the

best fitting α “ 0.58, and we set it to α “ 0.6 for the rest
of the analysis. Changing the slope of S8 to α “ 0.5, the di-
rection of maximal sensitivity in the WL 2-pt analysis, has
very little effect on the main peaks analysis, changing the
best-fit value from S8 “ 0.77 to S8 “ 0.76 and increasing
the error bars by 5.7%.
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7.2 Comparison of results for different variants

We have tested a number of variants to our main peaks anal-
ysis. The main alternate analysis methods are displayed in
Figure 5. Unsurprisingly, the greatest change in constraining
power comes when we choose to fix the nuisance parameters
for both photo-z errors and shear measurement bias at zero,
rather than marginalising over them. This decreases the er-
rors by 29% (15%) for α “ 0.6 (0.5). The best-fit values of
S8 are almost unchanged when we fix our nuisance parame-
ters, as expected when Gaussian priors with zero mean are
applied.

The implementation of the boost/IA corrections, de-
scribed in Section 5.3, has a very limited impact on the
peaks constraints, as designed in the analysis process; we
purposefully limited the range of S{N , such that the clus-
ters with possible high and uncertain boost factors are ex-
cluded from our analysis. We compare the systematics-free
constraints to equivalent calculated with the alternate inter-
polation, described in Section 6.2. The results are consistent,
with the ∆S8 ă 0.01 change in the best-fit value. The error
contours are slightly smaller for the alternate interpolation.

Changes in filter size have a more noticeable effect on
the constraints on S8. A reduction from θmax “ 20 ar-
cmin to θmax “ 12 arcmin changes the best-fit value to
S8 “ 0.72 ˘ 0.07, while an increase to θmax “ 28 produces
a constraint of S8 “ 0.80`0.08

´0.07. To assess the significance of
these differences, we investigated the expected level of cor-
relation between constraints from these filter sizes, by look-
ing at the results of simulation from the central model. We
found that the correlation coefficient between measurements
of the S8 parameter from filter sizes of θmax “ 20 arcmin to
θmax “ 12 and θmax “ 28 to be both « 0.5. Accounting for
that correlation we estimate this difference to be on the 1σ
significance level. This indicates that the results from both
smaller and larger filter sizes are entirely consistent with the
result from our main analysis.

7.3 Comparison of peaks and 2-pt measurements

We also use Figure 4 to compare the constraints from our
peaks analysis to similar measurements using DES SV WL
2-pt measurements. These measurements were run especially
for this current analysis but, to make a fair comparison, we
make sure we use exactly the same configuration of input
parameters for the 2-pt chains as those used in the shear
peaks analysis, setting h “ 0.7, Ωb “ 0.04 and ns “ 1, and
ignoring intrinsic alignments. For that configuration of the
2-pt analysis, we obtain S8 “ 0.78 p0.76q ˘ 0.08 p0.08q for
α “ 0.6 (0.5). The constraints from peak and 2-pt statis-
tics are very close: the best-fit values from the two different
observables differ by ∆S8 « 0.015.

We compare the results with systematics ignored in Sec-
tion 7.2, Figure 6. For the 2-pt constraint, other cosmo-
logical parameters were fixed as before and intrinsic align-
ments were ignored, which makes it a fair comparison. Fix-
ing the systematic nuisance parameters to zero, rather than
marginalising over them, has a somewhat different effect for
WL 2-pt and peak statistics. For the 2-pt analysis, the con-
straints shrink by „ 20% („ 46%) when α “ 0.6 p0.5q which
produces a shift in the best-fit S8 of ă 12% (ă 40%). For
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Figure 6. Comparison between constraints from peak statis-
tics (blue solid lines) and shear 2-pt functions (pink contours),

with systematics excluded. Both constraints show the 68% and

95% confidence limits. To make a fair comparison, we did not
marginalise other parameters for the 2-pt constraints and we set

h “ 0.7, Ωb “ 0.04 and ns “ 1, to match the configuration for

simulations.

peak statistics, the central value remains almost unchanged,
and the error shrink by 25% (15%) for α “ 0.6 (0.5).

Let’s now compare the peak statistics results with the
fiducial tomographic constraints in DES15. The fiducial
result from the 2-pt analysis uses three-bin tomography
(0.3 ă z ă 0.55, 0.3 ă z ă 0.55, 0.3 ă z ă 1.3) and varies
five cosmological parameters (Ωm, σ8, Ωb, h, ns) and seven
nuisance parameters (m1, m2, m3, δz1, δz2, δz3, AIA).
This produced a fiducial constraint of S8 “ σ8p

Ωm
0.3
q
0.5

“

0.81`0.062
´0.060. When we re-analyse this chain with α “ 0.6 we

see slightly larger errors and a slightly higher best-fit value,
S8 “ 0.83`0.08

´0.07. Both of these constraints are compatible
with our fiducial peaks analysis, showing best-fit S8 values
at the upper end of the peaks 68% confidence region. How-
ever, we should not expect the fiducial results from the WL
2-pt analysis to be entirely consistent with that of the peaks
analysis. For one thing, the 2-pt analysis is tomographic,
while the peaks analysis is an integral along the entire line
of sight. Secondly, the marginalisation over intrinsic align-
ments uncertainty is included in the fiducial WL 2-pt analy-
sis. Finally, the shear peaks analysis is using a cosmological
model with fixed Ωb, h70 and ns.

Our analysis was done for fixed Ωb, h70 and ns. It is
interesting to check how much of an impact it would have if
these parameters were marginalised, in a similar way as it is
done for the WL 2-pt. As this is not available for us due to
limited simulations space, we can only investigate the impact
it has on the 2-pt function. We ran additional chains for the
fiducial setup of the 2-pt analysis, but with Ωb “ 0.04, h “
0.7 and ns “ 1. The S8 measurement for this configuration
is shown in Figure 5 under the entry: ‘with tomography,
Ωb “ 0.04, h “ 0.7 and ns “ 1’. Both central values for that
configuration are very close to those from the fiducial one,
and the errors are only slightly improved. That indicates
that marginalising over these parameters, with the priors
used in the 2-pt analysis, does not have much impact on
the constraints. If we assume that the shear peak statistics
respond similarly to changes in these parameters, we can
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0.6 0.7 0.8 0.9 1.0

σ8 (Ωm /0.3)α

                       DES SV peaks

α=0.6
α=0.5  Fiducial peaks

α=0.6
α=0.5  No systematics

α=0.6
α=0.5  With boost + intrinsic alignments correction

α=0.6
α=0.5  Smaller aperture size  θmax =12 arcmin

α=0.6
α=0.5  Larger aperture size  θmax =28 arcmin

α=0.6
α=0.5  Likelihood interpolation, no systematics

                       DES SV 2pt

α=0.6
α=0.5  No tomography, Ωb =0.04, ns =1, h=0.7, no IA

α=0.6
α=0.5  No systematics, no tomography, Ωb =0.04, ns =1, h=0.7, no IA

α=0.6
α=0.5  Fiducial

α=0.6
α=0.5  No tomography

α=0.6
α=0.5  With tomography, Ωb =0.04, ns =1, h=0.7, no IA

Figure 5. Constraints on S8 “ σ8pΩm{0.3qα from the DES SV shear peaks and cosmic shear 2-pt analyses for the fiducial analysis

method and several variants. Each analysis variation has 68% confidence limits shown by horizontal lines, with the best-fit values identified
by dots. The vertical blue region is used to highlight the parameter range in agreement with our fiducial peaks analysis. Each analysis

variant is described by text on the right hand side of the plot. For each analysis variant results are shown for both α “ 0.6 (the direction

of optimal constraint for the peaks analysis) and α “ 0.5 (the same for the 2-pt analysis). The more (less) constraining choice of α for
each observable is presented in bold (faint). The colour-coding of the results is a guide to the most comparable constraints between the

two observables.

expect the errors on S8 to be increased only by a small
amount.

8 CONCLUSIONS

We performed a shear peak statistics analysis of the Dark
Energy Survey Science Verification data set, described in
Jarvis et al. (2015). We created aperture mass maps from the
DES area and from the set of N-body simulations from Di-
etrich & Hartlap (2010), edited to replicate the DES mask,
shape noise and galaxy redshift distribution. Mass peaks
were counted in bins of low and medium S{N , spanning the
range between 0 and „ 4.5. We did not use the high S{N
peaks, despite the fact that we found them to carry a large
amount of cosmological information. This is because the
boost factor and intrinsic alignment corrections estimated in
our analysis (see sections 5.3 and 5.4 and appendices C and
D) are larger and more uncertain for high S{N peaks. These

boost factors capture the effects of cluster member galaxies
and loss of source galaxies due to enhanced blending at the
positions of most massive clusters. Intrinsic alignment will
further decrease the S{N of a peak. These effects were not
modelled in the simulations available for use.

We include uncertainties on shear multiplicative bias
and the mean of the redshift distribution in our analysis.
We found both these systematics affected the observed peak
function significantly: adding 5% multiplicative bias changes
the peak count by roughly 10%, and changing the mean red-
shift of sources by ∆z “ 0.05 induces a „ 15% change in
the value of the peak function. The effect of these system-
atics is marginalised in the cosmological inference process.
Their overall impact on cosmological constraints seems to
be comparable to the one induced by them on the WL 2-pt
functions.

The cosmological constraints for the ΛCDM model with
fixed h “ 0.7, Ωb “ 0.04 and ns “ 1 from DES SV peak
statistics are S8 “ σ8pΩm{0.3q

0.6
“ 0.77˘ 0.07. We checked
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the robustness of this result against the choice of interpola-
tion scheme used to create the likelihood and the impact of
our estimated boost factor correction, finding the results to
be stable. Results for varying filter scale away from the fidu-
cial θmax “ 20 to θmax “ 12 and θmax “ 28 (arcmin) showed
slight deviation, on the level of 1σ, which is expected given
the level of correlation in signal coming from these aperture
sizes.

We compare the peak statistics results to the equivalent
constraints from the DES SV WL 2-pt analysis. With this
comparison in mind, we used the same data as the DES SV
WL 2-pt (DES15), using the same shear data and galaxy
npzq. To make a fair comparison, we ran additional chains
using the 2-pt statistics to enforce h “ 0.7, Ωb “ 0.04 and
ns “ 1, the use of non-tomographic correlation function
and absence of modelling of intrinsic alignments. The re-
sults from our peak statistics are consistent with, and of
similar constraining power as, the one from the 2-pt. The
impact of shear and photo-z systematics is comparable and
increases the error bars by „ 30% for both probes.

DES will deliver „ 5000 deg2 of lensing data with simi-
lar depth. In this work we demonstrated the feasibility of
cosmological analysis with shear peak statistics in DES,
which gives a promising outlook for this type of analysis for
upcoming DES data. However, more investigation into sys-
tematics will be required in order to fully utilise the statis-
tical power of DES shear peak statistics. In our analysis, we
found that the multiplicative shear bias and redshift errors
are the limiting systematics. Just as is the case with WL 2-pt
functions, these systematics must be controlled well in fu-
ture analyses. Additionally, future studies with peak statis-
tics could potentially gain much more constraining power by
including high S{N peaks. These peaks carry non-Gaussian
information and are sensitive to the high mass end of the
halo mass function. However, in order to capitalise on this
potential information gain, effects appearing for high mass
peaks will have to be accounted for: both the loss of galaxies
due to blending and intrinsic alignments can cause signifi-
cant differences in the S{N of peaks, if these effects are not
modelled in simulations. For deeper surveys and/or tomo-
graphic peak statistics measurements, the impact of intrinsic
alignments may actually be smaller, as the number of back-
ground sources compared to the number of cluster members
may be larger than in this study.
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APPENDIX A: MODELLING THE NUMBER
OF PEAKS AS A FUNCTION OF SHEAR
MULTIPLICATIVE BIAS AND REDSHIFT
ERROR

In order to to accurately account for the multiplicative shear
bias and redshift error in the peak statistics analysis, we
have to understand how the peak abundance function reacts
to changes in the multiplicative bias and redshift error. To
describe this mapping we assume a simple first order model,
where the fractional change in the peak function is related
linearly to the change in multiplicative bias, m, or error on
mean of the redshift distribution, ∆z. The model for these
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systematics is:

Npeakspmq ´Npeakspm “ 0q

Npeakspm “ 0q
“ αmpνq ¨ ν ¨ p1`mq (A1)

Npeaksp∆zq ´Npeaksp∆z “ 0q

Npeaksp∆z “ 0q
“ α∆zpνq ¨ ν ¨ p1`∆zq,

(A2)

where ν “ S{N ratio, αmpνq and α∆zpνq are S{N depen-
dent scaling factors that can be measured from simulations.
To do this, we run simulations with added systematic ef-
fects. In total, we analyse five configurations of tm,∆zu:
t0, 0u, t´0.05, 0u, t0.05, 0u, t0,´0.05u, t0, 0.05u. The mul-
tiplicative bias was added by multiplying the shears in the
simulations by a factor of (1-m), and redshift error by shift-
ing the mean of the npzq distribution during the process of
applying the DES mask and npzq, described in Appendix F.

The comparison of results from these runs are presented
in Figure A1. These figures show the fractional change in the
peak function after the systematic is applied, for all S{N
bins, as in Equation A1 and A2. The left panel shows the im-
pact of shear multiplicative bias and right panel of redshift
error. This fraction is calculated after subtracting the ex-
pected number of peaks from maps created from randomised
shapes. The error is dominated by the number of simulations
we were able to run; measurement of this small deviation
requires many noise realisations. We used 300 noise realisa-
tions for each cosmology and we consider the accuracy on
the measurement of α∆z and αm to be sufficient for this
data set. The measurement for S{N bins in the middle of
the range are very noisy, as the number of peaks from real
and randomised maps is almost equal. These results are cre-
ated using the default aperture size of 20 arcmin.

The fractional change in number of peaks calculated
this way is linear with S{N bin, which greatly simpli-
fies our model. From the multiplicative bias runs for the
central cosmological model, we measure αmpνq « 2 and
α∆zpνq « 3 for all S{N bins. We found a similar relationship
for other aperture sizes, with αmpνq « 1.8, α∆zpνq « 2.8
and αmpνq « 2, α∆zpνq « 3 for θmax “ 12 and θmax “ 28 ar-
cmin, respectively. More detailed modelling of that function
may be necessary for future peak statistics studies, perhaps
beyond the first order model.

We use these measurements for cosmological parame-
ter estimation, where the peak function in the presence of
systematics is calculated as

Npeakspm,∆z, νq “Npeakspm “ 0, ∆z “ 0, νq

¨ αmpνq ¨ p1`mq ¨ α∆zpνq ¨ p1`∆zq¨
(A3)

We derived our systematics model from the measurements
of peak functions using the central cosmological parameter
configuration. For this configuration, we analysed 35 times
more data than for other parameter sets, which makes our
measurement of αm and α∆z more accurate than for other
models. It is also important to validate that this model can
be used for other cosmological parameter sets. We check this
by plotting the fractional change in number of peaks, given a
change in systematic, as a function of the S8 parameter cor-
responding to other cosmological models. Figure A2 shows
the results for the highest S{N bin. We found very similar
behaviour for other S{N bins. Each point on the plot corre-
sponds to a different configuration of Ωm and σ8, as shown in
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Figure A1. Effect of the systematic errors in shear and npzq on

the peak function. Left and right panels depict the case when
shear multiplicative bias and redshift errors are added, respec-

tively. They show the fractional change in number of peaks after
subtracting the number of peaks from random maps. The de-

pendence on S{N is modelled with a linear fit, marked with the

dashed line. For bins around S{N « 2 the measurement is very
noisy, as the difference between peaks from random maps and

maps containing shear signal is close to zero.
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Figure A2. Fractional change in number of observed peaks for

two systematics: shear multiplicative bias (left) and mean redshift

error (right), as function of S8. The measurements are shown only
for the highest S{N bin; the behaviour for other bins is very sim-

ilar. Blue and red points show the result for positive and negative

change in the value of the systematic, respectively. Each point
corresponds to a cosmological model. For low S8 models the ratio
becomes noisier. The solid lines show the value of the systemat-
ics model used. The fractional change in the number of peaks is
close to constant across cosmological models, which allows us to

use the simple linear systematics model for all cosmologies.

Figure 1. The left panel shows the result for shear multiplica-
tive bias and the right panel for redshift error. Red points
are measured from a simulation with positive m or ∆z, and
blue with negative m or ∆z. It is noticeable that the scatter
on the fractional change in number of peaks increases with
decreasing S8. This is expected as this is a measurement of
a ratio, which becomes more noisy when a low number of
peaks are detected above the random peaks. Cosmological
models with low S8 have in general a smaller number of
peaks. The fractional change in number of peaks seems to
be constant for all values of the S8 parameter, which again
simplifies the modelling of systematics. That allows us to use
the first order model derived here to calculate peak functions
for parameter sets in Ωm, σ8, m and ∆z.
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APPENDIX B: INTERPOLATING FROM THE
SIMULATION GRID

The peak functions are only calculated on a finite grid of
points in the Ωm - σ8 plane. In order to calculate the likeli-
hood of the data given a cosmological model, for all combi-
nations of Ωm, σ8, we need to use an interpolation scheme.
In this work, we use two interpolation schemes and verify
that the results obtained by each are consistent. The de-
fault scheme creates a function which maps the cosmologi-
cal parameters into number of peaks, one for each S{N bin
separately. This scheme uses a basis expansion to 40 basis
functions. Coefficients for basis functions are then fitted to
the number of peaks for each S{N bin, requiring all of the
coefficients to be either positive or negative.

This constraint enforces the expected monotonicity
of the number of peaks as a function of cosmological
model. The basis functions are created using a mix-
ture of polynomials and the degeneracy parameter S8 “
σ8pΩm{0.3q

α. We use 2D polynomials in σ8 and Ωm

up to 4th order, together with eight S8 functions with
α P t0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75u, their squares
and cubes. The basis function has the form:

φpσ8,Ωmq “ r1, ´1, σ8, Ωm, σ
2
8 , Ω2

m, σ8Ω2
m, σ

2
8Ωm, ... ,

Sα“0.4
8 , ... , Sα“0.75

8 , pSα“0.4
8 q

2, ... , pSα“0.75
8 q

2, ... s.
(B1)

Many of these coefficients are found to be close to zero dur-
ing the fitting process; for example, for the highest S{N bin,
only 7 coefficients not very close to zero. The fitting pro-
cess is done using the convex optimization package Cvxpy
(Diamond & Boyd 2015).

We verify that these interpolation schemes work well by
inspecting the difference between the model and the simu-
lated peak counts for each S{N bin. Figure B1 shows the
simulated peak functions and the fitted models for an ex-
ample S{N bin, using the default method. The upper panel
shows the results of interpolation on the Ωm - σ8 plane, based
on simulation points marked by the open circles. To better
visualise the differences between the fitted model and the
simulated number of peaks we plot, in the middle and bot-
tom panels, the peak count measurements as a function of
Ωm and σ8, respectively. These measurements are marked
with magenta points and error bars corresponding to the
error on the mean of the noise realisations. The coloured
points are the peak counts as predicted by our fitted model
at the 158 cosmological parameter sets which were used in
simulations. The colour corresponds to the value of the other
cosmological parameter: Ωm and σ8 for the middle and bot-
tom panels, respectively. This allows us to verify that the
fitted model neither over-fits nor under-fits the simulated
peak counts. We consider the fit to be sufficiently good for
the accuracy of our current SV data. In the future it may
be important to improve the fitting scheme to assure that it
does not introduce systematics on the cosmological param-
eters due to inaccurate modelling.

We use the alternate approach to measure the con-
straint on S8 for the variant without systematics. This ap-
proach uses radial basis functions to interpolate linearly in
χ2, rather than in the peak function itself, and a small
amount of smoothing is simultaneously applied to the in-
terpolated values of χ2. The interpolation is carried out in
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Figure B1. Modelling the number of peaks as a function of
cosmology. The top panel shows the peak count for one S{N bin

(3.16-3.48), as a function of the Ωm - σ8 parameters. The grid
of simulations is shown with open circles. The colour shows the
interpolated peak count. Middle and bottom panels show the peak

count as a function of a single cosmological parameter (Ωm and
σ8 for middle and bottom panels respectively), with the other

marked in the colourscale. The magenta points mark the number

of peaks calculated from simulations, with error bars representing
the uncertainty on the mean from many noise realisations.
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(excluding blended ones)

Figure C1. Cartoon depicting the difference between the npzq

in survey data (blue solid line) and the simulation data (red solid
line) at a position of a hypothetical peak corresponding to a clus-

ter at redshift z “ 0.5 (black dashed line). The number of galax-

ies removed by blending is shown by the cyan area and the extra
cluster galaxies in peach area. Both extra galaxy clusters and

missing background galaxies will create a difference in peak sig-

nal strength between the DES survey data and simulations, where
the position of dark matter peaks and galaxies are decorrelated.

two dimensions on the Ωm-σ8 plane. We then directly com-
pute the errors on S8. The alternate interpolation approach
gives results which are consistent with the default method
(Section 7.2). This gives us confidence that the constraints
on S8 we present are robust to the method of interpolation.

APPENDIX C: BOOST FACTORS

A massive cluster can have many member galaxies, which
reside at the same redshift as the dark matter halo. Thus,
at positions of clusters, the redshift distribution of source
galaxies, npzq, will be modified as compared to other areas
in the survey. The presence of extra cluster member galaxies
will cause an excess npzq at the cluster redshift. Additionally,
due to crowding of the field, the fraction of blended objects
will be increased. This will cause some of the source galaxies,
as well as cluster members, to be cut out of the catalogues
by the shear analysis pipeline.

In simulations we use exactly the same galaxy positions
as in the DES data, as explained in Section 2.3 and Ap-
pendix F. However, the redshift distribution is homogeneous
across the field, and thus the relation between the spatial po-
sition and redshift is broken. In simulations, this will cause
the over-densities of galaxies to be decorrelated from over-
densities in dark matter. A cartoon in Figure C1 compares
the npzq at the position of a peak between DES data and
simulations. For a cluster at redshift of z “ 0.5 (marked by a
dashed line), we observe galaxies associated with the cluster
at its redshift (cyan area). We also observe lost galaxies at
all redshifts due to blending (peach area). The total npzq in
the DES survey data at the position of a peak is marked as a
blue solid line, and the npzq in simulations, at the positions
of a peak in simulations, is marked as a red solid line.

Both these effects - presence of cluster members and

losing source galaxies due to blending - will impact peak
statistics. The extra cluster galaxies will dilute the shear
signal at the position of the cluster in DES data compared
to the simulations. Similarly, background galaxies lost due
to blending will cause the statistical power of the lensing
signal to be decreased. It is important to calculate how large
an impact these effects have on the peak number counts in
each SNR bin. Then a correction can be applied to the peak
function that is analogous to the boost factors in cluster
lensing studies (Applegate et al. 2012; Melchior et al. 2014;
Sheldon et al. 2009)

One way to create such a correction is to look at the
number of galaxies as a function of radius for peaks in DES
data and simulations. To capture the effects due to blending
we use the Balrog catalogue, which maps the survey selec-
tion function as a function of position on the sky. Details of
creation of Balrog catalogues are presented in Appendix
E, and by Suchyta et al. (2015).

Let’s start with a simple description of the problem.
Consider an aperture positioned at the centre of a peak in
the DES survey. The number of galaxies in that aperture
will be

NDES “ Nnz ´N
blended
nz `Ncluster ´N

blended
cluster , (C1)

where Nnz is the number of field galaxies at other redshifts
distributed as npzq, Nblended

nz is the number of galaxies at
other redshifts lost due to blending, Ncluster is the number
of cluster member galaxies and Nblended

cluster is the number of
cluster members galaxies lost due to blending. In simula-
tions, the number of galaxies at the position of a peak is, by
construction

NSIM “ Nnz. (C2)

In Balrog catalogues, the number of galaxies around peaks
identified in DES data is

NBALROG “ Nnz ´N
blended
nz . (C3)

Firstly, let’s calculate how many cluster member galaxies
we observe in DES for a particular S{N bin, as compared
to the wide-field, ignoring the blended cluster members. In
fractional terms we can express it as a ratio fcluster, and it
can be calculated using available catalogues in the following
way

fcluster “
Ncluster ´N

blended
cluster

Nnz
“
NDES ´NBALROG

NSIM
. (C4)

Secondly, the fraction of field galaxies lost due to blending
flost can be calculated using the following combination

flost “
Nblended

nz

Nnz
“
NBALROG ´NSIM

NSIM
. (C5)

We estimate these factors by looking at the number of
galaxies surrounding peaks in the DES data, simulations,
and Balrog catalogues, as a function of their radius away
from the centre of a peak. Figure C2 presents calculated
extra cluster member fraction fcluster (red line) and lost
field galaxies flost (blue line), using a filter with size 20 ar-
cmin. The error bars are calculated by forward-propagating
the error on the mean on NBALROG and NDES-NBALROG.
As we expect, the number of cluster galaxies increases to-
wards the centre of the peak, reaching a 10% increase for
the highest S{N bin. We also find this effect to be stronger
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Figure C3. Boost factor and intrinsic alignment corrections for
all S{N bins used in the analysis. Error bars on these factors are

propagated from the errors on fcluster and flost.

for higher S{N peaks, which correspond to more massive
clusters. The fraction of missing galaxies due to blending
also increases towards the centre of a peak, reaching ´10%
very close to the centre for high S{N bins. As expected, this
fraction increases with increasing S{N . Note that these cal-
culations are done using all identified peaks, including both
real ones, corresponding to clusters, and spurious ones, cor-
responding to noise fluctuations. Therefore the results are
not directly comparable with those reported in the works
on cluster lensing because our measurement is diluted by
the spurious peaks.

Using these functions, we estimate their impact on the
detection probability of a peak. Let’s consider the S{N of
a peak, replacing the sum over galaxies with sum over the
number of galaxies in bins of radius away from the centre
(in the limit of infinitely small bins these operations are
equivalent),

S{N «

ř

rrNnzprq ´N
bl
nzprqsQprqgtprq ` noise

b

ε2
ř

rrNnzprq ´Nbl
nzprq `Nclprq ´Nbl

cl prqsQ2prq,

(C6)

where gt is the tangential shear and noise is the noise con-
tribution with zero mean, which we ignore here, as we are
concerned only by the mean of the S{N estimate. We can
write this equation in terms of fcluster and flost

S{N «

ř

rrNnzprq ´NnzprqflostprqsQprqgtprq
a

ε2
ř

rrNnzprq ´Nnzprqflostprq `NnzprqfclusterprqsQ2prq,

(C7)

where ε is the ellipticity standard deviation. We can treat
the numerator and denominator separately. Let’s start with
the numerator. We can replace the tangential shear profile,
gtprq, by the filter profile scaled by a factor, c, so gt “ cQprq.
The filter profile is designed to match the shear signal, so
using it instead as gt actually represents the worst case sce-
nario. We can create the correction factor, f1, which repre-
sents how much the numerator part of the equation changes
when the blended galaxies are included. If we write

f1 ”

ř

rrNnzprq ´NnzprqflostprqsQ2
prqc

ř

rrNnzprqsQ2prqc
, (C8)

then we notice that the scaling factor, c, cancels out. Now
let’s consider a change, f2, in the noise term in the denomi-
nator

f2 ”

a

ε2
ř

rrNnzprq ´Nnzprqflostprq `NnzprqfclusterprqsQ2prq
a

ε2
ř

rrNnzprqsQ2prq

(C9)

and here the Q2 is taken from the definition of S{N , not
a replacement of gt. The combined correction factor is then
fcorr “ f1{f2.

Error bars on this correction are calculated by propa-
gating the uncertainty on fcluster and flost. Figure C3 shows
the resulting corrections for four S{N bins, with a filter size
of 20 arcmin. The magnitude of the correction increases with
increasing S{N , as expected.

These corrections are not applied for the fiducial anal-
ysis. By limiting the S{N range to low and medium peaks
we made sure that the boost factors do not play a domi-
nant role in our analysis. We report the results with this
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calibration as one of the analysis variants, presented in Sec-
tion 7.2. In this variant, we apply these corrections to the
results from simulations. To do this, we use the derivative
of number of peaks with respect to shear multiplicative bias
described in Section 5.1, which can be also understood as
the derivative of number of peaks with respect to the S{N .
This will not be a completely accurate way to apply this
correction, but it can be a good approximation. This is be-
cause, for the multiplicative bias case, we assume the same
shear bias for all S{N bins. Here the bias is varying across
bins. However, if we assume that most of the change in the
number of peaks is due to peaks moving out from given S{N
bin to its lower neighbour, and the number of peaks flowing
from a higher neighbour bin is comparatively low, then the
model assuming constant S{N change in all bins should be
a decent approximation. Therefore the corrected number of
peaks in S{N bin is Ncorrected “

dN
dS{N ¨ p1´ fcorrq ¨Npeaks.

The derivative dN
dS{N can be approximated by dN

dS{N « dN
dm

,

which in our case was dN
dm
« 2 for most of the bins, which is

what we use for this correction too. The errors on corrections
propagated further to the covariance matrix.

More detailed studies of the impact of cluster members
and blending on shear peak statistics can be conducted in
the future, as well as investigations of schemes to calibrate
this statistic. For this work we found that these corrections
do not change our cosmological results significantly. In fu-
ture experiments with improved constraining power, it may
be important to take these effects into account on a very
precise level.

APPENDIX D: INTRINSIC ALIGNMENTS

In Section 5.4 we described the possible physical origin of an
IA signal, which would affect our peak count measurement.
This would arise if satellite galaxies in the halos of lensing
clusters are radially aligned with the halo centre and those
galaxies are included in the source selection used in peak-
finding.

We can describe a new conversion ratio, fIA, as the frac-
tional difference in S{N due to IAs,

fIA “

S{N ´

?
2
ř

r QprqNnzprqfclusterprqγ̄scaleε?
ř

r Qprq2Nnzprqε2

S{N , (D1)

where ε “ 0.36 is the typical intrinsic ellipticity modulus of
a galaxy and γ̄scale is the parameter controlling the strength
of the alignment. We have assumed that only galaxies that
are members of foreground halos suffer from IA and that
IAs act to reduce the signal observed along the line of sight
without affecting the noise level. This assumes that satel-
lite galaxies are radially aligned towards their halo centre,
a conservative approach consistent with existing measure-
ments and previous work modelling IAs at the halo level (Li
et al. 2013; Singh, Mandelbaum & More 2014; Chisari et al.
2015; Sifón et al. 2015; Schneider & Bridle 2010).

As in our boost factor predictions, the fraction of galax-
ies along the line of sight which are cluster members is given
by fclusterprq. We assume that the ellipticity of the cluster
member galaxies is given by ε, the dispersion of the intrinsic
shape distribution of our sources. γ̄scale is a scaling factor,

corresponding to the level of alignment of galaxies within
clusters. We use a value of γ̄scale “ 0.21, following the value
derived in Schneider & Bridle (2010), from where we have
taken much of the inspiration for our simple halo model of
IAs. This value is consistent with recent estimates of the
misalignment angle from state of the art hydrodynamical
simulations (Tenneti, Mandelbaum & Di Matteo 2015).

When we include this model of IAs, as well as the boost
factors described in appendix C, we see a relatively minor
shift in derived cosmological parameters. When the boost
factor and IAs were ignored we measured S8 “ 0.77 ˘ 0.07
and a value of S8 “ 0.78 ˘ 0.07 when both effects were
included. As the overall shift is relatively minor, we feel jus-
tified in ignoring both the boost factors and IAs when quot-
ing our headline cosmology constraints. The uncertainty in
the factors contributing to the correction factors are more
significant than the subsequent shift in cosmology.

APPENDIX E: BALROG CATALOGUES

We use simulations generated by the Balrog pipeline, de-
scribed in Suchyta et al. (2015). The software inserts simu-
lated objects into the real DES images, convolving each ob-
ject with the measured PSF and scaling the object flux val-
ues to the measured photometric calibration. Following this,
Balrog runs the DES detection and measurement pipeline
(described in Mohr et al. 2012; Desai et al. 2012) on the
images.

Suchyta et al. (2015) show that the output from these
simulations is representative of the DES data and can be
used to model systematic biases present in that data. We
construct a Balrog sample for use in determining the boost
factor corrections in Appendix C, where we are using the
Balrog galaxies to analyse the systematic effects of how
shear peaks are diluted by systematic effects such as fore-
ground (cluster) contamination and blending. The method-
ology is very similar to that outlined in Melchior et al.
(2014).

Our simulation strategy uses the same basic approach
as presented in Suchyta et al. (2015). Galaxies are simu-
lated as single-component Sérsic profiles, where the physi-
cal properties (brightness, size, axis ratio, Sérsic index) are
sampled from a catalogue based on COSMOS data (Jou-
vel et al. 2009; Mandelbaum et al. 2014, see Section 3.1 of
Suchyta et al. 2015). This sampling catalogue is identical to
the one from Suchyta et al. (2015), except that photomet-
ric measurements in the DES filters have been added to the
catalogue of Jouvel et al. (2009), and we have substituted
these magnitudes for the Subaru ones used in Suchyta et al.
(2015).

We add objects to the coadds, self-consistently building
a new riz detection image for each simulation realisation,
configuring the SWarp (Bertin et al. 2002) and SExtrac-
tor (Bertin & Arnouts 1996) calls in the same manner as
was done for the DES SV processing. For this analysis, we
have extended the Balrog coverage further south to in-
clude the full area of the DES shear catalogue constructed
in Jarvis et al. (2015).

Where possible, we apply the selection cuts described in
Jarvis et al. (2015) to the Balrog sample. This includes the
masking scheme and several selections based on SExtrac-
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tor quantities, such as star-galaxy separation. However, the
DES shear measurements have been made using the single-
epoch images, whereas Balrog has only been run over the
coadds, as a result we do not have shear measurements for
Balrog objects. Hence, we cannot directly apply cuts based
on outputs of the shear measurement code to the Balrog
sample.

To approximate the effects of the shape measurement
selections, we use nearest neighbour reweighting (as de-
scribed in Lima et al. 2008 and applied to DES photomet-
ric estimation in Sánchez et al. (2014) and Bonnett et al.
(2015)) to match the Balrog catalogue to the final ngmix
catalogue in Jarvis et al. (2015), applying the weights to the
two-dimensional space of i-band MAG AUTO and FLUX RADIUS

SExtractor measurements. These quantities were chosen
based on the motivation that size and magnitude primarily
govern whether one can make a successful shape measure-
ment for a galaxy, and that i-band is the central band for
the riz shape measurements.

The Balrog galaxies also do not have photo-z measure-
ments. Consequently, we chose to add three photo-z bins as
an extra parameter in the reweighting. We bin the ngmix
catalogue into the three tomographic bins used in DES two-
point shear tomography analysis (Becker et al. 2015) and
match a Balrog sample to each, sampling such that the
output Balrog catalogues number density matches that of
the ngmix bin. Hence, by construction, the output Balrog
catalogue is matched to the same total npzq as the shape
catalogue, with the same i-band size and magnitude distri-
butions. We employ this catalogue for our boost factor tests
in Appendix C.

APPENDIX F: INTERPOLATION SCHEME
FOR APPLYING THE DES NpZq AND MASK

Our goal is to create simulated shear catalogues that have
exactly the same galaxy positions, shape noise, weights and
multiplicative shear corrections as the DES data. We would
like the simulations to have the same source redshift distri-
bution as DES, calculated by the skynet photo-z code and
described in Bonnett et al. (2015).

The simulation catalogues by Dietrich & Hartlap (2010)
are stored in the form of galaxy catalogues, with positions,
redshift and shear, sampled uniformly across the 6 ˆ 6
deg patches with a specific npzq, which is described as
ppzq “ pz{1.171q0.836 exp

“

´pz{1.171q3.425
‰

. To create a cat-
alogue with npzq from DES, we sub-select from the simula-
tions catalogue in a way that achieves the maximum number
of objects. Figure F1 shows the npzq through the selection
process, for one of the 3ˆ 3 deg patches. Starting with the
full simulation catalogue (blue), we sub-select galaxies ran-
domly creating a new set which has the skynet npzq. This
set will be used for interpolating the shear to the position
of DES galaxies, which have the npzq showed in cyan line.
To assign a shear according to the simulations to the posi-
tion of DES galaxy, we interpolated from the sub-selected
simulation catalogue to the positions of DES galaxies, us-
ing a nearest neighbour interpolation. In the end we ob-
tain a simulation catalogue matching DES, with shear taken
from simulations according to DES npzq. The key to the
performance of this procedure is the fact that the simula-
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Figure F2. Results of the test verifying the performance of the
interpolation. The red line is the cumulative peak function from

the truth set, which is created using original galaxies from the

training set, selected to have the density of 7 arcmin2. The blue
line shows the cumulative peak function from the maps created

using shears interpolated using the training set, located at new

test positions. The truth set and test set agree to good precision,
confirming the good performance of the scheme. No shape noise

was used in this test because it causes the peaks to have very high

S{N .

tions have much larger galaxy density than the DES data,
25 galaxies/arcmin2 versus 7 galaxies/arcmin2.

To verify that this configuration can be used for our
analysis, we ran a simple test. We use the full sub-selected
simulation with DES npzq as the training set and a ran-
dom fraction of that catalogue chosen to have 7 galaxies per
arcmin2 as a truth set. To create a test set we sample the
area uniformly. Then, using the training set, we interpolate
to the newly sampled positions in the test set. We create
maps and count peaks from the truth set and test set. This
test is performed without adding shape noise. The compari-
son of the maps and peak functions measured from the test
and truth sets will inform us about the performance of this
interpolation scheme.
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Figure F2 shows the resulting cumulative peak func-
tions. The red line shows the peak function measured from
the truth set. The blue line is the peak function counted
from maps which were created by interpolating from the
training set galaxies to newly drawn positions in the test
set. Both functions are very similar, which indicates that
the interpolation scheme is working as expected.
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