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1 Introduction

A diversity of matter fields and interactions in a d-dimensional space-time can sometimes

be described by a simpler theory in higher, say D, dimensions. This idea was pioneered

almost 100 years ago by Kaluza and Klein in an attempt to unify four-dimensional elec-

tromagnetism and gravity in terms of five-dimensional gravity. It is still one of the most

intriguing approaches to unify gravitation with other forces in nature. It unifies different

phenomena in d dimensions and makes predictions. In the original Kaluza and Klein case

one massless scalar was predicted.

Supergravity theories in D = 10 or D = 11 dimensions are a natural starting point.

In this note we take the ground state to be a direct product of d-dimensional Minkowski

space-time, Md, and a smooth and compact Riemannian manifold Y . We are primarily

interested in preserving supersymmetry in space-time which requires the holonomy group of

the metric on Y to be a certain subgroup of the orthogonal group. The different possibilities

are on Berger’s list.

We then wish to describe the fluctuations about the ground state. Our goal is to

construct the d-dimensional space-time effective action for all fields, not only the massless

sector. To do this our guiding principles are locality in d andD−d dimensions. Locality in d

dimensions is achieved by letting the fields depend covariantly on space-time coordinates.
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Moreover, these fields are also functions or forms along Y . This is locality in D − d

dimensions. The coordinates on the internal space are then interpreted as labels in the

d-dimensional theory. The results are most naturally written using abbreviated “DeWitt”

notation [1].

In this note we will present a closed expression for the space-time effective action for

all fields (massless and massive) obtained from the compactification of type II and eleven-

dimensional supergravities to d space-time dimensions. In a forthcoming publication [2] we

will present the manifestly supersymmetric actions. Some of the interactions were predicted

in ref. [3]. With the component actions at hand it should be possible to obtain the full action

in superspace and compare with the predictions of ref. [3]. Our approach has similarities

with the program begun in refs. [4], in which eleven-dimensional supergravity fields were

written according to a 4+ 7 split of the space-time coordinates, as an intermediate step to

making manifest a local SU(8) symmetry. However, the goal of the present work is to give

a completely general result for the reduction of gravitational theories.

In section 2 we study the compactification of the Einstein-Hilbert action to arbitrary

space-time dimensions. We present a closed expression for the space-time effective action

for fields arising from the metric and we analyze the non-abelian gauge symmetry arising

from diffeomorphisms. In section 3 antisymmetric tensor fields are discussed. We consider

both kinetic and Chern-Simons terms. In the summary we present the complete action for

all fields in an example. Using the results presented in this paper an action for all fields for

the compactification of any supergravity theory to any number of space-time dimensions

can be written down.

2 Einstein-Hilbert action

The Einstein-Hilbert action in D space-time dimensions is1

S =
1

2κ2

∫
dDx

√
−GqR. (2.1)

Here we have included an unspecified function q. This function can depend on fields (for

example, the dilaton in type II supergravity in the string frame) but does not depend on

the metric. In D 6= 2 dimensions q can be removed by a metric rescaling, but often we

may wish to work in a frame (like the string frame) which includes non-trivial q.

We wish to construct the action for the fluctuations about the ground state with metric

ĜMN . To do this we expand the metric GMN about this ground state

GMN = ĜMN + δGMN . (2.2)

The Christoffel symbol becomes

ΓL
MN = Γ̂L

MN + δΓL
MN , (2.3)

1 In what follows, indices M,N, . . . , µ, ν, . . . and a, b, . . . are tangent to the D-, d- and D−d-dimensional

spaces, respectively. We always sum over repeated indices.
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where

δΓL
MN =

1

2
GLR

(
∇̂MGRN + ∇̂NGRM − ∇̂RGMN

)
, (2.4)

is a tensor. After partial integration the gravitational action becomes

S =
1

2κ2

∫
dDx

√
−Gq

[
GMKR̂MK + 2GM [NGP ]Q∇̂M (log q)∇̂NGPQ

+

(
GPUGQ[TGR]S − 1

2
GRUGP [SGQ]T

)
∇̂RGPQ∇̂UGST .

]
.

(2.5)

Note that this result includes all orders in the perturbations of the metric. The inverse

metric GMN will, in general, be an infinite expansion since it is obtained by inverting

eq. (2.2). Here and in the following hatted quantities refer to the ground state. So, for

example, ∇̂ is the Levi-Civita connection of the background metric.

2.1 Compactification

Next we take the ground state to be Md × Y , where Md is d-dimensional Minkowski

space-time with coordinates xµ, µ = 0, . . . , d − 1 and with metric Ĝµν = ηµν and Y is

a (D − d)-dimensional internal manifold with coordinates ya, a = d, . . . , D and metric

Ĝab = ĝab(y). We take the holonomy group of the metric on Y to be a subgroup of the

orthogonal group, which leads to some amount of unbroken supersymmetry in space-time.

Moreover, we remark here that we are not interested in engineering a ground state with

particular properties. Rather we take the internal space to be the most generic special

holonomy manifold and we wish to describe the fluctuations about this ground state in

full generality.

The fluctuations are encoded in the metric

GMN =

(
hµν + gcdA

c
µA

d
ν gbcA

c
µ

gacA
c
ν gab

)
, (2.6)

and its inverse

GMN =

(
hµν −hµρAb

ρ

−hνρAa
ρ gab + hρσAa

ρA
b
σ

)
. (2.7)

Here

hµν = hµν(x, y), gab = gab(x, y), Aa
µ = Aa

µ(x, y). (2.8)

The fields depend on xµ, since these are d-dimensional fields, while the ya dependence

is interpreted as a continuous label carried by the space-time fields. Any D-dimensional

metric can be written in this form. Note that the inverse metric contains terms which are

at most quadratic in Aa
µ, and as we will see next the action contains terms which are at

most quartic. The ground state corresponds to

hµν = ηµν , gab = ĝab(y), Aa
µ = 0. (2.9)
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2.2 The action

Using the metric (2.6) and its inverse (2.7) the action (2.5) becomes

S = Skin + Spot + Sgauge, (2.10)

with kinetic terms

Skin =
1

2κ2

∫
dV

[(
hβµhγ[ρhα]ν − 1

2
hαµhβ[νhγ]ρ

)
DαhβγDµhνρ

− hµ[νhσ]ρgabDµhρνDσgab +
1

2
hµνga[bgc]dDµgabDνgcd

+ 2hµ[νhρ]σDµ(log q)Dνhρσ + hµνgabDµ(log q)Dνgab

]
,

(2.11)

potential terms

Spot =
1

2κ2

∫
dV

[
1

2
hµ[νhσ]ρgab∇̂ahµν∇̂bhρσ + hµνga[bgc]d∇̂ahµν∇̂bgcd

+ gabgcdgef
(
− ∇̂agc[b∇̂|d|ge]f +

1

2
∇̂agc[d∇̂|b|ge]f

)

+ hµνgab∇̂a(log q)∇̂bhµν + 2ga[bgc]d∇̂a(log q)∇̂bgcd

]
,

(2.12)

and gauge field action

Sgauge =− 1

8κ2

∫
dV hµνhρσgabF

a
µρF

b
νσ. (2.13)

Here

dV = ddxdD−dy q
√
−h

√
g, (2.14)

with ĝ = det ĝab(y) and g = det gab(x, y). Moreover, we have defined the field strength

F
a
µν = 2∂[µA

a
ν] − 2Ab

[µ∇̂|b|A
a
ν], (2.15)

and covariant derivatives

Dµq = ∂µq − ∇̂aqA
a
µ,

Dµgab = ∂µgab − gac∇̂bA
c
µ − gbc∇̂aA

c
µ − ∇̂cgabA

c
µ,

Dµhνρ = ∂µhνρ − ∇̂ahνρA
a
µ.

(2.16)

In section 2.2 we will explain the symmetry of the space-time effective action arising from

D-dimensional covariance. This will determine the choice of field strength and covari-

ant derivatives.

Since the ground state metric is Ricci flat we have set

R̂µν = 0, R̂ab = 0. (2.17)

But note that in deriving the space-time effective action we have not used the Ricci flatness

of the internal space anywhere. A compactification on a non-Ricci flat space, say a sphere,
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leads to the effective action presented in section 2.2 together with an additional term

obtained by taking the first term in the bracket of eq. (2.5) into account.

This action can be further rewritten to obtain canonical kinetic terms, for example.

While the above result is general, further simplifications are case dependent. Both hµν and

gab can be further rescaled to obtain an action with some desired properties. For example,

as we show below in the context of eleven-dimensional supergravity, hµν can be rescaled by

appropriate functions to obtain canonical kinetic terms. It is straightforward but tedious to

show that canonical kinetic terms can indeed be obtained for any value of D and for d > 2.

2.3 Symmetries

In general relativity the space-time is a Riemannian manifold. The physical equations

are covariant in the sense that they preserve their form under coordinate transformations

xM → x′M . If the coordinate transformation is close to the identity we set

xM → x′M = xM − ξM (x), (2.18)

where ξM is a vector field. The metric then changes by the infinitessimal amount

δGMN (x) = G′
MN (x)−GMN (x) = ξR∂RGMN +GRN∂MξR +GMR∂NξR. (2.19)

Once compactified, covariance in D dimensions gives rise to the symmetries of the space-

time effective theory in d dimensions.

Next we derive how space-time fields change after coordinate transformations with

parameters ξa = ξa(x, y) and ξµ = ξµ(x, y). Lets consider the coordinate transformations

with parameter ξa first. Given the transformation of the metric in eq.(2.19) it is a small

exercise to determine how space-time fields transform. The result is

δq = ∇̂aqξ
a,

δgab = ∇̂cgabξ
c + gac∇̂bξ

c + gbc∇̂aξ
c,

δhµν = ∇̂ahµνξ
a,

δAa
µ = ∂µξ

a + ∇̂bA
a
µξ

b −Ab
µ∇̂bξ

a.

(2.20)

The covariant derivatives defined in eq. (2.16) transform nicely (no space-time derivatives

of the gauge parameter appearing) under coordinate transformations with parameter ξa.

Indeed,

δ (Dµq) = ∇̂a (Dµq) ξ
a,

δ (Dµgab) = ∇̂c (Dµgab) ξ
c +Dµgac∇̂bξ

c +Dµgbc∇̂aξ
c,

δ (Dµhνρ) = ∇̂a (Dµhνρ) ξ
a,

(2.21)

while for the field strength we find

δFa
µν = ∇̂bF

a
µνξ

b − F
b
µν∇̂bξ

a. (2.22)
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Next consider coordinate transformations with parameter ξµ. We find

δq = ∂µqξ
µ,

δgab = ∂µgabξ
µ + gacA

c
µ∇̂bξ

µ + gbcA
c
µ∇̂aξ

µ,

δhµν = ∂ρhµνξ
ρ + hµρ∂νξ

ρ + hνρ∂µξ
ρ − hµρA

a
ν∇̂aξ

ρ − hνρA
a
µ∇̂aξ

ρ,

δAa
µ = hµνg

ab∇̂bξ
ν −Ab

µA
a
ν∇̂bξ

ν +Aa
ν∂µξ

ν + ∂νA
a
µξ

ν .

(2.23)

General coordinate transformations of the d-dimensional space-time correspond to trans-

formations with parameter ξµ = ξµ(x) with no y dependence, and for d-dimensional

Minkowski space the global Poincaré transformations correspond to ξµ = aµ + Λµ
νx

ν .

However, the above transformations are more general. We note that when combined with

the non-abelian gauge transformations in space-time explained in detail in the next section

the external diffeomorphisms generated by ξµ give rise to an algebra which extends the

Poincaré algebra in a non-trivial way. It will be fascinating to further study properties of

the resulting algebras [2].

2.4 The non-abelian gauge symmetry in space-time

The diffeomorphism group on the internal manifold Y is the group of all one-to-one dif-

ferentiable maps of Y onto itself. The inverse maps are also differentiable. The group

multiplication is the composition of maps. This group is denoted by Diff(Y ). A dif-

feomorphism that is sufficiently close to the identity can be interpreted as a coordinate

transformation

ya → y′a = ya − ξa, (2.24)

for some vector field ξa = ξa(x, y). We take the x dependence to be arbitrary but fixed. As

we explain next Diff(Y ) appears as a gauge symmetry in space-time. It is an unconventional

gauge group, since it is infinite dimensional. The structure constants of the associated Lie

algebra can be found in ref. [1], for example.

To interpret Diff(Y ) as gauge symmetry it is most convenient to use abbreviated “De-

Witt” notation [1]. We use this notation for all indices pertaining to the internal space

while we keep the space-time indices explicit. From the d-dimensional space-time point of

view, y should be viewed as part of the field label rather than as a coordinate. To make

this manifest, we will write, for instance

Aa
µ(x) = Aa

µ(x, y), (2.25)

where we have suppressed the y dependence and where a now stands for the index com-

bination (a; y). This combination will be considered as a composite index labeling the

d-dimensional gauge fields. A sum over field labels should then include an integral over

y as well as a sum over a. A prime on an index, say Aa′

µ (x), is a condensed notation

for Aa
µ(x, y

′).

Let us briefly review the situation for a finite dimensional gauge group with the aim of

generalizing to the infinite dimensional case. The reasoning below will later also be applied

– 6 –



J
H
E
P
0
2
(
2
0
1
5
)
1
4
0

to tensor fields. In the finite dimensional case the infinitesimal gauge transformations and

the field strength are related to the structure constants by

δAi
µ = ∂µλ

i + f i
jkA

j
µλ

k, F i
µν = 2∂[µA

i
ν] + f i

jkA
j

[µA
k
ν], (2.26)

where f i
jk are the structure constants and i, j, and k run over a basis for the Lie algebra.

The transformations on Ai
µ close if the structure constants satisfy the familiar properties

f i
jk + f i

kj = 0, f i
[j|m|f

m
kℓ] = 0, (2.27)

and in this case we have

[δ1, δ2]A
i
µ = δ3A

i
µ, with λi

3 = f i
jkλ

j
1λ

k
2. (2.28)

If the gauge transformations act linearly on the space of scalars φm,

δφm = (ti)
m
n φ

nλi, (2.29)

then closure of the transformations on φa, with the same commutation as above, requires

the matrices (ti)
m
n to satisfy

[ti, tj ] = fk
ijtk. (2.30)

This is just the statement that the φm transform as a representation of the gauge group.

Turning to the case of interest we note that the variation of Aa
µ in eq. (2.20) can be

recast in the form

δAa
µ = ∂µλ

a + fa
b′c′′A

b′

µλ
c′′ . (2.31)

where

fa
b′c′′ = δab ∂cδ(y − y′)δ(y − y′′)− δac δ(y − y′)∂bδ(y − y′′), (2.32)

are the structure constants of the diffeomorphism group. Indeed, note that in uncondensed

notation the second term on the right hand side of eq. (2.31) is

∫
dD−dy′dD−dy′′

[
δab ∂cδ(y − y′)δ(y − y′′)− δac δ(y − y′)∂bδ(y − y′′)

]
Ab

µ(y
′)ξc(y′′), (2.33)

which by explicitly evaluating the integral becomes

∇bA
a
µξ

b −Ab
µ∇bξ

a. (2.34)

Here we have identified λa = ξa. In the last step we used that the dependence on Christoffel

symbols cancels out of this expression, and we have suppressed the x dependence. Moreover,

in abbreviated notation the field strength (2.15) is

F
a
µν = 2∂[µA

a
ν] + fa

b′c′′A
b′

µA
c′′

ν , (2.35)

as can be easily verified.
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The scalar fields, q and gab, both transform linearly (and don’t mix) under these gauge

transformations. As above, if we use abbreviated notation qy = q(x, y) and gab(x) =

gab(x, y), we have the representations

(ta)
y′

y′′ = δ(y − y′)∂aδ(y − y′′), (2.36)

and

(ta)
(de)′′

(bc)′ = δ
(d
(b δ

e)
c)δ(y − y′)∂aδ(y − y′′) + 2δ(da δ

e)
(b∂c)δ(y − y′)δ(y − y′′). (2.37)

Again, these have been chosen to match the previous expressions for δq and δgab. And

again, it is a short calculation to show that these do indeed furnish a representation of

the infinite dimensional non-abelian group by verifying that eqs. (2.36) and (2.37) satisfy

eq. (2.30). We also note that the covariant derivatives defined in eq. (2.16) take the form

Dµφ
ab... = ∂µφ

ab... −Ab′

µ (tb′)
ab...

(ab... )′′φ
(ab... )′′ , (2.38)

for any field φab... = φab...(x, y) transforming in some representation of the gauge group.

So, for example,

Dµq
y = ∂µq

y −Ab′

µ (tb′)
y
y′′q

y′′ , (2.39)

with t given in eq. (2.36).

So far very few assumptions have been made about the internal space Y and by keeping

locality on Y manifest we obtained quite general closed expressions. However, if desired

these expressions can be further transformed in a case dependent manner. Say if Y = S1 the

fields and parameters can be Fourier expanded if periodic boundary conditions are imposed.

As can be seen by Fourier transforming eq. (2.32), in this case the gauge symmetry is the

Virasoro algebra without central extension as has been realized in ref. [5], for example.

2.5 Eleven-dimensional supergravity

In this subsection we elaborate the example of eleven-dimensional supergravity [6] com-

pactified to d space-time dimensions. Compared to the previous section we further rescale

the space-time metric to obtain canonical kinetic terms.

The Einstein-Hilbert action in eleven dimensions is

S =
1

2κ2

∫
d11x

√
−GR. (2.40)

We take the eleven-dimensional metric to be of Kaluza-Klein form

GMN =

(
fhµν + gcdA

c
µA

d
ν gbcA

c
µ

gacA
c
ν gab

)
. (2.41)

Here we have rescaled the fields hµν by the function

f =

(
ĝ

g

)k

, k =
1

d− 2
, (2.42)

to obtain a canonically normalized Einstein-Hilbert action in d > 2 dimensions.
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The effective action separates into a kinetic piece

Skin = − 1

8κ2

∫
dvhαβ

[(
kgabgcd + gacgbd

)
DαgabDβgcd

]

+
1

2κ2

∫
dv

(
hβµhγ[ρhα]ν − 1

2
hαµhβ[νhγ]ρ

)
DαhβγDµhνρ,

(2.43)

potential terms

Spot =
1

4κ2

∫
dv

(
ĝ

g

)k {
gabhα[βhµ]ν∇̂ahαβ∇̂bhµν − hαβ

(
kgabgcd + gacgbd

)
∇̂ahαβ∇̂bgcd

+

[
gptgqugrs − 1

2
gpsgqtgru + 2kgprgqugst +

4− d

2
k2gpqgrugst

]
∇̂rgpq∇̂ugst

}
,

(2.44)

and the gauge field action

Sgauge = − 1

8κ2

∫
dv

(
g

ĝ

)k

hαβhµνgabF
a
αµF

b
βν , (2.45)

where

dv = ddxd11−dy
√
−h
√
ĝ. (2.46)

The above expressions are valid if d 6= 2. In two dimensions the Einstein-Hilbert action is

scale invariant and a canonically normalized Eintein-Hilbert action cannot be obtained. As

discussed in section 2.3 this action describes an unconventional gauge theory with gauge

group Diff(Y ).

Again, our goal is generality, which we achieve by keeping locality along Y manifest.

If however Y = S1, for example, the fields can be Fourier transformed. The above action

then describes a finite set of massless fields and an infinite tower of massive states. There

is a massless graviton and an infinite set of massive spin 2 fields. In addition there are

vectors and scalars.

The covariant derivatives Dα are

Dρgab = ∂ρgab −Ac
ρ∂cgab − 2gc(a∂b)A

c
ρ,

Dρhµν = ∂ρhµν −Ac
ρ∂chµν − 2khµν∇̂cA

c
ρ.

(2.47)

Note that for simplicity we have used the same symbol hµν to denote two different fields.

The field used here differs from the one used in sections 2.1 and 2.2 by a factor of f .

3 Anti-symmetric tensor fields

The standard kinetic term for antisymmetric tensors F = dC in D dimensions is

Stensor = − 1

4κ2

∫
dDx

√
−G

1

p!
GM1N1 · · ·GMpNpFM1···MpFN1···Np . (3.1)

We wish to construct the d-dimensional space-time effective action.
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3.1 Compactification

The cleanest method to obtain the space-time effective action is to use the following basis

of the cotangent space

Dyα = dxα,

Dya = dya +Aa
αdx

α,
(3.2)

and the dual basis of the tangent space

Dα =
D

Dyα
=

∂

∂xα
−Aa

α

∂

∂ya
,

Da =
D

Dya
=

∂

∂ya
.

(3.3)

We call this the “new basis”. Given the pairing 〈 , 〉 : T ⋆
p Y × TpY → R with

〈
dyN ,

∂

∂yM

〉
= δNM , (3.4)

the new basis was chosen such that〈
DyN ,

D

DyM

〉
= δNM , (3.5)

for indices M,N · · · = 1, . . . , D. We use the symbol yN to label the coordinates of the

D-dimensional space. Our index conventions are explained in footnote 1.

A differential n-form ω can then be expanded in either basis

ω =
1

n!
ωN1...Nndy

N1 ∧ · · · ∧ dyNn =
1

n!
ω̃N1...NnDyN1 ∧ · · · ∧DyNn . (3.6)

Explicitly the components of a differential form with r indices parallel to Y and s indices

parallel to Md are

ω̃a1...arα1...αs = ωa1...arA1...As(δ
A1
α1

−Ab1
α1
δA1

b1
) . . . (δAs

αs
−Abs

αs
δAs

bs
). (3.7)

The inverse relation is

ωa1...arα1...αs = ω̃a1...arA1...As(δ
A1
α1

+Ab1
α1
δA1

b1
) . . . (δAs

αs
+Abs

αs
δAs

bs
) (3.8)

In order to avoid cluttering the equations we sometimes label the components of tensors

in the new basis by typewriter letters, for example C, F. The components of the exterior

derivative of a differential n-form expanded in the new basis are

(̃dω)N1...Nn+1
= (n+ 1)D[N1

ω̃N2...Nn+1] +
1

2
n(n+ 1)Fa

αβω̃a[N1...δ
α
Nn

δ
β

Nn+1]

+ n(n+ 1)∂aA
b
αω̃b[N1...δ

a
Nn

δαNn+1]
.

(3.9)

As an illustrative example lets work out the details of a three-form potential. The

components in the two bases are related by

Cabc = Cabc,

Cµab = Cabµ −Ac
µCabc,

Cµνa = Caµν −Ab
µCabν −Ab

νCaµb +Ab
µA

c
νCabc,

Cµνρ = Cµνρ − 3Aa
[µCνρ]a + 3Aa

[µA
b
νCρ]ab +Aa

[µA
b
νA

c
ρ]Cabc.

(3.10)
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3.2 Internal diffeomorphisms

The transformation properties of the tensors T̃ under infinitesimal coordinate transforma-

tions y′a = ya − ξa(x, y) are

δT̃a1...apα1...αq = ξr∂rT̃a1...apα1...αq +

p∑

k=1

∂akξ
rT̃a1...r...apα1...αq . (3.11)

In abbreviated notation we set

Cµ1...µn(a1...ap−n) = Cµ1...µna1...ap−n(x, y), (3.12)

and the infinitessimal change of C takes the form

δCµ1...µn(b1...bp−n) =
(
t
(n)
a′

) (c1...cp−n)′′

(b1...bp−n)
Cµ1...µn(c1...cp−n)′′λ

a′ , (3.13)

with

(
t
(n)
a′

) (c1···cp−n)′′

(b1···bp−n)
= δ

[c1
[b1

· · · δcp−n]
bp−n]

δ(y − y′)∂aδ(y − y′′)

+ (−1)p−n+1 (p− n) δ[c1a δc2[b1 · · · δ
cp−n]
bp−n−1

∂bp−n]δ(y−y′)δ(y− y′′).

(3.14)

So, for example, the infinitessimal change of the three-form is

δCabc = ξr∂rCabc + 3∂[aξ
rCbc]r,

δCαab = ξr∂rCαab + 2Cαr[b∂a]ξ
r,

δCαβa = ξr∂rCαβa + ∂aξ
rCαβr,

δCαβγ = ξr∂rCαβγ ,

(3.15)

after a coordinate transformation with parameter ξr. Using eq. (2.38) this can be used to

define derivativesDα, which transform covariantly under internal diffeomorphisms. We find

DαCabc = ∂αCabc −Ad
α∂dCabc − 3Cd[ab∂c]A

d
α,

DαCµab = ∂αCµab −Ac
α∂cCµab + 2Cµc[a∂b]A

c
α,

DαCµνa = ∂αCµνa −Ab
α∂bCµνa − Cµνb∂aA

b
α,

DαCµνρ = ∂αCµνρ −Aa
α∂aCµνρ.

(3.16)

3.3 Gauge transformations

The gauge invariance of the p-th rank antisymmetric tensor δC = dΛ with Λ being a

(p−1)-form leads to invariances of the space-time effective action. So for example, if p = 3

we need to consider 3 different transformations, by parameters

Λab, Λαa, and Λαβ . (3.17)
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To avoid cluttering the formulas we use the same symbol Λ for all transformations. The

different types of space-time transformations are specified by the index structure of Λ.

We find

δCabc = 3∂[aΛ̃bc],

δCαab = DαΛ̃ab + 2∂[aΛ̃b]α,

δCαβa = 2D[αΛ̃β]a + ∂aΛ̃αβ − Λ̃abF
b
αβ ,

δCαβγ = 3D[αΛ̃βγ] + 3Λ̃a[αFβγ],

(3.18)

We note that the components of Λ in eq. (3.17) are tensors in D dimensions. So the

components of Λ̃ change according to eq. (3.11) after an internal diffeomorphism. Cor-

respondingly the components of Λ̃ are in the representation (3.14). We have defined the

covariant derivatives of Λ̃ accordingly

Dµ1
Λ̃µ2...µnb1...bp−n

= ∂µ1
Λ̃µ2...µnb1...bp−n

−Aa
µ1
∂aΛ̃µ2...µnb1...bp−n

+ (p− n)(−1)p−nΛ̃µ2...µna[b1...bp−n−1
∂bp−n]A

a
µ1
.

(3.19)

We can write

δCµ1...µn(b1...bp−n) = nD[µ1
Λ̃µ2...µn](b1...bp−n)

+
(
q(n)

) (c1...cp−n−1)′

(b1...bp−n)
Λ̃µ1...µn(c1...cp−n−1)′

+
n(n− 1)

2

(
h
(n)
a′

) (c1...cp−n+1)′′

(b1...bp−n)
F
a′

[µ1µ2
Λ̃µ3...µn](c1...cp−n+1)′′ .

(3.20)

Comparing with eq. (3.18) we find
(
q(n)

) (c1···cp−n−1)′

(b1···bp−n)
= (−1)p−1 (p− n) δ

[c1
[b1

· · · δcp−n−1]
bp−n−1

∂bp−n]δ(y − y′), (3.21)

and
(
h
(n)
a′

) (c1···cp−n+1)′′

(b1···bp−n)
= (−1)n δ[c1a δc2[b1 · · · δ

cp−n+1]

bp−n]
δ(y − y′)δ(y − y′′). (3.22)

We have written these expressions in a form that applies to a p-th rank antisymmetric

tensor with any number of space-time indices. So to compare with eq. (3.18) set p = 3 and

take n = 0, . . . , 3.

The components of F = dC expressed in the new basis are covariant under internal

diffeomorphisms in the sense that these transform according to eq. (3.11) and are invariant

under the gauge transformations of the antisymmetric tensor. For p = 3 we find the

corresponding field strengths

Fabcd = 4∂[aCbcd],

Fµabc = DµCabc − 3∂[aCbc]µ,

Fµνab = 2D[µCν]ab + 2∂[aCb]µν + F
c
µνCabc,

Fµνρa = 3D[µCνρ]a − ∂aCµνρ + 3Fb
[µνCρ]ab,

Fµνρσ = 4D[µCνρσ] + 6Fa
[µνCρσ]a.

(3.23)
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We note ∂a = Da and moreover, covariant derivatives ∇̂a could have been used instead of

∂a since the connections drop out when anti-symmetrizing. And in general

Fµ1···µn+1(b1...bp−n) = (n+ 1)D[µ1
Cµ2···µn+1](b1...bp−n)

−
(
q(n)

) (c1...cp−n−1)′

(b1...bp−n)
Cµ1···µn+1(c1...cp−n−1)′

− n(n+ 1)

2

(
h
(n)
a′

) (c1...cp−n+1)′′

(b1...bp−n)
F
a′

[µ1µ2
Cµ3···µn+1](c1...cp−n+1)′′ .

(3.24)

3.4 The kinetic and potential terms

Next we present the part of the effective space-time action arising from the kinetic term

of a p-th rank antisymmetric tensor in D dimensions. We first present our result for

eleven-dimensional supergravity, elaborating further the p = 3 example, and then we

present the result for general p. As an illustrative example we also choose the space-time

dimension d = 4.

The form action in eleven-dimensional supergravity is

S = − 1

4κ2

∫
d11x

√
−G | F |2 . (3.25)

The eleven-dimensional three-form C gives rise to scalars Cabc, vectors Cabµ and tensors

Caµν and Cµνλ in d dimensions. In the following we explain the choice of space-time fields

and we present the effective action. We find

S = Ss + Sv + St, (3.26)

i.e. the action is the sum of the contribution from scalars, vectors and tensors.

First, there are space-time scalars Cabc which are three-forms on Y . The space-time

action is2

Ss = − 1

24κ2

∫
dv

[(
DµCabc − 3∂[aCbc]µ

)2
+ 4f

(
∇̂[aCbcd]

)2]
, (3.27)

where f was defined in eq. (2.42). The first bracket is the kinetic term for space-time

scalars Cabc which are charged under the non-abelian gauge group arising from internal

diffeomorphisms Aa
µ and the abelian gauge field Cabµ. The second term is a potential for

the scalars Cabc arising from the antisymmetric tensor and the scalars arising from the

internal metric gab.

We note that the variation of the last term in Fαβab in eq. (3.23) under (3.18) does

not involve a space-time derivative. We therefore find it more convenient to define a new

gauge field tensor

Fµνab = 2D[µCν]ab + 2∂[aCb]µν . (3.28)

2We are using another shorthand notation here. We use the notation (. . . )2 whenever the indices are

contracted in an obvious way with hµν and/or gab. Explicitly, given any quantity with some space-time and

some internal indices we identify (Wµν...ab...)
2 with Wµ1ν1...a1b1...Wµ2ν2...a2b2...h

µ1µ2hν1ν2 . . . ga1a2gb1b2 . . . .
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After this redefinition the gauge kinetic term is

Sv = − 1

16κ2

∫
dvf−1

(
Fµνab + F

c
µνCabc

)2
. (3.29)

Moreover, the action for tensors is

St = − 1

24κ2

∫
dv

[
f−2 (Fµνρa)

2 +
1

4
f−3 (Fµνρσ)

2

]
. (3.30)

In general, the space-time effective action arising from a rank p antisymmetric tensor

in D dimensions is again the sum of the contribution of scalars, vectors and tensors

S = Ss + Sv + St. (3.31)

Using as a starting point the D-dimensional action

S =

∫
dDx

√
−G | F |2, (3.32)

where F = dC and C is a p-form, we obtain3

Ss =
1

p!

∫
dV

[(
DµCa1...ap + p(−1)p∂[a1Ca2...ap]µ

)2
+ (p+ 1)

(
∇̂[a1Ca2···ap+1]

)2]

Sv =
1

2(p− 1)!

∫
dV
(
Fµνa1...ap−1

+ F
b
µνCba1...ap−1

)2

St =
1

(p+ 1)!

p−2∑

k=0

(
p+ 1

k

)∫
dV (Fa1...akµk+1...µp+1

)2,

(3.33)

Here using the same reasoning as before we defined the gauge field Fµνa1...ap−1
according to

Fµνa1...ap−1
= 2D[µCν]a1...ap−1

+ (p− 1)∂[a1Cb2...bp−1]µν . (3.34)

It is then easy enough to modify these concrete expressions to include overall scalar func-

tions or numerical coefficients in eq. (3.32).

3.5 Chern-Simons terms

Supergravity and string effective actions also include in general Chern-Simons terms. For

example, in eleven-dimensional supergravity

Scs = − 1

12κ2

∫
C ∧ F ∧ F. (3.35)

Let us first dimensionally reduce this action to four space-time dimensions. The most

practical method is to expand the differential forms in the new basis. Given, for example,

a vector V in D dimensions the relevant expansion is

V = VNdyN = (Vα −Aa
αVa)dx

α + Va(dy
a +Aa

αdx
α) = Vαdx

α + VaDya. (3.36)

3Here we work with the metric reduction (2.6), without the warp factor f needed to obtain canonical

Einstein-Hilbert terms. If we wanted to include these extra factors, as we did in the M-theory example

above, then the measure factors dV (defined in (2.14)) would need to be modified in a straight-forward way.
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Applying this expansion to each index independently organizes the Chern-Simons term into

Scs = − 55

2833κ2

∫
dxµνρσdyabcdefgF[µνρσFabcdCefg], (3.37)

where dxµν... = dxµ ∧ dxν ∧ . . . . The components of F in the new basis can be found in

eq. (3.23) and the anti-symmetrization is done over all indices, external and internal. Here

we have used

dxµνρσDyabcdefg = dxµνρσdyabcdefg. (3.38)

For generic supergravity theories the Chern-Simons terms are contributions to the

action, which depend on some p-form potential C, yet are gauge invariant. This poten-

tial can, for example, be a RR, NS-NS potential or the three-form of eleven-dimensional

supergravity. Schematically the Chern-Simons terms take the form

Scs ∼
∫

C ∧ Ω, (3.39)

where Ω is a closed form constructed from field strengths. For eleven-dimensional super-

gravity Ω = F ∧ F , for example. Even though the concrete expressions depend on the

D-dimensional theory that is being reduced and the space-time dimension d, the method

described above applies in general. Since using this method it is straightforward to work

out the contribution to the space-time effective action but the results are case dependent

we only present concrete results for the eleven to four reduction discussed above.

3.6 Stückelberg mechanism

Typically, one would like to understand how to fix as much of our gauge freedom as possible

and determine the physical spectrum, especially the space of massless fields. In this section

we only need to work to linearized order in the transformations and field strengths. Let’s

start by considering the case (D, d, p) = (11, 4, 3). The variations are given in (3.18) and

the field strengths in (3.23). Take the space-time coordinate x to be arbitrary but fixed.

According to Hodge’s theorem the three-form Cabc can be decomposed into harmonic, exact

and co-exact pieces, and we can use the gauge freedom from Λab to gauge away the exact

piece. Once this is done, the kinetic terms F2µabc for the exact three-forms become mass

terms for the vectors Cµab which are non-closed two-forms on the internal space. This is

the usual Stückelberg mechanism in which the non-closed two-form Cµab becomes massive

after “eating” the exact piece of Cabc. In the same way a non-closed one-form Caµν becomes

massive after “eating” the exact piece of Cabµ (equivalently the exact pieces of C can always

be gauged away). The potential in eq. (3.27) gives a mass to any non-closed scalars arising

from the three-form. Thus at each level harmonic forms are all that remain as massless

fields in four-dimensions; the remaining fields can either be gauged away or become massive.

More generally, we have the terms with coefficients q(n) in eq. (3.20). Each q(n) is a

linear operator from the space of fields that are (n+ 1)-forms in the d-dimensional space-

time to the space of fields which are space-time n-forms. In our case these are the spaces

of (p − n − 1)-forms and (p − n)-forms, respectively, on the internal manifold, and q(n) is

simply the usual exterior derivative. As before, we can gauge away each field in the image
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of q(n), i.e. each exact form, and each field that is not in the kernel of q(n), i.e. non-closed

forms, gets a mass via the Stückelberg mechanism.

The remaining massless fields lie in the space of closed forms modulo exact forms,

i.e. in the de Rham cohomology groups Hp−n. For a compact manifold Y , although the

space of (p − n)-forms is infinite dimensional, the Hp−n(Y ) are finite dimensional, so we

see that there are always a finite number of massless fields coming from the reduction of

the D-dimensional p-forms.

4 Summary

As a summary we present a concrete example. The space-time effective action for eleven-

dimensional supergravity compactified to four dimensions is

S =− 1

8κ2

∫
dvhαβ

(
1

2
gabgcd + gacgbd

)
DαgabDβgcd

+
1

2κ2

∫
dv

(
hβµhγ[ρhα]ν − 1

2
hαµhβ[νhγ]ρ

)
DαhβγDµhνρ

+
1

4κ2

∫
dvf

[
gabhα[βhµ]ν∇̂ahαβ∇̂bhµν − hαβ

(
1

2
gabgcd + gacgbd

)
∇̂ahαβ∇̂bgcd

+

(
gptgqugrs − 1

2
gpsgqtgru + gprgqugst

)
∇̂rgpq∇̂ugst

]
− 1

8κ2

∫
dvf−1

(
F
a
µν

)2

− 1

24κ2

∫
dv

[(
DµCabc − 3∂[aCbc]µ

)2
+ 4f

(
∇̂[aCbcd]

)2]

− 1

16κ2

∫
dvf−1

(
Fµνab + F

c
µνCabc

)2 − 1

24κ2

∫
dv

[
f−2 (Fµνρa)

2 +
f−3

4
(Fµνρσ)

2

]

− 55

2833κ2

∫
dxµνρσdyabcdefgF[µνρσFabcdCefg]. (4.1)

This is the action for the bosonic fields in all representations of the four-dimensional

Lorentz-group and all masses. The components of F in the new basis are summarized

in eq. (3.23). Given the expressions we presented it is easy to write then down the space-

time effective action for any values of (D, d, p).
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